
�������	
���
��
���
�
��

�
�����	
������
�����
��	

�������������	

��������	

��
��������������������������

���������������� �
��

!"#$�%&
'	$('�)�*+','	$

-'�*	�	
)�*.��/'*�$�0'12
'

.#�"2.�,/"$�	

����������������		

����

��������

��������
��������������������������
������������������������������

��������������������

����
��������������

��������

����

����������

��

��������������

��������

����

Abstract

The first general electronic computer in the world, ENIAC, was birthed in

1946 for calculating ballistic trajectories. Since ENIAC was able to process

around 5000 operations per second, it could execute the ballistic calculation

within hours, much faster than the several months needed by hand-cranked

mechanical computers. This can be regarded as the first classical example

of processors being developed to suit task requirements. With the rapid de-

velopment of information technologies, many computing paradigms such as

distributed computing, grid computing, cloud computing, and edge comput-

ing are being comprehensively developed to satisfy various emerging task

requirements. Though the task requirements are ever-changing, the basic

logic between server and task does not change. That is the server provides

computation resources that can satisfy the various task requirements. Once

the current computing paradigm fails to satisfy the new generation of tasks,

a new generation computing paradigm will be needed.

In recent years, with advent of Internet of Things (IoT), edge cloud com-

puting has become a fundamental component for the provision of sufficient

computation resources to various IoT services. In order to achieve those

services, a series of appropriate tasks must be allocated to the edge cloud

�

servers to resolve the task allocation problem. Most studies consider this

problem within the context of self-interested servers, where each server de-

sires to maximize its own interest. However, with the development of smart

communities such as smart hospitals, smart campuses and smart factories,

the servers usually belong to one organization and the need is to optimize

the team’s performance over the whole edge cloud computing system, rather

than one single server.

The above scenario naturally corresponds to a cooperation relationship of

servers making the traditional assumption of self-interested servers inap-

propriate. Our solution is to propose a cooperative edge cloud computing

which is defined as follows. Given an edge cloud computing system with

several edge and cloud servers and a certain period, the goal is to elucidate

the task allocation policy that maximizes the team interest over the whole

system within the period stipulated, while minimizing the performance met-

rics such as total delay/energy cost of all servers.

The goal of this thesis is to realize a series of task allocation methods that

offer different attributes for cooperative edge cloud computing. Each server

can observe its own status and make task allocation decisions based on the

observations; these decision-makings will interact with each other. Thus,

we adopt the multiagent reinforcement learning approach by regarding the

servers as agents that can optimally realize task allocation. Once the agents

learn well under the given edge cloud computing environment, they can be

applied to guide the servers to optimal cooperation.

In this thesis, we address the following issues in studying the task allocation

problem in cooperative edge cloud computing by multiagent reinforcement

learning. 1) Tasks with high-workloads usually cannot be performed well

�

by just one single server. 2) The tasks have a dependency relationship where

some tasks can only be performed after other tasks have been completed. 3)

The edge servers are usually distributed among multiple areas and share one

cloud server cluster.

To handle these issues, this thesis proposes three major contributions as

follows.

1. Against the high-workload task allocation problem in cooperative

edge cloud computing, we propose a coalitional reinforcement learn-

ing algorithm for guiding servers to dynamically form coalitions

to perform tasks cooperatively. Although some traditional meth-

ods tackle the high-workload problem in distributed computing, they

more focus on the tasks themselves and ignore server status. That is

because the servers usually have enough computation resources that

server status has only a small effect on task performance. However,

edge servers usually have limited resources such that server status sig-

nificantly impacts the performance of the tasks. Thus, our proposed

methods can jointly perform high-workload tasks considering the dy-

namic features of both tasks and servers. Although this thesis applies

some specific reinforcement learning (RL) methods like Q-learning in

the proposals made, many other RL methods can be used to adapt dif-

ferent situations in edge cloud computing. This means our proposal

provides a new direction in tackling high-workload task allocation

in cooperative edge cloud computing by identifying a framework for

server coalition formation.

2. Besides the high-workload issue, the tasks usually have a dependency

relationship where some tasks can only be executed after finishing

�

some other tasks. Thus, we consider the dependent task allocation

problem and our solution is to propose graph convolutional network

based reinforcement learning methods for two cases: 1) one single job

can be allocated to only one server; 2) multiple jobs can be allocated

to multiple servers. In contrast to existing studies where the dependent

tasks are allocated in a static process, we consider their deployment

in a dynamic environment where the arriving tasks and server statuses

change dynamically. Specifically, the graph convolutional network is

used to embed the dependency information of the tasks, and an RL

module is used to process decision-making for task allocation. We

consider that our proposals are indispensable for developing models

that consider the dynamic situation and task dependency in realizing

advanced task allocation in edge cloud computing.

3. Against the distributed task allocation problem, unlike most existing

work with the self-interested setting, we consider a cooperative set-

ting in this thesis. Specifically, we consider this problem in two major

cases: task offloading, where multiple tasks exist each of which can be

performed by one server, and federated learning where only one single

task exists that cannot be performed by one server. Since each edge

server can only observe its own local status, it is difficult to achieve

server cooperation given the incomplete information. To overcome

this difficulty, we propose a multiagent reinforcement learning based

task allocation algorithm that can guide the edge servers towards co-

operation. We validate our approach by using real data and the results

show the effectiveness of server cooperation among multiple areas

even under partial observations.

�

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my super-

visor, Associate Professor Donghui Lin. This PhD thesis cannot be accom-

plished without his remarkable guidance, valuable advice and continuous

encouragement. During the past three years, his philosophy of doing those

researches that are fundamental in both research communities and appli-

cation, influenced me a lot. This philosophy usually inspires me to think

whether one idea is worth to be researched especially when I find some

ideas that have not been studied in the existing work and could lead to some

publications. I believe his philosophy will influence me throughout my aca-

demic career. Also, I have learned a lot from him about critical thinking,

presenting research results, applying research funding and technical writ-

ing.

I also gratefully appreciate my advisory committee members, Professor

Masatoshi Yoshikawa and Professor Takayuki Kanda. Without their con-

structive suggestions and valuable comments, the three research topics of

my PhD thesis cannot go smoothly during the past three years. Moreover,

their research philosophies always keep me to think how important and im-

pactful my research is in both research and application fields.

�

I also gratefully appreciate Professor Takayuki Ito. His supportive advice

and insightful comments improved the quality of my research a lot. His

philosophy of thinking the future of State-of-the-Art rather than just fol-

lowing the State-of-the-Art awakened me a lot. In addition, I would like

to thank Assistant Professor Rafik Hadfi, Assistant Professor Ryuta Arisaka

and Assistant Professor Shun Okuhara for their fruitful discussion, and other

members in Ito laboratory for their kind help.

I am also grateful to Dr. Hideki Aoyama at Panasonic Holdings Corpora-

tion, my mentor during my internship at Panasonic from September 2020 to

March 2021, for his amazing technical instructions and giving the chance of

conducting a joint research to continue the project until now.

Above all, I would like to thank to Professor Toshimitsu Ushio, Graduate

School of Engineering Science, Osaka University, my master’s degree su-

pervisor, who provided me the valuable opportunity to study in Japan. His

rigorous guidance laid the theoretical foundation of my PhD research.

Finally, I want to express my gratitude to my parents, Jihong Ding and Lin-

gling Wang for their unconditional love and encouragement. The family is

my most powerful backing. I am blessed to have you.

�

Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Overview . 1

1.2 Objectives . 3

1.3 Issues and Approaches . 4

1.4 Thesis Outline . 6

2 Background 8

2.1 Edge Cloud Computing . 9

2.2 Cooperative Edge Cloud Computing 15

2.3 Task Allocation Problem 16

2.4 Related Work . 23

3 Coalition Formation for High-workload Task Allocation 29

3.1 Introduction . 29

3.2 An Illustrative Example of High-workload Task Allocation . 31

�

3.3 Coalitional Markov Decision Process (CMDP) 33

3.3.1 Coalition Structure Generation 33

3.3.2 Markov Decision Process 34

3.3.3 CMDP Model . 35

3.4 Dynamic Coalition Formation Algorithms 42

3.4.1 Coalitional Q-learning 42

3.4.2 Deep Coalitional Q-learning 44

3.5 Evaluation . 46

3.6 Summary . 54

4 Graph Convolutional Reinforcement Learning for Dependent

Task Allocation 55

4.1 Introduction . 55

4.2 An Illustrative Example of Dependent Task Allocation . . . 58

4.3 Dependent Task Allocation Problem 59

4.4 Graph Convolutional Reinforcement Learning Algorithms . 62

4.4.1 Case 1: Task Allocation with Single Job 62

4.4.2 Case 2: Task Allocation with Multiple Jobs 67

4.5 Evaluation . 73

4.6 Summary . 81

5 Multiagent Reinforcement Learning (MARL) for Distributed

Task Allocation 83

5.1 Introduction . 83

5.2 An Illustrative Example of Distributed Task Allocation . . . 85

5.3 Distributed Task Allocation Problem 87

5.4 Problem Formulation . 99

���

5.5 MARL based Task Allocation Algorithms 102

5.6 Evaluation . 108

5.7 Summary . 126

6 Conclusion 128

6.1 Contributions . 128

6.2 Discussion . 130

6.3 Future Directions . 133

Publications 135

Bibliography 138

���

List of Tables

2.1 Task Definitions in Different Fields 21

���

List of Figures

2.1 The end-cloud architecture of video analytic. 12

2.2 The end-edge-cloud architecture of video analytic. 13

3.1 Dynamic coalition formation in an edge computing system. . 31

3.2 The dynamic transition process in CMDP. 37

3.3 The definition of optimal weighted state-action value function. 43

3.4 Deep coalitional Q-learning algorithm. 45

3.5 Comparing the performances of deep coalitional Q-learning

with coalitional Q-learning. 52

3.6 Comparing the final learning results of deep coalitional Q-

learning with coalitional Q-learning. 53

4.1 Dependent task allocation in edge computing. 59

4.2 Graph convolutional reinforcement learning algorithm. . . . 63

4.3 Multi-graph convolutional reinforcement learning algorithm. 69

4.4 Comparing performances of GCRL, QL and DQN algo-

rithms in minimizing the sum of energy and delay costs. . . 74

4.5 The impacts of task workload, task dependency number and

task RAM. 75

�

4.6 Comparing the performances in minimizing delay cost via

MGCRL, DTO, TDQ and TQL algorithms. 79

4.7 Parameter analysis of task number and server number. 80

5.1 A distributed edge cloud computing system in a smart hospital. 86

5.2 Task offloading in a distributed edge cloud computing system. 88

5.3 Decentralized federated learning process. 98

5.4 Value decomposition network based task allocation algo-

rithm in distributed edge cloud computing. 103

5.5 The detail of GRU module 107

5.6 The detail of Qi neural network structure. 112

5.7 Comparing performances of VDN-TO with IDQL-TO and

random policy in latency-sensitive case. 113

5.8 Comparing performances of VDN-TO with IDQL-TO and

random policy in energy-sensitive case. 115

5.9 Comparing performances of VDN-TO with IDQL-TO and

random policy in balance case. 116

5.10 Comparing performances of VDN-DFL on MNIST dataset

in (a) reward, (b) processing time, (c) accuracy and (d) com-

munication cost. 119

5.11 Comparing performances of VDN-DFL on CIFAR-10

dataset in (a) reward, (b) processing time, (c) accuracy and

(d) communication cost. 120

5.12 Comparing performances of VDN-DFL on FashionMNIST

dataset in (a) reward, (b) processing time, (c) accuracy and

(d) communication cost. 121

�

5.13 Comparing performances of VDN-DFL with baselines on

MNIST dataset in (a) reward, (b) accuracy , (c) processing

time and (d)communication cost. 123

5.14 Comparing performances of VDN-DFL with baselines on

CIFAR-10 dataset in (a) reward, (b) accuracy , (c) process-

ing time and (d)communication cost. 124

5.15 Comparing performances of VDN-DFL with baselines on

FashionMNIST dataset in (a) reward, (b) accuracy, (c) pro-

cessing time and (d) communication cost. 125

��

Chapter 1

Introduction

1.1 Overview

Since Internet of Things (IoT) devices such as smart watches, smart phones

are exponentially increasing, an enormous volume of data will be gener-

ated that must be processed promptly [Pan and McElhannon, 2017]. How-

ever, IoT devices usually have scant computation resources, which creates

reliance on external computing resources [Chang et al., 2019]. Cloud com-

puting is a classical solution that can provide abundant customizable com-

putation resources, its effectiveness has been verified and many cloud com-

puting providers such as AWS, Google and Azure now offer various cloud

computing services. Edge computing, as a supplement to cloud comput-

ing, can offer computing services with lower latency and lower energy than

cloud computing as its servers are closer to the users. However, the com-

putation resources of edge servers are not as rich as those of cloud servers.

Therefore, edge cloud computing, which combines the advantages of edge

�

and cloud computing is seen as the desirable computing platform for IoT

[Chang et al., 2014].

A fundamental problem with edge cloud computing is how to allocate tasks

to the various servers so as to minimize various costs while satisfying the

task requirements. This is called the task allocation problem in edge cloud

computing. Although many studies have tackled this problem, they most

often assume a self-interested edge cloud computing environment, where

each edge/cloud server tries to maximize its own interests. Accordingly,

they usually formulate the problem as a zero-sum game and aim to solve

the Nash equilibrium strategy where each server develops its best response

given the strategies of the other server.

With the strong development of IoT devices and services, more and more

companies are starting to provide smart communities like Aliyun’s city

brain. In those scenarios, the servers are usually owned by an organiza-

tion rather than a single user [Donovan et al., 2017][Nishi, 2018]. The goal

is to optimize the overall performance of the edge cloud computing systems

rather than each server’s own interests. Thus, how to make edge and cloud

servers cooperate with each other to perform tasks well requires detailed

studies. In this thesis, we consider cooperative edge cloud computing, a

new edge cloud computing framework where each edge/cloud server tries

to maximize team rewards like total delay. Thus, this study addresses a

new task allocation problem in cooperative edge cloud computing. We an-

alyze three major classical cases of cooperative edge cloud computing and

propose several novel methods to cope with the issues raised. Evaluations

based on several real datasets show the effectiveness of our proposed meth-

ods.

�

1.2 Objectives

As stated in the above section, cooperative edge cloud computing is required

to support various IoT environments and its fundamental problem is task al-

location. To elucidate this problem, we indicate three major cases requiring

cooperation of servers for task allocation.

High-workload Task Allocation

First, high-workload tasks usually cannot be performed well by just one

server; adequate performance is assured only if the task can be cooperatively

performed by several servers.

Dependent Task Allocation

Second, the tasks are inter-dependent [Tang et al., 2020] where some tasks

can only be performed after the other tasks have been completed; it corre-

sponds to a dependence feature. Thus, one server needs to know the status

of its own tasks’ dependent tasks allocated to other servers.

Distributed Task Allocation

Third, the edge servers are usually distributed across various areas and

share one cloud server cluster [Jošilo and Dán, 2018]. Thus they must co-

operate with each other, since one server’s performance does not depend on

just its own actions, but can be influenced by the other servers’ actions.

Thus, the objective of this thesis is to realize a series of efficient task allo-

cation methods for cooperative edge cloud computing, with particular em-

phasis on the above three cases.

�

1.3 Issues and Approaches

In order to achieve the above objective, the issues of the above three cases

and corresponding approaches are stated as follows.

1. In edge cloud computing, allocating the tasks with high-workload

while satisfying task requirements (e.g., response time and required

memory space) is an important problem. Since the tasks with high

workload usually cannot be performed well by only one single server,

performance would be better if the task can be performed on several

servers. The existing researches are usually based on human-design

rules like MapReduce, which is a programming model, and associ-

ated implementation by a parallel, distributed algorithm for process-

ing and generating big data sets on a cluster [Dean and Ghemawat,

2008]. However, they consider just the information of tasks and so ig-

nore the current status of servers. This may yield poor performance in

edge cloud computing since the cost of performing the tasks strongly

depends on server status, which is dynamically altered by the pop-

ping/pushing of tasks. In this topic, we study a dynamic task alloca-

tion problem in edge cloud computing where both server status and

arriving tasks change over time; the goal is to identify the task allo-

cation policy that can minimize user cost. Specifically, we consider a

parallel processing case where a task’s workload can be infinitely di-

vided among the servers available; this causes a huge solution space

which makes the problem intractable. Our solution is to consider an

approximate method from the perspective of server coalitions rather

than tasks, and propose a dynamic coalition formation algorithm to

guide several edge servers into forming a coalition dynamically. Eval-

�

uations verify that our algorithm can significantly reduce user cost

compared with some other existing algorithms.

2. Beside the feature of high-workload tasks mentioned in above, in

the IoT environment, there usually exists a dependency relationship

among the tasks: some tasks can be performed only after accom-

plishing some other specific tasks. Then, one server needs to know

the situation of its own tasks’ dependent tasks allocated on other

servers, which corresponds to cooperation among servers. This prob-

lem poses two challenges: how to cope with dependency information

for decision-making of task allocation and how to cope with the dy-

namics whereby server status and arriving tasks change dynamically.

To solve these challenges, we propose a novel algorithm based on

graph convolutional reinforcement learning for dependent task allo-

cation: it can deal with the dependency and dynamic issues of the

problem effectively. Specifically, we represent the dependent tasks

as directed acyclic graphs and employ a graph convolutional network

to embed the dependency information of the tasks. Then, we formu-

late the task allocation problem as a Markov decision process and use

deep reinforcement learning to cope with the dynamics. Experiments

verify that our algorithm offers significantly better performance than

the existing algorithms examined.

3. In the above two parts, we focus on a centralized edge cloud com-

puting system. However, edge servers can be allocated to various

areas and each edge server can offload its tasks to the remote cloud

servers, which is called distributed task allocation in edge cloud com-

puting. Most of the existing work on distributed task allocation as-

�

sume that each self-interested user owns one edge server and chooses

whether to execute the tasks locally or offload them to cloud servers.

The goal of each edge server is to maximize its own metric of in-

terest like response speeds, which corresponds to a non-cooperative

setting. However, in this topic, we consider this problem in a coop-

erative setting and formulate it as a decentralized partially observable

Markov decision process (Dec-POMDP) as it can well model the dy-

namic features. Then, we apply a multiagent reinforcement learning

algorithm called value decomposition network (VDN) and propose a

VDN based task allocation algorithm to solve the Dec-POMDP. Fi-

nally, we choose part of a real dataset to evaluate our algorithm and

show its effectiveness in a comparison with some other methods.

1.4 Thesis Outline

This thesis is organized into six chapters including Chapter 1. The contents

of the remaining chapters are summarized as follows. Chapter 2 presents the

background of this thesis, an illustrative example of task allocation in edge

computing and existing methods for solving edge cloud computing. Two

major approaches will be discussed: one-step objective type and multiple-

steps objective type. Chapter 3 studies the high-workload task allocation

problem in cooperative edge cloud computing with consideration of the

problem’s dynamic features. The goal is to identify an optimal policy that

can guide the edge servers in forming coalitions to perform high-workload

tasks cooperatively. In Chapter 4, we study the dependent task allocation

problem and propose a novel algorithm based on graph convolutional rein-

forcement learning (GCRL) for dependent task allocation: it can deal with

�

the dependency and dynamic issues of the problem effectively. In Chapter

5, we consider the distributed task allocation problem and formulate it as a

decentralized partially observable Markov decision process (Dec-POMDP)

which is a classical model for discrete-time decision problems characterized

by partial observations. Although traditional RL algorithms like deep Q-

network (DQN) can also be applied to solve Dec-POMDP by making each

agent maintain a DQN, it is difficult to achieve cooperation. Thus, based

on the cooperative multiagent reinforcement learning (MARL) algorithm

called the value decomposition network, we propose a cooperative task al-

location algorithm. Finally, Chapter 6 concludes this thesis by discussing

the summary of contributions and future work.

�

�

Chapter 2

Background

In this chapter, we will discuss the background of edge cloud computing

and introduce one of its fundamental problems: task allocation. In order

to implement various IoT services in edge cloud computing, the essence is

to perform their corresponding tasks. For instance, in order to achieve a

body-monitoring IoT service, the tasks of collecting body data, analyzing

body data and visualizing the results must be performed in the order given.

Moreover, these tasks must be performed while optimizing some objectives

such as minimizing delay cost and energy cost. In this chapter, we first

introduce edge cloud computing, then task allocation problem and existing

methods. Finally, we introduce our object in this thesis: task allocation in

cooperative edge cloud computing.

�

2.1 Edge Cloud Computing

Cloud Computing

Before the emergence of cloud computing, organizations with high compu-

tation resource requirements had to construct and maintain their own server

clusters. However, the rising cost and complexity of server clusters have

become a significant burden for those organizations. It is also difficult to

expand/upgrade the current server clusters to match increases in computa-

tion resource requirements. To solve those problems, Amazon Corporation

first started to commercialize cloud computing in 2006 with the release of

elastic computing (EC2). It allows the users of cloud computing to choose

their preferred level of on-demand computation resources without consid-

ering any physical machine. Its several major advantages are summarized

below [Pan and McElhannon, 2017].

• Low Usage Cost Cloud computing eliminates the various costs of

purchasing hardware and software, as well as setting up and operating

an on-site server cluster, including the supply of uninterrupted power

for running and cooling. The user needs only rent the cloud servers,

no other costs need be considered [Chang et al., 2019].

• Elastic Extension The amount of resources used can be changed elas-

tically to suit the user’s latest requirements, which yields excellent

system flexibility. The computation resources are well supported by

a wide range of functions and resources, making it easy to create en-

hanced functionality.

• High Security The cloud providers provide the security services es-

��

sential to protecting the user’s data, applications and infrastructure

from potential threats by offering a broad set of policies, technologies

and controls that strengthen the user’s overall security posture.

Thus, cloud computing offers high reliability for users given its abundant

computation resources, and provides scalable and efficient computing ser-

vices.

Edge Computing

Although cloud computing has become a fundamental way of providing

computing services in various fields, cloud access can incur huge bandwidth

consumption and long delays, and so may not satisfy IoT applications that

need very low latency. Edge computing supplements cloud computing by

providing cloud-like services closer to the IoT devices while offering several

advantages that cloud computing cannot offer [Bonomi et al., 2012][Pan

and McElhannon, 2017]. Its several major advantages are summarized as

follows.

• Low Delay Uploading and downloading the data to/from cloud

servers will incur delays. Such delays will become large given the

increase in data size and may fail to satisfy the requirements of delay-

sensitive IoT applications. However, edge servers can process the

data locally without uploading to or downloading from cloud servers,

which corresponds to low delay.

• Low Bandwidth Consumption The data volume from devices will

exponentially increase with the number of devices. That means the

bandwidth resources may not be sufficient if many devices upload the

��

data into the cloud at the same time. However, in edge computing, the

end devices and edge servers occupy local area networks. Since the

edge servers process most data locally and only upload little data to

the cloud, thus bandwidth resources requirements are low.

• Data Security Assurance The rapid penetration of IoT devices has

also raised a number of privacy concerns. Many counties do not al-

low data such as face data, body data and bank transaction data to be

uploaded to cloud servers. Edge servers obviate the privacy concerns

raised as they store and process the data locally.

• Continuous Operation If all IoT services fully rely on the cloud

servers, there will be concerns with service continuity if the access

network fails. The edge servers well support those services whose

continuity cannot be interrupted, as they offer higher guarantees of

continuous operation.

Although several advantages of edge computing have been illustrated, the

edge servers are usually not as rich in capacities such as bandwidth, pro-

cessing speed and memory size as cloud servers. Therefore, edge cloud

computing has been proposed as a general solution and is attracting a lot of

interest as it balances the advantages of edge and cloud computing [Chang

et al., 2014].

Application: Real-time Video Analysis

As stated in the above section, edge cloud computing has become a funda-

mental component in IoT environment. In this section, we will introduce

several classical applications of edge cloud computing.

��

Real-time video analysis, as one of classical IoT applications, has become

a core component in many fields, such as smart parking, smart hospital and

virtual reality (VR). Along with the rapid development of deep learning

(DL), many DL models now offer much more accurate recognition than hu-

mans can achieve. Since the devices used to collect video data like cameras

usually have limited resources like RAM and disk spaces, the DL models

face barriers to deployment. One traditional solution is to deploy the recog-

nition DL models on cloud servers, and the video data collected from the

devices can be uploaded to the cloud server. This is called end-cloud ar-

chitecture and has been used in many scenarios, as shown in Figure 2.1.

Moreover, the collected data can be used to enhance the DL models for

improved accuracy.

Figure 2.1: The end-cloud architecture of video analytic.

��

Figure 2.2: The end-edge-cloud architecture of video analytic.

However, this end-cloud architecture has shown two main issues as follows.

The first is the privacy issue as videos that might show the human face can-

not be uploaded and can only be processed locally. The second is the delay

issue as many scenarios require real-time response. Uploading video data

usually incurs unacceptably high delay.

To solve the above issues, the architecture of end-edge-cloud is proposed,

as shown in Figure 2.2. At the end-level, the video data are collected from

devices and then are processed through edge computing. At the edge level,

the DL models are downloaded from cloud servers and used to process the

input videos. The process results can be stored in the cloud servers without

raising privacy concerns. Since it is not efficient to train models at the edge

level, DL model re-training will be performed in the cloud servers. Then,

��

the latest DL model will be downloaded to edge level from the cloud. Sev-

eral classical applications of real-time video analysis will be illustrated as

follows.

One classical application of real-time video analysis is intelligent manufac-

turing (IM). As illustrated in [Li et al., 2018], uploading and processing all

the video data will degrade the computing efficiency and create a barrier

to the implementation of real-time inspection systems for smart industries.

Such systems should also resolve the issues of response latency, risk, and

privacy protection. These requirements can be satisfied by the attributes of

edge computing illustrated above and many related studies have been made.

For instance, DeepIns [Li et al., 2018] is a real-time inspection system en-

abled by edge computing that can detect defects in products. Each factory

usually has multiple production lines which will generate significant vol-

umes of data. Moreover, this data must be processed in real-time, since

the production lines often run at high speed and even a latency of just a

few micro-seconds might hold up production. Fortunately, allocating edge

servers at the detection devices yields real-time data processing. Moreover,

the detection model can be updated from the cloud servers.

Another classical application is smart forest fire detection. Unmanned aerial

vehicles (UAVs) are being applied in many fields such as gas facilities for se-

curity, surveillance, emergency response and infrastructure inspection. One

of the classical applications, smart forest fire detection, can substantially re-

duce the risk of damage caused by fires [Khan et al., 2020]. Since the UAVs

have limited computation resources, they require some additional comput-

ing resources to process the data of images or video streams captured by

the UAV cameras. One way is to upload the video data to remote cloud

��

servers for video analysis. However, it will suffer a high latency which can-

not satisfy the requirement of real-time analysis, especially since the com-

munication channels in the forest usually have low gain due to the scant

communication infrastructures available. UAV-enabled edge computing of-

fers a solution as it can rapidly process the video data to detect forest fires,

without the help of cloud servers [Narang et al., 2017][Avgeris et al., 2019].

Each edge server in the above applications can independently perform its

tasks and does not need to consider other edge servers. That is because

the tasks have no dependent relationships and the task workloads are small

enough as each edge server has enough computation resources to perform its

own tasks in an independent and static way. However, given the continuous

development of various task requirements and the increase in task number,

one server will be insufficient to accomplish the task by itself which requires

the cooperation of other servers. Thus, tasks must be performed through

cooperation.

2.2 Cooperative Edge Cloud Computing

Many studies have examined the problems of edge cloud computing in

depth. However, most of them considered the problem in the non-

cooperative setting, where each edge server is assumed to be self-interested,

and simply learns its own policy independently. As illustrated in Chapter

1, this approach fails to support the setting wherein all edge servers belong

to one organization and the relationship among edge servers is cooperation.

Thus, in this section, we study the new problem of cooperative edge cloud

computing. We define cooperative edge cloud computing as follows. Given

��

an edge cloud computing system with several edge and cloud servers and

a certain period such as one day or one month, the goal is to maximize the

overall team interest (the whole system) in that period, by optimizing some

metrics such as the total delay/energy cost of all servers.

2.3 Task Allocation Problem

Task allocation is a classical problem in computer science and has been

studied for many years. Before introducing task allocation in edge cloud

computing, we will introduce several traditional task allocation problems,

to better position this thesis.

Task Allocation in Distributed Computing

One classical scenario of task allocation in computing science is distributed

computing. In [Salman et al., 2002], they define the task allocation problem

as that of assigning the tasks of a program among different processors in a

distributed computer system with the goal to reduce the program turnaround

time and to increase system throughput. They formulated the problem of a

distributed program as a task interaction graph (TIG) where the nodes are

processors in the system and the edges represent communication links be-

tween the processors. An edge weight represents the length of the shortest

path between the corresponding processors. The task allocation problem is

cast as identifying a function that maps the set of tasks to the set of proces-

sors. The total execution time of all tasks assigned to all processors can be

calculated using a summation approach. They proposed a novel population-

based heuristic method called particle swarm optimization (PSO) that draws

��

its models from the social behavior of bird flocks and fish schools. In order

to balance exploration and exploitation, they combine local search methods

(through self-experience) with global search methods (through neighboring

experience).

In [Ma et al., 1982], the authors study the problem of allocating tasks among

processors with considering more optimal goals in distributed computing

systems. The goal is to find a task allocation that satisfies : 1) minimum

inter-processor communication cost, 2) balanced utilization of each proces-

sor, and 3) all engineering application requirements. They derived an algo-

rithm from the branch and bound (BB) method where the allocation problem

is represented as a search tree.

In [Hong and Prasanna, 2004], they further consider task allocation in dis-

tributed heterogeneous computing systems. First, they formulate the com-

puting system as a directed graph where the nodes are assumed to be con-

nected via an arbitrary topology. Each node represents a server and the

weight of a node represents its processing power. Each edge represents

a network link between nodes and its weight represents the communica-

tion bandwidth of the link. The goal is to maximize the system throughput

which is defined as the number of tasks computed by the system per unit of

time under a steady state condition. They proposed a decentralized adaptive

algorithm that yields a simple decentralized protocol for coordinating the

resources of the system.

The task allocation problem in distributed computing usually considers si-

multaneous task allocation where the allocation is completed once all the

tasks are allocated to the server at one step. This feature does not satisfy the

dynamic feature of edge cloud computing where task arrival is intermittent

��

and irregular.

Task Allocation in Multi-Robot

Task allocation in the field of robotics is also an important topic. In [Gerkey

and Matarić, 2004], they study the task allocation problem of multi-robot

coordination which is called multi-robot task allocation (MRTA). The fun-

damental question of MRTA is determining which task should be executed

by which robot in order to cooperatively achieve the global goal. The task

of MRTA is defined as a subgoal to achieve a global goal of the system, and

can be performed independently of other subgoals. For instance, a task can

be defined as delivering a package to one designated place.

For instance, [Donald et al., 1997] discusses several fundamental measures

for mobile robot cooperation to achieve complex tasks such as the internal

state the robot should retain, the number of cooperating robots required, and

the information that the sensors should provide. They then model the infor-

mation requirements of a coordination algorithm and design a mechanism

to reduce the computation overhead of the algorithm.

Moreover, MRTA can be divided into three major classes [Gerkey and

Matarić, 2004].

• Task number to be executed: there are two sub-classes of single-task

robots and multi-task robots. In the case of single-task robots, each

robot can only perform one task at a time. In the case of multiple-tasks

robots, the robots can execute multiple tasks simultaneously.

• Required robot number for task execution: there are two sub-classes

of single-task robots and multi-task robots. In the case of single-task

��

robot, each task requires only one robot to execute. In the case of

multiple-robot tasks, one task requires multiple robots to perform.

• Duration of task assignment: there are two sub-classes of instanta-

neous assignment and time-extended assignment. In the case of in-

stantaneous assignment, task information is only that known when

the assignment and future allocation is not considered. In the case of

time-extended assignment, more information is available during task

allocation such as tasks that will require to be assigned in the future.

Based on the above classification, there are six combinations in MRTA. For

instance, [Gale, 1989] studies the allocation problem of single-task robots,

single-robot tasks, and instantaneous assignment. It formulates this as an

optimal assignment problem (OAP) whose goal is to maximize the over-

all system utility, which was originally studied in game theory. In [Karger

et al., 1999], the study item is task allocation of single-task robots, single

robot tasks, and time-extended assignment where tasks can be executed in

parallel by multiple robots. However, the property of parallelism exponen-

tially enlarges the solution space. They propose an approximation method

based on a greedy algorithm to solve it.

The robot task allocation problems focus more on a macro-semantic level

of tasks where the issue is how to divide a large abstract task into several

sub-tasks that can be independently executed by each robot.

Task Allocation in Routing Planning

Another field where task allocation is a fundamental problem is route plan-

ning. One classical example is the vehicle routing problem (VRP) [Braek-

��

ers et al., 2016]. The predecessor problem of VRP, the truck dispatching

problem, was first proposed in [Dantzig and Ramser, 1959] where several

distributed gas stations require a certain number of identical trucks to trans-

fer a certain amount of oil from a central hub; the goal is to identify a route

with minimum traveled distance for all trucks. Then, VRP is generalized to

a linear optimization problem in [Clarke and Wright, 1964]. In VRP, mul-

tiple goods are required to be assigned to multiple vehicles and each goods

item has a specific destination. The objective is to achieve the most cost-

effective route (e.g. minimizing moving costs of all vehicles) for all delivery

destinations, given a set of moving vehicles with limited capacity [Pellazar,

1994]. The allocation problem is to decide which goods should be allocated

to which vehicle. Since each vehicle usually has different capacity, different

task allocation policies would yield different total costs.

VRP has been studied well and many variants have been proposed. For in-

stance, in open VRP (OVRP) the vehicles are not forcibly returned to the

central depot after visiting the last customer [Fleszar et al., 2009]. Thus,

the goal of OVRP is to minimize the number of vehicles used, as well as

attempting to minimize total distance. Dynamic VRP (DVRP) considers the

VRP problem in a real-time/online way where user requests dynamically

change [Pradenas et al., 2013]. Thus, it requires re-calculation of the opti-

mal routes to respond to new customer requests, where the difficulty is that

the information of new requests is usually unknown in advance. Another

variant is time dependent VRP (TDVPR) where the travel times between

depots and customers change dynamically [Ichoua et al., 2003]. This set-

ting corresponds to the realistic scenario where vehicle moving times are

altered due to congestion.

��

Although there are many variants of VRP, they are usually modeled as a

linear optimization problem. Only the objective function and constraints

change according to the specific conditions.

Task Allocation in Edge Cloud Computing

Although the tasks described above have different definitions in different

fields, as shown in Table 2.1, the objects to execute the tasks usually have

abundant resources and only static task allocation is considered.

Table 2.1: Task Definitions in Different Fields

Fields Task Definitions

Distributed Computing Assigning the tasks of a program among dif-

ferent processors in a distributed computer

system.

Multi-Robot Cooperation A subgoal to achieve a global goal of the sys-

tem, and can be performed independently of

other subgoals.

Routing Planning Deciding which goods should be allocated to

which vehicle.

However, the servers in edge cloud computing usually have limited compu-

tation resources and highly dynamic features. Thus, such kind of features

should be emphasized and considered while studying the task allocation

problem in edge cloud computing. Then, we illustrate the realistic meaning

of task allocation in edge cloud computing as follows. Although several ap-

plications of real-time video analysis have been illustrated, it is a waste to

upload all the video data all the time. Thus, event-trigger video analysis is

proposed where the devices will collect or upload the data only when some

events happen. For instance, in the smart parking scenario, the cameras will

��

upload the video data only when a car is detected.

Moreover, let us consider a scenario where multiple cameras exist and each

camera is to be responsible for all camera in one area. Then, if some objects

are detected, it will trigger the task of object detection. Since there are mul-

tiple cameras in one environment, several tasks can be invoked at the same

time. This can be formulated as a task queue which needs to be allocated to

the edge cloud computing system. The edge servers usually have limited re-

sources and they can be influenced by tasks that have high performing costs.

Thus, performance attributes like delay and energy consumption will be de-

graded if the tasks are not allocated well. This is taken as a task allocation

problem that has been addressed in many studies.

In order to satisfy various service requirements, many metrics are needed to

quantitatively evaluate system characteristics. We introduce some classical

task allocation metrics in edge cloud computing as follows.

One classical metric is energy cost. In edge cloud computing, most energy

is consumed by two functions: executing tasks and allocating tasks. As for

executing tasks, the server’s computation unit such as CPU and GPU will

consume energy in performing each program execution. In particular, exe-

cuting some tasks by using the DL models with a lot of parameters usually

incurs very high energy cost. On the other hand, allocating a task also has

a certain energy costs which is related to some parameter values such as

transferring data size and signal gain.

Besides energy cost, the time taken in performing or allocating the tasks is

called delay cost. There are two major components: computation delay and

allocation delay. The computation delay usually has an inverse relationship

��

with computation speed. The allocation delay is the time needed to allocate

the tasks which usually depends on network speed. In edge cloud comput-

ing, allocating tasks to the edge servers usually costs much less time than

allocation to cloud servers, since the edge servers are closer to users than

the cloud servers.

Since the edge and cloud servers are usually rented from cloud comput-

ing providers, usage fees must be considered. For instance, renting an on-

demand cloud server on AWS will be charged according to the usage time.

The cost of renting a cloud server becomes cheaper, yet it is still a signifi-

cant burden in many cases. Although there are many types of metrics, this

thesis focuses on energy costs and delay costs. Since some other metrics

do not impose any essential changes, they can be easily added to our mod-

els. Therefore, the goal of task allocation is how to allocate the tasks with

optimizing the above single/multiple metrics.

2.4 Related Work

The previous section has illustrated the task allocation problems in many

fields, especially in edge cloud computing. In this section, we will introduce

the existing methods for task allocation. They can be divided into two major

types according to the objective of task allocation, as stated below.

One-step Objective Type

Most studies on the task allocation problem assume a single-step objective.

They usually define a unity function based on one or multiple metrics as

illustrated in the above section. They then formulate the task allocation

��

problem as a constraint optimal problem (COP) while trying to satisfy some

constraints. For instance, Dinh et al. [Dinh et al., 2017] studied a task allo-

cation problem assuming a single mobile device (MD) and multiple edge de-

vices. The goal is to minimize both delay cost and energy consumed by MD.

They considered the two cases of fixed CPU frequency and elastic CPU fre-

quency which significantly impacts the above costs. Then, they formulated

the problem as a COP and proved that the problems are NP-hard. Finally,

they proposed a linear programming relaxation approach to solve this prob-

lem. Tran et al. [Tran and Pompili, 2018] focused on the communication

cost in mobile edge computing (MEC). Specifically, they considered a sce-

nario wherein each base station (BS) is equipped with one edge server. The

BS employs a multi-cell wireless network to process communication traffic

and many users would use this network to offload their tasks. The goal is to

maximize the users’ task allocation gains which are defined as the weighted

sum of delay cost and energy cost incurred in performing the tasks. They

formulated the problem as a mixed integer nonlinear program (MINLP) and

proposed a low-complexity solution. In [Tran et al., 2017], they focused

on the task caching problem where some tasks like video streaming, which

usually generate large volumes of data needed to be cached. They proposed

a collaborative caching method in MEC environment. Tao et al. [Tao et al.,

2017] formulated an energy cost minimization problem with the constraint

of resource capacity; the cost factor they focused on is the energy consumed

by allocating tasks from mobile devices to edge servers. Chen et al. [Chen

et al., 2018a] studied mobile edge cloud computing and adopted a game

theoretic approach for minimizing allocation cost in a distributed manner.

Gu et al. [Gu et al., 2015] considered a mobile edge cloud computing case

and attempted to minimize the joint energy cost including uploading cost,

��

deployment cost and inter-base station communication cost. They formu-

lated the problem as a mixed integer nonlinear program and linearized it

into a mixed integer linear programming form. Zhang et al. [Zhang et al.,

2018] focused on minimizing the energy cost consumed by the system it-

self and proposed cost-efficient scheduling for delay-sensitive tasks in edge

computing.

Multi-steps Objective Type

Besides solving the task allocation problem with one-step objective, many

studies have considered the dynamic features of edge cloud computing in

optimizing an objective over multiple steps. The proposals are usually for-

mulated as a Markov decision process (MDP) and reinforcement learning

(RL), a classical dynamic programming method, is usually applied.

For instance, Li and Huang [Li and Huang, 2017] formulated a dynamic

process for task allocation using the MDP approach to balance the tradeoff

between energy costs and Quality of Service (QoS) requirements; the en-

ergy costs they focus on are mainly associated with sensor hub and data. To

avoid immense computation when using value iteration or policy iteration

RL methods, they propose an ordinal optimization approximate method.

Guo et al. [Guo et al., 2016] considered a dynamic continuous time process

in edge cloud computing and proposed a task allocation policy for achieving

optimal power-delay tradeoff in the system. They also formulate the prob-

lem as a MDP. Then, in order to reduce the computation complexity, they

studied the associated dual problem and proposed an approximate method.

Chen et al. [Chen et al., 2018b] considered a task allocation problem in

mobile-edge computing where it is required to decide whether to execute a

��

computation task on the mobile device or to offload it for MEC server exe-

cution. They proposed the deep RL-based task allocation algorithm to learn

the optimal policy of task allocation.

On the other hand, the centralized single-agent RL method suffers from the

dimensionality curse problem along with the scaling issues. Then, the de-

centralized methods like fully decentralized multiagent reinforcement learn-

ing are often applied. Multiagent reinforcement learning (MARL) can be

usually divided into three categories: fully centralized, fully decentralized,

and mixed centralized & decentralized. In the fully centralized setting, the

multiagent problems are regarded as a single agent problem. Specifically, it

takes a joint action that includes all agents’ individual actions, and a global

state that covers all agents’ observations/local states. This method is easy to

deploy in many cases and offers stable learning, since the global information

is known and can be used well. However, it against the curse of dimension-

ality problem as the joint action space and global state space grow with the

number of agents.

Another approach is the fully decentralized control method, where each

agent has its own local observation and maintains a policy to indepen-

dently control and execute actions. This method avoids the dimensional-

ity curse problem, however its learning is unstable. This is because each

agent only considers its own information without considering other agents,

which means the actions of the other agents are regarded as a part of the

environment.

In order to avoid the above problem, the mixed method called centralized

training and decentralized execution (CTDE) was proposed. Specifically,

each agent holds an individual policy to execute the actions locally. In or-

��

der to improve the stability of learning, it employees a centralized training

approach where it evaluates each policy under the global state and global

reward.

As for the type of multiagent system, there are two major types: cooperative

setting and self-interested setting. In the cooperative setting, all agents will

try to optimize one common team reward function. In the self-interested

setting, each agent is assumed to be self-interested and so desires to optimize

its own reward.

Most of the studies on the task allocation problem considered the problem

in a self-interested setting. Chen et al. [Chen et al., 2015] considered a

multi-user computation allocation problem for mobile-edge cloud comput-

ing. Each mobile device chooses a channel for offloading their computation

tasks. However, the uplink data rate is slow, which degrades performance

if many devices choose the same channel. They assume that the mobile

devices are self-interested and compete for the limited channel resources.

They formulated the problem as a theoretic game model and proposed a

distributed computation allocation algorithm. Liu et al. [Liu et al., 2020b]

considered an edge cloud computing network with a three-layer hierarchi-

cal architecture consisting of a cloud platform, multiple gateways, and a

lot of IoT users. The gateway allows a limited number of devices to be

accessed at the same time, thus each device has a non-cooperative relation-

ship with other devices. They utilize a centralized user clustering method to

group the IoT users into different clusters according to user priorities, and

allocation proceeds in accordance with user priorities. Chen et al. [Chen

et al., 2018b] also considered a non-cooperative environment where each

end user observes its local environment to learn optimal decisions for either

��

local computing or edge computing with the goal of minimizing long-term

system cost. They formulated it as a stochastic game and proposed a fully-

decentralized learning method where each agent independently learns its

own policy.

The above studies do not consider the cooperative setting, so each server

is assumed to be self-interested, and simply learns its own policy in isola-

tion. This approach can not satisfy the setting wherein all servers belong

to one organization and the relationship of servers is cooperative. This the-

sis rectifies this omission by studying the new problem of cooperative task

allocation in edge cloud computing.

��

��

Chapter 3

Coalition Formation for

High-workload Task Allocation

In this chapter, we focus on the first case illustrated in Chapter 1 which is

high-workload task allocation in cooperative edge cloud computing. Our

solution is to propose a dynamic coalition formation method for server co-

operation.

3.1 Introduction

Along with the rapid development of advanced IoT services, task workloads

are becoming so large that they cannot be performed well by just one server.

It triggers the high-workload task allocation problem. Although this is a

classical problem in some traditional researches like distributed computing,

the studies to date have focused more on the task itself and ignore server

status. This is because the servers in distributed computing usually have

��

abundant computation resources and server statuses have only limited influ-

ence on task performance. However, the servers in edge cloud computing

usually have limited computation resources where the server statuses will

deterministically influence the task performance. Moreover, they consider

only one-step decision and do not consider how the current task allocation

will influence future server status. However, in many realistic IoT scenarios

edge cloud computing should focus more on long term performance, which

corresponds to a long-term goal. That means that the optimal decision-

making in the current step may not be optimal for the long-term goal.

Those existing studies usually employ rule-based methods like Hadcoop

where a module called MapReduce which is a programming model for pro-

cessing and generating big data sets in a parallel way exists [Dhirani et al.,

2017][Chen et al., 2018a][Zhang et al., 2018]. However, they consider just

the information of tasks and so ignore the current status of servers. This may

degrade performance in edge cloud computing since the cost of performing

the tasks strongly depends on server status, which is dynamically altered by

popping/pushing tasks. Moreover, most existing works rarely consider the

viewpoint of user cost such as cloud service fee and edge server electricity

fee. User cost has become an issue of more importance, since the cloud ser-

vices offered by some cloud vendors such as Amazon, Aliyun and Azure,

usually come with high user costs. Thus, tackling the tasks with high work-

load in edge cloud computing while considering the dynamic server statuses

and starting from the viewpoint of minimizing user costs requires further

studies.

��

Figure 3.1: Dynamic coalition formation in an edge computing system.

3.2 An Illustrative Example of High-workload

Task Allocation

As the real-time video analytic illustrated in Chapter 2, if a video analytic of

a certain period is regarded as a task, both the task number and task work-

load will increase along with the increase of cameras. However, the increase

speed of the servers may not catch up the increase of the burden from tasks.

That means the limited numbers of servers should cooperate to perform the

tasks with high-workload. Specifically, as shown in Figure 3.1, there is

��

an edge computing system consisting of one centralized coordinator, seven

resource-limited edge servers and a task set consisting of several tasks. Each

task has a different workload and a corresponding number of servers is re-

quired to perform the tasks to satisfy some requirements such as maximum

latency. We assume each box represents one unit of workload (e.g., 1000

million CPU cycles) and one edge server can perform just one unit of work-

load. For instance, task 2 requires at least three edge servers to form a

coalition to perform cooperatively. Moreover, each edge server’s status (de-

fined as edge server i’s occupancy rate ori ∈ {1%, 2%, ..., 100%} which is

inverse proportion to the number of tasks allocated on it) is dynamically al-

tered by performing tasks and influences the task performances. When tasks

are executed, the corresponding energy would be consumed. We assume

that the energy consumed by each server is directly related to the occupancy

rate ori and so raising the occupancy rate increases the energy consumed.

In order to describe this dynamic, the statuses of all edge servers and the task

set are regarded as state s. In each state, a coalition structure is determined

and each coalition chooses a task to perform. Then, each ori and the task

set would be altered after performing the tasks (corresponds to a new state).

Correspondingly, the coalition structure needs to be redetermined according

to the new state, as is shown in Figure 3.1. Besides energy cost, chang-

ing the coalition structure of servers in edge computing at each step incurs a

cost. That is because, forming a coalition of servers usually requires the par-

ticipating servers to construct signal channels. Thus, formation/release of

coalitions would need the construction/release signal channels which would

incur some costs. Thus, the goal of the problem is to make the servers form

coalitions to perform all the tasks as soon as possible, while minimizing

��

both the costs of energy consumed and changes of coalition structures.

This scenario well reflects the difficulties in dynamic coalition formation

in edge computing: it includes both features of dynamic and coalition for-

mation where the coalitions should change to suit the state at each step.

Moreover, the state space is huge: the state size exponentially increases

with the number of either edge servers or tasks. For instance, each server

has 100 possible statuses (ori: 0.01 ∼ 1 with scale interval of 0.01), thus

three servers has already corresponded to 106 joint statuses.

3.3 Coalitional Markov Decision Process (CMDP)

In this section, we propose a dynamic coalition formation model to cope

with this problem. Before introducing our proposed model, we will explain

some preliminaries of coalition formation and dynamic decision process.

3.3.1 Coalition Structure Generation

The models in coalition formation theory can be divided into two types:

self-interested setting and cooperative setting. In the self-interested set-

ting, one classical model is the transferable utility game (TUG) which is

defined as the pair (N ,vcha) where N = {1, ...,n} is a set of agents, and

vcha : 2N → R is the characteristic function used to evaluate the value of a

coalition c (a coalition is formed by several agents joining which is denoted

as c, i.e., c⊆N) [Banerjee et al., 2001]. Since each agent can choose only

one coalition to join, several disjoint coalitions can be formed where each

combination of coalitions is called a coalition structure and denoted as cs,

i.e., cs = {c1, ...,c|cs|} that satisfies (∀i �= j,ci ∩ c j = /0)∧ (⋃|cs|
i=1 ci = N).

��

The goal of TUG is to solve a core which is the set of all stable out-

comes that no coalition wants to deviate from, i.e., core = {(cs,x)|∑i∈c xi ≥
vcha(c) for any c⊆N } where x is the vector used to divide the rewards

earned by the coalition among each of its members. ∑i∈c xi ≥ vcha(c) means

that each coalition earns at least as much as it can make on its own. Thus, the

self-interested agent will not leave its current coalition if a core is identified

in TUG.

In the cooperative setting, one classical model is called coalition structure

generation (CSG) [Rahwan et al., 2015]. The goal of CSG is to identify

optimal coalition structure cs∗ that has the maximized sum of all coalition

values, i.e., cs∗ = argmaxcs∈PN ∑ci∈cs vcha(ci) where PN is the set of all

possible coalition structures. Since we consider the cooperative setting of

edge cloud computing, we use CSG to model part of server coalition for-

mation. However, CSG terminates once the optimal coalition structure has

been found, which does not support the dynamic processes found in edge

cloud computing system. Thus, we need to propose a dynamic coalition

formation model in this case.

3.3.2 Markov Decision Process

Markov decision process (MDP) is a traditional model for discrete time

decision-making process [Littman, 1994]. In MDP, a subject that makes

a decision is called an agent and the other subject that is impacted by the

agent is called the environment. The agent observes state s ∈S of the en-

vironment (S is the set of states can be observed), and takes action a ∈A

from the action set. Then, the environment probabilistically transfers to the

next state s′ based on a transition function T : S ×A ×S → [0,1]. Cor-

��

Correspondingly, based on the transition of (s,a,s′), the agent obtains a

reward r(s,a,s′) determined by reward function r : S ×A ×S → R. The

agent’s goal is to maximize its accumulated rewards ∑T
t=1 γ t−1r(st ,at ,st+1)

during a period by learning an optimal policy.

3.3.3 CMDP Model

Based on MDP and CSG, we propose a dynamic coalition formation model

called coalitional Markov decision process (CMDP). We first introduce

CMDP model and then state how to formulate the dynamic coalition for-

mation problem in edge computing as a CMDP.

Agent and coalition: We consider a set N = {1, ...,n} of agents. Each

agent can form a coalition ci with other agents and each agent can only

join one coalition. Thus, a way of coalition formation is called a coalition

structure denoted as cs, i.e., cs = {ci| (∀i �= j,ci∩c j = /0)∧(⋃|cs|
i=1 ci =N)}.

Then, we use PN = {cs1, ...,cs|PN |} to denote the set of all possible coali-

tion structures.

State: We use state s to denote the status of environment and define a set

S = {s1,s2, ...,s|S |} including all possible states.

Action: We denote A ci as the action set of coalition ci where each coalition

ci chooses an action from A ci . We denote joint action αcs from all coali-

tion actions under a given coalition structure cs, i.e., αcs = ac1× ...×ac|cs| .

Correspondingly, the set of joint action αcs is denoted by A cs =A c1× ...×
A c|cs| .

Transition function: Based on current state s, the environment probabilis-

tically transfers to the next state s′, after taking joint action αcs. This proba-

��

bility function, called the transition function, is denoted as T : S ×A cs×
S → [0,1], i.e., T (s,αcs,s′)=Prob(s′|s,αcs).

Reward function: r : S ×A cs×S → R is the reward function. In this

case, what we want to maximize is the sum rewards from all agents rather

than an individual agent’s reward. The reward function is similar to the

characteristic function in CSG which is used to evaluate the values of dif-

ferent coalitions. However, there are two differences: 1) CSG reflects a

static coalition formation process, where it is solved once an optimal coali-

tion structure is found. Thus, the characteristic function involves only coali-

tions. However, in CMDP, there is a dynamic state transition process during

coalition formation; this means an optimal coalition structure must be iden-

tified in each state. Thus, the reward function should involve both coalition

and state. 2) Moreover, in CSG there is no concept of action where the

agents desire only to form coalitions. However, after forming a coalition

from several agents, the coalition must choose an optimal action from an

action set. Thus, the reward function is related to the state-coalition-action

pair rather than a single coalition. Moreover, the characteristic function can

be regarded as a special case of reward function when CMDP consists of

only one state and one action.

Cost function: In the process of dynamic coalition formation, altering the

coalition structure would bring corresponding cost, since coalition forma-

tion/dissolution in real-world scenarios usually corresponds to physical ac-

tivities which incur some costs like energy which cannot be ignored. Thus,

we define cost : S ×PN ×S ×PN →R as the cost function to calculate

the cost incurred by altering a coalition structure.

Policy: In CMDP, a coalition’s decision-making for choosing an action pro-

��

ceeds in two phases: coalition formation for all agents and each coalition

taking an action. Thus, it corresponds to two types of policies, separately.

As the coalition formation, we define policy πcs : S ×PN → [0,1] to

denote the probability of forming coalition structure cs under state s, i.e.,

πcs(s,cs) = Prob(cs|s). Then, each coalition c can choose an action from

its action set. We collect the actions from all coalitions which is defined as

αcs. Correspondingly, we define a policy πα : S ×PN ×A cs→ [0,1] to

denote the probability of choosing a joint action under state s and coalition

structure cs.

Figure 3.2: The dynamic transition process in CMDP.

Objective function: To sum up, we use the tuple <N ,S ,A ci ,T ,r,costcs >

to denote a CMDP. Figure 3.2 shows how CMDP formulates a dy-

namic coalition formation. Under current state s, coalition structure

cs is determined based on policy πcs. Then, based on policy πα ,

a joint action αcs is determined. By implementing αcs, the environ-

��

ment transfers to the next state based on transition function T and the

above process is repeated. Finally, we can obtain a trajectory h =

[s[1],cs[1],αcs[1],s[2], ...,s[T],cs[T],αcs[T],s[T +1]] based on that dynamic

coalition formation process. Correspondingly, we can obtain the discounted

sum return R(h) of immediate rewards along trajectory h. It is defined as

R(h) =
T

∑
t=1

γ t−1r(s[t],αcs[t],s[t +1]), (3.1)

where γ ∈ [0,1) is the discount factor to denote how important the rewards

obtained in the future are. Unlike ordinary MDP, the cost of altering coali-

tion structures also needs to be considered in CMDP which is a discounted

sum C(h) of immediate costs along trajectory h defined as :

C(h) =
T

∑
t=1

γ t−1costcs(s[t],cs[t],s[t +1],cs[t +1]). (3.2)

The goal of CMDP is to learn optimal policies of πcs and πα that can max-

imize R(h) and the cost C(h); C(h) is always a negative number (the bigger

the cost of changing cs is, the smaller the value of costcs is). Thus, we use

weighted sum J(h) as the objective function of CMDP which is defined as

J(h) = R(h)+ωC(h), (3.3)

where ω is the weight used to evaluate how important the cost is. Then, the

goal changes to identify a couple of policies πcs and πα that can maximize

the expectation of weighted sum J(h) along trajectory h as follows.

πcs∗,πα∗ = arg max
πcs,πα

Epπcs,πα
(h)

[
J(h)

]
, (3.4)

��

where Epπcs,πα
(h) denotes the expectation over trajectory h drawn from

pπcs,πα
(h) which denotes the probability density of observing trajectory h

under policies πcs and πα .

Compared with ordinary MDP, there are two major differences: 1) each

coalition as an entity takes an action rather than an agent. This means that

forming different coalitions corresponds to a different action set, which is

more complicated than the fixed action set of ordinary MDP. 2) it does cover

the concept of coalitions and altering coalition structures incurs a certain

cost for pair (s,cs,s′,cs′) that cannot be evaluated by the reward function of

naive MDP which is based on (s,α,s′). Thus, we define a cost function to

evaluate the cost incurred by altering the coalition structure. Since CMDP is

not a naive MDP, it requires us to propose a new algorithm that can handle

its specific properties.

The Equivalent Policy

Since it is hard to do an optimization with considering both the policies πcs

and πα meanwhile, we consider to construct an equivalent policy by using

their relationship. Specifically, policy πα usually makes a decision after

that coalition structure cs is determined by πcs, thus we can regard cs as a

condition of πα . We thus construct equivalent policy πeq which is defined

by

πeq : S ×A all → [0,1],

where A all =
⋃

cs∈PN A cs includes joint actions from all possible coali-

tion structures (α ∈ A all). Thus, πeq(s,α) is the probability of choos-

ing joint action α from A all under state s. Based on the relationship

πeq(s,α) = πcs(s,cs)πα(s,cs,αcs), both policies πcs and πα can be derived

��

from πeq(s,α) as follows.

πcs(s,cs) = ∑
α∈A cs

πeq(s,α),

πα(s,cs,αcs) =
[∑α ′∈A cs πeq(s,α ′)]πeq(s,α)

∑α∈A all πeq(s,α)
.

(3.5)

Thus, the optimal policy πeq∗ is defined by

πeq∗ = arg max
πeq

Epπeq
(h)

[
J(h)

]
. (3.6)

The Value Functions

In the MDP, state-action value Q(s,a) is often used to evaluate the quality

attained by taking action a under state s. Then, an optimal policy can be

obtained based on the value Q(s,a) (Q-value). Besides the reward, the cost

of altering coalition structures also exists in CMDP. Thus, we need to con-

sider two Q-value functions to evaluate the reward and cost, separately. We

define the Q-value function Qr : S ×A all→R used to evaluate the rewards

which is called state-action value function for reward, as

Qr(s,α) = Epπeq
(h)

[
R(h) | s[1] = s,α[1] = α

]
, (3.7)

where Qr(s,α) is the expected rewards obtained by following policy πeq

under the condition of “|s[1] = s,α[1] = α”. By recursion, we can rewrite

��

Qr(s,α) as follows.

Qr(s,α)= ∑
s′∈S

T (s,α,s′)
[
r(s,α,s′)+

γ ∑
α ′∈A all

πeq(s′,α ′)Qr(s′,α ′)
]
.

(3.8)

We define the Q-value function Qc : S ×A all → R
− used to evaluate the

cost of altering coalition structures, which is called as state-action value

function for cost, as

Qc(s,α) = Epπeq
(h)

[
C(h)|s[1] = s,α[1] = α

]
, (3.9)

where Qc(s,α) is the expected cost obtained by following policy πeq under

the condition of “|s[1] = s,α[1] =α”. By recursion, we can rewrite Qc(s,α)

as follows.

Qc(s,α) = ∑
s′∈S

T (s,α,s′)
[

∑
cs′∈PN

πcs(s,cs′)

costcs(s,cs,s′,cs′)+ γ ∑
α ′∈A all

πeq(s′,α ′)Qc(s′,α ′)
]
.

(3.10)

Since the objective function J(h) consists of both R(h) and C(h). We also

consider a Q-value to evaluate J(h) which is defined as weighted state-

action value function. By calculation, it can be written in terms of Qr and

Qc as follows.

Qω(s,α) = Qr(s,α)+ωQc(s,α). (3.11)

��

Based on Eqs. (7) and (8), Qω(s,α) can be written as

Qω(s,α) = ∑
s′∈S

T (s,α,s′)
[
r(s,α,s′)+

ω ∑
cs′∈PN

πcs(s′,cs′)costcs(s,cs,s′,cs′)+

γ ∑
α ′∈A all

πeq(s′,α ′)Qω(s′,α ′)
]
,

(3.12)

where Qω(s,α) includes both terms of reward r(s,α,s′) and cost

costcs(s,cs,s′,cs′). We can solve Qω(s,α) to obtain an optimal policy that

maximizes J(h).

3.4 Dynamic Coalition Formation Algorithms

As illustrated in the above section, CMDP cannot be solved by the classical

algorithms developed for solving MDP. We first introduce a basic solution

called coalitional Q-learning (CQL) as first seen in [Ding and Lin, 2020].

Then, we introduce our proposed method DCQL in this section which can

handle a larger state space than CQL.

3.4.1 Coalitional Q-learning

Q-learning, is a classical algorithm that can guide agents in learning an op-

timal Q-value for decision-making [Watkins and Dayan, 1992]. We refer

to the framework of Q-learning and consider the features of CMDP to pro-

pose an algorithm called coalitional Q-learning (CQL) to solve CMDP in

[Ding and Lin, 2020]. First, based on Eq.(3.12), we further introduce an op-

timal weighted state-action value function Qω∗ by applying a maximization

��

operator which is defined as follows

Qω∗(s,α) = ∑
s′∈S

T (s,α,s′)
[
r(s,α,s′)+

max
α ′

{
ωcostcs(s,cs,s′,cs−1(α ′))+ γQω∗(s′,α ′)

}]
,

(3.13)

where cs−1 : A all →PN is a function to obtain the cs given as αcs. In

Q-learning algorithm, there also exists a maximization operator to choose

the maximized Q-value of next state to update the Q-value of current state.

However, in the Eq. (3.13), the maximization operator needs also to con-

sider the corresponding cost of changing coalition structures rather than

only Q-value, as shown in Figure 3.3.

Figure 3.3: The definition of optimal weighted state-action value function.

In the CQL algorithm, the value of Qω∗ is updated as follows.

Qω∗(s[t],α[t])← Qω∗(s[t],α[t])+σ
[
r[t +1]+

max
α ′

{
ωcostcs(s[t],cs[t],s[t +1],cs−1(α ′))

+ γQω∗(s[t +1],α ′)
}−Qω∗(s[t],α[t])

]
,

(3.14)

��

where σ is the learning rate. Unlike Q-learning where the maximization op-

erator only considers Q-value, the maximization operator of CQL needs also

to consider the corresponding cost of changing coalition structures rather

than only Q-value. As shown in the right part, the cost will be zero if the

coalition structure does not change, the cost corresponds to a negative value

otherwise.

3.4.2 Deep Coalitional Q-learning

Coalitional Q-learning is based on a tabular RL method which demands

maintenance of a Q-table. Although tabular RL methods have good perfor-

mance in many RL tasks, it becomes impractical for RL tasks with large

state spaces since it is hard to maintain a huge table. For instance, in our

motivating scenario, the state would increase with the number of tasks in

the task set. To tackle this problem, we refer to deep RL (DRL) algorithms

which combine deep neural networks with reinforcement learning. They

have been verified as capable of dealing with large state spaces. Deep Q-

network (DQN), is a classical DRL method proposed by Volodymyr et al.

[Mnih et al., 2015]; a neural network is used to approximate the value of

Q(s,a). Inspired by the idea of DQN, we improve CQL and propose a novel

algorithm called DCQL for CMDP with large state space. Specifically, the

optimal weighted state-action value Qω∗ is calculated by a deep neural net-

work. It uses the tuple of (s j,α j,r j,cost j,s j+1) obtained at each step to train

the network with the goal of minimizing the following loss equation.

L(θ) = Es,a∼π

[(
y j−Qω∗(s j,α j;θ)

)2
]
, (3.15)

��

where

y j =

⎧⎨⎩r j +ωcostcs
j if s j+1 is terminal state,

r j + γ maxα ′(ωcostcs
j +Qω∗(s j+1,α ′;θ)) otherwise.

where θ represents the parameters of the neural network.

Further, we use the motivating scenario in section 3.2 to illustrate DCQL,

see in Figure 3.4. The statuses of all servers and task set are regarded as a

state which allows DCQL to output each action’s Qω∗ value. Based on the

Qω∗ value, an action is chosen and the state transfers to the next state. Then,

we can obtain the reward and cost to train this network through minimizing

the loss function defined by Eq. (3.15).

Figure 3.4: Deep coalitional Q-learning algorithm.

��

Then, we analyze the computation time of DCQL algorithm with the CQL

algorithm. Both algorithms consist of two phases: learning phase and exe-

cuting phase.

• 1) Learning phase: DCQL algorithm trains a deep neural network by

back propagation based on Eq. (3.15). CQL algorithm maintains a

Q-table and updates the Q-values for each state-action pair based on

Eq. (3.14).

• 2) Executing phase: DCQL algorithm inputs the current state and out-

puts the corresponding Q-values for each action by performing for-

ward propagation. Then it chooses an action based on the Q-values.

CQL algorithm searches for the Q-values corresponding to the current

state in the Q-table and chooses an action based on the Q-values.

Although DCQL algorithm incurs a longer calculation time than the CQL

algorithm in the learning phase, they take similar time to choose an action

in the executing phase. In actual experiments, we care only about the exe-

cuting phase once it has been trained well. Specifically, DCQL is given by

Algorithm 1.

3.5 Evaluation

In this section, we run the experiments of dynamic coalition formation prob-

lem in edge computing to verify the effectiveness of our proposed DCQL

algorithm.

��

ALGORITHM 1: Deep Coalitional Q-learning (DCQL) Algorithm

1 Initialize replay memory D
2 Initialize weighted action-value function Qω∗ with random weights θ
3 for episode m=1, M do
4 Generate initial state s[1]
5 for step t =1, T do
6 Randomly select an action α[t] from A all(s[t]) based on a

ε-greedy policy

7 otherwise select

α[t] = arg max
α ′

{
ωcostcs(s[t−1],cs[t−1],s[t],cs−1(α ′))+

8 γQω∗(s[t],α ′;θ)
}

9 Execute action α[t] and observe reward

r[t] = r(s[t],α[t],s[t +1]) and cost

costcs[t] = costcs(s[t−1],cs[t−1],s[t],cs[t]),
10 and then transfer to the next state s[t +1]
11 Store transition (s[t],α[t],r[t],costcs[t],s[t +1]) in D
12 Set s[t] = s[t +1]
13 Sample random mini-batch of transitions (s j,a j,r j,costcs

j ,s j+1)
from D

14 Calculate y j based on the Eq. (3.15) and perform a gradient

descent step to update θ
15 end
16 end

Evaluation Setting

We refer to related sections [Chen et al., 2015][Liu et al., 2020b][Wen et al.,

2012][Armenta-Cano et al., 2015][Aydin et al., 2004] to define the param-

eters of the following edge computing systems. And also, we make some

simplifications which do not degrade the validity of our model. The specific

setting is stated as follows.

Server: DCQL aims to solve a large state space problem in this section.

��

Since each server has 100 statuses of CPU occupancy rate, it corresponds to

106 joint statuses even if only 3 edge servers are considered. Thus, we take

an edge computing system composed of 3 edge servers. We define the set

of servers as SV = {sv1,sv2,sv3} where each server’s parameter is denoted

by the vector

svi = [ori, f i,eci], (3.16)

where ori is the CPU occupancy rate, f i is server i’s coefficient about CPU

speed (e.g., workload performed per CPU cycle), eci is server i’s coefficient

about energy cost (e.g., energy consumed per CPU cycle) which can be cal-

culated by the measurement method stated in [Wen et al., 2012]. Although

the parameter values can be set based on some physical servers like Rasp-

berry Pi , it would not influence the effectiveness of our proposed method.

Thus, we set each server as f i = 1 and eci = 1 for simplicity.

Task: As for setting the task set, we refer to [Chen et al., 2015] [Liu et al.,

2020b] to denote CPU cycles as the task workload. Although some other

task parameters like RAM and Disk can also be considered, we ignore them

for simplicity and focus on workload in this section. That is because high

workload has already well reflected the necessity of dynamic coalition for-

mation and ignoring the other parameters does not degrade the validity of

our model. We consider several task sets with different number of tasks and

three types of tasks with workload: 1000, 2000 and 3000 million CPU cy-

cles, separately. We assume 1000 million CPU cycles as a unit workload

and it can be allocated to only one server at a time. For instance, a task

with 2000 million CPU cycles requires two servers. Then, the server can

execute the tasks in parallel by applying a time-slice mechanism. Without

loss of generality, the number of each type task is randomly generated in

��

each task set. Each episode is concluded when all tasks in the task set have

been completed.

Then, we formulate the problem as a CMDP and the corresponding elements

of CMDP in this problem are given as follows.

State: The dynamic of edge computing is represented as state transi-

tion. Since the dynamic is driven by the factors of server status and

task set status, we construct the state s[t] at step t by including ori[t]

from all servers at step t and the current task set status at step t, i.e.,

s[t]=
[
[or1[t],or2[t],or3[t]], [nty1 [t],nty2 [t],nty3 [t]]

]
, where ty j is j type tasks

whose workload includes j units and nty j represents the number of type ty j

tasks left in the task set.

Action: In CMDP, at each step the entity choosing the action is the coalition,

thus we denote A c as the action set of each coalition c. In this case, A c is

the set of tasks that edge coalition c is capable to execute which also includes

the action to choose no tasks, i.e., ac = 0. Thus, the coalition action set is

defined by

A c = {ty j | j = |c|}∪{0}. (3.17)

Reward Function: The goal is to perform all the tasks as soon as possible

while minimizing the cost of energy consumption and the cost incurred by

coalition structure alteration. Thus, when all tasks have been performed, a

large positive reward is given. Specifically, the reward function is defined

as follows.

r(s,α,s′) =

⎧⎨⎩−energy(s,s′)+100, if s′ is absorb state,

−energy(s,s′), otherwise.
(3.18)

��

where 100 is the reward of absorb state in which all tasks have been accom-

plished, energy(s,s′) is the server energy consumed in performing the tasks;

we refer [Armenta-Cano et al., 2015] to define it as

energy(s,s′) = ∑
i

eci ∗ori. (3.19)

Then we refer [Aydin et al., 2004] to approximate server i’s occupancy rate

ori by the task number tan allocated on server i which is given by ori = tan
tamax

where tamax is the maximum task number can be allocated on it (we assume

tamax = 100 in this section).

Cost Function: As for calculating the cost of changing coalition structure,

we assume it is determined by the number of changes in agent relation-

ships. Specifically, we use an undirected graph to describe a coalition, thus

a coalition structure can be represented as several undirected graphs. In an

undirected graph, each agent is represented as a node and any two agents can

share one edge. Then, altering the coalition structure means adding/delet-

ing edges of the undirected graphs. Thus, the cost of altering a coalition

structure can be calculated by the number of edge changes. First, we define

set Ncs
G to describe each agent’s neighborhood (the members in the same

coalition) which is defined by

Ncs
G =

{
Ncs

G (i) = {k|k, i ∈ c j ∈ cs∧ k �= i} ∣∣ ∀i ∈N
}
. (3.20)

Then we consider set NPN

G which includes all possible Ncs
G , i.e. NPN

G ={
Ncs1

G ,Ncs2
G , ...,N

cs|PN |
G

}
. Furthermore, we introduce function D : NPN

G ×
NPN

G → R to quantify the difference between two coalition structures, as

��

defined by

D(Ncs
G , Ncs′

G) =
1

2
∑

i

∣∣ Ncs
G (i)� Ncs′

G (i)
∣∣, (3.21)

where � is symmetric difference calculation used to evaluate the number

of edges altered. Thus, the cost of altering coalition structures can be rep-

resented by the value of D(Ncs
G , Ncs′

G). We define cost function cost as the

inverse number of D(Ncs
G , Ncs′

G) as follows

costcs(s,cs,s′,cs′) =−D(Ncs
G , Ncs′

G). (3.22)

Evaluation Results

We check the performances of our DCQL algorithm by comparing it with

the CQL algorithm. We set the same hyper-parameters for all algorithms

with α=0.01 and γ=0.9. We consider task sets consisting of 5 tasks, 10

tasks, 15 tasks and 20 tasks. For each task set setting, we ran the follow-

ing simulations for 100 episodes and each episode’s maximum step is 100

(the episode is terminated even though some tasks in the task set are not exe-

cuted); the results are shown in Figure 3.5. As shown in Figure 3.5 (a), since

the task set has 5 tasks which corresponds to a small state space, CQL can

learn effectively and matches the performance of DCQL. However, CQL

cannot learn effectively when the task number increases which corresponds

to a large state space, as shown in Figure 3.5 (b)-(d). DCQL has better

performances than CQL since it can cope with large state spaces well.

In order to compare these two algorithms visually, we focus on the final

learning results (the average of the last 10 episodes) for all four task sets.

With the increase of task number, it would naturally cost more steps to get

��

(a) The number of tasks: 5 (b) The number of tasks: 10

(c) The number of tasks: 15 (d) The number of tasks: 20

Figure 3.5: Comparing the performances of deep coalitional Q-learning

with coalitional Q-learning.

the absorb state (all tasks have been executed completely). Correspondingly,

the optimal value of J(h) would decrease since taking more steps to get the

absorb state corresponds to a smaller discount value of γ t−1 based on Eqs.

(3.1)-(3.3). Thus, the J(h) value of DCQL naturally decreases with the

increase of task number, even though it can learn an optimal solution in

each task set. Then, DCQL’s superiority over CQL majorly depends on the

CQL’s performance. As shown in Figure 3.6, the percentage improvements

attained by our method over CQL are 9.1%, 101.3%, 25.1 times and 26.1

��

Figure 3.6: Comparing the final learning results of deep coalitional Q-

learning with coalitional Q-learning.

times for the task sets with task numbers of 5, 10, 15 and 20. When the task

number increases from 5 to 15, CQL’s performance decreases quickly since

a large state space problem is incurred. Thus, DCQL’s superiority over CQL

increases quickly. However, there exists a lower-bound of J(h) value which

corresponds to a worst case: the algorithm almost learns nothing and so the

tasks are rarely executed. We terminate the episode once the maximum step

is reached, thus J(h) would not go to negative infinity with the increase of

task number even though in the worst case. In task sets with 15 and 20 tasks,

we can see CQL has the similar performances that can almost learn nothing

(confirmed by Figure 3.5 (c)(d)), which are close to the lower-bound of J(h)

value. Thus, DCQL’s superiority over CQL increases slowly when the task

number increases from 15 to 20.

��

3.6 Summary

In this chapter, we considered the problem of high-workload task alloca-

tion in cooperative edge cloud computing. Compared with traditional high-

workload task allocation methods, this thesis considers the dynamic features

of edge cloud computing and has introduced two major novelties: 1) In addi-

tion to task information, the server status’s dynamic change in status is also

considered; 2) a long-term objective is considered rather than one step ob-

jective. We addressed these issues and formulated a theoretic model called

CMDP. We propose a basic solution, CQL, which is a dynamic coalition

formation algorithm that can ensure edge server cooperation. Moreover, we

extended it by using a deep neural network called DCQL which can well

handle the large state spaces expected. Therefore, this thesis has solved the

high-workload task allocation problem in edge cloud computing. Although

we employ Q-learning and DQN as described here, many other RL methods

can also be applied to support different situations in edge cloud computing.

This means that this work provides a new framework for server cooperation

in performing high-workload tasks. These advances have been published in

[Ding and Lin, 2022a].

��

Chapter 4

Graph Convolutional

Reinforcement Learning for

Dependent Task Allocation

In this chapter, we focus on the second case illustrated in Chapter 1 which is

dependent task allocation in cooperative edge cloud computing. To solve the

problem a graph convolutional reinforcement learning method is proposed.

4.1 Introduction

In the IoT environment, there is usually a dependency relationship among

the tasks: some tasks can be performed only after accomplishing some other

specific tasks. Thus, how to make optimal task allocation decisions while

considering the dependency relationship of tasks, is an import problem. Al-

though some studies have tackled this problem, they usually assume that

��

server status remains unchanged [Abdel-Jabbar et al., 2014][Sundar and

Liang, 2016]. This assumption is usually invalid in edge computing since

edge server status attributes like RAM resource change dynamically with

the pushing/popping of tasks. Thus, this section tackles the dynamic de-

pendent task allocation decision-making problem for resource-limited edge

servers.

The problem can be summarized into two issues as follows. First, the status

of server computation resources such as CPU, RAM and Disk are dynami-

cally altered with task execution. Second, some tasks can only be executed

after accomplishing some other specific tasks. As for the first issue, many

works apply deep reinforcement learning (DRL), a classical method to train

an intelligent agent to make dynamic optimal decisions, to task allocation

in edge computing [Ma et al., 2020][Chen et al., 2018b]. Specially, a task-

allocation agent is trained by the trial-and-error approach: an agent observes

the current status of the edge servers and task arrival, and makes a task al-

location decision (action). Its action is then evaluated by a reward function

based on an objective (e.g. minimizing delay cost). After several epochs

of training it with the target of maximizing the accumulated rewards, we

can deploy the trained agent to the edge computing system to control task

allocation in edge servers.

However, the second issue is not well handled by DRL algorithms. That

is because DRL algorithms usually suit just non-graphical data such as a

one-dimension vector [Wu et al., 2020]. In the dependent task allocation

problem, the dependency information can be regarded as a kind of graphical

information as represented by a directed acyclic graph (DAG): each task is a

node and dependency is represented by directed edges. Moreover, failure to

��

well handle this kind of graphical information of dependency may degrade

the task performance, since the different dependency relationships greatly

influence the cost. Thus, DRL might not well handle the dependent task

allocation problem.

To tackle these issues, we propose a graph convolutional reinforcement

learning (GCRL)-based task-allocation agent that consists of an encoding

part and a decision-making part. In the encoding part, we apply a graph con-

volutional network (GCN), one of classical graph neural networks (GNN),

to capture the dependency information by modeling a dependency feature

vector as a DAG. The embedding result output by GCN is used as part of the

input for decision-making in task allocation. In the decision-making part,

we formulate the problem as a Markov decision process (MDP), a classi-

cal model for discrete-time decision-making, where the status of a feature

vector is taken to be a state, and a task-allocation scheme is taken to be an

action. We then employ a DRL method called Deep Q-network (DQN) to

solve the decision-making problem. To show the effectiveness of our pro-

posed GCRL-based task-allocation agent, we run dependent task allocation

experiments and compare it with existing methods.

The main contributions of this chapter are as follows:

• We consider the dependent task allocation problem in the dynamic en-

vironment of resource-limited edge computing and analyze the issues

of this problem from the viewpoint of agent decision-making.

• We propose a novel graph convolutional reinforcement learning based

task-allocation agent for dependent task allocation that can minimize

energy cost and delay cost.

��

• We run experiments that show our proposed method outperforms ex-

isting algorithms to confirm its effectiveness.

4.2 An Illustrative Example of Dependent Task

Allocation

Dependent tasks in edge computing can appear in many IoT use cases. As

shown in the left part of Figure 4.1, we consider the scenario of environment

monitoring in a hospital, where wireless temperature sensors and wireless

humidity sensors collect the raw data of temperature and humidity. Based

on the comfort coefficient calculated by the data, some other tasks such as

emergency alerts can be invoked. A set of multiple dependent tasks (collec-

tively called a job) can be represented as a DAG: the circles (nodes) repre-

sent tasks and directed edges represent the dependency relationships. Each

task’s workload (CPU cycles) is represented by the size of the circle and the

primary colors represent the different computation resources required CPU,

RAM and Disk. Thus, a task’s feature vector can be represented by a circle

with different color and size. Although we take the sensors as illustrative ex-

amples, it can be extended to other IoT devices like the cameras illustrated

in Chapter 2.

As for the dependent task allocation process shown in Figure 4.1, there

exists a task-allocation agent and several heterogeneous edge servers. In

each step, a job consisting of several dependent tasks arrives to the task-

allocation agent. It observes the current status of all servers and allocates

the job to one of the servers. A different task allocation usually corresponds

to a different cost such as delay cost and energy cost. Task allocation also

��

�������� �������� �������	
� �

��
����������	
���	�

��
����������	
���	�

�������� �������� �������	

��� ���

Figure 4.1: Dependent task allocation in edge computing.

changes the computation utilization of the edge servers which would influ-

ence subsequent decision-making. Moreover, the costs are sensitive to task

dependency. For instance, the tasks of the job at t=1 and t=2 have the same

parameter values, however, the dependencies are different; thus they would

have different costs even if allocated to the same server. The dependency in

a job greatly influences the cost which makes coping with task dependency

difficult. Thus, given a certain period, the goal is to train an optimal task-

allocation agent that can minimize the total cost during the period while

satisfying the resource constraints imposed by the servers.

4.3 Dependent Task Allocation Problem

In this section, we define the above dependent task allocation in detail.

We defined task ta in Chapter 3 in a simple way, this chapter extends it and

��

defines it in a general way as follows.

Job and Task : At each step, a job consisting of several tasks arrives at the

task-allocation agent; it is written as job=(ta,dep) where ta is the set of

included tasks

ta = {ta1, ..., ta j, ..., ta|ta|}, (4.1)

task ta j can be represented by

ta j = [wok j,ReqCPU
j ,ReqRAM

j ,ReqDisk
j], (4.2)

where wok j is task j’s workload required to be performed, ReqCPU
j is task

j’s CPU resources required, ReqRAM
j is task j’s RAM resources required,

and ReqDisk
j is task j’s Disk resources required.

dep = {(ta j, tak)|ta j � tak, ta j,k ∈ ta} represents the dependency of tasks

where “ta j � tak” means that task ta j can only be performed after accom-

plishing task tak.

Server: Although we have defined server in Chapter 3, it only considers

three servers. In this chapter, we define it in a more general way. The edge

computing system consists of several edge servers, and is denoted by

SV = {sv1, ...,svi, ...,sv|SV |}. (4.3)

The characteristic parameters of each server svi ∈ SV are denoted by the

following vector

svi = [f i,eci,CPUi
max,RAMi

max,Diski
max], (4.4)

��

where f i is server i’s computation rate denoting the executed CPU cycles

per second, eci is server i’s unit energy cost denoting the energy consumed

per CPU cycle, its unit of measure is J/cyc (J is Joule and cyc is CPU

cycle), and it can be calculated via the measurement method stated in [Wen

et al., 2012], CPUi
max is the maximum CPU capacity of server i, RAMi

max is

the maximum RAM capacity of server i, and Diski
max is the maximum Disk

capacity of server i. These values are assumed to be constants.

Furthermore, the status of available server resources, which are altered by

pushing/poping tasks, is called server status, and is defined as the following

vector.

svi = [CPUi,RAMi,Diski], (4.5)

where CPUi, RAMi and Diski are the currently available resources of CPU ,

RAM and Disk, respectively.

In this section, we consider two types of cost, one is energy cost which

depends on the server energy cost, denoted as ent=−eni where server i is

allocated the job arriving at step t, and the other is delay cost, which is

computation time to complete the task allocated to server i; it is defined as

delayt =−max
j

(wok j

f i + max
j′∈Nj

(
wok j′

f i)
)
, (4.6)

where
wok j

f i is the computation time when task ta j is allocated to server i, the

bigger the value of f i is, the faster the task would be accomplished, Nj is the

set of all dependent tasks of task ta j, and ta j must wait until all its dependent

tasks have been accomplished with the wait time of max j′∈Nj(
wok′j

f i). Finally,

we take the maximum computation time of all tasks in the job as the delay

��

cost.

The goal is to minimize the sum of the immediate costs within period h with

T steps, which is given by

Cost(h) =
T

∑
t=1

γ t−1costt , (4.7)

where γ is the discount factor, costt is the cost obtained at step t and is

defined in a weighted summation form as follows.

costt = ω1ennor
t +ω2delaynor

t , (4.8)

where ennor
t ∈ [−1,0] and delaynor

t ∈ [−1,0] are the corresponding normal-

ized values of ent and delayt , and ω1,ω2 ∈ [0,1] denote the weighting pa-

rameters of energy cost and delay cost for decision-making, respectively.

4.4 Graph Convolutional Reinforcement Learn-

ing Algorithms

4.4.1 Case 1: Task Allocation with Single Job

Some DRL algorithms have been applied to task allocation, however they

rarely consider task dependency. Although DRL algorithms like DQN can

also be utilized for dependent task allocation by reforming graphical de-

pendency information as a one-dimension vector, they may not have good

performance. That is because a job consisting of dependent tasks is essen-

tially graphical data and DRL algorithms cannot capture the kind of graph-

��

ical information necessary for decision-making. Thus, in this section we

introduce our graph convolutional reinforcement learning (GCRL) based

task-allocation agent. It consists of the encoding part and decision-making

part as shown in Figure 4.2.

���

���

�
��
	

��
�

�
�
��
��
�

��
�

�
��
��

�
��
�

����

�
�

��
��
��
��

�
��
�

�
�

��
��
��
��

�

���� ���	

���� ���	

���� ���	

����
��������

�

���

���

����

���

���

����

��������

�
��
	

��
�

�
�
��
��
�

��
�

�
��
��

�
��
�

�

��	
���

���� ��	���
�������

����

�
��

����

��

Figure 4.2: Graph convolutional reinforcement learning algorithm.

Encoding Part: First, we formulate the dependent tasks of a job as a DAG

where each task of a job is a node and each dependency is represented as a

directed edge. Node feature is represented as a feature vector that includes

the workload and resource requirements of CPU, RAM and Disk, and each

directed edge represents the dependency relationship in task execution.

To describe task features, we construct feature matrix X ∈ R
|ta|×|svi| where

|ta| is the number of nodes and |svi| is node feature. Thus, X includes all

of the node’s information where each row represents the features of a task.

We use adjacency matrix A to describe the dependency relationship whose

��

element ai j at intersection of the i-th row and j-th column is one, if task j’s

execution depends on the completion of task i (the element is 0, otherwise).

Then, we use degree matrix D to denote the importance of each dependency

where the more nodes it connects with, the less import it is; its element dii

represents the number of node i’s neighbors. Let us consider the job at t = 1

in Figure 4.1, which corresponds to 5 dependent tasks and each task feature

has 4 dimensions.

Feature matrix X , adjacency matrix A and degree matrix D are given by

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

wok1 ReqCPU
1 ReqRAM

1 ReqDisk
1

wok2 ReqCPU
2 ReqRAM

2 ReqDisk
2

wok3 ReqCPU
3 ReqRAM

3 ReqDisk
3

wok4 ReqCPU
4 ReqRAM

4 ReqDisk
4

wok5 ReqCPU
5 ReqRAM

5 ReqDisk
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a15

. . .

. . .

. . .

a51 . . . a55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
D=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d11 0 0 0 0

0 d22 0 0 0

0 0 d33 0 0

0 0 0 d44 0

0 0 0 0 d55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Further, we construct Ã which includes dependency information between

tasks with different importance.

Ã = D
1
2 (D−A)D

1
2 . (4.9)

The specific calculation process in one convolutional layer is as follows.

��

We take H0=X as the first GCN layer which includes each node’s (task)

own feature vector, and the latent variable of Hl+1 is updated by the latent

variable Hl of the previous layer. In each layer, after calculating ÃHl , each

node updates its feature vector based on its own and its dependent tasks’

features. Then, ÃHl is multiplied by parameter matrix W , which would be

learned to suit the specific learning object. Moreover, in order to obtain a

non-linear representation of node features, an activation layer is added; the

ReLU function is used as the activation function in this section. Finally,

we get latent variable Hl+1 and use it to update the next layer. This GCN

encoding process can be represented by the following equation.

Hl+1 = δ (ÃHlW l), (4.10)

where Hl ∈R|ta|×dl is the latent variable in the l-th layer with dl dimensions.

Although other GNN networks can be utilized for embedding dependent in-

formation, it is not the core of this section. What we focus on in this section

is to propose a general framework for combining GNN and DRL algorithms

to determine how to dynamically allocate dependent tasks in edge comput-

ing.

Decision-making Part: In this part, we first formulate the dynamic decision

problem as a MDP. The dynamic characteristics of the problem arise from

two parts: status of server’s computation resources and jobs arriving at each

step. Thus, the state is defined

st =
[
svall

t , jobt
]

(4.11)

where the first part svall
t =

[
sv1

t , ...,sv|SV |
t

]
includes the current resource sta-

��

tuses of all servers at step t; the second part jobt is the job arriving at step

t.

As for state st , the task allocation strategy means to choose a server in SV

to which jobt is allocated. The task allocation scheme at step t is regarded

as an action in MDP, denoted as at , and all possible tasks allocation strate-

gies correspond to the action set, A = {sv1, ...,sv|SV |}. Moreover, action a

must satisfy the servers’ resource requirements. Specifically, job job j must

be accomplished by ensuring that the chosen server has enough computa-

tion resources. Obviously, the total computation resource requirement of

all tasks scheduled to server svi cannot exceed the maximum computation

resource of server svi. That is,

∑
j

ReqCPU
j +CPUi

t ≤CPUi.max,

∑
j

ReqRAM
j +RAMi

t ≤ RAMi.max,

∑
j

ReqDisk
j +Diski

t ≤ Diski.max.

(4.12)

Thus, we define a constrained action set A (s) for state s by A (s) = {ai|ai ∈
A satisfies Eq.(4.12)}

DQN, which is proposed in [Mnih et al., 2015] where a neural network

is used to approximate the value of Q(s,a), is used as a decision-making

framework. In DQN, the Q value is calculated by a deep neural network

and the goal is to minimize the following loss equation.

L(θ) = Es,a∼π

[(
y j−Q(s,a;θ)

)2
]
, (4.13)

��

where

y j =

⎧⎨⎩r j for terminal s j+1

r j + γmaxa′Q(s j+1,a′;θ) for non-terminal s j+1

In this problem, the input of DQN consists of two parts: server status svall

and embedding result HL obtained from the above GCN embedding part

which includes the high dimension information of the job. DQN calculates

the state-action value Q(s,a) for each action and chooses a server for job

allocation. Based on the execution of the action, the server status would be

altered and a new job would arrive, which corresponds to a state transition.

We can obtain a reward of the transition to train the neural network with the

aim of maximizing accumulated rewards based on Eq.(4.7) where reward is

costt at step t. GCRL is stated in Algorithm 2 in detail.

4.4.2 Case 2: Task Allocation with Multiple Jobs

The above proposed method has two strong assumptions: 1) only one job

arrives at each step and 2) each job can be only allocated on one of the

servers. Then, we extends it to loose these two assumptions and proposes a

multi-graph convolutional reinforcement learning (MGCRL) for dependent

task allocation with multiple jobs. Compared with GCRL for single job, we

change the encoding part as Multi-GCN encoding part: it encodes multiple

jobs for decision-making of task allocation, as shown in Figure 4.3

Although there is a similar work that combines GCN with DQN for de-

pendent task allocation, they just use GCN to encode the jobs and take the

encoding results as the input of DQN, where GCN parameters are not up-

��

ALGORITHM 2: Graph Convolutional Reinforcement Learning

(GCRL) Algorithm

1 Initialize replay memory Drep
2 Initialize action-value function Q with random weights

3 for episode m=1, M do
4 Generate initial state s1

5 for step t =1, T do
6 Transform arriving job into a DAG and calculate its

corresponding feature matrix X and Ã based on adjacency

matrix A and degree matrix D.

7 Take X as H0 and calculate HL by GCN.

8 Randomly select an action at (server) from A (st) based on a

ε-greedy policy

9 otherwise select at = maxa Q(st ,a;θ)
10 Execute action at in edge computing system and observe cost

costt and transfer to the next state st+1

11 Set st+1 = st , and store transition (st ,at ,costt ,st+1) in Drep
12 Sample random mini-batch of transitions (s j,a j,cost j,s j+1)

from Drep
13 Take cost j as r j and calculate y j based on the Eq. (4.13)

14 Perform a gradient descent step on (y j−Q(s j,a j;θ))2 to

update θ
15 end
16 end

dated. Moreover, they deal with each job independently without considering

the relationship of jobs. As a result, they use individual reward of allocating

one task to train the neural network, which may be difficult to contribute a

maximization of team reward. Different from the existing GCN with DQN

framework, MGCRL has three originalities: 1) it accepts multiple graph

information as inputs; 2) both the parameters of GCN and DQN can be

updated in an end-to-end manner; 3) an additional reward is proposed to

��

Figure 4.3: Multi-graph convolutional reinforcement learning algorithm.

evaluate each task allocation’s influence to the other tasks.

Multi-GCN Encoding Part: In this part, we explain how Multi-GCN is

used to encode the multiple jobs in detail. Each task feature vector in a job

includes just its own information which is not enough for decision-making

since the different dependency relationships greatly influence the delay cost.

Thus, updating each task’s feature vector requires its neighbors’ (its de-

pendent tasks) feature vector. Since GCN [Sperduti and Starita, 1997], a

powerful tool to cope with graphic data, can deal with graphic information

well, we use GCN to extract the task dependency relationships presented in

a DAG as a latent variable with high dimensional information. Unlike the

only one static graph considered in most GCN researches, in this thesis there

are multiple graphs that dynamically change over time. Thus, we propose

Multi-GCN to cope with multiple jobs.

��

First, as shown in the upper left part of Figure 4.3, we formulate each job as

a DAG where each task of a job is a node and the dependencies are repre-

sented as directed edges. Then, we can construct two matrices to represent

all the information of DAG. One is called as feature matrix X j ∈ R
|ta j|× f to

represent task features in job j where |ta j| is the number of tasks in job j and

f is the number of task feature. Thus, each row of X j represents the features

of a task such as workload, resource requirements of CPU and RAM in job j

and X j includes the information of all the task features. We take X j as the

input of GCN, i.e., H j[0]=X j. The other is adjacency matrix A j is used to

describe the dependency relationship whose element at intersection of the

k-th row l-th column is one if task ta j
l execution depends on the completion

of task ta j
k (the element is 0, otherwise).

Thus, Multi-GCN yields the embedding result H j[L] for each job j based

on GCN embedding which includes the high dimension information of the

job j (L is the layer number of GCN).

DQN Decision-making Part: Based on the above part, we can obtain each

job j’s GCN encoding results H j[L]. Then, we use a sliding window to

choose each job. We take task No. k inside a job j as input of the sliding

window and obtain each task embedding result. For each task ta j
k in job j,

we change the position of H j[L]’s first element H j[L]0 with H j[L]’s k-th ele-

ment H j[L]k and take it as task-level encoding Hta j
k

of task ta j
k, which is de-

noted as Hta j
k
=[H j[L]k,H j[L]1, ...,H j[L]k−1,H j[L]0,H j[L]k+1, ...,H j[L]|ta j|].

Then, for each task ta j
k’s allocation, we take the following three parts as a

input s j
k of DQN:

1) the task’s encoding result Hta j
k

which includes own task information and

��

also relevant task information;

2) the encoding results of other jobs H− j = [H0[L], ...,H j−1[L],H j+1[L], ...,

H |job|[L]];

3) the vector of all server statuses svall .

We denote it as s j
k = [Hta j

k
,H− j,svall]. Then, as shown in part (d) of Fig-

ure 4.3, DQN calculates the state-action value Q(s j
k,a

j
k) for each action

(server). We choose a server to allocate task ta j
k based on ε-greedy pol-

icy. Specifically, it chooses the action which has a maximum Q-value with

the probability of 1− ε or randomly chooses an action with the probability

of ε .

After allocating a task to a server, a new task No. k is input to sliding

window to repeat the above process. The sliding window moves to the next

job until all the tasks of the current job have been allocated. Finally, we can

choose the severs for all the tasks in the arriving multiple jobs and take it as

a joint action. Based on the execution of the joint action, the server status

would be altered and several new jobs would arrive, which corresponds to a

state transition. The goal of DQN is to minimize the following loss equation.

L(θ) = Es j
k,a

j
k∼π

[(
cost j

k + γmax
a j′

k
Q(s j

k[t +1],a j′
k ;θ)

−Q(s j
k[t],a

j
k[t];θ)

)2
]
,

(4.14)

where θ are the parameters of DQN.

As a conclusion, our proposed method can be summarized as follows. It

majorly consists of two parts: Multi-GCN Encoding Part (a)(b)(c) and DQN

Decision-making Part (d). (a): Multi-GCN takes multiple jobs’ DAGs as an

��

input and outputs each job encoding result. (b): There is a sliding window

used to choose a job, then takes the task No. as an input and outputs the

corresponding task encoding result. Then, we connect it with other job

encoding results. (c): The statuses of all servers are connected with the

output of (b) as a input for DQN. (d): For each task, it outputs corresponding

Q-values for allocating each server and chooses a server to allocate the task

based on ε-greedy policy. After allocating a task to a server, a new Task

No. is input to sliding window to repeat the above process (The sliding

window moves to the next job until all the tasks of the current job have been

allocated)

Then, we introduce how to calculate difference reward for each individual

reward. As for the individual reward cost j
k =

wok j
k

r f i after allocating a task

on the server i, the r = 1
|ni| is inverse ratio of the number of the tasks are

allocated on server i. The more tasks are allocated on server i, the slower

the tasks would be. Thus, it would be better for the whole system where

the tasks with high workloads are allocated on the servers whose computa-

tion rates are high. Thus, we define a difference reward di f f j
k for task ta j

k

allocation on server i as

di f f j
k = ∑

k′∈ni

cost j
k′ − ∑

k′∈ni\k

cost j
k′ (4.15)

where ni\k is the set of ni without k; di f f j
k means the cost value if task

ta j
k is not allocated on server i. Thus, we update reward cost j

k as cost j
k ←

cost j
k −di f f j

k . Finally, we use the reward updated by the above equation to

train the whole MGCRL neural network to achieve the optimal goal.

��

4.5 Evaluation

Case 1: GCRL for Task Allocation with Single Job

This section evaluates the performance of our GCRL based task-allocation

agent by comparing it with the benchmarks of Q-learning (QL) [Watkins

and Dayan, 1992] and Deep Q-network (DQN) [Chen et al., 2018b] for

dependent task allocation.

Evaluation Setting

We take an edge computing system composed of 10 edge servers whose

parameters are based on published values of edge servers like RaspberryPi.

As for the setting of tasks, the values of tasks’ parameters such as number

of arriving tasks |ta|, task workload wok j, and task dependency dep are all

randomly generated in accordance with a probability distribution. Based

on the random property, we take 100 episodes as one round and use the

average of costs in one round to compare the performances of the different

algorithms. We set the same hyper-parameters of RL for all algorithms with

α=0.01 and γ=0.9.

Performance Evaluation

We first check the evaluation result of our GCRL in minimizing the sum of

energy and delay costs by comparing with QL and DQN.

We ran the following simulations for 5,000 episodes, which correspond to

50 rounds, and show the results in Figure 4.4. Since QL’s effectiveness is

poor in a large state space, it cannot learn during training and is similar

to the performance of a random policy. DQN has better performance than

QL since it can cope with large state spaces. However, DQN would not

��

Figure 4.4: Comparing performances of GCRL, QL and DQN algorithms in

minimizing the sum of energy and delay costs.

be effective since it fails to cope with the dependency information. Our

proposal, the GCRL algorithm, well copes with the dependency information

and so achieves the best performance in terms of minimizing energy and

delay costs. A comparison of the results finds that the GCRL algorithm can

decrease the total cost by around 20% relative to DQN, because it can cope

with both the large state space and the dependency information of tasks.

Parameter Analysis

In order to evaluate the performances of these algorithms comprehensively,

we analyzed their performances in different parameter settings. The param-

eters included the maximum task workload, maximum number of dependent

tasks in arriving job, and maximum task RAM requirements.

i) The Effect of Task Workload This experiment checks the performance

of GCRL algorithm with different task workloads whose unit of measure is

Million Instructions (MI). The maximum task number of a job, nmax, is fixed

��

(a) Impact of task workload.

(b) Impact of task dependency number.

(c) Impact of task RAM.

Figure 4.5: The impacts of task workload, task dependency number and task

RAM.

��

at 10 and maximum wokmax of task workload is changed from 5000 MI to

20000MI in steps of 5000MI. The results are shown in Figure 4.5 (a); since

the server computation resource is limited, a larger task workload setting re-

quires more servers to be invoked, which corresponds to a smaller available

action space. Thus, the advantage of the proposed algorithm decreases with

the increase of task workload since the difference between optimal policy

and other policies is not obvious in a small available action space.

ii) The Effect of Task Dependency This experiment checks the perfor-

mance of our GCRL algorithm with different numbers of dependent tasks.

We keep the maximum task number nmax at 10 and maximum wokmax of task

workload at 5000. We changed the number of dependency relationships in

dep from 5 to 20 in steps of 5. The results, shown in Figure 4.5 (b), confirm

that our algorithm offers lower costs than the other algorithms under differ-

ent dependency relationship number. When the dependent task number is

small, we can see DQN has similar performance with our GCRL algorithm.

This is because task dependency has little impact on the cost if the tasks are

nearly independent of each other. However, the advantage of the proposed

algorithm increases with the increase of dependency relationship number,

since a larger dependency relationship number has a stronger impact on the

cost.

iii) The Effect of Task RAM This experiment checks the performance of

our GCRL algorithm with different task RAM requirements. The maxi-

mum task number nmax and maximum wokmax of task workload are fixed

at 10 at 5000MI, respectively. The task RAM requirements are changed

among 1MB, 10MB, 100MB, 200MB, respectively. The results, shown in

Figure 4.5 (c), confirm that GCRL offers lower user cost than the other al-

��

gorithms under different task RAM requirements. This advantage decreases

with the increase of RAM resource requirement, since tasks with huge RAM

requirements would require more servers to run, which corresponds to a

very limited action space.

Case 2: GCRL for Task Allocation with Multiple Jobs

Evaluation Setting

This section uses a real-world dataset to evaluate our proposed method to-

gether with other baseline algorithms. We use part of the dataset from

Aliyun called Cluster-trace-v2018 which includes about 4000 servers and a

periods of 8 days [Guo et al., 2019]. This dataset includes many dependent

tasks from the real-world which has been used in many dependent task allo-

cation studies for evaluation purposes [Liu et al., 2019][Tang et al., 2020].

There are two types of tasks in the dataset, one is dependent-task which

corresponds to a DAG, the other is independent-task which can be regarded

as a special case of DAG with only one node. Each task has a number of

instances which corresponds to the workload in task definition and has re-

source requirements of RAM and CPU.

For the arriving time of each job, we refer to [Tang et al., 2020] to set a

random number between [0, 100] where each number corresponds to one

step. Thus, the jobs that are assigned the same number are deemed to arrive

at the same time which corresponds to the multiple jobs allocation problem.

Performance Evaluation

In this experiment, we evaluate the performance of our MGCRL algorithm

with different baseline algorithms of dependent task allocation, which are

��

stated as follows.

• MGCRL (Multi-graph convolutional reinforcement learning): It in-

cludes Multi-GCN encoding part and DQN decision-making part.

Multi-GCN encoding part can deal with the information of multiple

jobs and output each task corresponding embedding information suc-

cessively. Then, we take each task’s embedding result from Multi-

GCN part and other information as inputs of DQN to choose a server

for each task. Based on the delay cost obtained, both the parameters

of Multi-GCN and DQN are updated together.

• DTO (Dependent Task offloading) [Tang et al., 2020]: It includes

GCN model and DQN model where GCN model can output the task-

level encoding results and take each task’s encoding result as the input

of DQN to output the server to be allocated without considering other

arriving jobs. Moreover, the parameters of GCN are not updated, only

the parameters of DQN are updated.

• TDQ (Traditional Deep Q-learning) [Chen et al., 2018b][Mnih et al.,

2015]: It includes several fully-connectd layers which transfer the

input of state to the action values. Although it can be used for de-

pendent task allocation, it may not cope with dependency information

well. That is because a job consisting of dependent tasks is essen-

tially graphic data and TDQ usually suits only non-graphic data like

one-dimension vectors

• TQL (Traditional Q-learning) [Watkins and Dayan, 1992]: It includes

a Q-table to record the Q-values for each state-action pair and updates

the Q-values based on Q-learning algorithm.

��

Figure 4.6: Comparing the performances in minimizing delay cost via

MGCRL, DTO, TDQ and TQL algorithms.

We choose 100 tasks from the dataset and set 5 edge servers, then run 500

episodes for each method. Since the steps of the arriving jobs are assigned

randomly in each episode, we take the average of 15 episodes’ rewards as

one round learning results which are shown in Figure 4.6. TQL can not learn

during the training, since the dynamics of server statuses and arriving jobs

bring a large state space which incurs it hard to maintain a Q-table. TDQ

has better performance than TQL since it can cope with large state spaces.

However, TDQ would not be effective since it fails to cope with the depen-

dency information well. DTO which combines GCN and DQN has a better

performance than TDQ, since it can deal with dependency information well.

However, DTO can only encode one job information where the information

of other jobs is ignored. Our proposal, the MGCRL algorithm, can cope

with the dependency information with multiple jobs well and so achieved

the best performance in terms of minimizing delay costs. Specifically, the

��

final sum of rewards in one episode of MGCRL corresponds to 1e4 seconds,

and the final sum of rewards in one episode of DTO corresponds to 1.5e4

seconds which breaks down delay costs to around 0.5e4 seconds totally;

it indicates that the delay cost of executing one task can be decreased 50

seconds averagely by using our proposed method. In short, MGCRL has

an overall best performance than all baselines and outperforms the baseline

approach DTO around 30% on total delay cost.

Parameter Analysis

In this experiment, we evaluate the performance of our MGCRL algorithm

with different number of tasks and number of servers. First, we keep the

number of servers as 5 and change the number of tasks from 50 to 200 in

steps of 50. The bigger of the task number is, more tasks are required to be

allocated on the servers. We run 500 episodes and take the average of the

last 50 episodes’ rewards as the learning results. The results are shown in

(a) (b)

Figure 4.7: Parameter analysis of task number and server number.

Figure 4.7 (a), the results confirm that our algorithm offers lower delay costs

than the other algorithms under different task number. When the task num-

��

ber is small, we can see DTO has similar performance with our MGCRL

algorithm. This is because task number incurs a little influence to the cost.

As the increase of task number, the advantage of our proposed algorithm

increases since our proposed method can cope with the large scale of tasks

well.

Then, we evaluate the performance of our MGCRL algorithm with different

server numbers. We keep the maximum of task number at 100 and change

server number of task workload from 5 to 20 in steps of 5. We run 500

episodes and take the average of the last 50 episodes’ delay costs as the

learning results. The results are shown in Figure 4.7 (b), since the bigger of

server number is, the less tasks would be allocated on each server. This will

decrease the overall delay cost, since the less number of tasks allocated to

a server corresponds to a faster computation rate. As the increase of server

number, the advantage of proposed algorithm increases since it corresponds

to a bigger action space where a better task allocation can be learned. The

results confirm that our algorithm offers lower delay costs than the other

algorithms under different server number.

4.6 Summary

In Chapter 3, we focused on high-workloads in task allocation which can

be regarded as a task’s internal feature. In this chapter, we consider the

relationship among tasks where the execution of one task will influence the

conduct of other tasks. We call this problem dependent task allocation.

Unlike existing studies which focus on task information itself and ignore

the server status, we study this problem by considering both dynamic and

��

dependent features.

Our solution is to propose graph convolutional reinforcement learning-

based task allocation methods for two cases: 1) a single job can be allocated

to just one server; 2) multiple jobs can be allocated to multiple servers.

Specifically, a GCN module is used to embed the dependency information

of the tasks. A RL module is used to process the decision-making steps

needed for task allocation. Experiments confirm the performance of our

proposed methods. We consider that models trained by our proposed meth-

ods are indispensable for the development of dependent task allocation in

edge cloud computing with strong dynamic features. This work has been

published in [Ding et al., 2021].

��

Chapter 5

Multiagent Reinforcement

Learning (MARL) for Distributed

Task Allocation

In this chapter, we focus on the third case illustrated in Chapter 1 which is

distributed task allocation in cooperative edge cloud computing. We pro-

pose a multiagent reinforcement learning based method to solve this prob-

lem.

5.1 Introduction

In distributed task allocation problem, edge servers are distributed among

different areas. Each edge server observes its own status, such as CPU occu-

pancy rate to decide how to perform the tasks such as offloading the tasks or

performing the tasks locally. Based on those allocation decisions, each edge

��

server’s status would be altered. Different task allocation decisions usually

correspond to different performances such as delay cost, energy cost and

accuracy of trained model. Then, how to offload the tasks with the aim of

optimizing a certain object is an important research topic in distributed edge

cloud computing [Chen et al., 2015][Liu et al., 2020b][Chen et al., 2018b].

Many studies have examined the distributed task allocation problem in edge

cloud computing, however they usually consider the problem at a user level

where each user owns an edge server and assume each edge server is self-

interested, which corresponds to a non-cooperative setting. Specifically,

each user only desires to maximize its own interest, which may cause a con-

flict between them. For instance, if many edge servers try to offload their

tasks to cloud servers with limited channel resources at the same time, the

offload rate will decrease due to network congestion. With the high de-

velopment of smart communities such as smart factory, smart campus and

smart hospital, the edge servers are usually owned by an organization like

a technology corporation rather than users [Nishi, 2018][Donovan et al.,

2017][Abdellatif et al., 2019]. Thus, its goal is to maximize the team re-

ward that emphasizes overall interest of all edge cloud servers rather than

each edge server’s own interest, which corresponds to a cooperative setting.

However, the existing studies are not suitable for this kind of cooperative

scenario, making further research essential.

In this chapter, we study a new problem called the distributed task allocation

in cooperative edge cloud computing. This problem raises two issues: 1)

each edge server’s status dynamically changes and task arrival is uncertain.

2) each edge server can observe only its own status, which corresponds to a

local observation, which makes it hard to achieve cooperation. To cope with

��

these issues, we formulate this problem as a decentralized partially observ-

able Markov decision process (Dec-POMDP) which is a classical model that

copes with dynamic decision problems with partial observations. Then, we

apply a multiagent reinforcement learning (MARL) algorithm called value

decomposition network (VDN), and propose a VDN-based task allocation

algorithm to solve it. In our proposed method, a team value function is used

to evaluate team interest and it is then divided into individual value functions

for each edge server (regarded as an agent). Each agent updates its individ-

ual value function in the direction that can maximize the team reward. Then,

we consider two classical cases of the distributed task allocation problems:

case 1) there exist multiple tasks which can be performed by one server;

case 2) there exists only one single task which cannot be performed by one

server. As for case 1), we choose part of a real Google datacenter dataset to

conduct evaluations to verify the effectiveness of our proposed algorithm in

a comparison with other existing algorithms. As for case 2), we consider a

decentralized federated learning as an example where multiple edge servers

jointly learn one model. We evaluate our proposed method by training a

image classification model on three classical image datasets.

5.2 An Illustrative Example of Distributed Task

Allocation

In this section, we use the motivating scenario of the smart hospital to il-

lustrate the problem of distributed task allocation in cooperative edge cloud

computing. As shown in Figure 5.1, there are several inpatient wards in

different areas and each ward is equipped with an edge server. Each edge

��

server takes charge of performing the IoT tasks demanded by its inpatient

ward. For instance, analyzing patient’s body data to monitor his/her health

condition can be regarded as a health condition monitoring task. If five pa-

tients are in one ward at a moment, a task queue consisting of the five health

condition monitoring tasks will arrive at the corresponding edge server. The

edge server can decide which tasks are executed locally and which tasks are

offloaded to the cloud servers.

Figure 5.1: A distributed edge cloud computing system in a smart hospital.

Since cloud servers usually have more powerful computation capacity than

edge servers, it will cost less time if the tasks are performed by cloud

servers. However, allocation time would become significant if many edge

servers choose to offload their tasks at the same time. This is because the

allocation rate usually has an inverse relationship with the number of of-

floaded tasks. Since all edge servers are owned by one organization, all the

��

edge servers are in cooperative relationships and try to optimize the team

interest like minimizing the sum of all IoT task delay costs rather than its

own interest. If such cooperation is not achieved well, delay in performing

tasks may cause a bad user experience for patients. However, it is difficult

to maximize the team interest due to the issues stated in Section 5.1, which

requires further to study.

5.3 Distributed Task Allocation Problem

In this section, we illustrate the distributed task allocation in cooperative

edge cloud computing of both case 1) and case 2) stated in section 5.1.

Case 1: Independently Performing Multiple Tasks

As for the case 1 where each task can be performed by only one server, one

classical example is task offloading. We consider the distributed edge cloud

computing system shown in Figure 5.2, which includes several edge servers

distributed among various areas and a cloud server cluster. We regard multi-

ple cloud servers as one single server entity since this section does not focus

on how the tasks are performed in the cloud servers.

At each step, each edge server would be accessed by a task queue consisting

of several tasks and the edge server decides which tasks to execute locally

and which tasks to offload to the cloud servers. Server status like CPU oc-

cupancy rate would be altered by allocating the tasks and also influences

task performance attributes such as latency and energy consumption. We

use cost to evaluate the performance numerically, and consider two types of

costs: delay cost and energy cost in this section. The delay cost consists of

��

���� ���� ���� ���� ����

����

����

����

����

����

 !

" # "$

%&

'()

*#

%&

'()

*#

%&

'()

*#

Figure 5.2: Task offloading in a distributed edge cloud computing system.

computation delay and transmission delay, and the energy cost is incurred

by performing/uploading the tasks. We consider the goal of how to min-

imize team cost in order to ensure all tasks in all edge servers have good

performance. This means that all edge servers should cooperate in deciding

task allocation rather than considering just their own interests.

While it seems that each edge can easily acquire status information of the

other servers by sending Hello packets, we assume each edge server has

only a partial observation in which each edge server cannot observe other

server status information. The reasons for this setting are stated as follows:

1) Since sending a packet takes a certain time, collecting the status infor-

mation of all edge servers will cost more time that exponentially increases

with the number of edge servers, which incurs an additional delay cost. This

delay cost would become significant, especially if network congestion hap-

pens [Chen and Wang, 2020]. 2) As each edge server must acquire global

��

information for all edge servers to do decision-making, the size of obser-

vation also exponentially increases with the number of edge servers. This

would make learning problematic when the number of edge servers is large

[Chen and Wang, 2020]. 3) Moreover, system robustness is degraded since

each edge server cannot make a decision until acquiring all edge server in-

formation. If one server fails to send its own information, all other edge

servers are unable to make their decisions, which paralyzes the whole edge

cloud computing system. Thus, we consider the problem in a decentralized

way with partial observations, which is defined as follows.

Server: We use the definition of server set in Chapter 4. In order to distin-

guish the edge server and cloud server, we change the indexes of servers

to SV = {sv0,sv1,sv2, ...,sv|SV |} where we regard many cloud servers as

a single entity with infinite computational resources denoted as sv0, and

svi(i > 0) represents the i-th edge server. Each server’s parameters are de-

noted by the vector defined in Eq.(4.4)

Task: At each step, a task queue consisting of several tasks might arrive

at edge server svi. Since this problem includes the task offloading process,

we extend the task definition in Eq.(4.2) by adding data size bi
j, which is

denoted as tai={tai
1, ta

i
2, ..., ta

i
|tai|} with

tai
j = [worki

j,b
i
j,Reqi.CPU

j ,Reqi.RAM
j ,Reqi.Disk

j], (5.1)

where worki
j is task j’s workload denoting the CPU cycles required to be

performed, bi
j is task j’s data size whose unit of measure is bit. Although

bi
j can be independent with worki

j, we assume bi
j has a linear relationship

with worki
j in this section, i.e., bi

j = c∗worki
j, where c is a constant whose

��

unit of measure is bit/cyc. Reqi.CPU
j , Reqi.RAM

j and Reqi.Disk
j are task j’s

requirements for CPU, RAM and Disk resources.

Each task would be performed either on edge server or offloaded to the cloud

servers. Thus, we refer to some related work to set the costs corresponding

to the parts on which they are executed. Although we have defined the

energy cost and delay cost in Chapter 4, those of edge end and cloud end

should be distinguished as follows.

Computing at Edge Server: First, we consider the case when the task

is performed on edge servers and refer to [Chen et al., 2015] to set the

following equations. The computation time of the task tai
j is given by

ti
j =

worki
j

f i , (5.2)

where the bigger the f i is, the less time ti
j is. The corresponding computation

energy is given by

ei
j = eciworki

j, (5.3)

where the bigger the worki
j is, the more energy it costs. Thus, the sum cost

of computation time and energy at the edge servers can be calculated by

Ci
j,edge = ωtt i

j +ωeei
j, (5.4)

where ωt ,ωe ∈ [0,1] denote the weighting parameters of delay and energy

(ωt +ωe = 1).

Computing at Cloud Server: Similarly, we can calculate the cost while the

task is offloaded to the cloud servers. We consider that a base-station is used

��

to establish wireless communication channel between the edge servers and

the cloud servers [López-Pérez et al., 2012]. Since all edge servers belong

to one organization, we assume they share one wireless channel. Then,

from [Chen et al., 2015][Liu et al., 2020b][Chen et al., 2018b] offload rate

ur(U p) is calculated by

ur(U p) = w log2

(
1+

qg
ω +qg∑i�=0 |U pi|

)
= w log2

(
1+

1
ω
qg +∑i�=0 |U pi|

)
= w log2

(
1+

1

l +∑i�=0 |U pi|
)
,

(5.5)

where w is the channel bandwidth whose unit of measure is bit/s, log2

(
1+

qg
ω+qg∑i�=0 |U pi|

)
denotes the partition of the channel bandwidth that can be

used (dimensionless) where the more tasks are uploaded, the smaller this

value is, q is the edge server’s transmission power which is determined

by the wireless base-station according to some power control algorithms

such as [Xiao et al., 2003][Chiang et al., 2008], g denotes the channel gain

between the edge server and the base-station, ∑i�=0 |U pi| is the number of

tasks being offloaded from all edge servers, U pi is the set of tasks being

offloaded from server i, U p is the set including all tasks offloaded, ω is

the background noise power. Since ω , q and g are constants, we denote

l = ω
qg as the channel coefficient. Thus, the unit of measure of upload rate

ur(U p) is bit/s. For instance, let us consider the case where w = 10bit/s

and l = 0. Then, at a step, if only one task is uploaded, the upload rate will

be 10log2(2) = 10bit/s. If two tasks are uploaded at the same time, the

upload rate will be 10log2(3/2) = 5.8bit/s

��

Correspondingly, the allocation time of task ti
j,o f f ∈U pi is given by

ti
j,o f f (U p) =

bi
j

ur(U p)
. (5.6)

After the tasks are offloaded to cloud server sv0, its corresponding calcula-

tion time is given by

ti
j,exe =

worki
j

f 0
, (5.7)

where f 0 is the computation rate of cloud server sv0. Since in most IoT en-

vironments task arrival might be sparse, this section assumes that the cloud

servers are accessed using in on-demand manner where the user only pays

when the cloud servers are in running. Then, the more task workloads (CPU

workloads) are uploaded to the cloud servers, the longer usage-time and a

higher cost (e.g., fee) would be. Since the energy cost increases in propor-

tion to CPU workload, the evaluations in this section use energy cost. Spe-

cially, the computation energy of executing task ti
j at cloud server is defined

by

ei
j,exe = ec0worki

j. (5.8)

From [Chen et al., 2015], the energy of uploading task ti
j to the cloud servers

is

ei
j,up =

qbi
j

ur(U p)
. (5.9)

The sum cost of computation time and energy for performing task tai
j on

cloud server sv0 can be calculated by

Ci
j,cloud(U p) = ωt(ti

j,o f f (U p)+ ti
j,exe)+ωe(ei

j,exe + ei
j,up). (5.10)

��

Then, at one step the total cost of performing the tasks from all servers can

be calculated and is denoted as Cost. In this section, the following three

cases are considered respectively.

Latency-sensitive Case: only delay cost is desired to be minimized. Then,

the total delay cost of both edge and cloud servers can be calculated by

Ctime =
|SV |
∑
i=1

[
∑

j/∈U pi

ti
j + ∑

j∈U pi

(ti
j,o f f (U p)+ ti

j,exe)
]
. (5.11)

Thus, we have Cost =Ctime in latency-sensitive case.

Energy-sensitive Case: only energy cost is desired to be minimized. Then,

the total energy cost of both edge and cloud servers can be calculated by

Cenergy =
|SV |
∑
i=1

[
∑

j/∈U pi

ei
j + ∑

j∈U pi

(ei
j,exe + ei

j,up)
]
. (5.12)

Thus, we have Cost =Cenergy in energy-sensitive case.

Balance Case: the sum of delay and energy cost is desired to be minimized,

where Cost is defined based on Eqs. (5.11) and (5.12).

Cost =ωt
Ctime−Cmin

time

Cmax
time−Cmin

time
+ωe

Cenergy−Cmin
energy

Cmax
energy−Cmin

energy
, (5.13)

where Cmax
time,C

min
time,C

max
energy and Cmin

energy represent the maximum/minimum val-

ues of time and energy, separately.

Moreover, the tasks must be accomplished by providing enough computa-

tion resources to the edge server. Obviously the total computation resource

requirements of all tasks executed at edge server svi cannot exceed the max-

��

imum computation resource of server svi. That is,

∑
j/∈U pi

Reqi.CPU
j +CPUi ≤CPUi

max,

∑
j/∈U pi

Reqi.RAM
j +RAMi ≤ RAMi

max,

∑
j/∈U pi

Reqi.Disk
j +Diski ≤ Diski

max.

(5.14)

Thus, the goal is to minimize the discounted cost summation under a period

with certain length T , i.e., ∑T
t=1 γ tCost[t], where γ is a discount factor de-

noting the importance of future cost. The goal is to minimize the discounted

cost summation of all servers in an episode with satisfying the constraints

of computation resources, i.e.,

min
T

∑
t=1

γ tCost[t]

s.t. Eq.(5.14)

(5.15)

Case 2: Jointly Performing One Task

As for the case 2 where each task cannot be performed by only one server,

one classical example is federated learning (FL) where multiple edge servers

jointly learn one model.

FL is initially proposed in the works [McMahan et al., 2017][Konečnỳ et al.,

2016] where one shared model can be learned jointly by distributed mo-

bile devices by aggregating locally-computed update results [Zhang et al.,

2020]. It has been studied well which can be classified into various types

with regarding to different dimensions such as data partitioning methods,

��

communication architectures, and scales of federation where many survey

papers have discussed it [Li et al., 2021] [Li et al., 2020]. In this section,

we classify it according to whether a centralized manager server exists to

discuss.

Centralized Federated Learning (CFL): One fundamental problem in FL

is how to improve the convergence speed of model learning by optimally

selecting client. Nishio et al.[Nishio and Yonetani, 2019] propose a client

selection problem in a mobile edge computing with limited computational

resources. Although more clients join to each round to learn would bene-

fit to learning efficiency, some client with poor resources might slow down

the overall learning speed. Thus, they formulate the client selection as a

constraint optimal problem with maximizing the number of selected clients

while satisfying some constraints such as deadline time. Wang et al.[Wang

et al., 2020] address the non-independent and identically distributed prob-

lem where each client has a non-IID dataset. They propose a deep reinforce-

ment learning based client selection method, FAVOR, to tackle the dynam-

ically to select a subset of devices in each communication round to maxi-

mize validation accuracy. Zhang et al. [Qian Zhang et al., 2022] employee

a MARL-based FL framework to process client selection with jointly opti-

mizing model accuracy, processing latency and communication efficiency.

Decentralized Federated Learning (DFL): The above studies assume a

centralized FL where a centralized parameter server exists to control all the

client servers. However, in some cases like medical scenarios, it is difficult

to search a central trusted server where every client may want to coordinate

with it directly [Roy et al., 2019]. Further, depending on a centralized pa-

rameter might decrease robustness such like a fault occurs at the server will

��

break down the whole federated learning system. To solve this problem,

[Roy et al., 2019] considers a random parameter server selection and once

the selected parameter server is determined. The other servers will randomly

take part in the current round learning. Lalitha et al. [Lalitha et al., 2018]

consider a decentralized federated learning with the constraints where each

client server can only communicate with its neighbor client servers. Hu et

al.[Hu et al., 2019] address the problem that the network capacities between

client servers are usually limited which hinders the transferring of learning

model with large parameters. They propose a segmented gossip approach

to split a model into a subset of segmentation, then those segmentation are

transferred among nodes by a peer-to-peer manner.

Unlike the client selection problem has been studied well in CFL, the client

selection has not been addressed well in DFL. Moreover, the parameter

server selection needs also to be considered well. In this thesis, we con-

sider to tackle this new problem and propose a novel algorithm to solve it.

Problem Definition

Based on the type of parameter server (manager), FL are usually divided

into two types: cross-device setting and cross-silo setting. In cross-device

setting, the parameter server is usually a server with powerful computation

capacity like a cloud server. While the client servers are usually some mo-

bile devices with limited computation resources like smartphones. In cross-

silo setting, the client is usually assumed as a organization with powerful

computation resources. In this thesis we consider a cross-silo setting where

edge servers are assumed with powerful computations. Then, we define the

client and manager selection problem in DFL as follows.

��

Server: In the cross-silo setting of DFL, a set SV = {sv1,sv2, ...,sv|SV |}
of edge servers is given and we denote manager as svm(m ∈ {1, ..., |SV |}).
Each server has the following parameters which is defined by the vector,

svi = [pi, f ai] (5.16)

where pi is all the parameters of the model, f ai is the probability to failure

on each round, which cannot be known previously.

Aggregating Delay: Once an edge server decides to join the round learning

at round t, the aggregating delay delay agi[t] will be generated. As shown

in the upper part of Figure 5.3, it consists of two parts: its own processing

time pti[t] for calculating local gradient. Once one client edge server is

selected as a manager, then all the other servers are called client and all

clients would communicate with the manager. Since all the edge servers

are usually allocated to the distributed areas, their communication costs are

usually different which are represented by the matrix of C whose elements

ci j represent the communication cost of edge server i and j. We denote

communication cost from server svi to manager svm as cci
m[t]. Thus, given

manager server svm, we have the aggregating delay for edge server i

delay agi
m[t] = pti[t]+ cci

m[t] (5.17)

Moreover, the aggregating delay of the round depends on the latest finishing

processing edge server, which is defined as

delay ag[t] = maxi∈SV (delay agi
m[t]∗ai[t]) (5.18)

��

Figure 5.3: Decentralized federated learning process.

where ai[t]∈ {0,1} denotes whether the server chooses to join in the current

round of learning.

Broadcast Delay: Thus, given the manager svm the sum of communication

costs is calculated as follows

delay bro[t] =

{
maxi∈SV{∑t cim[t]} if success

d otherwise.
(5.19)

where d is the deadline delay that can be waited for all client servers. It

means that the next round automatically starts if all the client servers do not

receive the latest model from manager.

Accuracy: After each round of learning, the change of parameters usually

brings an alteration of accuracy accu(pi). We desire to obtain a high accu-

racy after finishing the learning.

���

Objective Function: Thus, the goal is to maximize the final accuracy

accu(pi) while minimizing the delay costs.

max accu(pi)−
T

∑
t=1

(
delay agg[t]+delay bro[t]

)
(5.20)

In order to solve an optimal solution, there are two major issues needed to

be solved. The first is how to make each agent learn to participant current

round learning. For example, some edge servers have high communication

cost with other edge servers. Thus, in initial steps, it should not join into the

current learning round since it will slow down the whole all learning pro-

cess. However, it might have some data that other servers cannot own. The

model accuracy cannot improve further if that server does not take part in.

Thus, it should take part in the final learning phase. The another major issue

is that how to select the a manager once the group of servers is determined.

Since two edge servers may have different communication costs, choosing

the selected servers will influence the total communication costs.

5.4 Problem Formulation

Although the above two cases have differences such as objective functions,

both of them can be formulated as Dec-POMDP, which is a classical model

for formulating discrete time decision processes with partial observations.

This is because they have two distinctive features: partial observations and

dynamic changes.

In Dec-POMDP, each agent has a local observation and obtains a joint im-

mediate reward depending on the results from all agents. Dec-POMDP can

���

be described as the tuple < N ,S ,A i,O i,T ,ri >, where N is the set of

agents, S is the set of states, A i is the set of agent i’s actions and collect-

ing each agent action ai ∈A i can form a joint action a = a1× ...×a|N | ∈
A = A 1 × ...×A |N |, O i is the set of agent i’s observation, T is the

state transition function and T (s,a,s′) is the probability of the environ-

ment transitioning to state s′ after taking joint action a under state s, i.e.,

T (s,a,s′)=Prob(s′|s,a), ri is the reward function for agent i and ri(s,a,s′)

is the reward obtained by agent i after taking joint action a under state s.

How to formulate the cooperative task allocation problem as Dec-POMDP

is stated as follows.

Observation: We regard each edge server as an agent, each agent’s partial

observation at step t consists from two parts: 1) server information svi[t]

status, 2) task information tai[t]. Thus, agent i’s observation is defined as

oi[t] =
[

svi[t], tai[t]
]
, (5.21)

where svi[t] is server i’s status at step t. As for tai[t], in case 1 of task

offloading, it is edge server i’s task queue arriving at step t; in case 2 of

decentralized federated learning, it is the status of trained model at step t.

State: By collecting each edge server’s observation, we can form a state

defined as

s[t] =
[
o1[t], ...,o|SV |[t]

]
. (5.22)

Action: In case 1 of task offloading, each edge server would decide which

tasks to execute locally or to offload to the cloud servers. Each task alloca-

tion set U pi can be regarded as action ai ∈ {0,1}|tai[t]| where 0 represents

���

local computing and 1 represents allocation. For instance, as for task queue

tai={tai
1, ta

i
2, ta

i
3, ta

i
4} , ai = [0,0,1,0] means that task tai

3 is offloaded to the

cloud servers and the other three tasks are performed locally.

In case 2 of decentralized federated learning, each edge server decides

whether to take part in the current round learning. The action ai ∈ {0,1}
where 0 represents to not take part in current state and 1 represents to take

part in current learning. Then, we define a joint action at step t which in-

cludes the actions from all edge servers as follows.

a[t] = (a1[t], ...,a|SV |[t]). (5.23)

Policy: We define policy function π i : O i ×A i → [0,1] for each agent,

which means each agent takes an action ai under its observation oi based

on policy π i probabilistically. Specially, the ε-greedy policy is used where

the agent chooses a current optimal action or randomly chooses action with

a certain probability.

Transition Function: The environment transfers to the next state s[t + 1]

upon completion of joint action a[t] based on transition function T : S ×
A ×S → [0,1]. This means that the environment probabilistically transfers

to the next state s′, depending on current state s and joint action a, i.e.,

T (s,a,s′)=Prob(s′|s,a).

Reward Function: As for the transition (s[t],a[t],s[t + 1]), we can obtain

cost Cost[t] at step t. In Dec-POMDP, the objective is always to maxi-

mize the reward r(s[t],a[t],s[t + 1]), thus we take the inverse of Cost[t] as

the immediate reward at step t, i.e., r(s[t],a[t],s[t + 1]) = −Cost[t]. Thus,

minimizing costs corresponds to maximizing the reward, though the cost

���

definitions of the above two cases are different.

Objective Function: Let us consider a certain period h with T steps and h

can be represented as follows,

h = [s[1],a[1],s[2],a[2], ...,s[T],a[T],s[T +1]]. (5.24)

Then, the discounted sum R(h) of the immediate rewards in the period is

given by

R(h) =
T

∑
t=1

γ t−1r(s[t],a[t],s[t +1]), (5.25)

which is what we want to maximize in one period. Thus, the objective

function is given as follows.

J(π1, ...,π |SV |) = Eπ1,...,π |SV |,T
[
R(h)

]
, (5.26)

which means we want to identify a couple of policies (π1, ...,π |SV |) for all

agents that can maximize the expectation of team rewards during total pe-

riod h.

5.5 MARL based Task Allocation Algorithms

There are usually two main types of Dec-POMDP: non-cooperative setting

and cooperative setting. The non-cooperative setting can be solved by us-

ing fully decentralized MARL algorithms like IDQL [Tampuu et al., 2017].

Their effectiveness in tackling the task allocation problem in edge clouds

has been confirmed in some studies [Liu et al., 2020a]. The cooperative

setting considered in this section can be solved by the value decomposition

���

Figure 5.4: Value decomposition network based task allocation algorithm in

distributed edge cloud computing.

network (VDN) [Sunehag et al., 2017] and QMIX [Rashid et al., 2018],

classical cooperative MARL algorithms. In this section, we propose a novel

VDN-based distributed task allocation algorithm for cooperative edge cloud

computing. Unlike the traditional VDN which focuses on the general case,

our proposed method is intended to solve the server cooperation problem

in edge cloud computing. Specifically, the proposed method can be divided

into two parts: 1) centralized learning and 2) decentralized execution, as

shown in Figure 5.4.

As for 1) centralized learning, although each agent can independently learn

its individual policy by its own individual reward like in [Liu et al., 2020a],

it cannot achieve a cooperative behavior since the team reward is not con-

sidered. Thus, we consider to train the agents in a centralized way.

As for 2) decentralized execution, the joint action space |A ||SV | will expo-

nentially increase with the number of agents if we directly choose a joint

���

action from the joint action space A =A 1× ...×A |SV |. This is called cen-

tralized execution which makes the problem suffer the curse of dimension-

ality. Thus, we consider to make each agent independently choose action ai

from its own action space A i.

Centralized Learning

In reinforcement learning, state-action value function Q : S ×A → R is

normally used to learn the optimal policy for agents; it evaluates the qual-

ity that results from taking particular actions in certain states [Watkins and

Dayan, 1992] [Mnih et al., 2015]. After learning an optimal state-action

value function, an optimal policy can be obtained by taking the action with

maximum state-action value (Q-value). In this section, we consider two

types of Q-value: total Q-value Qtot and individual Q-value Qi. Total Q-

value Qtot is used to evaluate joint action a under the team reward. Then,

individual Q-value Qi is updated in the direction that can maximize Qtot

and is used to choose individual action ai. We elucidate them separately as

follows.

Total Q: In MARL, the Q-value for state and joint action is used to de-

note the discounted sum of rewards that can be obtained in the future af-

ter taking joint action a under state s. When a couple of optimal policies

(π1∗, ...,π |SV |∗) are given, it is called optimal Q-value and is defined as

Q∗(s,a) = Eπ1∗,...,π |SV |∗
[
R(h) | s[1] = s,a[1] = a

]
,

where “|s[1] = o,a[1] = a” means the initial state and joint action are fixed

on state s and a, respectively. Q∗(s,a) is the conditional expectation of R(h)

���

given s[1] = s,a[1] = a. By recursion, it can be rewritten as follows.

Q∗(s,a)= ∑
s′∈S

T (s,a,s′)
[
r(s,a,s′)+γ max

a′∈A
Q∗(s′,a′)

]
. (5.27)

However, we cannot obtain the state s in Dec-POMDP as each agent has

only its own partial observation oi. But, agents can benefit from condition-

ing on their entire action-observation history τ i
t until step t [Rashid et al.,

2018], which is defined by

τ i
t = [oi[1],ai[1],oi[2],ai[2], ...,oi[t−1],ai[t−1],oi[t]]. (5.28)

We collect all agents’ action-observation histories at step t as joint trajectory

τt = [τ1
t , ...,τ

|SV |
t]. Then, we replace the global state s with τt to define total

Q-value Qtot as Qtot : Γ×A → R where Γ is the set of all possible joint

trajectories τ . Specially, Qtot is defined as the sum of the individual Q-

values of all agents, i.e.,

Qtot(τ,a;θ) =
|SV |
∑
i=1

Qi(τ i,ai;θ).

Then, our goal is to learn an optimal Qtot∗ that can maximize the sum R(h)

of team rewards over period h. Specially, a reply memory D is used to store

the tuple of (τt ,r[t]) where the joint trajectory τt stores the observations and

actions of all agents upto step t and r[t] is the team reward obtained at step

t. Then, we randomly sample the tuples from D to train Qtot(τ,a) with the

���

target of minimizing the following loss function:

L (θ) = ∑
k∈D

[(
yk−Qtot(τk,ak;θ)

)]
, (5.29)

where k is the sample index and yk = rk + γ maxa′Q(τk,a′;θ) is the target,

θ is the set of all agent parameters.

Individual Q: We note above that Qtot is the sum of individual Qi which

will be updated with the aim of maximizing Qtot by backpropagation gra-

dients. Specially, the value of Qi is based on a deep neural network called

deep recurrent Q-network (DRQN) [Hausknecht and Stone, 2015]. The in-

put of DRQN is each agent’s observation, previous action and its history

information based on τ i and the output is the values Qi(τ i,ai) for each ac-

tion ai ∈A i.

In DRQN, a classical recurrent neural network called gated recurrent unit

(GRU) is used to process observation-action history. Specially, τ i
t can be

handled by the GRU unit to obtain abstract information hi
t . As shown in

Figure 5.5, the current information (oi[t],ai[t−1]) and the previous abstract

information hi
t−1 are input to GRU and then the updated abstract information

hi
t is output and used as part of the input in the next step; xi

t is the result of

encoding (oi[t],ai[t−1]) by a multilayer perceptron (MLP) layer. Specially,

hi
t can be calculated as follows.

ri
t = δ (Wr · [hçt−1,x

i
t]),

zi
t = δ (Wz · [hi

t−1,x
i
t]),

h̃i
t = tanh(Wh · [rt ∗hi

t−1,x
i
t]),

hi
t = (1− zi

t)∗hi
t−1 + zi

t ∗ h̃i
t ,

(5.30)

���

where [·, ·] means to connect two vectors and ∗ means the product of two

matrices. In this case, since each edge server has the same structure, we

assume all agents share one neural network.

Figure 5.5: The detail of GRU module

Decentralized Execution

The above sub-section described how Qi is trained in a centralized way.

However, choosing actions in a centralized way will incur a huge joint ac-

tion space, as it increases exponentially with agent number. Thus, we con-

sider the decentralized execution approach where each agent independently

chooses action ai based on its individual Qi, i.e.,

arg max
a

Qtot(τ,a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

arg max
a1

Q1(τ1,a1)

arg max
a2

Q2(τ2,a2)

...

arg max
a|SV |

Q|SV |(τ |SV |,a|SV |)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This means that the result of collecting each optimal action by operation

���

arg max
a

Qi(τ i,ai) is equivalent to that of directly searching for a joint action

by operation arg max
a

Qtot(τ,a). To ensure that a global argmax performed

on Qtot yields the same result as a set of individual argmax operations per-

formed on each Qi, monotonicity can be enforced through a constraint on

the relationship between Qtot and each Qi [Rashid et al., 2018], i.e, ∂Qtot

∂Qi ≥ 0.

This means that all Qi functions have the same monotonicity with regard to

Qtot . It is easy to prove that VDN-TO satisfies this equation since we have

∂Qtot

∂Qi = 1 > 0 for each agent.

Finally, the specific process of decentralized execution is shown in the left

part of Figure 5.4 where each edge server captures its observation oi, and

takes action ai based on its own policy π i(τ i,ai). Then, all observations oi

are collected to form state s = (o1, ...,o|SV |) and all actions are collected to

form a joint action a = (a1, ...,a|SV |). The environment transfers to the next

state s′ based on the transition function T (s,a,s′) and reward r(s,a,s′) can

be obtained.

As for the case 1 of task offloading, we propose value decomposition net-

work based task offloading algorithm (VDN-TO) as shwon in Algorithm 3.

As for the case 2 of decentralized federated learning, we propose value

decomposition network based decentralized federated learning algorithm

(VDN-DFL) as shwon in Algorithm 4.

5.6 Evaluation

This section uses task data from some real datasets to evaluate the perfor-

mance of our proposed method in performing distributed task allocation in

cooperative edge cloud computing for both case 1 and case 2.

���

ALGORITHM 3: Value Decomposition Network based Task Offload-

ing (VDN-TO) Algorithm

1 Initialize replay memory D to capacity N
2 Initialize DRQL network Qi with random weights

3 for episode m=1, M do
4 for step t =1, T do
5 For each edge server i, the task queue tai[t] arrives and its own

status svi[t] is observed to form the observation

6 oi[t] = [svi[t], tai[t]]
7 Add oi[t] and ai[t−1] to the trajectory τ i

t for each agent i
8 Decentralized execution:

9 for edge server i =1, |SV | do
10 Based on the trajectory τ i

t−1, edge server i randomly selects

an action ai from Ai based on a ε-greedy policy

11 otherwise selects ai[t] = arg max
ai

Qi(τ i
t ,a

i;θ)

12 end
13 Collect the actions ai[t] from all edge servers to form a joint

action a[t] = [a1[t], ...,a|SV |[t]]
14 Execute joint action a[t] in distributed edge cloud, then transfer

to the next state s[t +1]
15 Obtain reward r(s[t],a[t],s[t +1]) and set s[t +1] = s[t]
16 Store transition (τt ,rt) in D
17 Centralized learning: Sample random mini-batch of

transitions from D
18 Calculate yk and perform a gradient descent step on

(yk−Qtot(τk,ak;θ))2 to update θ
19 end
20 end

Case 1: Independently Performing Multiple Tasks

Evaluation Settings

���

ALGORITHM 4: Value Decomposition Network based Decentralized

Federated Learning (VDN-DFL) Algorithm

1 Initialize replay memory D to capacity N and all the parameters of

DRQL network.

2 Start to learn a FL model

3 for episode m=1, M do
4 for step t =1, T do
5 Each edge server i observes its current parameter status of the

learned model, oi[t].
6 Add oi[t] and ai[t−1] to the trajectory τ i

t for each agent i
7 for edge server i =1, |SV | do
8 Based on the trajectory τ i

t−1, edge server i decides whether

to join current learning. It randomly selects an action ai

from A i

9 otherwise selects ai[t] = arg max
ai

Qi(τ i
t ,a

i;θ)

10 end
11 Forming a joint action a[t] = [a1[t], ...,a|SV |[t]] and choose

manager by manager agnet.

12 Execute joint action a[t] in distributed edge cloud, then transfer

to the next state s[t +1]
13 Obtain reward r(s[t],a[t],s[t +1]) and set s[t +1] = s[t]
14 Store transition (τt ,r[t]) in D
15 Sample random mini-batch of transitions from D
16 Calculate yk and perform a gradient descent step on

(yk−Qtot(τk,ak;θ))2 to update θ and update f ri.

17 end
18 end

Task Setting: The real data chosen is called google-cluster data; it repre-

sents 29 day’s worth of Borg cell information from May 2011, on a cluster

of about 12.5k servers [Reiss et al.,]. The task information includes the

computation resources of RAM, CPU and Disk, all of which are used di-

���

rectly as task parameters. Since it does not include the information about

task workload, we randomly generate the workload of each task follow-

ing a uniform probability distribution. Specifically, in this section we use

a uniform distribution among (0,workmax) where workmax is the maximum

workload of the tasks, i.e., work ∼ uni f (0,workmax).

Since the scenario we considered in this section is a smart hospital which

usually hosts no more than ten servers, we randomly choose five servers’

data from two days [Reiss et al.,]. The chosen server numbers are

{3938719206,351618647,329150663,1303745,431052910}. Then, each

episode is deemed to be finished when all tasks in the task set are been

completed.

Neural Network Setting: The detail of neural network structure in VDN-

TO is shown in Figure 5.5 (Since each agent has the same neural network

framework, we only draw one of them). As for the first MLP, its input

is agent i’s current observation oi and its previous action ai, then the layer

size is equal to |oi|+ |ai|. Specifically, each server has five features and each

action has dimension of 5 (we assume the maximum number of arriving task

at each step is 5, i.e., |ai| = tamax = 5). Thus, the input MLP layer size is

10 and None activation function is used. Then, GRU with 64 neurons takes

the results of the first MLP layer and its hidden variable hi
t−1 at the last step

as the inputs. The activation function of the layer is tanh. Thus, it outputs

hidden variable hi
t with dimension of 64. As for the second MLP, it takes hi

t

as its input and outputs the Q-values for each action. The output layer size

2tamax is equal to 25 = 32, since we assume tamax = 5. We implemented it

using Tensorflow 2.0.

Evaluation Results In this section, the following task offloading (TO) base-

���

Figure 5.6: The detail of Qi neural network structure.

line algorithms are adopted: 1) IDQL-TO [Liu et al., 2020a] which is a deep

RL based TO approach; 2) QL-TO [Jiang et al., 2020] which is a tabular

RL based TO approach; 3) Joint-TO [Barbarossa et al., 2013] which is a

rule-based TO approach where the edge servers are divided to two groups

according to the task data size that they need to offload, and only one group

of servers can jointly offload tasks; and 4) random policy. In this case, we

called our proposed method as VDN-TO and compare it with the baselines.

Since the tasks include some random elements which make them different

at each episode, we take 5 episodes as one round and use the average of

R(h) in one round to compare. Specially, each experiment consisted of 500

episodes which corresponds to 100 rounds. We used the same hyperparam-

eters for all RL/DRL based algorithms with α=0.01 and γ=0.9.

First, we consider the latency-sensitive case whose objective cost is defined

in Eq. (5.11). The results are shown in Figure 5.7. QL-TO approaches the

performance of random policy. That is because QL-TO is a tabular method

which prevents it from learning an optimal policy in large state space. Since

���

IDQL-TO can well cope with the large state space, it can attain better perfor-

mance than QL-TO. However, the result of learning is unstable: the range of

its oscillation is very large, and sometimes its performance is worse than that

of random policy even in the final learning phase. This is because each edge

server just considers its own interest and they will conflict if they choose to

offload many tasks at the same time. Joint-TO can attain better performance

than QL-TO and is more stable than IDQL-TO. However, its performance

does not improve since it does not learn over the iterations. On the other

hand, our proposed VDN-TO algorithm uses a total Q and each edge server

tries to optimize it in a cooperation way, which yields good and stable per-

formance.

Figure 5.7: Comparing performances of VDN-TO with IDQL-TO and ran-

dom policy in latency-sensitive case.

���

Second, we consider the energy-sensitive case whose objective cost is de-

fined in Eq. (5.12). The results are shown in Figure 5.8. Since cloud servers

have much higher unit energy cost than edge servers, the optimal policy is

to execute all tasks at edge servers in this energy-sensitive case. Thus, each

edge server’s maximized interest can result in maximizing the team inter-

est. Moreover, each agent’s optimal policy does not influence other agents’

optimal policies. Although QL-TO still suffers the large state space prob-

lem, its learning environment becomes more stable (non-interest-conflict)

than in the latency-sensitive case so its performance is superior to that of

random policy. Joint-TO can get the same performance as QL-TO in a sta-

ble way. However, its performance does not improve since it does not learn

over the iterations. In this non-interest-conflict situation, each edge server’s

maximized interest is consistent with team maximized interest, thus the self-

interested IDQL-TO can also achieve a performance as good as VDN-TO.

Our proposed VDN-TO algorithm can still learn optimal policies in a stable

manner.

Third, we consider a balance case whose objective cost is defined in Eq.

(5.13). Without losing generality, we set ωt = 0.5,ωe = 0.5 in Eq. (5.13).

The results are shown in Figure 5.9. Although QL-TO still suffers the large

state space problem, its learning environment is more stable than in the

latency-sensitive since the energy-sensitive part is included. Thus, its per-

formance is better than that of random policy. Joint-TO still maintains a

stable performance due to its rule-based characteristic. Although IDQL-TO

has similar performance with VDN-TO, it exhibits oscillation. Since the

latency part requires a cooperative setting under non-interest-conflict situa-

tion, which can be well handled by VDN-TO, the performance of VDN-TO

���

Figure 5.8: Comparing performances of VDN-TO with IDQL-TO and ran-

dom policy in energy-sensitive case.

is better than that of IDQL-TO.

To summarize the above experiments, we can conclude that our proposed

VDN-TO algorithm can solve the cooperative task allocation problem in

distributed edge cloud computing. It exceeds the performance of other base-

line algorithms in three classical settings of edge cloud computing: latency-

sensitive case, energy-sensitive case, and a balance between latency and

energy. Moreover, we consider a decentralized setting and the centralized

manner is not considered in this section. Although the centralized manner

can evaluate the results of joint action more accurately (it treats the problem

as a single agent problem), it might yield better performance than coopera-

tion under partial observations. However, this advantage might be effective

���

Figure 5.9: Comparing performances of VDN-TO with IDQL-TO and ran-

dom policy in balance case.

only if the number of edge servers is small, which is seldom the case in

real-world scenarios.

Case 2: Jointly Performing One Task

Evaluation Setting

We call our proposed method as VDN-DFL in this case. Then, we refer

[Wang et al., 2020] to implement our VDN-DFL codes in Python with Py-

Torch, a deep learning framework. And also, using Python threading li-

brary to simulate the client severs where each client server is simulated by

a thread.

���

Dataset: Similar with most of federated learning studies [Wang et al.,

2020], we evaluate our VDN-DFL by training on CNN models on three pop-

ular benchmark datasets: MNIST, FashionMNIST and CIFAR-10. Specifi-

cally, each dataset is illustrated as follows.

• MNIST: MNIST is a handwritten digits dataset from number 0 to 9

that includes a training set of 60,000 examples, and a test set of 10,000

examples. The number of examples for each digit is same.

• FashionMNIST: FashionMNIST is a dataset of Zalando’s article

28x28 grayscale images with ten classes such as T-shirt and Jeans,

that includes of a training set of 60,000 examples and a test set of

10,000 examples.

• CIFAR-10: CIFAR-10 is a 32x32 colour images in 10 classes such

as airplane, automobile and bird, that includes a training set of 60,000

examples, and a test set of 10,000 examples. The number of examples

for each class is same.

The clients perform local training for E = 6 epochs in each training round.

We set a 10 rounds in each episode and the goal is to obtain an accuracy as

high as possible with minimizing the processing time and communication

cost.

Training Process of Our VDN-DFL

We first train our VDN-DFL with 10 client edge servers. The VDN part

consists of one layer MLP network with the size of |oi|where we employee a

PCA to reduce the all parameters of current CNN models to a 10 dimension

vector. Then MLP connects a 64 hidden layers with the ReLU activation

���

functions. Then the output layer size is two since only {0,1} actions exist.

We train it on a AWS EC@ instance x.large with a 2CPU and 1GB memory.

Figure 5.10-Figure 5.12 show the learning process of VDN-DFL on the

MNIST, FashionMNIST and CIFAR-10 datasets. The total reward repre-

sents the sum of accuracy improvement, processing time and communica-

tion cost, which corresponds to the weights w1, w2 and w3. We set w1 = 10,

w2 = 0.1 and w3 = 0.1 to represent that the accuracy improvement is the

most important among these three components. Figure 5.10 (a) shows that

our proposed method can improve its performance during episode training.

Figure 5.10 (b)-(d) show the performance of each component during the

training. Specifically, we record the final accuracy after finishing round

training at each episode in Figure 5.10 (b).

We can see the accuracy can improve well during episode training. Since

the MNIST is a dataset that is easy to learn, it can learn a final accuracy

after 5 rounds. Since the deadline of communication cost is set a high value

which means once the server is failed down, a high communication cost

is incurred. From Figure 5.11(d), we can see that the communication cost

decreases during the learning. Since both reward and communication cost

have a dominant influence to the reward, the component of processing time

improvement does not show an increment during learning. The processing

time even increases during round training. That is because improving the

accuracy in the final rounds during training, it usually requires more servers

to take part in each round, which corresponds to a high processing time.

Figure 5.11 shows the results on learning CIFAR-10 whose learning perfor-

mances are similar to those on MNIST dataset. It is harder to learn than

MNIST, thus the final accuracy learned is lower than that of MNIST given

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.10: Comparing performances of VDN-DFL on MNIST dataset in

(a) reward, (b) processing time, (c) accuracy and (d) communication cost.

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.11: Comparing performances of VDN-DFL on CIFAR-10 dataset

in (a) reward, (b) processing time, (c) accuracy and (d) communication cost.

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.12: Comparing performances of VDN-DFL on FashionMNIST

dataset in (a) reward, (b) processing time, (c) accuracy and (d) communi-

cation cost.

���

the same round number. As for the learning on FashionMNIST dataset,

although the Figure 5.12 (a) has shown a improvement during learning in

reward. Compared with Figure 5.10 and Figure 5.11, we can see the final

perfomance is not as stable as those on MNIST and CAFIR-10. That is be-

cause the dataset of FashionMNIST is more difficult to be learned. From

Figure 5.12 (b), we can see the accuracy improvement is unstable.

Comparison of Baselines

We choose two baseline algorithms to compare with our proposed method.

• Fedavg: Fedavg [Li et al., 2019][Nilsson et al., 2018] is a classical

FL algorithm for centralized FL where k clients are randomly selected

to take part in learning during each round. We apply it to DFL by

randomly setting a parameter server then it just follows the traditional

way of client selection.

• FedMarl: FedMarl is a client selection algorithm for centralized FL

by applying a MARL algorithm to process the client selection. We use

it to DFL by randomly setting a parameter server then it just follows

the traditional way of client selection [Qian Zhang et al., 2022].

Figure 5.13 shows that the performances of our proposed method and the

other baselines on dataset MNIST. From Figure 5.13 (a), we can see that

FedMarl and Fedavg have the similar performances which can hardly learn

during the training.

That is because failure of parameter server would incur a high communica-

tion cost. Specifically, Figure 5.13 (b) shows the accuracy during 10 round

learning in the final episode.

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.13: Comparing performances of VDN-DFL with baselines on

MNIST dataset in (a) reward, (b) accuracy , (c) processing time and

(d)communication cost.

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.14: Comparing performances of VDN-DFL with baselines on

CIFAR-10 dataset in (a) reward, (b) accuracy , (c) processing time and

(d)communication cost.

���

(a) reward (b) accuracy

(c) processing time

y

(d) communication cost

Figure 5.15: Comparing performances of VDN-DFL with baselines on

FashionMNIST dataset in (a) reward, (b) accuracy, (c) processing time and

(d) communication cost.

���

Although the three algorithms can get a good accuracy finally, our proposed

algorithm can get an accuracy over 90% at the first round learning, which

corresponds to a fast learning in accuracy improvement. As for the process-

ing time and communication cost, we can see that our proposed method can

have a smaller value than FedMarl and Fedavg, as shown in Figure 5.13

(c) and (d). As for the FedMarl, although it can get a good accuracy with

smaller processing time than Fedavg, it corresponds to a highest commu-

nication cost. That is because FedMarl can only learn a client selection

and fails to learn a manager selection, which incurs a high communication

cost. Compared with these results, it shows that our proposed method can

learn a high accuracy fast while generating a smallest processing time and

communication cost.

As for the learning result on CIFAR-10, our proposed method still main-

tains a better performance than the other baseline algorithms, as shown in

Figure 5.14 (a). Although the performance of FedMarl can learn better than

Fedavg in reward, its accuracy does not improve during training. Further,

from Figure 5.14 (c) and (d), we can see that the processing time and com-

munication cost become to zero. That means FedMarl learn to choose none

client selection and manager selection to avoid a failure which brings nega-

tive cost. Thus, it can still show that our proposed method can learn a better

performance than other baselines.

5.7 Summary

In Chapters 3 and 4, we studied two major task features which are the task’s

internal feature (high-workloads) and task interacted feature (dependency).

���

However, both they are in a centralized edge cloud computing environment.

However, there are many realistic scenarios where the edge servers are dis-

tributed among multiple areas, which corresponds to a distributed task allo-

cation problem.

Unlike most existing studies which usually tackle the problem in the self-

interested setting, this chapter studies the new problem of distributed task

allocation in cooperative edge cloud computing, with the target of maximiz-

ing team reward. Specifically, we consider two major cases of this problem

as follows. The first is task offloading, where multiple tasks exist and each

task can be well performed by one server. The second is federated learn-

ing, where all the servers jointly perform one single task. We propose a

multiagent reinforcement learning based task allocation algorithm to guide

servers towards cooperating with each other even under partial observations.

We validate our approach by using a real dataset to compare it with base-

line algorithms. The results show that our approach achieves significantly

better performance than the baseline algorithms. We believe solving this

distributed task allocation problem is key to achieve cooperative edge cloud

computing. This work has been published in [Ding and Lin, 2022b].

���

���

Chapter 6

Conclusion

6.1 Contributions

With the rapid development of smart IoT communities, task allocation in co-

operative edge cloud computing has become a fundamental problem to be

solved. In a departure from most existing studies on edge cloud computing

that emphasize the self-interested setting, this thesis emphasizes a coopera-

tive setting. In this research, we considered three major cases needing co-

operation of the edge cloud servers as three research topics: high-workload

task allocation, dependent task allocation and distributed task allocation. To

resolve the issues raised in those topics, we proposed several novel methods

for task allocation in each case of cooperative edge cloud computing. In this

chapter, we summarize our contributions as follows.

• As for high-workload task allocation, we proposed a dynamic coali-

tion formation model called CMDP and its corresponding solutions

���

called CQL and DCQL. It can enable the servers in edge cloud com-

puting to cooperate in performing the tasks automatically. In contrast

to the existing studies that usually perform task allocation with high-

workloads through the use of static human-designed rules, our pro-

posed methods can adaptively update their models to suit dynamic

features in different IoT environments without any human-design

rules. Moreover, existing studies usually 1) focus on the task itself

and ignore server status; 2) and also usually consider a one-step goal

in a static process rather than a multi-step goal in a dynamic process.

Our proposed methods allow edge servers to organize/cooperate by

themselves by considering the dynamic information of both servers

and tasks, which can well cope with the dynamic features of the IoT

environment. Our proposed methods can be used by the developers

who intend to construct a centralized edge cloud computing system

that must cope with high-workload tasks.

• As for dependent task allocation, we developed graph convolutional

reinforcement learning algorithms for realizing task allocation with

the features of both dependency and dynamic task flow. In contrast to

dependent task allocation proposed in existing studies which allocate

dependent tasks in a static process, we consider their deployment in

a dynamic environment where the arriving tasks and server statuses

dynamically change. Specifically, the graph convolutional part can

extract the task information and the relationships between multiple

tasks. The RL part offers effective decision-making for long-term

goals rather than just one-step goals. These two parts are developed

in series and are updated at the same time to achieve the goal. That

���

is, these end-to-end methods do not require any manual operation by

developers in edge cloud computing.

• As for distributed task allocation, we consider to make all the servers

to cooperate under partial observations to optimize the team interest

over the entire edge cloud computing system. Specifically, we con-

sider two classical scenarios. The first is task offloading, where mul-

tiple tasks exist and the tasks can be well performed by one server.

The second is federated learning, where all the servers jointly per-

form one single task. We proposed a novel multiagent reinforcement

learning for distributed task allocation by regarding each edge server

as an agent. Our proposed methods allow servers to cooperate even

though each server cannot observe the other servers’ information. It

can well cope with the dynamic features and incomplete observations

expected in the IoT environment, without any human designed rules.

We believe this method will make it easy for the developers who want

to construct their own edge cloud computing system in a distributed

way.

6.2 Discussion

In this section, we discuss both the limitations and extensions of the three

topics. As for the topic in Chapter 3, our proposed method offers both

centralized learning and centralized execution. A centralized coordinator

that can know the global information of all servers exists. This corresponds

to a decision problem with complete information which makes the learning

process stable. However, scale-out is limited since both the state space and

���

action space will exponentially increase with the agent number. This hinders

the efficiency of our proposed method in which the number of edge servers

is large.

As for the topic in Chapter 4, GCRL also applies a centralized approach to

allocate tasks while considering task dependency at the same time. Thus, it

also suffers from the curse of dimensionality. As for MGCRL, although a

centralized coordinator can be set to control the entire task allocation pro-

cess, it is essentially a fully decentralized technique. This is because the

proposed methods take each task of the multiple jobs as the input, which

linearly increases with the number of tasks. Also, since the action space

is the set of servers, the action space linearly increases with the number of

servers. The disadvantage of MGCRL is that it cannot evaluate each task al-

location precisely. This is because the reward depends on all task allocation

decisions, which cannot precisely evaluate each individual action.

As for the topic in Chapter 5, we adopt centralized learning and decentral-

ized execution. This combination can avoid the above disadvantages such

as the dimensionality curse and unstable learning process. Specifically, each

edge server can independently make decisions as to task-offloading which

avoids the joint action space that exponentially increases with agent number.

Moreover, our use of centralized learning allows all the agents’ information

to be collected which makes the learning process more stable.

In this thesis, we independently consider three task allocation cases in co-

operative edge cloud computing with the features of high-workload, depen-

dency and distribution. In this section, we will consider the cases in which

any two of the above features exist at the same time.

���

We start with the case in which both high-workloads and dependency exist

at the same time. First, the servers must form coalitions to jointly perform

the tasks due to the high-workload. Although our coalitional-RL methods

can cope with this problem well and the dynamic information is also well

handled, the dependency information must also be considered. Unlike di-

rectly inputting the task information to the coalitional RL methods to make

the servers dynamically form coalitions, the embedding part of our proposed

GCRL or MGCRL can be used to handle the dependency information. Then

the embedding results can be input to the decision part which can use the

coalitional-RL methods.

Next is the case in which both high-workloads and distribution exist at the

same time. It requires that the servers form coalitions in a distributed way.

As for coalition formation in topic 1, the coalition formation part is based

on CSG where a centralized coordinator exists to control each agent in join-

ing different coalitions. However, it is impossible to identify a centralized

coordinator in distributed task allocation. This is because the centralized

coordinator does not exist and the edge servers cannot observe each other.

Thus, we consider to replace CSG by a coalition formation game where

each agent can independently choose one coalition to join. In the coali-

tion formation game, the goal is to identify a core which is a state in which

each agent would not leave its current coalition. In the traditional coalition

formation game, it assumes that each agent is self-interested. In our cooper-

ative setting, we need each self-interested agent to share one common team

reward function.

As for the case wherein both features of dependency and distribution exist

at the same time, the task arriving at one edge server might depend on the

���

other task arriving at another server. It means that each edge server decides

whether task offloading needs to consider such kind of dependency infor-

mation. We can first use GCN to encode the dependency information and

then take the embedding result as the input to VDN to make them achieve a

cooperation.

6.3 Future Directions

• Improve the generalization ability of our proposed methods In this

thesis, we considered a dynamic edge cloud computing environment

which can be formulated as an MDP. Since user behavior in many

scenarios follows a regular pattern like a Gaussian distribution, we

correspondingly assumed that the transition probability function of

MDP remains unchanged. However, in some scenarios user behav-

ior may not follow any certain pattern, which creates the problem of

an uncertain transition probability function. This suggests the need

to consider a generalization problem: how to generalize one model

trained for one environment so that it covers another environment with

different transition probability function.

• Extension to continuous space In this thesis, we studied a discrete

action space of task allocation where each task can be totally allo-

cated to one of the servers or be divided into finite sub-tasks to al-

locate, which corresponds to a discrete action space. In some cases,

it requires to consider resource allocation for each task further af-

ter allocating task on the servers, such as deciding how much CPU

resources are needed for task allocation. This corresponds to a con-

���

tinuous action space, since the computation resources are usually de-

fined as continuous values. Thus, extending our proposed methods to

support their application to a continuous space is another important

direction.

���

���

Publications

Journal

Shiyao Ding and Donghui Lin. Multi-Agent Reinforcement Learning for

Cooperative Task allocation in Distributed Edge Cloud Computing. IE-

ICE Transactions on Information and Systems, vol.E105-D(5), pp.936-945,

2022.

Shiyao Ding and Donghui Lin. Deep Coalitional Q-learning for Dynamic

Coalition Formation in Edge Computing. IEICE Transactions on Informa-

tion and Systems, vol.E105-D(5), pp.864-872, 2022.

Conferences

Shiyao Ding, Donghui Lin, and Xin Zhou. Graph Convolutional Reinforce-

ment Learning for Dependent Task Allocation in Edge Computing. In The

5th IEEE International Conference on Agents (IEEE ICA 2021), pp.25-30,

Kyoto, Japan, December 2021. (Best Student Paper Award)

Shiyao Ding. Multi-Agent Reinforcement Learning for Task Allocation in

Cooperative Edge Cloud Computing. In The International Conference on

���

Service-Oriented Computing (ICSOC 2021), PhD Symposium, November

2021.

Shiyao Ding and Donghui Lin. A Coalitional Markov Decision Process

Model for Dynamic Coalition Formation among Agents. In The 2020

IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT 2020), pp.308-315, Melbourne, Aus-

tralia, December 2020.

Shiyao Ding and Donghui Lin. Dynamic Task Allocation for Cost-Efficient

Edge Cloud Computing. In The 17th IEEE International Conference on

Services Computing (IEEE SCC 2020), pp.218-225, Beijing, China, Octo-

ber 2020.

Other Publications

Journal

Shiyao Ding, Toshimitsu Ushio. Learning in Two-Player Matrix Games

by Policy Gradient Lagging Anchor. IEICE Transactions on Fundamen-

tals of Electronics,Communications and Computer Science, vol.E102–A-4,

pp.708-711, April 2019.

Conference

Shiyao Ding, Hideki Aoyama and Donghui Lin. Combining Multiagent Re-

inforcement Learning and Search Method for Drone Delivery on a Non-Grid

Graph. In The 20th International Conference on Practical Applications of

Agents and Multi-Agent Systems (PAAMS 2022), L’Aquila, Italy, July 2022.

���

Bowen Wei, Shiyao Ding and Donghui Lin. A Constraint-based Approach

to Edge Resource Allocation for Complex Event Processing. In The 2020

IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT 2020), pp.526-531, Melbourne, Aus-

tralia, December 2020.

���

���

Bibliography

[Abdel-Jabbar et al., 2014] Abdel-Jabbar, M.-A. H., Kacem, I., and Mar-

tin, S. (2014). Unrelated parallel machines with precedence constraints:

application to cloud computing. In 2014 IEEE 3rd International Confer-

ence on Cloud Networking (CloudNet), pages 438–442. IEEE.

[Abdellatif et al., 2019] Abdellatif, A. A., Mohamed, A., Chiasserini, C. F.,

Tlili, M., and Erbad, A. (2019). Edge computing for smart health:

Context-aware approaches, opportunities, and challenges. IEEE Net-

work, 33(3):196–203.

[Armenta-Cano et al., 2015] Armenta-Cano, F., Tchernykh, A., Cortés-

Mendoza, J. M., Yahyapour, R., Drozdov, A. Y., Bouvry, P., Kliazovich,

D., and Avetisyan, A. (2015). Heterogeneous job consolidation for power

aware scheduling with quality of service. In , pages 687–697.

[Avgeris et al., 2019] Avgeris, M., Spatharakis, D., Dechouniotis, D.,

Kalatzis, N., Roussaki, I., and Papavassiliou, S. (2019). Where there

is fire there is smoke: A scalable edge computing framework for early

fire detection. Sensors, 19(3):639.

���

[Aydin et al., 2004] Aydin, H., Melhem, R., Mossé, D., and Mejı́a-Alvarez,

P. (2004). Power-aware scheduling for periodic real-time tasks. IEEE

Transactions on computers, 53(5):584–600.

[Banerjee et al., 2001] Banerjee, S., Konishi, H., and Sönmez, T. (2001).

Core in a simple coalition formation game. Social Choice and Welfare,

18(1):135–153.

[Barbarossa et al., 2013] Barbarossa, S., Sardellitti, S., and Di Lorenzo, P.

(2013). Joint allocation of computation and communication resources

in multiuser mobile cloud computing. In 2013 IEEE 14th workshop on

signal processing advances in wireless communications (SPAWC), pages

26–30. IEEE.

[Bonomi et al., 2012] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S.

(2012). Fog computing and its role in the internet of things. In Proceed-

ings of the first edition of the MCC workshop on Mobile cloud computing,

pages 13–16.

[Braekers et al., 2016] Braekers, K., Ramaekers, K., and Van Nieuwen-

huyse, I. (2016). The vehicle routing problem: State of the art classi-

fication and review. Computers & Industrial Engineering, 99:300–313.

[Chang et al., 2019] Chang, C., Srirama, S. N., and Buyya, R. (2019). In-

ternet of things (iot) and new computing paradigms. Fog and edge com-

puting: principles and paradigms, pages 1–23.

[Chang et al., 2014] Chang, H., Hari, A., Mukherjee, S., and Lakshman,

T. (2014). Bringing the cloud to the edge. In 2014 IEEE Conference

���

on Computer Communications Workshops (INFOCOM WKSHPS), pages

346–351. IEEE.

[Chen et al., 2015] Chen, X., Jiao, L., Li, W., and Fu, X. (2015). Effi-

cient multi-user computation offloading for mobile-edge cloud comput-

ing. IEEE/ACM Transactions on Networking, 24(5):2795–2808.

[Chen et al., 2018a] Chen, X., Li, W., Lu, S., Zhou, Z., and Fu, X. (2018a).

Efficient resource allocation for on-demand mobile-edge cloud comput-

ing. IEEE Transactions on Vehicular Technology, 67(9):8769–8780.

[Chen et al., 2018b] Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., and Ben-

nis, M. (2018b). Optimized computation offloading performance in vir-

tual edge computing systems via deep reinforcement learning. IEEE In-

ternet of Things Journal, 6(3):4005–4018.

[Chen and Wang, 2020] Chen, Z. and Wang, X. (2020). Decentralized

computation offloading for multi-user mobile edge computing: A deep

reinforcement learning approach. EURASIP Journal on Wireless Com-

munications and Networking, 2020(1):1–21.

[Chiang et al., 2008] Chiang, M., Hande, P., Lan, T., Tan, C. W., et al.

(2008). Power control in wireless cellular networks. Foundations and

Trends® in Networking, 2(4):381–533.

[Clarke and Wright, 1964] Clarke, G. and Wright, J. W. (1964). Scheduling

of vehicles from a central depot to a number of delivery points. Opera-

tions research, 12(4):568–581.

[Dantzig and Ramser, 1959] Dantzig, G. B. and Ramser, J. H. (1959). The

truck dispatching problem. Management science, 6(1):80–91.

���

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapre-

duce: simplified data processing on large clusters. Communications of

the ACM, 51(1):107–113.

[Dhirani et al., 2017] Dhirani, L. L., Newe, T., Lewis, E., and Nizamani, S.

(2017). Cloud computing and internet of things fusion: Cost issues. In

2017 Eleventh International Conference on Sensing Technology (ICST),

pages 1–6. IEEE.

[Ding and Lin, 2020] Ding, S. and Lin, D. (2020). A coalitional markov

decision process model for dynamic coalition formation among agents.

In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelli-

gence and Intelligent Agent Technology (WI-IAT), pages 308–315. IEEE.

[Ding and Lin, 2022a] Ding, S. and Lin, D. (2022a). Deep coalitional q-

learning for dynamic coalition formation in edge computing. IEICE

TRANSACTIONS on Information and Systems, 105(5):864–872.

[Ding and Lin, 2022b] Ding, S. and Lin, D. (2022b). Multi-agent rein-

forcement learning for cooperative task offloading in distributed edge

cloud computing. IEICE Transactions on Information and Systems,

105(5):936–945.

[Ding et al., 2021] Ding, S., Lin, D., and Zhou, X. (2021). Graph con-

volutional reinforcement learning for dependent task allocation in edge

computing. 2021 IEEE International Conference on Agents (ICA).

[Dinh et al., 2017] Dinh, T. Q., Tang, J., La, Q. D., and Quek, T. Q. (2017).

Offloading in mobile edge computing: Task allocation and computational

���

frequency scaling. IEEE Transactions on Communications, 65(8):3571–

3584.

[Donald et al., 1997] Donald, B. R., Jennings, J., and Rus, D. (1997). Infor-

mation invariants for distributed manipulation. The International Journal

of Robotics Research, 16(5):673–702.

[Donovan et al., 2017] Donovan, S., Chung, J., Sanders, M., and Clark, R.

(2017). Metrosdx: A resilient edge network for the smart community. In

2017 IEEE International Conference on Pervasive Computing and Com-

munications Workshops (PerCom Workshops), pages 575–580. IEEE.

[Fleszar et al., 2009] Fleszar, K., Osman, I. H., and Hindi, K. S. (2009).

A variable neighbourhood search algorithm for the open vehicle routing

problem. European Journal of Operational Research, 195(3):803–809.

[Gale, 1989] Gale, D. (1989). The theory of linear economic models. Uni-

versity of Chicago press.

[Gerkey and Matarić, 2004] Gerkey, B. P. and Matarić, M. J. (2004). A

formal analysis and taxonomy of task allocation in multi-robot systems.

The International journal of robotics research, 23(9):939–954.

[Gu et al., 2015] Gu, L., Zeng, D., Guo, S., Barnawi, A., and Xiang, Y.

(2015). Cost efficient resource management in fog computing supported

medical cyber-physical system. IEEE Transactions on Emerging Topics

in Computing, 5(1):108–119.

[Guo et al., 2019] Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao,

L., and Bao, Y. (2019). Who limits the resource efficiency of my datacen-

ter: An analysis of alibaba datacenter traces. In 2019 IEEE/ACM 27th

���

International Symposium on Quality of Service (IWQoS), pages 1–10.

IEEE.

[Guo et al., 2016] Guo, X., Singh, R., Zhao, T., and Niu, Z. (2016). An

index based task assignment policy for achieving optimal power-delay

tradeoff in edge cloud systems. In 2016 IEEE International Conference

on Communications (ICC), pages 1–7. IEEE.

[Hausknecht and Stone, 2015] Hausknecht, M. and Stone, P. (2015). Deep

recurrent q-learning for partially observable mdps. In 2015 aaai fall sym-

posium series.

[Hong and Prasanna, 2004] Hong, B. and Prasanna, V. K. (2004). Dis-

tributed adaptive task allocation in heterogeneous computing environ-

ments to maximize throughput. In 18th International Parallel and Dis-

tributed Processing Symposium, 2004. Proceedings., page 52. IEEE.

[Hu et al., 2019] Hu, C., Jiang, J., and Wang, Z. (2019). Decentral-

ized federated learning: A segmented gossip approach. arXiv preprint

arXiv:1908.07782.

[Ichoua et al., 2003] Ichoua, S., Gendreau, M., and Potvin, J.-Y. (2003).

Vehicle dispatching with time-dependent travel times. European journal

of operational research, 144(2):379–396.

[Jiang et al., 2020] Jiang, F., Liu, W., Wang, J., and Liu, X. (2020). Q-

learning based task offloading and resource allocation scheme for internet

of vehicles. In 2020 IEEE/CIC International Conference on Communi-

cations in China (ICCC), pages 460–465. IEEE.

���

[Jošilo and Dán, 2018] Jošilo, S. and Dán, G. (2018). Selfish decentralized

computation offloading for mobile cloud computing in dense wireless

networks. IEEE Transactions on Mobile Computing, 18(1):207–220.

[Karger et al., 1999] Karger, D. R., Stein, C., and Wein, J. (1999). Schedul-

ing algorithms.

[Khan et al., 2020] Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. A.,

Dang, T. N., and Hong, C. S. (2020). Edge-computing-enabled smart

cities: A comprehensive survey. IEEE Internet of Things Journal,

7(10):10200–10232.

[Konečnỳ et al., 2016] Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik,

P., Suresh, A. T., and Bacon, D. (2016). Federated learning: Strategies for

improving communication efficiency. arXiv preprint arXiv:1610.05492.

[Lalitha et al., 2018] Lalitha, A., Shekhar, S., Javidi, T., and Koushanfar, F.

(2018). Fully decentralized federated learning. In Third workshop on

Bayesian Deep Learning (NeurIPS).

[Li et al., 2018] Li, L., Ota, K., and Dong, M. (2018). Deep learning for

smart industry: Efficient manufacture inspection system with fog com-

puting. IEEE Transactions on Industrial Informatics, 14(10):4665–4673.

[Li et al., 2021] Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu,

X., and He, B. (2021). A survey on federated learning systems: vision,

hype and reality for data privacy and protection. IEEE Transactions on

Knowledge and Data Engineering.

[Li and Huang, 2017] Li, S. and Huang, J. (2017). Energy efficient re-

source management and task scheduling for iot services in edge com-

���

puting paradigm. In 2017 IEEE International Symposium on Parallel

and Distributed Processing with Applications and 2017 IEEE Interna-

tional Conference on Ubiquitous Computing and Communications (IS-

PA/IUCC), pages 846–851. IEEE.

[Li et al., 2020] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).

Federated learning: Challenges, methods, and future directions. IEEE

Signal Processing Magazine, 37(3):50–60.

[Li et al., 2019] Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z.

(2019). On the convergence of fedavg on non-iid data. arXiv preprint

arXiv:1907.02189.

[Littman, 1994] Littman, M. L. (1994). Markov games as a framework for

multi-agent reinforcement learning. In Machine learning proceedings

1994, pages 157–163. Elsevier.

[Liu et al., 2019] Liu, L., Tan, H., Jiang, S. H.-C., Han, Z., Li, X.-Y., and

Huang, H. (2019). Dependent task placement and scheduling with func-

tion configuration in edge computing. In 2019 IEEE/ACM 27th Interna-

tional Symposium on Quality of Service (IWQoS), pages 1–10. IEEE.

[Liu et al., 2020a] Liu, X., Yu, J., Feng, Z., and Gao, Y. (2020a). Multi-

agent reinforcement learning for resource allocation in iot networks with

edge computing. China Communications, 17(9):220–236.

[Liu et al., 2020b] Liu, X., Yu, J., Wang, J., and Gao, Y. (2020b). Resource

allocation with edge computing in iot networks via machine learning.

IEEE Internet of Things Journal, 7(4):3415–3426.

���

[López-Pérez et al., 2012] López-Pérez, D., Chu, X., Vasilakos, A. V., and

Claussen, H. (2012). On distributed and coordinated resource allocation

for interference mitigation in self-organizing lte networks. IEEE/ACM

Transactions on Networking, 21(4):1145–1158.

[Ma et al., 1982] Ma, P.-Y. R. et al. (1982). A task allocation model

for distributed computing systems. IEEE Transactions on Computers,

100(1):41–47.

[Ma et al., 2020] Ma, S., Guo, S., Wang, K., Jia, W., and Guo, M. (2020). A

cyclic game for service-oriented resource allocation in edge computing.

IEEE Transactions on Services Computing, 13(4):723–734.

[McMahan et al., 2017] McMahan, B., Moore, E., Ramage, D., Hampson,

S., and y Arcas, B. A. (2017). Communication-efficient learning of deep

networks from decentralized data. In Artificial intelligence and statistics,

pages 1273–1282. PMLR.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-

ness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015). Human-level control through deep reinforce-

ment learning. nature, 518(7540):529–533.

[Narang et al., 2017] Narang, M., Xiang, S., Liu, W., Gutierrez, J., Chiar-

aviglio, L., Sathiaseelan, A., and Merwaday, A. (2017). Uav-assisted

edge infrastructure for challenged networks. In 2017 IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS), pages

60–65. IEEE.

[Nilsson et al., 2018] Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., and

���

Jirstrand, M. (2018). A performance evaluation of federated learning

algorithms. In Proceedings of the second workshop on distributed in-

frastructures for deep learning, pages 1–8.

[Nishi, 2018] Nishi, H. (2018). Information and communication platform

for providing smart community services: System implementation and use

case in saitama city. In 2018 IEEE International Conference on Indus-

trial Technology (ICIT), pages 1375–1380. IEEE.

[Nishio and Yonetani, 2019] Nishio, T. and Yonetani, R. (2019). Client se-

lection for federated learning with heterogeneous resources in mobile

edge. In ICC 2019-2019 IEEE international conference on communica-

tions (ICC), pages 1–7. IEEE.

[Pan and McElhannon, 2017] Pan, J. and McElhannon, J. (2017). Future

edge cloud and edge computing for internet of things applications. IEEE

Internet of Things Journal, 5(1):439–449.

[Pellazar, 1994] Pellazar, M. B. (1994). Vehicle route planning with con-

straints using genetic algorithms. In proceedings of national aerospace

and electronics conference (NAECON’94), pages 111–118. IEEE.

[Pradenas et al., 2013] Pradenas, L., Oportus, B., and Parada, V. (2013).

Mitigation of greenhouse gas emissions in vehicle routing problems with

backhauling. Expert Systems with Applications, 40(8):2985–2991.

[Qian Zhang et al., 2022] Qian Zhang, S., Lin, J., and Zhang, Q. (2022). A

multi-agent reinforcement learning approach for efficient client selection

in federated learning. arXiv e-prints, pages arXiv–2201.

���

[Rahwan et al., 2015] Rahwan, T., Michalak, T. P., Wooldridge, M., and

Jennings, N. R. (2015). Coalition structure generation: A survey. Artifi-

cial Intelligence, 229:139–174.

[Rashid et al., 2018] Rashid, T., Samvelyan, M., Schroeder, C., Farquhar,

G., Foerster, J., and Whiteson, S. (2018). Qmix: Monotonic value func-

tion factorisation for deep multi-agent reinforcement learning. In Inter-

national Conference on Machine Learning, pages 4295–4304. PMLR.

[Reiss et al.,] Reiss, C., Wilkes, J., and Hellerstein, J. Google cluster-usage

traces: Format+ schema, technical report.

[Roy et al., 2019] Roy, A. G., Siddiqui, S., Pölsterl, S., Navab, N., and

Wachinger, C. (2019). Braintorrent: A peer-to-peer environment for de-

centralized federated learning. arXiv preprint arXiv:1905.06731.

[Salman et al., 2002] Salman, A., Ahmad, I., and Al-Madani, S. (2002).

Particle swarm optimization for task assignment problem. Microproces-

sors and Microsystems, 26(8):363–371.

[Sperduti and Starita, 1997] Sperduti, A. and Starita, A. (1997). Supervised

neural networks for the classification of structures. IEEE Transactions on

Neural Networks, 8(3):714–735.

[Sundar and Liang, 2016] Sundar, S. and Liang, B. (2016). Communica-

tion augmented latest possible scheduling for cloud computing with de-

lay constraint and task dependency. In 2016 IEEE Conference on Com-

puter Communications Workshops (INFOCOM WKSHPS), pages 1009–

1014. IEEE.

���

[Sunehag et al., 2017] Sunehag, P., Lever, G., Gruslys, A., Czarnecki,

W. M., Zambaldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,

J. Z., Tuyls, K., et al. (2017). Value-decomposition networks for cooper-

ative multi-agent learning. arXiv preprint arXiv:1706.05296.

[Tampuu et al., 2017] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I.,

Korjus, K., Aru, J., Aru, J., and Vicente, R. (2017). Multiagent coop-

eration and competition with deep reinforcement learning. PloS one,

12(4):e0172395.

[Tang et al., 2020] Tang, Z., Lou, J., Zhang, F., and Jia, W. (2020). Depen-

dent task offloading for multiple jobs in edge computing. In 2020 29th

International Conference on Computer Communications and Networks

(ICCCN), pages 1–9. IEEE.

[Tao et al., 2017] Tao, X., Ota, K., Dong, M., Qi, H., and Li, K. (2017).

Performance guaranteed computation offloading for mobile-edge cloud

computing. IEEE Wireless Communications Letters, 6(6):774–777.

[Tran et al., 2017] Tran, T. X., Pandey, P., Hajisami, A., and Pompili, D.

(2017). Collaborative multi-bitrate video caching and processing in

mobile-edge computing networks. In 2017 13th annual conference on

wireless on-demand network systems and services (WONS), pages 165–

172. IEEE.

[Tran and Pompili, 2018] Tran, T. X. and Pompili, D. (2018). Joint task of-

floading and resource allocation for multi-server mobile-edge computing

networks. IEEE Transactions on Vehicular Technology, 68(1):856–868.

[Wang et al., 2020] Wang, H., Kaplan, Z., Niu, D., and Li, B. (2020). Op-

���

timizing federated learning on non-iid data with reinforcement learning.

In IEEE INFOCOM 2020-IEEE Conference on Computer Communica-

tions, pages 1698–1707. IEEE.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-

learning. Machine learning, 8(3-4):279–292.

[Wen et al., 2012] Wen, Y., Zhang, W., and Luo, H. (2012). Energy-optimal

mobile application execution: Taming resource-poor mobile devices with

cloud clones. In 2012 proceedings IEEE Infocom, pages 2716–2720.

IEEE.

[Wu et al., 2020] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,

S. Y. (2020). A comprehensive survey on graph neural networks. IEEE

transactions on neural networks and learning systems.

[Xiao et al., 2003] Xiao, M., Shroff, N. B., and Chong, E. K. (2003).

A utility-based power-control scheme in wireless cellular systems.

IEEE/ACM Transactions On Networking, 11(2):210–221.

[Zhang et al., 2018] Zhang, Y., Chen, X., Chen, Y., Li, Z., and Huang, J.

(2018). Cost efficient scheduling for delay-sensitive tasks in edge com-

puting system. In 2018 IEEE International Conference on Services Com-

puting (SCC), pages 73–80. IEEE.

[Zhang et al., 2020] Zhang, Y., Zhang, P., Luo, Y., and Luo, J. (2020). Effi-

cient and privacy-preserving federated qos prediction for cloud services.

In 2020 IEEE International Conference on Web Services (ICWS), pages

549–553. IEEE.

���

