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Construction of ?-energy and associated energy
measures on the Sierpiński carpet

Ryosuke Shimizu

Abstract. We establish the existence of a scaling limit E? of discrete ?-energies on the graphs
approximating the planar Sierpiński carpet for ? > dimARC(SC), where dimARC(SC) is the Ahlfors
regular conformal dimension of the Sierpiński carpet. Furthermore, the function space F? defined as
the collection of functions with finite ?-energies is shown to be a reflexive and separable Banach space
that is dense in the set of continuous functions with respect to the supremum norm. In particular,
(E2, F2) recovers the canonical regular Dirichlet form constructed by Barlow and Bass [5] or Kusuoka
and Zhou [47]. We also provide E?-energy measures associated with the constructed ?-energy and
investigate its basic properties like self-similarity and chain rule.
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1 Introduction

On Euclidean spaces, the nonlinear potential theory is built on the theory of the (1, ?)-
Sobolev spaces,1,? and the ?-energy

∫
|∇ 5 |? 3G. Themain aim of this paper is to construct

and study ?-energies on the planar Sierpinski carpet as a prototype of nonlinear potential
theory on complicated metric spaces like “fractals” (see also [35, Problem 7.6]). There
has been significant progress on “analysis and probability” on complicated spaces beyond
Euclidean spaces over the last several decades. The earlier works are the constructions of
diffusion processes, which is called the Brownian motions, on self-similar sets in 1980s and
1990s. (For details and precise history of “analysis on fractals”, see the ICM survey of
Kumagai [45] for example.) In particular, the planar Sierpiński carpet (see Figure 1), SC for
short, is one of the successful examples. The Brownian motions on the SC was constructed
by Barlow and Bass in [5], where they obtained the Brownian motion as a scaling limit of
Brownian motions on Euclidean regions approximating the SC. From an analytic viewpoint,
the result of Barlow and Bass gives 2-energy E2 and the associated (1, 2)-“Sobolev” space
F2, namely regular Dirichlet form on the SC. Recall that a tuple of 2-energy

∫
|∇ 5 |2 3G (on

!2(R# , 3G)) and (1, 2)-Sobolev space,1,2 is a typical example of regular Dirichlet forms,
which corresponds to the classical Brownian motion on R# . Although it is difficult to define
the gradient ∇ 5 on the SC, we can say that a suitable 2-energy “

∫
|∇ 5 |2 3G” exists on the SC.

Later, Kusuoka and Zhou [47] gave an alternative construction of a regular Dirichlet form as
a scaling limit of discrete 2-energies on a series of graphs approximating the SC as shown
in Figure 2. Our work gives a “canonical” construction of ?-energy E? and the associated
(1, ?)-“Sobolev” space F? on the SC, which play the same roles as the pair of

∫
|∇ 5 |? 3G

and the Sobolev space,1,?, by extending and simplifying the method of Kusuoka and Zhou.
Let us describe briefly our strategy to construct (E?, F?) on the SC. We write ( , 3, `)

to denote the SC as a metric measure space, that is,  is the Sierpiński carpet, 3 is the
Euclidean metric of R2 and ` is the dimH( , 3)-dimensional Hausdorff measure on ( , 3),
where dimH( , 3) = log 8/log 3 is the Hausdorff dimension of ( , 3). Let {�=}=≥1 be a
series of finite graphs approximating the SC whose edge set is denoted by �= (see Figure 2

Figure 1: The planar Sierpiński carpet
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Figure 2: Graphical approximation {�=}=≥1 of the SC (This figure draws�1 and�2 in blue)

and Definition 2.9). Then discrete ?-energy E�=? on �= is

E�=? ( 5 ) =
1
2

∑
(G,H)∈�=

|"= 5 (G) − "= 5 (H) |? ,

where "= is a discretization of 5 ∈ !? ( , `) to R�= (see Section 2 for its definition).
To obtain an appropriate non-trivial limit of discrete ?-energies, some renormalization is
necessary (see [4] for example). We will see that the behavior of R (=)? defined as

R (=)? B
(
inf

{
E�=? ("= 5 )

����� 5 ∈ !? ( , `) with "= 5 ≡ 0 on the left side of �=

and "= 5 ≡ 1 on the right side

})−1

gives us the proper renormalization constant of discrete ?-energies E�=? . In fact, for ? = 2,
Barlow and Bass [6] have proved that there exist constants d2 > 0 (the so-called resistance
scaling factor) and � ≥ 1 such that

(1.1) �−1d=2 ≤ R
(=)
2 ≤ �d=2, = ∈ N.

What Kusuoka and Zhou have shown is that, roughly speaking, the Dirichlet form (E2, F2)
on the SC is obtained as

F2 =

{
5 ∈ !2( , `)

���� sup
=≥1

d=2E
�=
2 ("= 5 ) < ∞

}
and E2( 5 ) = lim:→∞ E

�=:
2 ("=: 5 ) for some subsequence {=: }:≥1.

By using ?-combinatorialmodulus, which is one of fundamental tools in “quasiconformal
geometry”, Bourdon and Kleiner [14] have generalized (1.1), i.e. they have ensured the
existence of a constant d? > 0 such that

(1.2) �−1d=? ≤ R
(=)
? ≤ �d=?, = ∈ N.

Then our (1, ?)-“Sobolev” space F? equipped with the norm ‖ · ‖F? is defined by

F? =
{
5 ∈ !? ( , `)

���� sup
=≥1

d=?E�=? ("= 5 ) < ∞
}
,
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and

‖ 5 ‖F? = ‖ 5 ‖!? +
(
sup
=≥1

d=?E�=? ("= 5 )
)1/?

.

Under the following assumption (see Assumption 4.2):

(1.3) ? satisfies ? > 1 and d? > 1,

we will prove that F? is continuously embedded in the Hölder space:

C0,\? =
{
5 :  → R

��� sup
G≠H∈ 

| 5 (G) − 5 (H) |
3 (G, H)\?

< ∞
}
,

where \? B log d?/? log 3 (Theorem 5.1). This embedding result is very powerful. Indeed,
we will deduce the closedness, i.e. (F?, ‖ · ‖F? ) is a Banach space, and the regularity, i.e. F?
is dense in C( ) = { 5 :  → R | 5 is continuous} with the sup norm, from this embedding
(see Theorems 5.2 and 5.5).

Moreover, the separability of (F?, ‖ · ‖F? ) will be deduced from the reflexivity of F?
(Theorems 5.9 and 5.10). Thanks to the separability, one easily sees that, by the diagonal
procedure, a subsequential limit lim:→∞ d

=:
? E

�=:
? ("=: 5 ) exists for all 5 ∈ F?. Our final

object E? called the ?-energy on the SC will be constructed through these subsequential
limits1.

The assumption (1.3) is essential for the continuous embedding of F? in the Hölder space
C0,\? and has a close connectionwith theAhlfors regular conformal dimension dimARC( , 3)
which is defined by

(1.4) dimARC( , 3) = inf

{
U

����� there exists a metric d on  which is
quasisymmetric to 3 and U-Ahlfors regular

}
.

(For the precise definitions of Ahlfors regularity and being quasisymmetric, see (2.1) and
Definition 4.1.) Indeed, by results of Carrasco Piaggio [18] and Kigami [41], the condition
(1.3) is equivalent to

(1.5) ? > dimARC( , 3).

We expect that this condition (1.5) represents a “low-dimensional” phase. More precisely,
we regard the Hölder embedding F? ↩→ C0,\? as a generalization of the classical Sobolev
embedding (a consequence of Morrey’s inequality). For this reason, we naturally arrive at
the following conjecture.

Conjecture 1.1. dimARC( , 3) = inf{? | F? is embedded in a subset of C( ).}.
1To construct “canonical” ?-energy E? on the SC, we need to follow some additional procedures as shown

in the work of Kusuoka and Zhou. In particular, we introduce new graphs {G=}=≥1 and consider discrete
?-energies on them. These procedures are described in Section 6. See Theorem 2.20 for the meaning of
canonical ?-energy.
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To show this conjecture, what we need is the regularity ofF?, i.e. the density ofF?∩C( )
in C( ) with the sup norm, for ? ≤ dimARC( , 3) (see [7] for ? = 2). This is a big open
problem for future work.

Besides our “Sobolev spaces” F?, there has already been an established theory of
“Sobolev spaces on metric measure spaces” based on the notion of upper gradients, which is
a counter part of |∇ 5 | introduced by Heinonen and Koskela in [28]. We refer to [27, 29] for
details. From the viewpoint of this theory, our (1, ?)-“Sobolev” space F? can be seen as a
fractional Korevaar–SchoenSobolev space. Indeed, wewill give the following representation
of F? (Theorem 2.18):

(1.6) F? =
{
5 ∈ !? ( , `)

���� lim
A↓0

∫
 

−
∫
�3 (G,A)

| 5 (G) − 5 (H) |?

A V?
3`(H)3`(G) < ∞

}
,

where V? = log(8d?)/log 3. When ? = 2, this result is well-known (see [24, 46] for
example) and the parameter V2 is called the walk dimension. For detailed expositions of the
walk dimension, see [24, 45, 46] for example. If V? = ?, then the expression (1.6) coincides
with (a slight modification of) the Korevaar–Schoen (1, ?)-Sobolev space [43,44]. However,
it is well-known that a strict inequality V2 > 2 holds on the SC (see [7, Proposition 5.1]
or [33]). This phenomenon suggests that the existing theory of “Sobolev spaces on metric
measure spaces” do not give any non-trivial (1, ?)-Sobolev spaces on the SC2. This is one
of the reasons why we try to provide an alternative theory of (1, ?)-“Sobolev” space and
?-energy on the SC.

Anothermajor objective of this paper is the E?-energymeasures associatedwith ?-energy
E?. In terms of a Dirichlet form (E2, F2), E2-energy measure of a function 5 ∈ F2 is defined
as the unique Borel measure `2

〈 5 〉 on  such that

(1.7)
∫
 

6 3`2
〈 5 〉 = E2( 5 , 5 6) −

1
2
E2( 5 2, 6), 6 ∈ F2.

(Note that we can define the form E2( 5 , 6) by the polarization: E2( 5 , 6) B 1
4
(
E2( 5 + 6) −

E2( 5 −6)
)
.) This measure plays the role of |∇ 5 (G) |2 3G if the underlying space is Euclidean.

On the other hand, for any 5 ∈ F2 with E2( 5 ) ≠ 0, the E2-energy measure `2
〈 5 〉 and the

log3 8-dimensional Hausdorff measure ` on the SC are mutually singular due to the fact that
V2 > 2 by a result of Hino [31]. See [36] for an extension of this fact to general metric
measure Dirichlet spaces. This phenomenon is also far different from “smooth” settings and
motivates the study of E2-energy measures on fractals.

For general ?, due to the lack of a counterpart of the expression in the right-hand side
of (1.7), we will choose to generalize Hino’s alternative method of the construction of
E2-energy measure. Namely, for any 5 ∈ F?, we first construct a measure m?

〈 5 〉 on the
shift space {1, . . . , 8}N associated with the SC and define our E?-energy measure `?〈 5 〉 as
the pushforward measure of m?

〈 5 〉 under the natural quotient map c : {1, . . . , 8}N →  (see

2It is also well-known that the Newtonian (1, ?)-Sobolev space on the SC becomes ! ? ( , `) due to the
lack of plenty rectifiable curves in the SC. See [48, Proposition 4.3.3] and [29, Proposition 7.1.33] for example.
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Proposition 2.3 for a description of c), i.e. `?〈 5 〉 (�) = m
?

〈 5 〉 (c
−1(�)) for any Borel set � of  .

Then our E?-energy measure `?〈 5 〉 is associated with E? in the sense that `?〈 5 〉 ( ) = E? ( 5 )
(for more details on relations between `?〈 5 〉 and E?, see Theorem 2.22-(c)).

Furthermore, we will show the chain rule: for any Φ ∈ C1(R) with Φ(0) = 0,

(1.8) `
?

〈Φ( 5 )〉 (3G) = |Φ
′(G) |? `?〈 5 〉 (3G).

When ? = 2, the chain rule (1.8) is proved by using integral expressions of E2 (see [23,
(3.2.12)] for example), but such representations take full advantage of the fact that ? =
2. Alternatively, we prove (1.8) by introducing a new series of graphs {G=}=≥1 (see the
beginning of subsection 6.1), which is embedded in the SC, and analyzing discrete ?-
energies

{
EG=?

(
Φ( 5 )

)}
=≥1. This approach is actually valid since our ?-energies are based

on subsequential limits of {d=?E
G=
? }=≥1.

In the very recent paper [38], Kigami extends the construction of ?-energy E? in this
paper to ?-conductively homogeneous compact metric spaces (see the introduction of [38]),
which is based on the theory of weighted partition (see [41, Definition 2.2.1]) and includes
new construction results even if ? = 2. However, the construction of E?-energy measures
associated with the ?-energy E? is not treated in his general framework.
Outline. This paper is organized as follows. In Section 2, we prepare basic frameworks
in this paper and state the main results. Sections 3 and 4 are devoted to extending results
of Kusuoka and Zhou to fit our purpose. Section 3 is a collection of basic estimates of
(?, ?)-Poincaré constants and R (=)? . In Section 4, we prove powerful results concerning
(?, ?)-Poincaré constants (uniform Hölder estimates and a condition called ?-Knight Move
(KM?) for example) under Assumption 4.2 and finish all preparations to construct ?-energy
E? and (1, ?)-“Sobolev” space F?. Section 5 is devoted to investigating detailed properties
of F?. Then, in Section 6, we introduce another graphical approximation {G=}=≥1 and
construct a canonical ?-energy E? (see Theorem 2.17 for the precise meaning of canonical).
Section 7 is devoted to discussions on E?-energy measures. Finally, the appendix contains
proofs of some elementary lemmas.

Notation. In this paper, we use the following notation and conventions.

(1) N B {= ∈ Z | = > 0} and Z≥0 B N ∪ {0}.

(2) We set 0 ∨ 1 B max{0, 1}, 0 ∧ 1 B min{0, 1} for 0, 1 ∈ [−∞,∞].

(3) For any countable set + , we define R+ B { 5 | 5 : + → R}.

(4) For 5 : R→ R, define Lip( 5 ) B supG≠H∈R
| 5 (G)− 5 (H) |
|G−H | .

(5) Let - be a compact topological space. We set C(-) B { 5 : - → R | 5 is continuous}
and write its sup norm by ‖ 5 ‖C(-) B supG∈- | 5 (G) |.

(6) Let - be a topological space and let � be a subset of - . The topological boundary of
� is denoted by m�, that is m� B �

- \ int-�.
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(7) Let (-, 3) be a metric space. The open ball with center G ∈ - and radius A > 0 is
denoted by �3 (G, A), that is,

�3 (G, A) B {H ∈ - | 3 (G, H) < A}.

If the metric 3 is clear in context, then we write �(G, A) for short.

(8) Let  be a compact metrizable space and let B( ) denote the Borel f-algebra of  .
Let ` be a Borel (regular) measure on  . For any � ∈ B( ) with `(�) > 0 and
5 ∈ !1( , `), we define

−
∫
�

5 3` B
1

`(�)

∫
�

5 3`.

2 Preliminary and results

2.1 Sierpiński carpet and graphical approximations

In this paper, our target space is always the standard planar Sierpiński carpet (Figure 1).
We start with its definition and standard notions. The reader is referred to [40] for further
background and more general framework, namely, self-similar structure.

Definition 2.1 (The planar Sierpiński carpet). Let 0 = 3 and let #∗ = 8. Let ( B {1, . . . , #∗}
and define ?8 ∈ R2 by setting

?1 = (−1/2,−1/2), ?2 = (0,−1/2), ?3 = (1/2,−1/2), ?4 = (1/2, 0),
?5 = (1/2, 1/2), ?6 = (0, 1/2), ?7 = (−1/2, 1/2), ?8 = (−1/2, 0),

and define 58 : R2 → R2 by 58 (G) B 0−1(G − ?8) + ?8 for each 8 ∈ (. Note that 58 is an
0−1-similitude and ?8 is the fixed point of 58. (See Figure 3.) Let  be the self-similar
set associated with { 58}8∈(, that is, the unique non-empty compact subset of R2 such that
 =

⋃
8∈( 58 ( ). We set �8 B 58 | and use 3 to denote the Euclidean metric restricted to  .

Then the triple ( , (, {�8}8∈() is called the (standard) planar Sierpiński carpet.

Throughout this paper, ( , (, {�8}8∈() is the planar Sierpiński carpet.

F1 F2 F3

F4

F5F6F7

F8

p1 p2 p3

p4

p5p6p7

p8

Figure 3: The similitudes {�8}8∈( and fixed points {?8}8∈(
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Definition 2.2 (Word and shift spaces).
(1) We set ,< B (< = {F1 · · ·F< | F8 ∈ ( for 8 ∈ {1, . . . , <}} for < ∈ N and ,# B⋃∞

<=1,<. For F = F1 · · ·F< ∈ ,#, the unique < ∈ N with F ∈ ,< is denoted by |F |
and set �F B �F1 ◦ · · · ◦ �F< ,  F B �F ( ), $F B  F \

⋃
E∈,<;E≠F ( F ∩  E), and

[F]= B F1 · · ·F= for = ∈ {1, . . . , <}. We define ,0 B {∅} and [F]0 B ∅, where ∅ is an
empty word. We also set 8< B 8 · · · 8 ∈ ,< for each 8 ∈ (. For = ∈ N and non-empty subset
� of,=, we define � ·,< by setting

� ·,< = {E1 · · · E=F1 · · ·F< | E1 · · · E= ∈ �, F1 · · ·F< ∈ ,<}.

When � = {E} for some E ∈ ,<, we write E ·,< to denote {E} ·,< for simplicity.
(2) The collection of one-sided infinite sequences of symbols ( is denoted by Σ, that is,

Σ = {l = l1l2l3 · · · | l8 ∈ ( for any 8 ∈ N},

which is called the one-sided shift space of symbols (. We define the shift map f : Σ→ Σ

by f(l1l2 · · · ) = l2l3 · · · for each l1l2 · · · ∈ Σ. The branches of f are denoted by
f8 (8 ∈ (), namely f8 : Σ → Σ is defined as f8 (l1l2 · · · ) = 8l1l2 · · · for each 8 ∈ ( and
l1l2 · · · ∈ Σ. For F = F1 · · ·F< ∈ ,#, we write fF = fF1 ◦ · · · ◦ fF< and ΣF B fF (Σ).
For l = l1l2 · · · ∈ Σ and < ∈ Z≥0, we define [l]< = l1 · · ·l< ∈ ,<.

We consider Σ as a topological space equipped with the product topology of (N. Then
the following fact is elemental (see [40, Theorem 1.2.3]).

Proposition 2.3. For any l = l1l2 · · · ∈ Σ, the set
⋂
<≥1  [l]< contains only one point.

If we define c : Σ →  by {c(l)} = ⋂
<≥1  [l]< , then c is a continuous surjective map.

Furthermore, it holds that c ◦ f8 = �8 ◦ c for each 8 ∈ (.

Let ` be the self-similar probability measure on with weight (1/#∗, . . . , 1/#∗), namely
` is the unique Borel probability measure on  such that ` = #∗(` ◦ �8) for any 8 ∈ (. It
is known that ` is a constant multiple of the U-dimensional Hausdorff measure, where U B
log #∗/log 0 is the Hausdorff dimension of  with respect to the metric 3 (see [40, Theorem
1.5.7] for example). Furthermore, 3 is U-Ahlfors regular, that is, there exists a constant
�AR ≥ 1 such that

(2.1) �−1
AR A

U ≤ `(�(G, A)) ≤ �AR A
U,

for any G ∈  and A ∈ (0, diam ). The following two lemmas on self-similar measure ` are
standard (see [33, Lemmas 3.2 and 3.3] for example).

Lemma 2.4. Let E, F ∈ ,# satisfy |E | = |F | and E ≠ F. Then `( E ∩  F) = 0 and
`( E) = #−|E |∗ .

Lemma 2.5. Let F ∈ ,# and let 5 :  → [−∞,∞] be Borel measurable. Then∫
 

| 5 ◦ �F | 3` = # |F |∗
∫
 F

| 5 | 3` and
∫
 F

�� 5 ◦ �−1
F

�� 3` = #−|F |∗

∫
 

| 5 | 3`.
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Now, we define some operators that are frequently used in this paper.

Definition 2.6. Let ? ∈ [1,∞). For F ∈ ,#, we define �∗F, (�F)∗ : !? ( , `) → !? ( , `)
by setting

�∗F 5 B 5 ◦ �F, (�F)∗ 5 B
{
5 ◦ �−1

F on  F,

0 on  \  F,

for each 5 ∈ !? ( , `). For = ∈ N, define "= : !? ( , `) → R,= by setting

"= 5 (F) B −
∫
 F

5 3` = #=∗

∫
 F

5 3`, F ∈ ,=,

for each 5 ∈ !? ( , `).

Note that, from Lemma 2.5, "= 5 (F) =
∫
 
�∗F 5 3` for any 5 ∈ !? ( , `), which implies

that, for < ∈ N and E ∈ ,<,

(2.2) "= (�∗E 5 ) (F) =
∫
 

�∗F (�∗E 5 ) 3` =
∫
 

�∗EF 5 3` = "=+< 5 (EF).

Next, we observe important geometric properties of the Sierpiński carpet. Define

=(G, H) B max

{
< ∈ Z≥0

����� there exist E, F ∈ ,< such that
G ∈  E, H ∈  F and  E ∩  F ≠ ∅

}
,

where we set  ∅ B  . Then the following lemma says that the Sierpiński carpet equipped
with the Euclidean metric is 1-adapted (see [41, Definition 2.4.1]). We refer to [41, Example
2.4.2] for its proof.

Lemma 2.7. There exists a constant �AD ≥ 1 such that

�−1
AD 0

−=(G,H) ≤ 3 (G, H) ≤ �AD 0
−=(G,H) , G, H ∈  .

The following set Sym( ) describes the symmetries of the Sierpiński carpet.

Definition 2.8. We define Sym( ) by setting

Sym( ) = {�,−�, )v,−)v, )+,−)+, '+,−'+},

where � is the identity matrix and

)v =

[
−1 0
0 1

]
, )+ =

[
0 1
1 0

]
, '+ =

[
0 −1
1 0

]
.

We also set )h B −)v, )− B −)+ and '− B −'+. Note that ) ( ) =  for any ) ∈ Sym( ).

Finally, we introduce graphical approximations of  and related notations.
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Definition 2.9. We define �= B (,=, �=) by setting

�= B {(E, F) | E, F ∈ ,= with E ≠ F and  E ∩  F ≠ ∅}.

This series of graphs is called the horizontal network in [41]. We also define

�̃= B {(E, F) ∈ �= |  E ∩  F is a line segment}.

We use 3�= to denote the graph distance of �=. For =, <, : ∈ N and F ∈ ,<, we define a
subset B= (F, :) of,=+< by setting

B= (F, :) B
⋃

E∈,<;3�< (E,F)≤:
E ·,=.

A boundary m∗�= of the graph �= is the set of words that the associated =-cells intersect
with the topological boundary of [−1/2, 1/2]2, that is,

m∗�= B {F ∈ ,= |  F ∩ m [−1/2, 1/2]2 ≠ ∅}.

We conclude this subsection by observing an important fact on the degree of a series of
graphs {�=}=≥1. Define

(2.3) �∗ B sup
F∈,#

#{E ∈ ,|F | | (E, F) ∈ � |F |}.

Then it is immediate that �∗ < ∞ (�∗ = 7 for the planar Sierpiński carpet).

2.2 ?-energies and Poincaré constants on finite graphs

In this subsection, we review some basic results and definitions in discrete nonlinear potential
theory and introduce (?, ?)-Poincaré constants that will play essential roles in this paper.

Let � = (+, �) be a non-directed, connected, simple finite graph, and let ? > 1.

Definition 2.10. For 5 : + → R, we define its ?-energy E�? ( 5 ) by setting

E�? ( 5 ) B
1
2

∑
(G,H)∈�

| 5 (G) − 5 (H) |? .

Definition 2.11. For disjoint subsets �, � of + , we define their ?-conductance C�? (�, �) by
setting

C�? (�, �) B inf
{
E�? ( 5 )

�� 5 |� ≡ 1, 5 |� ≡ 0
}
.

For a given subset � of + , define

� � B {(G, H) ∈ � | G, H ∈ �},

and
E�? ( 5 ) B

1
2

∑
(G,H)∈��

| 5 (G) − 5 (H) |? .

We also set
� B {G ∈ + | G ∈ � or (G, H) ∈ � for some H ∈ �}.
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Then the following monotonicity of ?-conductance is immediate (see [50, Proposition
3.7-(2)] for example).

Proposition 2.12. Let �, �, �′, �′ ⊆ + with � ⊆ �′ and � ⊆ �′. Then C�? (�, �) ≤
C�? (�′, �′).

The following property states the Markov property of discrete ?-energy. (This naming
is borrowed from the case ? = 2.) This is also immediate from the definition.

Proposition 2.13. Let i : R → R with Lip(i) ≤ 1. Then E�? (i ◦ 5 ) ≤ E�? ( 5 ) for any
5 : + → R. In particular, if we define 5 # B ( 5 ∨ 0) ∧ 1, then E�? ( 5 #) ≤ E�? ( 5 ).

Next we define some types of (?, ?)-Poincaré constants. Let a be a non-negative measure
on + , and let m∗� ( + be a given non-empty subset.

Definition 2.14. For a non-empty subset � of + and 5 : � → R, define its mean 〈 5 〉�,a by
setting

〈 5 〉�,a B
1∑

G∈� a(G)
∑
G∈�

5 (G)a(G).

We define _(�,a)? on (�, a) by setting

_
(�,a)
? B sup

{ ∑
G∈+

�� 5 (G) − 〈 5 〉+,a��? a(G)
E�? ( 5 )

����� 5 : + → R with E�? ( 5 ) ≠ 0

}
.

We consider its Dirichlet boundary conditioned version _(�,a)∗,? (m∗�) defined as

_
(�,a)
∗,? (m∗�) B sup

{ ��〈 5 〉+,a��?
E�? ( 5 )

����� 5 : + → R with E�? ( 5 ) ≠ 0 and 5 |m∗� ≡ 0

}
.

For disjoint subsets �, � of + , we also define

f
(�,a)
? (�, �) B sup

{ ��〈 5 〉�,a − 〈 5 〉�,a��?
E�∪�? ( 5 )

����� 5 : � ∪ �→ R with E�∪�? ( 5 ) ≠ 0

}
.

By standard arguments in calculus of variations (see [50, proof of Lemma 3.3] for
example), one can easily prove the following proposition.

Proposition 2.15. Let �, � be non-empty disjoint subsets of + , and let m∗� ( + be non-
empty.

(1) There exists a unique 5 ∈ R+ such that 5 |� ≡ 1, 5 |� ≡ 0 and E�? ( 5 ) = C�? (�, �).

(2) There exists a unique 5 ∈ R+ such that 5 |m∗� ≡ 0, 〈 5 〉+,a = 1 and E�? ( 5 )−1 =

_
(�,a)
∗,? (m∗�).

(3) If both � and � are connected, then there exists a unique 5 ∈ R+ such that 〈 5 〉�,a = 1,
〈 5 〉�,a = 0 and E�∪�? ( 5 )−1 = f

(�,a)
? (�, �).
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We conclude this subsection by introducing notations of these quantities in specific
settings. Wemainly consider ?-conductance and (?, ?)-Poincaré constants on approximating
graphs �< introduced in subsection 2.1. Note that, by the self-similarity of the Sierpiński
carpet, each subgraph (F ·,<, �

F·,<) is a copy of �< for any F ∈ ,# and < ∈ N. Recall
that ` denotes the self-similar probability measure on  with weight (1/#∗, . . . , 1/#∗). We
consider that ` is also a measure on,= by setting `(F) B `( F) = #−=∗ for each F ∈ ,=.
Then, for any subset � of,= and 5 : �→ R,

〈 5 〉�,` =
1

#�

∑
F∈�

5 (F),

and thus we write 〈 5 〉� to denote 〈 5 〉�,` for simplicity. For F ∈ ,# and : ∈ N, we define

C (=)? B sup
F∈,#

C�=+|F |?

(
F ·,=,,=+|F | \ B= (F, 1)

)
,

and R (=)? B
(
C (=)?

)−1. We also set _(=)? B _
(�=,`)
? and _(=)∗,? B _

(�=,`)
∗,? (m∗�=). Finally, for

E, F ∈ ,# with |E | = |F |, define

f
(=)
? (E, F) B f

(� |E |+=,`)
? (E ·,=, F ·,=),

and
f
(=)
? B sup

<≥1
max
(E,F)∈�̃<

f
(=)
? (E, F).

Remark 2.16. Our definitions of Poincaré constants are slightly changed from the original
definitions adopted in [47]. Indeed, #−=∗ _

(=)
2 in our notation is the same as _= in [47]. The

situations are the same for other Poincaré constants f (=)2 , _
(=)
∗,2 .

2.3 Main results

Now, we are ready to state the main results of this paper. The following two theorems state
detailed properties of our (1, ?)-“Sobolev” space F? on the Sierpiński carpet.

Theorem 2.17. Let d? be the constant appearing in (1.2). Assume that ? > dimARC( , 3).
Then a function space F? defined as

F? B
{
5 ∈ !? ( , `)

��� sup
=≥1

d=? E�=? ("= 5 ) < ∞
}

is a reflexive and separable Banach space equipped with a norm ‖ · ‖F? defined by

‖ 5 ‖F? B ‖ 5 ‖!? +
(
sup
=≥1

d=? E�=? ("= 5 )
)1/?

.

Moreover, F? is continuously embedded in a Hölder space C0,(V?−U)/? on  , where V? B
log (#∗d?)/log 0 and

C0,(V?−U)/? B
{
5 ∈ C( )

��� sup
G≠H∈ 

| 5 (G) − 5 (H) |
3 (G, H) (V?−U)/?

< ∞
}
.

Furthermore, F? is dense in C( ) with respect to the sup norm.
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Theorem2.18 (Theorem 5.15). Assume that ? > dimARC( , 3). Let V? be the same constant
as in Theorem 2.17. Then F? has the following expression:

(2.4) F? =
{
5 ∈ !? ( , `)

����� lim
A↓0

∫
 

−
∫
�(G,A)

| 5 (G) − 5 (H) |?

A V?
3`(H)3`(G) < ∞

}
.

Note that V? ≥ ? for any ? > 1 (see Proposition 3.6). Moreover, a strict inequality
V? > ? holds (see Section 6):

Theorem 2.19. It holds that d? > #−1
∗ 0

?. In particular, V? > ? for any ? > 1.

Next, in Section 6, we construct a “canonical” ?-energy E? on the Sierpiński carpet,
which satisfies the following properties. For the definition of Clarkson’s inequality, see
Definition 5.6.

Theorem 2.20. Assume that ? > dimARC( , 3) and let d? > 1 be the same constant as
in Theorem 2.17. Then there exists a functional E? : F? → [0,∞) such that E? ( ·)1/? is a
semi-norm satisfying Clarkson’s inequality and ‖ · ‖E? B ‖ · ‖!? + E? ( ·)1/? is equivalent to
‖ · ‖F? . Furthermore, (E?, F?) satisfies the following conditions:

(1) 1 ∈ F?, and, for 5 ∈ F?, E? ( 5 ) = 0 if and only if 5 is constant. Furthermore,
E? ( 5 + 01 ) = E? ( 5 ) for any 5 ∈ F? and 0 ∈ R;

(2) (Regularity) F? is dense in C( ) with respect to the sup norm;

(3) (Markov property) if 5 ∈ F? and i : R → R with Lip(i) ≤ 1, then i ◦ 5 ∈ F? and
E? (i ◦ 5 ) ≤ E? ( 5 );

(4) (Symmetry) if 5 ∈ F? and ) ∈ Sym( ), then 5 ◦ ) ∈ F? and E? ( 5 ◦ )) = E? ( 5 );

(5) (Self-similarity) it holds that

(2.5) F? = { 5 ∈ C( ) | �∗8 5 ∈ F? for all 8 ∈ (}

and, for every 5 ∈ F?,

(2.6) E? ( 5 ) = d?
∑
8∈(
E? (�∗8 5 ).

Remark 2.21. When ? = 2, there exists a unique Dirichlet form (up to constant multiples)
satisfying all conditions (1)-(5) by [8, Theorem 1.2], [32, Proposition 5.1] and [34, Propo-
sition 5.9] 3. This is the reason why we say that a ?-energy E? satisfying these conditions
(1)-(5) is canonical. However, we do not know whether or not such uniqueness also holds
for ?-energy.

3To be precise, the uniqueness was proved in [8] in an alternative formulation of (1)-(5). In particular, there
is no proof of the self-similarity condition (5) in [8]. The identity (2.5) was proved in [32, Proposition 5.1] and
an explicit proof of (2.6) was given in [34, Proposition 5.9].
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Lastly, we will introduce E?-energy measure `?〈 5 〉 for 5 ∈ F? and establish a few
properties of it in Section 7 (Theorems 7.3, 7.4 and 7.6).

Theorem 2.22. Assume that ? > dimARC( , 3). For any 5 ∈ F?, there exists a Borel finite
measure `?〈 5 〉 on  with `?〈 5 〉 ( ) = E? ( 5 ) satisfying the following conditions:
(1) if 5 , 6 ∈ F? and � ∈ B( ) satisfy ( 5 − 6) |� ≡ const., then `?〈 5 〉 (�) = `

?

〈6〉 (�);
(2) (Chain rule) for any Φ ∈ C1(R), it holds that `?〈Φ( 5 )〉 (3G) = |Φ

′(G) |? `?〈 5 〉 (3G);
(3) (Self-similarity) for any = ∈ N, it holds that

`
?

〈 5 〉 (3G) = d
=
?

∑
F∈,=
(�F)∗`?〈�∗F 5 〉 (3G),

where (�F)∗`?〈�∗F 5 〉 (�) B `
?

〈�∗F 5 〉
(�−1

F (�)) for any � ∈ B( ).

As mentioned in the introduction, this measure `?〈 5 〉 plays the role of |∇ 5 (G) |
? 3G in the

case of Euclidean spaces. To treat E2-energy measures, there are established frameworks
in terms of Dirichlet forms. For further development of E?-energy measures, the lack of
?-energy form “E? ( 5 , 6)” (formally written as ( 5 , 6) ↦→

∫
〈|∇ 5 |?−2 ∇ 5 ,∇6〉 3G) is a big

obstacle. This paper contains no results in this direction.

Remark 2.23. For the Sierpiński gasket, Herman, Peirone and Strichartz [30] have con-
structed ?-energy EHPS? ( 5 ) and Strichartz and Wong [51] have suggested an approach to
interpret EHPS? ( 5 , 6) as subderivatives of C ↦→ 1

?
EHPS? ( 5 + C6) at C = 0. The notion of

?-harmonicity and ?-Laplacian based on this form EHPS? ( 5 , 6) are also considered in [51].

3 Estimates of Poincaré constants and conductances

In this section and Section 4, we investigate relations among (?, ?)-Poincaré constants
_
(=)
? , _(=)∗,?, f

(=)
? and ?-conductances C (=)? (and its reciprocal R (=)? ). Almost all parts of this

section are ?-energy analogs of [47, Section 2]. The ultimate goal is to show that _(=)? ,
f
(=)
? and R (=)? are comparable without depending on the level =. In particular, the estimates

f
(=)
? , _

(=)
? ≤ �R (=)? will be needed in later sections (especially Corollary 4.16 and 4.17).

However, we need some hard preparations to this end. In the case ? = 2, this was done in
[47, Theorem 7.16] under two assumptions: [47, (B-1) and (B-2)]. The following conditions
are generalizations of these assumptions to fit our ?-energy context.

(B?) There exist :∗ ∈ Z≥0 and a positive constant �∗ (that depends only on ? and #∗) such
that f (=)? ≤ �∗_(=+:∗)∗,? for every = ∈ N.

(KM?) There exists a positive constant �KM such that _(=)? ≤ �KM R (=)? for every = ∈ N.

A proof of (B2) for the Sierpiński carpet is given in [47, Proposition 8.1], and we also
prove (B?) for all ? by a similar method to theirs. The condition (KM?) is essential for our
goals. We prove (KM?) and show that _(=)? , f (=)? and R (=)? are comparable in the next section
(see Theorem 4.13). This section is devoted to a part of preparations toward Theorem 4.13.
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Remark 3.1. Kusuoka and Zhou prove (KM2) using the result of Barlow and Bass [5]
that is called the Knight Move argument (see [47, Theorem 7.16]). The original Knight
Move condition [47, condition (KM)] is a uniform estimate for discrete harmonic functions
with some boundary conditions. We can check that a ?-harmonic analog of [47, (KM)] is
equivalent to (KM?), and so we call the condition (KM?) ?-Knight Move instead. (See [17]
for the case ? = 2. We can also show this equivalence in our context, but we will not use this
fact in this paper.) A recent study by Kigami reveals new important aspects of the condition
(KM?), and he names this condition the ?-conductive homogeneity (see [38, Theorem 1.1
and 1.3]).

Let us start by preparing some basic facts. The following proposition is easily derived
from the definition of (?, ?)-Poincaré constants (for ? = 2, see [47, Proposition 1.5]).

Proposition 3.2. Let =, < ∈ N, F ∈ ,< and 5 : ,=+< → R.

(1) It holds that ∑
E∈F·,=

�� 5 (E) − 〈 5 〉F·,= ��? ≤ #=∗_(=)? EF·,=? ( 5 ).

In particular,

(3.1)
∑
E∈,=

�� 5 (E) − 〈 5 〉,= ��? ≤ #=∗_(=)? E�=? ( 5 ).
(2) It holds that

(3.2)
��〈 5 〉F·,= − 〈 5 〉,=+< ��? ≤ #<∗ _(=+<)? E�=+<? ( 5 ).

Moreover, for F ∈ ,=, : ∈ {1, . . . , =} and 5 : ,= → R,��〈 5 〉 [F]=−: ·,: − 〈 5 〉 [F]=−:+1·,:−1

��? ≤ #∗_(:)? E [F]=−: ·,:? ( 5 ).(3.3)

(3) For any =, < ∈ N, (E, F) ∈ �̃< and 5 : ,=+< → R,

(3.4)
��〈 5 〉E·,= − 〈 5 〉F·,= ��? ≤ f (=)? E{E,F}·,=? ( 5 ).

Proof. (1) This is immediate from the definition.
(2) Note that a simple computation yields that

〈 5 〉F·,= − 〈 5 〉,=+< = #
−=
∗

∑
E∈F·,=

( 5 (E) − 〈 5 〉,=+<).

Applying Hölder’s inequality, we have that��〈 5 〉F·,= − 〈 5 〉,=+< ��? ≤ #−?=∗ · # (?−1)=
∗

∑
E∈F·,=

�� 5 (E) − 〈 5 〉,=+< ��?
≤ #<∗ · #

−(=+<)
∗

∑
E∈,=+<

�� 5 (E) − 〈 5 〉,=+< ��? ≤ #<∗ _(=+<)? E�=+<? ( 5 ),

which proves (3.2). Lastly, by viewing [F]=−: ·,: as a copy of,: , we see that the estimate
(3.2) becomes (3.3).

(3) It is obvious from the definition. �

15



For =, < ∈ N, we define %=+<,= : R,=+< → R,= by setting

%=+<,= 5 (F) B 〈 5 〉F·,< , F ∈ ,=.

When < is clear in the context, we abbreviate %= to denote %=+<,=. Note that
〈
%=+<,< 5

〉
,=
=

〈 5 〉,=+< by a simple calculation.
While the following lemma is also immediate from the definition of f (=)? (for ? = 2, see

[47, Lemma 2.12]), this lemma will derive some important properties later. In particular,
the weak monotonicity (Corollary 4.17) comes from this lemma.

Lemma 3.3. For every =, < ∈ N, 5 : ,=+< → R and a subset � of,=,

E�? (%=+<,= 5 ) ≤ 2?−1�∗f
(<)
? E�·,<? ( 5 ).(3.5)

Proof. If 5 is a constant function on ,=+<, then we have nothing to be proved. Let
5 : ,=+< → R be a function that is not constant. For each E, F ∈ ,=, define a function
5̃ [E, F] on,=+< by setting 5̃ [E, F] B E{E,F}·,<? ( 5 )−1/? · 5 . Now, it is a simple computation
that

E�? (%= 5 ) =
∑

(E,F)∈��=

��〈 5 〉E·,< − 〈 5 〉F·,< ��?
=

∑
(E,F)∈��=

���〈 5̃ [E, F]〉
E·,< −

〈
5̃ [E, F]

〉
F·,<

���? E{E,F}·,<? ( 5 )

≤ 2?−1f
(<)
?

∑
(E,F)∈�̃�=

E{E,F}·,<? ( 5 )

≤ 2?−1�∗f
(<)
? E�·,<? ( 5 ). �

The following theorem by Bourdon and Kleiner [14] describes a crucial behavior of C (=)? .

Theorem 3.4 ([14, Proposition 3.6 and Lemma 4.4]). There exists a constant �Mult ≥ 1
(depending only on ? and the data of the Sierpiński carpet) such that

(3.6) �−1
MultC

(=)
? C (<)? ≤ C (=+<)? ≤ �MultC (=)? C (<)? ,

for every =, < ∈ N. In particular, the limit lim=→∞
(
C (=)?

)1/=
C d−1

? > 0 exists and

�−1
Mult d

−=
? ≤ C

(=)
? ≤ �Mult d

−=
? , for any = ∈ N.

The inequality C (=+<)? ≤ �MultC (=)? C (<)? in the above is called the submultiplicative
inequality (first proof was essentially given in [6] for the Sierpiński carpet when ? = 2,
and [14, Proposition 3.6], [18, Lemma 3.7], [41, Lemma 4.9.3] proved for all ? in some
general frameworks using ?-combinatorial modulus). The converse inequality is called the
supermultiplicative inequality.
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Remark 3.5. More precisely, Bourdon and Kleiner [14] have proven the multiplicative
inequality for another ?-conductance C (=)? (L ↔ R) (its definition will be given in Section
4) by using ?-combinatorial modulus. They also have shown that C (=)? and C (=)? (L ↔ R)
have the same behavior (we will prove this fact in Lemma 4.12 by a simple combinatorial
argument), and thus Theorem 3.4 holds.

The constant d? in the above theorem will play indispensable roles in this paper. The
following proposition is an extension of [47, Proposition 2.7] and gives an estimate of d?.

Proposition 3.6. There exists a positive constant �3.6 depending only on ?, �∗ and �AD

such that
C (=)? ≤ �3.6(#∗0−?)=,

for every = ∈ N. In particular, it holds that d? ≥ #−1
∗ 0

?.

Proof. Let I ∈ ,< and set � B I · ,=, � B ,=+< \ B= (I, 1),  � B
⋃
F∈�  F, and

 � B
⋃
F∈�  F. Then, by Lemma 2.7, we have that dist ( �,  �) B inf{3 (G, H) | G ∈

 �, H ∈  �} ≥ �−1
AD0

−<. Define a continuous function 5 :  → R by setting

5 (G) B dist(G,  �)
dist( �,  �)

∧ 1

for each G ∈  , where dist(G, �) B infH∈� 3 (G, H) for any subset � of . Then it is immediate
that 5 | � ≡ 0 and 5 | � ≡ 1, and thus "=+< 5 |� ≡ 0 and "=+< 5 |� ≡ 1. This yields that
C�=+<? (�, �) ≤ E�=+<? ("=+< 5 ).

Next, wewill estimate the ?-energy of"=+< 5 by estimating distances. For (E, F) ∈ �=+<,
by the triangle inequality, we have

|dist(�E (G),  �) − dist(�F (G),  �) | ≤ 3 (�E (G), �F (G)) ≤ 210
−(=+<) ,

where 21 B 2 diam( ). By Lemma 2.5,

|"=+< 5 (E) − "=+< 5 (F) |

=

����∫
 

(�∗E ) 5 3` −
∫
 

(�∗F) 5 3`
����

≤ 1
dist( �,  �)

∫
 

|dist(�E (G),  �) − dist(�F (G),  �) | 3`(G)

≤ 21�AD 0
−=.

Consequently, we conclude that

C�=+<? (�, �) ≤ E�=+<? ("=+< 5 )

≤
∑

F∈B= (I,1)

∑
E∈,=+<

|"=+< 5 (E) − "=+< 5 (F) |? 1�=+< (E, F)

≤ (21�AD)?�∗
(
#B= (I, 1)

)
0−?=

≤ (21�AD)?�∗(�∗ + 1)#=∗ 0−?=. �
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In the rest of this subsection, we extend estimates in [47] that hold without assuming
(KM?). First, we will see some relations with _(=)∗,? and the other (?, ?)-Poincaré constants.
Since “gluing” maximizers of _(=)∗,? does not increase energies, the next proposition follows
(for ? = 2, see [47, Proposition 2.11]).

Proposition 3.7. For every = ≥ 1, it holds that _(=)∗,? ≤ #∗_(=+1)? .

Proof. Let 5 : ,= → R satisfy 5 |m∗�= ≡ 0, E�=? ( 5 ) = 1, and 〈 5 〉,= =
(
_
(=)
∗,?

)1/? (see
Proposition 2.15-(2)). Fix 8 ≠ 9 ∈ ( and define 5∗ : ,=+1 → R by

5∗(I) B


5 (F) if I = 8F for some F ∈ ,=,

− 5 (F) if I = 9F for some F ∈ ,=,

0 otherwise.

Since 5 |m∗�= = 0, we easily see that 〈 5∗〉,=+1 = 0 and E�=+1? ( 5∗) = 2. By Hölder’s inequality,

#−=∗
∑
I∈,=+1

�� 5∗(I) − 〈 5∗〉,=+1 ��? = 2(#,=)−1
∑
F∈,=

| 5 (F) |?

≥ 2(#,=)−?
����� ∑
F∈,=

5 (F)
�����? = 2

��〈 5 〉,= ��? = 2_(=)∗,? .

Moreover, from Proposition 3.2-(1), the term #−=∗
∑
I∈,=+1

�� 5∗(I) − 〈 5∗〉,=+1 ��? is bounded
above by #∗_(=+1)? E�=+1? ( 5∗) = 2#∗_(=+1)? , and so we finish the proof. �

The condition (B?) plays a converse role of the above proposition. We heavily use the
symmetries of the Sierpiński carpet to prove (B?).

Proposition 3.8. There exists a positive constant �3.8 depending only on ? and #∗ such that
f
(=)
? ≤ �3.8_

(=+2)
∗,? for any = ∈ N. In particular, (B?) holds (with :∗ = 2).

Proof. The proof is a straightforward modification of [47, Proposition 8.1]. Let = ∈ N.
By the self-similarity and symmetries of the Sierpiński carpet, one easily sees that f (=)? =

f
�=+1
? (1 ·,=, 8 ·,=). We define an affine transformation )1,8 of R2 by setting

)1,8
(
(G, H)

)
B

(
G,−1

3
− H

)
,

for each (G, H) ∈ R2. Note that )1,8( 8) =  9 if (8, 9) = (1, 8), (8, 1). Now, by the
symmetry, there exist ]1,v : 1 ·,= → 1 ·,=, ]1→8 : 1 ·,= → 8 ·,=, ]8,v : 8 ·,= → 8 ·,=,
]8→1 : 8 ·,= → 1 ·,=, ]+ : ,= → ,=, ]− : ,= → ,= such that

 ]1,v (F) = �1()v(�−1
1 ( F))) and  ]1→8 (F) = )1,8( F) for any F ∈ 1 ·,=,

 ]8,v (F) = �8()v(�−1
8 ( F))) and  ]8→1 (F) = )8,1( F) for any F ∈ 8 ·,=,

 ]+ (F) = )+( F) and  ]− (F) = )−( F) for any F ∈ ,=.
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From Proposition 2.15, there exists 5 : {1, 8} · ,= → R with E{1,8}·,=? ( 5 ) = 1 such
that

��〈 5 〉1·,= − 〈 5 〉8·,= ��? = f (=)? . Furthermore, again from Proposition 2.15, we have that
5 (]8,h(F)) = 5 (F) for each F ∈ 8 · ,= (8 = 1, 8) and 5 (]8→ 9 (F)) = − 5 (F) for each
(8, 9) ∈ {(1, 8), (8, 1)}, F ∈ 8 ·,=. It will suffice to consider the case 5 |8·,= ≥ 0. Now,
define 60, 6± : ,= → R by setting 60(F) B 5 (8 · F) ≥ 0,

6+(F) B
{
60()+(F)) if F ∈ ,= satisfies  F ∩ {(G, H) ∈ R2 | H ≥ G} ≠ ∅,
60(F) otherwise,

and

6−(F) B
{
60()−(F)) if F ∈ ,= satisfies  F ∩ {(G, H) ∈ R2 | H ≥ −G} ≠ ∅,
60(F) otherwise,

for each F ∈ ,=. Then it is immediate that E�=? (60) ≤ E{1,8}·,=? ( 5 ) = 1 and 〈60〉,= =
〈 5 〉8·,= =

1
2
(
f
(=)
?

)1/?. It is also obvious that E�=? (6±) ≤ 2E�=? (60). Next, define 6 : ,=+2 →
R by setting

6(E) B


6−(F), if E = 25F ∈ 25 ·,= for some F ∈ ,=,

60(F), if E = 26F ∈ 26 ·,= for some F ∈ ,=,

6+(F), if E = 27F ∈ 27 ·,= for some F ∈ ,=,

0, otherwise,

for each E ∈ ,=+2. This construction yields that 6 |m∗�=+2 ≡ 0. Furthermore, we see that

E{26,2 9}·,=
? (6) = E26·,=

? (6) + E2 9 ·,=
? (6) for each 9 = 5, 7,

and
E{24,25,37}·,=
? (6) ∨ E{15,27,28}·,=

? (6) ≤ 3E{1,8}·,=? ( 5 ∨ 0).

Therefore, it follows that

〈6〉,=+2 = #
−(=+2)
∗

∑
8∈{0,+,−}

∑
F∈,=

68 (F) = #−2
∗

∑
8∈{0,+,−}

〈68〉,=

≥ #−2
∗ 〈60〉,= =

1
2
#−2
∗

(
f
(=)
?

)1/?
,

and

E�=+2? (6) ≤ E26·,=
? (6) + E{24,25,37}·,=

? (6) + E{15,27,28}·,=
? (6) + 6

≤ 7 + 6E{1,8}·,=? ( 5 ∨ 0) ≤ 13.

Hence, by putting 6∗ B E�=+2? (6)−1 · 6, we conclude that

f
(=)
? ≤ (2#2

∗ )?E�=+2? (6)
(
〈6∗〉,=+2

) ? ≤ 13 · (2#2
∗ )?_

(=+2)
∗,? ,

which shows (B?), where :∗ = 2 and �3.8 = 13 · (2#2
∗ )?. �

19



Next, we see relations between two (?, ?)-Poincaré constants _(=)? and f (=)? . The fol-
lowing proposition states that the submultiplicative inequality of f (=)? holds (for ? = 2, see
[47, a part of Proposition 2.13]).

Proposition 3.9. (1) For any =, < ∈ N, we have

_
(=+<)
? ≤ 2?−1�∗(_(<)? #−=∗ + _

(=)
? f

(<)
? ).

(2) For any =, < ∈ N, we have f (=+<)? ≤ 2?−1�∗f
(=)
? f

(<)
? .

Proof. (1) Let 5 : ,=+< → R with E�=+<? ( 5 ) = 1. Then we see from Proposition 3.2-(1)
and Lemma 3.3 that

#
−(=+<)
∗

∑
E∈,=

∑
F∈E·,<

�� 5 (F) − 〈 5 〉,=+< ��?
≤ 2?−1#

−(=+<)
∗

∑
E∈,=

∑
F∈E·,<

(�� 5 (F) − 〈 5 〉E·,< ��? + ���〈 5 〉E·,< − 〈
%=+<,= 5

〉
,=

���?)
≤ 2?−1_

(<)
? #−=∗ + 2?−1#−=∗

∑
E∈,=

���%=+<,= 5 (E) − 〈
%=+<,= 5

〉
,=

���?
≤ 2?−1�∗

(
_
(<)
? #−=∗ + _

(=)
? f

(<)
?

)
,

where we used the following estimate in the second inequality:

#
−(=+<)
∗

∑
E∈,=

∑
F∈E·,<

�� 5 (F) − 〈 5 〉E·,< ��? ≤ _(<)? #−=∗
∑
E∈,=
EE·,<? ( 5 ) ≤ _(<)? #−=∗ .

Since 5 with E�=+<? ( 5 ) = 1 is arbitrary, we obtain the desired estimate.
(2) Let : ∈ N, let (E, F) ∈ �̃: and let 5 ∈ R,=+<+: satisfy E{E,F}·,=+<? ( 5 ) = 1. Note that

〈 5 〉E·,=+< = 〈%=+: 5 〉E·,= , where %=+: = %=+<+:,=+: . Indeed,

〈 5 〉E·,=+< = #
−(=+<)
∗

∑
E′∈,=

∑
I∈EE′·,<

5 (I) = #−=∗
∑
E′∈,=

〈 5 〉EE′·,<

= #−=∗
∑
E′∈,=

%=+: 5 (EE′) = 〈%=+: 5 〉E·,= .

Similar computation yields that 〈 5 〉E·,=+< = 〈%<+: 5 〉E·,< . From Lemma 3.3, we have that��〈 5 〉E·,=+< − 〈 5 〉F·,=+< ��? = ��〈%=+: 5 〉E·,= − 〈%=+: 5 〉F·,= ��?
≤ f (=)? E{E,F}·,=? (%=+: 5 )
≤ 2?−1�∗f

(=)
? f

(<)
? .

The desired result is immediate from this estimate. �

In the rest of this subsection, we prove the following relationwith (?, ?)-Poincaré constant
_
(=)
? and ?-conductance C (=)? (see [47, Proposition 2.10] for ? = 2).
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Proposition 3.10. For every =, <, : ∈ N with,: \ m∗�: ≠ ∅,

#(,: \ m∗�: )
# :∗ #(m∗�: )

R (<)? _
(=)
? ≤ �3.10_

(=+<+:)
? ,

where �3.10 is a positive constant depending only on ? and �∗.

Remark 3.11. For the Sierpiński carpet graph, it holds that,: \ m∗�: ≠ ∅ whenever : ≥ 2.
We write :0 B 2 to denote the minimum : such that,: \ m∗�: ≠ ∅.

Similar ideas of its proof appear in many contexts (see [6, proof of Theorem 3.3],
[14, proof of Proposition 3.6] for example). In the following two lemmas, we prepare
estimates for “partition of unity” (for ? = 2, see [47, Lemmas 2.8 and 2.9]).

Lemma 3.12. Let =, < ∈ N, and let
{
i
(<)
F

}
F∈,= be a family of [0, 1]-valued functions on

,=+< such that
∑
F∈,= i

(<)
F ≡ 1 and i(<)F

��
,=+<\B< (F,1) ≡ 0 for each F ∈ ,=. If 5 : ,= → R,

then
E�=+<? ( 5∗) ≤ �3.12E�=? ( 5 ) max

F∈,=
E�=+<?

(
i
(<)
F

)
where�3.12 is a positive constant depending only on ? and �∗ and 5∗ : ,=+< → R is defined
as

5∗(I) B
∑
F∈,=

5 (F)i(<)F (I), I ∈ ,=+< .

Proof. For each I, I′ ∈ ,=+<, we set

�(I, I′) B
{
F ∈ ,=

��� i(<)F (I) ∨ i(<)F (I′) > 0
}
.

Since supp[i(<)F ] ⊆ B< (F, 1), we can verify that there exists " ∈ N depending only on �∗
such that #�(I, I′) ≤ " for any =, < ∈ N and I, I′ ∈ ,=+<. Furthermore, we see that

5∗(I) − 5∗(I′) =
∑

F∈�(I,I′)
5 (F) (i(<)F (I) − i(<)F (I′))

and
∑
F∈�(I,I′) (i

(<)
F (I) − i(<)F (I′)) = 0. From these identities, we have that

E (=+<)? ( 5∗) =
1
2

∑
F∈,=

∑
I∈F·,<

∑
I′∈,=+<;
(I,I′)∈�=+<

| 5∗(I) − 5∗(I′) |?(3.7)

=
1
2

∑
F∈,=

∑
I∈F·,<

∑
I′∈,=+<;
(I,I′)∈�=+<

������ ∑
E∈�(I,I′)

( 5 (E) − 5 (F)) (i(<)E (I) − i(<)E (I′))

������
?

.

By Hölder’s inequality we obtain������ ∑
E∈�(I,I′)

( 5 (E) − 5 (F)) (i(<)E (I) − i(<)E (I′))

������
?

(3.8)
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≤ ©«
∑

E∈�(I,I′)
| 5 (E) − 5 (F) |?ª®¬ ©«

∑
E∈�(I,I′)

���i(<)E (I) − i(<)E (I′)
���?/(?−1)ª®¬

?−1

.

To bound the term
∑
E∈�(I,I′) | 5 (E) − 5 (F) |?, for each E ∈ �(I, I′), F ∈ ,= with I ∈ F ·,<,

and (I, I′) ∈ �=+<, we find a path [F1, . . . , F;] in �= from E to F with ; ≤ 3, that is,
(F8, F8+1) ∈ �= or F8 = F8+1 for each 8 = 1, . . . , ; − 1, and F1 = E, F; = F. Define

Γ
(=)
≤3 (F) B

{
[F1, . . . , F;]

����� ; ≤ 3, F8 ∈ ,=, F; = F, and
(F8, F8+1) ∈ �= for each 8 = 1, . . . , ; − 1

}
≠ ∅.

Then, for any (I, I′) ∈ �=+<, we see that∑
E∈�(I,I′)

| 5 (E) − 5 (F) |?(3.9)

≤ �1
∑

E∈�(I,I′)

;−1∑
8=1

�� 5 (F8) − 5 (F8+1)��?
≤ �1

∑
[F1,...,F;]∈Γ(=)≤3 (F)

;−1∑
8=1

�� 5 (F8) − 5 (F8+1)��? C ( 5 (F),

where �1 is a constant depending only on ?, ;. Note that the number #Γ(=)≤3 (F) is bounded
above by a constant depending only on �∗. Thus we conclude that there exists a constant
�2 depending only on �1 and �∗ such that

∑
F∈,= ( 5 (F) ≤ �2E�=? ( 5 ) for any = ∈ N and

5 : ,= → R. Combining these estimates (3.7), (3.8) and (3.9), we obtain

E�=+<? ( 5∗)

≤ 1
2

∑
F∈,=

( 5 (F)
∑

I∈F·,<

∑
I′∈,=+<;
(I,I′)∈�=+<

©«
∑

E∈�(I,I′)

���i(<)E (I) − i(<)E (I′)
���?′ª®¬

?−1

≤ " ?−1
∑
F∈,=

( 5 (F)
∑

I∈F·,<

∑
I′∈,=+<;
(I,I′)∈�=+<

max
E∈,=

���i(<)E (I) − i(<)E (I′)
���?

≤ " ?−1
∑
F∈,=

( 5 (F)max
E∈,=
EF·,<? (i(<)E )

≤ �2"
?−1E�=? ( 5 )max

E∈,=
E�=+<? (i(<)E ). �

Lemma 3.13. Let =, <, : ∈ N with ,: \ m∗�: ≠ ∅. If 5 : ,= → R, then there exists a
function 5∗ : ,=+<+: → R satisfying

5∗(E) = 5 (F) if F ∈ ,= and E ∈ FF′ ·,< for some F′ ∈ ,: \ m∗�: ,(3.10)

and

E�=+<+:? ( 5∗) ≤ �3.13#(m∗�: )C (<)? E�=? ( 5 ),(3.11)

where �3.13 is a positive constant depending only on ? and �∗.
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Proof. For eachF ∈ ,=+: , let ℎ(<)F : ,=+<+: → R satisfy ℎ(<)F |F·,< ≡ 1, ℎ(<)F |,=+<+:\B< (F,1) ≡
0, and

E�=+<+:?

(
ℎ
(<)
F

)
= C�=+<+:?

(
F ·,<,,=+<+: \ B< (F, 1)

)
.

Define Ψ B
∑
F∈,=+: ℎ

(<)
F . Then it is obvious that Ψ ≥ 1, and so a family

{
i
(<)
F

}
F∈,=+:

given by i(<)F B Ψ−1ℎ
(<)
F satisfies the conditions in Lemma 3.12. For each 5 : ,= → R,

define a function 5∗ : ,=+<+: → R by setting

5∗(E) B
∑

I∈,=+:
5 ( [I]=)i(<)I (E), E ∈ ,=+<+: .

We will prove that 5∗ is the required function.
First, we will check (3.10). Define 5=+: : ,=+: → R by

5=+: (F) B 5 ( [F]=), F ∈ ,=+: .

Since supp[i(<)F ] ⊆ B< (F, 1), we can write

5∗(E) =
∑

I ∈ ,=+: :
E ∈ B< (I, 1)

5=+: (I)i(<)I (E), E ∈ ,=+<+: .

Let E ∈ ,=+<+: and F ∈ ,= such that E ∈ FF′ · ,< for some F′ ∈ ,: \ m∗�: . From
F′ ∉ m∗�: , it follows that B< (FF′, 1) ∩ (F ·,<+: )2 = ∅, and thus, for any I ∈ ,=+: with
E ∈ B< (I, 1), we obtain [I]= = F. From this observation, it holds that 5=+: (I) = 5 (F), and
thus we obtain

5∗(E) =
∑

I ∈ ,=+: ;
E ∈ B< (I, 1)

5 ( [I]=)i(<)I (E) =
∑

I ∈ ,=+: ;
E ∈ B< (I, 1)

5 (F)i(<)I (E) = 5 (F),

which proves (3.10).
To prove (3.11), it will suffice to show the bound

max
F∈,=+:

E�=+<+:?

(
i
(<)
F

)
≤ 21C (<)? ,(3.12)

where 21 is a positive constant depending only on ? and �∗. Indeed, by Lemma 3.12, we
have

E�=+<+:? ( 5∗) ≤ �3.12E�=+:? ( 5=+: ) max
F∈,=+:

E�=+<+:? (i(<)F )

≤ 2�3.12#(m∗�: )E�=? ( 5 ) max
F∈,=+:

E�=+<+:? (i(<)F ).

A combination of this estimate and (3.12) yields (3.11). Towards proving (3.12), we start by
observing that #�< (F) ≤ " for some constant " depending only on �∗, where

�< (F) B
{
I ∈ ,=+:

�� B< (F, 1) ∩ B< (I, 1) ≠ ∅},
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for each F ∈ ,=+: . Indeed, we have I ∈ �< (F) if I ∈ ,=+: satisfies ℎ(<)F (E) ∧ ℎ(<)I (E) ≠ 0
for some E ∈ ,=+<+: , and thus we obtain #�< (F) ≤ " for any =, <, : ∈ N and F ∈ ,=+:
by a similar reason to the bound of �(I, I′) in the proof of Lemma 3.12. Now, it is a simple
computation that, for any E, E′ ∈ ,=+<+: ,

i
(<)
F (E) − i(<)F (E′) =

1
Ψ(E)Ψ(E′)

(
Ψ(E)

(
ℎ
(<)
F (E) − ℎ(<)F (E′)

)
− ℎ(<)F (E)

(
Ψ(E) −Ψ(E′)

) )
.

From this identity, we have that

E�=+<+:?

(
i
(<)
F

)
≤ 2?−1

∑
(E,E′)

©«
1

|Ψ(E′) |?
���ℎ(<)F (E) − ℎ(<)F (E′)

���? +
���ℎ(<)F (E)

���?
|Ψ(E)Ψ(E′) |? |Ψ(E) −Ψ(E

′) |?
ª®®¬

≤ 2?−1 ©«E�=+<+:? (ℎ(<)F ) +
∑
(E,E′)

���ℎ(<)F (E)
���? ������ ∑

F′∈�< (F)
(ℎ(<)
F′ (E) − ℎ

(<)
F′ (E

′))

������
? ª®¬

≤
(∗)
(2")?−1 ©«E�=+<+:? (ℎ(<)F ) +

∑
F′∈�< (F)

E�=+<+:? (ℎ(<)
F′ )

ª®¬
≤ (2")?−1(" + 1) max

F∈,=+:
E�=+<+:? (ℎ(<)F ) ≤ (2")?−1(" + 1)C (<)? ,

where the symbol
∑
(E,E′) denotes the summation over (E, E′) ∈ �=+<+: and we used Hölder’s

inequality and ℎ(<)F ≤ 1 in (∗). This shows (3.12). �

With these preparations in place, we are ready to prove Proposition 3.10.
Proof of Proposition 3.10. Let 5 : ,= → R with E�=? ( 5 ) = 1, and let 5∗ ∈ R,=+<+: be a
function obtained by applying Lemma 3.13 to 5 . From Lemma 3.13 and E�=? ( 5 ) = 1, we
have E�=+<+:? ( 5∗) ≤ �3.13#(m∗�: )C (<)? . On the one hand, Proposition 3.2-(1) yields that

#
−(=+<+:)
∗

∑
F∈,=+<+:

�� 5∗(F) − 〈 5∗〉,=+<+: ��? ≤ �3.13_
(=+<+:)
? #(m∗�: )C (<)? .

On the other hand, from the property (3.10), we have that

#
−(=+<+:)
∗

∑
F∈,=+<+:

�� 5∗(F) − 〈 5∗〉,=+<+: ��@
≥ #−(=+<+:)∗

∑
F∈,=

∑
F′∈,:\m∗�:

∑
I∈FF′·,<

�� 5 (F) − 〈 5∗〉,=+<+: ��?
≥ #(,: \ m∗�: )#−(=+:)∗

∑
F∈,=

�� 5 (F) − 〈 5∗〉,=+<+: ��?
≥ 2−?

#(,: \ m∗�: )
#,:

#−=∗
∑
F∈,=

�� 5 (F) − 〈 5 〉,= ��? ,
where we used

∑
F∈,= | 5 (F) − 2 |

? ≥ 2−?
∑
F∈,=

�� 5 (F) − 〈 5 〉,= ��? for any 2 ∈ R (see [10,
Lemma 4.17] for example) in the last line. Since 5 with E�=? ( 5 ) = 1 is arbitrary, we obtain
the desired estimate. �
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We conclude this section by proving the submultiplicative inequality of _(=)? (see [47,
Theorem 2.1] for ? = 2). Moreover, we have the following theorem (see [47, Proposition
2.13 and 4.1] in the case of ? = 2).

Theorem 3.14. There exists a positive constant �3.14 depending only on ?, �∗, #∗ and :0

such that the following statements hold:

(1) for every =, < ∈ N,

(3.13) _
(=)
? ≤ �3.14#

<
∗ _
(<)
? f

(=)
? ;

(2) for every = ∈ N,

(3.14) �−1
3.14f

(=)
? ≤ _(=)? ≤ �3.14f

(=)
? ;

(3) for every =, < ∈ N,

(3.15) _
(=+<)
? ≤ �3.14_

(=)
? _

(<)
? ;

(4) for every = ∈ N,

(3.16) �−1
3.14_

(=)
? ≤ _(=)∗,? ≤ �3.14_

(=)
? ;

(5) for every = ∈ N,

(3.17) R (=)? ≤ �3.14_
(=)
? .

Proof. (1) By Proposition 3.10, we have that R (<−:0)
? _

(=)
? ≤ 21_

(=+<)
? for all = ∈ N and < ≥

:0, where 21 depends only on :0, #∗ and �3.10. Combining this estimate with Proposition
3.9-(1), we obtain

R (<−:0)
? _

(=)
? ≤ 22(#−<∗ _

(=)
? + _(<)? f

(=)
? ),

where 22 B 2?−121�∗. Since #<∗ R
(<−:0)
? → ∞ as < → ∞ by Proposition 3.6, there exists

"0 ∈ N such that
inf
<≥"0

#<∗ R
(<−:0)
? ≥ 22 + 1.

From these estimates, we have that (22 + 1)#−<∗ _
(=)
? ≤ 22(#−<∗ _

(=)
? + _(<)? f

(=)
? ) for all = ∈ N

and < ≥ "0. Hence, we conclude that

(3.18) _
(=)
? ≤ 22#

<
∗ _
(<)
? f

(=)
? ,

for all = ∈ N and < ≥ "0, which implies (3.13).
(2) Applying Propositions 3.9-(2), 3.8 and 3.7, we obtain f (=)? ≤ �3.8�∗f

(3)
? _

(=)
? for all

= ≥ 4, which implies that f (=)? ≤ 23_
(=)
? for any = ∈ N, where 23 is a positive constant
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depending only on ?, #∗, �∗. By (3.18), we have _(=)? ≤ 22#
"0
∗ _

("0)
? f

(=)
? for any = ∈ N.

Hence we get (3.14).
(3) The submultiplicative inequality (3.15) is immediate from Proposition 3.9-(2) and

(3.14).
(4) Applying Proposition 3.9-(2) and 3.8, we have that f (=)? ≤ �3.8�∗f

(2)
? _

(=)
∗,? for all

= ≥ 3, which together with (3.14) implies that

(3.19) _
(=)
? ≤ 24_

(=)
∗,? for any = ∈ N,

where 24 is a positive constant depending only on ?, #∗, �∗ and :0. The converse inequality
of (3.19) is immediate from Proposition 3.7 and (3.15).

(5) We immediately get (3.17) from Proposition 3.10 and (3.15). �

4 Uniform Hölder estimate and Knight Move

This section gives ?-energy analogs of [47, Lemma 3.9, Proposition 3.10, Theorem 7.2 and
(B-2)]. In particular, we prove a uniform Hölder estimate without depending on levels of
graphical approximation (Theorem 4.5) and, by using this Hölder estimate, we check (KM?).
To obtain useful Hölder type estimates, a “low-dimensional” condition: Assumption 4.2,
which is written by using the Ahlfors regular conformal dimension, will be essential. The
notion of Ahlfors regular conformal dimension was implicitly introduced by Bourdon and
Pajot [15]. The exact definition of this dimension is as follows.

Definition 4.1. Let - be a metrizable space (without isolated points) and let 38 (8 = 1, 2) be
compatible metrics on - . We say that 31 and 32 are quasisymmetric to each other if there
exists a homeomorphism [ : [0,∞) → [0,∞) such that

32(G, 0)
32(G, 1)

≤ [
(
31(G, 0)
31(G, 1)

)
,

for every triple G, 0, 1 ∈ - with G ≠ 1. (It is easy to show that being quasisymmetric gives
an equivalence relation among metrics.) The Ahlfors regular conformal gauge JAR(-, 31)
of (-, 31) is defined as

JAR(-, 31) B
{
32

����� 32 is a metric on - , 32 is quasisymmetric to 31,
and 32 is U′-Ahlfors regular for some U′ > 0.

}
.

(For the definition of Ahlfors regularity, recall (2.1). Note that dimH(-, 32) = U′ if 32 is
U′-Ahlfors regular.) Then the Ahlfors regular conformal dimension (ARC-dimension for
short) of (-, 31) is

(4.1) dimARC(-, 31) B inf
32∈JAR (-,31)

dimH(-, 32).
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The notion of quasisymmetric and the exact definition ofARC-dimension are not essential
in this paper. We refer the reader to a monograph [48] and surveys [12,42] for details of the
ARC-dimension and related subjects.

The following assumption describes our “low-dimensional” setting (see [47, the condition
(R)] in the context of probability theory).

Assumption 4.2. A real number ? satisfies ? > dimARC( , 3).

Remark 4.3. The following bound concerning the Ahlfors regular conformal dimension of
the Sierpiński carpet is known:

1 + log 2
log 3

≤ dimARC( , 3) < U =
log #∗
log 0

.

The lower bound follows from a general result due to Tyson [52]. The strict inequality in
the upper bound is proved by Keith and Laakso [37]. Note that Assumption 4.2 implies that
? > 1.

To promote understanding Assumption 4.2, we recall characterization results by Carrasco
Piaggio [18] and Kigami [41] in our setting. Recall lim=→∞

(
R (=)?

)1/=
= d? (Theorem 3.4).

Theorem 4.4 ([18, Theorem 1.3], [41, Theorem 4.6.9 and 4.7.6]). It holds that

dimARC( , 3) = inf
{
?

�� lim
=→∞
R (=)? = ∞

}
.

Moreover, Assumption 4.2 is equivalent to d? > 1.

We define

(4.2) V? B
log #∗d?

log 0
.

Then note that Assumption 4.2 is also equivalent to V? − U > 0.

4.1 Uniform Hölder estimate

In this subsection, we prove the following Hölder type estimate.

Theorem 4.5. Suppose Assumption 4.2 holds. Then there exists a constant �̃UH > 0
(depending only on ?, �∗, #∗, 0, d?, �Mult and :0) such that, for any =, < ∈ N, I ∈ ,<,
E, F ∈ B= (I, 1) and 5 : ,=+< → R,

| 5 (E) − 5 (F) |? ≤ �̃UH_
(=+<)
? E�=+<? ( 5 )0−(V?−U)< .(4.3)

This theorem is proved by iterating Proposition 3.2-(2). Kusuoka and Zhou [47] prepared
a general estimate using signed measures ([47, Lemma 3.9]) to show Hölder type estimates,
but we need only the case of Dirac measures for our purpose. Thus we give a simplified
extension of [47, Lemma 3.9 and Proposition 3.10] as follows.
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Lemma 4.6. Let ? > 1. Let =, < ∈ N, let E ∈ ,< and let 5 : ,=+< → R. Then, for any
F ∈ E ·,=,

(4.4)
�� 5 (F) − 〈 5 〉E·,= �� ≤ #1/?

∗ EE·,=? ( 5 )1/?
=∑
:=1

(
_
(:)
?

)1/?
.

Proof. Let F ∈ E ·,= and set F; B [F] ; for each ; = <, . . . , = + <. Note that F< = E and
F=+< = F. From Proposition 3.2-(2), we see that�� 5 (F) − 〈 5 〉E·,= �� ≤ =+<−1∑

;=<

��〈 5 〉F; ·,=+<−; − 〈 5 〉F;+1·,=+<−;−1

��
≤ #1/?

∗ EE·,=? ( 5 )1/?
=+<−1∑
;=<

(
_
(=+<−;)
?

)1/?

= #
1/?
∗ EE·,=? ( 5 )1/?

=∑
:=1

(
_
(:)
?

)1/?
. �

Then we can prove Theorem 4.5 by simple computations.
Proof of Theorem 4.5. Set \? B V? − U = log d?/log 0 for simplicity. Then, by the
supermultiplicative inequality of C (=)? (Theorem 3.4), we have that

C (=)? ≤ �Mult0
−=\? for every = ∈ N.(4.5)

From (4.5), Proposition 3.10 and Theorem 3.14-(3), we have _(=)? ≤ 21_
(=+<)
? 0−<\? for every

=, < ∈ N, where 21 > 0 depends only on �Mult, �3.10, �3.14, :0, #∗, _
(:0)
? . In particular,

_
(:)
? ≤ 21_

(=+<)
? 0−(=+<−:)\? for every =, <, : ∈ N with : ≤ =.(4.6)

By Lemma 4.6, for any I ∈ ,<, E ∈ I ·,= and F ∈ B= (I, 1),

| 5 (E) − 5 (F) |
≤

�� 5 (E) − 〈 5 〉I·,= �� + ��〈 5 〉I·,= − 〈 5 〉 [F]<·,= �� + �� 5 (F) − 〈 5 〉 [F]<·,= ��
≤

∑
8=1,2

��〈 5 〉I8 ·,= − 〈 5 〉I8+1·,= �� + 2#1/?
∗ E�=+<? ( 5 )1/?

=∑
:=1

(
_
(:)
?

)1/?
,

where I8 ∈ ,< (8 = 1, 2, 3) with I1 = I, I3 = [F]< satisfy (I8, I8+1) ∈ �̃< for 8 = 1, 2 or
I1 = I2. Thanks to Proposition 3.2-(3), Theorem 3.14-(2) and (4.6), we see that

| 5 (E) − 5 (F) | ≤ 2E�=+<? ( 5 )1/?
((
f
(=)
?

)1/? + #1/?
∗

=∑
:=1

(
_
(:)
?

)1/?
)

≤ 22E�=+<? ( 5 )1/?
=∑
:=1

(
_
(:)
?

)1/?

≤ 21/?
1 22

(
_
(=+<)
? E�=+<? ( 5 )

)1/?
=∑
:=1

0−(=+<−:)\?/?,
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where 22 is a positive constant depending only on ?, #∗, �3.14. Since \? > 0 and
=∑
:=1

0−(=+<−:)\?/? = 0−<\?/?
=−1∑
:=0

0−:\?/?

= 0−<\?/? · 1 − 0
−=\?/?

1 − 0−\?/?
≤ 1

1 − 0−\?/?
· 0−<\?/?,

we have the desired estimate for E ∈ I ·,= and F ∈ B= (I, 1). By chaining this, we complete
the proof. �

Remark 4.7. We used the supermultiplicative inequality of C (=)? to derive (4.5) in the above
proof, but we can show similar Hölder estimates without using the supermultiplicative in-
equality. (Note that the limit d? = lim=→∞

(
R (=)?

)1/= exists by the submultiplicative inequality
of C (=)? .) Indeed, for any \ ∈ (0, \?), we have that C (=)? ≤ 210

−=\ for every = ∈ N. If one
uses this estimate instead of (4.5), then one obtains the following Hölder estimate:

(4.7) | 5 (E) − 5 (F) |? ≤ �̃UH_
(=)
? E�=? ( 5 )0−\< .

In subsection 4.3, we will derive the supermultiplicative inequality of C (=)? as a consequence
of (KM?). Since the continuity (4.7) is enough to prove (KM?) (see subsection 4.2), the use
of supermultiplicative inequality of C (=)? is not essential to obtain (4.3).

4.2 Proof of (KM?)

The aim of this subsection is to prove (KM?) under Assumption 4.2. Our strategy for proving
(KM?) comes from a recent study by Cao and Qiu [17], where they give an “analytic” proof
of (KM2) using estimates of Poincaré constants in [47]. Although our proof of (KM?) is
similar to the argument in [17, Section 4], we give a complete proof of (KM?) for the reader’s
convenience. Our argument will depend heavily on the uniform Hölder estimate (Theorem
4.5) and on behaviors of “chain” type ?-conductance C (=,")? (its definition will be given
later).

Let us start by introducing a new graph �=," , which is a “horizontal chain” consisting of
" copies of �=. The exact definition of �=," is as follows. Let =, " ∈ N with " ≥ 2 and
pick < ∈ N such that 3< ≥ " . Then there exists a simple path [F1, . . . , F"] in �< such
that

�F8
(
 R) = �F8+1 ( L) for each 8 = 1, . . . , " − 1,

where

(4.8)  L B  ∩ ({−1/2} × [−1/2, 1/2]),  R B  ∩ ({1/2} × [−1/2, 1/2]).

( L denotes the left line segment of the Sierpiński carpet.  R is the right line segment.)
Then we define �=," = (+=," , �=,") as a subgraph of �=+< (recall Definition 2.11) given
by

+=," B
"⋃
8=1
F8 ·,= and �=," B �

+=,"
=+< .
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copy of Wn

1 0

×M

Figure 4: The conductance C (=,")?

We also set
+ L
=," B F1 ·,= and + R

=," B F" ·,=.

Now, we define C (=,")? (see Figure 4) by setting

C (=,")? B C�=,"? (+ L
=," , +

R
=,").

We easily see that this definition does not depend on choices of large < ∈ N and horizontal
chain [F1, . . . , F"].

The following lemma describes a key behavior of C (=,")? .

Lemma 4.8. Let ? > 1. For every " ≥ 3 there exists a constant � (") ≥ 1 depending only
on ?, �∗, #∗, " such that

� (")−1C (=)? ≤ C (=,")? ≤ � (")C (=)? for any = ∈ N.(4.9)

Its proof will be a straightforward modification of [17, Lemma 4.7]. Towards proving
Lemma 4.8, let us start by providing preparations from asymptotic geometry. The following
definition extends the notion of rough isometry among graphs to that among sequences of
graphs.

Definition 4.9. For each 8 = 1, 2, let {�8= = (+ 8=, � 8=)}=≥1 be a series of finite graphs with

(4.10) �8∗ B sup
=∈N

max
G∈+ 8=

#{H ∈ + 8= | (G, H) ∈ � 8=} < ∞.

We say that a family of maps {i=}=≥1, where i= : +1
= → +2

= , is a uniform rough isometry
from {�1

=}=≥1 to {�2
=}=≥1 if:

(1) there exist constants �1, �2 such that, for every = ∈ N and G, H ∈ +1
= ,

�−1
1 3�1

=
(G, H) − �2 ≤ 3�2

=
(i= (G), i= (H)) ≤ �13�1

=
(G, H) + �2;

(2) there exists a constant �3 such that, for every = ∈ N,⋃
G∈+1

=

�3
�2
=

(i= (G), �3) = +2
= ;
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(3) there exists a constant �4 such that, for every = ∈ N and G ∈ +1
= ,

�−1
4 ≤

#{H′ ∈ +2
= | (i= (G), H′) ∈ �2

=}
#{H ∈ +1

= | (G, H) ∈ �1
=}

≤ �4.

Remark 4.10. Since each i= is a rough isometry from �1
= to �2

=, there exists a rough
isometry ĩ= from �2

= to �1
=. Moreover, we can choose ĩ= so that {ĩ=}=≥1 is a uniform rough

isometry from {�2
=}=≥1 to {�1

=}=≥1. Consequently, being uniform rough isometry gives an
equivalence relation among series of finite graphs satisfying (4.10).

Then the following stability result holds. Its proof is a straightforward modification of
[50, proof of Lemma 8.5], and so we omit it here (see Appendix A.1 for a proof).

Lemma 4.11. Let {�8= = (+ 8=, � 8=)}=≥1 be a series of finite graphs with

�8∗ B sup
=∈N

max
G∈+ 8=

#{H ∈ + 8= | (G, H) ∈ � 8=} < ∞,

for each 8 = 1, 2, and let i= : +1
= → +2

= be a uniform rough isometry from {�1
=}=≥1 to

{�2
=}=≥1. Then there exists a positive constant �URI (depending only on �1, �2 in Definition

4.9, �1
∗ and ?) such that

(4.11) E�
1
=

? ( 5 ◦ i=) ≤ �URI E�
2
=

? ( 5 ),

for every = ∈ N and 5 : +2
= → R. In particular,

C�
1
=

? (i−1
= (�=), i−1

= (�=)) ≤ �URIC�
2
=

? (�=, �=)

for every = ∈ N, where �=, �= are disjoint subsets of +2
= .

Next, let us observe that C (=)? behaves similarly to the conductance that appeared in the
work of Barlow and Bass (see the quantity '−1

= in [6]). To state rigorously, we define

, L
= B {F ∈ ,= |  F ∩ {−1/2} × [−1/2, 1/2] ≠ ∅},

, R
= B {F ∈ ,= |  F ∩ {1/2} × [−1/2, 1/2] ≠ ∅},

and
C (=)? (L↔ R) B C�=? (, L

= ,,
R
= ).

The next lemma is proved in [14, proof of Lemma 4.4] using ?-combinatorial modulus
instead of ?-conductance. We give a simple proof for the reader’s convenience.

Lemma 4.12. Let ? > 1. There exists a constant �4.12 ≥ 1 depending only on ?, �∗, #∗
such that

�−1
4.12C

(=)
? ≤ C (=)? (L↔ R) ≤ �4.12C (=)? for any = ∈ N.
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Proof. By the symmetries and self-similarity of the Sierpiński carpet, there exist < ∈ N
and F ∈ ,< such that C (=)? = C�=+<?

(
F ·,=,,=+< \ B= (F, 1)

)
. Define �= B F ·,= and

�= B ,=+< \ B= (F, 1). It is immediate from Proposition 2.12 that C�=+<? (�=, �=) ≥ C (=)? .
For large = ∈ N, one can easily construct a rough isometry i= : ,=+< → ,=+< (with �1 = 1
and �2 = 4 in Definition 4.9) such that

i= (�= \ F ·,=) ⊆ F ·,= and i=
(
�= \ (,=+< \ B= (F, 1))

)
⊆ ,=+< \ B= (F, 1).

Note that C�=+<? (�= \ F ·,=, �= \ (,=+< \ B= (F, 1))) = C�=+<? (�=, �=). Applying Lemma
4.11 and Proposition 2.12, we deduce that there exists 21 > 0 (depending only on ?, �∗)
such that, for any = ∈ N,

C�=+<? (�=, �=) ≤ 21C (=)? .

Let 5 : ,=+< → R satisfy 5 |�= ≡ 1, 5 |�= ≡ 0 and E�=+<? ( 5 ) = C�=+<? (�=, �=). If E ∈ ,<

satisfies (E, F) ∈ �̃<, then we have that

C�=+<? (�=, �=) ≥ EE·,=? ( 5 ) ≥ C (=)? (L↔ R),

and thus we conclude that C (=)? (L↔ R) ≤ 21C (=)? .
To prove the converse, we set

�= B {F ∈ ,= |  F ∩ [−1/6, 1/6]2 ≠ ∅}.

By the cutting law of ?-conductances (see [50, Proposition 3.18] for example), it follows that

C�=+<? (�=, �=) ≤ C�=+1?

(
�=+1, m∗�=+1

)
.

Recall the definition ofSym( ) (seeDefinition 2.8). For each) ∈ Sym( ), let ]) : ,= → ,=

such that ) ( F) =  ]) (F) for any F ∈ ,=. Let 5= : ,= → R satisfy

5= |, L
=
≡ 1, 5= |, R

=
≡ 0, and E�=? ( 5=) = C

(=)
? (L↔ R).

Furthermore, we set

 I B {(G, H) ∈  | H ≤ −G and H ≤ G},  II B {(G, H) ∈  | H ≥ −G and H ≤ G},
 III B {(G, H) ∈  | H ≥ −G and H ≥ G},  IV B {(G, H) ∈  | H ≤ −G and H ≥ G}.

For any F ∈ ,=+1, we define [F]−1 ∈ ,= as F = 8[F]−1 for some 8 ∈ (. Then we define
6=+1 : ,=+1 → R by setting

6=+1(F) B


5=

(
])− ( [F]−1)

)
if  F ∩  I ≠ ∅,

5= ( [F]−1) if  F ∩  II ≠ ∅,
5=

(
])+ ( [F]−1)

)
if  F ∩  III ≠ ∅,

5=
(
])+ (])− ( [F]−1))

)
if  F ∩  IV ≠ ∅.
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I
II1 0 →

fn ◦ T+

fn

1

0

0

Figure 5: The definition of 6=+1 on 3 ·,=

(See Figure 5.) The symmetry of 5= yields that E{8, 9}·,=? (6=+1) = 2E�=? ( 5=) for any 8 ≠ 9 ∈ (.
Hence,

C�=+1?

(
�=+1, m∗�=+1

)
≤ E�=+1? (6=+1) = #∗E�=? ( 5=) = #∗C

(=)
? (L↔ R),

which together with C�=+1?

(
�=+1, m∗�=+1

)
≥ C (=)? proves the lemma. �

Now we are ready to prove Lemma 4.8.
Proof of Lemma 4.8. Thanks to Lemma 4.12, it will suffice to compare C (=)? (L ↔ R) and
C (=,")? . Suppose that �=," is realized as a subgraph of �=+< using a chain [F1, . . . , F"] in
�<, that is, +=," =

⋃"
8=1 F

8 ·,=. First, we consider the case " = 3. By the monotonicity
of ?-conductance (Proposition 2.12), we immediately have that C (=,3)? ≤ C (=)? (L ↔ R). To
prove the converse, we will use a stability result: Lemma 4.11. Let us define a subgraph
�̃=,3 = (+̃=,3, �̃=,3) of �=,3 by

+̃=,3 B {F1E | E ∈ , R
= } ∪ F2 ·,= ∪ {F3E | E ∈ , L

= },

�̃=,3 B {(E, F) ∈ �=,3 | E, F ∈ +̃=,3}.

Then we easily see that

C (=,3)? = C�̃=,3
(
{F1E | E ∈ , R

= }, {F3E | E ∈ , L
= }

)
.

Define i= : ,= → +̃=,3 by

i= (F) B


F1F̂ if F ∈ , L

= ,

F2F if F ∉ , L
= ∪, R

= ,

F3F̂ if F ∈ , R
= ,

where F̂ denotes a unique element such that )v( F) =  F̂. Then {i=}=≥1 is a uniform rough
isometry between {�=}=≥1 and {�̃=,3}=≥1 (with �1 = 1, �2 = 2 in Definition 4.9). Applying
Lemma 4.11, we get C (=)? (L↔ R) ≤ 21C (=,3)? , where 21 > 0 depends only on ? and �∗.

Next, let us consider the case ": B 2: + 2 for : ∈ N. Let 5=,: : +=,": → R satisfy

5=,: |+ L
=,":

≡ 1, 5=,: |+ R
=,":

≡ 0, and E�=,":?

(
5=,:

)
= C (=,": )? .
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Figure 6: Values of 5=,:

Then one can prove that

(4.12) min
{
5=,: (E)

�� E ∈ F8 ·,=, 1 ≤ 8 ≤ 2:−1 + 1
}
≥ 1

2
.

(See Figure 6.) Indeed, one easily sees from the symmetry of +=,": and the uniqueness of
5=,: (Proposition 2.15) that a function 5̂=,: given by

5̂=,: (E) B
{
5=,: (E) ∨ (1 − 5=,: (E)) if E ∈ ⋃2:−1+1

8=1 F8 ·,=,

5=,: (E) ∧ (1 − 5=,: (E)) if E ∈ ⋃2:+2
8=2: F

8 ·,=,

satisfies 5̂=,: |+ L
=,":

≡ 1, 5̂=,: |+ R
=,":

≡ 0 and E?
(
5̂=,:

)
≤ E? ( 5=,: ). Again applying the

uniqueness, we have that 5̂=,: = 5=,: . Hence (4.12) holds. As an immediate consequence of
(4.12) and the symmetry, we also have

(4.13) max
{
5=,: (E)

�� E ∈ F8 ·,=, 2: ≤ 8 ≤ 2: + 2
}
≤ 1

2
.

By (4.12), (4.13) and the Markov property of ?-energies on graphs (Proposition 2.13),

C (=,": )? = E+=,":? ( 5=,: )

≥ 1
2

[
E+=,":?

(
5=,: ∨

1
2

)
+ E+=,":?

(
5=,: ∧

1
2

)]
= 2−?C (=,":−1)

? .

Iterating this estimate, we conclude that C (=,": )? ≥ 2−?:C (=,3)? for any : ∈ N. Since
C (=,")? ≥ C (=,"

′)
? for " ≤ "′, we obtain the desired estimate for general " . �

Finally, we prove (KM?). We mainly follow the method in [17, Lemma 4.8].

Theorem 4.13. Suppose Assumption 4.2 holds. Then (KM?) holds.

Proof. Let 5= : ,= → R satisfy

E�=? ( 5=) = 1, 5= |m∗�= ≡ 0, and 〈 5=〉,= =
(
_
(=)
∗,?

)1/?
.

Note that 5= is non-negative. Pick F∗ ∈ ,= such that 5= (F∗) = maxF∈,= 5= (F). Then we
easily see that 5= (F∗) ≥

(
_
(=)
∗,?

)1/?. Since V? −U > 0 (Assumption 4.2), we can choose ; ≥ 1
such that

(4.14)
(
�̃UH0

−; (V?−U) )1/? ≤ 1
16#∗

,
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v∗

w∗

Figure 7: A pick of corners (each of blue square describes 8∗8:+1F2: or 8∗8:+1F2:+1)

where �̃UH is a constant appeared in Theorem 4.5. As a consequence of this choice and
Theorem 4.5, for any = ∈ N,

max
{
| 5= (E) − 5= (F) |

�� : ≤ = − ;, I ∈ ,;+: , E, F ∈ I ·,=−;−:
}
≤ 1

16#∗
(
_
(=)
∗,?

)1/?
.(4.15)

Now, we consider a chain of (=− 2)-cells from m∗�= to F∗ in the (=− 1)-cell containing F∗.
To state explicitly, define 8∗ B [F∗]1 ∈ ( and (Corner B {1, 3, 5, 7}. Fix 9 ∈ (Corner such that
E∗ B 8∗ 9=−1 ∈ m∗�= and F∗ ∉ 8∗ 9 ·,=−2. Then there exist ! ∈ {2, . . . , 5} and 81, . . . , 8! ∈ (
such that 81 = 9 and (8: , 8:+1) ∈ �1 for each : = 1, . . . , ! − 1. Furthermore, we can pick
“corners” F1, F2, . . . , F2!−1, F2! ∈ ,=−2((Corner) in the chain of cells [8∗81 ·,=−2, . . . , 8

∗8! ·
,=−2] satisfying

8∗81F
1 = E∗, 8∗8!F

2! = F∗, and (8∗8:F2: , 8∗8:+1F
2:+1) ∈ �=,

for each : = 1, . . . , ! − 1 (see Figure 7). Since 5= (E∗) = 0 and E�=? ( 5=) = 1,(
_
(=)
∗,?

)1/?

≤ | 5= (E∗) − 5= (F∗) |

≤
!−1∑
:=1

(�� 5= (8∗8:F2:−1) − 5= (8∗8:F2: )
�� + �� 5= (8∗8:F2: ) − 5= (8∗8:+1F2:+1)

��)
≤ ! − 1 +

!−1∑
:=1

�� 5= (8∗8:F2:−1) − 5= (8∗8:F2: )
�� .

Now, we have _(=)∗,? → ∞ as = → ∞ by Assumption 4.2 and Theorem 3.14. Hence we may
assume that

!−1∑
:=1

�� 5= (8∗8:F2:−1) − 5= (8∗8:F2: )
�� ≥ 1

2
(
_
(=)
∗,?

)1/?
,

for all large =. Then there exists : ∈ {1, . . . , ! − 1} such that�� 5= (8∗8:F2:−1) − 5= (8∗8:F2: )
�� ≥ 1

2(! − 1)
(
_
(=)
∗,?

)1/?
.
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Moreover, there exists ( 90, 91) ∈ {(1, 3), (1, 7), (3, 5), (5, 7)} such that�� 5= (8∗8: 9=−2
0 ) − 5= (8

∗8: 9
=−2
1 )

�� ≥ 1
4(! − 1)

(
_
(=)
∗,?

)1/?
.(4.16)

We may assume that 5= (8∗8: 9=−2
1 ) ≥ 5= (8∗8: 9=−2

0 ). Then we see from (4.15) and (4.16) that

X= B min
8∗8: 9 ;1·,=−;−2

5= − max
8∗8: 9 ;0·,=−;−2

5=

≥
[

1
4(! − 1) − 2 · 1

16#∗

] (
_
(=)
∗,?

)1/? ≥ 1
8(! − 1)

(
_
(=)
∗,?

)1/?
,

where we used a bound ! − 1 ≤ #∗ in the last inequality. Let us consider the “horizontal
chain of (= − ; − 2)-cell” from 8∗8: 9 ;1 · ,=−;−2 to 8∗8: 9 ;0 · ,=−;−2. Then, by putting 6= B(
(X−1
= 5= + 2=) ∨ 0

)
∧ 1, where 2= is a constant such that 6= |8∗8: 9 ;Y ·,=−;−2

≡ Y for Y = 0, 1, we
have that

C (=−;−2,3;)
? ≤ E�=? (6=) ≤ X

−?
= E�=? ( 5=) ≤

(
8(! − 1)

) ? (
_
(=)
∗,?

)−1
.

From Lemma 4.8, Theorem 3.4 (especially the submultiplicative inequality of C (=)? ) and
3.14-(4), we conclude that

_
(=)
? ≤

(
8(! − 1)

) ?
�3.14�Mult� (;)R (;+2)? · R (=)? .

This proves (KM?), where �KM =
(
8(! − 1)

) ?
�3.14�Mult� (;)R (;+2)? that depends only on

?, �∗, 0, #∗, :0, �̃UH, and �Mult. �

4.3 Consequences of (KM?)

In this subsection, we see three important consequences of (KM?). Throughout this subsec-
tion, we always suppose Assumption 4.2 holds.

First, we derive the supermultiplicative inequalities of (?, ?)-Poincaré constants.

Theorem 4.14. There exists a positive constant �4.14 (depending only on ?, �∗, #∗, :0 and
�KM) such that

(4.17) _
(=)
? _

(<)
? ≤ �4.14_

(=+<)
? for any =, < ∈ N.

Proof. From Proposition 3.10 and Theorem 3.14-(3), we have that _(=)? R (<)? ≤ 21_
(=+<)
? for

any =, < ∈ N, where 21 depends only on ?, �∗, #∗, :0. By (KM?), we deduce that

�−1
KM _

(=)
? _

(<)
? ≤ _(=)? R (<)? ≤ 21_

(=+<)
? . �

Remark 4.15. Since f (=)? and _(=)? are comparable by Theorem 3.14-(2), we also have the
supermultiplicative inequality of f (=)? . Moreover, by Theorem 3.14-(5) and (KM?), R (=)? and
_
(=)
? are also comparable, and thus we deduce the multiplicative inequality of R (=)? :

2−1R (=)? R (<)? ≤ R (=+<)? ≤ 2R (=)? R (<)? , for every =, < ∈ N,
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where 2 is a positive constant depending only on ?, �∗, #∗, :0, �KM. Recall that we have
only used the submultiplicative inequality of R (=)? to obtain (4.5) in the proof of Theorem
4.5. One can avoid this use as in Remark 4.7 (see also [47, Theorem 7.16] in the case
? = 2). Therefore, our arguments to prove Theorem 4.14 give an alternative proof of
submultiplicative inequality of R (=)? under Assumption 4.2.

From these supermultiplicative inequalities of bothf (=)? and_(=)? , we deduce the following
behaviors of (?, ?)-Poincaré constants:

_
(=)
? ≤ 2∗d=? and f

(=)
? ≤ 2∗d=? for every = ∈ N,(4.18)

where d? = lim=→∞
(
R (=)?

)1/= (see Theorem 3.4) and 2∗ depends only on ?, �∗, #∗, :0 and
�KM. Now, we define the rescaled discrete ?-energy Ẽ�=? by setting

Ẽ�=? ( 5 ) B d=?E�=? ( 5 ),

for each = ∈ N and 5 : ,= → R. Then, by Theorem 4.5, the following estimate is obvious.

Corollary 4.16. For every =, < ∈ N, I ∈ ,<, E, F ∈ B= (I, 1) and 5 : ,=+< → R,

(4.19) | 5 (E) − 5 (F) |? ≤ �UH Ẽ�=+<? ( 5 )0−(V?−U)<,

where �UH B �̃UH2∗ depending only on ?, �∗, #∗, :0, 0, d?, �Mult, �KM.

Lastly, we observe a monotonicity result (the so-called weak monotonicity in [25]). This
is proved in [47, Proposition 5.2] for ? = 2.

Corollary 4.17. For every =, < ∈ N and 5 ∈ !? ( , `),

(4.20) Ẽ�=? ("= 5 ) ≤ �WM Ẽ�=+<? ("=+< 5 ),

where �WM B 2∗�∗ (that depends only on ?, �∗, #∗, :0, �KM). In particular,

(4.21) sup
=∈N
Ẽ�=? ("= 5 ) ≤ �WM lim

=→∞
Ẽ�=? ("= 5 ).

Proof. Note that by Lemma 2.4, it follows that for any =, < ∈ N, F ∈ ,= and 5 ∈ !? ( , `),

%=+<,= ("=+< 5 ) (F) = #=∗
∑

E∈F·,<

∫
 E

5 3` = "= 5 (F).

Thus we have %=+<,= ("=+< 5 ) = "= 5 . Then, by Lemma 3.3 and (4.18), we get (4.20). �

Remark 4.18. One can derive a uniform Harnack type estimate for discrete ?-harmonic
functions as an application of (KM?). For ? = 2, this was done by [5, Theorem 3.1] or
[47, Lemma 7.8]. We expect that such type estimate will be important for future work, but
we omit this since its proof does not fit the purpose of this paper.
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5 The domain of ?-energy

This section aims to prove a part of our main results: Theorems 2.17 and 2.18.
In view of Corollary 4.17, the following quantity:

| 5 |F? B sup
=∈N
Ẽ�=? ("= 5 )1/? .

describes the limit behavior of rescaled ?-energy Ẽ�=? ("= 5 ). Then we easily see that | · |F?
defines a ([0,∞]-valued) semi-norm. We also define a function space F? and its norm ‖ · ‖F?
by setting

F? B { 5 ∈ !? ( , `) | | 5 |F? < ∞} and ‖ 5 ‖F? B ‖ 5 ‖!? + | 5 |F? .

Ideally, F? plays the same role as the Sobolev space,1,? in smooth settings like Euclidean
spaces. As stated in [35, Section 7], this (1, ?)-“Sobolev” space F? should be closable and
have regularity, that is,

• any Cauchy sequence { 5=}=≥1 in | · |F? with 5= → 0 in !? converges to 0 in F?;

• F? ∩ C( ) is dense in C( ) with respect to the sup norm.

We prove these properties in subsection 5.1. In addition, the separability of F? is proved in
subsection 5.2. The separability will be essential to follow our construction of ?-energy in
section 6. We also see in subsection 5.3 that F? has a Besov-like representation, which is an
extension of results for F2 in [24].

Throughout this section, we suppose Assumption 4.2 holds.

5.1 Closability and regularity

First, we derive the followingHölder estimate from the uniformHölder estimates on graphical
approximations (Corollary 4.16) in the same way as [38, Lemmas 6.10 and 6.13].

Theorem 5.1. There exists a positive constant �Höl (depending only on �UH, �AD, ?, d?
and 0) such that every 5 ∈ F? has a continuous modification 5∗ ∈ C( ) with

| 5∗(G) − 5∗(H) |? ≤ �Höl | 5 |?F? 3 (G, H)
V?−U,

for every G, H ∈  . Moreover, the inclusion map F? 3 5 ↦→ 5∗ ∈ C( ) is injective. In
particular, F? is continuously embedded in the Hölder space C0,(V?−U)/?.

Proof. Let 5 ∈ F?. By Lemmas 2.4 and 2.5, for each = ≥ 1, we have that
∫
 
5 3` =

#−=∗
∑
F∈,= "= 5 (F). From this identity, there exists F(=) ∈ ,= for each = ∈ N such that

"= | 5 | (F(=)) ≤
∫
 
| 5 | 3`. Then, by Corollary 4.16, for any = ∈ N and E ∈ ,=,

|"= 5 (E) |? ≤ 2?−1 |"= 5 (E) − "= 5 (F(=)) |? + 2?−1 |"= 5 (F(=)) |?
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≤ 2?−1�UH | 5 |?F? + 2?−1
(∫
 

| 5 |? 3`
) ?

≤ 2?−1�UH | 5 |?F? + 2?−1 ‖ 5 ‖?
!?
,

and hence we obtain the following uniform bound of 5 ∈ F?:

sup
=≥1

max
E∈,=
|"= 5 (E) | ≤ 21 ‖ 5 ‖F? < ∞,(5.1)

where 21 > 0 depends only on ? and �UH.
For each = ∈ N, enumerate the elements ,= as ,= = {F= (1), . . . , F= (#=∗ )} and induc-

tively define { ̂F= (8)}
#=∗
8=1 as follows:  ̂F= (1) B  F= (1) and

 ̂F= (8+1) B  F= (8+1) \
⋃
9≤8
 ̂F= ( 9) .

Note that each  ̂F= (8) is a Borel set of  ,  ̂F= (8) (8 = 1, . . . , #=∗ ) are disjoint, and  =⋃#=∗
8=1  ̂F= (8) . Also, by Lemma 2.4, we have `

(
 F \  ̂F

)
= 0 for any F ∈ ,=. Next, define a

Borel measurable function 5= :  → R by setting

5= B
∑
F∈,=

"= 5 (F)1 ̂F .

Then (5.1) yields that

(5.2) sup
=≥1

sup
G∈ 
| 5= (G) | ≤ 21 ‖ 5 ‖F? .

Let = ∈ N, G ≠ H ∈  and set =∗ B =(G, H) ∈ Z≥0. In case when = > =∗, then there exist
E, F ∈ ,=∗ such that G ∈  E, H ∈  F and  E ∩ F ≠ ∅. We can find E′, F′ ∈ ,= such that G ∈
 ̂E′ and H ∈  ̂F′. Then E′ ∈ B=−=∗ (E, 1),F′ ∈ B=−=∗ (F, 1) andB=−=∗ (E, 1)∩B=−=∗ (F, 1) ≠ ∅.
Fix I′ ∈ B=−=∗ (E, 1) ∩ B=−=∗ (F, 1). Applying Corollary 4.16, we have that

| 5= (G) − 5= (H) |? ≤ 2?−1 (|"= 5 (E′) − "= 5 (I′) |? + |"= 5 (I′) − "= 5 (F′) |?
)

≤ 2?�UHẼ�=? ("= 5 )0−(V?−U)=∗

≤ 2?�UH�AD | 5 |?F? 3 (G, H)
V?−U,

where we used Lemma 2.7 in the last line. In the case where = ≤ =∗, then there exist
E, F ∈ ,= such that G ∈  E, H ∈  F and  E ∩  F ≠ ∅. Let E′, F′ ∈ ,= with G ∈  ̂E′ and
H ∈  ̂F′. Then [E′, E, F, F′] is a path in �=, and hence we have that

| 5= (G) − 5= (H) |?

≤ 3?−1 ( |"= 5 (E′) − "= 5 (E) |? + |"= 5 (E) − "= 5 (F) |? + |"= 5 (F) − "= 5 (F′) |?
)

≤ 3?E�=? ("= 5 ) ≤ 3? | 5 |?F? d
−=
? .

As a result of this observation, we conclude that

(5.3) | 5= (G) − 5= (H) |? ≤ 22 | 5 |?F?
(
3 (G, H)V?−U + d−=?

)
, 5 ∈ F?, = ∈ N, G, H ∈  ,
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where 22 is a positive constant depending only on ?, �UH, �AD.
Thanks to (5.2) and (5.3), we can apply an Arzelá–Ascoli type argument for { 5=}=≥1

(see [38, Lemma D.1]). For reader’s convenience, we provide a complete proof. Set
�= B {�F (?8)}8∈(,F∈,= and � B

⋃
=≥1 �=. Then � is a countable dense subset of  .

Since { 5= (G)}=≥1 is bounded for each G ∈ � by (5.2), by a diagonal argument, we obtain
a subsequence {=: }:≥1 such that { 5=: (G)}:≥1 converges as : → ∞ for any G ∈ �. Define
5∗(G) B lim:→∞ 5=: (G) for any G ∈ �. From (5.3) and Assumption 4.2, we see that

| 5∗(G) − 5∗(H) |? ≤ 22 | 5 |?F? 3 (G, H)
V?−U for any G, H ∈ �.

Since � is dense in  , 5∗ is extended to a continuous function on  , which is again denoted
by 5∗ ∈ C( ), and it follows that

| 5∗(G) − 5∗(H) |? ≤ 22 | 5 |?F? 3 (G, H)
V?−U for any G, H ∈  .

(We can also show that supG∈ 
�� 5∗(G) − 5=: (G)��→ 0 as : →∞. For a proof, see [38, Lemma

D.1].) Then, for any < ∈ N and F ∈ ,<, we have
∫
 F

5=: 3`→
∫
 F

5∗ 3` as : →∞. By
Lemma 2.4 and `

(
 F \  ̂F

)
= 0,∫

 F

5=: 3` =

∫
 F

∑
I∈,=:

"=: 5 (I)1 ̂I 3` =
∫
 F

∑
I∈F·,=:−<

"=: 5 (I)1 I 3`

=
∑

I∈F·,=:−<

1
`( I)

(∫
 I

5 3`

) ∫
 F

1 I 3` =

∫
 F

5 3`,

whenever F ∈ ,< and =: > <. Letting : → ∞, we obtain
∫
 F

5∗ 3` =
∫
 F

5 3` for all
F ∈ ,#. By Lemma 2.4 and Dynkin’s c-_ theorem, we conclude that 5∗ is a continuous
modification of 5 . The injectivity of 5 ↦→ 5∗ is obvious. We complete the proof. �

Next, we prove the closability by proving that (F?, ‖ · ‖F? ) is complete. See also [38,
Lemmas 6.15 and 6.16].

Theorem 5.2. (F?, ‖ · ‖F? ) is a Banach space.

Proof. Let { 5=}=≥1 be a Cauchy sequence in (F?, ‖ · ‖F? ). Then { 5=}=≥1 converges to some
5 ∈ !? ( , `) in !?. Fix G0 ∈  and set 6= B 5= − 5= (G0). Then, by the Hölder estimate in
Theorem 5.1, for all =, < ≥ 1 and G ∈  ,

|6= (G) − 6< (G) |? ≤ �Höl | 5= − 5< |?F? 3 (G, G0)V?−U

≤ �Höl(diam )V?−U | 5= − 5< |?F? ,

and hence we obtain ‖ 5= − 5< ‖C( ) ≤ 2 | 5= − 5< |F? , where 2 B �Höl(diam )V?−U. This
estimate implies that {6=}=≥1 is a Cauchy sequence in C( ). Since C( ) is complete,
{6=}=≥1 converges to some 6 ∈ C( ) in the sup norm.

40



It is immediate that { 5= − 6=}=≥1 converges to 5 − 6 in !?, and thus we can pick a
subsequence {=: }:≥1 so that 5=: − 6=: → 5 − 6 for `-a.e. as : →∞. On the other hand, the
definition of 6= implies that 5= − 6= ≡ 5= (G0). Hence the limit lim:→∞ 5=: (G0) C � exists
and 5 − 6 = � for `-a.e. In particular, 5 admits a continuous modification. We again write
5 to denote this continuous version. Then 5 is the limit of 5=: . Indeed, we have 5 − 5=:C( ) ≤ 6 − 6=:C( ) + �� 5=: (G0) − �

��→ 0 as : →∞.

Since { 5=}=≥1 is a Cauchy sequence in F?, for any Y > 0 there exists # (Y) ≥ 1 such that

sup
8∧ 9≥# (Y)

sup
:≥1
Ẽ�:? (": 5=8 − ": 5= 9 ) ≤ Y,

which implies that

sup
8≥# (Y)

sup
:≥1
Ẽ�:? (": 5=8 − ": 5 ) ≤ Y.(5.4)

Therefore, we have that, for large 8 ≥ 1 with =8 ≥ # (Y),

Ẽ�:? (": 5 )1/? ≤ Ẽ�:? (": 5=8 − ": 5 )1/? + Ẽ�:? (": 5=8 )1/? ≤ Y + sup
=≥1
| 5= |F? ,

which implies that 5 ∈ F?. In addition, (5.4) yields that
 5 − 5=8F? → 0 as 8 →∞.

The convergence ‖ 5 − 5=‖F? → 0 is easily derived by applying the above arguments for
any subsequence of { 5=}=≥1. We complete the proof. �

Moreover, we can show that F? is compactly embedded in !? ( , `).

Proposition 5.3. The inclusion map from F? to !? ( , `) is a compact operator.

Proof. Let { 5=}=≥1 be a bounded sequence in F?. Since the embedding of F? in C0,(V?−U)/?

is continuous, we obtain a subsequence { 5=: }:≥1 and 5 ∈ C( ) such that 5=: converges to
5 in the sup norm by applying the Arzelá–Ascoli theorem. This proves our assertion. �

Towards the regularity of F?, the following lemma gives a “partition of unity” in F?. See
also [38, Lemma 6.18].

Lemma 5.4. There exists a family {iF}F∈,# in F? such that

(a) for any F ∈ ,#, 0 ≤ iF ≤ 1;

(b) for any = ∈ N, ∑F∈,= iF ≡ 1;

(c) for any = ∈ N and F ∈ ,=, supp[iF] ⊆ * (=)1 (F), where*
(=)
1 (F) is defined as

*
(=)
1 (F) B

⋃
E∈,=;3�= (E,F)≤1

 E;
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(d) there exists a constant �5.4 > 0 (depending only on ?, �∗, �Mult, �WM) such that

|iF |?F? ≤ �5.4d
=
? for any = ∈ N and F ∈ ,=.

Proof. For each =, < ∈ N and F ∈ ,<, let k (=)F : ,=+< → [0, 1] satisfy k (=)F |F·,= ≡ 1,
k
(=)
F |,=+<\B= (F,1) ≡ 0 and E�=+<?

(
k
(=)
F

)
= C�=+<? (F ·,<,,=+< \ B= (F, 1)). Define Ψ(=)< B(∑

E∈,< k
(=)
E

)−1
and i(=)F B Ψ

(=)
< k

(=)
F . Note that i(=)F coincides with the function denoted by

the same symbol in the proof of Lemma 3.13. We also set ĩ (=)F :  → R by setting

ĩ
(=)
F B

∑
I∈,=+<

i
(=)
F (I)1 ̂I ,

where { ̂I}I∈,# is the same as in the proof of Theorem 5.1. Then "=+< ĩ
(=)
F = i

(=)
F and,

from the estimate (3.12) in the proof of Lemma 3.13, we have that Ẽ�=+<? (i(=)F ) ≤ 21d
<
?

for all F ∈ ,< and = ∈ N, where 21 > 0 depends only on ?, �∗, �Mult. In particular, by
Theorem 5.1, we obtain���ĩ (=)F (G) − ĩ (=)F (H)

���? ≤ 21�Höl d
<
? 3 (G, H)V?−U,

for G, H ∈  with =(G, H) < = +<. Similarly to the Arzelá–Ascoli type argument in the proof
of Theorem 5.1, we can find a subsequence {=: }:≥1 and a continuous function iF ∈ C( )
such that lim:→∞ ĩ

(=: )
F (G) = iF (G) for any G ∈  and

|iF (G) − iF (H) |? ≤ 21�Höl d
|F |
? 3 (G, H)V?−U for any G, H ∈  .

Then the properties (a), (b) and (c) are immediate from this convergence and the associated
properties of ĩ (=)F , so it will suffice to show (d). By the weak monotonicity (Corollary 4.17),

Ẽ�;? ("; ĩ
(=: )
F ) ≤ �WMẼ

�=:+<
? ("=:+< ĩ

(=: )
F )

≤ �WM sup
=≥1
Ẽ�=+<? (i(=)F )

≤ 21�WMd
<
? ,

whenever ; ≤ =: +<. Taking : →∞ and supremum over ; ∈ N in this estimate, we conclude
that |iF |?F? ≤ 21�WMd

<
? for all < ≥ 1 and F ∈ ,<. This completes the proof. �

Now, define a subspaceH★
? of F? by setting

(5.5) H★
? B

{∑
F∈�

0FiF

����� � is a finite subset of,#, 0F ∈ R for each F ∈ �
}
,

where {iF}F∈,# is a family of functions in F? appeared in Lemma 5.4. Then we achieve
the regularity of F? (see also [38, Lemma 6.19]).

Theorem 5.5. The space H★
? is dense in C( ) with respect to the sup norm. In particular,

F? is dense in C( ).
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Proof. Let 5 ∈ C( ) and define 5= by setting 5= B
∑
F∈,= "= 5 (F)iF ∈ H★

? . Then

| 5 (G) − 5= (G) | ≤ �2
∗ max
F∈,=;G∈supp[iF ]

| 5 (G) − "= 5 (F) |

≤ �2
∗ max
F∈,=

sup
G∈*1 (F),H∈ F

| 5 (G) − 5 (H) | .

Since maxF∈,= diam*
(=)
1 (F) → 0 and 5 is uniformly continuous, ‖ 5 − 5=‖C( ) → 0. �

5.2 Separability

In this subsection, we prove that F? is separable with respect to ‖ · ‖F? . In the case ? = 2,
this is done by applying easy functional analytic arguments since the polarization formula of
E2 yields a non-negative definite closed quadratic form. For example, by Proposition 5.3, the
inclusion map from F2 to !2( , `) is a compact operator, and thus there exists a countable
complete orthonormal system of F2 (see [21, Exercise 4.2 and Corollary 4.2.3] for example).
One can also give a short proof of the separability of F2 using resolvents (see [23, proof of
Theorem 1.4.2-(iii)] for example). However, it is hopeless to execute similar arguments for
general ?.

To overcome this difficulty, we directly show that the spaceH★
? defined in (5.5) is dense

in F? and hence Q-hull of {iF}F∈,# is also dense. Our strategy is standard in calculus of
variations, namely, we extract a strong convergent approximation fromH★

? by using Mazur’s
lemma (see [16, Corollary 3.8] for example). To this end, it will be a key ingredient to ensure
the reflexivity of F?, which is deduced from a combination of Clarkson’s inequality and the
Milman–Pettis theorem (see [16, Theorem 3.31] for example). We will derive Clarkson’s
inequality by using Γ-convergence to find a norm of F? having the required properties.

We start by recalling Clarkson’s inequality.

Definition 5.6 (Clarkson’s inequality). Let (X, ‖ · ‖) be a norm space. We say that (X, ‖ · ‖)
satisfies Clarkson’s inequality if one of the following holds:

(1) Let ? ∈ (1, 2]. For every G, H ∈ X, it holds that

‖G + H‖
?

?−1 + ‖G − H‖
?

?−1 ≤ 2
(
‖G‖? + ‖H‖?

) 1
?−1 ;

(2) Let ? ∈ [2,∞). For every G, H ∈ X, it holds that

‖G + H‖? + ‖G − H‖? ≤ 2?−1 (‖G‖? + ‖H‖? ) .
It is well-known that !?-norm on a measurable space satisfies Clarkson’s inequality, and that
a norm space satisfying Clarkson’s inequality is uniformly convex.

Next, let us recall the definition of Γ-convergence and its basic properties. The reader is
referred to [20] for details on Γ-convergence.
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Definition 5.7 (Γ-convergence). Let {Φ=}=≥1 be a sequence of [−∞,∞]-valued functional
on !? ( , `). We say that a functional Φ : !? ( , `) → [−∞,∞] is a Γ-limit of {Φ=}=≥1 as
=→∞ if the following two inequalities hold;

(1) (liminf inequality) If 5= → 5 in !?, then Φ( 5 ) ≤ lim
=→∞Φ= ( 5=).

(2) (limsup inequality) For any 5 ∈ !? ( , `), there exists a sequence { 5=}=≥1 such that

(5.6) 5= → 5 in !? and lim
=→∞

Φ= ( 5=) ≤ Φ( 5 ).

A sequence { 5=}=≥1 satisfying (5.6) is called a recovery sequence of 5 .

Since the Sierpiński carpet  is separable, the following fact holds.

Theorem 5.8 ([20, Theorem 8.5]). Let {Φ=}=≥1 be a sequence of functionals on !? ( , `).
Then there exists a subsequence {=: }:≥1 and a functional Φ on !? ( , `) such that Φ is a
Γ-limit of {Φ=: }:≥1.

Now, we regard Ẽ�=? ( · ) as a [0,∞]-valued functional on !? ( , `) defined by 5 ↦→
Ẽ�=? ("= 5 ). Then, by Theorem 5.8, there exists a Γ-convergent subsequence

{
Ẽ�=:? ( · )

}
:≥1

and we write E? ( · ) to denote its Γ-limit. We define ||| · |||F? B
(
‖ · ‖?

!?
+ E? ( · )

)1/?. This
new “norm” ||| · |||F? establishes the reflexivity. (We also need to show that ||| · |||F? is a norm.)

Theorem 5.9. The norm ||| · |||F? is equivalent to ‖ · ‖F? and satisfies Clarkson’s inequality.
In particular, the Banach space F? is reflexive.

Proof. Let 5 , 6 ∈ !? ( , `) and let { 5=}=≥1, {6=}=≥1 be their recovery sequences throughout
the proof. To verify the triangle inequality of ||| · |||F? , define

‖ 5 ‖?,= B
(
‖ 5 ‖?

!?
+ Ẽ�=? ("= 5 )

)1/?
.

Note that the Γ-limit of {‖ · ‖?,=: }:≥1 coincides with ||| · |||F? and that the norm ‖ · ‖?,= can be
regarded as a !?-norm on  t,=. Using the triangle inequality of ‖ · ‖?,=, we see that

||| 5 + 6 |||F? ≤ lim
:→∞

 5=: + 6=:?,=: ≤ lim
:→∞

 5=:?,=: + lim
:→∞

6=:?,=:
≤ ||| 5 |||F? + |||6 |||F? ,

and thus ||| · |||F? is an extended norm on !? ( , `) (we admit ||| 5 |||F? = ∞).
Next, we prove �−1

WM | 5 |
?

F? ≤ E? ( 5 ) ≤ | 5 |?F? for every 5 ∈ !? ( , `) to conclude that
||| · |||F? and ‖ · ‖F? are equivalent. From the liminf inequality, we immediately have that
E? ( 5 ) ≤ | 5 |?F? for 5 ∈ !

? ( , `). To prove the converse, note that "= 5=: (F) → "= 5 (F)
for anyF ∈ ,= as : →∞ by the dominated convergence theorem. By theweakmonotonicity
(Corollary 4.17), we obtain

Ẽ�=? ("= 5 ) ≤ �WM lim
:→∞
Ẽ�=:? ("=: 5=: ) ≤ �WME? ( 5 )
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for all = ≥ 1. We thus conclude that | 5 |?F? ≤ �WME? ( 5 ).
The rest of the proof is mainly devoted to Clarkson’s inequalities. First, we consider the

case ? ≤ 2. By Clarkson’s inequality for ‖ · ‖?,=, we have

‖ 5 + 6‖
?

?−1
?,= + ‖ 5 − 6‖

?

?−1
?,= ≤ 2

(
‖ 5 ‖??,= + ‖6‖??,=

) 1
?−1 .

Thus, we see that

||| 5 + 6 |||
?

?−1
F? + ||| 5 − 6 |||

?

?−1
F? ≤ lim

:→∞

 5=: + 6=: ?

?−1
?,=:
+ lim
:→∞

 5=: − 6=: ?

?−1
?,=:

≤ 2 lim
:→∞

( 5=:??,=: + 6=:??,=: ) 1
?−1

≤ 2
(
lim
:→∞

 5=:??,=: + lim
:→∞

6=:??,=: ) 1
?−1

≤ 2
(
||| 5 |||?F? + |||6 |||

?

F?
) 1
?−1 ,

which is Clarkson’s inequality of ||| · |||F? when ? ≤ 2. Similarly, we get Clarkson’s inequality
for ? ≥ 2.

Consequently, we get a new norm ||| · |||F? of F? satisfying Clarkson’s inequality. Thus,
we see that the Banach space (F?, ||| · |||F? ) is uniformly convex (see [16, proof of Theorem
4.10 and its remark] for example). Therefore, we finish the proof by the Milman–Pettis
theorem (see [16, Theorem 3.31] for example). �

Theorem 5.10. The spaceH★
? defined in (5.5) is dense in F?. Furthermore, F? is separable.

Proof. Recall the definition of ĩ (=)F in the construction of iF (see the proof of Lemma
5.4). By the diagonal procedure, we can pick a subsequence {=: }:≥1 such that

{
ĩ
(=: )
F

}
:≥1

converges to iF with respect to the sup norm for all F ∈ ,#. Next, for 5 ∈ F?, we define 5=
and 5 (:)= by setting

5= B
∑
F∈,=

"= 5 (F)iF, 5
(:)
= B

∑
F∈,=

"= 5 (F)ĩ (=: )F .

Similarly to the proof of Theorem 5.5, we see that { 5=}=≥1 converges to 5 with respect to the
sup norm. Also, by Lemma 3.12, we obtain Ẽ�=+=:? ("=+=: 5

(:)
= ) ≤ 21 | 5 |?F? , where 21 > 0

depends only on ?, �∗, �Mult. Thus, by the weak monotonicity (Corollary 4.17), it holds that
Ẽ�;? ("; 5

(:)
= ) ≤ 21�WM | 5 |?F? whenever ; ≤ = + =: . Letting : → ∞, we see that { 5=}=≥1 is

bounded in F?. Since F? is reflexive, we may assume that a subsequence { 5=: }:≥1 converges
to 5 weakly in F?. By Mazur’s lemma (see [16, Corollary 3.8] for example), we can find a
sequence {6;};≥1 such that each 6; is a convex combination of { 5=: }:≥1 and 6; → 5 in F? as
; → ∞. In particular, we obtainH★

?

‖ · ‖F?
= F?. Clearly, the Q-hull of {iF}F∈,# also gives

this approximation, that is,{∑
F∈�

0FiF

���� � is a finite subset of,# and 0F ∈ Q (F ∈ �)
}‖ · ‖F?

= H★
?

‖ · ‖F?
.

Therefore, F? is separable. �
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5.3 Lipschitz–Besov type expression

This subsection is devoted to proving Theorem 2.18. Let us start by introducing the definition
of Lipschitz–Besov spaces on the Sierpiński carpet ( , 3, `) in some specific cases (see [11]
for example). Recall that 0 = 3 denotes the inverse of the contraction ratio of �8 (see
Definition 2.1).

Definition 5.11. For B ∈ (0,∞), ? ∈ [1,∞), the Lipschitz–Besov space ΛB?,∞ is defined as

ΛB?,∞ B { 5 ∈ !? ( , `) | | 5 |ΛB?,∞ < ∞},

where

| 5 |ΛB?,∞ B sup
=∈N

(∫
 

−
∫
�(G,0−=)

| 5 (G) − 5 (H) |?

0−=B?
3`(H)3`(G)

)1/?
.

We also define its norm ‖ · ‖ΛB?,∞ by setting ‖ 5 ‖ΛB?,∞ B ‖ 5 ‖!? + | 5 |ΛB?,∞ .

Then (ΛB?,∞, ‖ · ‖ΛB?,∞) is a Banach space. Furthermore, for any 2 ∈ [1,∞) there exists
a positive constant �LB(2), which depends only on 2, 0, U, �AR, such that, for any 5 ∈
!? ( , `),

(5.7) | 5 |?
ΛB?,∞
≤ �LB(2) sup

=∈N

∫
 

−
∫
�(G,20−=)

| 5 (G) − 5 (H) |?

0−=B?
3`(H)3`(G),

and

�LB(2)−1 lim
=→∞

∫
 

−
∫
�(G,20−=)

| 5 (G) − 5 (H) |?

0−=B?
3`(H)3`(G)(5.8)

≤ lim
A↓0

∫
 

−
∫
�(G,A)

| 5 (G) − 5 (H) |?

A B?
3`(H)3`(G)

≤ �LB(2) lim
=→∞

∫
 

−
∫
�(G,20−=)

| 5 (G) − 5 (H) |?

0−=B?
3`(H)3`(G).

First, we prove a (?, ?)-Poincaré inequality in the sense of Kumagai and Sturm (see
[46, pp. 315]). Recall that U = log #∗/log 0 denotes the Hausdorff dimension of  , and that
V? = log (#∗d?)/log 0, where d? is the resistance scaling factor in Theorem 3.4.

Lemma 5.12. There exists a positive constant �PI-KS (depending only on ?, d?, 0, �Höl,
�WM and diam( )) such that

(5.9) 0V?=
∑
F∈�

∫
 F

| 5 (G) − "= 5 (F) |? 3`(G) ≤ �PI-KS lim
;→∞
Ẽ�·,;? (";+= 5 ),

for every = ∈ N, 5 ∈ F? and every subset � ⊆ ,=. In particular, it holds that

0V?=
∑
F∈,=

∫
 F

| 5 (G) − "= 5 (F) |? 3`(G) ≤ �PI-KS | 5 |?F? .
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Proof. Let 5 ∈ F? be the continuous version. Then, by the mean value theorem, for any
= ∈ N and F ∈ ,= there exists GF ∈  F such that 5 (GF) = "= 5 (F). From the Hölder
estimate (Theorem 5.1), we have that, for any G ∈  F,

| 5 (G) − "= 5 (F) |? =
���∗F 5 (�−1

F (G)) − �∗F 5 (�−1
F (GF))

��?
≤ �Höl

���∗F 5 ��?F? 3 (�−1
F (G), �−1

F (GF))V?−U

≤ �Höl diam( )V?−U
���∗F 5 ��?F? .

Consequently, we obtain∫
 F

| 5 (G) − "= 5 (F) |? 3`(G) ≤ �Höl diam( )V?−U0−U=
���∗F 5 ��?F? .

Summing over F ∈ ,=, we conclude that∑
F∈�

∫
 F

| 5 (G) − "= 5 (F) |? 3`(G)

≤
(
�Höl diam( )V?−U

)
0−U=

∑
F∈�

���∗F 5 ��?F?
≤

(
�Höl�WM diam( )V?−U

)
0−U=

∑
F∈�

lim
;→∞
Ẽ�;?

(
"; (�∗F 5 )

)
≤

(
�Höl�WM diam( )V?−U

)
0−U= lim

;→∞

∑
F∈�
Ẽ�;?

(
"; (�∗F 5 )

)
,

where we used the weak monotonicity (Corollary 4.17) in the second line. From (2.2), we
see that

∑
F∈� Ẽ�;?

(
"; (�∗F 5 )

)
≤ d−=? Ẽ

�·,;
? (";+= 5 ). In particular, we obtain

0−U= lim
;→∞

∑
F∈�
Ẽ�;?

(
"; (�∗F 5 )

)
≤ 0−V?= lim

;→∞
Ẽ�·,;? (";+= 5 ),

which proves (5.9). �

Next, we give an extension of [24, Theorem 4.11-(iii)]. This is essentially proved in
[2, Theorem 5.1], so its proof is omitted here. We give a direct proof without using heat
kernels in Appendix A.2 for the reader’s convenience.

Lemma 5.13. Let V > U and ? > 1. Then there exists a positive constant �5.13 (depending
only on ?, V, U, �AR) such that

| 5 (G) − 5 (H) |?

≤ �5.133 (G, H)V−U sup
A∈(0,33 (G,H)]

A−V
∫
 

−
∫
�(I,A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I),

for every 5 ∈ ΛV/??,∞ and `-a.e. G, H ∈  . In particular, for any 6 ∈ C( ) and G, H ∈  ,

|6(G) − 6(H) |? ≤ �5.13 |6 |?
Λ
V/?
?,∞
3 (G, H)V−U .
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An important consequence of the above lemma is the following type “(?, ?)-Poincaré
inequality”.

Lemma 5.14. Let V > U and ? > 1. Then there exists a positive constant �PI-LB (depending
only on ?, V, U, 0, diam( ), �AR) such that

0V=
∑
F∈,=

∫
 F

| 5 (G) − "= 5 (F) |? 3`(G)(5.10)

≤ �PI-LB sup
A∈(0,3 diam( )0−=]

A−V
∫
 

−
∫
�(G,A)

| 5 (G) − 5 (H) |? 3`(H)3`(G),

for every = ∈ N and 5 ∈ C( ).

Proof. We adopt a method in [25, proof of Theorem 3.5] and generalize it to fit our context.
Let 5 ∈ ΛV/??,∞, let F = F1 · · ·F= ∈ ,= and fix : ∈ N which we choose later. Then, by the
mean value theorem, there exists GF ∈  F such that "= 5 (F) = 5 (GF). Let l ∈ c−1({GF})
such that [l]= = F. For each < ∈ Z≥0, we define F(<) B [l]=+:< ∈ ,=+:<. Then, for
I< ∈  F(<) (< = 0, . . . , =),

| 5 (GF) − 5 (I0) |?(5.11)

≤ 2?−1 | 5 (GF) − 5 (I=) |? + 2?−1
=−1∑
8=0

28(?−1) | 5 (I8) − 5 (I8+1) |? .

Integrating (5.11), we obtain

−
∫
 F

| 5 (I) − "= 5 (F) |? 3`(I)(5.12)

≤ 2?−1−
∫
 F (=)

| 5 (GF) − 5 (I=) |? 3`(I=)

+ 22(?−1)
=−1∑
8=0

28(?−1)−
∫
 F (8)

−
∫
 F (8+1)

| 5 (I8) − 5 (I8+1) |? 3`(I8+1)3`(I8).

Set 2 B 3 diam( ) and define

(5.13) (
(=)
?,V
( 5 ) B sup

A∈(0,20−=]
A−V

∫
 

−
∫
�(I,A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I).

By Lemma 5.13, the first term of the right-hand side of (5.12) has a bound as follows:

−
∫
 F (=)

| 5 (GF) − 5 (I=) |? 3`(I=) ≤ �5.13(
(=)
?,V
( 5 ) −

∫
 F (=)

3 (GF, I=)V−U 3`(I=)(5.14)

≤
(
�5.13 diam( )V−U

)
0−(=+:=) (V−U)((=)

?,V
( 5 ).

For the second term of (5.12), we see that

28(?−1)−
∫
 F (8)

−
∫
 F (8+1)

| 5 (I8) − 5 (I8+1) |? 3`(I8+1)3`(I8)(5.15)
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≤ 21 28(?−1)0U:02U(=+:8)
∫
 F (8)

∫
�(I8 ,20−(=+:8) )

| 5 (I8) − 5 (I8+1) |? 3`(I8+1)3`(I8),

where 21 > 0 depends only on 2 and �AR.
Now, we consider : ∈ N large enough so that

(5.16) : (V − U) ≥ U and #∗0
−(V−U): ∨ 2?−10−(V−U): < 1.

Then, by summing (5.14) and (5.15) over F ∈ ,=, we have from (5.16) that∑
F∈,=

−
∫
 F (=)

| 5 (GF) − 5 (I=) |? 3`(I=)

≤
(
�5.13 diam( )V−U

)
(
(=)
?,V
( 5 )#=∗ 0−(=+:=) (V−U)

≤
(
�5.13 diam( )V−U

)
(
(=)
?,V
( 5 ) 0−(V−U)=,

and from Lemma 2.4 and (5.16) that
=−1∑
8=0

∑
F∈,=

28(?−1)−
∫
 F (8)

−
∫
 F (8+1)

| 5 (I8) − 5 (I8+1) |? 3`(I8+1)3`(I8)

≤ 210
U:

=−1∑
8=0

28(?−1)02U(=+:8)
∫
 

∫
�(G,20−(=+:8) )

| 5 (G) − 5 (H) |? 3`(H)3`(G)

≤ 22 0
U:(
(=)
?,V
( 5 )

(
=−1∑
8=0

28(?−1)0−(V−U) (=+:8)
)

≤ 22 0
U:(
(=)
?,V
( 5 )

( ∞∑
8=0

[
2?−10−(V−U):

] 8 )
0−(V−U)= C 23(

(=)
?,V
( 5 ) 0−(V−U)=,

where 22, 23 > 0 depend only on �AR, 2, V, U, ?. From these estimates and (5.12), we finish
the proof. �

Now we are ready to finish the proof of Theorem 2.18.

Theorem 5.15.

F? = Λ
V?/?
?,∞ =

{
5 ∈ !? ( , `)

����� lim
A↓0

∫
 

−
∫
�(G,A)

| 5 (G) − 5 (H) |?

A V?
3`(H)3`(G) < ∞

}
.

Proof. Let 2 > 0 such that max(E,F)∈�= supG∈ E ,H∈ F 3 (G, H) < 20
−=. We can choose such 2

depending only on �AD by Lemma 2.7 and we may assume that 2 ≥ 3 diam( ) without loss
of generality. Then H ∈ �(G, 20−=) whenever (E, F) ∈ �= and G ∈  E, H ∈  F. Let V > U
and set

�
(=)
?,V
( 5 ) B 0V=

∫
 

−
∫
�(G,20−=)

| 5 (G) − 5 (H) |? 3`(H)3`(G),

and define ((=)
?,V
( 5 ) as in (5.13) for each = ∈ N and 5 ∈ !? ( , `). Then, thanks to Lemma

5.12, it will suffice to show the following two estimates:

�
(=)
?,V?
( 5 ) ≤ 25.17

(
Ẽ�=? ("= 5 ) + 0V?=

∑
F∈,=

∫
 F

| 5 (G) − "= 5 (F) |? 3`(G)
)

(5.17)
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for any 5 ∈ !? ( , `) and

(5.18) 0 (V−U)= · E�=? ("= 5 ) ≤ 25.18(
(=)
?,V
( 5 )

for any 5 ∈ C( ), where 25.17, 25.18 are positive constants without depending on 5 and =.
Indeed, by (5.7), (5.17) and Lemma 5.12, we immediately see that

(5.19) �LB(2)−1 | 5 |?
Λ
V?/?
?,∞
≤ sup
=∈N

�
(=)
?,V?
( 5 ) ≤ 25.17(1 + �PI-KS) | 5 |?F? .

Additionally, by the weak monotonicity (Corollary 4.17), (5.18) and (5.8), we have that

| 5 |?F? ≤ 25.18�WM lim
A↓0

A−V?
∫
 

−
∫
�(G,A)

| 5 (G) − 5 (H) |? 3`(H)3`(G)(5.20)

≤ � lim
=→∞

0V?=
∫
 

−
∫
�(G,0−=)

| 5 (G) − 5 (H) |? 3`(H)3`(G),

where � = 25.18�WM�LB(2)�LB(1). Our assertion follows from (5.19) and (5.20).
The rest of the proof is devoted to proving (5.17) and (5.18). First, we will prove (5.17).

Let G, H ∈  with 3 (G, H) < 20−=. Then, by the metric doubling property of  (see [27, pp.
81] for example), there exists a constant ! ≥ 2 depending only on �AR such that, for any
F ∈ ,= with G ∈  F, we can choose E ∈ ,= satisfying 3�= (E, F) ≤ ! and H ∈  E. From
this observation, we have that

(5.21) �
(=)
?,V?
( 5 ) ≤ 0V?=

∑
E,F∈,=;

3�= (E,F)≤!

∫
 F

1
`(�(G, 20−=))

∫
 E

| 5 (G) − 5 (H) |? 3`(H)3`(G).

To estimate the integral in (5.21), let E, F ∈ ,= with 3�= (E, F) ≤ !. Then we can pick a
path [F0, F1, . . . , F!] in �= from F to E, that is, F8 (8 = 0, . . . , !) satisfy F0 = F, F! = E
and

F8−1 = F8 or (F8−1, F8) ∈ �= for each 8 = 1, . . . , !.

Let G8 ∈  F8 for each 8 = 0, . . . , !. Then Hölder’s inequality implies that

| 5 (G0) − 5 (G!) |? ≤ !?−1
!∑
8=1
| 5 (G8−1) − 5 (G8) |? .

Now, by integrating this, we deduce that(
!−1∏
8=1

`( F8 )
) ∫

 F

∫
 E

| 5 (G) − 5 (H) |? 3`(G)3`(H)

≤ !?−1
!∑
8=1

∏!
9=0 `( F 9 )

`( F8−1)`( F8 )

∫
 
F8−1

∫
 
F8

| 5 (G8) − 5 (G8−1) |? 3`(G8)3`(G8−1).

Since ` is the self-similar measure with weights (#−1
∗ , . . . , #

−1
∗ ), it is a simple computation

that ∏!
9=0 `( F 9 )

`( F8−1)`( F8 )
1∏!−1

8=1 `( F8 )
=

`( E)`( F)
`( F8−1)`( F8 )

= 1.
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Furthermore, the Ahlfors regularity of ` (more precisely, the volume doubling property
of `) implies that there exists a constant 21 > 0 depending only on �AR, U, 2 such that
`( I) ≤ 21`(�(G, 20−=)) for any = ∈ N, I ∈ ,= and G ∈  . Thus, it follows from (5.21)
that

�
(=)
?,V?
( 5 )

≤
(
21!

?−1�!
∗
)
0V?=

∑
(E,F)∈�=

∫
 F

−
∫
 E

| 5 (G) − 5 (H) |? 3`(H)3`(G)

≤ 25.17

(
0V?=

∑
E∈,=

∫
 E

| 5 (G) − "= 5 (E) |? 3`(G)

+ d=?
∑

(E,F)∈�=

|"= 5 (E) − "= 5 (F) |?
)
,

where 25.17 B 21(2!)?−1�!+1
∗ . This proves (5.17).

Next let us prove (5.18). Let V > U, let ? > 1 and let 5 ∈ C( ). For = ∈ N, (E, F) ∈ �=,
G ∈  E and H ∈  F, we see that

|"= 5 (E) − "= 5 (F) |?

≤ 3?−1 ( |"= 5 (E) − 5 (G) |? + | 5 (G) − 5 (H) |? + |"= 5 (F) − 5 (H) |?
)
.

Integrating this over  E and  F, we obtain

0 (V−U)= · |"= 5 (E) − "= 5 (F) |?

≤ 3?−1

(
0V=

∫
 E

|"= 5 (E) − 5 (G) |? 3`(G)

+ 0V=
∫
 F

−
∫
 E

| 5 (G) − 5 (H) |? 3`(G)3`(H) + 0V=
∫
 F

|"= 5 (F) − 5 (H) |? 3`(H)
)
.

Summing over (E, F) ∈ �=, we obtain

0 (V−U)= · E�=? ("= 5 )

≤ 2 · 3?−1�∗

(
0V=

∑
E∈,=

∫
 E

|"= 5 (E) − 5 (G) |? 3`(G)

+ 0V=
∑

(E,F)∈�=

∫
 F

−
∫
 E

| 5 (G) − 5 (H) |? 3`(G)3`(H)
)
.

A bound of the first term in the right-hand side is obtained in Lemma 5.14. Noting that
 E ⊆ �(H, 20−=) for (E, F) ∈ �= and H ∈  F, we can estimate the second term as follows:

0V=
∑

(E,F)∈�=

∫
 F

−
∫
 E

| 5 (G) − 5 (H) |? 3`(G)3`(H)
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≤ 220
V=

∑
(E,F)∈�=

∫
 F

−
∫
�(H,20−=)

| 5 (G) − 5 (H) |? 3`(G)3`(H) ≤ 222
−V�∗(

(=)
?,V
( 5 ),

where 22 > 0 depends only on �AR, 2. This proves (5.18) and finishes the proof. �

As an immediate consequence of Theorem 5.15, we have a characterization of V? as
critical Besov exponents. For details on critical Besov exponents, see [3, 24] for example.
This result is well-known when ? = 2 (see [24, Theorem 4.6]).

Corollary 5.16. It holds that V? = ? sup
{
B > 0

�� ΛB?,∞ ≠ {constant}}.
Proof. Note that ΛV

′/?
?,∞ ⊆ Λ

V/?
?,∞ for any V ≤ V′. It is immediate that V? ≤ ? sup{B > 0 |

ΛB?,∞ ≠ {constant}}. To prove the converse, let V > V?. If 5 ∈ C( ) is not constant, then
there exists # ∈ N such that Ẽ�#? ("# 5 ) > 0. By the weak monotonicity (Corollary 4.17),
for any = ≥ # ,

0 (V−U)= · E�=? ("= 5 ) = 0 (V−U)=d−=? · Ẽ�=? ("= 5 ) ≥ �−1
WM 0

(V−U)=d−=? · Ẽ
�#
? ("# 5 ).

Letting = → ∞ in this inequality, we obtain lim=→∞ 0 (V−U)= · E�=? ("= 5 ) = ∞ since
d−1
? 0

V−U > 1. By (5.18), we conclude that | 5 |
Λ
V/?
?,∞
= ∞ whenever V > V? and 5 ∈ C( ) is

not constant. This proves our assertion. �

6 Construction of a canonical scaling limit of ?-energies

This section aims to prove Theorem 2.20. To construct a canonical “Dirichlet form” on
fractals, there is already an established way as appeared in [47, proof of Theorem 6.9].
However, in the original argument of [47], the Markov property of their “Dirichlet form” was
not clarified. In [39], Kigami has pointed out this gap and filled this in an abstract way, that
is, he has proven the existence of the desired Dirichlet forms by an argument using some fixed
point theorem. An approach based on the combination of Kusuoka–Zhou’s and Kigami’s
arguments is enough to construct a ?-energy satisfying all the properties in Theorem 2.17
(see [38, Theorem 9.1]). Regrettably, this abstract way is insufficient to prove our main
result about E?-energy measures: Theorem 2.22. After Kigami’s work, another very simple
way to check the Markov property is given by Barlow, Bass, Kumagai, and Teplyaev (see
[8, proof of Theorem 2.1]). This method deduces that the Dirichlet forms of Kusuoka and
Zhou in [47] have the Markov property, but it very heavily relies on being Dirichlet forms,
that is, the use of bilinearity (and locality) is essential to follow [8, proof of Theorem 2.1]. To
overcome these difficulties, we will introduce a new series of graphs G= approximating the
Sierpiński carpet in subsection 6.1. Then in subsection 6.2 we directly construct ?-energy
E? as a subsequential scaling limit of discrete ?-energies on this new series of graphs.

Throughout this section, we suppose Assumption 4.2 holds.
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6.1 Behavior of ?-energies on modified Sierpiński carpet graphs

Recall that ?8 ∈  denotes the fixed point of �8 for each 8 ∈ ( = {1, . . . , #∗}, where
#∗ = 8. We use ?̂2<+1 to denote the middle point between ?2< and ?2(<+1) for each
< = 0, . . . , 3, where ?0 B ?8. One can show that ?̂< ∈  by a direct calculation. Set
+ (G1) B {?2<, ?̂<}3<=0 and + (G=) is defined inductively by

+ (G=) B {�8 (G) | 8 ∈ (, G ∈ + (G=−1)}.

Next, the edge set � (G=) is defined inductively as follows:

� (G1) B {(?2<, ?̂<), ( ?̂<, ?2<+2), ( ?̂<, ?2<), (?2<+2, ?̂<)}3<=0,

and
� (G=) B

{(
�8 (G), �8 (H)

) �� 8 ∈ (, (G, H) ∈ � (G=−1)
}
.

We will consider a new finite connected graph defined byG= B (+ (G=), � (G=)) (see Figure
8). Then it is immediate that

�∗({G=}=≥1) B sup
=∈N

max
G∈+ (G=)

#{H ∈ + (G=) | (G, H) ∈ � (G=)} = 4.

For any =, < ∈ N and F ∈ ,=, we define a subset +F (G<) of + (G=+<) by setting +F (G<) B
{�F (G) | G ∈ + (G<)}, and define a subgraph �F (G<) B

(
+F (G<), � (G=+<)+F (G<)

)
.

For simplicity, we write RG=? (G, H) to denote the reciprocal of CG=? ({G}, {H}), that is,

RG=? (G, H) B sup

{
| 5 (G) − 5 (H) |?

EG=? ( 5 )

����� 5 : + (G=) → R is not constant

}
,

for each G, H ∈ + (G=). Then one of the key ingredients is that RG=? (G, H) behaves like R (=)? .

Proposition 6.1. There exists a positive constant �6.1 (depending only on ?, �∗, d?, 0, �UH

and �Mult) such that, for any < ∈ {0, . . . , 3} and = ∈ N,

(6.1) RG=? (?2<, ?̂<) ≤ �6.1d
=
? .

Figure 8: Modified Sierpiński carpet graph {G=}=≥1 (This figure draws G3)
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Remark 6.2. When ? = 2, such point-to-point estimates on a series of Sierpiński carpet
graphs are proved in [49, Appendix], where a uniformHanarck inequality byBarlow andBass
(see also Remark 4.18) is used. In [38, Lemma 8.5], Kigami also shows similar estimates
for all ? > dimARC assuming ?-conductive homogeneity, where he also uses some uniform
Hölder estimate. Our proof also relies on the uniform Hölder estimate: Corollary 4.16.

To prove this proposition, we need an estimate of ?-conductance between points on the
original graph {�=}=≥1. Let F8 (=) denote a unique element of,= such that ?8 ∈  F8 (=) for
each 8 ∈ ( and = ∈ N. Then we can show the following lemma in a similar way to the “chain
argument” in the proof of Theorem 4.13.

Lemma 6.3. There exists a constant �6.3 ≥ 1 (depending only on ?, d?, 0, �UH and �Mult)
such that, for any 8 ≠ 9 ∈ ( and = ∈ N,

(6.2) �−1
6.3d

−=
? ≤ C�=? ({F8 (=)}, {F 9 (=)}) ≤ �6.3d

−=
? .

Proof. An upper bound

(6.3) C�=? ({F8 (=)}, {F 9 (=)}) ≤ �Multd? · d−=?

is an immediate consequence of Proposition 2.12 and Theorem 3.4.
To prove the converse, we first consider the case |8 − 9 | = 1. It will suffice to treat the

case 8 = 1 and 9 = 2 by the symmetries of the Sierpiński carpet. Let 5= : ,= → R satisfy
5= (F8 (=)) = 8 − 1 for 8 = 1, 2 and E�=? ( 5=) = C�=? ({F1(=)}, {F2(=)}). Note that 5= is
[0, 1]-valued. In view of (4.19) in Corollary 4.16 and (6.3), we choose ; ∈ N such that
�UH�Multd?0

−(V?−U); ≤ 4−1. We also set E: B [F: (=)] ; ∈ ,; for each : . Then it follows
from (4.19) that

max
E1·,=−;

5= ≤
1
4

and min
E2·,=−;

5= ≥
3
4
.

Now we define 6= by setting 6= B 2
(
( 5= ∨ 1/4) ∧ 3/4

)
. We easily see that there exist

3; ≤ ! ≤ 2 · 3; and a horizontal chain [I1, . . . , I!] in � ; such that I1 = E1, I! = E2,
I: ∈ m∗� ; for any : = 1, . . . , ! and (I: , I:+1) ∈ �̃; for each : = 1, . . . , ! − 1. Recall the
definition of C (=,!)? in subsection 4.2. Then we have that

C (=−;,!)? ≤ E�=? (6=) ≤ 2?E�=? ( 5=).

From this estimate and Lemma 4.8, there exists a constant � (!) > 0 (depending only on
?, #∗, �∗, !) such that C�=? ({F1(=)}, {F2(=)}) ≥ � (!)−1C (=−;)? . The submultiplicative
inequality of C (=)? (Theorem 3.4) gives our assertion when |8 − 9 | = 1.

Finally, note that (G, H) ↦→ C�? ({G}, {H})−1/? is a metric on a graph �. Indeed, this fact
immediately follows from the representation:

C�? ({G}, {H})−1/? = max

{
| 5 (G) − 5 (H) |
E�? ( 5 )1/?

����� 5 : + → R with E�? ( 5 ) > 0

}
.

Applying the triangle inequality of this metric, we get the desired results for 8 ≠ 9 ∈ (. �
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Remark 6.4. It is known that (G, H) ↦→ C�? ({G}, {H})−1/(?−1) also becomes a metric, and
thus C�? ( · , · )−1/(?−1) gives a generalization of the resistance metric. This fact is proved
in [1, Theorem 8], where � is a finite graph. One can check the case of infinite graphs in
[50, Theorem 4.3], which is mainly based on the author’s Master thesis.

Now we are ready to prove Proposition 6.1.
Proof of Proposition 6.1. Enumerate the elements,= as,= = {E= (1), . . . , E= (#=∗ )} for each
= ∈ N. Note that + (G=) =

⋃
F∈,=−1 +F (G1). Define i= : + (G=) → ,= as follows:

i= (�E=−1 ( 9) ( ?̂<)) B E=−1( 9) · (2< + 1),

and
i= (�E=−1 ( 9) (?2<)) B E=−1( 9) · (2<) if �E=−1 ( 9) (?2<) ∉

⋃
8< 9

 E=−1 (8) ,

where we set 0 B 8 ∈ ( for convention. Then it is immediate that {i=}=≥1 is a uniform rough
isometry from {G=}=≥1 to {�=}=≥1. (See Figure 9 for an illustration of {i=}=≥1.) Note that
i= ( ?̂<) = F2<−1(=) and i= (?2<) = F2< (=) for each < ∈ {0, . . . , 3}. Thus Lemma 4.11
yields that

C�=? ({F2< (=)}, {F2<−1(=)}) ≤ �URICG=? ({?2<}, { ?̂<}),

which implies (6.1). �

Next, we define rescaled ?-energy Ẽ G=? : C( ) → R on G= by setting

Ẽ G=? ( 5 ) B
d=?

2

∑
(G,H)∈� (G=)

| 5 (G) − 5 (H) |? ,

for each 5 ∈ C( ). Then the following lemma, especially statements (3) and (4) below, is a
collection of benefits of the new graphical approximation {G=}=≥1.

Lemma 6.5. The following statements hold.

(1) If 5 ∈ C( ), then sup=∈N Ẽ
G=
? ( 5 ) = 0 if and only if 5 is constant.

(2) If ) ∈ Sym( ) and 5 ∈ C( ), then Ẽ G=? ( 5 ◦ )) = Ẽ G=? ( 5 ).

Figure 9: Uniform rough isometry from G= (blue) to �= (gray) as an embedding
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(3) If 5 ∈ C( ), then

(6.4) Ẽ G=+1? ( 5 ) = d?
∑
8∈(
Ẽ G=? (�∗8 5 ).

(4) If 5 ∈ C( ) and i : R→ R with Lip(i) ≤ 1, then Ẽ G=? (i ◦ 5 ) ≤ Ẽ G=? ( 5 ).

Proof. (1) It is immediate that sup=∈N Ẽ
G=
? ( 5 ) = 0 if 5 ∈ C( ) is constant. We easily see

that
⋃
=∈N+ (G=)

 
=  . Thus, if 5 ∈ C( ) satisfies E G=? ( 5 ) = 0 for any = ∈ N, then 5 is

constant.
(2) This immediately follows from the symmetries of G=.
(3) Let 5 ∈ C( ) and = ∈ N. Then, by the self-similarity of  , we have that

Ẽ G=+1? ( 5 ) = d?
∑
8∈(

©«
d=?

2

∑
(G,H)∈� (G=+1);

G,H∈ 8

�� 5 (�8 (�−1
8 (G))) − 5 (�8 (�−1

8 (H)))
��?ª®®®¬

= d?

∑
8∈(
Ẽ G=? (�∗8 5 ),

which proves (6.4).
(4) The required estimate immediately follows from the fact that |i(0) − i(1) | ≤ |0 − 1 |

for any 0, 1 ∈ R whenever i : R→ R satisfies Lip(i) ≤ 1. �

We also have the weak monotonicity of Ẽ G=? as follows. Its proof is similar to [25,
Theorem 7.1], where 2-energies are considered.

Lemma6.6. There exists a constant�WM({G=}=≥1) > 0 (depending only on ?, �∗, d?, 0, �UH, �Mult)
such that

(6.5) Ẽ G=? ( 5 ) ≤ �WM({G=}=≥1)Ẽ G=+<? ( 5 ),

for every =, < ∈ N and 5 ∈ C( ). In particular, for any 5 ∈ C( ),

sup
=∈N
Ẽ G=? ( 5 ) ≤ �WM({G=}=≥1) lim

=→∞
Ẽ G=? ( 5 ).

Proof. Let (G, H) ∈ � (G=). Then there exists F ∈ ,=−1 such that G, H ∈  F. Furthermore,
there exists ; = {0, . . . , 3} such that G = �F (?2;) and H = �F ( ?̂;). Now we define

R�F (G<+1)? (I1, I2)

B sup

{
| 5 (I1) − 5 (I2) |?

E�F (G<+1)? ( 5 )

����� 5 ∈ C( ) with 5 |+F (G<+1) is not constant
}
.

Then we see from Proposition 6.1 that

| 5 (G) − 5 (H) |? ≤ R �F (G<+1)
?

(
�F (?2;), �F ( ?̂;)

)
E �F (G<+1)? ( 5 )
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≤ R G<+1? (?2; , ?̂;)E �F (G<+1)? ( 5 )
≤ �6.1d

<
? E

�F (G<+1)
? ( 5 ),

where we used the cutting law ([50, Proposition 3.18]) and the self-similarity of G=+< in
the second line. Summing over (G, H) ∈ � (G=), we obtain E G=? ( 5 ) ≤ 2−1�6.1d

<
? E
G=+<
? ( 5 ),

which deduces our assertion. �

The rest of this subsection is devoted to proving the following lemma.

Lemma 6.7. There exists a constant �6.7 ≥ 1 such that

(6.6) �−1
6.7 | 5 |

?

F? ≤ sup
=∈N
Ẽ G=? ( 5 ) ≤ �6.7 | 5 |?F? for any 5 ∈ !? ( , `).

Remark 6.8. Such discrete characterizations of Lipschitz–Besov space are treated in [11],
but we need somemodification as stated in [26, Remark 1 in Section 3]. To be self-contained,
we give complete proofs in a similar way to [25, Theorems 3.5 and 3.6 and Proposition 11.1],
where they give discrete characterizations of F2 on the SC.

By virtue of Theorem 2.18, it will suffice to show that sup=∈N Ẽ
G=
? ( 5 ) and | 5 |ΛV?/??,∞

are

comparable. To this end, we introduce a simplified versionG∗= ofG=. Set+ (G∗1) B {?2<}4<=1
and define inductively

+ (G∗=) B {�8 (G) | 8 ∈ (, G ∈ + (G=−1)}.

Set � (G∗1) B {(?2<, ?2<+2), (?2<+2, ?2<)}4<=1, where we write ?10 = ?2 for convenience,
and define inductively

� (G∗=) B
{(
�8 (G), �8 (H)

) �� 8 ∈ (, (G, H) ∈ � (G=−1)
}
.

Then we defineG∗= byG∗= B (+ (G∗=), � (G∗=)). Note that+ (G∗=) is a subset of+ (G=). We also
define+F (G∗=) in the sameway as+F (G=). Similarly to [11], we will apply an argument using
discrete approximations of measure ` with respect to the weak convergence of probability
measures (see Lemma 6.10-(2)). For each G ∈  and = ∈ N, we define* (=)1 (G) by setting

*
(=)
1 (G) B

⋃
{ F | F ∈ ,= with  E ∩  F ≠ ∅ for some E ∈ ,= such that G ∈  E}.

(See [41, Definition 2.3.5].) Then the following lemma is elementary (see also [11, Lemma
3.12], [26, Remark 1 in Section 3]).

Lemma 6.9. If a sequence of probability measures {`=}=≥1 on  is given by

`= B
1

#+ (G∗=)
∑

G∈+ (G∗=)
XG ,

where XG denotes the Dirac measure with support {G} for each G ∈  , then `= converges
weakly to ` as =→∞. Moreover, for any < ∈ N, ? > 1 and 5 ∈ C( ),

lim
=→∞

∫
 

∫
*
(<)
1 (G)

| 5 (G) − 5 (H) |? 3`= (H)3`= (G)(6.7)

=

∫
 

∫
*
(<)
1 (G)

| 5 (G) − 5 (H) |? 3`(H)3`(G).
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Proof. Since  is compact, by Prokhorov’s theorem (see [9, Theorem 5.1] for example),
there exist a subsequence {=: }:≥1 and a Borel probability measure ˜̀ on  such that `=:
converges weakly to ˜̀ as : →∞. From the definition of G∗=, we easily see that #+ (G1) = 4
and

#+ (G∗=) = 8 · #+ (G∗=−1) − 8 · 3=−2,

for each = ≥ 2. In particular, #+ (G∗=) = 12
5 · 8

=−1 + 8
5 · 3

=−1 for any = ∈ N, and thus

(6.8)
3
10
0U= ≤ #+ (G∗=) ≤

1
2
0U=.

This implies that ˜̀ is U-Ahlfors regular. By [27, Exercise 8.11] and Lemma 2.4, we get˜̀(m F) = 0 for each F ∈ ,#. Moreover, for any =, < ∈ N and F ∈ ,<, we have that

`= ( F) =
12
5 · 8

=−<−1 + 8
5 · 3

=−<−1

12
5 · 8=−1 + 8

5 · 3=−1
→ 8−< = #−<∗ (=→∞).

By the portmanteau theorem (see [9, Theorem 2.1] for example), we conclude that ˜̀( F) =
#
−|F |
∗ for all F ∈ ,#. A simple application of Dynkin’s c-_ theorem yields that ˜̀ = `.

Therefore, `= converges weakly to ` as =→∞.
Next we will prove (6.7). Let 5 ∈ C( ) be not constant. Then there exists # ≥ 1 such

that 5 |+ (G# ) is not constant. Define

2= B

∫
 

∫
 

| 5 (G) − 5 (H) |? 3`= (H)3`= (G), 2 B

∫
 

∫
 

| 5 (G) − 5 (H) |? 3`(H)3`(G),

for each = ≥ # . Since 5 |+ (G# ) is not constant and 5 is bounded, we have that 2, 2= ∈ (0,∞).
The weak convergence of `= × `= to ` × ` (see [9, Theorem 2.8] for example) implies that
2= → 2 as =→∞. Next, we define a= (3G⊗ 3H) B 2−1

= | 5 (G) − 5 (H) |? 3`= (G)3`= (H). Since
5 is continuous, we easily see that a= converges weakly to a probability measure a on  × 
given by a(3G ⊗ 3H) B 2−1 | 5 (G) − 5 (H) |? 3`(G)3`(H). From Lemma 2.4, it is immediate
that a(m ( ×* (<)1 (G))) = 0. Again by the portmanteau theorem, we deduce (6.7). �

Then, we can show some (?, ?)-Poincaré type inequalities (in the sense of Kumagai and
Sturm) in this context. The statement (2) in the lemma below is similar to Lemma 5.12,
but we do not have any uniform Hölder estimate like Corollary 4.16 for the new rescaled
?-energy Ẽ G=? . For this reason, its proof will be a bit complicated.

Lemma 6.10. Suppose that V > U and ? > 1 in (1) and that Assumption 4.2 holds in (2).
Then there exists a positive constant �6.10 (depending only on ?, V, U, 0, diam( ), �AR and
d?) such that the following hold:

(1) for every = ∈ N and 5 ∈ !? ( , `),

(6.9) 0V=
∑
F∈,=

∑
G∈+F (G1)

∫
 F

| 5 (G) − 5 (I) |? 3`(I) ≤ �6.10 | 5 |?
Λ
V/?
?,∞

;
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(2) for every =, < ∈ N and 5 ∈ C( ),

0V?=
∑
F∈,=

∑
G∈+F (G∗1)

∫
 F

| 5 (G) − 5 (I) |? 3`=+< (I)(6.10)

≤ �6.10 sup
=∈N

0 (V?−U)=E G
∗
=

? ( 5 ).

Proof. (1) A slight change in the proof of Lemma 5.14 shows our assertion. Indeed, let
F = F1 · · ·F=−1 ∈ ,=−1, let G ∈ +F (G1) and fix : ∈ N. Let l ∈ c−1({G}) ∩ ΣF (i.e.
c(l) = G and [l]=−1 = F). For each ; ∈ Z≥0, define F(;) B [l]=+:;−1 ∈ ,=+:;−1. Then,
similarly to (5.11), we have that, for I; ∈  F(;) (; = 0, . . . , =),

| 5 (G) − 5 (I0) |? ≤ 2?−1 | 5 (G) − 5 (I=) |? + 2?−1
=−1∑
;=0

2; (?−1) | 5 (I;) − 5 (I;+1) |? .

By integrating this inequality over I; ∈  F(;) , we obtain

−
∫
 F

| 5 (G) − 5 (I) |? 3`(I)

≤ 2?−1−
∫
 F (=)

| 5 (G) − 5 (I=) |? 3`(I=)

+ 22(?−1)
=−1∑
;=0

2; (?−1)−
∫
 F (;)

−
∫
 F (;+1)

| 5 (I;) − 5 (I;+1) |? 3`(I;+1)3`(I;).

The rest of the proof is essentially the same as the proof of Lemma 5.14.
(2) The idea is essentially the same as [25, Theorem 3.6]. Let F ∈ ,=, < ∈ N and choose

GF ∈ +F (G∗1) such that∫
 F

| 5 (GF) − 5 (I) |? 3`=+< (I) = max
G∈+F (G∗1)

∫
 F

| 5 (G) − 5 (I) |? 3`=+< (I)

By Lemma 6.9, there exists a positive constant 21 such that `; ({H}) ≤ 210
−U; for any ; ∈ N

and H ∈ + (G∗
;
), and thus∫

 F

| 5 (GF) − 5 (I) |? 3`=+< (I)(6.11)

=
∑

I∈ F∩+ (G∗=+<)
| 5 (GF) − 5 (I) |? `=+< ({I})

≤ 210
−U(=+<)

∑
I∈ F∩+ (G∗=+<)

| 5 (GF) − 5 (I) |? .

For each I ∈  F ∩ + (G∗=+<) = +F (G∗<), fix a choice of lI ∈ c−1({I}) ∩ ΣF. Define
FI (;) B [lI]=+; ∈ ,=+; for each ; ∈ Z≥0. We frequently omit the dependence on I to
simplify notations, i.e. we also write F(;) to denote FI (;). To estimate the right-hand

59



side of (6.11), we will find E(; + 1) ∈ F(;) ·,1 and a sequence (@0, @1, . . . , @2<) such that
(E(; + 1), F(; + 1)) ∈ �̃=+;+1 ∪ {(E, E) | E ∈ ,=+;+1}, @0 = GF and

(6.12) (@2; , @2;+1), (@2;+1, @2;+2) ∈ � (G∗=+;+1)
+F (;) (G∗1)∪+E (;) (G

∗
1) ∪ D(;+1)F

for each ; ∈ {0, . . . , < − 1}, where D(;+1)F B {(G, G) | G ∈ +F (G∗;+1)}. Define +F(0) (G
∗
1) ∪

+E(0) (G∗1) B +F(0) (G∗1) for convention. First, set @0 B GF, pick E(1) ∈ F ·,1 satisfying
(E(1), F(1)) ∈ �̃=+1 ∪ {(E, E) | E ∈ ,=+1} and define @2 ∈ +F(0) (G∗1) as the element such
that

{@2} = ( F(1) ∪  E(1)) ∩+F(0) (G∗1).

Then there exists @1 ∈ +F(0) (G∗1) satisfying (6.12). Inductively, we define E(; + 1) and @2;+2
as follows: Choose E(; + 1) ∈ F(;) · ,1 such that 3=+;+1(@2; , @2;+2) = 2, where @2;+2 is
defined by

{@2;+2} = ( F(;+1) ∪  E(;+1)) ∩+F(;) (G∗1)

and 3=+;+1 is the graph distance of G∗=+;+1. Then we pick @2;+1 ∈ +F (G;+1) satisfying (6.12).
As a consequence, we obtain the desired objects. Since (E(<), F(<)) ∈ �̃=+< ∪ {(E, E) |
E ∈ ,=+<} and the diameter of G∗1 is 2, we can modify the choice of E(<) and @2< so that

(@2<, I) ∈ � (G∗=+<)+F (<−1) (G∗1) ∪ {(G, G) | G ∈ +F(<−1) (G∗1)}.

Set @2<+1 B I. Note that this choice of a sequence (@0, @1, . . . , @2<, @2<+1) depends on I.
By Hölder’s inequality, for each ; ∈ {0, . . . , <},

| 5 (GF) − 5 (@2;) |?

≤ 0?−1 ( | 5 (@2;) − 5 (@2;+1) |? + | 5 (@2;+1) − 5 (@2;+2) |? + | 5 (GF) − 5 (@2;+2) |?
)
.

Iterating this estimate, we obtain

| 5 (GF) − 5 (@2<) |? ≤
<−1∑
;=0

0 (?−1) (;+1) ( | 5 (@2;) − 5 (@2;+1) |? + | 5 (@2;+1) − 5 (@2;+2) |?
)
.

Therefore, there exists a positive constant 22 depending only on 0, ? such that

2−1
2 | 5 (GF) − 5 (I) |

?

≤ | 5 (@2<) − 5 (@2<+1) |? +
<−1∑
;=0

0 (?−1); ( | 5 (@2;) − 5 (@2;+1) |? + | 5 (@2;+1) − 5 (@2;+2) |?
)
.

In view of the fact that #{G ∈  F∩+ (G∗=+<) | G ∈  [lI]=+; } = #+ (G∗
<−;) for any I ∈ + (G

∗
=+<),

we see from (6.12) and (6.8) that

0−U(=+<)
∑

I∈ F∩+ (G∗=+<)
| 5 (GF) − 5 (I) |?(6.13)

≤ 2220
−U(=+<)

<−1∑
;=0

0 (?−1);#+ (G∗<−;) · E
+F (;) (G∗1)∪+E (;) (G

∗
1)

? ( 5 )
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≤ 220
−U=

<−1∑
;=0

0 (?−1−U);E+F (G
∗
;+1)

? ( 5 ).

Combining (6.11) and (6.13), we have that

0V?=
∑
F∈,=

∑
G∈+F (G∗1)

∫
 F

| 5 (G) − 5 (I) |? 3`=+< (I)

≤ 421220
(V?−U)=

∑
F∈,=

<−1∑
;=0

0 (?−1−U);E+F (G
∗
;+1)

? ( 5 )

≤ 421220
−(V?−U)

( ∞∑
;=0

0−(V?−?+1);
)

sup
=∈N

0 (V?−U)=EG
∗
=

? ( 5 ).

Since V? ≥ ? by Proposition 3.6, it holds that
∑∞
;=0 0

−(V?−?+1); < ∞. Hence we obtain

0V?=
∑
F∈,=

∑
G∈+F (G∗1)

∫
 F

| 5 (G) − 5 (I) |? 3`=+< (I) ≤ 23 sup
=∈N

0 (V?−U)=EG
∗
=

? ( 5 ),

where 23 = 421220
−(V?−U) ∑∞

;=0 0
−(V?−?+1); .

For each = ∈ N, define i= : + (G∗=) → + (G=) by setting i= (G) B G for any G ∈ + (G∗=).
Then we easily see that {i=}=≥1 is a uniform rough isometry from {G∗=}=≥1 to {G=}=≥1.
Applying Lemma 4.11 (especially (4.11)), we complete the proof. �

Now, we are ready to prove Lemma 6.7.
Proof of Lemma 6.7. Let V > U. We will prove the following two bounds:

Upper bound: sup
=∈N

0 (V−U)= · E G= ( 5 ) ≤ 2U | 5 |?
Λ
V/?
?,∞

for every 5 ∈ !? ( , `),

Lower bound: sup
=∈N

0 (V?−U)= · E G= ( 5 ) ≥ 2L | 5 |?
Λ
V/?
?,∞

for every 5 ∈ C( ),

for some positive constants 2U, 2L (without depending on 5 ). Note that, from Theorem 2.18,
the case V = V? in these bounds includes our assertion.
Upper bound. For 5 ∈ !? ( , `), we easily see that

0 (V−U)= · E G=? ( 5 ) ≤ 2?−2�∗({G=}=≥1)0V=
∑

F∈,=−1

∑
G∈+F (G1)

∫
 F

| 5 (G) − 5 (I) |? 3`(I).

Applying Lemma 6.10, we get the desired upper bound.4

Lower bound. Let 5 ∈ C( ) and let =, < ∈ N. Then we see that∫
 

∫
*
(=)
1 (G)

| 5 (G) − 5 (H) |? 3`< (H)3`< (G)(6.14)

≤ �∗
∑
F∈,=

∫
 F

∫
*
(=)
1 (G)

| 5 (G) − 5 (H) |? 3`< (H)3`< (G)

4The constant 2U depends only on ?, �∗ ({G=}=≥1), �6.10.

61



≤ �∗
∑
F∈,=

∑
E∈,=;

3�= (E,F)≤2

∫
 F

∫
 E

| 5 (G) − 5 (H) |? 3`< (H)3`< (G).

For E, F ∈ ,= with 3�= (E, F) ≤ 2, there exists a path [E0, . . . , E;] in
(
,=, �̃=

)
with ; ≤ 4

such that E0 = E and E; = F. Let G28−1 ∈  E8−1 ∩  E8 ∩ + (G∗=+1) and G28 ∈  E8 ∩ + (G∗=+1)
such that G28−1 = G28 or (G28−1, G28) ∈ � (G=+1) for each 8 = 1, . . . , ;. Then, for any G ∈  E
and H ∈  F,

| 5 (G) − 5 (H) |?

≤ (2;)?−1 ©«| 5 (G) − 5 (G1) |? + | 5 (H) − 5 (G2;−1) |? +
2;−2∑
9=1

�� 5 (G 9 ) − 5 (G 9+1)��?ª®¬ .
For any < > = and 9 = 1, . . . , 2; − 2, we see that∫

 F

∫
 E

�� 5 (G 9 ) − 5 (G 9+1)��? 3`< (H)3`< (G) = �� 5 (G 9 ) − 5 (G 9+1)��? `< ( E)`< ( F)
≤ 25

9
0−2U= �� 5 (G 9 ) − 5 (G 9+1)��? .

Hence, from (6.14), Lemma 6.10-(2) and Lemma 4.11, we have that

0 (U+V?)=
∫
 

∫
*
(=)
1 (G)

| 5 (G) − 5 (H) |? 3`< (H)3`< (G)

≤ 21
©«0V?=

∑
E∈,=

∑
I∈+E (G∗1)

∫
 E

| 5 (G) − 5 (I) |? 3`< (G) + 0 (V?−U)= · E
G∗
=+1

? ( 5 )ª®¬
≤ 22 sup

=∈N
0 (V?−U)= · E G=? ( 5 ),

where 21 B 2(2;)?−1 (5�∗/3)3 and 22 B 21�6.10�RUI. Letting < → ∞ in this inequality,
we see from Lemma 6.9 that

0 (U+V?)=
∫
 

∫
*
(=)
1 (G)

| 5 (G) − 5 (H) |? 3`(H)3`(G) ≤ 22 sup
=∈N

0 (V?−U)= · E G=? ( 5 ),

for every = ∈ N. By Lemma 2.7, it is immediate that there exists 2 > 0 (depending only on
�AD) such that �(G, 20−=) ⊆ * (=)1 (G) for any G ∈  and = ∈ N. Therefore, we conclude that
| 5 |

Λ
V?/?
?,∞
≤ 2L sup=∈N 0 (V?−U)= · E

G=
? ( 5 ) for all 5 ∈ C( ).5 This completes the proof. �

6.2 Proof of Theorem 2.20

Now, we construct the desired ?-energy E? on the Sierpiński carpet.
Proof of Theorem 2.20. From the identity (6.4) and Lemma 6.7, we immediately conclude
that

F? = { 5 ∈ C( ) | �∗8 5 ∈ F? for any 8 ∈ (}.
5The constant 2L depends only on ?, 0, U, �∗, �6.10, �AR, �AD.
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Define

(6.15) E ?,= ( 5 ) B
1
=

=∑
;=1
Ẽ G;? ( 5 ) =

=∑
;=1

1
2

∑
(G,H)∈� (G;)

����� d;/??=1/? 5 (G) −
d
;/?
?

=1/? 5 (H)
�����? ,

for each = ∈ N and 5 ∈ C( ). Then we can show that E ?,= ( · )1/? gives a semi-
norm satisfying Clarkson’s inequality. Indeed,

(
E ?,= ( 5 )

)1/? can be regarded as a ℓ?-
norm of (21∇G; 5 |+1 , . . . , 2=∇G; 5 |+=) on � (G1) × · · · × � (G=), where 2; B d

;/?
? /=1/? and

∇G; 5 |+;
(
(G, H)

)
B 5 (H) − 5 (G) for each (G, H) ∈ � (G;).

Since F? is separable by Theorem 5.10, there exists a countable dense subset F 0
? =

{ 5 9 } 9≥1 of F?. Since E ?,= ( 5 ) ≤ �6.7 | 5 |?F? from Lemma 6.7, we have that
{
E ?,= ( 5 )

}
=≥1 is

bounded for each 5 ∈ F?. By the diagonal argument, we can take a subsequence {=: }:≥1

such that
{
E ?,=: ( 5 9 )

}
:≥1 converges for each 9 ≥ 1 as : →∞. Let 5 ∈ F?, let Y > 0 and let

5∗ ∈ F 0
? such that ‖ 5 − 5∗‖F? < Y. For :, ; ≥ 1,���E ?,=: ( 5 )1/? − E ?,=; ( 5 )1/? ���

≤
���E ?,=: ( 5 )1/? − E ?,=: ( 5∗)1/? ���
+

���E ?,=: ( 5∗)1/? − E ?,=; ( 5∗)1/? ��� + ���E ?,=; ( 5 )1/? − E ?,=; ( 5∗)1/? ���
≤ 2�6.7 | 5 − 5∗ |F? +

���E ?,=: ( 5∗)1/? − E ?,=; ( 5∗)1/? ��� ,
and hence we obtain lim:∧;→∞

���E ?,=: ( 5 )1/? − E ?,=; ( 5 )1/? ��� ≤ 2�6.7Y. Thus a sequence{
E ?,=: ( 5 )

}
:≥1 is Cauchy. We conclude that lim:→∞ E ?,=: ( 5 ) exists for all 5 ∈ F?. Denote

this limit by E? ( 5 ). Then we can easily show that E? ( · )1/? is a semi-norm. Furthermore,
this limit diverges to ∞ for every 5 ∉ F?. By Lemmas 6.6 and 6.7, we deduce that a
semi-norm E? ( · )1/? is equivalent to | · |F? . Since E ?,= ( · )1/? is regarded as the ℓ?-norm,
E? ( · )1/? satisfies Clarkson’s inequality. Similarly, a norm ‖ · ‖F? also satisfies Clarkson’s
inequality.

Next, we prove the properties (1)-(5) of E?.
(1) Let 5 ∈ C( ) be constant. Then we easily see that Ẽ G=? ( 5 ) = 0 for any = ∈ N. Thus
E? ( 5 ) = 0. Conversely, if E? ( 5 ) = 0, then Ẽ G=? ( 5 ) = 0 for any = ∈ N. By Lemma 6.5-(1),
5 |⋃

=∈N + (G=) is constant. Since
⋃
=∈N+ (G=) is dense in  , we conclude that 5 is constant.

Next, let 5 ∈ F? and let 0 ∈ R. Then it is immediate that Ẽ G=? ( 5 ) = Ẽ G=? ( 5 + 01 ) for any
= ∈ N. Hence E? ( 5 ) = E? ( 5 + 01 ).
(2) This is proved in Theorem 5.5.
(3) Note that ‖i( 5 )‖?

!?
≤ 2?−1( |i(0) |? + ‖ 5 ‖?

!?
) whenever i : R→ R satisfies Lip(i) ≤ 1.

Since Ẽ G=? has the Markov property (Lemma 6.5-(4)), we see that E ?,= also has the same
property. This immediately deduces the Markov property of E?.
(4) For the same reason as (3), E? has the required symmetries (see Lemma 6.5-(2)).
(5) We see from (6.4) that, for 5 ∈ F?,

d?

∑
8∈(
E? (�∗8 5 ) = lim

:→∞

1
=:

=:∑
;=1

(
d?

∑
8∈(
Ẽ G;? (�∗8 5 )

)
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= lim
:→∞

(
E ?,=: ( 5 ) −

1
=:
Ẽ G1
? ( 5 ) +

1
=:
Ẽ G=:+1? ( 5 )

)
= E? ( 5 ).

(6) Let �1 B supp[ 5 ] and let �2 B supp[6 − 01 ]. Since dist(�1, �2) > 0, there exists
# ∈ N such that sup=≥# maxF∈,= diam F < dist(�1, �2). Then �∗F 5 or �∗F (6 − 01 ) is
equal to 0 for any F ∈ ,= and = ≥ # . From the self-similarity, we deduce that, for = ≥ # ,

E? ( 5 + 6) = E? ( 5 + 6 − 01 )

= d=?

∑
F∈,=

E?
(
�∗F 5 + �∗F (6 − 01 )

)
= d=?

∑
F∈,=; F∩�1≠∅

E?
(
�∗F 5

)
+ d=?

∑
F∈,=; F∩�2≠∅

E?
(
�∗F (6 − 01 )

)
= E? ( 5 ) + E? (6).

This completes the proof. �

Remark 6.11. (1) Since E? ( · )1/? satisfies Clarkson’s inequality, E? ( · )1/? is strictly con-
vex, that is, if _ ∈ (0, 1) 5 , 6 ∈ F? with 5 − 6 is not constant, then

E?
(
_ 5 + (1 − _)6

)1/?
< _ E? ( 5 )1/? + (1 − _)E? (6)1/? .

The convexity of E? ( · ) is also immediate from the construction. Moreover, from the
convexity of G ↦→ |G |?, we can show that E? ( · ) is strictly convex.

(2) The framework in [47] includes not only the standard planar Sierpiński carpet but
also Sierpiński gaskets and other self-similar sets (nested fractals and generalized
Sierpiński carpets for example). A recent paper by Kigami [38] gives a more general
framework to construct canonical ?-energy on ?-conductively homogeneous compact
metric spaces, which includes new results even when ? = 2.

Using the self-similarity of E?, we obtain the following property, which is called the
strong locality when ? = 2.

Corollary 6.12. If 5 , 6 ∈ F? satisfy supp[ 5 ] ∩ supp[6 − 01 ] = ∅ for some 0 ∈ R, then
E? ( 5 + 6) = E? ( 5 ) + E? (6).

Proof. Let �1 B supp[ 5 ] and let �2 B supp[6− 01 ]. Since dist(�1, �2) > 0, there exists
# ∈ N such that sup=≥# maxF∈,= diam F < dist(�1, �2). Then �∗F 5 or �∗F (6 − 01 ) is
equal to 0 for any F ∈ ,= and = ≥ # . From the and self-similarity, we deduce that, for
= ≥ # ,

E? ( 5 + 6) = E? ( 5 + 6 − 01 )

= d=?

∑
F∈,=

E?
(
�∗F 5 + �∗F (6 − 01 )

)
= d=?

∑
F∈,=; F∩�1≠∅

E?
(
�∗F 5

)
+ d=?

∑
F∈,=; F∩�2≠∅

E?
(
�∗F (6 − 01 )

)
= E? ( 5 ) + E? (6).

This completes the proof. �
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For future work, it might be useful to provide the following estimate concerning products
of functions in F?. When ? = 2, this result is standard (see [23, Theorem 1.4.2-(ii)] for
example). See also [38, Lemma 6.17-(2)].

Proposition 6.13. For any 5 , 6 ∈ F?,

E? ( 5 · 6) ≤ 2?−1 (‖ 5 ‖?C( ) E? (6) + ‖6‖?C( ) E? ( 5 )) .
In particular, 5 · 6 ∈ F?.

Proof. For any = ∈ N, we have

EG=? ( 5 · 6) ≤ 2?−1 1
2

∑
(G,H)∈� (G=)

(
|6(G) |? | 5 (G) − 5 (H) |? + | 5 (H) |? |6(G) − 6(H) |?

)
≤ 2?−1 (‖6‖?C( ) EG=? ( 5 ) + ‖ 5 ‖?C( ) EG=? (6)) .

In view of the proof of Theorem 2.20, this immediately implies our assertion. �

6.3 Proof of Theorem 2.19

We conclude this section by proving Theorem 2.19: a strict inequality V? > ?. Our argument
is similar to [33, Section 3]. The key to the proof is the notion of E?-harmonicity.

Definition 6.14. Let* be a non-empty open subset of  . We define

(6.16) C* B { 5 ∈ F? | supp[ 5 ] ⊆ *}, and F*? B C*
‖ · ‖F?

.

Proposition 6.15. It holds that

(6.17) F*? = { 5 ∈ F? | 5 (G) = 0 for any G ∈  \*}.

Proof. It is easy to show that F*? ⊆ { 5 ∈ F? | 5 (G) = 0 for any G ∈  \*}. To prove the
converse, let {iF}F∈,# be the partition of unity in Lemma 5.4 and let 5 ∈ F? with 5 (G) = 0
for any G ∈  \*. For each = ∈ N, define

5= (G) B
∑

F∈,=;* (=)1 (F)∩( \*)=∅

"= 5 (F)iF (G), G ∈  .

Then it is clear that 5= ∈ F? and supp[ 5=] ⊆ *. By Lemma 2.7, we easily see that 5= → 5

in C( ) as = → ∞. A similar argument in the proof of Theorem 5.10 deduces that there
exist a subsequence {=: }:≥1 and a sequence {6<}<≥1 from{ #∑

:=1
0: 5=:

���� # ∈ N, 0: ≥ 0 for each : = 1, . . . , #
}

such that 6< → 5 in F? as < → ∞. Since supp[6<] ⊆ * for any < ∈ N, we obtain
(6.17). �
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Definition 6.16. Let * be a non-empty open subset of  . Then ℎ ∈ F? is said to be
E?-harmonic on* if and only if the following condition holds:

(6.18) E? (ℎ) = inf{E? ( 5 ) | 5 ∈ F?, 5 = ℎ on  \*}.

Proposition 6.17. Let* be a non-empty open subset of  with* ≠  and let 6 ∈ F?. Then
there exists a unique function ℎ ∈ F? that is E?-harmonic on* and ℎ | \* ≡ 6 | \* .

Proof. If 6 | \* ≡ 0 for some 0 ∈ R, then ℎ B 0 is the required function. Suppose that
6 ∈ F? is not constant on  \ *. Since 6 is bounded and E? ( 5 + 01 ) = E? ( 5 ) for any
5 ∈ F? and 0 ∈ R, we may assume that 0 ≤ 6 ≤ 1. Clearly, { 5 ∈ F? | 5 | \* ≡ 6 | \*} is
non-empty. For each _ ≥ 0, define

c_ B inf{E? ( 5 ) + _ ‖ 5 ‖?!? | 5 ∈ F? with 5 | \* ≡ 6 | \*}.

Note that c_ < ∞. Let 5 ∈ F? satisfy 5 | \* ≡ 6 | \* . Set 5 # B ( 5 ∨ 0) ∧ 1 ∈ F?. Then, it
follows from 0 ≤ 6 ≤ 1 that 5 # | \* = 6 | \* . Thus,

E? ( 5 ) ≥ E? ( 5 #) + _
 5 #?

!?
− _ ≥ c_ − _,

which implies that c0 ≥ c_ − _ for any _ ≥ 0. For each = ∈ N, we can choose 5= ∈ F? with
5= | \* ≡ 6 | \* such that

E? ( 5=) + =−1 ‖ 5=‖?!? < c=−1 + =−1.

Then E? ( 5 #
= ) ≤ c0 + 2=−1 for each = ∈ N, where 5 #

= B ( 5= ∨ 0) ∧ 1 ∈ F?. Since
 5 #
=

?
!?
≤ 1

for any = ∈ N, there exist ℎ ∈ !? ( , `) and a subsequence {=: }:≥1 such that { 5 #
=:
}:≥1

converges weakly to ℎ in !?. Applying Mazur’s lemma, we find convex combinations
D: =

∑#:
9=:

0:, 9 5
#
= 9

(i.e. #: ∈ N, 0:, 9 ≥ 0 and
∑#:
9=:

0:, 9 = 1) such that D: converges to ℎ
in !? as : → ∞. Note that 5 #

= | \* ≡ 6 | \* and thus D: | \* ≡ 6 | \* . Also, we obtain
ℎ | \* = 6 | \* `-a.e. since D: → ℎ in !? as : →∞. By the triangle inequality of E? ( · )1/?,
we have that E? (D: ) ∈ [c0, c0 + 2=−1

:
), which together with Clarkson’s inequality implies

that lim:∧;→∞ E? (D: − D;) = 0. Indeed, when ? < 2,

E? (D: − D;)
1
?−1 ≤ 2

(
E? (D: ) + E? (D;)

) 1
?−1 − E? (D: + D;)

1
?−1

≤ 2
(
2c0 + 2=−1

: + 2=−1
;

) 1
?−1 − 2

?

?−1 c
1
?−1
0

= 2
(
2=−1

: + 2=−1
;

) 1
?−1 →

:∧;→∞
0.

The case ? ≥ 2 is similar to the above. Therefore, {D: }:≥1 is a Cauchy sequence in F?.
Since F? is a Banach space, we see that ℎ ∈ F? and D: converges to ℎ in F?. Moreover,
by lim:→∞ ‖D: ‖!? = ‖ℎ‖!? , we conclude that E? (ℎ) = lim:→∞ E? (D: ) = c0, that is, ℎ is a
minimizer of inf{E? ( 5 ) | 5 ∈ F? with 5 | \* ≡ 6 | \*}.

Lastly, we prove the uniqueness. Let ℎ8 ∈ F? (8 = 1, 2) be E?-harmonic on * with
ℎ8 | \* ≡ 6 | \* . When ? < 2, by Clarkson’s inequality of E?,

E? (ℎ1 − ℎ2)
1
?−1 ≤ 2

(
E? (ℎ1) + E? (ℎ2)

) 1
?−1 − E? (ℎ1 + ℎ2)

1
?−1
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≤ 21+ 1
?−1 c

1
?−1
0 − 2

?

?−1 c
1
?−1
0 = 0.

Thus ℎ1 − ℎ2 is constant by Theorem 2.20-(1). Since  \ * is not empty, we have that
ℎ1 = ℎ2. The case ? ≤ 2 is similar. �

Recall the definitions of  L,  R (see (4.8)) and define

(6.19)  T B {(G, H) ∈  | H = 1/2},  B B {(G, H) ∈  | H = −1/2}.

It is immediate from Theorems 2.17 and 2.20-(3) that { 5 ∈ F? | 5 | L ≡ 1, 5 | R ≡ 0} ≠ ∅.
Thus we have the following lemma by applying Proposition 6.17.

Lemma 6.18. There exists a function ℎ0 ∈ F? such that ℎ0 | L ≡ 1, ℎ0 | R ≡ 0 and ℎ0 is
E?-harmonic on  \ ( L ∪  R).

Let ℎ0 be as in Lemma 6.18. Since E? ( 5 ) = 0 if and only if 5 is constant, we immediately
have that E? (ℎ0) > 0. Inductively, we define

ℎ= B
∑

8∈{1,7,8}
(�8)∗

(
0−1ℎ=−1

)
(6.20)

+
∑
8∈{2,6}

(�8)∗
(
0−1(ℎ=−1 + 1)

)
+

∑
8∈{3,4,5}

(�8)∗
(
0−1(ℎ=−1 + 2)

)
.

Then the following proposition is clear by its definition and self-similarity of E?.

Lemma 6.19. For any = ∈ Z≥0, it holds that ℎ= ∈ F?, ℎ= | L ≡ 1, and ℎ= | R ≡ 0.

The following lemma is a key to prove Theorem 2.19.

Lemma 6.20. The function ℎ2 is not E?-harmonic on  \ ( L ∪  R).

Proof. Suppose to the contrary that ℎ2 were E?-harmonic on  \ ( L ∪  R). We claim
that then a contradiction that ℎ0 | T ≡ 0 would be implied. Let i ∈ F  \( 

L∪ B)
? . We set

ih B i ◦ )h. Define i0 ∈ C( ) by

i0(G) B


0−2i(�−1

83 (G)) if G ∈  83,

0−2ih(�−1
84 (G)) if G ∈  84,

0 otherwise.

Note that i0 is well-defined from the definitions of ih. Furthermore, we have i0 ∈ F? since
�∗Fi0 ∈ F? for any F ∈ ,2 (see Theorem 2.20-(4), (5)). Since ℎ2 + i0 = ℎ2 on  L ∪ R, the
uniqueness of E?-harmonic function yields that E? (ℎ2 + i0) > E? (ℎ2) unless i ≡ 0. Using
Theorem 2.20-(4) and (5), we see that

E? (ℎ2 + i0) − E? (ℎ2)

= d2
?

∑
F∈,2

(
E? (�∗Fℎ2 + �∗Fi0) − E? (�∗Fℎ2)

)
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= d2
?

∑
F∈{83,84}

(
E? (�∗Fℎ2 + �∗Fi0) − E? (�∗Fℎ2)

)
(by �∗Fi0 ≡ 0 for F ∉ {83, 84})

= 2d2
?0
−2? (
E? (ℎ0 + i) − E? (ℎ0)

)
(by ℎ0 ◦ )h ≡ ℎ0).

Hence, we conclude that E? (ℎ0 + i) > E? (ℎ0) for any i ∈ F  \( 
L∪ B)

? \ {0}. This implies
that ℎ0 is the minimizer of inf{E? ( 5 ) | 5 ∈ F? with 5 | L∪ B ≡ ℎ0 | L∪ B}.

Next, we define ℎ̃0 :  → R by

ℎ̃0(x) B
{
ℎ0(x) if x ∈  ∩ {(G, H) ∈ R2 | H ≤ −G}
ℎ0()−(x)) otherwise.

(6.21)

Then it is clear that ℎ̃0 ∈ C( ) and ℎ̃0 | L∪ B ≡ ℎ0 | L∪ B . Moreover, we can verify that
ℎ̃0 ∈ F? and E?

(
ℎ̃0

)
= E? (ℎ0). Indeed, for any = ∈ N,

EG=? (ℎ0) = EG
1
=

? (ℎ0) + EG
2
=

? (ℎ0),

where G8= = (V8=,E8=) (8 = 1, 2) are given by

V1
= = {(G, H) ∈ + (G=) | H ≤ −G}, E1

= = {(E, F) ∈ � (G=) | E, F ∈ V1
=},

V2
= = {(G, H) ∈ + (G=) | H ≥ −G}, E2

= = {(E, F) ∈ � (G=) | E, F ∈ V2
=}.

Since (1− ℎ0) ◦ '2
+ = ℎ̃0 on V2

=, we have E
G2
=

? (ℎ0) = EG
2
=

? ( ℎ̃0), and thus EG=? (ℎ0) = EG=?
(
ℎ̃0

)
for all = ∈ N. Therefore, we conclude that E?

(
ℎ̃0

)
= E? (ℎ0).

By Proposition 6.17, we have ℎ0 = ℎ̃0. Hence ℎ0 | T ≡ 1, which contradicts the fact that
ℎ0(?5) = 0. We complete the proof. �

Now we are ready to prove Theorem 2.19.
Proof of Theorem 2.19. By Lemmas 6.19 and 6.20, we obtain E? (ℎ2) > E? (ℎ0). Since

E? (ℎ2) = d2
?

∑
F∈,2

E? (�∗Fℎ2) = d2
?0
−2?

∑
F∈,2

E? (ℎ0),

we conclude that d2
?0
−2?#2

∗ > 1, which proves our assertion for ? > dimARC( , 3). We
know that V?/? is monotonically non-increasing by [41, Lemma 4.7.4], and thus we obtain
the desired result. �

Remark 6.21. A recent study of !? Besov critical exponent in [3] implies a partial result of
Theorem 2.19. Indeed, V? is characterized as the !? Besov critical exponent in Corollary
5.16. Thus a critical exponent U#

? in [3, equation (7)] coincides with V?/(?V2). Therefore,
[3, Theorem 3.11] gives a lower bound of V?:

• V? ≥ ?V2
2 for ? ∈ (dimARC( , 3), 2);

• V? ≥ (? − 2) (V2 − U) + V2 for ? ≥ 2.

Moreover, this bound implies that V? > ? for ? ∈
(
dimARC( , 3), (2U − V2)/(U − V2 + 1)

)
.
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7 Construction andbasic properties ofE?-energymeasures

In this section, we construct E?-energymeasures in the sameway as Hino’s work [31, Lemma
4.1]. We also investigate some properties, especially the chain rule of E?-energy measures.

Let (E?, F?) be the ?-energy in subsection 6.2, and let 5 ∈ F?. For each = ∈ N, we
define a measure m?,=

〈 5 〉 on,= (equipped with the f-algebra 2,=) by setting

m
?,=

〈 5 〉 (�) B d=?

∑
F∈�
E?

(
�∗F 5

)
, � ⊆ ,=.

Then we easily see that the total mass ofm?,=

〈 5 〉 is equal to E? ( 5 ) < ∞. Furthermore, it follows
from the self-similarity of E? that, for any � ⊆ ,=,

m
?,=+1
〈 5 〉 (� ·,1) = d=?

∑
F∈�

d?

∑
8∈(
E?

(
�∗F8 5

)
= d=?

∑
F∈�
E?

(
�∗F 5

)
= m

?,=

〈 5 〉 (�).

Therefore,
{
m
?,=

〈 5 〉
}
=≥1 satisfies the consistency condition, and hence Kolmogorov’s extension

theorem (see [22, Theorem 12.1.2] for example) yields a unique Borel finite measure m?

〈 5 〉
on Σ such that m?

〈 5 〉 (ΣF) = m
?,|F |
〈 5 〉

(
{F}

)
for every F ∈ ,#. Then we define `?〈 5 〉 B c∗m

?

〈 5 〉,
where c is the natural projection (recall Proposition 2.3). Note that `?〈 5 〉 is Borel regular (see
[22, Theorem 7.1.3] for example).

Before proving Theorem 2.22, we observe two fundamental properties of `?〈 5 〉.

Proposition 7.1. Let 5 ∈ F?. Then `?〈 5 〉 ≡ 0 if and only if 5 is constant.

Proof. It is immediate from `
?

〈 5 〉 ( ) = E? ( 5 ) and Theorem 2.20-(1). �

Proposition 7.2. For every 5 , 6 ∈ F? and � ∈ B( ), it holds that

(7.1)
���`?〈 5 〉 (�)1/? − `?〈6〉 (�)1/? ��� ≤ `?〈 5−6〉 (�)1/? .

In particular, if 5= ∈ F? converges to 5 in F?, then `?〈 5=〉 (�) → `
?

〈 5 〉 (�) for every � ∈ B( ).

Proof. Since `?〈 5 〉 is Borel regular, it will suffice to prove (7.1) when � is a closed set. Let
� be a closed set of  and define �; B {F ∈ ,; | ΣF ∩ c−1(�) ≠ ∅} for each ; ∈ N. Then,
as proved in [31, proof of Lemma 4.1], one can show that

{
Σ�;

}
;≥1 is a decreasing sequence

and
⋂
;∈N Σ�; = c

−1(�), where Σ�; B {l ∈ Σ | [l] ; ∈ �;}.
Recall that E? is obtained as a subsequential limit of

{
E ?,=

}
=≥1, where E ?,= is given

in (6.15). We may assume that E? ( 5 ) = lim=→∞ E ?,= ( 5 ) for every 5 ∈ F?. For each
;, = ∈ N, by choosing suitable constants 2F,8 (F ∈ �; , 8 ∈ {1, . . . , =}), we can regard(∑

F∈�; E ?,=
(
�∗F 5

) )1/?
as a ℓ?-norm of (2F,8∇G |F |�∗F 5 )F∈�; ,1≤8≤=. Consequently, we have

that ������
(
d;?

∑
F∈�;
E ?,=

(
�∗F 5

))1/?

−
(
d;?

∑
F∈�;
E ?,=

(
�∗F6

))1/?
������
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≤
(
d;?

∑
F∈�;
E ?,=

(
�∗F ( 5 − 6)

))1/?

.

Letting =→∞ in this inequality, we conclude that���m?

〈 5 〉
(
Σ�;

)1/? −m?

〈6〉
(
Σ�;

)1/?
��� ≤ m?

〈 5−6〉
(
Σ�;

)1/?
,

for any ; ∈ N. Letting ; →∞, we obtain (7.1) for any closed set �. �

First, we prove Theorem 2.22-(2) and (3)

Theorem 7.3 (Theorem 2.22-(2)). For any Φ ∈ C1(R) and 5 ∈ F?,

(7.2) `
?

〈Φ( 5 )〉 (3G) = |Φ
′(G) |? `?〈 5 〉 (3G).

Proof. Note that Φ ◦ 5 ∈ F? for any 5 ∈ F? by the Markov property of E? (Theorem
2.20-(c)) and the compactness of 5 ( ).

First, we prove (7.2) when Φ is a polynomial. Let Φ be a polynomial and let 5 ∈ F?.
Since 5 ( ) is compact, for any Y > 0 there exists # (Y) ∈ N such that���� ����Φ( 5 (H)) −Φ( 5 (H′))5 (H) − 5 (H′)

����? − |Φ′( 5 (G)) |? ���� < Y
whenever G, H, H′ ∈  F for some F ∈ ,= with = ≥ # (Y). Thus, for any < ∈ N, = ≥ # (Y),
(H, H′) ∈ � (G<), F ∈ ,= and G ∈  F,��|Φ( 5 (�F (H))) −Φ( 5 (�F (H′))) |? − |Φ′(G) |? | 5 (�F (H)) − 5 (�F (H′)) |? ��

≤ Y | 5 (�F (H)) − 5 (�F (H′)) |? ,

and we conclude that���Ẽ G<? (
�∗F (Φ ◦ 5 )

)
− |Φ′( 5 (G)) |? Ẽ G<?

(
�∗F 5

) ��� ≤ Y Ẽ G<? (
�∗F 5

)
.

Taking an appropriate limit, we have

(7.3)
��E? (�∗F (Φ ◦ 5 )) − |Φ′( 5 (G)) |? E? (�∗F 5 ) �� ≤ Y E? (�∗F 5 ) ,

whenever F ∈ ,= and = ≥ # (Y). For any < ∈ N, F ∈ ,< and = ≥ # (Y), we see from the
self-similarity of E? that����m?

〈Φ( 5 )〉 (ΣF) −
∫
ΣF

|Φ′( 5 (c(l))) |? 3m?

〈 5 〉 (l)
����

≤
∑
E∈,=

∫
ΣFE

����E? (�∗FE (Φ( 5 )))E?
(
�∗FE 5

) − |Φ′( 5 (c(l))) |?
���� 3m?

〈 5 〉 (l)

≤ Ym?

〈 5 〉 (ΣF).
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Hence, for any F ∈ ,#,

m
?

〈Φ( 5 )〉 (ΣF) =
∫
ΣF

|Φ′( 5 (c(l))) |? 3m?

〈 5 〉 (l).

By Dynkin’s c-_ theorem, we get m?

〈Φ( 5 )〉 (3l) = |Φ
′( 5 (c(l))) |m?

〈 5 〉 (3l). By the change
of variable formula (see [22, Theorem 4.1.11] for example), we have (7.2) in this case.

Next, let Φ ∈ C1(R). Then, by applying Weierstrass’ approximation theorem for Φ′, we
can obtain a sequence of polynomials {Φ: }:≥1 with Φ: (0) = Φ(0) such that Φ: → Φ and
Φ′
:
→ Φ′ uniformly on 5 ( ). By the argument in the last paragraph, we know that

(7.4) `
?

〈Φ: ( 5 )〉 (3G) =
��Φ′: ( 5 (G))��? `?〈 5 〉 (3G),

for every : ∈ N. For any Φ̃ ∈ C1(R), it is immediate that���Φ̃( 5 (�F (H))) − Φ̃( 5 (�F (H′)))��� ≤ sup
B∈ 5 ( F )

���Φ̃′(B)��� | 5 (�F (H)) − 5 (�F (H′)) | ,
and hence,

Ẽ G<?
(
�∗F

(
Φ̃( 5 )

) )
≤ sup
B∈ 5 ( F )

���Φ̃′(B)��� Ẽ G<? (
�∗F 5

)
.

From the construction in subsection 6.2 and the self-similarity of E?, we conclude that

(7.5) E?
(
Φ̃( 5 )

)
≤ d=?

∑
F∈,=

sup
B∈ 5 ( F )

���Φ̃′(B)��� Ẽ G<? (
�∗F 5

)
,

for every = ∈ N. From (7.5) and the self-similarity of E?, since the convergence Φ′: → Φ′

is uniform, we obtain lim:→∞ E?
(
Φ( 5 ) − Φ: ( 5 )

)
= 0. We deduce our assertion by letting

: →∞ in (7.4) and applying Proposition 7.2. �

Theorem 7.4 (Theorem 2.22-(3)). For any = ∈ N and 5 ∈ F?,

(7.6) `
?

〈 5 〉 (3G) = d
=
?

∑
F∈,=
(�F)∗`?〈�∗F 5 〉 (3G).

Proof. Let =, < ∈ N, let F ∈ ,< and let 5 ∈ F?. If < ≤ =, then we see that

d=?

∑
E∈,=
(fE)∗m?

〈�∗E 5 〉
(ΣF) = d=?

∑
E∈F·,=−<

(fE)∗m?

〈�∗E 5 〉
(ΣF)

= d=?

∑
E∈F·,=−<

m
?

〈�∗E 5 〉
(Σ)

= d=+<?

∑
E∈F·,=−<

E?
(
�∗E 5

)
= m

?

〈 5 〉 (ΣF).

If < ≤ =, then we have that

d=?

∑
E∈,=
(fE)∗m?

〈�∗E 5 〉
(ΣF) = d=? (f[F]=)∗m

?

〈�∗[F ]= 5 〉
(ΣF)

= d<? E?
(
�∗F 5

)
= m

?

〈 5 〉 (ΣF).
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Therefore, by Dynkin’s c-_ theorem, we deduce that

m
?

〈 5 〉 (3l) = d
=
?

∑
F∈,=
(fF)∗m?

〈�∗F 5 〉
(3l),

for every = ∈ N. By Proposition 2.3, we have the desired result. �

As an immediate consequence of Theorems 7.3 and 7.4, we can prove the following
energy image density property (we borrow this naming from [13, Theorem I.7.1.1]).

Proposition 7.5. For any 5 ∈ F?, it holds that the image measure of `?〈 5 〉 by 5 is absolutely
continuous with respect to the one-dimensional Lebesgue measure L 1 on R. In particular,
`
?

〈 5 〉 ({G}) = 0 for any G ∈  .

Proof. We follow [19, Theorem 4.3.8]. It will suffice to show that 5∗`?〈 5 〉 (�) = 0 whenever
5 ∈ F? and � is a compact subset of Rwith L 1(�) = 0. We can choose a sequence {i=}=≥1

from continuous functions on R with compact supports such that |i= | ≤ 1, lim=→∞ i= (G) =
1 (G) for each G ∈ R, and ∫ ∞

0
i= (C) 3C =

∫ 0

−∞
i= (C) 3C = 0,

for each = ∈ N. Define Φ= (G) B
∫ G

0 i= (C) 3C for each G ∈ R and = ∈ N. Then we easily see
that Φ= ∈ C1(R) with compact support, Φ= (0) = 0, and

��Φ′=�� ≤ 1 for each = ∈ N. By the
dominated convergence theorem, it is immediate that lim=→∞Φ= (G) = 0 for each G ∈ R and
Φ= ( 5 ) converges to 0 in !? ( , `). Since E? (Φ= ( 5 )) ≤ E? ( 5 ) by the Markov property of
E?, we deduce that {Φ=}=≥1 is F?-bounded. Therefore, there exists a subsequence {=: }:≥1

such that {Φ=: ( 5 )}:≥1 converges to 0weakly in F?. ByMazur’s lemma, there exist # (;) ∈ N
and {0(;): }# (;):=;

with 0(;): ≥ 0 and
∑# (;)
:=;

0(;): = 1 such that Ψ; ◦ 5 B
∑# (;)
:=;

0(;):Φ=: ◦ 5
converges to 0 in F? as ; →∞. Then, by Fatou’s lemma and the change of variable formula,
we conclude that

5∗`
?

〈 5 〉 (�) =
∫
R

lim
;→∞

�����# (;)∑
:=;

0(;):Φ′=: (C)
�����
?

5∗`
?

〈 5 〉 (3C)

≤ lim
;→∞

∫
 

��Ψ′; ( 5 (G))��? `?〈 5 〉 (3G)
= lim
;→∞

`
?

〈Ψ; ( 5 )〉 ( ) = lim
;→∞
E?

(
Ψ; ( 5 )

)
= 0. �

Finally, we prove Theorem 2.20-(1).

Theorem 7.6 (Theorem 2.22-(1)). Let 5 , 6 ∈ F?. If ( 5 − 6) |� is constant for some Borel
subset � of  , then `?〈 5 〉 (�) = `

?

〈6〉 (�).

Proof. Let 5 ∈ F? and let � ∈ B( ). Suppose that 5 |� = 2 for some 2 ∈ R. Then, by
Proposition 7.5, we have `?〈 5 〉 ( 5

−1({2})) = 0, which implies that `?〈 5 〉 (�) = 0. Combining
this result and Proposition 7.2, we finish the proof. �
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We conclude this paper by seeing some consequences of the symmetries of E?.

Proposition 7.7. For any 5 ∈ F? and ) ∈ Sym( ), it holds that )∗`?〈 5 〉 = `
?

〈)∗ 5 〉.

Proof. Let � ∈ B( ) be a closed set and let ) ∈ Sym( ). By the symmetries of G; ,
there exists a graph automorphism g

(;)
)

of G; (i.e. g(;)) : + (G;) → + (G;) is a bĳection, and
(G, H) ∈ � (G;) if and only if (g(;)

)
(G), g(;)

)
(H)) ∈ � (G;)) such that ) ( F) =  g (;)

)
(F) for any

F ∈ ,; . For each ; ∈ N, define

�; B {F ∈ ,; | ΣF ∩ c−1(�) ≠ ∅} and �); B {F ∈ ,; | ΣF ∩ c−1()−1(�)) ≠ ∅}.

Then we easily see that g(;)
)

gives a bĳection between �; and �); . Hence, for any = ∈ N,∑
F∈�;
ẼG=? (�∗F ()∗ 5 )) =

∑
F∈�;
ẼG=? (() ◦ �F)∗ 5 ) =

∑
F∈�)

;

ẼG=? (�∗F 5 ).

In view of (6.15), we get
∑
F∈�; E ?,= (�∗F ()∗ 5 )) =

∑
F∈�)

;
E ?,= (�∗F 5 ), and thus

m
?

〈)∗ 5 〉 (Σ�; ) =
∑
F∈�;
E? ()∗ 5 ) =

∑
F∈�)

;

E? ( 5 ) = m?

〈 5 〉 (Σ�); ).

Letting ; →∞, we obtain `?〈)∗ 5 〉 (�) = )∗`
?

〈 5 〉 (�) because
⋂
;∈N�; = c

−1(�) and⋂
;∈N�

)
;
=

c−1()−1(�)) as seen in the proof of Proposition 7.2. Since both of these measures `?〈)∗ 5 〉
and )∗`?〈 5 〉 are Borel regular, we complete the proof. �

Remark 7.8. Applying Proposition 7.7, we can provide an alternative proof of E? (ℎ0) =
E? ( ℎ̃0) in the proof of Lemma 6.20. Recall the definitions of ℎ0 and ℎ̃0 (see Lemma
6.18 and (6.21)). Let �1 B {(G, H) ∈  | H > −G}, let �2 B {(G, H) ∈  | H < −G}
and let �3 B {(G, H) ∈  | H = −G}. Then {�8}38=1 are disjoint and  =

⋃3
8=1 �8.

Note that ℎ̃0 |�2∪�3 = ℎ0 |�2∪�3 and ( ℎ̃0 ◦ )+) |�1 = (1 − ℎ0) |�1 . We immediately have
`
?

〈ℎ̃0〉
(�2 ∪ �3) = `

?

〈ℎ0〉 (�2 ∪ �3) by Theorem 7.6. Since )+(�1) = �1, we see from
Proposition 7.7 and Theorem 7.6 that

`
?

〈ℎ̃0〉
(�1) = `?〈)∗+ ℎ̃0〉

(�1) = `?〈1−ℎ0〉 (�1) = `?〈ℎ0〉 (�1).

Hence we conclude that `?
〈ℎ̃0〉
( ) = `?〈ℎ0〉 ( ), which implies that E? (ℎ0) = E? ( ℎ̃0).

A Miscellaneous facts

A.1 Proof of Lemma 4.11

This lemma is obtained by observing that the estimates in [50, Lemma 8.4] depend only on
the constants controlling rough isometries. For the reader’s convenience, we give a complete
proof.
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Lemma A.1. For each 8 = 1, 2, let {�8= = (+ 8=, � 8=)}=≥1 be a series of finite graphs with

�8∗ B sup
=∈N

max
G∈+ 8=

#{H ∈ + 8= | (G, H) ∈ � 8=} < ∞,

and let i= : +1
= → +2

= be a uniform rough isometry from {�1
=}=≥1 to {�2

=}=≥1. Then there
exists a positive constant �URI (depending only on �1, �2 in Definition 4.9, �1

∗ and ?) such
that

E�
1
=

? ( 5 ◦ i=) ≤ �URI E�
2
=

? ( 5 ),
for every = ∈ N and 5 : +2

= → R. In particular,

C�
1
=

? (i−1
= (�=), i−1

= (�=)) ≤ �URIC�
2
=

? (�=, �=)

for every = ∈ N, where �=, �= are disjoint subsets of +2
= .

Proof. Let = ∈ N, let 5 : +2
= → R and let (G, H) ∈ �1

= . We set G′ = i= (G) and H′ = i= (H).
Let �8 (8 = 1, . . . 4) be constants in the definition of uniform rough isometry. Then we get

0 ≤ 3�2
=
(G′, H′) ≤ �1 + �2.

We set ! ∈ N such that ! − 1 < �1 +�2 ≤ !. Since 3�2
=
(G′, H′) ≤ !, there exist ; ≤ ! and a

path [I0, I1, . . . , I;] in �2
= from G′ to H′, that is I0 = G′, I; = H′ and (I8−1, I8) ∈ �2

= for each
8 = 1, . . . , ;. Now, by Hölder’s inequality, we have that

| 5 ◦ i= (H) − 5 ◦ i= (G) | = | 5 (G′) − 5 (H′) | ≤
;∑
8=1
| 5 (I8−1) − 5 (I8) |

≤ ! (?−1)/?
(
;∑
8=1
| 5 (I8−1) − 5 (I8) |?

)1/?

.

In particular, it follows that

(A.1) | 5 ◦ i= (H) − 5 ◦ i= (G) |? ≤ !?−1
;∑
8=1
| 5 (I8−1) − 5 (I8) |? .

For each (G, H) ∈ �1
= , fix a path W′GH B [I′0, . . . , I

′
;
] in�2

= from i= (G) to i= (H) with ; ≤ !.
For each (E, F) ∈ �2

= , we set

"(E,F) B #{(G, H) ∈ �1
= | path W′GH contains (E, F)}.

We also define A (=)E B {G ∈ +1
= | i= (G) ∈ �3�2

=

(E, !)} for each H ∈ +2
= . Then, for any

0, 1 ∈ A (=)E ,

�−1
1 3�1

=
(0, 1) − �2 ≤ 3�2

=
(i= (0), i= (1)) ≤ 3�2

=
(i= (0), E) + 3�2

=
(i= (1), E) ≤ 2!.

Therefore, we have diam(A (=)E , 3�1
=
) ≤ �1(2!+�2) C !∗, which implies that #A (=)E ≤ !∗�1

∗
for any = ∈ N and E ∈ +2

= . Now, since the length of Wi= (G)i= (H) is less than !, it follows that

{(G, H) ∈ �1
= | a path W′GH contains a edge (E, F) ∈ �2

=} ⊆ A
(=)
E × A (=)E .

This yields that #"(E,F) ≤ (!∗�1
∗)2 for any = ∈ N and (E, F) ∈ �2

= . Using this bound and
summing (A.1) over (G, H) ∈ �1

= , we conclude that

E�
1
=

? ( 5 ◦ i=) ≤ !?−1(!∗�1
∗)2 E

�2
=

? ( 5 ). �
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A.2 Proof of Lemma 5.13

We prove Lemma 5.13 in a metric measure space setting by extending [24, Theorem 4.11-
(iii)]. Let (X, 3, `) be U-Ahlfors regular, that is, (X, 3) is a non-empty metric space, ` is
a Borel regular measure on (X, 3) without point mass, and there exist U > 0 and �AR ≥ 1
such that

�−1
ARA

U ≤ `(�3 (G, A)) ≤ �ARA
U

for every G ∈ - and A ∈ (0, diam(X, 3)). Note that dimH(X, 3) = U.

Lemma A.2. Let V > U and ? > 1. Then there exists a positive constant �5.13 (depending
only on ?, V, U, �AR) such that

| 5 (G) − 5 (H) |?

≤ �5.133 (G, H)V−U sup
A∈(0,33 (G,H)]

A−V
∫
X
−
∫
�3 (I,A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I),

for every 5 ∈ ΛV/??,∞ and `-a.e. G, H ∈ X.

Proof. For 5 ∈ !1
loc(X, `), G ∈ X and A > 0, we set 5�3 (G,A) B −

∫
�3 (G,A)

5 (I) 3`(I). Let
5 ∈ ΛV/??,∞, let G ≠ H ∈ X and A > 0 such that 3 (G, H) ≤ A. By Fubini’s theorem, we see that

5�3 (G,A) =
1

`(�3 (G, A))`(�3 (H, A))

∫
�3 (G,A)

∫
�3 (H,A)

5 (I) 3`(I′)3`(I).

Also, we have

5�3 (H,A) =
1

`(�3 (G, A))`(�3 (H, A))

∫
�3 (G,A)

∫
�3 (H,A)

5 (I′) 3`(I′)3`(I).

From these identities, we have that�� 5�3 (G,A) − 5�3 (H,A) ��?(A.2)

=

���� 1
`(�3 (G, A))`(�3 (H, A))

∫
�3 (G,A)

∫
�3 (H,A)

( 5 (I) − 5 (I′)) 3`(I′)3`(I)
����?

≤ 1
`(�3 (G, A))`(�3 (H, A))

∫
�3 (G,A)

∫
�3 (H,A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I)

≤ 1
`(�3 (G, A))`(�3 (H, A))

∫
X

∫
�3 (I,3A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I)

≤ 21A
−U

∫
X
−
∫
�3 (I,3A)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I)

≤ 21A
−U+V sup

d∈(0,3A]
d−V

∫
X
−
∫
�3 (I,d)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I),

where we used Hölder’s inequality in the third line and the Ahlfors regularity in the fifth line.
(21 is a positive constant depending only on �AR.) Similarly, we obtain�� 5�3 (G,2A) − 5�3 (G,A) ��?(A.3)
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≤ 21A
−U+V sup

d∈(0,3A]
d−V

∫
X
−
∫
�3 (I,d)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I).

Next, let X∗ be the set of Lebesgue points with respect to 5 and let A > 0. By Lebesgue’s
differential theorem on Ahlfors regular metric measure space (see [27, Theorem 1.8] for
example), it holds that `(X \ X∗) = 0. Set A: B 2−:A for any : ∈ Z≥0. Then, for any G ∈ X∗
and any Y > 0 there exists  ∈ N such that

�� 5 (G) − 5�3 (G,A: ) �� < n for all : ≥  . Now we
have that�� 5 (G) − 5�3 (G,A) ��

≤
�� 5 (G) − 5�3 (G,A: ) �� + �� 5�3 (G,A ) − 5�3 (G,A0) �� ≤ Y + ∞∑

:=0

�� 5�3 (G,A: ) − 5�3 (G,A:+1) �� .
Since Y > 0 is arbitrary, we get�� 5 (G) − 5�3 (G,A) �� ≤ ∞∑

:=0

�� 5�3 (G,A: ) − 5�3 (G,A:+1) �� ,
for any G ∈ X∗. From this inequality and (A.3), we see that�� 5 (G) − 5�3 (G,A) ��(A.4)

≤
∞∑
:=0

�� 5�3 (G,A: ) − 5�3 (G,2A: ) ��
≤ 22A

(V−U)/?
(

sup
d∈(0,3A]

d−V
∫
X
−
∫
�3 (I,d)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I)
)1/?

,

where 22 B 2
1/?
1

∑∞
:=0 2−: (V−U)/?.

Since ` has no point mass, it holds that X∗ \ {G} ≠ ∅ for any G ∈ X∗. Let H ∈ X∗ \ {G}
and set A B 3 (G, H) > 0. From (A.2) and (A.4), we conclude that

| 5 (G) − 5 (H) | ≤
�� 5 (G) − 5�3 (G,A) �� + �� 5�3 (G,A) − 5�3 (H,A) �� + �� 5 (H) − 5�3 (H,A) ��

≤ 23A
(V−U)/?

(
sup

d∈(0,3A]
d−V

∫
X
−
∫
�3 (I,d)

| 5 (I) − 5 (I′) |? 3`(I′)3`(I)
)1/?

,

where 23 B 2
1/?
1 + 222. This proves our assertion. �
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