# COMPOSITE MULTI-OBJECTIVE OPTIMIZATION

Theory and Algorithms

## HIROKI TANABE

# COMPOSITE MULTI-OBJECTIVE OPTIMIZATION

Theory and Algorithms

by

## HIROKI TANABE

Submitted in partial fullfillment of the requirement for the degree of DOCTOR OF INFORMATICS (Applied Mathematics and Physics)



# KYOTO UNIVERSITY KYOTO 606-8501, JAPAN SEPTEMBER 2022

# Preface

To accurately answer all human needs with optimization problems, we cannot avoid considering multi-objective optimization. Humankind is a *greedy* creature that cannot tolerate only a single desire and always has multiple preferences. Unfortunately, many of them conflict, and the best choice to answer all of them seldom exists. This trade-off is what makes multi-objective optimization a tough challenge. Even for problems indeed with multi-objectives, the single-objective models tend to be adopted. However, thanks to the long-standing wisdom of scientists, the development of theories and algorithms for multi-objective optimization has been gradually gaining speed in recent years. As one of the "dwarfs who ride above the giants," I would like to contribute to its development, even if only slightly.

By adding some explanations and novel discoveries to the author's papers [104, 102, 101, 103, 100], this thesis provides theories and algorithms for problems in multi-objective optimization where the objective functions are non-smooth. These types of problems are very complex. Thus, it is not practical to consider general non-smooth models for large-scale problems, which have been recently in high demand. Therefore, this thesis mainly focuses on multi-objective optimization problems with a specific structure, called composite models. In detail, this model's every objective function is the sum of differentiable and convex functions. Such models work well, for example, with the loss and regularization models in machine learning.

There are three main contributions of this thesis. One is new merit functions for multi-objective optimization and the elucidation of their properties. A merit function is a function that returns zero in the solution of the problem and a positive number otherwise. We can use it to reformulate the original problem and estimate the rate of convergence of the algorithm. Another contribution is the proximal gradient method for multi-objective optimization problems. It is a first-order method using information from first-order derivatives for composite multi-objective optimization problems. It is more efficient than existing first-order methods for non-smooth multi-objective problems; it has an O(1/k) convergence rate. It can also generate stationary points for non-convex problems. Another contribution is the accelerated proximal gradient method for multi-objective optimization. It does not work for non-convex problems but is faster than the proximal gradient method and solves problems with  $O(1/k^2)$ . The proposed algorithm is also novel for singleobjective problems depending on the choice of the parameters. Its numerical results are better than existing algorithms for single objectives.

> Hiroki Tanabe September 2022

# Acknowledgment

This thesis summarizes the author's research during the enrollment in the doctoral course at the Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University. Professor Nobuo Yamashita and Associate Professor Ellen Hidemi Fukuda of the same department, my supervisors, allowed me to conduct this research and provided guidance throughout it. I want to express my deepest gratitude to them.

I likewise thank the members of the System Optimization Laboratory, the scientists of the Operations Research Society of Japan, and many others for their valuable comments and suggestions at the workshops and conferences. I would also like to thank my friends and family for their emotional support.

Part of this research was supported by Grant-in-Aid for JSPS Fellows (20J21961) from the Japan Society for the Promotion of Science.

# Contents

| Preface |                                        |         |                                              |    |  |  |  |
|---------|----------------------------------------|---------|----------------------------------------------|----|--|--|--|
| A       | Acknowledgment v<br>List of Figures ix |         |                                              |    |  |  |  |
| Li      |                                        |         |                                              |    |  |  |  |
| Li      | st of                                  | Table   | 5                                            | xi |  |  |  |
| Li      | st of                                  | Symb    | ols and Notations x                          | v  |  |  |  |
| 1       | Intr                                   | oducti  | ion                                          | 1  |  |  |  |
|         | 1.1                                    | Multi-  | objective optimization                       | 1  |  |  |  |
|         |                                        | 1.1.1   | Scalarization approach                       | 2  |  |  |  |
|         |                                        | 1.1.2   | Heuristics                                   | 2  |  |  |  |
|         |                                        | 1.1.3   | Descent methods                              | 3  |  |  |  |
|         | 1.2                                    | Comp    | osite optimization                           | 5  |  |  |  |
|         |                                        | 1.2.1   | The proximal gradient method                 | 6  |  |  |  |
|         |                                        | 1.2.2   | The accelerated proximal gradient method     | 6  |  |  |  |
|         | 1.3                                    | Merit   | functions                                    | 7  |  |  |  |
|         |                                        | 1.3.1   | Merit functions for variational inequalities | 8  |  |  |  |
|         |                                        | 1.3.2   | Merit functions for multi-objective problems | 9  |  |  |  |
|         | 1.4                                    | Motiv   | ations and contributions                     | 11 |  |  |  |
|         | 1.5                                    | Outlir  | ne of the thesis                             | 12 |  |  |  |
| 2       | Pre                                    | limina  | ries 1                                       | 13 |  |  |  |
|         | 2.1                                    | Vector  | rs and matrices                              | 13 |  |  |  |
|         | 2.2                                    | Conve   | xity and semi-continuity                     | 14 |  |  |  |
|         | 2.3                                    | Differe | entiability                                  | 15 |  |  |  |

|   | 2.4  | Hölde                                                                 | r and Lipschitz continuity                                     | 17 |  |  |
|---|------|-----------------------------------------------------------------------|----------------------------------------------------------------|----|--|--|
|   | 2.5  | Direct                                                                | ional derivatives and subgradients                             | 17 |  |  |
|   | 2.6  | The p                                                                 | roximal operator and Moreau envelope                           | 18 |  |  |
|   | 2.7  | Polyal                                                                | x-Łojasiewicz inequality and proximal-PL inequality            | 19 |  |  |
|   | 2.8  |                                                                       |                                                                |    |  |  |
|   | 2.9  | Stabil                                                                | ity and sensitivity analysis                                   | 20 |  |  |
|   | 2.10 | Pareto                                                                | o optimality                                                   | 21 |  |  |
| 3 | Mer  | it fun                                                                | ctions for multi-objective optimization                        | 25 |  |  |
|   | 3.1  | Introd                                                                | uction                                                         | 25 |  |  |
|   | 3.2  | Merit                                                                 | functions and their basic properties                           | 27 |  |  |
|   |      | 3.2.1                                                                 | A gap function for lower semi-continuous multi-objective op-   |    |  |  |
|   |      |                                                                       | timization                                                     | 27 |  |  |
|   |      | 3.2.2                                                                 | A regularized gap function for convex multi-objective opti-    |    |  |  |
|   |      |                                                                       | mization                                                       | 28 |  |  |
|   |      | 3.2.3                                                                 | A regularized and partially linearized gap function for com-   |    |  |  |
|   |      |                                                                       | posite multi-objective optimization                            | 37 |  |  |
|   | 3.3  | Relati                                                                | on between different merit functions                           | 48 |  |  |
|   | 3.4  | Level-boundedness of the proposed merit functions                     |                                                                | 51 |  |  |
|   | 3.5  | The multi-objective proximal PL inequality and error bounds $\ . \ .$ |                                                                | 53 |  |  |
|   | 3.6  | Conclusions                                                           |                                                                | 58 |  |  |
| 4 | A p  | proximal gradient method for multi-objective optimization 61          |                                                                |    |  |  |
|   | 4.1  | Introd                                                                | uction                                                         | 61 |  |  |
|   | 4.2  | The a                                                                 | lgorithm                                                       | 62 |  |  |
|   |      | 4.2.1                                                                 | Armijo rule along the feasible direction                       | 63 |  |  |
|   |      | 4.2.2                                                                 | Sufficient decrease rule along the proximal arc $\hdots$       | 64 |  |  |
|   |      | 4.2.3                                                                 | Constant stepsize                                              | 64 |  |  |
|   | 4.3  | Conve                                                                 | rgence of the method                                           | 64 |  |  |
|   | 4.4  | Convergence rate of the method                                        |                                                                | 67 |  |  |
|   |      | 4.4.1                                                                 | The non-convex case                                            | 68 |  |  |
|   |      | 4.4.2                                                                 | The convex case                                                | 70 |  |  |
|   |      | 4.4.3                                                                 | The case that the multi-objective proximal-PL inequality holds | 75 |  |  |
|   | 4.5  | Applie                                                                | cation to robust multi-objective optimization                  | 77 |  |  |
|   |      | 4.5.1                                                                 | Linearly constrained quadratic programming                     | 78 |  |  |
|   |      | 4.5.2                                                                 | Second-order cone programming                                  | 79 |  |  |

|   |                | 4.5.3 Semi-definite programming                                 | 80  |
|---|----------------|-----------------------------------------------------------------|-----|
|   | 4.6            | Numerical experiments                                           | 82  |
|   | 4.7            | Conclusions                                                     | 85  |
| 5 | An             | accelerated proximal gradient method for multi-objective op-    |     |
|   | $\mathbf{tim}$ | ization                                                         | 87  |
|   | 5.1            | Introduction                                                    | 87  |
|   | 5.2            | The algorithm                                                   | 88  |
|   | 5.3            | Convergence rates analysis                                      | 97  |
|   | 5.4            | Convergence of the iterates                                     | 106 |
|   | 5.5            | Numerical experiments                                           | 112 |
|   |                | 5.5.1 Artificial test problems (bi-objective and tri-objective) | 113 |
|   |                | 5.5.2 Image deblurring (single-objective)                       | 117 |
|   | 5.6            | Conclusions                                                     | 119 |
| 6 | Con            | nclusions                                                       | 121 |

# List of Figures

| 4.1 | Result for Experiment 1                                                               |
|-----|---------------------------------------------------------------------------------------|
| 4.2 | Result for Experiment 2                                                               |
| 4.3 | Result for Experiment 3                                                               |
| 5.1 | Objective function values obtained by Algorithms 4.1 and 5.1                          |
|     | with $(a,b) = (0,1/4)$                                                                |
| 5.2 | Pareto solutions obtained with some $(a, b)$                                          |
| 5.3 | Deblurring of the cameraman                                                           |
| 5.4 | Deblurred image                                                                       |
| 5.5 | Values of $u_{\infty}(x^k) = F_1(x) - F_1(x^*)$ , where $x^*$ is the optimal solution |
|     | estimated from the original image                                                     |

# List of Tables

| 3.1 | Properties of our proposed merit functions                            |
|-----|-----------------------------------------------------------------------|
| 5.1 | Average computational costs with Algorithms $4.1$ and $5.1$           |
|     | with $(a, b) = (0, 1/4)$                                              |
| 5.2 | Average computational costs of Algorithm 5.1 with various $(a,b)$ 116 |
| 5.3 | Computational costs for the image deblurring                          |

# List of Symbols and Notations

#### Vector Spaces

- $\mathbf{R}$  the set of real numbers
- $\mathbf{R}^n$  the *n*-dimensional real space
- $\mathbf{R}^n_+$  the nonnegative orthant in  $\mathbf{R}^n$

(x, y) the open line segment between x and y

- [x, y] the closed line segment between x and y
- $\dim(X)$  the dimension of a space X
- $\langle x,y\rangle~$  the Euclidean inner product between x and y
- $||x||_1$  the  $\ell_1$ -norm of x
- $||x||_2$  the  $\ell_2$ -norm of x
- $||x||_{\infty}$  the  $\ell_{\infty}$ -norm of x

#### Sets

- $\Delta^n$  the unit *n*-simplex
- $\operatorname{conv}(C)$  the convex hull of C
- int(C) the interior of C
- $\operatorname{dist}(x, C)$  the distance between x and C

#### Matrices

 $\ker(A)$  the kernel of a matrix A

- $A^{\top}$  the transpose of a matrix A
- $I_n$  the  $n \times n$  identity matrix

### **Functions and Operators**

- $\nabla f(x)\,$  the gradient of f at x
- $\mathcal{J}_f(x)$  the Jacobian matrix of f at x
- $\partial f(x)\,$  the subdifferential of f at x

### f'(x; d) the directional derivative of f at x in a direction d

 $\operatorname{dom}(f)$  the effective domain of function f

# Chapter 1

# Introduction

*Optimization*, a branch of applied mathematics, minimizes (or maximizes) an objective function under given constraints. It is a fundamental technique for operations research and machine learning.

This chapter first describes multi-objective optimization, the subject of this thesis, and composite optimization, a crucial class of non-smooth optimization. It also explains the merit function, an analytical tool for optimization. Finally, it identifies the research challenges on multi-objective optimization problems and explains this thesis's motivations, contributions, and outlines.

## 1.1 Multi-objective optimization

Optimization problems usually deal with only one objective function. However, many real-world problems have multiple objectives. One solution to this is *multi-objective optimization*, which minimizes several objective functions as follows:

$$\min_{x \in C} \quad F(x),\tag{1.1}$$

where  $C \subseteq \mathbf{R}^n$  is a constraint set, and  $F \colon \mathbf{R}^n \to (-\infty, +\infty]^m$  is a vector-valued function with  $F \coloneqq (F_1, \ldots, F_m)^\top$ . When m = 1, (1.1) reduces to a single-objective optimization. This model has many applications in engineering [38], statistics [22], and machine learning (particularly multi-task learning [93, 72] and neural architecture search [66, 32, 37]).

In most cases of  $m \ge 2$ , no single point minimizes all objective functions simultaneously, so we use the concept of *Pareto optimality*, a generalization of the usual optimality for single-objective problems. We say that  $y \in C$  Pareto dominates  $x \in C$ if  $F_i(y) \leq F_i(x)$  for all i = 1, ..., m and  $F_j(y) < F_j(x)$  for at least one j = 1, ..., m, and we call a point Pareto optimal if it is not Pareto dominated by any other point. Generally, the Pareto optimal solution is not unique and constitutes a set. We call such a set the Pareto frontier. The solutions in the Pareto frontier are in trade-off relationships, and the decision-makers must select a solution from it further.

#### **1.1.1** Scalarization approach

The *scalarization approach* [51, 52, 111] is one of the most popular strategies for multi-objective problems. It converts the original multi-objective problem into a parameterized scalar-valued problem.

Let us now introduce the weighted sum method [111], one of the most wellknown scalarization techniques. It scalarizes (1.1) with the weight vector  $w := (w_1, \ldots, w_m)^\top \in \mathbf{R}^m$  as follows:

$$\min_{x \in \mathbf{R}^n} \quad \langle w, F(x) \rangle, \tag{1.2}$$

where

$$w \ge 0$$
 and  $\sum_{i=1}^{m} w_i = 1.$ 

When F is convex, for every Pareto optimal solution  $x^*$  of (1.1), there exists w such that  $x^*$  is the solution of (1.2) [79]. However, it may be challenging to choose a good weight in advance. Moreover, if F is non-convex, there may be Pareto optimal solutions that are not the solutions of (1.2) for any w, and some w may make (1.2) unbounded.

#### 1.1.2 Heuristics

Heuristics are approaches that do not necessarily lead to the optimal solution but can yield a solution close to the optima at some level. Regarding the multi-objective context, in many cases, heuristics employ evolutionary algorithms, particularly genetic algorithms (GA) such as NSGA-II [31] and NSGA-III [30], being practical for the Pareto frontier enumeration because they are multi-point search algorithms. These approaches have had some success for real-world problems, but they have the disadvantage that there is no theoretical convergence guarantee to obtain a Pareto solution.

#### 1.1.3 Descent methods

Descent methods [45] are iterative algorithms that decrease the objective function values at each iteration. They do not require a priori parameters selection like scalarization, and unlike heuristics, we can analyze their global convergence property under reasonable assumptions. All algorithms proposed in this thesis are part of the descent methods. Below we provide typical descent methods for (1.1).

#### Example 1.1

#### The steepest descent method [40, 56]

Consider a smooth unconstrained multi-objective optimization, i.e.,  $C = \mathbf{R}^n$ and each  $F_i$  is differentiable in (1.1). Then, the steepest descent method updates  $\{x^k\}$  by the following operations:

$$d^{k} \coloneqq \underset{d \in \mathbf{R}^{n}}{\operatorname{argmin}} \left[ \max_{i=1,\dots,m} \left\langle \nabla F_{i}(x^{k}), d \right\rangle + \frac{1}{2\alpha_{k}} \|d\|_{2}^{2} \right],$$
(1.3)  
$$x^{k+1} \coloneqq x^{k} + s_{k} d^{k}$$

with  $\alpha_k > 0$  and  $s_k > 0$ . When m = 1, we have  $d^k = -\alpha_k \nabla F_1(x)$ , which is the steepest descent direction for the scalar optimization [23].

#### The projected gradient method [57]

For a convex-constrained smooth multi-objective optimization, i.e.,  $C \subseteq \mathbf{R}^n$  is non-empty, closed, and convex, and every  $F_i$  is differentiable in (1.1), we can use the projected gradient method described by

$$z^{k} \coloneqq \underset{z \in C}{\operatorname{argmin}} \left[ \max_{i=1,\dots,m} \langle \nabla F_{i}(x^{k}), z - x^{k} \rangle + \frac{1}{2\alpha_{k}} \left\| z - x^{k} \right\|_{2}^{2} \right], \qquad (1.4)$$
$$x^{k+1} \coloneqq x^{k} + s_{k} (z^{k} - x^{k})$$

with  $\alpha_k > 0$  and  $s_k > 0$ . When m = 1, (1.4) reduces to the projected gradient method for scalar optimization [86, 54, 53, 78], i.e.,

$$z^{k} \coloneqq \mathbf{proj}_{C}(x^{k} - \alpha_{k} \nabla F_{1}(x^{k})),$$
$$x^{k+1} \coloneqq x^{k} + s_{k}(z^{k} - x^{k}),$$

where  $\mathbf{proj}_C$  denotes the projection onto C given by

$$\operatorname{proj}_{C}(x) \coloneqq \underset{z \in C}{\operatorname{argmin}} \|z - x\|_{2}.$$
(1.5)

Moreover, when  $C = \mathbf{R}^n$ , (1.4) amounts to the steepest descent method (1.3).

#### The projected subgradient method [12]

Focus on a convex-constrained, non-smooth, and convex multi-objective optimization, i.e., C is a non-empty, closed, and convex subset of  $\mathbb{R}^n$ , and each  $F_i$ is convex and non-differentiable in (1.1). The subgradient method requires an exogenous sequence  $\{\beta_k\}$  satisfying

$$\beta_k > 0, \quad \sum_{k=0}^{\infty} \beta_k = \infty, \quad and \quad \sum_{k=0}^{\infty} \beta_k^2 < \infty$$

and generates  $\{x^k\}$  by

$$x^{k+1} \coloneqq \underset{z \in C}{\operatorname{argmin}} \left[ \frac{1}{2} \| z - x^k \|_2^2 + \frac{\beta_k}{\eta_k} \max_{i=1,\dots,m} \langle \xi_i^k, z - x^k \rangle \right],$$

where  $\xi_i^k \in \partial F_i(x^k)$  and

$$\eta_k \coloneqq \max_{i=1,\dots,m} \|\xi_i\|_2.$$

When m = 1, this step represents the projected subgradient method [85, 87, 94, 1, 2] for scalar optimization:

$$x^{k+1} \coloneqq \operatorname{proj}_C \left( x^k - \frac{\beta_k}{\eta_k} \xi_1^k \right).$$

There are various other extensions of single-objective methods, e.g., the proximal point [17], Newton's [39, 55, 106], quasi-Newton [89, 88, 81], trust-region [90, 21], in-exact projected gradient [46], reduced gradient [75, 35], augumented Lagrangian [29], external penalty [108, 44], barrier [43], and conjugate gradient methods [74].

### **1.2** Composite optimization

Composite optimization has the following structure:

$$\min_{x \in \mathbf{R}^n} \quad F(x) \coloneqq f(x) + g(x), \tag{1.6}$$

where  $f: \mathbf{R}^n \to \mathbf{R}$  is  $L_f$ -smooth with some  $L_f > 0$ , and  $g: \mathbf{R}^n \to (-\infty, +\infty]$  is closed, proper, and convex. When f is convex, we call (1.6) convex composite. This model has many applications, particularly in machine learning. In detail, f and goften represent the loss function and the regularization term, respectively. We list below some typical examples with the structure (1.6).

#### Example 1.2

#### Smooth unconstrained minimization

If g = 0, (1.6) reduces to the unconstrained smooth minimization

$$\min_{x \in \mathbf{R}^n} \quad f(x),$$

where  $f: \mathbf{R}^n \to \mathbf{R}$  is  $L_f$ -smooth.

#### Convex-constrained smooth minimization

If g is an indicator function of a non-empty, closed, and convex set C, i.e.,

$$g(x) = \delta_C(x) \coloneqq \begin{cases} 0 & x \in C, \\ \infty & otherwise, \end{cases}$$
(1.7)

then (1.6) amounts to the convex-constrained smooth minimization

$$\min_{x \in C} \quad f(x)$$

with an  $L_f$ -smooth function f.

#### $\ell_1$ -regularization

If  $g(x) \coloneqq \tau \|x\|_1$  for some  $\tau > 0$ , (1.6) reduces to the  $\ell_1$ -regularization

$$\min_{x \in C} \quad f(x) + \tau \|x\|_1$$

with f being  $L_f$ -smooth.

#### 1.2.1 The proximal gradient method

The proximal gradient method [50] is one of the most common algorithms for solving (1.6). For a given  $x^0 \in int(dom(F))$ , it recursively update  $\{x^k\}$  by

$$x^{k+1} = \mathbf{prox}_{\alpha_k g} (x^k - \alpha_k \nabla f(x^k)),$$

where **prox** is the *proximal operator*, which we will define in (2.10). If we can estimate the Lipschitz constant  $L_f$ , we can use a constant stepsize  $\alpha_k \in (0, 1/L_f]$ . Otherwise, we can determine  $\alpha_k$  in each iteration by backtracking.

The description of the algorithm now follows.

```
Algorithm 1.1 The proximal gradient method

Input: x^0 \in int(dom(F)), \varepsilon > 0

1: k \leftarrow 0

2: repeat

3: pick \alpha_k > 0

4: x^{k+1} \leftarrow prox_{\alpha_k g}(x^k - \alpha_k \nabla f(x^k))

5: k \leftarrow k+1

6: until ||x^k - x^{k-1}||_{\infty} < \varepsilon

7: return x^k
```

With this algorithm,  $\{||x^{k+1} - x^k||_2\}$  converges to zero with a rate of  $O(\sqrt{1/k})$ and every accumulation point of  $\{x^k\}$ , if it exists, is a stationary point [9]. When f is convex,  $\{x^k\}$  converges to the global minima  $x^*$ , and  $\{F(x^k) - F(x^*)\}$  converges to zero with a rate of O(1/k) [9]. Moreover, when f is strongly convex,  $\{x^k\}$  converges linearly to  $x^*$  [9]. Furthermore, if we assume the so-called proximal-PL condition, which we will define by (2.14),  $\{F(x^k)\}$  converges linearly to  $F(x^*)$  [65].

#### 1.2.2 The accelerated proximal gradient method

When f is convex, the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [11], can solve (1.6) with an  $O(1/k^2)$  rate of convergence, while the proximal gradient method achieves a rate of O(1/k).

We describe below the algorithm. Like the proximal gradient method, the stepsize  $\alpha_k$  may be fixed at a constant or updated by the backtracking procedure.

With Algorithm 1.2,  $\{F(x^k) - F(x^*)\}$  for the global minima  $x^*$  converges to zero with a rate of  $O(1/k^2)$  [11], but the convergence of iterates remains unknown.

```
Algorithm 1.2 The accelerated proximal gradient method
```

```
Input: x^0 \in int(dom(F)), \varepsilon > 0
  1: k \leftarrow 1
  2: y^1 \leftarrow x^0
  3: t_1 \leftarrow 1
  4: repeat
             pick \alpha_k > 0
  5:
             x^k \leftarrow \mathbf{prox}_{\alpha_k g}(y^k - \alpha_k \nabla f(y^k))
  6:
            t_{k+1} \leftarrow \sqrt{t_k^2 + 1/4} + 1/2
  7:
             \gamma_k \leftarrow (t_k - 1)/t_{k+1}y^{k+1} \leftarrow x^k + \gamma_k (x^k - x^{k-1})
  8:
  9:
10:
             k \leftarrow k+1
11: until ||x^k - y^k||_{\infty} < \varepsilon
12: return x^k
```

With a slite modification, that is, changing the update rule of the momentum factor with  $t_k = (k + a - 1)/a$  for some a > 2, we can prove that  $\{x^k\}$  converges to the minima while keeping the convergence rate of  $O(1/k^2)$  [24].

### **1.3** Merit functions

*Merit functions* [49] are maps that return zeros at the problems' solutions and strictly positive values otherwise. In other words, they are the objective functions of optimization problems with the same solutions as the original problems. Therefore, the merit functions should have the following properties:

- Quick computability;
- Continuity;
- Differentiability;
- Optimality of the stationary points;
- Level-boundedness;
- Error-boundedness.

Moreover, as we can consider the merit functions to represent how far feasible points are from the optimal solutions, they help analyze convergence rates of optimization algorithms.

### **1.3.1** Merit functions for variational inequalities

Merit functions have evolved in the context of reformulating variational inequalities (VIs) and complementarity problems (CPs) as optimization problems [49]. The variational inequality (VI) consists in finding  $x \in C$  such that

$$\langle T(x), y - x \rangle \ge 0 \quad \text{for all } y \in C,$$
 (1.8)

where  $C \subseteq \mathbf{R}^n$  is nonempty, closed, and convex, and  $T: \mathbf{R}^n \to \mathbf{R}^n$  is continuous. We can also rewrite (1.8) as the following *complementarity problem* (CP):

$$T(x) \ge 0, \quad x \ge 0, \quad \text{and} \quad \langle T(x), x \rangle \ge 0.$$
 (1.9)

In particular, if T is affine, we call (1.9) the *linear complementarity problem* (LCP). There are many merit functions for VIs and CPs, but here we illustrate the most basic two merit functions for VIs.

#### Example 1.3 (Merit functions for the VI (1.8))

The classical gap function [8, 60]

We call the function  $G_{\infty} \colon \mathbf{R}^m \to (-\infty, +\infty]$  the classical gap function:

$$G_{\infty}(x) \coloneqq \sup_{y \in C} \langle T(x), x - y \rangle.$$
(1.10)

It has the following properties:

- $G_{\infty}(x) \ge 0$  for all  $x \in C$ ;
- $G_{\infty}(x) = 0$  and  $x \in C$  if and only if x satisfies (1.8);
- If C is bounded,  $G_{\infty}$  is finite everywhere.

The top two indicate that  $G_{\infty}$  is a merit function for the VI (1.8).

#### The regularized gap function [48, 6]

For a given parameter  $\alpha > 0$ , we can consider the regularized gap function  $G_{\alpha} \colon \mathbf{R}^n \to \mathbf{R}$  defined by

$$G_{\alpha}(x) \coloneqq \max_{y \in C} \left[ \langle T(x), x - y \rangle - \frac{1}{2\alpha} \|x - y\|_2^2 \right], \tag{1.11}$$

which is a merit function for the VI (1.8), too. Since (1.11) maximizes a strongly concave function on a nonempty, closed, and convex set, even if C

is unbounded, a unique point attains the maximum, and  $G_{\alpha}$  is finite everywhere. Moreover, denoting such a maximizer by  $H_{\alpha}(x)$ , if T is continuously differentiable,  $G_{\alpha}$  is also differentiable at any point x, and we have

$$\nabla G_{\alpha}(x) = T(x) - [\mathcal{J}_T(x) - \alpha^{-1}I_n](H_{\alpha}(x) - x).$$

Note that

$$H_{\alpha}(x) = \mathbf{proj}_C(x - \alpha T(x)).$$

Furthermore, if the Jacobian  $\mathcal{J}_T(x)$  is positive definite on C, any stationary point of the problem

$$\min_{x \in C} \quad G_{\alpha}(x)$$

solves the VI (1.8) [48]. In addition, if T is strongly monotone with modulus  $\mu > 0$ , i.e.,

$$\langle T(x) - T(x'), x - x' \rangle > \mu ||x - x'||_2^2 \quad \text{for all } x, x' \in \mathbf{R}^n$$

and if  $\alpha > 1/(2\mu)$ , then  $G_{\alpha}$  has the following error bound property [99]:

$$||x - x^*|| \le \sqrt{\frac{G_{\alpha}(x)}{\mu - 1/(2\alpha)}} \quad for \ all \ x \in S,$$

where  $x^*$  is the unique solution of the VI (1.8).

#### **1.3.2** Merit functions for multi-objective problems

The history of research on merit functions for multi-objective problems is relatively new, beginning in 1998 with Chen, Goh, and Yang [27] on (1.1) under the assumptions of polyhedrality of C and convexity of F. Afterward, various merit functions appeared for multi-objective problems, including multi-objective optimization [73, 33], (finite-dimensional) vector variational inequalities [26, 67, 69, 110, 109, 25, 70], and (finite-dimensional) vector equilibrium problems [62, 69, 68, 71, 77]. Below we pick up generalizations of Example 1.3 to the weak Stamnpacchia type vector variational inequality  $(SVVI)^w$ , which consists in finding  $x \in C$  such that

$$(\langle T_1(x), y - x \rangle, \dots, \langle T_m(x), y - x \rangle) \notin -\operatorname{int}(\mathbf{R}^m_+) \quad \text{for all } y \in C, \tag{1.12}$$

where  $C \subseteq \mathbf{R}^n$  is a nonempty, closed, convex, and  $T_i: \mathbf{R}^n \to \mathbf{R}^n, i = 1, ..., m$ . Note that x satisfies (1.12) if and only if x is weakly Pareto optimal for (1.1) when  $F_i$  is differentiable and  $T_i = \nabla F_i$  for each i = 1, ..., m.

#### Example 1.4

#### The gap function for $(SVVI)^w$ [25, 70]

We can write the gap function  $G_{\infty} \colon \mathbf{R}^n \to (-\infty, +\infty]$  for (1.12) as

$$G_{\infty}(x) \coloneqq \min_{\lambda \in \Delta^{m}} \sup_{y \in C} \left\langle \sum_{i=1}^{m} \lambda_{i} T_{i}(x), x - y \right\rangle,$$

where  $\Delta^m$  is the unit m-simplex, which we will define by (2.1). When m = 1, it corresponds to (1.10). Like (1.10),  $G_{\infty}$  is a merit function for (1.12), i.e.,

- $G_{\infty}(x) \ge 0$  for all  $x \in C$ ;
- $G_{\infty}(x) = 0, x \in C$  if and only if x solves (1.12),

and it is finite-valued if C is bounded.

#### The regularized gap function for $(SVVI)^w$ [25]

We can define the regularized gap function  $G_{\alpha} \colon \mathbf{R}^n \to \mathbf{R}$  with  $\alpha > 0$  for (1.12) by

$$G_{\alpha}(x) \coloneqq \min_{\lambda \in \Delta^m} \max_{y \in C} \left[ \left\langle \sum_{i=1}^m \lambda_i T_i(x), x - y \right\rangle - \frac{1}{2\alpha} \|x - y\|_2^2 \right], \tag{1.13}$$

matching (1.11) when m = 1. It also satisfies the two properties as a merit function for (1.12). Moreover, if each  $T_i, i = 1, ..., m$  is continuously differentiable, then  $G_{\alpha}$  is directionally differentiable in any direction  $d \in \mathbf{R}^n$ , and

$$G'_{\alpha}(x;d) = \min_{\lambda \in \Lambda(x)} \left[ \left\langle \sum_{i=1}^{m} \lambda_i T_i(x) - \sum_{i=1}^{m} \lambda_i \mathcal{J}_{T_i}(x) (H_{\alpha}(x,\lambda) - x), d \right\rangle + \alpha \langle H_{\alpha}(x,\lambda) - x, d \rangle \right],$$

where

$$H_{\alpha}(x,\lambda) \coloneqq \operatorname{proj}_{C} \left( x - \alpha^{-1} \sum_{i=1}^{m} \lambda_{i} T_{i}(x) \right),$$
  

$$T_{\alpha}(x,\lambda) \coloneqq -\left\langle \sum_{i=1}^{m} \lambda_{i} T_{i}(x), H_{\alpha}(x,\lambda) - x \right\rangle - \frac{1}{2\alpha} \|H_{\alpha}(x,\lambda) - x\|_{2}^{2}$$
  

$$\Lambda(x) \coloneqq \{\lambda \in \Delta^{m} \mid G_{\alpha}(x) = T_{\alpha}(x,\lambda)\}.$$

Particularly, if  $\Lambda(x)$  is a singleton, i.e.,  $\Lambda(x) = \{\lambda(x)\}, G_{\alpha}$  is Gateaux differentiable at x and

$$\nabla G_{\alpha}(x)$$
  
=  $\sum_{i=1}^{m} \lambda_i(x) T_i(x) - \sum_{i=1}^{m} \lambda_i(x) \mathcal{J}_{T_i}(x) [H_{\alpha}(x,\lambda(x)) - x] + \alpha^{-1} [H_{\alpha}(x,\lambda(x)) - x].$ 

Furthermore, if each  $T_i$ , i = 1, ..., m is strongly monotone with modulus  $\mu_i > 0$ , and if  $\alpha > 1/(2\mu)$  with  $\mu := \min_{i=1,...,m} \mu_i$ , then  $G_{\alpha}$  provides the error bound:

$$\operatorname{dist}(x, \operatorname{sol}(SVVI)^w) \le \sqrt{\frac{G_{\alpha}(x)}{\mu - 1/(2\alpha)}} \quad \text{for all } x \in C,$$

where  $sol(SVVI)^w$  denotes the solution set of (1.12).

### **1.4** Motivations and contributions

As discussed in Section 1.1, multi-objective optimization (1.1) is an indispensable model in dealing with real-world problems, and the studies on its theories and algorithms have great significance. On the other hand, many previous studies on multi-objective optimization, particularly on the descent methods described in Section 1.1.3 and the merit functions described in Section 1.3.2, have dealt with smooth problems, and there is still room for exploration of non-smooth problems. The projected subgradient method introduced in Example 1.1 can handle non-smooth multi-objective optimization, but it may not work well for large-scale problems due to the stepsize decay.

This thesis focuses on non-smooth multi-objective optimization problems with

specific structures, mainly the generalization of the composite model introduced in Section 1.2, i.e.,

$$\min_{x \in C} \quad F(x) = f(x) + g(x), \tag{1.14}$$

where  $C \subseteq \mathbf{R}^n$  is a non-empty, closed, and convex set, and  $F: \mathbf{R}^n \to (-\infty, +\infty]^m$ ,  $f: \mathbf{R}^n \to \mathbf{R}^m$ ,  $g: \mathbf{R}^n \to (-\infty, +\infty]^m$  are vector-valued functions with  $F \coloneqq (F_1, \ldots, F_m)^\top$ ,  $f \coloneqq (f_1, \ldots, f_m)^\top$ ,  $g \coloneqq (g_1, \ldots, g_m)^\top$  such that  $f_i: \mathbf{R}^n \to \mathbf{R}$  is continuously differentiable and  $g_i: \mathbf{R}^n \to (-\infty, +\infty]$  is closed, proper, and convex. Then, we present their theory and algorithms.

### 1.5 Outline of the thesis

After introducing in Chapter 2 some symbols, basic definitions, and their properties necessary for the discussion, Chapter 3 proposes and characterizes three new types of merit functions for non-smooth multi-objective optimization problems: the gap function for continuous problems, the regularized gap function for convex problems, and the regularized and partially linearized gap functions for composite problems. Chapter 4 develops the proximal gradient method for composite multi-objective optimization problems, describes its convergence, convergence rate, applications to robust multi-objective optimization, and performs numerical experiments. Chapter 5 presents its acceleration applicable with *convex* composite objectives: the accelerated proximal gradient method or Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and provides similar discussions. We note here that our multi-objective FISTA represents a new algorithm even for single objectives, depending on the choice of acceleration factors, and performs better in numerical experiments.

# Chapter 2

# Preliminaries

This chapter presents some notations, basic definitions, and their properties used in this thesis.

### 2.1 Vectors and matrices

Let  $\mathbf{R}^p$  denote the space of *p*-dimensional real column vectors. Meanwhile, we write the set of real numbers as simply  $\mathbf{R}$  or  $(-\infty, +\infty)$  instead of  $\mathbf{R}^1$ . Moreover,  $\mathbf{R}^{q \times p}$ stands for the space formed by  $q \times p$  real matrices. In addition, define the nonnegative orthant in  $\mathbf{R}^p$  by

$$\mathbf{R}^p_+ \coloneqq \left\{ v \coloneqq (v_1, \dots, v_m)^\top \in \mathbf{R}^p \mid v_i \ge 0, i = 1, \dots, p \right\},\$$

where  $\top$  denotes transpose, and define the unit simplex  $\Delta^p \subseteq \mathbf{R}^p_+$  by

$$\Delta^p \coloneqq \left\{ v \in \mathbf{R}^p_+ \; \middle| \; \sum_{i=1}^p v_i = 1 \right\}.$$

$$(2.1)$$

The orthant  $\mathbf{R}^p_+$  induces the partial orders for any  $v^1, v^2 \in \mathbf{R}^p$ :  $v^1 \leq v^2$  (alternatively,  $v^2 \geq v^1$  if  $v^2 - v^1 \in \mathbf{R}^p_+$ , and  $v^1 < v^2$  (alternatively,  $v^2 > v^1$ ) if  $v^2 - v^1 \in \operatorname{int}(\mathbf{R}^p_+)$ . In other words, we say that  $v^1 \leq (<) v^2$  if  $v^1_i \leq (<) v^2_i$  for all  $i = 1, \ldots, p$ . Furthermore, let  $\langle \cdot, \cdot \rangle$  stand for the Euclidean inner product, i.e.,  $\langle v^1, v^2 \rangle \coloneqq \sum_{i=1}^p v^1_i v^2_i$ . We also define  $\ell_2$ -norm  $\|\cdot\|_2$ ,  $\ell_1$ -norm  $\|\cdot\|_1$ , and  $\ell_\infty$ -

norm  $\|\cdot\|_{\infty}$  by

$$||v||_2 \coloneqq \sqrt{\langle v, v \rangle} = \sum_{i=1}^p v_i^2, \quad ||v||_1 \coloneqq \sum_{i=1}^p |v_i|, \text{ and } ||v||_\infty \coloneqq \max_{i=1,\dots,p} |v_i|$$

for any  $v \in \mathbf{R}^p$ . Finally, we note some apparent inequalities that hold for arbitrary vectors  $v^1, v^2, v^3 \in \mathbf{R}^p$  and a sequence  $\{v^{s,p}\} \subseteq \mathbf{R}^p$ .

$$\min_{i=1,\dots,p} v_i^1 - \min_{i=1,\dots,p} v_i^2 \ge \min_{i=1,\dots,p} \left( v_i^1 - v_i^2 \right), \tag{2.2}$$

$$\|v^{2} - v^{1}\|_{2}^{2} + 2\langle v^{2} - v^{1}, v^{1} - v^{3} \rangle = \|v^{2} - v^{3}\|_{2}^{2} - \|v^{1} - v^{3}\|_{2}^{2},$$
(2.3)

$$\sum_{s=1}^{r} \sum_{p=1}^{s} v^{s,p} = \sum_{p=1}^{r} \sum_{s=p}^{r} v^{s,p}.$$
(2.4)

## 2.2 Convexity and semi-continuity

We first define the convexity of sets and functions. A set  $C \subseteq \mathbf{R}^p$  is *convex* if

$$(1-\alpha)v^1 + \alpha v^2 \in C$$
 for all  $v^1, v^2 \in C, \alpha \in [0,1]$ .

Likewise, a function  $h\colon \mathbf{R}^p \to (-\infty,+\infty]$  is  $\mathit{convex}$  if

$$h((1-\alpha)x + \alpha y) \le (1-\alpha)h(x) + \alpha h(y) \quad \text{for all } x, y \in \text{dom}(h), \alpha \in [0,1],$$

strictly convex if

$$h((1-\alpha)x + \alpha y) < (1-\alpha)h(x) + \alpha h(y) \quad \text{for all } x, y \in \text{dom}(h), \alpha \in (0,1),$$

and  $\mu_f$ -convex with  $\mu_f \in \mathbf{R}$  if

$$h((1-\alpha)x + \alpha y) \le (1-\alpha)h(x) + \alpha h(y) \quad \text{for all } x, y \in \text{dom}(h), \alpha \in [0, 1],$$

where dom(h) stands for the *effective domain* of h given by

$$\operatorname{dom}(h) \coloneqq \{ x \in \mathbf{R}^p \mid h(x) < +\infty \}.$$

In particular, the strong convexity (with modulus  $\mu_f$ ) denotes the  $\mu_f$ -convexity with  $\mu_f > 0$ . We also note that the 0-convexity is equivalent to the usual con-

vexity. Moreover, if dom $(h) \neq \emptyset$  for some convex function  $h: \mathbf{R}^p(-\infty, +\infty]$ , we say that h is *proper* and convex. On the other hand, we call h to be concave if -his convex. Every definition and argument relating to convex functions also holds for concave functions by appropriately interchanging  $\leq$  and  $\geq$ ,  $+\infty$  and  $-\infty$ , sup and inf, etc.

Let us now introduce the semi-continuity of functions. For all  $\{x^k\} \subseteq \mathbf{R}^p$  converging to  $x \in \mathbf{R}^p$ , a function  $h: \mathbf{R}^p \to (-\infty, +\infty]$  is upper semi-continuous at x if

$$h(x) \ge \limsup_{k \to \infty} h(x^k)$$

and lower semi-continuous if

$$h(x) \le \liminf_{k \to \infty} h(x^k).$$

A necessary and sufficient condition for h to be lower semi-continuous is that the level set  $\mathbf{lev}_c(h)$  given by

$$\mathbf{lev}_c(h) \coloneqq \{ x \in \mathbf{R}^p \mid h(x) \le c \}$$

$$(2.5)$$

is closed for any  $c \in \mathbf{R}$ . We refer to lower-semi-continuous, proper, and convex functions as *closed*, *proper*, and *convex* functions. The level sets of convex functions are convex, and the level sets of closed, proper, and convex functions are closed and convex. Note that if  $\mathbf{lev}_c(h)$  is bounded for all  $c \in \mathbf{R}$ , we say that h is *level-bounded*. For example, every strongly convex function is level-bounded. Note also that (2.5) is applicable as a definition of the level set for the vector-valued function  $h: \mathbf{R}^p \to \mathbf{R}^q$ and  $c \in \mathbf{R}^q$ .

### 2.3 Differentiability

Suppose that  $h: \mathbf{R}^p \to (-\infty, +\infty]$  is finite-valued in an appropriate neighborhood of  $x \in \mathbf{R}^p$ . If h has the partial derivative

$$\frac{\partial h(x)}{\partial x_i} \coloneqq \lim_{\alpha \to 0} \frac{h(x + \alpha e^i) - h(x)}{\alpha} \quad \text{for all } i = 1, \dots, p$$

with  $e^i$  being the unit vector along the  $x_i$ -axis, and if

$$h(x+\varepsilon) = h(x) + \langle \nabla h(x), \varepsilon \rangle + o(\|\varepsilon\|_2) \quad \text{for all } \varepsilon \in \mathbf{R}^p$$
(2.6)

with  $o: [0, +\infty) \to \mathbf{R}$  satisfying  $\lim_{t\to 0} o(t)/t = 0$  and

$$\nabla h(x) \coloneqq \begin{bmatrix} \frac{\partial h(x)}{\partial x_1} \\ \vdots \\ \frac{\partial h(x)}{\partial x_p} \end{bmatrix},$$

then h is differentiable at x, and we call  $\nabla h(x) \in \mathbf{R}^p$  a gradient of h at x. If  $\nabla h(x)$  is continuous at x, we say that h is continuously differentiable at x. Again, if h has second-order derivatives and

$$h(x+\varepsilon) = h(x) + \langle \nabla h(x), \varepsilon \rangle + \frac{1}{2} \langle \varepsilon, \nabla^2 h(x) \varepsilon \rangle + o\big( \|h\|_2^2 \big)$$

with

$$\nabla^2 h(x) \coloneqq \begin{bmatrix} \frac{\partial^2 h(x)}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 h(x)}{\partial x_1 \partial x_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 h(x)}{\partial x_p \partial x_1} & \cdots & \frac{\partial^2 h(x)}{\partial x_p \partial x_p} \end{bmatrix},$$

then h is twice differentiable at  $x \in \mathbf{R}^p$ , and  $\nabla^2 h(x)$  is the Hessian matrix of h at x. When  $\nabla^2 h$  is continuous at x, h is twice continuously differentiable at x, and then  $\nabla^2 h(x)$  is symmetric. On the other hand, for a vector-valued function  $h: \mathbf{R}^p \to \mathbf{R}^q$  with  $h \coloneqq (h_1, \ldots, h_m)^{\top}$ ,  $\mathcal{J}_h(x)$  denotes the Jacobian matrix of h at x, that is,

$$\mathcal{J}_{h}(x) \coloneqq \begin{bmatrix} \frac{\partial h_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{1}(x)}{\partial x_{p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{q}(x)}{\partial x_{1}} & \cdots & \frac{\partial h_{q}(x)}{\partial x_{p}} \end{bmatrix} = [\nabla h_{1}(x), \dots, \nabla h_{q}(x)]^{\top} \in \mathbf{R}^{q \times p}, \qquad (2.7)$$

where  $\top$  denotes transpose.

### 2.4 Hölder and Lipschitz continuity

We call  $h: \mathbf{R}^p \to \mathbf{R}$  to be *locally Hölder continuous* with exponent  $\beta > 0$  if for every bounded set  $\Omega \subseteq \mathbf{R}^p$  there exists  $L_h > 0$  such that

$$|h(x) - h(y)| \le L_h ||x - y||_2^\beta \quad \text{for all } x, y \in \Omega.$$

In particular, when  $L_h$  does not depend on  $\Omega$ , we say that h is Hölder continuous with exponent  $\beta > 0$ . Moreover, we refer to the (local) Hölder continuity with exponent 1 as the (local) Lipschitz continuity. When h is Lipschitz continuous, we call  $L_h$  the Lipschitz constant, and we also say that h is  $L_h$ -Lipschitz continuous. As the following lemma shows, many functions with good properties are locally Lipschitz continuous.

#### Lemma 2.1

Continuously differentiable functions and finite-valued convex functions are locally Lipschitz continuous.

*Proof.* The former is due to the mean value theorem, and the latter is from [107].  $\Box$ 

Furthermore, if h is continuously differentiable and  $\nabla h$  is  $L_h$ -Lipschitz continuous, we say that h is  $L_h$ -smooth. We now recall the so-called descent lemma [14, Proposition A.24] as follows:

#### Lemma 2.2 (Descent Lemma [14, Proposition A.24])

Let  $h: \mathbf{R}^p \to \mathbf{R}$  is  $L_h$ -smooth on  $\mathbf{R}^p$  with  $L_h > 0$ . Then, we have

$$|h(y) - h(x) - \langle \nabla h(x), y - x \rangle| \le \frac{L_h}{2} ||x - y||_2^2 \quad \text{for all } x, y \in \mathbf{R}^p.$$

### 2.5 Directional derivatives and subgradients

A function  $h: \mathbf{R}^p \to (-\infty, +\infty]$  is directionally differentiable at  $x \in \mathbf{R}^p$  in a direction  $d \in \mathbf{R}^p$  if

$$h'(x;d) \coloneqq \lim_{\beta \searrow 0} \frac{h(x+\beta d) - h(x)}{\beta}$$
(2.8)

exists, and then we call h'(x; d) the directional derivative at x in a direction d. When h is differentiable at x, we have  $h'(x; d) = \langle \nabla h(x), d \rangle$  for all  $d \in \mathbf{R}^p$ . As the following lemma implies, convex functions are directionally differentiable if we allow  $\pm \infty$  as a limit.

#### Lemma 2.3 ([15, Section 4.1])

Let  $h: \mathbf{R}^p \to (-\infty, +\infty]$  be convex. Then, the function  $h_{x,d}: (0, +\infty) \to (-\infty, +\infty]$ defined by

$$h_{x,d}(\beta) \coloneqq \frac{h(x+\beta d) - h(x)}{\beta}$$

is non-decreasing. In particular, it follows that

$$h'(x;d) \le h_{x,d}(\beta) \le h(x+d) - h(x)$$
 for all  $x, d \in \mathbf{R}^p, \beta \in (0,1]$ .

On the other hand, for a proper and convex function  $h: \mathbf{R}^p \to (-\infty, +\infty]$ , we call  $\xi \in \mathbf{R}^p$  a subgradient of h at  $x \in \mathbf{R}^p$  if

$$h(y) - h(x) \ge \langle \xi, y - x \rangle$$
 for all  $y \in \mathbf{R}^p$ ,

and we write  $\partial h(x)$  the subdifferential of h at x, i.e., the set of all subgradients of h at x. When h is differentiable at x,  $\partial h(x)$  amounts to a singular  $\{\nabla h(x)\}$ .

### 2.6 The proximal operator and Moreau envelope

We suppose that  $h: \mathbf{R}^p \to (-\infty, +\infty]$  is closed, proper, and convex. Then, we define the *Moreau envelope* or *Moreau-Yosida regularization*  $\mathcal{M}_h: \mathbf{R}^p \to \mathbf{R}$  by

$$\mathcal{M}_h(x) \coloneqq \min_{y \in \mathbf{R}^p} \left[ h(y) + \frac{1}{2} \|x - y\|_2^2 \right].$$

$$(2.9)$$

The minimization problem in (2.9) has a unique solution because of the strong convexity of its objective function. We call this solution the *proximal operator* and write it as

$$\mathbf{prox}_{h}(x) = \underset{y \in \mathbf{R}^{p}}{\operatorname{argmin}} \left[ h(y) + \frac{1}{2} \|x - y\|_{2}^{2} \right].$$
(2.10)

The proximal operator is non-expansive, i.e.,  $\|\mathbf{prox}_h(x) - \mathbf{prox}_h(y)\|_2 \leq \|x - y\|_2$ for any  $x, y \in \mathbf{R}^p$ . This also means that  $\mathbf{prox}_h$  is 1-Lipschitz continuous. Moreover, when h is the indicator function (1.7) of a non-empty, closed, and convex set  $C \subseteq \mathbf{R}^p$ , we have

$$\mathbf{prox}_{\delta_C}(x) = \mathbf{proj}_C(x), \tag{2.11}$$

where  $\operatorname{proj}_{C}$  is the projection onto C defined by (1.5). Even if h is non-differentiable, its Moreau envelope  $\mathcal{M}_{h}$  is differentiable.

#### Theorem 2.1 ([9, Theorem 6.60])

Let  $h: \mathbb{R}^p \to (-\infty, +\infty]$  be closed, proper, and convex. Then,  $\mathcal{M}_h$  is 1-smooth and

$$\nabla \mathcal{M}_h(x) = x - \mathbf{prox}_h(x).$$

We also refer to the so-called second prox theorem and a corollary quickly derived from it.

#### Theorem 2.2 (Second prox theorem [9, Theorem 6.39]) Let $h: \mathbb{P}^p \to (-\infty + \infty)$ be closed present and converge Theorem it follows

Let  $h: \mathbf{R}^p \to (-\infty, +\infty]$  be closed, proper, and convex. Then, it follows that

$$\langle x - \mathbf{prox}_h(x), y - \mathbf{prox}_h(x) \rangle \le h(y) - h(\mathbf{prox}_h(x))$$
 for all  $x, y \in \mathbf{R}^p$ .

Corollary 2.1

Let  $h: \mathbf{R}^p \to (-\infty, +\infty]$  be closed, proper, and convex. Then, we have

$$||x - \mathbf{prox}_h(x)||_2^2 \le h(x) - h(\mathbf{prox}_h(x)) \quad \text{for all } x \in \mathbf{R}^p$$

# 2.7 Polyak-Łojasiewicz inequality and proximal-PL inequality

We focus on the following unconstrained optimization problem:

$$\min_{x \in \mathbf{R}^n} \quad f(x), \tag{2.12}$$

where  $f: \mathbf{R}^n \to \mathbf{R}$  is continuously differentiable. Assume that (2.12) has an optimal solution, and let  $f^*$  denote the optimal function value. Then, we say that f satisfies the Polyak-Łojasiewicz (PL) inequality if there exists  $\mu_f > 0$  such that

$$\frac{1}{2} \|\nabla f(x)\|_2^2 \ge \mu_f(f(x) - f^*) \quad \text{for all } x \in \mathbf{R}^n.$$
(2.13)

Equation (2.13) is valid, for example, when f is strongly convex. Under (2.13), the steepest descent method [23] solving (2.12) converges linearly [86].

On the other hand, we consider the composite optimization (1.6), supposing

that  $F^*$  denotes the optimal function value. If there exists  $\mu_{f,g} > 0$  such that

$$\frac{1}{2}\mathcal{D}_g(x,L) \ge \mu_{f,g}(F(x) - F^*) \quad \text{for all } x \in \mathbf{R}^n,$$
(2.14)

where

$$\mathcal{D}_g(x,\beta) \coloneqq -2\beta \min_{y \in \mathbf{R}^n} \left[ \langle \nabla f(x), y - x \rangle + g(y) - g(x) + \frac{\beta}{2} \|y - x\|_2^2 \right].$$

Like (2.13), the strong convexity of g is the sufficient condition of (2.14). With (2.14), the proximal gradient method described by Algorithm 1.1 for (1.6) converges linearly [65].

## 2.8 Quasi-Féjer convergence

We define the concept of quasi-Féjer convergence and introduce a related theorem useful for the global convergence analysis.

#### Definition 2.1 (Quasi-Féjer convergence)

We say that  $\{x^k\} \subseteq \mathbf{R}^p$  is quasi-Féjer convergent to a non-empty set  $T \subseteq \mathbf{R}^p$  if for all  $x \in T$  there exists  $\{\varepsilon_k\} \subseteq \mathbf{R}_+$  such that

$$||x^{k+1} - x||_2^2 \le ||x^k - x||_2^2 + \varepsilon_k \quad and \quad \sum_{\ell=0}^{\infty} \varepsilon_\ell < +\infty \quad for \ all \ k = 0, 1, \dots$$

Theorem 2.3 ([18, Theorem 1])

If  $\{x^k\}$  is quasi-Féjer convergent to a non-empty set  $T \subseteq \mathbf{R}^p$ , then  $\{x^k\}$  is bounded. Moreover, if an accumulation point  $x^*$  of  $\{x^k\}$  belongs to T, then  $\lim_{k\to\infty} x^k = x^*$ .

# 2.9 Stability and sensitivity analysis

We consider the following parameterized optimization problem:

$$\min_{x \in X} \quad h(x,\xi), \tag{2.15}$$

depending on the parameter vector  $\xi \in \Xi$ . We assume that  $X \subseteq \mathbf{R}^p$  and  $\Xi \subseteq \mathbf{R}^q$  are non-empty and closed. Let us write the optimal value function of (2.15)

$$\phi(\xi) \coloneqq \inf_{x \in X} h(x,\xi) \tag{2.16}$$

and the associated set as

$$\Phi(\xi) \coloneqq \{ x \in X \mid \phi(\xi) = h(x,\xi) \}.$$

The following proposition describes the directional differentiability of the optimal value function  $\phi$ .

#### Proposition 2.1 ([16, Proposition 4.12])

Let  $\xi^0 \in \Xi$ . Suppose that

- (i) the function  $h(x,\xi)$  is continuous on  $X \times \Xi$ ;
- (ii) there exist  $\alpha \in \mathbf{R}$  and a compact set  $C \subseteq X$  such that for every  $\hat{\xi}$  near  $\xi^0$ , the level set  $\mathbf{lev}_{\alpha} h(\cdot, \hat{\xi})$  is non-empty and contained in C;
- (iii) for any  $x \in X$ , the function  $h_x(\cdot) \coloneqq h(x, \cdot)$  is directionally differentiable at  $\xi^0$ ;
- (iv) if  $\xi \in \Xi$ ,  $t_k \searrow 0$ , and  $\{x^k\} \subseteq C$ , then  $\{x^k\}$  has an accumulation point  $\bar{x}$  such that

$$\limsup_{k \to \infty} \frac{h(x^k, \xi^0 + t_k(\xi - \xi^0)) - h(x^k, \xi^0)}{t_k} \ge h'_{\bar{x}}(\xi^0; \xi - \xi^0).$$

Then, the optimal value function  $\phi$  given by (2.16) is directionally differentiable at  $\xi^0$ and

$$\phi'(\xi^0; \xi - \xi^0) = \inf_{x \in \Phi(\xi^0)} h'_x(\xi^0; \xi - \xi^0).$$

# 2.10 Pareto optimality

Let us introduce the concept of optimality for the multi-objective optimization problem (1.1).

Definition 2.2 (Pareto optimality and weak Pareto optimality) For (1.1), we say that  $x \in C$  is

(i) Pareto optimal if there is no  $y \in C$  such that  $F(y) \leq F(x)$  and  $F(y) \neq F(x)$ ;

(ii) weakly Pareto optimal if there does not exist  $y \in C$  such that F(y) < F(x).

By definition, weak Pareto optimality contains Pareto optimality, though both definitions reduce to the usual optimality when m = 1. On the other hand, if the objective functions are non-convex, it is challenging to find Pareto minima or weak Pareto minima. In such cases, optimization algorithms aim to get Pareto stationary points defined as follows:

#### Definition 2.3 (Pareto stationarity)

Assume that  $F_i$  is directionally differentiable for every i = 1, ..., m, and C is nonempty, closed, and convex. Then, we call  $x \in C$  Pareto stationary if

$$\max_{i=1,\dots,m} F'_i(x; y-x) \ge 0 \quad \text{for all } y \in C.$$

We state below the relation among the three concepts given by Definitions 2.2 and 2.3.

#### Lemma 2.4

Suppose that  $F_i$  is directionally differentiable for every i = 1, ..., m, and C is nonempty, closed, and convex. Then, the following three claims hold.

- (i) If  $x \in C$  is weakly Pareto optimal for (1.1), then x is Pareto stationary for (1.1).
- (ii) Let every  $F_i$ , i = 1, ..., m be convex. Then, all Pareto stationary points of (1.1) are weakly Pareto optimal for (1.1).
- (iii) Suppose that  $F_i$  is strictly convex for any i = 1, ..., m. Then, every Pareto stationary point of (1.1) is Pareto optimal for (1.1).

*Proof.* We prove each claim's contraposition.

Claim (i): Assume that  $x \in C$  is not Pareto stationary. Then, Definition 2.3 shows that for some  $y \in C$  we have  $\max_{i=1,\dots,m} F'_i(x; y - x) < 0$ . By the definition (2.8) of the directional derivative, for a sufficiently small scalar  $\beta > 0$ , we obtain

$$\max_{i=1,\dots,m} [F_i(x+\beta(y-x)) - F_i(x)] < 0,$$

which means that x is not weakly Pareto optimal from Definition 2.2 (ii).

Claim (ii): Suppose that  $x \in C$  is not weakly Pareto optimal. Then, Definition 2.2 (ii) implies that there exists  $y \in C$  such that  $F_i(y) < F_i(x)$  for all i = 1, ..., m. Therefore, the convexity of  $F_i$  and Lemma 2.3 give

$$F'(x; y - x) \le F_i(y) - F_i(x) < 0$$
 for all  $i = 1, ..., m$ .

Hence, we get

$$\max_{i=1,...,m} F'(x; y - x) < 0,$$

which implies that x is not Pareto stationary from Definition 2.3.

Claim (iii): Suppose that  $x \in C$  is not Pareto optimal. From Definition 2.2 (i), there exists  $y \in C$  such that  $F(y) \leq F(x)$  and  $F(y) \neq F(x)$ . Since  $F_i$  is strictly convex for every  $i = 1, \ldots, m$ , we have

$$F(x + \beta(y - x)) < F(x) + \beta(F(y) - F(x)) \quad \text{for all } \beta \in (0, 1).$$

Reducing F(x) and dividing by  $\beta$  from both sides lead to

$$\frac{F(x+\beta(y-x))-F(x)}{\beta} < F(y) - F(x) \le 0.$$

Applying Lemma 2.3 to each component yields

$$F'_{i}(x; y - x) < F_{i}(y) - F_{i}(x) \le 0,$$

which shows that x is not Pareto stationary.

# Chapter 3

# Merit functions for multi-objective optimization

### **3.1** Introduction

This chapter considers the convex-constrained multi-objective optimization problems, i.e., (1.1) with C being non-empty, closed, and convex. It presents new merit functions for them, and discusses their properties mentioned in Section 1.3.

In detail, it proposes the following three merit functions for (1.1):

- (i) the gap function for lower semi-continuous multi-objective optimization;
- (ii) the regularized gap function for convex multi-objective optimization;
- (iii) the regularized and partially linearized gap function for composite multiobjective optimization.

In Table 3.1, we summarize the properties of those merit functions, which will be shown in the subsequent sections. There, 'Sol.' represents the types of Pareto solutions for (1.1) corresponding to the merit functions' minima (zero points). Moreover, 'SP,' 'LB,' and 'EB' indicate each  $F_i$ 's sufficient conditions so that stationary points of the merit functions can solve (1.1), the merit functions are level-bounded, and the merit functions provide error bounds, respectively. The gap function (i) connects its minima and the weak Pareto solutions of (1.1) but does not have good properties in other aspects. The regularized gap function (ii) has better properties but requires the convexity of  $F_i$ . The regularized and partially linearized gap function (iii) relaxes the convexity assumption and is easy to compute for particular problems.

| Table 3.1: Properties of our proposed merit functi | ons |
|----------------------------------------------------|-----|
| (a) Proposed merit functions and their properties  |     |

|       | Obj.  | Sol.      | Cont. | Diff. | SP        | LB              | EB |
|-------|-------|-----------|-------|-------|-----------|-----------------|----|
| (i)   | LSC   | WPO<br>PS | LSC   | ×     | ×         | LB              |    |
| (ii)  | Conv. |           |       | DD    | SC        | Conv., LB       | PL |
| (iii) | Comp. |           | Cont. | DD    | SC, $C^2$ | Conv., LB, etc. |    |

| Obj. | Sol. | Cont. | Diff. | SP | LB |  |
|------|------|-------|-------|----|----|--|
| LSC  |      | LSC   | ×     | ×  | LB |  |

|                     | (b) Table of abbreviations             |
|---------------------|----------------------------------------|
| Obj.                | Objective functions                    |
| Sol.                | Solutions                              |
| Cont.               | Continuity                             |
| Diff.               | Differentiability                      |
| $\operatorname{SP}$ | Stationary points                      |
| LB                  | Level-boundedness                      |
| EB                  | Error bounds                           |
| Cont.               | Continuity                             |
| Comp.               | Composite                              |
| WPO                 | Weak Pareto optimality                 |
| $\mathbf{PS}$       | Pareto stationarity                    |
| LSC                 | Lower semicontinuity                   |
| DD                  | Directional differentiability          |
| $C^2$               | Twice continuously differentiable      |
| SC                  | Strict convexity                       |
| PL                  | Multi-objective proximal PL inequality |

#### (b) Table of abbreviations

We summarize the structure of the rest of this chapter. Section 3.2 proposes different merit functions for multi-objective optimization with loser semi-continuous, convex, and composite objectives, respectively, along with methods for evaluating the function values, the differentiability, and the stationary point properties. Section 3.3 then discusses the connection between different merit functions. In addition, Section 3.4 gives sufficient conditions under which the merit functions are levfel-bounded. Finally, Section 3.5 extends the proximal-PL condition mentioned in Section 2.7 to multi-objective optimization and shows that the merit functions provide error bounds under such a condition.

# **3.2** Merit functions and their basic properties

This section proposes different types of merit functions for the multi-objective optimization (1.1), considering three cases: when the objective function F is continuous, it is convex, and it has a composite structure.

# 3.2.1 A gap function for lower semi-continuous multiobjective optimization

First, we assume only lower semi-continuity on F and propose a gap function  $u_{\infty}: C \to (-\infty, +\infty)$  as follows:

$$u_{\infty}(x) \coloneqq \sup_{y \in C} \min_{i=1,\dots,m} [F_i(x) - F_i(y)].$$

$$(3.1)$$

When F is linear, this merit function has already been discussed in [73], but here we consider the more general nonlinear cases. We now show that  $u_{\infty}$  is a merit function in the sense of weak Pareto optimality.

#### Theorem 3.1

Let  $u_{\infty}$  be defined by (3.1). Then, we have  $u_{\infty}(x) \ge 0$  for all  $x \in C$ . Moreover,  $x \in C$  is weakly Pareto optimal for (1.1) if and only if  $u_{\infty}(x) = 0$ .

*Proof.* Let  $x \in C$ . By the definition (3.1) of  $u_{\infty}$ , we get

$$u_{\infty}(x) = \sup_{y \in C} \min_{i=1,\dots,m} [F_i(x) - F_i(y)] \ge \min_{i=1,\dots,m} [F_i(x) - F_i(x)] = 0.$$

On the other hand, again, considering the definition (3.1) of  $u_{\infty}$ , we obtain

$$u_{\infty}(x) = 0 \iff \min_{i=1,\dots,m} [F_i(x) - F_i(y)] \le 0 \text{ for all } y \in C.$$

This is equivalent to the existence of i = 1, ..., m such that

$$F_i(x) - F_i(y) \le 0$$
 for all  $y \in C$ ,

i.e., there does not exist  $y \in C$  such that

$$F_i(x) - F_i(y) > 0$$
 for all  $i = 1, ..., m$ ,

which means that x is weakly Pareto optimal for (1.1) by Definition 2.2 (i).  $\Box$ 

The following theorem is clear from the lower semi-continuity of  $F_i$ .

#### Theorem 3.2

The function  $u_{\infty}$  defined by (3.1) is lower semi-continuous on C.

Theorems 3.1 and 3.2 imply that if  $u_{\infty}(x^k) \to 0$  holds for some bounded sequence  $\{x^k\}$ , its accumulation points are weakly Pareto optimal. Thus, we can use  $u_{\infty}$  to measure the complexity of multi-objective optimization methods.

Moreover, Theorem 3.1 implies that we can get weakly Pareto optimal solutions via the following single-objective optimization problem:

$$\min_{x \in C} \quad u_{\infty}(x).$$

However, if  $F_i$  is not bounded from below on C, we cannot guarantee that  $u_{\infty}$  is finite-valued. Moreover, even if  $u_{\infty}$  is finite-valued,  $u_{\infty}$  does not preserve the differentiability of the original objective function F.

# 3.2.2 A regularized gap function for convex multi-objective optimization

Here, we suppose that each component  $F_i$  of the objective function F of (1.1) is convex. Then, we define a regularized gap function  $u_{\alpha}: C \to \mathbf{R}$  with a given constant  $\alpha > 0$ , which overcomes the shortcomings mentioned at the end of the previous subsection, as follows:

$$u_{\alpha}(x) \coloneqq \max_{y \in C} \min_{i=1,\dots,m} \left[ F_i(x) - F_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right].$$
(3.2)

Note that the strong concavity of the function inside  $\max_{y \in C}$  implies that  $u_{\alpha}$  is finite-valued, and there exists a unique solution that attains this maximum in C. Like  $u_{\infty}$ , we can show that  $u_{\alpha}$  is also a merit function in the sense of weak Pareto optimality.

#### Theorem 3.3

Let  $u_{\alpha}$  be defined by (3.2) for some  $\alpha > 0$ . Then, we have  $u_{\alpha}(x) \ge 0$  for all  $x \in C$ . Moreover,  $x \in C$  is weakly Pareto optimal for (1.1) if and only if  $u_{\alpha}(x) = 0$ .

*Proof.* Let  $x \in C$ . The definition (3.2) of  $u_{\alpha}$  yields

$$u_{\alpha}(x) = \max_{y \in C} \min_{i=1,\dots,m} \left[ F_i(x) - F_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right]$$
  
$$\geq \min_{i=1,\dots,m} \left[ F_i(x) - F_i(x) - \frac{1}{2\alpha} \|x - y\|_2^2 \right] = 0,$$

which proves the first statement.

We now show the second statement. First, assume that  $u_{\alpha}(x) = 0$ . Then, (3.2) again gives

$$\min_{i=1,\dots,m} \left[ F_i(x) - F_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right] \text{ for all } y \in C.$$

Let  $z \in C$  and  $\beta \in (0, 1)$ . Since the convexity of C implies that  $x + \beta(z - x) \in C$ , substituting  $y = x + \alpha(z - x)$  into the above inequality, we get

$$\min_{i=1,\dots,m} \left[ F_i(x) - F_i(x + \beta(z - x)) - \frac{1}{2\alpha} \|\beta(z - x)\|_2^2 \right] \le 0.$$

The convexity of  $F_i$  leads to

$$\min_{i=1,\dots,m} \left[ \beta(F_i(x) - F_i(z)) - \frac{1}{2\alpha} \|\beta(z-x)\|_2^2 \right] \le 0.$$

Dividing both sides by  $\beta$  and letting  $\beta \searrow 0$ , we have

$$\min_{i=1,\dots,m} [F_i(x) - F_i(z)] \le 0.$$

Since z can take an arbitrary point in C, it follows from (3.1) that  $u_{\infty}(x) = 0$ . Therefore, from Theorem 3.1, x is weakly Pareto optimal.

Now, suppose that x is weakly Pareto optimal. Then, it follows again from Theorem 3.1 that  $u_{\infty}(x) = 0$ . It is clear that  $u_{\alpha}(x) \leq u_{\infty}(x)$  from the definitions (3.1) and (3.2) of  $u_{\infty}$  and  $u_{\alpha}$ , so we get  $u_{\alpha}(x) = 0$ .

Let us now write

$$U_{\alpha}(x) \coloneqq \operatorname*{argmax}_{y \in C} \min_{i=1,\dots,m} \left[ F_i(x) - F_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right].$$
(3.3)

The optimality condition of the maximization problem associated with (3.2) and (3.3) gives

$$\frac{1}{\alpha}[x - U_{\alpha}(x)] \in \operatorname{conv}_{i \in \mathscr{I}_{\alpha}(x)} \partial F_i(U_{\alpha}(x)) + N_C(U_{\alpha}(x)) \quad \text{for all } x \in C,$$

where  $N_C$  denotes the normal cone to the convex set C and

$$\mathscr{I}_{\alpha}(x) = \operatorname*{argmin}_{i=1,\dots,m} [F_i(x) - F_i(U_{\alpha}(x))].$$

Thus, for all  $x \in C$  there exists  $e(x) \in \Delta^m$ , where  $\Delta^m$  is the unit *m*-simplex given by (2.1), such that  $e_j(x) = 0$  for all  $j \notin \mathscr{I}_{\alpha}(x)$  and

$$\frac{1}{\alpha} \langle x - U_{\alpha}(x), z - U_{\alpha}(x) \rangle \leq \sum_{i=1}^{m} e_i(x) [F_i(z) - F_i(U_{\alpha}(x))] \quad \text{for all } z \in C.$$
(3.4)

Then, we can also show the continuity of  $u_{\alpha}$  and  $U_{\alpha}$  without any particular assumption.

#### Theorem 3.4

For all  $\alpha > 0$ ,  $u_{\alpha}$  and  $U_{\alpha}$  defined by (3.2) and (3.3) are locally Lipschitz continuous and locally Hölder continuous with exponent 1/2 on C, respectively.

*Proof.* For any bounded set  $\Omega \subseteq C$ , let  $x^1, x^2 \in \Omega$ . Adding the two inequalities obtained by substituting  $(x, z) = (x^1, U_\alpha(x^2))$  and  $(x, z) = (x^2, U_\alpha(x^1))$  into (3.4),

we get

$$\frac{1}{\alpha} \langle U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) - (x^{1} - x^{2}), U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) \rangle \\
\leq \sum_{i=1}^{m} \left[ e_{i}(x^{2}) - e_{i}(x^{1}) \right] \left[ F_{i}(U_{\alpha}(x^{1})) - F_{i}(U_{\alpha}(x^{2})) \right] \\
= \sum_{i=1}^{m} e_{i}(x^{1}) \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{1})) \right] + \sum_{i=1}^{m} e_{i}(x^{2}) \left[ F_{i}(x^{2}) - F_{i}(U_{\alpha}(x^{2})) \right] \\
+ \sum_{i=1}^{m} e_{i}(x^{1}) \left[ F_{i}(U_{\alpha}(x^{2})) - F_{i}(x^{1}) \right] + \sum_{i=1}^{m} e_{i}(x^{2}) \left[ F_{i}(U_{\alpha}(x^{1})) - F_{i}(x^{2}) \right].$$

Since  $e(x) \in \Delta^m$  and  $e_j(x) \neq 0$  for all  $j \in \mathscr{I}_{\alpha}(x)$ , we have

$$\frac{1}{\alpha} \langle U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) - (x^{1} - x^{2}), U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) \rangle 
= \min_{i=1,\dots,m} [F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{1}))] + \min_{i=1,\dots,m} [F_{i}(x^{2}) - F_{i}(U_{\alpha}(x^{2}))] 
+ \sum_{i=1}^{m} e_{i}(x^{1}) [F_{i}(U_{\alpha}(x^{2})) - F_{i}(x^{1})] + \sum_{i=1}^{m} e_{i}(x^{2}) [F_{i}(U_{\alpha}(x^{1})) - F_{i}(x^{2})]$$

Again using the fact that  $e(x) \in \Delta^m$ , we get

$$\frac{1}{\alpha} \langle U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) - (x^{1} - x^{2}), U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) \rangle \\
\leq \sum_{i=1}^{m} e_{i}(x^{2}) \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{1})) \right] + \sum_{i=1}^{m} e_{i}(x^{1}) \left[ F_{i}(x^{2}) - F_{i}(U_{\alpha}(x^{2})) \right] \\
+ \sum_{i=1}^{m} e_{i}(x^{1}) \left[ F_{i}(U_{\alpha}(x^{2})) - F_{i}(x^{1}) \right] + \sum_{i=1}^{m} e_{i}(x^{2}) \left[ F_{i}(U_{\alpha}(x^{1})) - F_{i}(x^{2}) \right] \\
= \sum_{i=1}^{m} \left[ e_{i}(x^{2}) - e_{i}(x^{1}) \right] \left[ F_{i}(x^{1}) - F_{i}(x^{2}) \right] \leq 2 \max_{i=1,\dots,m} \left| F_{i}(x^{1}) - F_{i}(x^{2}) \right|.$$

Multiplying by  $\alpha$  and adding  $(1/4)\|x^1-x^2\|^2$  in both sides of the inequality, it follows that

$$\left\| U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) - \frac{1}{2}(x^{1} - x^{2}) \right\|_{2}^{2} \leq \frac{1}{4} \|x^{1} - x^{2}\|^{2} + 2\alpha \max_{i=1,\dots,m} |F_{i}(x^{1}) - F_{i}(x^{2})|.$$

Taking the square root of both sides, we obtain

$$\left\| U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) - \frac{1}{2}(x^{1} - x^{2}) \right\|_{2} \leq \sqrt{\frac{1}{4} \|x^{1} - x^{2}\|^{2} + 2\alpha \max_{i=1,\dots,m} |F_{i}(x^{1}) - F_{i}(x^{2})|}.$$

Then, it follows from the triangle inequality that

$$\left\| U_{\alpha}(x^{1}) - U_{\alpha}(x^{2}) \right\|_{2} \leq \frac{1}{2} \left\| x^{1} - x^{2} \right\|_{2} + \sqrt{\frac{1}{4}} \left\| x^{1} - x^{2} \right\|_{2}^{2} + 2\alpha \max_{i=1,\dots,m} |F_{i}(x^{1}) - F_{i}(x^{2})|.$$

Since Lemma 2.1 implies that  $F_i$  locally Lipschitz continuous, there exists  $L_{F_i}(\Omega) > 0$  such that

$$\left|F_{i}(x^{1}) - F_{i}(x^{2})\right| \leq L_{F_{i}}(\Omega) \|x^{1} - x^{2}\|_{2}.$$
 (3.5)

Hence, the above two inequalities show  $U_{\alpha}$ 's local Hölder continuity with exponent 1/2.

On the other hand, the definition (3.2) of  $u_{\alpha}$  gives

$$u_{\alpha}(x^{1}) = \max_{y \in C} \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(y) - \frac{1}{2\alpha} \|x^{1} - y\|_{2}^{2} \right]$$
  
$$\geq \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{2})) - \frac{1}{2\alpha} \|x^{1} - U_{\alpha}(x^{2})\|_{2}^{2} \right]$$

Reducing  $u_{\alpha}(x^2)$  from both sides yields

$$u_{\alpha}(x^{1}) - u_{\alpha}(x^{2}) \geq \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{2})) - \frac{1}{2\alpha} \|x^{1} - U_{\alpha}(x^{2})\|_{2}^{2} \right] - u_{\alpha}(x^{2}).$$

(3.2) and (3.3) lead to

$$u_{\alpha}(x^{1}) - u_{\alpha}(x^{2}) \geq \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{2})) - \frac{1}{2\alpha} \|x^{1} - U_{\alpha}(x^{2})\|_{2}^{2} \right] - \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(U_{\alpha}(x^{2})) - \frac{1}{2\alpha} \|x^{2} - U_{\alpha}(x^{2})\|_{2}^{2} \right].$$

From (2.2), we obtain

$$u_{\alpha}(x^{1}) - u_{\alpha}(x^{2}) \ge \min_{i=1,\dots,m} \left[ F_{i}(x^{1}) - F_{i}(x^{2}) - \frac{1}{2\alpha} \langle x^{1} + x^{2} - 2U_{\alpha}(x^{2}), x^{1} - x^{2} \rangle \right].$$

Cauchy-Schwarz inequality and (3.5) implies

$$u_{\alpha}(x^{1}) - u_{\alpha}(x^{2}) \geq -\left[\max_{i=1,\dots,m} L_{F_{i}}(\Omega) + \frac{1}{2\alpha} \|x^{1} + x^{2} - 2U_{\alpha}(x^{2})\|_{2}\right] \|x^{1} - x^{2}\|_{2}.$$

Since  $U_{\alpha}(x)$  is bounded for  $x \in \Omega$  due to the continuity, and the above inequality holds even if we interchange  $x^1$  and  $x^2$ , we can show the local Lipschitz continuity of  $u_{\alpha}$ .

On the other hand, using the unit *m*-simplex  $\Delta^m$  defined by (2.1),  $u_{\alpha}$  given by (3.2) can also be expressed as

$$u_{\alpha}(x) = \max_{y \in C} \min_{e \in \Delta^{m}} \sum_{i=1}^{m} e_{i} \left[ F_{i}(x) - F_{i}(y) - \frac{1}{2\alpha} \|x - y\|_{2}^{2} \right].$$

We can see that C is convex,  $\Delta^m$  is compact and convex, and the function inside  $\min_{e \in \Delta^m}$  is convex for e and concave for y. Therefore, Sion's minimax theorem [95] leads to

$$u_{\alpha}(x) = \min_{e \in \Delta^{m}} \max_{y \in C} \sum_{i=1}^{m} e_{i} \left[ F_{i}(x) - F_{i}(y) - \frac{1}{2\alpha} \|x - y\|_{2}^{2} \right]$$
  
$$= \min_{e \in \Delta^{m}} \left[ \sum_{i=1}^{m} e_{i} F_{i}(x) - \alpha^{-1} \mathcal{M}_{\alpha} \sum_{i=1}^{m} e_{i} F_{i} + \delta_{C}(x) \right],$$
  
(3.6)

where  $\mathcal{M}$  and  $\delta_C$  denote the Moreau envelope and the indicator function defined by (1.7) and (2.9), respectively. Thus, we can evaluate  $u_{\alpha}$  through the following *m*dimensional, simplex-constrained, and convex optimization problem:

$$\min_{e \in \mathbf{R}^m} \sum_{i=1}^m e_i F_i(x) - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^m e_i F_i + \delta_C}(x)$$
s.t.  $e \ge 0$  and  $\sum_{i=1}^m e_i = 1.$ 

$$(3.7)$$

As the following theorem shows, (3.7) is also differentiable.

#### Theorem 3.5

The objective function of (3.7) is continuously differentiable at every  $e \in \mathbf{R}^m$  and

$$\nabla_e \left[ \sum_{i=1}^m e_i F_i(x) - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^m e_i F_i + \delta_C}(x) \right] = F(x) - F\left( \mathbf{prox}_{\alpha \sum_{i=1}^m e_i F_i + \delta_C}(x) \right),$$

where **prox** denotes the proximal operator (2.10).

Proof. Define

$$h(y,e) \coloneqq \sum_{i=1}^{m} e_i F_i(y) + \frac{1}{2\alpha} ||x - y||_2^2.$$

Clearly, h is continuous. Moreover,  $h_y(\cdot) \coloneqq h(y, \cdot)$  is continuously differentiable and

$$\nabla_e h_y(e) = F(y).$$

Furthermore,  $\mathbf{prox}_{\alpha\sum_{i=1}^{m}e_{i}F_{i}+\delta_{C}}(x) = \operatorname{argmin}_{y\in C}h(y,e)$  is also continuous at every  $e \in \mathbf{R}^{m}$  from [91, Excercise 7.38]. Therefore, all the assumptions of Proposition 2.1 are satisfied. Since  $\mathbf{prox}_{\alpha\sum_{i=1}^{m}e_{i}F_{i}+\delta_{C}}(x)$  is unique, we obtain the desired result.

Therefore, when  $\mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x)$  is easy to compute, we can solve (3.7) using well-known convex optimization techniques such as the interior point method [14]. If  $n \gg m$ , this is usually faster than solving the *n*-dimensional problem directly to compute (3.2).

Let us now write the optimal solution set of (3.7) by

$$\mathcal{E}(x) \coloneqq \underset{e \in \Delta^m}{\operatorname{argmin}} \left[ \sum_{i=1}^m e_i F_i(x) - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^m e_i F_i + \delta_C}(x) \right].$$
(3.8)

Then, we can show the (directional) differentiability of  $u_{\alpha}$ , as in the following theorem.

#### Theorem 3.6

Let  $x \in C$ . For all  $\alpha > 0$ , the regularized gap function  $u_{\alpha}$  defined by (3.2) is directionally differentiable at x and

$$u_{\alpha}'(x;z-x) = \inf_{e \in \mathcal{E}(x)} \left[ \sum_{i=1}^{m} e_i F_i'(x;z-x) - \alpha^{-1} \left\langle x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x), z - x \right\rangle \right]$$

for all  $z \in C$ , where  $\mathcal{E}(x)$  is given by (3.8), and **prox** denotes the proximal operator (2.10). In particular, if  $\mathcal{E}(x)$  is a singleton, i.e.,  $\mathcal{E}(x) = \{e(x)\}$ , and  $F_i$  is continuously differentiable at x, then  $u_{\alpha}$  is continuously differentiable at x, and we have

$$\nabla u_{\alpha}(x) = \sum_{i=1}^{m} e_i(x) \nabla F_i(x) - \alpha^{-1} \left( x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i(x) F_i + \delta_C} \right).$$

Proof. Let

$$h(x,e) \coloneqq \sum_{i=1}^{m} e_i F_i(x) - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x).$$

Since  $\mathcal{M}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x)$  is continuous at every  $(x, e) \in C \times \Delta^m$  from [91, Theorem 7.37], h is also continuous on  $C \times \Delta^m$ . Moreover, Theorem 2.1 implies that for all  $x, z \in C$  the function  $h_e(\cdot) \coloneqq h(\cdot, e)$  has a directional derivative:

$$h'_{e}(x;z-x) = \sum_{i=1}^{m} e_{i}F'_{i}(x;z-x) - \alpha^{-1} \left\langle \operatorname{prox}_{\alpha \sum_{i=1}^{m} e_{i}F_{i} + \delta_{C}}(x), z-x \right\rangle.$$

Because  $\mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x)$  is continuous at every  $(x, e) \in C \times \Delta^m$  (cf. [91, Exercise 7.38]),  $h'_e(x; z - x)$  is also continuous at every  $(x, z, e) \in C \times C \times \Delta^m$ . The discussion above and the compactness of  $\Delta^m$  show that all assumptions of Proposition 2.1 are satisfied, so we get the desired result.

From Theorems 3.3 and 3.6, the weakly Pareto optimal solutions for (1.1) are the globally optimal solutions of the following (directionally) differentiable singleobjective optimization problem:

$$\min_{x \in C} \quad u_{\alpha}(x). \tag{3.9}$$

Since  $u_{\alpha}$  is generally non-convex, (3.9) may have local optimal solutions or stationary points that are not globally optimal. As the following example shows, such stationary points are not necessarily Pareto stationary for (1.1).

#### Example 3.1

Let  $m = 1, \alpha = 1, C = \mathbf{R}$  and  $F_1(x) = |x|$ . Then, we have

$$\mathcal{M}_{F_1}(x) = \begin{cases} x^2/2, & \text{if } |x| < 1, \\ |x| - 1/2, & \text{otherwise.} \end{cases}$$

Hence, we can evaluate  $u_1$  as follows:

$$u_1(x) = \begin{cases} |x| - x^2/2, & \text{if } |x| < 1, \\ 1/2, & \text{otherwise.} \end{cases}$$

It is stationary for (3.9) at  $|x| \ge 1$  and x = 0 but minimal only at x = 0. Furthermore, the stationary point of  $F_1$  is only x = 0.

However, if we assume the strict convexity of each  $F_i$ , the stationary point of (3.9) is Pareto optimal for (1.1) and hence global optimal for (3.9). Note that this assumption does not assert the convexity of  $u_{\alpha}$ .

#### Theorem 3.7

Suppose that  $F_i$  is strictly convex for all i = 1, ..., m. If  $x \in C$  is a stationary point of (3.9), *i.e.*,

$$u'_{\alpha}(x; z-x) \ge 0 \quad for \ all \ z \in C,$$

then x is Pareto optimal for (1.1).

*Proof.* Let  $e \in \mathcal{E}(x)$ , where  $\mathcal{E}(x)$  is given by (3.8). Then, Theorem 3.6 gives

$$\sum_{i=1}^{m} e_i F'_i(x; z-x) - \alpha^{-1} \left\langle x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x), z-x \right\rangle \ge 0 \quad \text{for all } z \in C.$$

Substituting  $z = \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x)$  into the above inequality, we get

$$\sum_{i=1}^{m} e_i F_i' \left( x; \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x) - x \right) + \alpha^{-1} \left\| x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x) \right\|_2^2 \ge 0.$$

On the other hand, Theorem 2.2 yields

$$\left\|x - \mathbf{prox}_{\alpha \sum\limits_{i=1}^{m} e_i F_i + \delta_C}(x)\right\|_2^2 \le \alpha \sum\limits_{i=1}^{m} e_i \left[F_i(x) - F_i \left(\mathbf{prox}_{\alpha \sum\limits_{i=1}^{m} e_i F_i + \delta_C}(x)\right)\right].$$

Combining the above two inequalities, we have

$$\sum_{i=1}^{m} e_i F_i' \left( x; \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x) - x \right)$$
$$\geq \sum_{i=1}^{m} e_i \left[ F_i \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x) \right) - F_i(x) \right].$$

Since  $F_i$  is strictly convex for all i = 1, ..., m, the above inequality implies that  $x = \mathbf{prox}_{\alpha \sum_{i=1}^{m} e_i F_i + \delta_C}(x)$ , and hence  $u_{\alpha}(x) = 0$ . This means that x is Pareto optimal for (1.1) from the strict convexity of  $F_i$ , Lemmas 2.4 (i) and 2.4 (iii) and Theorem 3.3.

# 3.2.3 A regularized and partially linearized gap function for composite multi-objective optimization

Now, let us consider the composite case (1.14). Since they are generally non-convex, we can regard them as a relaxation of the assumptions of the previous subsection. For (1.14), we propose a regularized and partially linearized gap function  $w_{\alpha} \colon \mathbf{R}^{n} \to \mathbf{R}$  with a given  $\alpha > 0$  as follows:

$$w_{\alpha}(x) \coloneqq \max_{y \in C} \min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle + g_i(x) - g_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right].$$
(3.10)

Like  $u_{\alpha}$ , the convexity of  $g_i$  leads to the finiteness of  $w_{\alpha}$  and the existence of a unique solution that attains  $\max_{y \in C}$ . As the following remark shows,  $w_{\alpha}$  generalizes other kinds of merit functions.

#### Remark 3.1

- (i) When  $g_i = 0$ ,  $w_{\alpha}$  corresponds to the regularized gap function (1.13) for vector variational inequality.
- (ii) When  $f_i = 0$ ,  $w_{\alpha}$  matches  $u_{\alpha}$  defined by (3.2).

As shown in the following theorem,  $w_{\alpha}$  is a merit function in the sense of Pareto stationarity.

#### Theorem 3.8

Let  $w_{\alpha}$  be given by (3.10) for some  $\alpha > 0$ . Then, we have  $w_{\alpha}(x) \ge 0$  for all  $x \in C$ . Furthermore,  $x \in C$  is Pareto stationary for (1.14) if and only if  $w_{\alpha}(x) = 0$ . *Proof.* We first show the nonnegativity of  $w_{\alpha}$  for all  $\alpha > 0$ . Let  $x \in C$ . The definition of  $w_{\alpha}$  gives

$$w_{\alpha}(x) = \sup_{y \in C} \min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle + g_i(x) - g_i(y) - \frac{1}{2\alpha} ||x - y||_2^2 \right]$$
  
$$\geq \min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - x \rangle + g_i(x) - g_i(x) - \frac{1}{2\alpha} ||x - x||_2^2 \right] = 0.$$

Let us prove the second statement. Assume that  $w_{\alpha}(x) = 0$ . Then, again using the definition of  $w_{\alpha}$ , we get

$$\min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle + g_i(x) - g_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right] \le 0 \quad \text{for all } y \in C.$$

Let  $z \in C$  and  $\beta \in (0, 1)$ . Since  $C \subseteq \mathbb{R}^n$  is convex,  $x, z \in C$  implies  $x + \beta(z - x) \in C$ . Therefore, by substituting  $y = x + \beta(z - x)$  into the above inequality, we obtain

$$\min_{i=1,\dots,m} \left[ -\langle \nabla f_i(x), \beta(z-x) \rangle + g_i(x) - g_i(x+\beta(z-x)) - \frac{1}{2\alpha} \|\beta(z-x)\|^2 \right] \le 0.$$

Dividing both sides by  $\beta$  yields

$$\min_{i=1,\dots,m} \left[ -\langle \nabla f_i(x), z-x \rangle - \frac{g_i(x+\beta(z-x)) - g_i(x)}{\beta} - \frac{\alpha\beta}{2} \|z-x\|^2 \right] \le 0.$$

By taking  $\beta \searrow 0$  and multiplying both sides by -1, we get

$$\max_{i=1,\dots,m} F'_i(x;z-x) \ge 0,$$

which means that x is Pareto stationary for (1.14).

Now, we prove the converse by contrapositive. Suppose that  $w_{\alpha}(x) > 0$ . Then, from the definition of  $w_{\alpha}$ , there exists some  $y \in C$  such that

$$\min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle + g_i(x) - g_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right] > 0.$$

Since  $g_i$  is convex, we obtain

$$\min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle - g'_i(x; y - x) - \frac{1}{2\alpha} \|x - y\|_2^2 \right] > 0.$$

Thus, we have

$$\max_{i=1,\dots,m} F'_i(x;y-x) \le -\frac{1}{2\alpha} \|x-y\|_2^2 < 0,$$

which shows that x is not Pareto stationary for (1.14).

While  $u_{\infty}$  and  $u_{\alpha}$  given by (3.1) and (3.2) are merit functions in the sense of weak Pareto optimality,  $w_{\alpha}$  defined by (3.10) is a merit function only in the sense of Pareto stationarity. As indicated by the following example, even if  $w_{\alpha}(x) = 0$ , x is not necessarily weakly Pareto optimal for (1.14).

#### Example 3.2

Consider the single-objective function  $F \colon \mathbf{R} \to \mathbf{R}$  defined by  $F(x) \coloneqq f(x) + g(x)$ , where

$$f(x) \coloneqq -x^2$$
 and  $g(x) \coloneqq 0$ 

and set  $C = \mathbf{R}$ . Then, we have

$$w_{\alpha}(0) = \max_{y \in \mathbf{R}} \left[ f'(0)(0-y) + g(0) - g(y) - \frac{1}{2\alpha}(y-0)^2 \right] = \max_{y \in \mathbf{R}} \left[ -\frac{1}{2\alpha}y^2 \right] = 0,$$

but x = 0 is not global minimal (i.e., weakly Pareto optimal) for F.

We now define the optimal solution mapping  $W_{\alpha} \colon \mathbf{R}^n \to \mathbf{R}^n$  associated with (3.10) by

$$W_{\alpha}(x) \coloneqq \operatorname*{argmax}_{y \in C} \min_{i=1,\dots,m} \left[ \langle \nabla f_i(x), x - y \rangle + g_i(x) - g_i(y) - \frac{1}{2\alpha} \|x - y\|_2^2 \right].$$
(3.11)

From the optimality condition of the maximization problem associated with (3.10) and (3.11), we obtain

$$\frac{1}{\alpha}[x - W_{\alpha}(x)] \in \operatorname{conv}_{i \in \mathcal{I}_{\alpha}(x)}[\nabla f_i(x) + \partial g_i(W_{\alpha}(x))] + N_C(W_{\alpha}(x)) \quad \text{for all } x \in C,$$

where  $N_C$  is the normal cone to the convex set C and

$$\mathcal{I}_{\alpha}(x) \coloneqq \operatorname*{argmin}_{i=1,\dots,m} [\langle \nabla f_i(x), x - W_{\alpha}(x) \rangle + g_i(x) - g_i(W_{\alpha}(x))].$$
(3.12)

Therefore, for any  $x \in C$  there exists  $\lambda(x)$  belonging to the unit *m*-simplex  $\Delta^m$ 

defined by (2.1) such that  $\lambda_j(x) = 0$  for all  $j \notin \mathcal{I}_{\alpha}(x)$  and

$$\frac{1}{\alpha} \langle x - W_{\alpha}(x), z - W_{\alpha}(x) \rangle \leq \sum_{i=1}^{m} \lambda_i(x) [\langle \nabla f_i(x), z - W_{\alpha}(x) \rangle + g_i(z) - g_i(W_{\alpha}(x))]$$
(3.13)

for all  $z \in C$ . Particularly, if we substitute z = x, we get

$$\frac{1}{\alpha} \|x - W_{\alpha}(x)\|_{2}^{2} \le w_{\alpha}(x) + \frac{1}{2\alpha} \|x - W_{\alpha}(x)\|_{2}^{2},$$

which reduces to

$$w_{\alpha}(x) \ge \frac{1}{2\alpha} \|x - W_{\alpha}(x)\|_{2}^{2}.$$
 (3.14)

We can also show the continuity of  $w_{\alpha}$  and  $W_{\alpha}$ .

#### Theorem 3.9

For all  $\alpha > 0$ ,  $w_{\alpha}$  and  $W_{\alpha}$  defined by (3.10) and (3.11) are continuous on C. Moreover, if every  $\nabla f_i$ , i = 1, ..., m is locally Lipschitz continuous,  $w_{\alpha}$  and  $W_{\alpha}$  are locally Lipschitz continuous and locally Hölder continuous with exponent 1/2 on C, respectively.

*Proof.* Let  $\Omega$  be a bounded subset of C and let  $x^1, x^2 \in \Omega$ . Adding the two inequalities gotten by substituting  $(x, z) = (x^1, W_\alpha(x^2))$  and  $(x, z) = (x^2, W_\alpha(x^1))$  into (3.13), we obtain

$$\frac{1}{\alpha} \langle W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}) - (x^{1} - x^{2}), W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}) \rangle \\
\leq \sum_{i=1}^{m} \lambda_{i}(x^{1}) \left[ \langle \nabla f_{i}(x^{1}), x^{1} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{1}) - g_{i}(W_{\alpha}(x^{1})) \right] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{2}) \left[ \langle \nabla f_{i}(x^{2}), x^{2} - W_{\alpha}(x^{2}) \rangle + g_{i}(x^{2}) - g_{i}(W_{\alpha}(x^{2})) \right] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{1}) \left[ \langle \nabla f_{i}(x^{1}), W_{\alpha}(x^{2}) - x^{1} \rangle + g_{i}(W_{\alpha}(x^{2})) - g_{i}(x^{1}) \right] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{2}) \left[ \langle \nabla f_{i}(x^{2}), W_{\alpha}(x^{1}) - x^{2} \rangle + g_{i}(W_{\alpha}(x^{1})) - g_{i}(x^{2}) \right].$$

Since  $\lambda_j(x) = 0$  for  $j \in \mathcal{I}_{\alpha}(x)$ , we have

$$\frac{1}{\alpha} \langle W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}) - (x^{1} - x^{2}), W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}) \rangle \\
\leq \min_{i=1,\dots,m} [\langle \nabla f_{i}(x^{1}), x^{1} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{1}) - g_{i}(W_{\alpha}(x^{1}))] \\
+ \min_{i=1,\dots,m} [\langle \nabla f_{i}(x^{2}), x^{2} - W_{\alpha}(x^{2}) \rangle + g_{i}(x^{2}) - g_{i}(W_{\alpha}(x^{2}))] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{1}) [\langle \nabla f_{i}(x^{1}), W_{\alpha}(x^{2}) - x^{1} \rangle + g_{i}(W_{\alpha}(x^{2})) - g_{i}(x^{1})] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{2}) [\langle \nabla f_{i}(x^{2}), W_{\alpha}(x^{1}) - x^{2} \rangle + g_{i}(W_{\alpha}(x^{1})) - g_{i}(x^{2})] \\
\leq \sum_{i=1}^{m} \lambda_{i}(x^{2}) [\langle \nabla f_{i}(x^{1}), x^{1} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{1}) - g_{i}(W_{\alpha}(x^{1}))] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{1}) [\langle \nabla f_{i}(x^{2}), x^{2} - W_{\alpha}(x^{2}) \rangle + g_{i}(x^{2}) - g_{i}(W_{\alpha}(x^{2}))] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{1}) [\langle \nabla f_{i}(x^{1}), W_{\alpha}(x^{2}) - x^{1} \rangle + g_{i}(W_{\alpha}(x^{2})) - g_{i}(x^{1})] \\
+ \sum_{i=1}^{m} \lambda_{i}(x^{2}) [\langle \nabla f_{i}(x^{2}), W_{\alpha}(x^{1}) - x^{2} \rangle + g_{i}(W_{\alpha}(x^{2})) - g_{i}(x^{2})].$$

Therefore, simple calculations give

$$\frac{1}{\alpha} \| W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}) \|_{2}^{2} \leq \frac{1}{\alpha} \langle W_{\alpha}(x^{1}) - W_{\alpha}(x^{2}), x^{1} - x^{2} \rangle 
+ \sum_{i=1}^{m} [\lambda(x^{2}) - \lambda(x^{1})] [g_{i}(x^{1}) - g_{i}(x^{2}) + \langle \nabla f_{i}(x^{1}), x^{1} - x^{2} \rangle 
- \langle \nabla f_{i}(x^{1}) - \nabla f_{i}(x^{2}), x^{2} \rangle ] 
+ \sum_{i=1}^{m} \lambda_{i}(x^{1}) \langle \nabla f_{i}(x^{1}) - \nabla f_{i}(x^{2}), W_{\alpha}(x^{2}) \rangle + \sum_{i=1}^{m} \lambda_{i}(x^{2}) \langle \nabla f_{i}(x^{2}) - \nabla f_{i}(x^{1}), W_{\alpha}(x^{1}) \rangle.$$
(3.15)

When  $x^1 \to x^2$ , the right-hand side tends to zero, which means the continuity of  $W_{\alpha}$  on C. Therefore, from the definition, we can also say that  $w_{\alpha}$  is continuous on C immediately.

Assume that each  $\nabla f_i$ , i = 1, ..., m is locally Lipschitz continuous. Since  $g_i$  is

also locally Lipschitz continuous from Lemma 2.1, we can prove the local Hölder continuity of  $W_{\alpha}$  from (3.15). On the other hand, the definitions (3.10) and (3.11) of  $w_{\alpha}$  and  $W_{\alpha}$  give

$$\begin{split} w_{\alpha}(x^{1}) - w_{\alpha}(x^{2}) \\ &= \min_{i=1,\dots,m} \left[ \langle \nabla f_{i}(x^{1}), x^{1} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{1}) - g_{i}(W_{\alpha}(x^{1})) \right] - \frac{1}{2\alpha} \|x^{1} - W_{\alpha}(x^{1})\|_{2}^{2} \\ &- \max_{y \in C} \min_{i=1,\dots,m} \left[ \langle \nabla f_{i}(x^{2}), x^{2} - y \rangle + g_{i}(x^{2}) - g_{i}(y) - \frac{1}{2\alpha} \|x^{2} - y\|_{2}^{2} \right] \\ &\leq \min_{i=1,\dots,m} \left[ \langle \nabla f_{i}(x^{1}), x^{1} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{1}) - g_{i}(W_{\alpha}(x^{1})) \right] - \frac{1}{2\alpha} \|x^{1} - W_{\alpha}(x^{1})\|_{2}^{2} \\ &- \min_{i=1,\dots,m} \left[ \langle \nabla f_{i}(x^{2}), x^{2} - W_{\alpha}(x^{1}) \rangle + g_{i}(x^{2}) - g_{i}(W_{\alpha}(x^{1})) \right] + \frac{1}{2\alpha} \|x^{2} - W_{\alpha}(x^{1})\|_{2}^{2} \\ &\leq \max_{i=1,\dots,m} \left[ \langle \nabla f_{i}(x^{1}) - \nabla f_{i}(x^{2}), x^{1} - W_{\alpha}(x^{1}) \rangle + \langle \nabla f_{i}(x^{2}), x^{1} - x^{2} \rangle + g_{i}(x^{1}) - g_{i}(x^{2}) \right] \\ &- \frac{1}{2\alpha} \langle x^{1} - x^{2}, x^{1} + x^{2} - 2W_{\alpha}(x^{1}) \rangle \\ &\leq \|x^{1} - W_{\alpha}(x^{1})\|_{2} \max_{i=1,\dots,m} \|\nabla f_{i}(x^{1}) - \nabla f_{i}(x^{2})\|_{2} \end{split}$$

$$+ \max_{i=1,...,m} \|\nabla f_i(x^2)\|_2 \|x^1 - x^2\|_2 + \max_{i=1,...,m} |g_i(x^1) - g_i(x^2)| \\ + \frac{1}{2\alpha} \|x^1 + x^2 - 2W_\alpha(x^1)\|_2 \|x^1 - x^2\|_2,$$

where the first inequality comes from (2.2), and the third inequality follows from the Cauchy-Schwarz inequality. The above inequality holds even if we interchange  $x^1$  and  $x^2$ . Furthermore,  $W_{\alpha}(x)$  and  $\nabla f_i(x)$  are bounded for any  $x \in \Omega$  due to their continuity. Therefore, local Lipschitz continuity of  $\nabla f_i$  and  $g_i$  implies the local Lipschitz continuity of  $w_{\alpha}$ .

On the other hand, in the same way as the derivation of (3.6), Sion's minimax theorem [95] gives another representation of  $w_{\alpha}$  for  $\alpha > 0$  as follows:

$$w_{\alpha}(x) = \min_{\lambda \in \Delta^{m}} \max_{y \in C} \sum_{i=1}^{m} \lambda_{i} \bigg[ \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{1}{2\alpha} \|x - y\|_{2}^{2} \bigg],$$

where  $\Delta^m$  denotes the unit *m*-simplex (2.1). Moreover, simple calculations show that

$$w_{\alpha}(x) = \min_{\lambda \in \Delta^{m}} \left\{ \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{1}{2\alpha} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} - \min_{y \in C} \left[ \sum_{i=1}^{m} \lambda_{i} g_{i}(y) + \frac{1}{2\alpha} \left\| x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) - y \right\|_{2}^{2} \right] \right\}$$
$$= \min_{\lambda \in \Delta^{m}} \left[ \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{1}{2\alpha} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right],$$

where  $\mathcal{M}$  and  $\delta_C$  are given by (1.7) and (2.9), respectively. In other words, we can compute  $w_{\alpha}$  via the following *m*-dimensional, simplex-constrained, and convex optimization problem:

$$\min_{\lambda \in \mathbf{R}^{m}} \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{1}{2\alpha} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \quad (3.16)$$
s.t.  $\lambda \geq 0$  and  $\sum_{i=1}^{m} \lambda_{i} = 1$ .

Moreover, the following theorem proves that (3.16) is differentiable.

#### Theorem 3.10

The objective function of (3.16) is continuously differentiable at every  $\lambda \in \mathbf{R}^m$  and

$$\nabla_{\lambda} \left[ \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{\alpha}{2} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right]$$
$$= g(x) - g \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right) \right)$$
$$- \mathcal{J}_{f}(x) \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) - x \right),$$

where **prox** is the proximal operator (2.10), and  $\mathcal{J}_f(x)$  is the Jacobian matrix at x given by (2.7).

*Proof.* Let

$$\theta(y,\lambda) \coloneqq \sum_{i=1}^{m} \lambda_i g_i(y) + \frac{\alpha}{2} \left\| x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) - y \right\|_2^2.$$

Then,  $\theta$  is continuous,  $\theta_y(\cdot) \coloneqq \theta(y, \cdot)$  is continuously differentiable, and

$$\nabla_{\lambda}\theta_{y}(\lambda) = g(y) + \mathcal{J}_{f}(x)\left(y - x + \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)\right).$$

Moreover,  $\mathbf{prox}_{\alpha\sum_{i=1}^{m}\lambda_i g_i + \delta_C}(x) = \operatorname{argmin}_{y \in C} \theta(y, \lambda)$  is also continuous at every  $\lambda \in \mathbf{R}^m$  (cf. [91, Excercise 7.38]). The above discussion implies that every assumption in Proposition 2.1 is satisfied. Combined with the uniqueness of  $\mathbf{prox}_{\alpha\sum_{i=1}^{m}\lambda_i g_i + \delta_C}(x)$ , we get

$$\nabla_{\lambda} \left[ \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right]$$
  
=  $g \left( \operatorname{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right)$   
+  $\mathcal{J}_{f}(x) \left( \operatorname{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) - x + \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right).$ 

On the other hand, we have

$$\nabla_{\lambda} \left[ \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{\alpha}{2} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} \right] = g(x) + \alpha \mathcal{J}_{f}(x) \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x).$$

Adding the above two equalities, we obtain the desired result.

Thus, like (3.7), (3.16) is solvable with convex optimization techniques such as the interior point method [14] when we can quickly evaluate  $\mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C}(\cdot)$ . When  $n \gg m$ , this usually gives a faster way to compute  $w_{\alpha}$ .

#### Example 3.3

- (i) If  $g_i(x) = 0$  for all i = 1, ..., m, then  $\mathbf{prox}_{\alpha \sum_{i=1}^m \lambda_i g_i + \delta_C}$  reduces to the projection onto C from (2.11).
- (ii) If  $g_i(x) = g_1(x)$  for any i = 1, ..., m, or if  $g_i(x) = g_1(x_{I_i})$  and the index sets  $I_i \subseteq \{1, ..., n\}$  do not overlap each other, then  $\mathbf{prox}_{\alpha \sum_{i=1}^m \lambda_i g_i}$  is computable with each  $\mathbf{prox}_{g_i}$  when  $C = \mathbf{R}^n$ .
- (iii) Even if there is an overlap, we can compute  $\mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i}$  for special functions. For example, when m = 2,  $g_1(x) = ||x||_1$ ,  $g_2(x) = ||x||_2^2$ , and  $C = \mathbf{R}^n$ ,  $\lambda_1 g_1(x) + \lambda_2 g_2(x)$  is the elastic net [112]. It has a proximal operator in closed-form [84, Section 6.5.3].

Now, define the optimal solution set of (3.16) by

$$\Lambda(x) = \underset{\lambda \in \Delta^{m}}{\operatorname{argmin}} \left[ \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \frac{\alpha}{2} \left\| \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right\|_{2}^{2} - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} \lambda_{i} g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) \right) \right]. \quad (3.17)$$

Then, in the same manner as Theorem 3.6, we obtain the following theorem.

#### Theorem 3.11

Let  $x \in C$ . Assume that  $f_i$  is twice continuously differentiable at x. Then, for

all  $\alpha > 0$ , the merit function  $w_{\alpha}$  defined by (3.10) has a directional derivative

$$w_{\alpha}'(x;z-x) = \inf_{\lambda \in \Lambda(x)} \left[ \sum_{i=1}^{m} \lambda_i g_i'(x;z-x) - \alpha^{-1} \left\langle \left[ I_n - \alpha \sum_{i=1}^{m} \lambda_i \nabla^2 f_i(x) \right] \left[ x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \left( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \right) \right] - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x), z - x \right\rangle \right]$$

for all  $z \in C$ , where **prox** and  $\Lambda$  is given by (2.10) and (3.17), respectively, and  $I_n \in \mathbb{R}^{n \times n}$  is the n-dimensional identity matrix. In particular, if  $\Lambda(x)$  is a singleton, i.e.,  $\Lambda(x) = \{\lambda(x)\}$ , and  $g_i$  is continuously differentiable at x, then  $w_{\alpha}$  is continuously differentiable at x, and we have

$$\nabla w_{\alpha}(x) = \sum_{i=1}^{m} \lambda_{i}(x) \nabla F_{i}(x)$$
$$-\alpha^{-1} \left[ I_{n} - \alpha \sum_{i=1}^{m} \lambda_{i}(x) \nabla^{2} f_{i}(x) \right] \left[ x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i}(x) g_{i} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i}(x) \nabla f_{i}(x) \right) \right].$$

If the convex part  $g_i$  is the same regardless of i, we get the following corollary without assuming the differentiability of  $g_i$ .

#### Corollary 3.1

Let  $x \in C$  and  $\alpha > 0$ . Assume that  $f_i$  is twice continuously differentiable at xand  $g_i = g_1$  for all i = 1, ..., m, and recall that  $w_\alpha$  and **prox** be defined by (2.10) and (3.10), respectively. If  $\Lambda(x)$  given by (3.17) is a singleton, i.e.,  $\Lambda(x) = \{\lambda(x)\}$ , then the function  $w_\alpha - g_1$  is continuously differentiable at x, and we have

$$\nabla_{x}(w_{\alpha}(x) - g_{1}(x))$$

$$= -\alpha^{-1} \left[ I_{n} - \alpha \sum_{i=1}^{m} \lambda_{i}(x) \nabla^{2} f_{i}(x) \right] \left[ x - \mathbf{prox}_{\alpha g_{1} + \delta_{C}} \left( x - \alpha \sum_{i=1}^{m} \lambda_{i}(x) \nabla f_{i}(x) \right) \right]$$

$$+ \sum_{i=1}^{m} \lambda_{i}(x) \nabla f_{i}(x).$$

Corollary 3.1 implies that, under certain conditions, the merit function  $w_{\alpha} = (w_{\alpha} - w_{\alpha})^{2}$ 

 $g_1$ ) +  $g_1$  is composite, i.e., the sum of a continuously differentiable function and a convex one.

Theorems 3.8 and 3.11 show that the Pareto stationary points for (1.14) are global optimal for the following directionally differentiable single-objective optimization problem:

$$\min_{x \in C} \quad w_{\alpha}(x). \tag{3.18}$$

Moreover, when the assumptions of Corollary 3.1 hold, we can apply first-order methods such as the proximal gradient method [50] to (3.18). On the other hand, if we consider Example 3.1 with  $f_i = 0$ , we can see that the stationary point for (3.18) is not necessarily Pareto stationary for (1.14). However, if  $f_i$  is convex and twice continuously differentiable, and  $F_i$  is strictly convex, then we can prove that every stationary point of (3.18) is Pareto optimal for (1.14), i.e., global optimal for (3.9). Note that this assumption does not assert the convexity of  $w_{\alpha}$ .

#### Theorem 3.12

Let  $x \in C$  and  $\alpha > 0$ . Suppose that  $f_i$  is convex and twice continuously differentiable at x, and  $F_i$  is strictly convex for any i = 1, ..., m. If x is stationary for (3.18), *i.e.*,

$$w'_{\alpha}(x; z - x) \ge 0 \quad for \ all \ z \in C,$$

then x is Pareto optimal for (1.14).

*Proof.* Let  $z \in C$  and  $\lambda \in \Lambda(x)$ , where  $\Lambda(x)$  is defined by (3.17). Then, it follows from Theorem 3.11 that

$$\sum_{i=1}^{m} \lambda_i g'_i(x; z - x) - \alpha^{-1} \left\langle \left[ I_n - \alpha \sum_{i=1}^{m} \lambda_i \nabla^2 f_i(x) \right] \left[ x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \left( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \right) \right] - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x), z - x \right\rangle \ge 0.$$

Substituting  $z = \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i F_i + \delta_C}(x)$ , we have

$$\sum_{i=1}^{m} \lambda_i F'_i \left( x; \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \left( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \right) - x \right) \\ + \alpha^{-1} \left\langle \left[ I_n - \alpha \sum_{i=1}^{m} \lambda_i \nabla^2 f_i(x) \right] \left[ x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \left( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \right) \right], \\ x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \left( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \right) \right\rangle \geq 0.$$

Since the convexity of  $f_i$  implies that  $\nabla^2 f_i(x)$  is positive semidefinite, we get

$$\begin{split} \sum_{i=1}^{m} \lambda_i F_i' \Biggl( x; \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \Biggl( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \Biggr) - x \Biggr) \\ &+ \alpha^{-1} \Biggl\| \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} \Biggl( x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x) \Biggr) \Biggr\|_2^2 \ge 0. \end{split}$$

Therefore, with similar arguments used in the proof of Theorem 3.7, we obtain  $x = \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_i g_i + \delta_C} (x - \alpha \sum_{i=1}^{m} \lambda_i \nabla f_i(x))$ , and thus  $w_{\alpha}(x) = 0$ . Since  $F_i$  is strictly convex, x is Pareto optimal for (1.14) from Lemma 2.4 (iii) and Theorem 3.8.

# 3.3 Relation between different merit functions

This section assumes that the problem has a composite structure (1.14) and discusses the connection between the merit functions proposed in Section 3.2. First, we show some inequalities between different types of merit functions.

#### Theorem 3.13

Let  $u_{\infty}$ ,  $u_{\alpha}$ , and  $w_{\alpha}$  be defined by (3.1), (3.2) and (3.10), respectively, for all  $\alpha > 0$ . Then, the following statements hold.

(i) If  $f_i$  is  $\mu_{f_i}$ -convex for some  $\mu_{f_i} \in \mathbf{R}$  and  $\mu_f = \min_{i=1,\dots,m} \mu_{f_i}$ , then we have

$$\begin{cases} u_{\infty}(x) \le w_{\mu_{f}^{-1}}(x) \quad and \quad u_{\alpha^{-1}}(x) \le w_{(\mu_{f}+\alpha)^{-1}}(x), & \text{if } \mu_{f} \ge 0, \\ u_{(-\mu_{f}+\alpha)^{-1}}(x) \le w_{\alpha^{-1}}(x), & \text{otherwise} \end{cases}$$

for all  $\alpha > 0$  and  $x \in C$ .

(ii) If  $\nabla f_i$  is  $L_{f_i}$ -Lipschitz continuous for some  $L_{f_i} > 0$  and  $L_f := \max_{i=1,...,m} L_{f_i}$ , then we get

 $u_{(L_f+\alpha)^{-1}}(x) \le w_{\alpha^{-1}}(x), \quad u_{\infty}(x) \ge w_{L_f^{-1}}(x), \quad and \quad u_{\alpha^{-1}}(x) \ge w_{(L_f+\alpha)^{-1}}(x)$ 

for all  $\alpha > 0$  and  $x \in C$ .

*Proof.* Claim (i): Let i = 1, ..., m. The  $\mu_{f_i}$ -convexity of  $f_i$  gives

$$f_i(x) - f_i(y) \le \langle \nabla f_i(x), x - y \rangle - \frac{\mu_{f_i}}{2} ||x - y||_2^2$$

By the definition of  $\mu_f$ , we get

$$f_i(x) - f_i(y) \le \langle \nabla f_i(x), x - y \rangle - \frac{\mu_f}{2} ||x - y||_2^2.$$

Thus, recalling (1.14), we have

$$F_{i}(x) - F_{i}(y) \leq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{\mu_{f}}{2} ||x - y||_{2}^{2},$$
  

$$F_{i}(x) - F_{i}(y) - \frac{\alpha}{2} ||x - y||_{2}^{2} \leq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{\mu_{f} + \alpha}{2} ||x - y||_{2}^{2},$$
  

$$F_{i}(x) - F_{i}(y) - \frac{-\mu_{f} + \alpha}{2} ||x - y||_{2}^{2} \leq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{\alpha}{2} ||x - y||_{2}^{2},$$

so the desired inequalities are clear from (3.1), (3.2) and (3.10).

Claim (ii): Let i = 1, ..., m. Suppose that  $\nabla f_i$  is  $L_{f_i}$ -Lipschitz continuous. Then, Lemma 2.2 yields

$$|f_i(y) - f_i(x) - \langle \nabla f_i(x), y - x \rangle| \le \frac{L_{f_i}}{2} ||x - y||_2^2.$$

By the definition of  $L_f$ , we have

$$|f_i(y) - f_i(x) - \langle \nabla f_i(x), y - x \rangle| \le \frac{L_f}{2} ||x - y||_2^2.$$

This gives

$$F_{i}(x) - F_{i}(y) - \frac{L_{f} + \alpha}{2} \|x - y\|_{2}^{2} \leq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{\alpha}{2} \|x - y\|_{2}^{2},$$
  

$$F_{i}(x) - F_{i}(y) \geq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{L_{f}}{2} \|x - y\|_{2}^{2},$$
  

$$F_{i}(x) - F_{i}(y) - \frac{\alpha}{2} \|x - y\|_{2}^{2} \geq \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{L_{f} + \alpha}{2} \|x - y\|_{2}^{2}.$$

Therefore, we immediately get  $u_{(L_f+\alpha)^{-1}}(x) \leq w_{\alpha^{-1}}(x), u_{\infty}(x) \geq w_{L_f^{-1}}(x)$ , and  $u_{\alpha^{-1}}(x) \geq w_{(L_f+\alpha)^{-1}}(x)$  for all  $x \in C$  by (3.1), (3.2) and (3.10).

Second, we present the relation between coefficients and the proposed merit functions' values.

#### Theorem 3.14

Recall that  $w_{\alpha_1}$  is defined by (3.10) for all  $\alpha_1 > 0$ . Let  $\alpha_2$  be an arbitrary scalar such that  $\alpha_1 \ge \alpha_2$ . Then, we get

$$w_{\alpha_2}(x) \le w_{\alpha_1}(x) \le \frac{\alpha_1}{\alpha_2} w_{\alpha_2}(x)$$
 for all  $x \in C$ .

*Proof.* Let  $x \in C$ . Since  $\alpha_1 \geq \alpha_2 > 0$ , the definition (3.10) of  $w_{\alpha_1}$  and  $w_{\alpha_2}$  clearly gives the first inequality. Thus, we prove the second one. From the definition (3.10) of  $w_{\alpha_1}$ , we have

$$\begin{split} w_{\alpha_{1}}(x) &= \sup_{y \in C} \min_{i=1,...,m} \left[ \langle \nabla f_{i}(x), x - y \rangle + g_{i}(x) - g_{i}(y) - \frac{1}{2\alpha_{1}} \|x - y\|_{2}^{2} \right] \\ &= \frac{\alpha_{1}}{\alpha_{2}} \sup_{y \in C} \min_{i=1,...,m} \left[ \left\langle \nabla f_{i}(x), \frac{\alpha_{2}}{\alpha_{1}}(x - y) \right\rangle + \frac{\alpha_{2}}{\alpha_{1}}(g_{i}(x) - g_{i}(y)) - \frac{1}{2\alpha_{2}} \left\| \frac{\alpha_{2}}{\alpha_{1}}(x - y) \right\|_{2}^{2} \right] \\ &\leq \frac{\alpha_{1}}{\alpha_{2}} \sup_{y \in C} \min_{i=1,...,m} \left[ \left\langle \nabla f_{i}(x), \frac{\alpha_{2}}{\alpha_{1}}(x - y) \right\rangle + g_{i}(x) - g_{i}\left(x - \frac{\alpha_{2}}{\alpha_{1}}(x - y)\right) \right. \\ &\left. - \frac{1}{2\alpha_{2}} \left\| \frac{\alpha_{2}}{\alpha_{1}}(x - y) \right\|_{2}^{2} \right] \end{split}$$

where the first inequality follows from the convexity of  $g_i$ . Since C is convex,  $x, y \in C$ implies  $x - (\alpha_2/\alpha_1)(x-y) \in C$ . Therefore, from the definition (3.10) of  $w_{\alpha_2}$ , we get

$$w_{\alpha_1}(x) \le \frac{\alpha_1}{\alpha_2} w_{\alpha_2}(x).$$

Considering Remark 3.1 (ii), we get the following corollary.

#### Corollary 3.2

Assume that each component  $F_i$  of the objective function F of (1.1) is convex. Recall that  $u_{\alpha_1}$  is defined by (3.2) for all  $\alpha_1 > 0$ . Let  $\alpha_2$  be an arbitrary scalar such that  $\alpha_1 \ge \alpha_2$ . Then, we get

$$u_{\alpha_2}(x) \le u_{\alpha_1}(x) \le \frac{\alpha_1}{\alpha_2} u_{\alpha_2}(x) \quad for \ all \ x \in C.$$

# 3.4 Level-boundedness of the proposed merit functions

As we discussed in Section 2.2, we call a function *level-bounded* if every level set is bounded. This is an essential property because it ensures that the sequences generated by descent methods have accumulation points. We state below sufficient conditions for the level-boundedness of the merit functions proposed in Section 3.2.

#### Theorem 3.15

Let  $u_{\infty}$ ,  $u_{\alpha}$ , and  $w_{\alpha}$  be defined by (3.1), (3.2) and (3.10), respectively, for all  $\alpha > 0$ . Then, the following claims hold.

- (i) If  $F_i$  is level-bounded for all i = 1, ..., m, then  $u_{\infty}$  is level-bounded.
- (ii) If  $F_i$  is convex and level-bounded for all i = 1, ..., m, then  $u_{\alpha}$  is level-bounded for all  $\alpha > 0$ .
- (iii) Suppose that F has the composite structure (1.14). If  $f_i$  is  $\mu_{f_i}$ -convex for some  $\mu_{f_i} \in \mathbf{R}$  or  $\nabla f_i$  is  $L_{f_i}$ -Lipschitz continuous for some  $L_{f_i} > 0$ , and  $F_i$ is convex and level-bounded for all i = 1, ..., m, then  $w_{\alpha}$  is level-bounded for all  $\alpha > 0$ .

*Proof.* Claim (i): Suppose, contrary to our claim, that  $u_{\infty}$  is not level-bounded. Then, there exists  $c \in \mathbf{R}$  such that  $\{x \in C \mid u_{\infty}(x) \leq c\}$  is unbounded. By the definition (3.2) of  $u_{\infty}$ , the inequality  $u_{\infty}(x) \leq c$  can be written as

$$\sup_{y \in C} \min_{i=1,\dots,m} [F_i(x) - F_i(y)] \le c$$

This implies that for some fixed  $z \in C$ , there exists  $j = 1, \ldots, m$  such that

$$F_j(x) \le F_j(z) + c.$$

Therefore, it follows that

$$\{x \in C \mid u_{\infty}(x) \le c\} \subseteq \bigcup_{j=1}^{m} \{x \in C \mid F_j(x) \le F_j(z) + c\}.$$

Since  $F_i$  is level-bounded for all i = 1, ..., m, the right-hand side must be bounded, which contradicts the unboundedness of the left-hand side.

Claim (ii): Recall the definitions (2.1), (2.9) and (2.10) of  $\Delta^m$ ,  $\mathcal{M}$ , and **prox**. Equation (3.6) gives

$$\begin{aligned} u_{\alpha}(x) &= \min_{\lambda \in \Delta^{m}} \left[ \sum_{i=1}^{m} \lambda_{i} F_{i}(x) - \alpha^{-1} \mathcal{M}_{\alpha \sum_{i=1}^{m} \lambda_{i} F_{i} + \delta_{C}}(x) \right] \\ &= \min_{\lambda \in \Delta^{m}} \sum_{i=1}^{m} \lambda_{i} \left[ F_{i}(x) - F_{i} \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} F_{i} + \delta_{C}}(x) \right) \right] \\ &- \frac{1}{2\alpha} \left\| x - \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} F_{i} + \delta_{C}}(x) \right\|_{2}^{2} \right] \\ &\geq \frac{1}{2} \min_{\lambda \in \Delta^{m}} \sum_{i=1}^{m} \lambda_{i} \left[ F_{i}(x) - F_{i} \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} F_{i} + \delta_{C}}(x) \right) \right] \\ &= \frac{1}{2} \min_{i=1,\dots,m} \left[ F_{i}(x) - F_{i} \left( \mathbf{prox}_{\alpha \sum_{i=1}^{m} \lambda_{i} F_{i} + \delta_{C}}(x) \right) \right], \end{aligned}$$

where the inequality follows from Corollary 2.1. Therefore, with similar arguments given in the proof of claim (i), we can show the level-boundedness of  $u_{\alpha}$  by contradiction.

Claim (iii): From Theorems 3.13 and 3.14, there exist some  $\tau > 0$  and  $\beta > 0$ such that  $u_{\beta}(x) \leq \tau w_{\alpha}(x)$  for all  $x \in C$ . Since claim (ii) implies that  $u_{\beta}$  is levelbounded,  $w_{\alpha}$  is also level-bounded.

The following example indicates that our proposed merit functions are not necessarily level-bounded, even if F is level-bounded.

#### Example 3.4

Consider the bi-objective function  $F: \mathbf{R} \to \mathbf{R}^2$  with each component given by

$$F_1(x) \coloneqq x^2, \quad F_2(x) \coloneqq 0.$$

Then, the gap function  $u_{\infty}$  defined by (3.2) is written as

$$u_{\infty}(x) = \sup_{y \in \mathbf{R}} \min[F_1(x) - F_1(y), F_2(x) - F_2(y)]$$
  
= 
$$\sup_{y \in \mathbf{R}} \min[(x^2 - y^2), 0] = 0.$$

On the other hand, F is level-bounded because  $\lim_{\|x\|_2\to\infty} F_1(x) = \infty$ .

# 3.5 The multi-objective proximal PL inequality and error bounds

For the multi-objective composite problem (1.14), this section extends the proximal-PL inequality introduced in Section 2.7 and shows that it induces the proposed merit function's error bound. We first define the *multi-objective proximal-PL inequality*.

#### Definition 3.1 (Multi-objective proximal-PL inequality)

Assume that  $f_i, i = 1, ..., m$  is  $L_{f_i}$ -smooth with  $L_{f_i} > 0$  and let  $L_f := \max_{i=1,...,m} L_{f_i}$ . We say that (1.14) satisfies the multi-objective proximal-PL inequality if there exists  $\tau > 0$  such that

$$w_{L_f^{-1}}(x) \ge \tau u_{\infty}(x) \quad \text{for all } x \in \mathbf{R}^n$$
(3.19)

with  $u_{\infty}$  and  $w_{L_{f}^{-1}}$  given by (3.1) and (3.10).

If m = 1, (3.19) reduces to the proximal-PL inequality for scalar optimization (2.14). We state below some sufficient conditions for (3.19).

#### **Proposition 3.1**

- (i) When  $f_i$  is  $\mu_{f_i}$ -convex with  $\mu_{f_i} > 0$ , (3.19) holds with  $\tau := \min(\mu_f/L_f, 1)$ , where  $\mu_f := \min_{i=1,\dots,m} \mu_{f_i}$ .
- (ii) Assume that  $f_i(x) \coloneqq h(A_i x)$  with some strongly convex function  $h_i$  and linear transformation  $A_i$ , and  $g_i \coloneqq \delta_{\mathcal{X}_i}$  with  $\mathcal{X}_i$  being a polyhedral set and  $\delta_{\mathcal{X}_i}$  given

by (1.7). If each  $\min_{x \in \mathbf{R}^n} F_i(x)$  has a nonempty set  $X_i^*$  for  $i = 1, \ldots, m$ , then (3.19) holds with some constant  $\tau$ .

*Proof.* Claim (i): Since  $f_i$  is strongly convex, Theorem 3.13 (i) gives

$$u_{\infty}(x) \le w_{\mu}(x)$$
 for all  $x \in \mathbf{R}^n$ .

Applying Theorem 3.14 to the above inequality implies

$$u_{\infty}(x) \le \max\left(\frac{L_f}{\mu_f}, 1\right) w_{L_f^{-1}}(x) \quad \text{for all } x \in \mathbf{R}^n,$$

which means

$$w_{L_f^{-1}}(x) \ge \min\left(\frac{\mu_f}{L_f}, 1\right) u_{\infty}(x) \quad \text{for all } x \in \mathbf{R}^n.$$

Claim (ii): Since  $\mathcal{X}_i$  is polyhedral, we can write it as  $\{x \in \mathbf{R}^n \mid B_i x \leq c_i\}$  for some matrix  $B_i$  and vector  $c_i$  for i = 1, ..., m. We now show that for all i = 1, ..., mthere exists some  $z_i$  such that

$$X_i^* = \{ x \in \mathbf{R}^n \mid B_i x \le c_i \text{ and } A_i x = z_i \}.$$

To obtain a contradiction, suppose that there exists  $x^1 \in X_i^*$  and  $x^2 \in X_i^*$  such that  $A_i x^1 \neq A_i x^2$ . Clearly, we have  $f_i(x^1) = f_i(x^2)$ . Since  $h_i$  is strongly convex, we get

$$f_i(x^1) = \frac{1}{2}f_i(x^1) + \frac{1}{2}f_i(x^2) = \frac{1}{2}h_i(A_ix^1) + \frac{1}{2}h_i(A_ix^2)$$
  
>  $h_i\left(A_i\left(\frac{1}{2}x^1 + \frac{1}{2}x^2\right)\right) = f_i\left(\frac{1}{2}x^1 + \frac{1}{2}x^2\right),$ 

which contradicts the fact that  $x^1 \in X_i^*$ . Therefore, we can use Hoffman's error bound [61], and so there exists some  $\rho_i > 0$  such that for any  $x \in \mathbf{R}^n$ , there exists  $x_i^* \in X_i^*$  with

$$\|x - x_i^*\|_2 \le \rho_i \left\| \max\left[ \begin{pmatrix} B_i \\ A_i \\ -A_i \end{pmatrix} x - \begin{pmatrix} c_i \\ z_i \\ -z_i \end{pmatrix}, 0 \right] \right\|_2.$$

Note that we take the max operator componentwise on the right-hand side. Since  $B_i x - c_i \leq 0$  for all  $x \in \text{dom}(F)$ , we have

$$\|x - x_i^*\|_2 \le \rho_i \left\| \max\left[ \begin{pmatrix} A_i \\ -A_i \end{pmatrix} x - \begin{pmatrix} z_i \\ -z_i \end{pmatrix}, 0 \right] \right\|_2 \quad \text{for all } x \in \operatorname{dom}(F),$$

which yields

$$||x - x_i^*||_2^2 \le \rho_i^2 ||A_i x - z_i||_2^2$$
 for all  $x \in \text{dom}(F)$ .

Since  $\operatorname{proj}_{X_i^*}(x) \in X_i^*$ , it follows that

$$\left\| x - \mathbf{proj}_{X_i^*}(x) \right\|_2^2 \le \|x - x_i^*\|_2^2 \le \rho_i^2 \left\| A_i \left( x - \mathbf{proj}_{X_i^*}(x) \right) \right\|_2^2 \quad \text{for all } x \in \operatorname{dom}(F).$$
(3.20)

Now, suppose that  $x \in \text{dom}(F)$ . From the definition (3.1) of  $u_{\infty}$ , we get

$$u_{\infty}(x) = \sup_{z \in \mathbf{R}^{n}} \min_{i=1,...,m} [F_{i}(x) - F_{i}(z)]$$
  
$$\leq \min_{i=1,...,m} \sup_{z \in \mathbf{R}^{n}} [F_{i}(x) - F_{i}(z)] = \min_{i=1,...,m} \Big[ F_{i}(x) - F_{i}\Big(\operatorname{proj}_{X_{i}^{*}}(x)\Big) \Big],$$

where the second equality holds because  $\operatorname{proj}_{X_i^*}(x) = \operatorname{argmin}_{x \in \mathbf{R}^n} F_i(x)$ . Assuming that  $h_i$  is  $\sigma_{h_i}$ -convex with  $\sigma_{h_i} > 0$ , it follows that

$$u_{\infty}(x) = \min_{i=1,\dots,m} \left[ \left\langle \nabla h_i(A_i x), A_i \left( x - \mathbf{proj}_{X_i^*}(x) \right) \right\rangle + g_i(x) - g_i \left( \mathbf{proj}_{X_i^*}(x) \right) - \frac{\sigma_{h_i}}{2} \left\| A_i \left( x - \mathbf{proj}_{X_i^*}(x) \right) \right\|_2^2 \right] \right]$$
$$= \min_{i=1,\dots,m} \left[ \left\langle \nabla f_i(x), x - \mathbf{proj}_{X_i^*}(x) \right\rangle + g_i(x) - g_i \left( \mathbf{proj}_{X_i^*}(x) \right) - \frac{\sigma_{h_i}}{2} \left\| A_i \left( x - \mathbf{proj}_{X_i^*}(x) \right) \right\|_2^2 \right].$$

Applying (3.20) to the above inequality leads to

$$u_{\infty}(x) \leq \min_{i=1,\dots,m} \left[ \left\langle \nabla f_i(x), x - \mathbf{proj}_{X_i^*}(x) \right\rangle + g_i(x) - g_i \left( \mathbf{proj}_{X_i^*}(x) \right) - \frac{\sigma_{h_i}}{2\rho_i^2} \left\| x - \mathbf{proj}_{X_i^*}(x) \right\|_2^2 \right].$$

Let  $e \in \Delta^m$  with  $\Delta^m$  given by (2.1). Since  $\min_{i=1,\dots,m} v_i = \min_{e \in \Delta^m} \sum_{i=1}^m e_i v_i$  for any  $v \in \mathbf{R}^m$ , we get

$$\begin{split} u_{\infty}(x) &\leq \min_{e \in \Delta^{m}} \sum_{i=1}^{m} e_{i} \left[ \left\langle \nabla f_{i}(x), x - \mathbf{proj}_{X_{i}^{*}}(x) \right\rangle + g_{i}(x) - g_{i} \left( \mathbf{proj}_{X_{i}^{*}}(x) \right) \right. \\ &\left. - \frac{\sigma_{h_{i}}}{2\rho_{i}^{2}} \right\| x - \mathbf{proj}_{X_{i}^{*}}(x) \right\|_{2}^{2} \\ &\leq \min_{e \in \Delta^{m}} \sup_{z \in \mathbf{R}^{n}} \sum_{i=1}^{m} e_{i} \left[ \left\langle \nabla f_{i}(x), x - z \right\rangle + g_{i}(x) - g_{i}(z) - \frac{\sigma_{h_{i}}}{2\rho_{i}^{2}} \|x - z\|_{2}^{2} \right] \\ &= \sup_{z \in \mathbf{R}^{n}} \min_{e \in \Delta^{m}} \sum_{i=1}^{m} e_{i} \left[ \left\langle \nabla f_{i}(x), x - z \right\rangle + g_{i}(x) - g_{i}(z) - \frac{\sigma_{h_{i}}}{2\rho_{i}^{2}} \|x - z\|_{2}^{2} \right] \\ &= \sup_{z \in \mathbf{R}^{n}} \min_{i=1,\dots,m} \left[ \left\langle \nabla f_{i}(x), x - z \right\rangle + g_{i}(x) - g_{i}(z) - \frac{\sigma_{h_{i}}}{2\rho_{i}^{2}} \|x - z\|_{2}^{2} \right] \\ &\leq w_{\rho_{i}^{2}/\min_{i=1,\dots,m}} \sigma_{h_{i}}(x), \end{split}$$

where the first equality follows from the Sion's minimax theorem [95], and the third equality comes from the definition (3.10) of  $w_{\rho_i^2/\lim_{i=1}m_m\sigma_{h_i}}$ . Thus, Theorem 3.14 gives

$$u_{\infty}(x) \le \max\left(\frac{L_f \rho_i^2}{\min_{i=1,\dots,m} \sigma_{h_i}}, 1\right) w_{L_f^{-1}}(x),$$

which completes the proof.

We now show that the multi-objective proximal-PL inequality (3.19) leads to the error-bound property.

#### Theorem 3.16

Let  $x \in \mathbf{R}^n$ . Suppose that  $f_i$  is  $L_{f_i}$ -smooth with  $L_{f_i} > 0$  for each  $i = 1, \ldots, m, L_f := \max_{i=1,\ldots,m} L_{f_i}$ , and the multi-objective proximal-PL inequality (3.19) holds with  $\tau > 0$ 

0. Then, the trajectory  $\left\{ W_{L_{f}^{-1}}^{k}(x) \coloneqq \widetilde{W_{L_{f}^{-1}} \circ \cdots \circ W_{L_{f}^{-1}}}(x) \right\}$  converges linearly to a weakly Pareto optimal point  $x^*$  and

$$u_{\infty}(x) \ge \frac{\tau L_f}{8} ||x - x^*||_2^2,$$

where  $u_{\infty}$  and  $W_{L_{f}^{-1}}$  are given by (3.1) and (3.11), respectively.

*Proof.* Recall that  $u_{\infty}$  is non-negative due to Theorem 3.1. We have

$$\sqrt{u_{\infty}(x)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)} = \frac{u_{\infty}(x) - u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)}{\sqrt{u_{\infty}(x)} + \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)}}.$$

The definition (3.1) of  $u_{\infty}$  gives

$$u_{\infty}(x) - u_{\infty}\Big(W_{L_{f}^{-1}}(x)\Big) \ge \min_{i=1,\dots,m} \Big[F_{i}(x) - F_{i}\Big(W_{L_{f}^{-1}}(x)\Big)\Big] \ge w_{L_{f}^{-1}}(x),$$

where the second inequality follows from Lemma 2.2 and (3.10) and (3.11). Note that this inequality, together with (3.19), proves that  $\left\{ W_{L_f^{-1}}^k(x) \right\}$  converges linearly to zero. On the other hand, since  $u_{\infty}(x) \ge u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)$  because of Theorem 3.8 and the above inequality, we get

$$\sqrt{u_{\infty}(x)} + \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)} \le 2\sqrt{u_{\infty}(x)} \le 2\sqrt{w_{L_{f}^{-1}}(x)/\tau},$$

where the second inequality comes from (3.19). Then, the above three inequalities show

$$\sqrt{u_{\infty}(x)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)} \ge \frac{w_{L_{f}^{-1}}(x)}{2\sqrt{w_{L_{f}^{-1}}(x)/\tau}} = \frac{1}{2}\sqrt{\tau w_{L_{f}^{-1}}(x)}.$$

Therefore, it follows from (3.14) that

$$\sqrt{u_{\infty}(x)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}(x)\right)} \ge \frac{\sqrt{\tau L_{f}}}{2\sqrt{2}} \left\|x - W_{L_{f}^{-1}}(x)\right\|_{2}.$$

More generally, we arrive at

$$\sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k}(x)\right)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k+1}(x)\right)} \ge \frac{\sqrt{\tau L_{f}}}{2\sqrt{2}} \left\|W_{L_{f}^{-1}}^{k}(x) - W_{L_{f}^{-1}}^{k+1}(x)\right\|_{2}$$

for all  $k = 0, 1, \ldots$  Adding up the above inequality from  $k = k_1$  to  $k = k_2 - 1$  yields

$$\sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k_{1}}(x)\right)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k_{2}}(x)\right)} \ge \frac{\sqrt{\tau L_{f}}}{2\sqrt{2}} \sum_{k=k_{1}}^{k_{2}-1} \left\|W_{L_{f}^{-1}}^{k}(x) - W_{L_{f}^{-1}}^{k+1}(x)\right\|_{2}.$$

Thus, the triangle inequality implies

$$\sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k_{1}}(x)\right)} - \sqrt{u_{\infty}\left(W_{L_{f}^{-1}}^{k_{2}}(x)\right)} \ge \frac{\sqrt{\tau L_{f}}}{2\sqrt{2}} \left\|W_{L_{f}^{-1}}^{k_{1}}(x) - W_{L_{f}^{-1}}^{k_{2}}(x)\right\|_{2}.$$
 (3.21)

As  $k_1, k_2 \to \infty$ , the left-hand side tends to zero. Therefore, the right-hand side also tends to zero because of the non-negativity of the norm. This means that  $\{W_{L_f}^k(x)\}$ is the Cauchy sequence, which is convergent to some weakly Pareto optimal point  $x^*$ . Substituting  $k_1 = 0$  and  $k_2 = \infty$  into (3.21) leads to

$$\sqrt{u_{\infty}(x)} \ge \frac{\sqrt{\tau L_f}}{2\sqrt{2}} \|x - x^*\|_2.$$

This theorem also presents the error-bound property of  $w_{\alpha}$  and  $u_{\alpha}$  for any  $\alpha > 0$  because of (3.19) and Theorems 3.13 (ii) and 3.14.

## 3.6 Conclusions

In this chapter, we first proposed a gap function for (1.1) in the sense of weak Pareto optimality and showed its lower semicontinuity. We also defined a regularized gap function when F is convex and discussed its continuity, the way of evaluating it, its differentiability, and the properties of its stationary points. Furthermore, when each  $F_i$  is composite, we introduced a regularized and partially linearized gap function in the sense of Pareto stationarity and showed similar properties. In addition, we gave sufficient conditions for the proposed merit functions to be levelbounded and to provide error bounds, introducing the multi-objective proximal-PL inequality.

## Chapter 4

# A proximal gradient method for multi-objective optimization

## 4.1 Introduction

This chapter proposes the proximal gradient method for the unconstrained composite multi-objective optimization, i.e., (1.14) with  $C = \mathbb{R}^n$ . The proposed method generalizes Algorithm 1.1. Moreover, we analyze the proposed method's convergence rate using the merit functions (3.1) and (3.10) to measure the complexity.

We also observe that the problem and the proposed method have many applications. For example, when  $g_i$  is an indicator function of a non-empty, closed, and convex set S, (1.14) is equivalent to the optimization problems with constraints  $x \in S$ . Also, as seen in Section 4.5, we can deal with robust optimization problems. These problems include uncertain parameters and consist in optimizing under the worst scenario. Although the literature about robust optimization is vast, the studies about robust multi-objective optimization are relatively new [34, 42, 80].

The outline of this chapter is as follows. Section 4.2 proposes the proximal gradient methods for unconstrained multi-objective optimization. We estimate the global convergence rates of the proposed method in Section 4.4. In Section 4.5, we apply the proposed method to robust optimization. Finally, we report some numerical experiments by solving robust multi-objective optimization problems in Section 4.6.

### 4.2 The algorithm

For given  $x \in \text{dom } F$  and  $\alpha > 0$ , we consider the following minimization problem:

$$\min_{z \in \mathbf{R}^n} \quad \varphi_\alpha(z; x) \tag{4.1}$$

with

$$\varphi_{\alpha}(z;x) \coloneqq \max_{i=1,\dots,m} [\langle \nabla f_i(x), z-x \rangle + g_i(z) - g_i(x)] + \frac{1}{2\alpha} \|z-x\|_2^2.$$

The convexity of  $g_i$  implies that  $\varphi_{\alpha}(\cdot; x)$  is strongly convex, so (4.1) always has a unique solution, which is also in dom(F). Let us write such a solution as  $p_{\alpha}(x)$  and let  $\theta_{\alpha}(x)$  be its optimal function value, i.e.,

$$p_{\alpha}(x) \coloneqq \operatorname*{argmin}_{z \in \mathbf{R}^{n}} \varphi_{\alpha}(z; x) \quad \text{and} \quad \theta_{\alpha}(x) \coloneqq \min_{z \in \mathbf{R}^{n}} \varphi_{\alpha}(z; x).$$
(4.2)

Note that

$$p_{\alpha} = W_{\alpha} \quad \text{and} \quad \theta_{\alpha} = -w_{\alpha} \tag{4.3}$$

for  $w_{\alpha}$  and  $W_{\alpha}$  defined by (3.10) and (3.11). The following proposition shows that  $p_{\alpha}(x)$  and  $\theta_{\alpha}(x)$  help to characterize the Pareto stationarity of (1.14).

#### Lemma 4.1

Let  $p_{\alpha}$  and  $\theta_{\alpha}$  be defined in (4.2). Then, the following claims hold.

- (i) The following three conditions are equivalent: (a)  $x \in \mathbf{R}^n$  is Pareto stationary for (1.14); (b)  $p_{\alpha}(x) = x$ ; (c)  $\theta_{\alpha}(x) = 0$ .
- (ii) The mappings  $p_{\alpha}$  and  $\theta_{\alpha}$  are continuous. Moreover, if each  $\nabla f_i$ , i = 1, ..., mis locally Lipschitz continuous,  $p_{\alpha}$  and  $\theta_{\alpha}$  are locally Hölder continuous with exponent 1/2 and locally Lipschitz continuous, respectively.

*Proof.* We can prove the claims immediately from Theorems 3.8 and 3.9.  $\Box$ 

From Lemma 4.1, we can treat  $||p_{\alpha}(x) - x||_{\infty} < \varepsilon$  for some  $\varepsilon > 0$  as a stopping criterion. Let us present our proposed algorithm in Algorithm 4.1. We can consider the following three stepsize selection procedures. Note that every rule guarantees the objective functions' non-incrementality, i.e.,

$$F_i(x^{k+1}) \le F_i(x^k) \quad \text{for all } i = 1, \dots, m, k \ge 0.$$

$$(4.4)$$

Algorithm 4.1 The proximal gradient method for multi-objective optimization

Input:  $x^{0} \in int(dom(F)), \varepsilon > 0$ 1:  $k \leftarrow 0$ 2: loop 3:  $z^{k} \leftarrow p_{\alpha_{k}}(x^{k})$  with some stepsize  $\alpha_{k} > 0$ 4: if  $||z^{k} - x^{k}||_{\infty} < \varepsilon$  then 5: return  $x^{k}$ 6: end if 7:  $x^{k+1} \leftarrow x^{k} + s_{k}(z^{k} - x^{k})$  with some stepsize  $s_{k} \in (0, 1]$ 8:  $k \leftarrow k + 1$ 9: end loop

#### 4.2.1 Armijo rule along the feasible direction

We fix  $\alpha_k := \alpha$  with some constant  $\alpha > 0$  for every  $k = 0, 1, \ldots$  and compute  $s_k$  by

$$s_k \coloneqq \xi^{j_k},\tag{4.5}$$

where  $j_k$  is the smallest non-negative integer satisfying

$$F_{i}(x^{k} + \xi^{j_{k}}(z^{k} - x^{k})) \leq F_{i}(x^{k}) + \rho\xi^{j_{k}}\left[\theta_{\alpha}(x^{k}) - \frac{1}{2\alpha} \|z^{k} - x^{k}\|_{2}^{2}\right]$$
(4.6)

with predefined constants  $\rho, \xi \in (0, 1)$  for each  $i = 1, \ldots, m$ . The following lemma demonstrates the existence of the stepsize  $s_k$  satisfying this rule.

#### Lemma 4.2

If  $x \in \mathbf{R}^n$  is not Pareto stationary for (1.14), for all  $\alpha > 0$  and  $\rho \in (0,1)$  there exists some  $\bar{s} > 0$  such that

$$F_i(x + s(z - x)) < F_i(x) + \rho s \left[ \theta_\alpha(x) - \frac{1}{2\alpha} \|z - x\|_2^2 \right]$$

for all i = 1, ..., m and  $s \in (0, \bar{s}]$ .

*Proof.* Let  $s \in (0, 1]$  and  $i = 1, \ldots, m$ . Since  $g_i$  is convex, we have

$$g_i(x + s(p_\alpha(x) - x)) \le g_i(x) + s[g_i(p_\alpha(x)) - g_i(x)].$$

Combined with (2.6), we get

$$F_{i}(x + s(p_{\alpha}(x) - x))$$
  

$$\leq F_{i}(x) + s\langle \nabla f_{i}(x), p_{\alpha}(x) - x \rangle + s[g_{i}(p_{\alpha}(x)) - g_{i}(x)] + o(s||p_{\alpha}(x) - x||_{2})$$

with  $o: [0, +\infty) \to \mathbf{R}$  satisfying  $\lim_{t\to\infty} o(t)/t = 0$ . Then, (4.2) gives

$$F_i(x + s(p_\alpha(x) - x)) \le F_i(x) + s \left[ \theta_\alpha(x) - \frac{1}{2\alpha} \| p_\alpha(x) - x \|_2^2 \right] + o(s \| p_\alpha(x) - x \|_2).$$

Since x is not Pareto stationary, Lemma 4.1 (i) gives  $\theta_{\alpha}(x) < 0$ . Thus, the fact that  $\rho \in (0, 1)$  completes the proof.

#### 4.2.2 Sufficient decrease rule along the proximal arc

Suppose that  $\nabla f_i$  is locally Lipschitz continuous for  $i = 1, \ldots, m$ . Let  $s_k = 1$  for all  $k = 0, 1, \ldots$  and  $\alpha_{-1} > 0$ . For each iteration, we find the smallest non-negative integer  $j_k$  such that

$$F_i(p_{\xi^{j_k}\alpha_{k-1}}(x^k)) \le F_i(x^k) + \theta_{\xi^{j_k}\alpha_{k-1}}(x^k) \text{ for all } i = 1, \dots, m$$
 (4.7)

with some constant  $\xi \in (0, 1)$  for any  $i = 1, \ldots, m$  and set

$$\alpha_k = \xi^{j_k} \alpha_{k-1}. \tag{4.8}$$

#### 4.2.3 Constant stepsize

When  $\nabla f_i$ , i = 1, ..., m is  $L_{f_i}$ -Lipschitz continuous and  $L_f := \max_{i=1,...,m} L_{f_i}$ , we set  $s_k = 1$  and  $\alpha_k = \alpha$  with  $\alpha \in (0, 1/L_f]$  for each i = 1, ..., m. Then, Lemma 2.2 ensures that

$$F_i(p_\alpha(x^k)) \le F_i(x^k) + \theta_\alpha(x^k) \quad \text{for all } i = 1, \dots, m \text{ and } k = 0, 1, \dots$$
(4.9)

### 4.3 Convergence of the method

We first show the (classical) global convergence of the proposed algorithm.

#### Theorem 4.1

Every accumulation point of  $\{x^k\}$  generated by Algorithm 4.1 with any stepsize selection procedure given in Sections 4.2.1 to 4.2.3, if it exists, is Pareto stationary for (1.14).

*Proof.* Assume that  $\{x^{k_j}\}$  converges to  $\bar{x}$ . According to Lemma 4.1 (i), it suffices to check that  $\theta_{\alpha}(\bar{x}) = 0$  for some  $\alpha > 0$ . Considering (4.4) and the existence of a subsequence of  $\{F_i(x^k)\}$  converging to  $F_i(\bar{x})$ , we have

$$\lim_{k \to \infty} F_i(x^k) = F_i(\bar{x}). \tag{4.10}$$

Let us now prove the claim for each stepsize rule.

Armijo rule along the feasible direction: Equations (3.14), (4.3), (4.5) and (4.6) give

$$F_i(x^{k+1}) - F_i(x^k) \le \rho s_k \left[ \theta_\alpha(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2 \right] \le \rho s_k \theta_\alpha(x^k) \le 0.$$

for any  $i = 1, \ldots, m$ . Combined with (4.10), we get

$$\lim_{k \to \infty} s_k \theta_\alpha(x^k) = 0. \tag{4.11}$$

If  $\limsup_{k\to\infty} s_k > 0$ , it is clear that  $\theta_{\alpha}(\bar{x}) = 0$ . We now suppose that  $\lim_{k\to\infty} s_k = 0$ . If we fix some positive integer q, we have  $s_k < \xi^q$  for sufficiently large k. This means that the Armijo condition (4.6) does not hold for the stepsize  $\xi^q$ , i.e.,

$$F_{i_k}(x^k + \xi^q(z^k - x^k)) > F_{i_k}(x^k) + \rho\xi^q \left[\theta_\alpha(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2\right]$$
(4.12)

for some  $i_k = 1, ..., m$ . Since the number of values that  $i_k$  can take is finite, some subsequence of  $\{i_k\}$  converges to some  $\overline{i} = 1, ..., m$ . Therefore, if we choose a proper subsequence and take the limit in (4.12), we obtain

$$F_{\bar{i}}(\bar{x} + \xi^q (p_\alpha(\bar{x}) - \bar{x})) \ge F_{\bar{i}}(\bar{x}) + \rho \xi^q \left[ \theta_\alpha(\bar{x}) - \frac{1}{2\alpha} \|p_\alpha(\bar{x}) - \bar{x}\|_2^2 \right].$$

Since q can take arbitrary positive integer values, Lemma 4.2 shows that  $\bar{x}$  is Pareto stationary.

Sufficient decrease rule along the proximal arc: Similarly to the derivation of (4.11), the condition (4.7) leads to  $\theta_{\alpha_k}(x^k) \to 0$  as  $k \to \infty$ . If  $\alpha \coloneqq \lim_{k\to\infty} \alpha_k > 0$ ,

it is easy to see that  $\theta_{\alpha}(\bar{x}) = 0$ . Assume that  $\lim_{k\to\infty} \alpha_k = 0$ . Similar to the last paragraph, fixing some positive integer q and considering that (4.7) does not hold, we get

$$F_{\overline{i}}(p_{\xi^q}(\overline{x})) \ge F_{\overline{i}}(\overline{x}) + \theta_{\xi^q}(\overline{x}).$$

Since q can take any positive integer, the locally Lipschitz continuity of  $\nabla f_i$  shows that  $\bar{x}$  is Pareto stationary.

Constant stepsize is clear from (4.9) and the previous paragraph.

We now introduce the following assumption, standard in the analysis of descent methods for vector optimization [40, 57, 47].

#### Assumption 4.1

For all sequence  $\{y^k\} \subseteq F(\mathbf{R}^n)$  such that  $y^{k+1} \leq y^k, k = 0, 1, \dots$ , there exists  $x \in \mathbf{R}^n$  satisfying  $F(x) \leq y^k, k = 0, 1, \dots$ .

Under convexity and reasonable assumptions, we can also prove the true convergence of iterates as follows:

#### Theorem 4.2

Suppose that  $f_i$  is convex for i = 1, ..., m and let  $\{x^k\}$  generated by Algorithm 4.1 with the stepsize selection procedure given in Sections 4.2.1 to 4.2.3. Under Assumption 4.1,  $\{x^k\}$  converges to some  $x^* \in T := \{x \in \mathbb{R}^n \mid F(x) \leq F(x^k), k = 0, 1, ...\}$  and  $x^*$  is weakly Pareto optimal for (1.14).

*Proof.* Let  $x \in T$ . We have

$$\begin{aligned} \|x^{k+1} - x\|_{2}^{2} &= \|x^{k} - x\|_{2}^{2} + \|x^{k+1} - x^{k}\|_{2}^{2} + 2\langle x^{k} - x^{k+1}, x - x^{k} \rangle \\ &= \|x^{k} - x\|_{2}^{2} + s_{k}^{2}\|z^{k} - x^{k}\|_{2}^{2} - 2s_{k}\langle z^{k} - x^{k}, x - x^{k} \rangle, \qquad (4.13) \\ &\leq \|x^{k} - x\|_{2}^{2} + s_{k}\|z^{k} - x^{k}\|_{2}^{2} - 2s_{k}\langle z^{k} - x^{k}, x - x^{k} \rangle \end{aligned}$$

where the second equality follows from line 7 of Algorithm 4.1, and the inequality comes from the fact that  $s_k \in (0, 1]$ . Recall that  $\Delta^m$  and  $\mathcal{I}_{\alpha_k}$  are defined by (2.1) and (3.12), respectively. Then, (3.13) implies that there exists  $\lambda(x^k) \in \Delta^m$  such that  $\lambda_j(x^k) = 0$  for any  $j \in \mathcal{I}_{\alpha_k}(x^k)$  and

$$\frac{1}{\alpha_k} \langle x^k - z^k, x - z^k \rangle \leq \sum_{i=1}^m \lambda_i(x^k) \left[ \langle \nabla f_i(x^k), x - z^k \rangle + g_i(x) - g_i(z^k) \right] \\ = \sum_{i=1}^m \lambda_i(x^k) \left[ \langle \nabla f_i(x^k), x - x^k \rangle + g_i(x) - g_i(x^k) \right] \\ + \sum_{i=1}^m \lambda_i(x^k) \left[ \langle \nabla f_i(x^k), x^k - z^k \rangle + g_i(x^k) - g_i(z^k) \right].$$

Since  $f_i$  is convex and  $x \in T$ , the first term in the right-hand side is non-negative. Therefore, (3.12) and (4.2) and line 3 of Algorithm 4.1 give

$$\frac{1}{\alpha_k} \langle x^k - z^k, x - z^k \rangle \le -\theta_{\alpha_k} (x^k) + \frac{1}{2\alpha_k} \left\| z^k - x^k \right\|_2^2.$$

Combining the above inequality with (4.13) gives

$$\|x^{k+1} - x\|_{2}^{2} \le \|x^{k} - x\|_{2}^{2} - 2\alpha_{k}s_{k}\theta_{\alpha_{k}}(x^{k}) = \|x^{k} - x\|_{2}^{2} + 2\alpha_{k}s_{k}|\theta_{\alpha_{k}}(x^{k})|.$$

Since  $T \neq \emptyset$ , it is easy to see that  $\sum_{k=0}^{\infty} \alpha_k s_k |\theta_{\alpha_k}(x^k)| < +\infty$  holds for each stepsize selection rule. Hence, Definition 2.1 implies that  $\{x^k\}$  is quasi-Féjer convergent to T, and thus  $\{x^k\}$  is bounded due to Theorem 2.3. Let  $x^*$  be an accumulation point of  $\{x^k\}$  and assume that  $x^{k_j} \to x^*$ . If we fix some non-negative integer  $\bar{k}$ , for sufficiently large j, we have

$$F(x^{k_j}) \le F(x^{\bar{k}}).$$

Taking  $j \to \infty$  yields that

$$F(x^*) \le F\left(x^{\bar{k}}\right).$$

Since  $\bar{k}$  can take any non-negative integer,  $x^*$  belongs to T. Use Theorem 2.3, and we can complete the proof.

## 4.4 Convergence rate of the method

For the convergence rate analysis, we assume the Lipschitz gradient condition.

#### Assumption 4.2

Each  $f_i$  is  $L_{f_i}$ -smooth with  $L_{f_i} > 0$  for  $i = 1, \ldots, m$ . We write

$$L_f \coloneqq \max_{i=1,\dots,m} L_{f_i}.$$
(4.14)

#### 4.4.1 The non-convex case

We present below the main theorem of this subsection.

#### Theorem 4.3

Assume that at least one of the functions  $F_1, \ldots, F_m$  is bounded from below. Then, under Assumption 4.2, Algorithm 4.1 with the stepsize selection rule given by any of Sections 4.2.1 to 4.2.3 generates a sequence  $\{x^k\}$  such that  $\{w_1(x^k)\}$  is summable, where  $w_1$  is given by (3.10). In particular,

$$\liminf_{k \to \infty} (k \log k) w_1(x^k) = 0$$

and

$$\min_{0 \le j \le k-1} w_1\left(x^j\right) = O(1/k)$$

with  $O: [0, +\infty) \to \mathbf{R}$  such that  $\limsup_{t\to\infty} O(t)/t < \infty$ .

Before proving Theorem 4.3, we first show the existence of a uniform lower bound on the stepsize  $s_k$  when we adopt the Armijo rule along the feasible direction.

#### Lemma 4.3

In Algorithm 4.1 with the Armijo rule along the feasible direction under Assumption 4.2, the stepsize  $s_k$  satisfies

$$s_k \ge s_{\min} \coloneqq \min\left[\frac{2\xi(1-\rho)}{\alpha L_f}, 1\right] \quad for \ all \ k \ge 0.$$

*Proof.* Recall that  $s_k = \xi^{j_k}$  for some non-negative integer  $j_k$  in (4.5). If  $j_k = 0$ ,  $s_k = 1$  clearly satisfies  $s_k \ge s_{\min}$ . Thus, suppose that  $j_k \ge 1$ . Since  $j_k$  is the smallest non-negative integer satisfying (4.6), there exists  $i_k = 1, \ldots, m$  such that

$$F_{i_k}(x^k + \xi^{j_k - 1}(z^k - x^k)) > F_{i_k}(x^k) + \rho\xi^{j_k - 1} \left[\theta_\alpha(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2\right]$$

On the other hand,  $L_{f_{i_k}}$ -Lipschitz continuity of  $\nabla f_{i_k}$  and Lemma 2.2 give

$$F_{i_{k}}(x^{k} + \xi^{j_{k}-1}(z^{k} - x^{k})) \leq F_{i_{k}}(x^{k}) + \langle \nabla f_{i_{k}}(x^{k}), \xi^{j_{k}-1}(z^{k} - x^{k}) \rangle$$
  
+  $g_{i_{k}}(x^{k} + \xi^{j_{k}-1}(z^{k} - x^{k})) - g_{i_{k}}(x^{k}) + \frac{L_{f_{i_{k}}}}{2} \|\xi^{j_{k}-1}(z^{k} - x^{k})\|_{2}^{2}$   
 $\leq F_{i_{k}}(x^{k}) + \xi^{j_{k}-1} [\langle \nabla f_{i_{k}}(x^{k}), z^{k} - x^{k} \rangle + g_{i_{k}}(z^{k}) - g_{i_{k}}(x^{k})] + \frac{L_{f}}{2} \|\xi^{j_{k}-1}(z^{k} - x^{k})\|_{2}^{2}$   
 $\leq F_{i_{k}}(x^{k}) + \xi^{j_{k}-1} [\langle \nabla f_{i_{k}}(x^{k}), z^{k} - x^{k} \rangle + g_{i_{k}}(z^{k}) - g_{i_{k}}(x^{k})] + \frac{L_{f}}{2} \|\xi^{j_{k}-1}(z^{k} - x^{k})\|_{2}^{2}$ 

$$\leq F_{i_k}(x^k) + \xi^{j_k-1} \left[ \theta_{\alpha}(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2 \right] + \frac{L_f \xi^{2(j_k-1)}}{2} \|z^k - x^k\|_2^2,$$

where the second inequality comes from the convexity of  $g_{i_k}$  and (4.14), and the third one follows from (4.2) and line 7 of Algorithm 4.1. Combining the above two inequalities lead to

$$(1-\rho)\xi^{j_k-1}\left[\theta_{\alpha}(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2\right] + \frac{L_f \xi^{2(j_k-1)}}{2} \|z^k - x^k\|_2^2 > 0.$$

Thus, (3.14) yields

$$-\frac{(1-\rho)\xi^{j_k-1}}{\alpha} \|z^k - x^k\|_2^2 + \frac{L_f \xi^{2(j_k-1)}}{2} \|z^k - x^k\|_2^2 > 0.$$

Therefore, we have

$$s_k = \xi^{j_k} > \frac{2\xi(1-\rho)}{\alpha L_f} \ge s_{\min}.$$

Similarly, when we employ the Sufficient decrease rule along the proximal arc,  $\alpha_k$  has a uniform lower bound.

#### Lemma 4.4

In Algorithm 4.1 with the Sufficient decrease rule along the proximal arc under Assumption 4.2, the stepsize  $\alpha_k$  satisfies

$$\alpha_k \ge \alpha_{\min} \coloneqq \min\left[\frac{\xi}{L_f}, 1\right] \quad for \ all \ k \ge 0$$

*Proof.* It is clear from Lemma 2.2.

We now show the main theorem as follows:

Proof of Theorem 4.3. Armijo rule along the feasible direction: Let  $k \ge 0$  and take *i* such that  $F_i$  is bounded from below. Equations (4.5) and (4.6) give

$$F_{i}(x^{k+1}) - F_{i}(x^{k}) \leq \rho s_{k} \left[ \theta_{\alpha}(x^{k}) - \frac{1}{2\alpha} \|z^{k} - x^{k}\|_{2}^{2} \right]$$
$$\leq -\rho s_{\min} w_{\alpha}(x^{k})$$
$$\leq -\rho s_{\min} \max(1, \alpha^{-1}) w_{1}(x^{k}),$$

where the second inequality follows from (4.3) and Lemma 4.3, and the third one comes from Theorem 3.14. Since  $F_i$  is bounded from below, adding up the inequality from k = 0 to  $k = \infty$  lead to the summability of  $\{w_1(x^k)\}$ .

Sufficient decrease rule along the proximal arc: Let  $k \ge 0$  and let i = 1, ..., m be an index such that  $F_i$  is bounded from below. Lemma 4.4 imply that

$$F_i(x^{k+1}) - F_i(x^k) \le -w_{\alpha_{\min}}(x^k).$$

The proof from here is the same as in the previous paragraph.

Constant stepsize: This case is likewise apparent from (4.9).

#### Remark 4.1

When  $g_i = 0$  for all *i*, references [20, 41, 58] present the convergence rate of various multi-objective optimization methods. However, they all evaluate the convergence rate with measures that depend on the subproblems or variables used in their algorithms. This means that the comparison in terms of complexity between different methods is not easy using those measures. However, Theorem 4.3 analyzes the convergence rate using the merit function  $w_1$ , which can be defined uniformly by (3.10) for multi-objective optimization problems with a structure like (1.14). In the subsequent discussions, our convergence rate analyses have similar advantages.

#### 4.4.2 The convex case

This subsection assumes the convexity of the objective functions of (1.14). More precisely, let us suppose the following.

#### Assumption 4.3

Let  $f_i$  and  $g_i$  be  $\mu_{f_i}$ -convex and  $\mu_{g_i}$ -convex, respectively, with  $\mu_{f_i} \in \mathbf{R}$  and  $\mu_{g_i} \ge 0$ for  $i = 1, \ldots, m$ . Write  $\mu_f := \min_{i=1,\ldots,m} \mu_{f_i}$  and  $\mu_g := \min_{i=1,\ldots,m} \mu_{g_i}$ . Then, we suppose that  $\mu_f + \mu_g \ge 0$ . Then, we can show the following recursive relation, which is helpful for the subsequent discussion.

#### Lemma 4.5

Under Assumption 4.3, the following three statements hold:

(i) Algorithm 4.1 with the Armijo rule along the feasible direction generates  $\{x^k\}$  such that

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] + \frac{\rho(1+\alpha\mu_g)}{2\alpha} \|x^{k+1} - x\|_2^2 \\
\leq (1-\rho s_k) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right] + \frac{\rho[1+\alpha\mu_g - \alpha s_k(\mu_f + \mu_g)]}{2\alpha} \|x^k - x\|_2^2$$

for all  $x \in \mathbf{R}^n$  and  $k \ge 0$ .

(ii) With the Sufficient decrease rule along the proximal arc, the sequence  $\{x^k\}$  generated by Algorithm 4.1 satisfies

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] + \frac{1 + \alpha_k \mu_g}{2\alpha_k} \|x^{k+1} - x\|_2^2 \le \frac{1 - \alpha_k \mu_f}{2\alpha_k} \|x^k - x\|_2^2$$

for all  $x \in \mathbf{R}^n$  and  $k \ge 0$ .

(iii) Let  $\{x^k\}$  be generated by Algorithm 4.1 with the Constant stepsize. Then, we have

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] + \frac{1 + \alpha \mu_g}{2\alpha} \|x^{k+1} - x\|_2^2 \le \frac{1 - \alpha \mu_f}{2\alpha} \|x^k - x\|_2^2$$

for all  $x \in \mathbf{R}^n$  and  $k \ge 0$ .

*Proof.* Claim (i): Let  $x \in \mathbb{R}^n$ . Equations (4.5) and (4.6) give

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] \le \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right] + \rho s_k \left[ \theta_\alpha(x^k) - \frac{1}{2\alpha} \|z^k - x^k\|_2^2 \right].$$

Let  $\lambda(x^k) \in \Delta^m$  such that  $\lambda_j(x^k) = 0$  for any  $j \in \mathcal{I}_{\alpha}(x^k)$ , where  $\Delta^m$  and  $\mathcal{I}_{\alpha}$  are defined by (2.1) and (3.12), respectively. Then, (4.2) and line 7 of Algorithm 4.1

yield

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] - \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right]$$
$$\leq \rho s_k \sum_{i=1}^m \lambda_i(x^k) \left[ \left\langle \nabla f_i(x^k), z^k - x^k \right\rangle + g_i(z^k) - g_i(x^k) \right]$$

Since  $\lambda(x^k) \in \Delta^m$ , we have

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] - (1 - \rho s_k) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right]$$
  
$$\leq \rho s_k \sum_{i=1}^m \lambda_i(x^k) \left[ \left\langle \nabla f_i(x^k), z^k - x^k \right\rangle + f_i(x^k) - f_i(x) + g_i(z^k) - g_i(x) \right].$$

It follows from the  $\mu_{f_i}$ -convexity of  $f_i$  that

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] - (1 - \rho s_k) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right] \\
\leq \rho s_k \sum_{i=1}^m \lambda_i(x^k) \left[ \left\langle \nabla f_i(x^k), z^k - x \right\rangle + g_i(z^k) - g_i(x) - \frac{\mu_{f_i}}{2} \|x^k - x\|_2^2 \right] \\
\leq \rho s_k \sum_{i=1}^m \lambda_i(x^k) \left[ \left\langle \nabla f_i(x^k), z^k - x \right\rangle + g_i(z^k) - g_i(x) \right] - \frac{\rho s_k \mu_f}{2} \|x^k - x\|_2^2,$$

where the second inequality comes from the fact that  $\lambda(x^k) \in \Delta^m$  and  $\mu_f = \min_{i=1,\dots,m} \mu_{f_i}$ . Without loss of generality, (3.13),  $g_i$ 's  $\mu_{g_i}$ -convexity, and the fact

that  $\mu_g = \min_{i=1,\dots,m} \mu_{g_i}$  lead to

$$\begin{split} \min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] &- (1 - \rho s_k) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right] \\ &\leq -\frac{\rho s_k}{\alpha} \langle z^k - x^k, z^k - x \rangle - \frac{\rho s_k \mu_f}{2} \| x^k - x \|_2^2 - \frac{\rho s_k \mu_g}{2} \| z^k - x \|_2^2 \\ &= -\frac{\rho}{\alpha} \langle x^{k+1} - x^k, x^k - x \rangle - \frac{\rho}{\alpha s_k} \| x^{k+1} - x^k \|_2^2 \\ &- \frac{\rho s_k \mu_f}{2} \| x^k - x \|_2^2 - \frac{\rho s_k \mu_g}{2} \| \frac{1}{s_k} (x^{k+1} - x^k) + x^k - x \|_2^2 \\ &= -\frac{\rho (1 + \alpha \mu_g)}{\alpha} \langle x^{k+1} - x^k, x^k - x \rangle - \frac{\rho (2s_k + \alpha \mu_g)}{2\alpha s_k} \| x^{k+1} - x^k \|_2^2 \\ &- \frac{\rho s_k (\mu_f + \mu_g)}{2} \| x^k - x \|_2^2 \\ &= -\frac{\rho (1 + \alpha \mu_g)}{2\alpha} \left( \| x^{k+1} - x \|_2^2 - \| x^k - x \|_2^2 - \| x^{k+1} - x^k \|_2^2 \right) \\ &- \frac{\rho (2s_k + \alpha \mu_g)}{2\alpha s_k} \| x^{k+1} - x^k \|_2^2 - \frac{\rho s_k (\mu_f + \mu_g)}{2} \| x^k - x \|_2^2 \\ &\leq -\frac{\rho (1 + \alpha \mu_g)}{2\alpha} \left( \| x^{k+1} - x \|_2^2 - \| x^k - x \|_2^2 \right) - \frac{\rho s_k (\mu_f + \mu_g)}{2} \| x^k - x \|_2^2, \end{split}$$

where the first equality follows from line 7 of Algorithm 4.1, and the second inequality holds since  $s_k \in (0, 1]$ . The above inequality is equivalent to the desired one.

Claim (ii): Let  $x \in \mathbb{R}^n$ . Equations (4.7) and (4.8) yield

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x) \right] \le \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x) \right] + \theta_{\alpha_k}(x^k).$$

For the proof of claim (i), by replacing  $\alpha$  with  $\alpha_k$ ,  $\rho$  with 1,  $s_k$  with 1, and  $z^k$  with  $x^{k+1}$ , and adding  $(1/2\alpha_k) ||x^{k+1} - x^k||_2^2$  to the right-hand side, we obtain the desired inequality.

Claim (iii): This claim is clear from claim (ii).

Now, we show that  $\{u_{\infty}(x^k)\}$  converges to zero with rate O(1/k) with Algorithm 4.1 under the following assumption.

#### Assumption 4.4

There exists a bounded set  $\Omega \subseteq \mathbf{R}^n$  such that for all  $x \in \mathbf{lev}_{F(x^0)}(F)$  with  $\mathbf{lev}_{F(x^0)}$ given by (2.5), some  $z \in \Omega$  satisfies  $F(z) \leq F(x)$ .

#### Remark 4.2

- (i) In single-objective cases, if the optimization problem has at least one optimal solution  $x^*$ , then  $\Omega = \{x^*\}$  satisfies Assumption 4.4.
- (ii) When the level set  $\mathbf{lev}_{F(x^0)}(F)$  is bounded, Assumption 4.4 is also satisfied. For example, this is the case when  $F_i$  is strongly convex for at least one *i*.

#### Theorem 4.4

Under Assumptions 4.1 to 4.3, Algorithm 4.1 with the stepsize selection rule given in any of Sections 4.2.1 to 4.2.3 generates a sequence  $\{x^k\}$  converging to  $x^*$  such that  $\{\min_{i=1,...,m} [F_i(x^k) - F_i(x^*)]\}$  is summable, in particular

$$\liminf_{k \to \infty} (k \log k) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x^*) \right] = 0$$

and

$$\limsup_{k \to \infty} k \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x^*) \right] < +\infty.$$

Supposing Assumption 4.4 additionally, we also have

$$u_{\infty}(x^k) = O(1/k) \quad for \ all \ k \ge 1$$

with  $O: [0, +\infty) \to \mathbf{R}$  satisfying  $\limsup_{t\to 0} O(t)/t < +\infty$  and  $u_{\infty}$  given by (3.1).

*Proof.* Let  $T := \{x \in \mathbf{R}^n \mid F(x) \leq F(x^k), k = 0, 1, ...\}$ . From Theorem 4.2,  $\{x^k\}$  converges to  $x^* \in T$ .

We first prove the claim for the Armijo rule along the feasible direction. Since  $\mu_g \ge 0$  and  $\mu_f + \mu_g \ge 0$ , Lemmas 4.5 (i) and 4.3 yield

$$\min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^*) \right] + \frac{\rho}{2\alpha} \|x^{k+1} - x^*\|_2^2 \\
\leq (1 - \rho s_{\min}) \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x^*) \right] + \frac{\rho}{2\alpha} \|x^k - x^*\|_2^2$$

Adding up the above inequality from k = 0 to  $k = \ell$ , we obtain

$$\rho s_{\min} \sum_{k=0}^{\ell} \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(x^*) \right] \\\leq \min_{i=1,\dots,m} \left[ F_i(x^0) - F_i(x^*) \right] + \frac{\rho}{2\alpha} \|x^0 - x^*\|_2^2 \\- \min_{i=1,\dots,m} \left[ F_i(x^{\ell+1}) - F_i(x^*) \right] - \frac{\rho}{2\alpha} \|x^{\ell+1} - x^*\|_2^2 \\\leq \min_{i=1,\dots,m} \left[ F_i(x^0) - F_i(x^*) \right] + \frac{\rho}{2\alpha} \|x^0 - x^*\|_2^2,$$

which means the summability of  $\{\min_{i=1,\dots,m} [F_i(x^k) - F_i(x^*)]\}$ . We now suppose Assumption 4.4. Since (4.4) implies  $F(x^\ell) \leq F(x^k)$  for all  $k = 0, \dots, \ell$ , the above inequality holds even if we replace  $x^*$  by  $z \in \Omega$  such that  $F(z) \leq F(x^\ell)$ . Again using the relation  $F(x^\ell) \leq F(x^k)$ , we have

$$\rho s_{\min}(\ell+1) \min_{i=1,\dots,m} \left[ F_i(x^{\ell}) - F_i(z) \right] \leq \min_{i=1,\dots,m} \left[ F_i(x^0) - F_i(z) \right] + \frac{\rho}{2\alpha} \|x^0 - z\|_2^2.$$

Therefore, we get

$$\min_{i=1,\dots,m} \left[ F_i(x^{\ell}) - F_i(z) \right] \le \frac{\min_{i=1,\dots,m} \left[ F_i(x^0) - F_i(z) \right] + \frac{\rho}{2\alpha} \|x^0 - z\|_2^2}{\rho s_{\min}(\ell+1)}$$

Since  $x^{\ell} \in \mathbf{lev}_{F(x^0)}(F)$ , Assumption 4.4 implies that

$$u_{\infty}(x^{\ell}) = \sup_{z \in \mathbf{R}^n} \min_{i=1,\dots,m} \left[ F_i(x^{\ell}) - F_i(z) \right] = \sup_{z \in \Omega} \min_{i=1,\dots,m} \left[ F_i(x^{\ell}) - F_i(z) \right]$$

Due to the boundedness of  $\Omega$ , we conclude that  $u_{\infty}(x^{\ell}) = O(1/\ell)$ .

We can likewise show the claim for the Sufficient decrease rule along the proximal arc by Lemmas 4.5 (ii) and 4.4 and for the Constant stepsize by Lemma 4.5 (iii).  $\Box$ 

## 4.4.3 The case that the multi-objective proximal-PL inequality holds

This subsection analyzes the convergence rate of Algorithm 4.1 under the multiobjective proximal-PL condition defined by Definition 3.1.

#### Theorem 4.5

Suppose that Assumption 4.2 and Equation (3.19) hold with a constant  $\tau > 0$ . Then,  $\{x^k\}$  generated by Algorithm 4.1 with the stepsize selection rule given in any of Sections 4.2.1 to 4.2.3 converges linearly to a weakly Pareto optimal solution  $x^*$ of (1.1), i.e.,

$$||x^{k} - x^{*}||_{2} = O(\exp(-rk))$$

for some r > 0 with  $O \colon [0, +\infty) \to \mathbf{R}$  satisfying  $\limsup_{t \to 0} O(t)/t < +\infty$ .

*Proof.* Similarly to the proof of Theorem 4.3, we have

$$F_i(x^{k+1}) - F_i(x^k) \le -\hat{c}w_1(x^k)$$

with some constant  $\hat{c} > 0$ . Hence, Theorem 3.14 implies that

$$F_i(x^{k+1}) - F_i(x^k) \le -cw_{L_f^{-1}}(x^k)$$

with some c > 0. Thus, the multi-objective proximal PL inequality (3.19) shows

$$F_i(x^{k+1}) - F_i(x^k) \le -c\tau u_{\infty}(x^k).$$

Adding  $F_i(x^k) - F_i(x)$  to both sides gives

$$F_i(x^{k+1}) - F_i(x) \le F_i(x^k) - F_i(x) - c\tau u_{\infty}(x^k).$$

Therefore, it follows that

$$\sup_{x \in \mathbf{R}^n} \min_{i=1,...,m} \left[ F_i(x^{k+1}) - F_i(x) \right] \le \sup_{x \in \mathbf{R}^n} \min_{i=1,...,m} \left[ F_i(x^k) - F_i(x) \right] - c\tau u_{\infty}(x^k),$$

which is equivalent to

$$u_{\infty}(x^{k+1}) \le (1 - c\tau)u_{\infty}(x^k).$$

Applying this inequality recursively, we get

$$u_{\infty}(x^k) \le (1 - c\tau)^k u_{\infty}(x^0).$$

From Theorem 3.16, there exists a weakly Pareto optimal point  $x^*$  and

$$\frac{\tau L_f}{8} \|x^k - x^*\|_2^2 \le (1 - c\tau)^k u_\infty(x^0),$$

which completes the proof.

## 4.5 Application to robust multi-objective optimization

Now, let us apply the proposed algorithms to robust multi-objective optimization. Here, we suppose that the problems include uncertain parameters. Moreover, suppose that we can estimate the set of these uncertain parameters. Then, we try to optimize by considering the worst scenario. We observe that studies about robust multi-objective optimization is relatively new [34, 42, 80].

Here, we consider the convex function  $g_i$  defined as follows:

$$g_i(x) \coloneqq \max_{u \in \mathcal{U}_i} \hat{g}_i(x, u). \tag{4.15}$$

We call  $\mathcal{U}_i \subseteq \mathbf{R}^n$  an uncertainty set. From now on, we assume that  $\mathcal{U}_i \subset \mathbf{R}^n$  is convex, and  $\hat{g}_i \colon \mathbf{R}^n \times \mathbf{R}^n \to (-\infty, +\infty]$  is closed, proper, and convex for x. It is easy to see that  $g_i$  is also closed, proper, and convex. However,  $g_i$  is not necessarily differentiable even if  $\hat{g}_i$  is differentiable. First, let us reformulate the subproblem (4.1) by using an extra variable  $\gamma \in \mathbf{R}$  as

$$\min_{\gamma,z} \quad \gamma + \frac{1}{2\alpha} \|z - x\|_2^2$$
  
s.t.  $\langle \nabla f_i(x), z - x \rangle + g_i(z) - g_i(x) \le \gamma, \quad i = 1, \dots, m.$ 

Note that  $g_i$  is not easy to calculate; thus, the subproblem is challenging to solve. When  $\hat{g}_i$  and  $\mathcal{U}_i$  have some particular structure, the constraints can be written as explicit formulae using the duality of (4.15). Now, assume that the dual problem of the maximization problem (4.15) is written as follows:

$$\min_{w^i} \quad \tilde{g}_i(x, w^i)$$
s.t.  $w^i \in \tilde{\mathcal{U}}_i(x)$ 

where  $\tilde{g}_i: \mathbf{R}^n \times \mathbf{R}^m \to (-\infty, +\infty]$  and  $\tilde{\mathcal{U}}_i: \mathbf{R}^n \to 2^{\mathbf{R}^m}$ . If the strong duality holds,

then we see that the subproblem (4.1) is equivalent to

$$\min_{\substack{\gamma, z, w^1, \dots, w^m \\ \text{s.t.}}} \quad \gamma + \frac{1}{2\alpha} \|z - x\|_2^2 \\
\text{s.t.} \quad \langle \nabla f_i(x), z - x \rangle + \tilde{g}_i(z, w^i) - g_i(x) \le \gamma, \\
\qquad w^i \in \tilde{\mathcal{U}}_i(z), \quad i = 1, \dots, m.$$
(4.16)

When  $\tilde{g}_i$  and  $\tilde{\mathcal{U}}_i$  have some explicit form, this problem is tractable. As we mention below, we can convert the above subproblem to some well-known convex optimization problems in this case. This idea can also be seen in [13]. In the following, we will introduce some robust multi-objective optimization problems where the subproblems can be written as quadratic programming, second-order cone programming, or semi-definite programming problems.

#### 4.5.1 Linearly constrained quadratic programming

Suppose that  $\hat{g}_i(x, u) = \langle x, u \rangle$  and  $\mathcal{U}_i = \{u \in \mathbf{R}^n \mid A_i u \leq b^i\}$ , where  $A_i \in \mathbf{R}^{d \times n}$ and  $b^i \in \mathbf{R}^d$ , that is,  $\hat{g}_i$  is linear in x, and  $\mathcal{U}_i$  is a polyhedron. Suppose also that  $\mathcal{U}_i$  is nonempty and bounded. Then, we can rewrite (4.15) as the following linear programming problem:

$$\begin{array}{ll}
\max_{u} & \langle x, u \rangle \\
\text{s.t.} & A_{i}u \leq b^{i}.
\end{array}$$
(4.17)

Its dual problem is given by

$$\min_{w} \quad \left\langle b^{i}, w \right\rangle \\ \text{s.t.} \quad A_{i}^{\top} w = x, \\ w \ge 0.$$

Since the strong duality holds, we can convert the subproblem (4.1) (or, equivalently (4.16)) to a linearly constrained quadratic programming problem:

$$\min_{\substack{\gamma, z, w^1, \dots, w^m \\ \gamma, z, w^1, \dots, w^m}} \quad \gamma + \frac{1}{2\alpha} \| z - x \|_2^2$$
s.t.  $\langle \nabla f_i(x), z - x \rangle + \langle b^i, w^i \rangle - g_i(x) \leq \gamma,$ 

$$A_i^\top w^i = z,$$

$$w^i \geq 0, \quad i = 1, \dots, m.$$
(4.18)

#### 4.5.2 Second-order cone programming

Suppose that  $\hat{g}_i(x, u) = \langle x, u \rangle$  and  $\mathcal{U}_i = \{a^i + P_i v \in \mathbf{R}^n \mid \|v\|_2 \le 1, v \in \mathbf{R}^n\}$ , where  $a^i \in \mathbf{R}^n$  and  $P_i \in \mathbf{R}^{n \times n}$ , that is,  $\hat{g}_i$  is once again linear for x and  $\mathcal{U}_i$  is an ellipsoid. Then, for all  $i = 1, \ldots, m$  we have

$$g_i(x) = \max_{u \in \mathcal{U}_i} \hat{g}_i(x, u)$$
$$= \max_{v: \|v\|_2 \le 1} \langle a^i + P_i v, x \rangle$$
$$= \langle a^i, x \rangle + \max_{v: \|v\|_2 \le 1} \langle P_i^\top x, v \rangle$$

If  $P_i^{\top}x = 0$ , then  $\max_{\substack{v: \|v\|_2 \leq 1}} \langle P_i^{\top}x, v \rangle = 0 = \|P_i^{\top}x\|_2$ . If  $P_i^{\top}x \neq 0$ , then  $v = P_i^{\top}x/\|P_i^{\top}x\|_2$ is a solution of  $\max_{\substack{v: \|v\|_2 \leq 1}} \langle P_i^{\top}x, v \rangle$ , and hence  $\max_{\substack{v: \|v\|_2 \leq 1}} \langle P_i^{\top}x, v \rangle = \|P_i^{\top}x\|_2$ . Consequently, we have

$$g_i(x) = \left\langle a^i, x \right\rangle + \left\| P_i^\top x \right\|_2.$$

Therefore, by introducing slack variables  $\gamma \in \mathbf{R}$  and  $\tau \in \mathbf{R}$ , the subproblem (4.1) can be written as

$$\begin{aligned} \min_{\tau,\gamma,z} & \tau \\ \text{s.t.} & \left\langle \nabla f_i(x) + a^i, z - x \right\rangle + \left\| P_i^\top z \right\|_2 - \left\| P_i^\top x \right\|_2 \leq \gamma, \quad i = 1, \dots, m, \\ & \gamma + \frac{1}{2\alpha} \| z - x \|_2^2 \leq \tau. \end{aligned}$$

Note that convex quadratic constraints can be converted to second-order cone constraints. Using the expression given in [3, Section 2.1], we get the following secondorder cone programming problem (SOCP):

$$\begin{array}{l} \min_{\tau,\gamma,z} \quad \tau \\ \text{s.t.} \quad \begin{bmatrix} -\langle \nabla f_i(x) + a^i, z - x \rangle + \gamma + \|P_i^\top x\|_2 \\ P_i^\top z \end{bmatrix} \in \mathcal{K}_{n+1}, \\ \begin{bmatrix} 1 - \gamma + \tau \\ 1 + \gamma - \tau \\ \sqrt{2/\alpha}(z - x) \end{bmatrix} \in \mathcal{K}_{n+2}, \end{array} \tag{4.19}$$

where  $\mathcal{K}_q \coloneqq \{(y_0, \bar{y}) \in \mathbf{R} \times \mathbf{R}^{q-1} \mid y_0 \ge \|\bar{y}\|_2\}$  is the second-order cone in  $\mathbf{R}^q$ . The above SOCP can be solved efficiently with an interior point method [3].

#### 4.5.3 Semi-definite programming

Suppose that  $\hat{g}_i(x, u) = \langle x + u, A_i(x + u) \rangle$  and  $\mathcal{U}_i = \{a^i + P_i v \in \mathbf{R}^n \mid ||v||_2 \leq 1\}$ , where  $A_i \in \mathbf{R}^{n \times n}$  and  $A_i \succeq O, a^i \in \mathbf{R}^n$  and  $P_i \in \mathbf{R}^{n \times n}$ . Then, there exists a matrix  $M_i \in \mathbf{R}^{n \times n}$  such that  $A_i = M_i M_i^{\top}$ . Note that  $\hat{g}_i$  is convex quadratic and  $\mathcal{U}_i$  is an ellipsoid. Here, without loss of generality we can assume that A is a symmetric matrix since  $\langle x + u, A_i(x + u) \rangle = \langle x + u, \tilde{A}_i(x + u) \rangle$ , where  $\tilde{A}_i \coloneqq (A_i + A_i^{\top})/2$ . Then,  $g_i(x)$  can be given as

$$g_i(x) = \max_{v: \|v\|_2 \le 1} \langle x + a^i + P_i v, A_i (x + a^i + P_i v) \rangle.$$
(4.20)

Since problem (4.20) is a maximization problem of a convex function, it is not a convex optimization problem. Fortunately, it can be seen as a subproblem of a trust region method, so its optimal value  $g_i(x)$  can be obtained efficiently. Considering (4.20), we observe that

$$g_i(z) = \max_{v: \|v\|_2 \le 1} \left\langle z + a^i + P_i v, A_i \left( z + a^i + P_i v \right) \right\rangle.$$
(4.21)

From [10, Section 3], the Lagrangian dual of the maximization problem (4.21) is given by

$$\min_{\substack{\beta,w \\ \beta,w}} - w$$
s.t.
$$\begin{bmatrix}
-P_i^{\mathsf{T}}A_iP_i & -P_i^{\mathsf{T}}A_i(z+a^i) \\
-(z+a^i)^{\mathsf{T}}A_i^{\mathsf{T}}P_i & -\langle z+a^i, A_i(z+a^i)\rangle - w
\end{bmatrix} \succeq \beta \begin{bmatrix}
-I_n & 0 \\
0 & 1
\end{bmatrix}, \quad (4.22)$$

$$\beta \ge 0,$$

where  $I_n$  stands for the identity matrix of dimension n. Let  $(\beta^*, w^*)$  be an optimal solution of (4.22) and assume that  $\dim(\ker(A_i + \beta^*I_n)) \neq 1$ . Since both (4.21) and (4.22) have strictly feasible solutions and  $I_n \succ O$ , then the strong duality holds from [10, Theorem 3.5]. Therefore, recalling (4.16), the subproblem (4.1) is equivalent to

$$\begin{split} \min_{\gamma,z,w,\beta} \quad \gamma + \frac{1}{2\alpha} \|z - x\|_2^2 \\ \text{s.t.} \quad \langle \nabla f_i(x), z - x \rangle - w_i - g_i(x) \leq \gamma, \\ \begin{bmatrix} -P_i^\top A_i P_i + \beta_i I_n & -P_i^\top A_i (z + a^i) \\ -(z + a^i)^\top A_i^\top P_i & -\langle z + a^i, A_i (z + a^i) \rangle - w_i - \beta_i \end{bmatrix} \succeq O, \\ \beta_i \geq 0, \quad i = 1, \dots, m. \end{split}$$

Now, by using slack variables  $\tau \in \mathbf{R}$  and  $\zeta^i \in \mathbf{R}$  and converting the convex quadratic constraints to second-order cone ones, we get the following semi-definite program-

ming problem:

$$\min_{\tau,\beta,w,\gamma,z} \quad \tau \\
\text{s.t.} \quad \langle \nabla f_i(x), z - x \rangle - w_i - g_i(x) \leq \gamma, \\
\begin{bmatrix} 1 - \gamma + \tau \\ 1 + \gamma - \tau \\ \sqrt{\frac{2}{\alpha}}(z - x) \end{bmatrix} \in \mathcal{K}_{n+2}, \\
\begin{bmatrix} -P_i^{\top} A_i P_i + \beta_i I_n & -P_i^{\top} A_i(z + a^i) \\ -(z + a^i)^{\top} A_i^{\top} P_i & \zeta^i \end{bmatrix} \geq O, \\
\begin{bmatrix} \frac{1 - \zeta^i - w_i - \beta_i}{2} \\ \frac{1 + \zeta^i + w_i + \beta_i}{2} \\ M_i^{\top}(z + a^i) \end{bmatrix} \in \mathcal{K}_{n+2}, \\
\beta_i \geq 0, \quad i = 1, \dots, m.$$

Note that the second-order cone constraints can be converted further into semidefinite constraints.

## 4.6 Numerical experiments

In this section, we present some numerical results using Algorithm 4.1 for the problems in Section 4.5. The experiments are carried out on a machine with a 1.8GHz Intel Core i5 CPU and 8GB memory, and we implement all codes in MATLAB R2017a. We consider the problem (1.1), where  $n = 5, m = 2, f_i(x) = (1/2)\langle x, A_i x \rangle + \langle a^i, x \rangle, g_i(x) = \max_{u \in \mathcal{U}_i} \hat{g}_i(x, u), A_i \in \mathbf{R}^{n \times n}, a^i \in \mathbf{R}^n$ , and  $\hat{g}_i \colon \mathbf{R}^n \to \mathbf{R}, i = 1, \ldots, m$ . Here, we assume that each  $A_i$  is positive semidefinite so that it can be decomposed as  $A_i = M_i M_i^{\top}$ , where  $M_i \in \mathbf{R}^{n \times n}$ . We generate  $M_i$  and  $a^i$  by choosing every component randomly from the standard normal distribution. To implement Algorithm 4.1, we make the following choices.

#### Remark 4.3

- Every component of  $x^0$  is chosen randomly from the standard normal distribution.
- In Experiments 1 and 3, we set the constant  $\ell = 5$ . In Experiment 2, we set

the constant  $\ell = 7$ .

• The stopping criterion is replaced by  $||d^k|| < \varepsilon := 10^{-6}$ .

Also, we run each one of the following experiments 100 times from different initial points and with  $\delta = 0, 0.05, 0.1$ . Naturally, when  $\delta = 0$ , no uncertainties are considered.

#### Experiment 1

In the first experiment, we solve the problem of Section 4.5.1. We assume that  $g_i(x) = \max_{u \in \mathcal{U}_i} \langle u, x \rangle, i = 1, 2$ , where  $\mathcal{U}_1 = \{u \in \mathbf{R}^5 \mid -\delta \leq u_i \leq \delta, i = 1, ..., 5\}$ and  $\mathcal{U}_2 = \{u \in \mathbf{R}^5 \mid -\delta \leq (Bu)_i \leq \delta, i = 1, ..., 5\}$ . Here, every component of  $B \in \mathbf{R}^{5\times5}$  is chosen randomly from the standard normal distribution and  $\delta \geq 0$ . We use the MATLAB solver *linprog* to solve (4.17) and *quadprog* to solve (4.18). Figure 4.1 is the result for this experiment. For each  $\delta$ , we obtained part of the Pareto frontier, and as  $\delta$  gets smaller, the objective values become smaller.

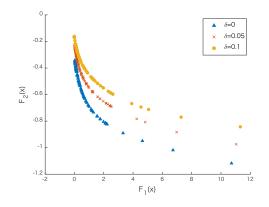


Figure 4.1: Result for Experiment 1

#### Experiment 2

In the second experiment, we solve the problem of Section 4.5.2. We assume that  $g_i(x) = \max_{u \in \mathcal{U}_i} \langle u, x \rangle$ , where  $\mathcal{U}_i = \{u \in \mathbf{R}^5 \mid ||u||_2 \leq \delta\}, i = 1, 2$ . We use the MATLAB solver *SeDuMi* [96] to solve (4.19). Figure 4.2 is the result of this experiment. Once again, we obtained part of the Pareto frontier for the problems with and without uncertainties.

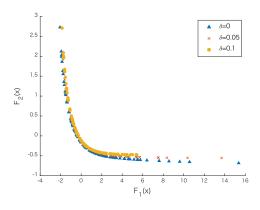


Figure 4.2: Result for Experiment 2

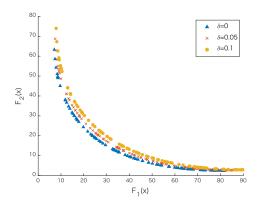


Figure 4.3: Result for Experiment 3

#### Experiment 3

Now, in the last experiment, we solve the problem of Section 4.5.3. We assume that  $g_i(x) = \max_{u \in \mathcal{U}_i} \langle u + x, BB^{\top}(u+x) \rangle$ , where  $\mathcal{U}_i = \{u \in \mathbb{R}^5 \mid ||u|| \leq \delta\}, i = 1, 2$ . Once again, every component of  $B \in \mathbb{R}^{5\times 5}$  is randomly chosen from the standard normal distribution and  $\delta \geq 0$ . We use the MATLAB solver *fmincon* to solve (4.20) and *SeDuMi* to solve (4.23). As it can be seen in Figure 4.3, we also obtained the Pareto frontier in this case.

## 4.7 Conclusions

We proposed the proximal gradient method for composite multi-objective optimization problems. Under reasonable assumptions, we proved its global convergence and convergence rate. Moreover, we presented some applications for robust multiobjective optimization. We can convert the subproblems to well-known convex optimization problems in some robust optimization problems. Finally, we carried out some numerical experiments for robust multi-objective optimization problems, and we observed that the Pareto frontier changes when the uncertainty set is modified.

### CHAPTER 4. A PROXIMAL GRADIENT METHOD FOR MULTI-OBJECTIVE OPTIMIZATION

## Chapter 5

# An accelerated proximal gradient method for multi-objective optimization

## 5.1 Introduction

This chapter develops the accelerated proximal gradient method for the unconstrained convex composite multi-objective optimization, i.e., (1.14) with  $f_i$  being convex and  $C = \mathbf{R}^n$ .

There are many studies related to the acceleration of single-objective first-order methods. After being established by Nesterov [82], researchers developed various accelerated schemes. In particular, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [11], an accelerated version of the proximal gradient method, has contributed to a wide range of research fields, including image and signal processing. However, the studies associated with accelerated algorithms are still insufficient in the multi-objective case. In 2020, El Moudden and El Mouatasim [36] proposed an accelerated diagonal steepest descent method for multi-objective optimization, a natural extension of Nesterov's accelerated method for single-objective problems. They proved the global convergence rate of the algorithm  $(O(1/k^2))$  under the assumption that the sequence of the Lagrange multipliers of the subproblems is eventually fixed. Nevertheless, this assumption is restrictive because it indicates that the approach is essentially the same as Nesterov's (single-objective) method, only applied to the minimization of a weighted sum of the objective functions. Here, we propose a genuine accelerated proximal gradient method for multiobjective optimization. As usual, we solve a convex (scalar-valued) subproblem in each iteration. While the accelerated and non-accelerated algorithms solve the same subproblem in the single-objective case, the subproblem of our accelerated method has terms that are not included in the non-accelerated version. However, we can ignore these terms in the single-objective case, and thus we can regard our proposed method as a generalization of FISTA. Moreover, under more natural assumptions, we prove the proposed method's global convergence rate  $(O(1/k^2))$  by using a merit function (3.1) to measure the complexity.

The outline of this chapter is as follows. We present the accelerated proximal gradient method for multi-objective optimization in Section 5.2 and analyze its  $O(1/k^2)$  convergence rate in Section 5.3. Moreover, Section 5.4 demonstrates the convergence of the iterates. Finally, we report some numerical results for test problems in Section 5.5, demonstrating that the proposed method is faster than the one without acceleration.

## 5.2 The algorithm

This section proposes an accelerated version of the proximal gradient method for multi-objective optimization. Similar to the non-accelerated version given in the last section, a subproblem is considered in each iteration. More specifically, the proposed method solves the following subproblem for given  $x \in \text{dom}(F)$ ,  $y \in \mathbb{R}^n$ , and  $\alpha > 0$ :

$$\min_{z \in \mathbf{R}^n} \quad \varphi_{\alpha}^{\mathrm{acc}}(z; x, y), \tag{5.1}$$

where

$$\varphi_{\alpha}^{\text{acc}}(z;x,y) \coloneqq \max_{i=1,\dots,m} [\langle \nabla f_i(y), z - y \rangle + g_i(z) + f_i(y) - F_i(x)] + \frac{1}{2\alpha} ||z - y||_2^2.$$

Note that when y = x, (5.1) is reduced to the subproblem (4.1) of the proximal gradient method. Note also that when m = 1, the subproblem becomes

$$\min_{z \in \mathbf{R}^n} \quad \langle \nabla f_1(y), z - y \rangle + g_1(z) + \frac{1}{2\alpha} \|z - y\|_2^2, \tag{5.2}$$

which is the subproblem of the single-objective FISTA (Algorithm 1.2). The distinctive feature of our proposal (5.1) is the term  $f_i(y) - f_i(x)$ , whereas the easy analogy from the single-objective subproblem (5.2) is

$$\min_{z \in \mathbf{R}^n} \quad \max_{i=1,\dots,m} [\langle \nabla f_i(y), z - y \rangle + g_i(z)] + \frac{1}{2\alpha} \|z - y\|_2^2.$$

By putting such a term, the inside of the max operator approximates  $F_i(z) - F_i(x)$ rather than  $F_i(z) - F_i(y)$ . This is a negligible difference in the single-objective case but profoundly affects the proof in the multi-objective case.

Since  $g_i$  is convex for all  $i = 1, ..., m, z \mapsto \varphi_{\alpha}^{\text{acc}}(z; x, y)$  is strongly convex. Thus, the subproblem (5.1) has a unique optimal solution  $p_{\alpha}^{\text{acc}}(x, y)$  and takes the optimal function value  $\theta_{\alpha}^{\text{acc}}(x, y)$ , i.e.,

$$p_{\alpha}^{\rm acc}(x,y) \coloneqq \operatorname*{argmin}_{z \in \mathbf{R}^n} \varphi_{\alpha}^{\rm acc}(z;x,y) \quad \text{and} \quad \theta_{\alpha}^{\rm acc}(x,y) \coloneqq \min_{z \in \mathbf{R}^n} \varphi_{\alpha}^{\rm acc}(z;x,y). \tag{5.3}$$

Moreover, the optimality condition of (5.1) implies

$$\frac{1}{\alpha}[y - p_{\alpha}^{\mathrm{acc}}(x, y)] \in \operatorname{conv}_{i \in \mathcal{I}_{\alpha}(x, y)}[\nabla f_i(y) + \partial g_i(p_{\alpha}^{\mathrm{acc}}(x, y))] \quad \text{for all } x, y \in \mathbf{R}^r$$

with

$$\mathcal{I}_{\alpha}(x,y) \coloneqq \underset{i=1,\dots,m}{\operatorname{argmax}} [\langle \nabla f_i(y), p_{\alpha}^{\operatorname{acc}}(x,y) - y \rangle + g_i(p_{\alpha}^{\operatorname{acc}}(x,y)) + f_i(y) - F_i(x)]. \quad (5.4)$$

Hence, for any  $x, y, z \in \mathbf{R}^n$ , there exists  $\lambda(x, y) \in \Delta^m$  such that  $\lambda_j(x, y) = 0$ for  $j \notin \mathcal{I}_{\alpha}(x, y)$  and

$$\frac{1}{\alpha} \langle y - p_{\alpha}^{\text{acc}}(x, y), z - p_{\ell}^{\text{acc}}(x, y) \rangle \\
\leq \sum_{i=1}^{m} \lambda_{i}(x, y) [\langle \nabla f_{i}(y), z - p_{\alpha}^{\text{acc}}(x, y) \rangle + g_{i}(z) - g_{i}(p_{\alpha}^{\text{acc}}(x, y))], \quad (5.5)$$

where  $\Delta^m$  denotes the unit *m*-simplex (2.1). We also note that by taking z = y in the objective function of (5.1), we have

$$\theta_{\alpha}^{\mathrm{acc}}(x,y) \le \varphi_{\alpha}^{\mathrm{acc}}(y;x,y) = \max_{i=1,\dots,m} [F_i(y) - F_i(x)]$$
(5.6)

for all  $x \in \text{dom}(F)$  and  $y \in \mathbb{R}^n$ . We now characterize weak Pareto optimality in terms of the mappings  $p_{\alpha}^{\text{acc}}$  and  $\theta_{\alpha}^{\text{acc}}$ , similarly to Lemma 4.1 for the proximal gradient method.

#### Proposition 5.1

Let  $p_{\alpha}^{\rm acc}(x,y)$  and  $\theta_{\alpha}^{\rm acc}(x,y)$  be defined by (5.3). Then, the statements below hold.

- (i) The following three conditions are equivalent:
  - (a)  $y \in \mathbf{R}^n$  is weakly Pareto optimal for (1.1);
  - (b)  $p_{\alpha}^{\text{acc}}(x,y) = y$  for some  $x \in \mathbf{R}^n$ ;
  - (c)  $\theta_{\alpha}^{\mathrm{acc}}(x,y) = \max_{i=1,\dots,m} [F_i(y) F_i(x)]$  for some  $x \in \mathbf{R}^n$ .
- (ii) The mappings  $p_{\alpha}^{\text{acc}}$  and  $\theta_{\alpha}^{\text{acc}}$  are continuous. Particularly, if  $\nabla f_i$  is locally Lipschitz continuous,  $p_{\alpha}^{\text{acc}}$  and  $\theta_{\alpha}^{\text{acc}}$  are locally Hölder continuous with exponent 1/2 and locally Lipschitz continuous, respectively.

Proof. Claim (i): From (5.6) and the fact that  $\theta_{\alpha}^{\rm acc}(x,y) = \varphi_{\alpha}^{\rm acc}(p_{\alpha}^{\rm acc}(x,y);x,y)$ , the equivalence between (b) and (c) is apparent. Let us show that (a) and (b) are equivalent. When y is weakly Pareto optimal, we can immediately see from Lemma 4.1 that  $p_{\alpha}^{\rm acc}(x,y) = p_{\alpha}(y) = y$  by letting x = y. Conversely, suppose that  $p_{\alpha}^{\rm acc}(x,y) = y$  for some  $x \in \mathbb{R}^n$ . Let  $z \in \mathbb{R}^n$  and  $\beta \in (0,1)$ . The optimality of  $p_{\alpha}^{\rm acc}(x,y) = y$  for (5.1) gives

$$\max_{i=1,\dots,m} [F_i(y) - F_i(x)] \le \varphi_{\alpha}^{\text{acc}}(y + \beta(z - y); x, y)$$
  
= 
$$\max_{i=1,\dots,m} [\langle \nabla f_i(y), \beta(z - y) \rangle + g_i(y + \beta(z - y)) + f_i(y) - F_i(x)] + \frac{1}{2\alpha} \|\beta(z - y)\|_2^2.$$

Thus, from the convexity of  $f_i$ , we get

$$\max_{i=1,\dots,m} [F_i(y) - F_i(x)] \le \max_{i=1,\dots,m} [F_i(y + \beta(z-y)) - F_i(x)] + \frac{1}{2\alpha} \|\beta(z-y)\|_2^2.$$

Moreover, the convexity of  $F_i$  yields

$$\begin{split} \max_{i=1,\dots,m} [F_i(y) - F_i(x)] \\ &\leq \max_{i=1,\dots,m} [\beta F_i(z) + (1-\beta)F_i(y) - F_i(x)] + \frac{1}{2\alpha} \|\beta(z-y)\|_2^2 \\ &\leq \beta \max_{i=1,\dots,m} [F_i(z) - F_i(y)] + \max_{i=1,\dots,m} [F_i(y) - F_i(x)] + \frac{1}{2\alpha} \|\beta(z-y)\|_2^2. \end{split}$$

Therefore, we get

$$\max_{i=1,\dots,m} [F_i(z) - F_i(y)] \ge -\frac{\beta}{2\alpha} ||z - y||_2^2.$$

Taking  $\beta \searrow 0$ , we obtain

$$\max_{i=1,\dots,m} [F_i(z) - F_i(y)] \ge 0,$$

which implies the weak Pareto optimality of y.

Claim (ii): Let  $\Omega$  be a bounded subset of  $\mathbf{R}^n$  and take  $\hat{x}, \hat{y}, \check{x}, \check{y} \in \Omega$ . Adding (5.5) with  $(x, y, z) \coloneqq (\hat{x}, \hat{y}, p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y})), (\check{x}, \check{y}, p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}))$  gives

$$\begin{split} &\frac{1}{\alpha} \langle p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) - p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) - (\hat{y} - \check{y}), p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) - p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) \rangle \\ &\leq \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [\langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) - p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) \rangle + g_{i}(p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y})) - g_{i}(p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}))] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [\langle \nabla f_{i}(\check{y}), p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) - p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) \rangle + g_{i}(p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y})) - g_{i}(p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}))] \\ &\leq \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [\langle \nabla f_{i}(\hat{y}), \hat{y} - p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) \rangle - g_{i}(p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y})) - f_{i}(\hat{y}) + F_{i}(\hat{x})] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [\langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) - g_{i}(p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y})) - f_{i}(\check{y}) + F_{i}(\check{x})] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [\langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\mathrm{acc}}(\check{x}, \check{y})) + f_{i}(\hat{y}) - F_{i}(\hat{x})] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [\langle \nabla f_{i}(\check{y}), p_{\alpha}^{\mathrm{acc}}(\hat{x}, \hat{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\mathrm{acc}}(\check{x}, \hat{y})) + f_{i}(\check{y}) - F_{i}(\check{x})]. \end{split}$$

Since  $\lambda_j(x, y)$  for  $j \in \mathcal{I}_{\alpha}(x)$  with  $\mathcal{I}_{\alpha}$  given by (5.4), we get

$$\begin{split} &\frac{1}{\alpha} \langle p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) - p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) - (\hat{y} - \check{y}), p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) - p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) \rangle \\ &\leq \min_{i=1,...,m} [ \langle \nabla f_{i}(\hat{y}), \hat{y} - p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) \rangle - g_{i}(p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y})) - f_{i}(\hat{y}) + F_{i}(\hat{x}) ] \\ &+ \min_{i=1,...,m} [ \langle \nabla f_{i}(\check{y}), \check{y} - p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) \rangle - g_{i}(p_{\alpha}^{\text{acc}}(\check{x}, \check{y})) - f_{i}(\check{y}) + F_{i}(\check{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [ \langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\check{x}, \check{y})) + f_{i}(\hat{y}) - F_{i}(\hat{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [ \langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) - \check{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y})) + f_{i}(\check{y}) - F_{i}(\check{x}) ] \\ &\leq \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [ \langle \nabla f_{i}(\hat{y}), \hat{y} - p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) \rangle - g_{i}(p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y})) - f_{i}(\hat{y}) + F_{i}(\hat{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [ \langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) \rangle - g_{i}(p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y})) - f_{i}(\check{y}) + F_{i}(\check{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [ \langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\check{x}, \check{y})) - f_{i}(\hat{y}) - F_{i}(\hat{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\hat{x}, \hat{y}) [ \langle \nabla f_{i}(\hat{y}), p_{\alpha}^{\text{acc}}(\check{x}, \check{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\check{x}, \check{y})) + f_{i}(\hat{y}) - F_{i}(\hat{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \hat{y}) [ \langle \nabla f_{i}(\check{y}), p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) - \hat{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\check{x}, \check{y})) + f_{i}(\hat{y}) - F_{i}(\hat{x}) ] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x}, \check{y}) [ \langle \nabla f_{i}(\check{y}), p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y}) - \check{y} \rangle + g_{i}(p_{\alpha}^{\text{acc}}(\hat{x}, \hat{y})) + f_{i}(\check{y}) - F_{i}(\check{x}) ] . \end{split}$$

Thus, quick calculations imply

$$\begin{split} &\frac{1}{\alpha} \|p_{\alpha}^{\mathrm{acc}}(\hat{x},\hat{y}) - p_{\alpha}^{\mathrm{acc}}(\check{x},\check{y})\|_{2}^{2} \leq \frac{1}{\alpha} \langle p_{\alpha}^{\mathrm{acc}}(\hat{x},\hat{y}) - p_{\alpha}^{\mathrm{acc}}(\check{x},\check{y}), \hat{y} - \check{y} \rangle \\ &\leq \sum_{i=1}^{m} \lambda_{i}(\hat{x},\hat{y}) [\langle \nabla f_{i}(\hat{y}) - \nabla f_{i}(\check{y}), p_{\alpha}^{\mathrm{acc}}(\check{x},\check{y}) \rangle + f_{i}(\hat{y}) - f_{i}(\check{y}) - (F_{i}(\hat{x}) - F_{i}(\check{x}))] \\ &+ \sum_{i=1}^{m} \lambda_{i}(\check{x},\check{y}) [\langle \nabla f_{i}(\check{y}) - \nabla f_{i}(\hat{y}), p_{\alpha}^{\mathrm{acc}}(\hat{x},\hat{y}) \rangle + f_{i}(\check{y}) - f_{i}(\hat{x}) - (F_{i}(\check{x}) - F_{i}(\hat{x}))] \\ &+ \sum_{i=1}^{m} [\lambda_{i}(\check{x},\check{y}) - \lambda_{i}(\hat{x},\hat{y})] [\langle \nabla f_{i}(\hat{y}) - \nabla f_{i}(\check{y}), \hat{y} \rangle + \langle \nabla f_{i}(\check{y}), \hat{y} - \check{y} \rangle]. \end{split}$$

When  $(\hat{x}, \hat{y}) \to (\check{x}, \check{y})$ , the right-hand side tends to zero, so  $p_{\alpha}^{\text{acc}}$  and  $\theta_{\alpha}^{\text{acc}}$  are continuous. Moreover, assume that  $\nabla f_i$  is locally Lipschitz continuous for  $i = 1, \ldots, m$ . Since  $f_i, g_i, F_i$  are also locally Lipschitz, the above inequality shows that  $p_{\alpha}^{\text{acc}}$  is locally Hölder continuous with exponent 1/2. On the other hand, the definition (5.3) of  $p_{\alpha}^{\rm acc}$  and  $\theta_{\alpha}^{\rm acc}$  gives

$$\begin{split} \theta^{\mathrm{acc}}_{\alpha}(\hat{x},\hat{y}) &- \theta^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) \leq \varphi^{\mathrm{acc}}_{\alpha}(p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y});\hat{x},\hat{y}) - \varphi^{\mathrm{acc}}_{\alpha}(p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y});\check{x},\check{y}) \\ &= \max_{i=1,\dots,m} [\langle \nabla f_i(\hat{y}), p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \hat{y} \rangle + g_i(p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y})) + f_i(\hat{y}) - F_i(\hat{x})] \\ &- \max_{i=1,\dots,m} [\langle \nabla f_i(\check{y}), p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \check{y} \rangle + g_i(p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y})) + f_i(\check{y}) - F_i(\check{x})] \\ &+ \frac{1}{2\alpha} \Big[ \| p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \hat{y} \|_2^2 - \| p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \check{y} \|_2^2 \Big] \\ &\leq \max_{i=1,\dots,m} [\langle \nabla f_i(\check{y}), \check{y} - \hat{y} \rangle + \langle \nabla f_i(\hat{y}) - \nabla f_i(\check{y}), p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \hat{y} \rangle \\ &+ f_i(\hat{y}) - f_i(\check{y}) - F_i(\hat{x}) + F_i(\check{x})] \\ &+ \frac{1}{2\alpha} \langle 2p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \hat{y} - \check{y}, \check{y} - \hat{y} \rangle \\ &\leq \max_{i=1,\dots,m} \| \nabla f_i(\check{y}) \|_2 \| \hat{y} - \check{y} \|_2 + \| \hat{y} - p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) \|_2 \max_{i=1,\dots,m} \| \nabla f_i(\hat{y}) - \nabla f_i(\check{y}) \|_2 \\ &+ \max_{i=1,\dots,m} |f_i(\hat{y}) - f_i(\check{y})| + \max_{i=1,\dots,m} |F_i(\hat{x}) - F_i(\check{x})| \\ &+ \frac{1}{2\alpha} \| 2p^{\mathrm{acc}}_{\alpha}(\check{x},\check{y}) - \hat{y} - \check{y} - \check{y} \|_2 \| \hat{y} - \check{y} \|_2, \end{split}$$

where the second inequality follows from (2.2), and the third inequality comes from the Cauchy-Schwarz inequalities. Since the above inequality holds even if we interchange  $(\hat{x}, \hat{y})$  and  $(\check{x}, \check{y})$ , we can show the Lipschitz continuity of  $\theta_{\alpha}^{\text{acc}}$  on  $\Omega$  in the same way as in the previous paragraph.

Proposition 5.1 suggests that we can use  $\|p_{\alpha}^{\text{acc}}(x,y) - y\|_{\infty} < \varepsilon$  for some  $\varepsilon > 0$  as a stopping criterion. Now, we state below the proposed algorithm.

The sequence  $\{t_k\}$  defined in lines 2 and 8 of Algorithm 5.1 generalizes the wellknown momentum factors in single-objective accelerated methods. For example, when a = 0 and b = 1/4, they coincide with the one in Algorithm 5.1 and the original FISTA [82, 11] ( $t_1 = 1$  and  $t_{k+1} = (1 + \sqrt{1 + 4t_k^2})/2$ ). Moreover, if  $b = a^2/4$ , then  $\{t_k\}$  has the general term  $t_k = (1-a)k/2 + (1+a)/2$ , which corresponds to the one used in [24, 97, 5, 4]. This means that our generalization allows finer algorithm tuning by varying a and b. We show below some properties of  $\{t_k\}$  and  $\{\gamma_k\}$ .

#### Lemma 5.1

Let  $\{t_k\}$  and  $\{\gamma_k\}$  be defined by lines 2, 8 and 9 in Algorithm 5.1 for arbitrary  $a \in [0,1)$  and  $b \in [a^2/4, 1/4]$ . Then, the following inequalities hold for all  $k \geq 1$ .

(i) 
$$t_{k+1} \ge t_k + \frac{1-a}{2}$$
 and  $t_k \ge \frac{1-a}{2}k + \frac{1+a}{2};$ 

**Algorithm 5.1** Accelerated proximal gradient method with general stepsizes for (1.1)

**Input:**  $x^0 = y^1 \in \text{dom}(F), a \in [0, 1), b \in [a^2/4, 1/4], \varepsilon > 0.$ **Output:**  $x^*$ : A weakly Pareto optimal point 1:  $k \leftarrow 1$ 2:  $t_1 \leftarrow 1$ 3: loop  $\hat{x}^k \leftarrow p_{\alpha}^{\mathrm{acc}}(x^{k-1}, y^k)$  for some stepsize  $\alpha > 0$ if  $\|x^k - y^k\|_{\infty} < \varepsilon$  then 4: 5: return  $x^k$ 6: end if 7:  $t_{k+1} \leftarrow \sqrt{t_k^2 - at_k + b} + 1/2$ 8:  $\gamma_k \leftarrow (t_k - 1)/t_{k+1}$  $y^{k+1} \leftarrow x^k + \gamma_k (x^k - x^{k-1})$ 9: 10: $k \leftarrow k+1$ 11: 12: end loop

$$\begin{aligned} (ii) \ t_{k+1} &\leq t_k + \frac{1 - a + \sqrt{4b - a^2}}{2} \ and \ t_k \leq \frac{1 - a + \sqrt{4b - a^2}}{2} (k - 1) + 1 \leq k; \\ (iii) \ t_k^2 - t_{k+1}^2 + t_{k+1} &= at_k - b + \frac{1}{4} \geq at_k; \\ (iv) \ 0 &\leq \gamma_k \leq \frac{k - 1}{k + 1/2}; \\ (v) \ 1 - \gamma_k^2 \geq \frac{1}{t_k}. \end{aligned}$$

*Proof.* Claim (i): From the definition of  $\{t_k\}$ , we have

$$t_{k+1} = \sqrt{t_k^2 - at_k + b} + \frac{1}{2} = \sqrt{\left(t_k - \frac{a}{2}\right)^2 + \left(b - \frac{a^2}{4}\right)} + \frac{1}{2}.$$
 (5.7)

Since  $b \ge a^2/4$ , we get

$$t_{k+1} \ge \left| t_k - \frac{a}{2} \right| + \frac{1}{2}.$$

Since  $t_1 = 1 \ge a/2$ , we can quickly see that  $t_k \ge a/2$  for any k by induction. Thus, we have

$$t_{k+1} \ge t_k + \frac{1-a}{2}.$$

Applying the above inequality recursively, we obtain

$$t_k \ge \frac{1-a}{2}(k-1) + t_1 = \frac{1-a}{2}k + \frac{1+a}{2}$$

Claim (ii): From (5.7) and the relation  $\sqrt{\beta_1 + \beta_2} \le \sqrt{\beta_1} + \sqrt{\beta_2}$  with  $\beta_1, \beta_2 \ge 0$ , we get the first inequality. Using it recursively, it follows that

$$t_k \le \frac{1 - a + \sqrt{4b - a^2}}{2}(k - 1) + t_1 = \frac{1 - a + \sqrt{4b - a^2}}{2}(k - 1) + 1.$$

Since  $a \in [0, 1), b \in [a^2/4, 1/4]$ , we observe that

$$\frac{1-a+\sqrt{4b-a^2}}{2} \le \frac{1-a+\sqrt{1-a^2}}{2} \le 1.$$

Hence, the above two inequalities lead to the desired result.

Claim (iii): An easy computation shows that

$$\begin{aligned} t_k^2 - t_{k+1}^2 + t_{k+1} &= t_k^2 - \left[\sqrt{t_k^2 - at_k + b} + \frac{1}{2}\right]^2 + \sqrt{t_k^2 - at_k + b} + \frac{1}{2} \\ &= at_k - b + \frac{1}{4} \ge at_k, \end{aligned}$$

where the inequality holds since  $b \leq 1/4$ .

Claim (iv): The first inequality is clear from the definition of  $\gamma_k$  since claim (i) yields  $t_k \geq 1$ . Again, the definition of  $\gamma_k$  and claim (i) give

$$\gamma_k = \frac{t_k - 1}{t_{k+1}} \le \frac{t_k - 1}{t_k + (1 - a)/2} = 1 - \frac{3 - a}{2t_k + 1 - a}.$$

Combining with the claim (ii), we get

$$\gamma_k \le 1 - \frac{3-a}{\left(1-a+\sqrt{4b-a^2}\right)(k-1)+3-a} \\ = \frac{\left(1-a+\sqrt{4b-a^2}\right)(k-1)}{\left(1-a+\sqrt{4b-a^2}\right)(k-1)+3-a} \\ = \frac{k-1}{k-1+(3-a)/\left(1-a+\sqrt{4b-a^2}\right)}.$$
(5.8)

On the other hand, it follows that

$$\min_{a \in [0,1), b \in [a^2/4, 1/4]} \frac{3-a}{1-a+\sqrt{4b-a^2}} = \min_{a \in [0,1)} \frac{3-a}{1-a+\sqrt{1-a^2}} = \frac{3}{2},$$
(5.9)

where the second equality follows from the monotonic non-decreasing property implied by

$$\frac{\mathrm{d}}{\mathrm{d}a} \left( \frac{3-a}{1-a+\sqrt{1-a^2}} \right) = \frac{2\sqrt{1-a^2}+3a-1}{\left(\sqrt{1-a^2}-a+1\right)^2 \sqrt{1-a^2}} > 0 \quad \text{for all } a \in [0,1).$$

Combining (5.8) and (5.9), we obtain  $\gamma_k \le (k-1)/(k+1/2)$ .

Claim (v): claim (i) implies that  $t_{k+1} > t_k \ge 1$ . Thus, the definition of  $\gamma_k$  implies that

$$1 - \gamma_k^2 = 1 - \left(\frac{t_k - 1}{t_{k+1}}\right)^2 \ge 1 - \left(\frac{t_k - 1}{t_k}\right)^2 = \frac{2t_k - 1}{t_k^2} \ge \frac{2t_k - t_k}{t_k^2} = \frac{1}{t_k}.$$

We end this section by noting some remarks about the proposed algorithm.

#### Remark 5.1

- (i) Since  $x \in \text{dom}(F)$  implies  $p_{\alpha}^{\text{acc}}(x, y) \in \text{dom}(F)$ , every  $x^k$  computed by the above algorithm is in dom(F). However,  $y^k$  is not necessarily in dom(F).
- (ii) Since  $y^1 = x^0$ , it follows from (5.6) that

$$\theta_{\alpha}^{\rm acc}(x^0, y^1) \le 0,$$

but the inequality  $\theta_{\alpha}^{\mathrm{acc}}(x^{k-1}, y^k) \leq 0$  does not necessarily hold for  $k \geq 2$ .

- (iii) When m = 1, we can remove the term  $f_i(y) F_i(x)$  from the subproblem (5.1), so Algorithm 5.1 corresponds to the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [11] for single-objective optimization.
- (iv) Algorithm 5.1 induces the accelerated versions of first-order algorithms such as the steepest descent [40], proximal point [17], and projected gradient methods [57].

## 5.3 Convergence rates analysis

This section shows that Algorithm 5.1 has the  $O(1/k^2)$  convergence rate under Assumption 4.2. For simplicity, we suppose the constant stepsize  $\alpha \in (0, 1/L_f]$ . Then, Lemmas 2.2 and 2.3 implies

$$\theta_{\alpha}^{\mathrm{acc}}(x,y) \ge \max_{i=1,\dots,m} [F_i(p_{\alpha}^{\mathrm{acc}}(x,y)) - F_i(x)]$$
(5.10)

for all  $x \in \text{dom}(F)$  and  $y \in \mathbb{R}^n$ . When it is challenging to estimate  $L_f$ , we can use the backtracking procedure like Section 4.2.2.

We present below the main theorem of this section.

#### Theorem 5.1

Let  $\{x^k\}$  be a sequence generated by Algorithm 5.1 and recall that  $u_{\infty}$  is given by (3.1). Then, the following two equations hold:

- (i)  $F_i(x^k) \leq F_i(x^0)$  for all i = 1, ..., m and  $k \geq 0$ ;
- (ii)  $u_{\infty}(x^k) = O(1/k^2)$  as  $k \to \infty$  under Assumption 4.4.

Claim (i) means that  $\{x^k\} \subseteq \mathbf{lev}_F(F(x^0))$ , where  $\mathbf{lev}_{F(x^0)}(F)$  denotes the level set of F (cf. (2.5)). Note, however, that the objective functions are generally not monotonically non-increasing. Claim (ii) also claims the global convergence rate.

Before proving Theorem 5.1, let us give several lemmas. First, we present some properties of  $\{t_k\}$  and  $\{\gamma_k\}$ . As in [101], we also introduce  $\sigma_k \colon \mathbf{R}^n \to [-\infty, +\infty)$  and  $\rho_k \colon \mathbf{R}^n \to \mathbf{R}$  for  $k \ge 0$  as follows, which assist the analysis:

$$\sigma_k(z) \coloneqq \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(z) \right],$$
  

$$\rho_k(z) \coloneqq \left\| t_{k+1} x^{k+1} - (t_{k+1} - 1) x^k - z \right\|_2^2.$$
(5.11)

The following lemma on  $\sigma_k$  is helpful in the subsequent discussions.

#### Lemma 5.2

Let  $\{x^k\}$  and  $\{y^k\}$  be sequences generated by Algorithm 5.1. Then, the following inequalities hold for all  $z \in \mathbf{R}^n$  and  $k \ge 0$ :

(i) 
$$\sigma_{k+1}(z) \leq -\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, z - y^{k+1} \rangle - \frac{1}{2\alpha} \| x^{k+1} - y^{k+1} \|_{2}^{2};$$
  
(ii)  $\sigma_{k+1}(z) - \sigma_{k}(z) \leq \max_{i=1,\dots,m} [F_{i}(x^{k+1}) - F_{i}(x^{k})] \leq -\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, x^{k} - y^{k+1} \rangle - \frac{1}{2\alpha} \| x^{k+1} - y^{k+1} \|_{2}^{2}.$ 

*Proof.* Suppose that  $z \in \mathbf{R}^n$  and  $k \geq 0$ . Recall that a Lagrange multiplier  $\lambda(x^k, y^{k+1}) \in \Delta^m$  exists and satisfies the optimality condition (5.5).

Claim (i): From the definition (5.11) of  $\sigma_{k+1}$ , we get

$$\sigma_{k+1}(z) = \min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(z) \right]$$
  
$$\leq \sum_{i=1}^m \lambda_i(x^k, y^{k+1}) \left[ F_i(x^{k+1}) - F_i(z) \right]$$
  
$$= \sum_{i=1}^m \lambda_i(x^k, y^{k+1}) \left[ F_i(x^{k+1}) - F_i(x^k) + F_i(x^k) - F_i(z) \right].$$

where the inequality follows from  $\lambda(x^k, y^{k+1}) \in \Delta^m$ . From (5.10), we have

$$\sigma_{k+1}(z) \leq \theta_{\alpha}^{\mathrm{acc}}(x^{k}, y^{k+1}) + \sum_{i=1}^{m} \lambda_{i}(x^{k}, y^{k+1}) \left[F_{i}(x^{k}) - F_{i}(z)\right]$$
  
=  $\sum_{i=1}^{m} \lambda_{i}(x^{k}, y^{k+1}) \left[\langle \nabla f_{i}(y^{k+1}), x^{k+1} - y^{k+1} \rangle + g_{i}(x^{k+1}) + f_{i}(y^{k+1}) - F_{i}(z)\right]$   
+  $\frac{1}{2\alpha} \|x^{k+1} - y^{k+1}\|_{2}^{2},$ 

where the second inequality comes from (5.3) and (5.4). The convexity of  $f_i$  yields

$$\sigma_{k+1}(z) \leq \sum_{i=1}^{m} \lambda_i(x^k, y^{k+1}) \left[ \left\langle \nabla f_i(y^{k+1}), x^{k+1} - z \right\rangle + g_i(x^{k+1}) - g_i(z) \right] + \frac{1}{2\alpha} \left\| x^{k+1} - y^{k+1} \right\|_2^2.$$

Equation (5.5) gives

$$\sigma_{k+1}(z) \leq -\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, z - x^{k+1} \rangle + \frac{1}{2\alpha} \| x^{k+1} - y^{k+1} \|_2^2$$
  
=  $-\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, z - y^{k+1} \rangle - \frac{1}{2\alpha} \| x^{k+1} - y^{k+1} \|_2^2.$ 

Claim (ii): Again, from the definition (5.11) of  $\sigma_k$ , we obtain

$$\sigma_{k+1}(z) - \sigma_k(z) = \min_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(z) \right] - \min_{i=1,\dots,m} \left[ F_i(x^k) - F_i(z) \right] \\ \leq \max_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^k) \right],$$

where the inequality holds because of (2.2). Equation (5.10) leads to

$$\max_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^k) \right] \le \theta_{\alpha}^{\operatorname{acc}}(x^k, y^{k+1})$$
  
= 
$$\sum_{i=1}^m \lambda_i(x^k, y^{k+1}) \left[ \langle \nabla f_i(y^{k+1}), x^{k+1} - y^{k+1} \rangle + g_i(x^{k+1}) + f_i(y^{k+1}) - F_i(x^k) \right]$$
  
+ 
$$\frac{1}{2\alpha} \|x^{k+1} - y^{k+1}\|_2^2$$

where the equality is from (5.3) and (5.4). From the convexity of  $f_i$ , we obtain

$$\max_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^k) \right]$$
  

$$\leq \sum_{i=1}^m \lambda_i(x^k, y^{k+1}) \left[ \langle \nabla f_i(y^{k+1}), x^{k+1} - x^k \rangle + g_i(x^{k+1}) - g_i(x^k) \right]$$
  

$$+ \frac{1}{2\alpha} \|x^{k+1} - y^{k+1}\|_2^2.$$

Equation (5.5) yields

$$\max_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^k) \right] \le -\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, x^k - x^{k+1} \rangle + \frac{1}{2\alpha} \|x^{k+1} - y^{k+1}\|_2^2$$
$$= -\frac{1}{\alpha} \langle y^{k+1} - x^{k+1}, x^k - y^{k+1} \rangle - \frac{1}{2\alpha} \|x^{k+1} - y^{k+1}\|_2^2.$$

Therefore, from Lemma 5.1 (v), we can obtain the following result quickly in the same way as in the proof of [101, Corollary 5.1].

#### Lemma 5.3

Let  $\{x^k\}$  and  $\{y^k\}$  be sequences generated by Algorithm 5.1. Then, we have

$$\sigma_{k_2}(z) - \sigma_{k_1}(z) \le \max_{i=1,\dots,m} \left[ F_i(x^{k_2}) - F_i(x^{k_1}) \right]$$
$$\le -\frac{1}{2\alpha} \left( \left\| x^{k_2} - x^{k_2 - 1} \right\|_2^2 - \left\| x^{k_1} - x^{k_1 - 1} \right\|_2^2 + \sum_{k=k_1}^{k_2 - 1} \frac{1}{t_k} \left\| x^k - x^{k-1} \right\|_2^2 \right)$$

for any  $k_2 \ge k_1 \ge 1$ .

*Proof.* Let  $k \ge 1$ . From Lemma 5.2 (ii) is equivalent to

$$\sigma_{k+1}(z) - \sigma_k(z) \le \max_{i=1,\dots,m} \left[ F_i(x^{k+1}) - F_i(x^k) \right] \le -\frac{1}{2\alpha} \left( \left\| x^{k+1} - x^k \right\|_2^2 - \left\| y^{k+1} - x^k \right\|_2^2 \right)$$
$$= -\frac{1}{2\alpha} \left( \left\| x^{k+1} - x^k \right\|_2^2 - \gamma_k^2 \left\| x^k - x^{k-1} \right\|_2^2 \right),$$

where the equality comes from line 10 of Algorithm 5.1. Adding up this inequality from  $k = k_1$  to  $k = k_2 - 1$  yields

$$\sigma_{k_2}(z) - \sigma_{k_1}(z) \le \max_{i=1,\dots,m} \left[ F_i(x^{k_2}) - F_i(x^{k_1}) \right]$$
  
$$\le -\frac{1}{2\alpha} \left[ \left\| x^{k_2} - x^{k_2 - 1} \right\|_2^2 - \left\| x^{k_1} - x^{k_1 - 1} \right\|_2^2 + \sum_{k=k_1}^{k_2 - 1} (1 - \gamma_k^2) \left\| x^k - x^{k-1} \right\|_2^2 \right].$$

Using Lemma 5.1 (v), we get the desired inequality.

We can now show the first part of Theorem 5.1.

Proof of Theorem 5.1 (i). It is clear from Lemma 5.3 with  $k_1 = 0$  and  $k_2 = k$ .  $\Box$ 

The next step is to prepare the proof of Theorem 5.1 (ii).

#### Lemma 5.4

Let  $\{x^k\}$  and  $\{y^k\}$  be sequences generated by Algorithm 5.1. Also, let  $\sigma_k$  and  $\rho_k$  be

defined by (5.11). Then, we have

$$\begin{aligned} \frac{1}{1-a} \bigg[ t_{k+1}^2 - at_{k+1} + \bigg(\frac{1}{4} - b\bigg) k \bigg] \sigma_{k+1}(z) \\ &+ \frac{1}{2\alpha(1-a)} \bigg[ a(t_{k+1}^2 - t_{k+1}) + \bigg(\frac{1}{4} - b\bigg) k \bigg] \big\| x^{k+1} - x^k \big\|_2^2 \\ &+ \frac{1}{2\alpha(1-a)} \sum_{p=1}^k \bigg[ a^2(t_p - 1) + \bigg(\frac{1}{4} - b\bigg) \frac{p - t_p + a(t_p - 1)}{t_p} \bigg] \big\| x^p - x^{p-1} \big\|_2^2 \\ &+ \frac{1}{2\alpha} \rho_k(z) \le \frac{1}{2\alpha} \big\| x^0 - z \big\|_2^2. \end{aligned}$$

for all  $k \ge 0$  and  $z \in \mathbf{R}^n$ .

*Proof.* Let  $p \ge 1$  and  $z \in \mathbf{R}^n$ . Adding Lemma 5.2 (ii) multiplied by  $(t_{p+1} - 1)$  and Lemma 5.2 (i), both with k = p, yields

$$t_{p+1}\sigma_{p+1}(z) - (t_{p+1} - 1)\sigma_p(z) \\ \leq -\frac{1}{2\alpha} \Big[ t_{p+1} \big\| x^{p+1} - y^{p+1} \big\|_2^2 + 2 \big\langle x^{p+1} - y^{p+1}, t_{p+1}y^{p+1} - (t_{p+1} - 1)x^p - z \big\rangle \Big].$$

Multiplying this inequality by  $t_{p+1}$  and using the relation  $t_p^2 = t_{p+1}^2 - t_{p+1} + (at_p - b + 1/4)$  (cf. Lemma 5.1 (iii)), we get

$$t_{p+1}^2 \sigma_{p+1}(z) - t_p^2 \sigma_p(z) \le -\frac{1}{2\alpha} \Big[ \big\| t_{p+1}(x^{p+1} - y^{p+1}) \big\|_2^2 + 2t_{p+1} \big\langle x^{p+1} - y^{p+1}, t_{p+1}y^{p+1} - (t_{p+1} - 1)x^p - z \big\rangle \Big] - \Big(at_p - b + \frac{1}{4}\Big) \sigma_p(z).$$

Applying (2.3) to the right-hand side of the above inequality with

$$v^1 \coloneqq t_{p+1} y^{p+1}, \quad v^2 \coloneqq t_{p+1} x^{p+1}, \quad v^3 \coloneqq (t_{p+1} - 1) x^p + z,$$

we get

$$\begin{split} t_{p+1}^2 \sigma_{p+1}(z) &- t_p^2 \sigma_p(z) \\ &\leq -\frac{1}{2\alpha} \Big[ \big\| t_{p+1} x^{p+1} - (t_{p+1} - 1) x^p - z \big\|_2^2 - \big\| t_{p+1} y^{p+1} - (t_{p+1} - 1) x^p - z \big\|_2^2 \Big] \\ &- \Big( a t_p - b + \frac{1}{4} \Big) \sigma_p(z). \end{split}$$

Recall that  $\rho_p(z) \coloneqq \|t_{p+1}x^{p+1} - (t_{p+1}-1)x^p - z\|_2^2$ . Then, considering the definition of  $y^p$  given in line 10 of Algorithm 5.1, we obtain

$$t_{p+1}^2 \sigma_{p+1}(z) - t_p^2 \sigma_p(z) \le -\frac{1}{2\alpha} [\rho_p(z) - \rho_{p-1}(z)] - \left(at_p - b + \frac{1}{4}\right) \sigma_p(z).$$

Now, let  $k \ge 0$ . Lemma 5.3 with  $(k_1, k_2) = (p, k+1)$  implies

$$t_{p+1}^{2}\sigma_{p+1}(z) - t_{p}^{2}\sigma_{p}(z) \leq -\frac{1}{2\alpha}[\rho_{p}(z) - \rho_{p-1}(z)] - \left(at_{p} - b + \frac{1}{4}\right) \left[\sigma_{k+1}(z) + \frac{1}{2\alpha} \left(\left\|x^{k+1} - x^{k}\right\|_{2}^{2} - \left\|x^{p} - x^{p-1}\right\|_{2}^{2} + \sum_{r=p}^{k} \frac{1}{t_{r}} \left\|x^{r} - x^{r-1}\right\|_{2}^{2}\right)\right]$$

Adding up the above inequality from p = 1 to p = k, the fact that  $t_1 = 1$  and  $\rho_0(z) = ||x^1 - z||_2^2$  leads to

$$t_{k+1}^{2}\sigma_{k+1}(z) - \sigma_{1}(z) \leq -\frac{1}{2\alpha} \Big[ \rho_{k}(z) - \|x^{1} - z\|_{2}^{2} \Big] \\ - \left( a \sum_{p=1}^{k} t_{p} + \left(\frac{1}{4} - b\right) k \right) \Big[ \sigma_{k+1}(z) + \frac{1}{2\alpha} \|x^{k+1} - x^{k}\|_{2}^{2} \Big] \\ + \frac{1}{2\alpha} \sum_{p=1}^{k} \Big( at_{p} - b + \frac{1}{4} \Big) \|x^{p} - x^{p+1}\|_{2}^{2} \\ - \frac{1}{2\alpha} \sum_{p=1}^{k} \Big( at_{p} - b + \frac{1}{4} \Big) \sum_{r=p}^{k} \frac{1}{t_{r}} \|x^{r} - x^{r-1}\|_{2}^{2}.$$
(5.12)

Let us write the last two terms of the right-hand side for (5.12) as  $S_1$  and  $S_2$ , respectively. (2.4) yields

$$S_{2} = -\frac{1}{2\alpha} \sum_{r=1}^{k} \sum_{p=1}^{r} \left( at_{p} - b + \frac{1}{4} \right) \frac{1}{t_{r}} \|x^{r} - x^{r-1}\|_{2}^{2}$$
$$= -\frac{1}{2\alpha} \sum_{p=1}^{k} \sum_{r=1}^{p} \left( at_{r} - b + \frac{1}{4} \right) \frac{1}{t_{p}} \|x^{p} - x^{p-1}\|_{2}^{2}.$$

Hence, it follows that

$$S_{1} + S_{2} = -\frac{1}{2\alpha} \sum_{p=1}^{k} \left[ \frac{1}{t_{p}} \sum_{r=1}^{p} \left( at_{r} - b + \frac{1}{4} \right) - \left( at_{p} - b + \frac{1}{4} \right) \right] \left\| x^{p} - x^{p-1} \right\|_{2}^{2}$$
$$= -\frac{1}{2\alpha} \sum_{p=1}^{k} \frac{1}{t_{p}} \left[ a \left( \sum_{r=1}^{p-1} t_{r} - t_{p}^{2} + t_{p} \right) + \left( \frac{1}{4} - b \right) (p - t_{p}) \right] \left\| x^{p} - x^{p-1} \right\|_{2}^{2}.$$
(5.13)

Again  $t_1 = 1$  gives

$$-t_p^2 + t_p = \sum_{r=1}^{p-1} (-t_{r+1}^2 + t_{r+1} + t_r^2 - t_r) = \sum_{r=1}^{p-1} \left( -(1-a)t_r - b + \frac{1}{4} \right)$$
$$= -(1-a)\sum_{r=1}^{p-1} t_r + \left(\frac{1}{4} - b\right)(p-1),$$

where the second equality comes from Lemma 5.1 (iii). Thus, we get

$$\sum_{r=1}^{p-1} t_r = \frac{t_p^2 - t_p}{1 - a} + \left(\frac{1}{4} - b\right) \frac{p - 1}{1 - a}.$$
(5.14)

Substituting this into (5.13), it follows that

$$S_1 + S_2 = -\frac{1}{2\alpha(1-a)} \sum_{p=1}^k \left[ a^2(t_p - 1) + \left(\frac{1}{4} - b\right) \frac{p - t_p + a(t_p - 1)}{t_p} \right] \left\| x^p - x^{p-1} \right\|_2^2.$$

Combined with (5.12) and (5.14), we have

$$\begin{aligned} t_{k+1}^2 \sigma_{k+1}(z) &- \sigma_1(z) \\ &\leq -\frac{1}{2\alpha} \Big[ \rho_k(z) - \left\| x^1 - z \right\|_2^2 \Big] \\ &- \frac{1}{1-a} \Big[ a(t_{k+1}^2 - t_{k+1}) + \left(\frac{1}{4} - b\right) k \Big] \Big[ \sigma_{k+1}(z) + \frac{1}{2\alpha} \left\| x^{k+1} - x^k \right\|_2^2 \Big] \\ &- \frac{1}{2\alpha(1-a)} \sum_{p=1}^k \Big[ a^2(t_p - 1) + \left(\frac{1}{4} - b\right) \frac{p - t_p + a(t_p - 1)}{t_p} \Big] \left\| x^p - x^{p-1} \right\|_2^2. \end{aligned}$$

Easy calculations give

$$\begin{aligned} \frac{1}{1-a} \bigg[ t_{k+1}^2 - at_{k+1} + \bigg(\frac{1}{4} - b\bigg) k \bigg] \sigma_{k+1}(z) \\ &+ \frac{1}{2\alpha(1-a)} \bigg[ a(t_{k+1}^2 - t_{k+1}) + \bigg(\frac{1}{4} - b\bigg) k \bigg] \big\| x^{k+1} - x^k \big\|_2^2 \\ &+ \frac{1}{2\alpha(1-a)} \sum_{p=1}^k \bigg[ a^2(t_p - 1) + \bigg(\frac{1}{4} - b\bigg) \frac{p - t_p + a(t_p - 1)}{t_p} \bigg] \big\| x^p - x^{p-1} \big\|_2^2 \\ &+ \frac{1}{2\alpha} \rho_k(z) \le \sigma_1(z) + \frac{1}{2\alpha} \big\| x^1 - z \big\|_2^2. \end{aligned}$$

Lemma 5.2 (i) with k = 0 and  $y^1 = x^0$  and (2.3) with  $(v^1, v^2, v^3) = (x^0, x^1, z)$  lead to

$$\sigma_1(z) \le -\frac{1}{2\alpha} \Big[ \|x^1 - z\|_2^2 - \|x^0 - z\|_2^2 \Big].$$

From the above two inequalities, we can derive the desired inequality.

Let us define the linear function  $P \colon \mathbf{R} \to \mathbf{R}$  and quadratic ones  $Q_1 \colon \mathbf{R} \to \mathbf{R}$ , and  $Q_2 \colon \mathbf{R} \to \mathbf{R}$  by

$$P(\beta) \coloneqq \frac{a^2(\beta - 1)}{2},$$

$$Q_1(\beta) \coloneqq \frac{1 - a}{4}\beta^2 + \left[1 - \frac{a}{2} + \frac{1 - 4b}{4(1 - a)}\right]\beta + 1,$$

$$Q_2(\beta) \coloneqq \frac{a(1 - a)}{4}\beta^2 + \left[\frac{a}{2} + \frac{1 - 4b}{4(1 - a)}\right]\beta.$$
(5.15)

The following lemma provides the critical relation to evaluate the convergence rate of Algorithm 5.1.

#### Lemma 5.5

Under Assumption 4.4 with  $\Omega \subseteq \mathbf{R}^n$ , Algorithm 5.1 generates a sequence  $\{x^k\}$  such that

$$Q_1(k)u_{\infty}(x^{k+1}) + \frac{1}{2\alpha}Q_2(k) \|x^{k+1} - x^k\|_2^2 + \frac{1}{2\alpha}\sum_{p=1}^k P(p)\|x^p - x^{p-1}\|_2^2 = O(1)$$

for all  $k \geq 0$ , where  $O: [0, +\infty) \rightarrow \mathbf{R}$  satisfies  $\limsup_{t\to\infty} O(t)/t < +\infty$ ,  $P, Q_1, Q_2: \mathbf{R} \rightarrow \mathbf{R}$  are given in (5.15), respectively, and  $u_{\infty}$  is the gap function defined by (3.1).

*Proof.* Let  $k \ge 0$ . With similar arguments used in the proof of Theorem 4.4, we get

$$\sup_{z \in \Omega} \sigma_{k+1}(z) = u_{\infty}(x^{k+1}).$$

Since  $\rho_k(z) \ge 0$  and  $\Omega$  is bounded, Lemma 5.4 and the above equality lead to

$$\frac{1}{1-a} \left[ t_{k+1}^2 - at_{k+1} + \left(\frac{1}{4} - b\right) k \right] \sigma_{k+1}(z) \\ + \frac{1}{2\alpha(1-a)} \left[ a(t_{k+1}^2 - t_{k+1}) + \left(\frac{1}{4} - b\right) k \right] \left\| x^{k+1} - x^k \right\|_2^2 \\ + \frac{1}{2\alpha(1-a)} \sum_{p=1}^k \left[ a^2(t_p - 1) + \left(\frac{1}{4} - b\right) \frac{p - t_p + a(t_p - 1)}{t_p} \right] \left\| x^p - x^{p-1} \right\|_2^2 \\ + \frac{1}{2\alpha} \rho_k(z) = O(1).$$

We now show that the coefficients of the three terms on the right-hand side can be bounded from below by the polynomials given in (5.15). First, by using the relation

$$t_{k+1} \ge \frac{1-a}{2}k + 1 \tag{5.16}$$

obtained from Lemma 5.1 (i) and  $a \in [0, 1)$ , we have

$$\frac{1}{1-a} \left[ t_{k+1}^2 - at_{k+1} + \left(\frac{1}{4} - b\right) k \right] = \frac{1}{1-a} \left[ t_{k+1}(t_{k+1} - a) + \left(\frac{1}{4} - b\right) k \right]$$
$$\geq \frac{1}{1-a} \left[ \left(\frac{1-a}{2}k+1\right) \left(\frac{1-a}{2}k+1-a\right) + \left(\frac{1}{4} - b\right) k \right] = Q_1(k).$$

Again, (5.16) gives

$$\frac{1}{1-a} \left[ a(t_{k+1}^2 - t_{k+1}) + \left(\frac{1}{4} - b\right) k \right] = \frac{a}{1-a} t_{k+1}(t_{k+1} - 1) + \frac{1-4b}{4(1-a)} k$$
$$\geq \frac{a}{1-a} \left(\frac{1-a}{2}k + 1\right) \left(\frac{1-a}{2}k\right) + \frac{1-4b}{4(1-a)} k = Q_2(k).$$

Moreover, since  $t_p \leq p$  (cf. Lemma 5.1 (ii)),  $t_k \geq 1$  (cf. Lemma 5.1 (i)), and  $b \in (a^2/4, 1/4]$ , we obtain

$$\frac{1}{1-a} \left[ a^2(t_p-1) + \left(\frac{1}{4} - b\right) \frac{p-t_p + a(t_p-1)}{t_p} \right] \ge \frac{a^2}{1-a} (t_p-1) \ge P(p).$$

Thus, combining the above equations, we get the desired inequality.

Then, we can finally prove the main theorem.

Theorem 5.1 (ii). It is clear from Lemma 5.5 and  $Q_1(k) = O(k^2)$  as  $k \to \infty$ .

#### Remark 5.2

Lemma 5.5 also implies the following other claims than Theorem 5.1 (ii):

- $O(1/k^2)$  convergence rate of  $\{\|x^{k+1} x^k\|_2^2\}$  when a > 0;
- the absolute convergence of  $\left\{k \|x^{k+1} x^k\|_2^2\right\}$  when a > 0;

Note that the second one generalizes [24, Corollary 3.2] for single-objective problems.

# 5.4 Convergence of the iterates

While the last section shows that Algorithm 5.1 has an  $O(1/k^2)$  convergence rate, this section proves the following theorem:

#### Theorem 5.2

Let  $\{x^k\}$  be generated by Algorithm 5.1 with a > 0. Then, under Assumption 4.4, the following two properties hold:

- (i)  $\{x^k\}$  is bounded, and it has an accumulation point;
- (ii)  $\{x^k\}$  converges to a weak Pareto optimum for (1.1).

The latter claim is also significant in applications. For example, finite-time manifold (active set) identification, which detects the low-dimensional manifold where the optimal solution belongs, essentially requires only the convergence of the generated sequence to a unique point rather than the strong convexity of the objective functions [98].

Again, we will prove Theorem 5.2 after showing some lemmas. The following lemma contributes strongly to the proof of the main theorem.

#### Lemma 5.6

Let  $\{\gamma_q\}$  be defined by line 9 in Algorithm 5.1. Then, we have

$$\sum_{p=s}^{r}\prod_{q=s}^{p}\gamma_q \leq 2(s-1) \quad \textit{for all } s,r\geq 1$$

*Proof.* By using Lemma 5.1 (iv), we see that

$$\prod_{q=s}^{p} \gamma_q \le \prod_{q=s}^{p} \frac{q-1}{q+1/2}.$$

Let  $\Gamma$  and B denote the gamma and beta functions defined by

$$\Gamma(\alpha) \coloneqq \int_0^\infty \tau^{\alpha - 1} \exp(-\tau) \,\mathrm{d}\tau \quad \text{and} \quad B(\alpha, \beta) \coloneqq \int_0^1 \tau^{\alpha - 1} (1 - \tau)^{\beta - 1} \,\mathrm{d}\tau, \quad (5.17)$$

respectively. Applying the well-known properties:

$$\Gamma(\alpha) = (\alpha - 1)!, \quad \Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \quad \text{and} \quad B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$
 (5.18)

we get

$$\prod_{q=s}^{p} \gamma_q \le \frac{\Gamma(p)/\Gamma(s-1)}{\Gamma(p+3/2)/\Gamma(s+1/2)} = \frac{B(p,3/2)}{B(s-1,3/2)}.$$

This implies

$$\sum_{p=s}^{r} \prod_{q=s}^{p} \gamma_q \le \sum_{p=1}^{r} B(p, 3/2) / B(s-1, 3/2).$$

Then, it follows from the definition (5.17) of B that

$$\begin{split} \sum_{p=s}^{r} \prod_{q=s}^{p} \gamma_q &\leq \sum_{p=s}^{r} \int_0^1 \tau^{p-1} (1-\tau)^{1/2} \,\mathrm{d}\tau / B(s-1,3/2) \\ &= \int_0^1 \sum_{p=s}^{r} \tau^{p-1} (1-\tau)^{1/2} \,\mathrm{d}\tau / B(s-1,3/2) \\ &= \int_0^1 \frac{\tau^{s-1} - \tau^r}{1-\tau} (1-\tau)^{1/2} \,\mathrm{d}\tau / B(s-1,3/2) \\ &= \frac{B(s,1/2) - B(r+1,1/2)}{B(s-1,3/2)} \leq \frac{B(s,1/2)}{B(s-1,3/2)}. \end{split}$$

Using again (5.18), we conclude that

$$\sum_{p=s}^{r} \prod_{q=s}^{p} \gamma_q \le \frac{\Gamma(s)\Gamma(1/2)/\Gamma(s+1/2)}{\Gamma(s-1)\Gamma(3/2)/\Gamma(s+1/2)} = 2(s-1).$$

Now, we introduce two functions  $\omega_k \colon \mathbf{R}^n \to \mathbf{R}$  and  $\nu_k \colon \mathbf{R}^n \to \mathbf{R}$  for any  $k \ge 1$ , which will help our analysis, by

$$\omega_k(z) \coloneqq \max\left(0, \left\|x^k - z\right\|_2^2 - \left\|x^{k-1} - z\right\|_2^2\right),\tag{5.19}$$

$$\nu_k(z) \coloneqq \left\| x^k - z \right\|_2^2 - \sum_{s=1}^k \omega_s(z).$$
(5.20)

The lemma below describes the properties of  $\omega_k$  and  $\nu_k$ .

#### Lemma 5.7

Let  $\{x^k\}$  be generated by Algorithm 5.1 and recall that  $\mathbf{lev}_F, \omega_k$ , and  $\nu_k$  are defined by (2.5), (5.19) and (5.20), respectively. Moreover, suppose that Assumption 4.4 holds with  $\Omega \subseteq \mathbf{R}^n$  and that  $\sigma_k(z) \ge 0$  for some  $k \ge 1$  and  $z \in \Omega$ . Then, it follows for all  $r = 1, \ldots, k$  that

(i) 
$$\sum_{s=1}^{r} \omega_s(z) \le \sum_{s=1}^{r} (6s-5) \|x^s - x^{s-1}\|_2^2;$$
  
(ii)  $\nu_{r+1}(z) \le \nu_r(z).$ 

*Proof.* Claim (i): Let  $k \ge p \ge 1$ . From the definition of  $y^{p+1}$  given in line 10 of Algorithm 5.1, we have

$$\begin{aligned} \left\| x^{p+1} - z \right\|_{2}^{2} &- \left\| x^{p} - z \right\|_{2}^{2} \\ &= - \left\| x^{p+1} - x^{p} \right\|_{2}^{2} + 2 \left\langle x^{p+1} - y^{p+1}, x^{p+1} - z \right\rangle + 2 \gamma_{p} \left\langle x^{p} - x^{p-1}, x^{p+1} - z \right\rangle \\ &= - \left\| x^{p+1} - x^{p} \right\|_{2}^{2} + 2 \left\langle x^{p+1} - y^{p+1}, y^{p+1} - z \right\rangle + 2 \left\| x^{p+1} - y^{p+1} \right\|_{2}^{2} \\ &+ 2 \gamma_{p} \left\langle x^{p} - x^{p-1}, x^{p+1} - z \right\rangle. \end{aligned}$$

On the other hand, Lemma 5.2 (i) gives

$$2\langle x^{p+1} - y^{p+1}, y^{p+1} - z \rangle \le -2\alpha\sigma_{p+1}(z) - \left\| x^{p+1} - y^{p+1} \right\|_2^2.$$

Moreover, Lemma 5.3 with  $(k_1, k_2) = (p+1, k+1)$  implies

$$-2\alpha\sigma_{p+1}(z)$$

$$\leq -\frac{2}{\ell}\sigma_{k+1}(z) - \|x^{k+1} - x^k\|_2^2 + \|x^{p+1} - x^p\|_2^2 - \sum_{r=p+1}^k \frac{1}{t_r} \|x^r - x^{r-1}\|_2^2$$

$$\leq \|x^{p+1} - x^p\|_2^2,$$

where the second inequality comes from the assumption on  $z \in \Omega$ . Combining the above three inequalities, we get

$$\begin{aligned} \left\| x^{p+1} - z \right\|_{2}^{2} &- \left\| x^{p} - z \right\|_{2}^{2} \leq \left\| x^{p+1} - y^{p+1} \right\|_{2}^{2} + 2\gamma_{p} \left\langle x^{p} - x^{p-1}, x^{p+1} - z \right\rangle \\ &= \left\| x^{p+1} - y^{p+1} \right\|_{2}^{2} + \gamma_{p} \left( \left\| x^{p} - z \right\|_{2}^{2} - \left\| x^{p-1} - z \right\|_{2}^{2} + \left\| x^{p} - x^{p-1} \right\|_{2}^{2} \\ &+ 2 \left\langle x^{p} - x^{p-1}, x^{p+1} - x^{p} \right\rangle \right). \end{aligned}$$

Using the relation  $||x^{p+1} - y^{p+1}||_2^2 + 2\gamma_p \langle x^p - x^{p-1}, x^{p+1} - x^p \rangle = ||x^{p+1} - x^p||_2^2 + \gamma_p^2 ||x^p - x^{p-1}||_2^2$ , which holds from the definition of  $y^k$ , we have

$$\begin{aligned} \left\|x^{p+1} - z\right\|_{2}^{2} - \left\|x^{p} - z\right\|_{2}^{2} &\leq \left\|x^{p+1} - x^{p}\right\|_{2}^{2} \\ &+ \gamma_{p}\left(\left\|x^{p} - z\right\|_{2}^{2} - \left\|x^{p-1} - z\right\|_{2}^{2}\right) + (\gamma_{p} + \gamma_{p}^{2})\left\|x^{p} - x^{p-1}\right\|_{2}^{2}. \end{aligned}$$

Since  $0 \le \gamma_p \le 1$  from Lemma 5.1 (iv), we obtain

$$\begin{aligned} \|x^{p+1} - z\|_{2}^{2} - \|x^{p} - z\|_{2}^{2} \\ &\leq \gamma_{p} \Big( \|x^{p} - z\|_{2}^{2} - \|x^{p-1} - z\|_{2}^{2} + 2\|x^{p} - x^{p-1}\|_{2}^{2} \Big) + \|x^{p+1} - x^{p}\|_{2}^{2} \\ &\leq \gamma_{p} \Big( \omega_{p}(z) + 2\|x^{p} - x^{p-1}\|_{2}^{2} \Big) + \|x^{p+1} - x^{p}\|_{2}^{2}, \end{aligned}$$

where the second inequality follows from the definition (5.19) of  $\omega_p$ . Since the righthand side is non-negative, (5.19) again gives

$$\omega_{p+1}(z) \le \gamma_p \left( \omega_p(z) + 2 \| x^p - x^{p-1} \|_2^2 \right) + \| x^{p+1} - x^p \|_2^2.$$

Let  $s \leq k$ . Applying the above inequality recursively and using  $\gamma_1 = 0$ , we get

$$\omega_{s}(z) \leq 3 \sum_{p=2}^{s} \prod_{q=p}^{s} \gamma_{q} \|x^{p} - x^{p-1}\|_{2}^{2} + 2 \prod_{q=1}^{s} \gamma_{q} \|x^{1} - x^{0}\|_{2}^{2} + \|x^{s} - x^{s-1}\|_{2}^{2}$$
$$\leq 3 \sum_{p=2}^{s} \prod_{q=p}^{s} \gamma_{q} \|x^{p} - x^{p-1}\|_{2}^{2} + \|x^{s} - x^{s-1}\|_{2}^{2}.$$

Adding up the above inequality from s = 1 to  $s = r \leq k$ , we have

$$\sum_{s=1}^{r} \omega_s(z) \le 3 \sum_{s=1}^{r} \sum_{p=1}^{s} \prod_{q=p}^{s} \gamma_q \|x^p - x^{p-1}\|_2^2 + \sum_{s=1}^{r} \|x^s - x^{s-1}\|_2^2$$
$$= 3 \sum_{p=1}^{r} \sum_{s=p}^{r} \prod_{q=p}^{s} \gamma_q \|x^p - x^{p-1}\|_2^2 + \sum_{s=1}^{r} \|x^s - x^{s-1}\|_2^2$$
$$= \sum_{s=1}^{r} \left(3 \sum_{p=s}^{r} \prod_{q=s}^{p} \gamma_q + 1\right) \|x^s - x^{s-1}\|_2^2,$$

where the first equality follows from (2.4). Thus, Lemma 5.6 implies

$$\sum_{s=1}^{r} \omega_s(z) \le \sum_{s=1}^{r} (6s-5) \left\| x^s - x^{s-1} \right\|_2^2.$$

Claim (ii): (5.20) yields

$$\nu_{r+1}(z) = \|x^{r+1} - z\|_2^2 - \omega_{r+1}(z) - \sum_{s=1}^r \omega_s(z)$$
  
=  $\|x^{r+1} - z\|_2^2 - \max\left(0, \|x^{r+1} - z\|_2^2 - \|x^r - z\|_2^2\right) - \sum_{s=1}^r \omega_s(z)$   
 $\leq \|x^{r+1} - z\|_2^2 - \left(\|x^{r+1} - z\|_2^2 - \|x^r - z\|_2^2\right) - \sum_{s=1}^r \omega_s(z)$   
=  $\|x^r - z\|_2^2 - \sum_{s=1}^r \omega_s(z) = \nu_r(z),$ 

where the second and third equalities come from the definitions (5.19) and (5.20) of  $\omega_{r+1}$  and  $\nu_r$ , respectively.

Let us now prove the first part of the main theorem.

Proof of Theorem 5.2 (i). Let  $k \ge 1$  and suppose that  $z \in \Omega$  satisfies  $\sigma_k(z) \ge 0$ . Then, Lemma 5.7 (ii) gives

$$\nu_{k}(z) \leq \nu_{1}(z) = ||x^{1} - z||_{2}^{2} - \omega_{1}(z)$$
  
=  $||x^{1} - z||_{2}^{2} - \max\left(0, ||x^{1} - z||_{2}^{2} - ||x^{0} - z||_{2}^{2}\right)$   
 $\leq ||x^{1} - z||_{2}^{2} - \left(||x^{1} - z||_{2}^{2} - ||x^{0} - z||_{2}^{2}\right) = ||x^{0} - z||_{2}^{2},$ 

where the second equality follows from the definition (5.19) of  $\omega_1$ . Considering the definition (5.20) of  $\nu_k$ , we obtain

$$||x^{k} - z||_{2}^{2} \le ||x^{0} - z||_{2}^{2} + \sum_{s=1}^{k} \omega_{s}(z).$$

Taking the square root of both sides and using (5.19), we get

$$||x^{k} - z|| \le \sqrt{||x^{0} - z||_{2}^{2} + \sum_{s=1}^{k} (6s - 5)||x^{s} - x^{s-1}||_{2}^{2}}$$

Applying the reverse triangle inequality  $||x^k - x^0||_2 - ||x^0 - z||_2 \le ||x^k - z||_2$  to the left-hand side leads to

$$||x^{k} - x^{0}|| \le ||x^{0} - z||_{2} + \sqrt{||x^{0} - z||_{2}^{2} + \sum_{s=1}^{k} (6s - 5)||x^{s} - x^{s-1}||_{2}^{2}}$$

Since z belongs to a bounded set  $\Omega$  and a > 0, the right-hand side is bounded from above according to Lemma 5.5. This implies that  $\{x^k\}$  is bounded, and so it has accumulation points.

Before proving Theorem 5.2 (ii), we show the following lemma.

#### Lemma 5.8

Let  $\{x^k\}$  be generated by Algorithm 5.1 with a > 0 and suppose that Assumption 4.4 holds. Then, if  $\bar{x}$  is an accumulation point of  $\{x^k\}$ , then  $\{\|x^k - \bar{x}\|_2\}$  is convergent.

Proof. Assume that  $\{x^{k_j}\} \subseteq \{x^k\}$  converges to  $\bar{x}$ . Then, we have  $\sigma_{k_j}(\bar{x}) \to 0$  by the definition (5.11) of  $\sigma_{k_j}$ . Therefore, Lemma 5.7 with  $z = \bar{x}$  and  $k = \infty$  means that  $\{\nu_k(\bar{x})\}$  is non-increasing and bounded, i.e., convergent. Hence  $\{\|x^k - \bar{x}\|_2\}$  is convergent.

Finally, we finish the proof of the main theorem.

Proof of Theorem 5.2 (ii). Suppose that  $\left\{x^{k_j^1}\right\}$  and  $\left\{x^{k_j^2}\right\}$  converges to  $\bar{x}^1$  and  $\bar{x}^2$ , respectively. From Lemma 5.8, we see that

$$\lim_{j \to \infty} \left( \left\| x^{k_j^2} - \bar{x}^1 \right\|_2^2 - \left\| x^{k_j^2} - \bar{x}_2^2 \right\|_2^2 \right) = \lim_{j \to \infty} \left( \left\| x^{k_j^1} - \bar{x}^1 \right\|_2^2 - \left\| x^{k_j^1} - \bar{x}_2^2 \right\|_2^2 \right).$$

### CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR 112 MULTI-OBJECTIVE OPTIMIZATION

This yields that  $\|\bar{x}^1 - \bar{x}^2\|_2^2 = -\|\bar{x}^1 - \bar{x}^2\|_2^2$ , and so  $\|\bar{x}^1 - \bar{x}^2\|_2^2 = 0$ , i.e.,  $\{x^k\}$  is convergent. Let  $x^k \to x^*$ . Since  $\|x^{k+1} - x^k\|_2^2 \to 0$ ,  $\{y^k\}$  is also convergent to  $x^*$ . Therefore, Proposition 5.1 shows that  $x^*$  is weakly Pareto optimal for (1.1).

# 5.5 Numerical experiments

This section compares the performance of Algorithms 4.1 and 5.1 with various a and b through numerical experiments. We run all experiments in Python 3.9.9 on a machine with 2.3 GHz Intel Core i7 CPU and 32 GB memory. For Algorithm 5.1, we test 15 different hyperparameters combining a = 0, 1/6, 1/4, 1/2, 3/4 and  $b = a^2/4, (a^2 + 1)/8, 1/4$ , i.e.,

$$(a,b) = \begin{cases} (0,0), (0,1/8), (0,1/4), \\ (1/6,1/144), (1/6,37/288), (1/6,1/4), \\ (1/4,1/64), (1/4,17/128), (1/4,1/4), \\ (1/2,1/16), (1/2,5/32), (1/2,1/4), \\ (3/4,9/64), (3/4,25/128), (3/4,1/4) \end{cases},$$

and we set  $\varepsilon = 10^{-5}$  for the stopping criteria.

### 5.5.1 Artificial test problems (bi-objective and tri-objective)

First, we solve the multi-objective test problems in the form (1.1), modifications from [63, 39], whose objective functions are defined by

$$f_1(x) = \frac{1}{n} \|x\|_2^2, f_2(x) = \frac{1}{n} \|x - 2\|_2^2, g_1(x) = g_2(x) = 0,$$
 (JOS1)

$$\begin{cases} f_1(x) = \frac{1}{n} \|x\|_2^2, f_2(x) = \frac{1}{n} \|x - 2\|_2^2, \\ g_1(x) = \frac{1}{n} \|x\|_1, g_2(x) = \frac{1}{2n} \|x - 1\|_1, \end{cases}$$
(JOS1-L1)  
$$\begin{cases} f_1(x) = \frac{1}{n^2} \sum_{i=1}^n i(x_i - i)^4, f_2(x) = \exp\left(\sum_{i=1}^n \frac{x_i}{n}\right) + \|x\|_2^2, \\ f_3(x) = \frac{1}{n(n+1)} \sum_{i=1}^n i(n - i + 1) \exp(-x_i), g_1(x) = g_2(x) = g_3(x) = 0, \end{cases}$$
(FDS)  
$$\begin{cases} f_1(x) = \frac{1}{n^2} \sum_{i=1}^n i(x_i - i)^4, f_2(x) = \exp\left(\sum_{i=1}^n \frac{x_i}{n}\right) + \|x\|_2^2, \\ f_3(x) = \frac{1}{n(n+1)} \sum_{i=1}^n i(n - i + 1) \exp(-x_i), g_1(x) = g_2(x) = g_3(x) = \delta_{\mathbf{R}_+^n}(x), \end{cases}$$
(FDS-CON)  
$$\begin{cases} f_3(x) = \frac{1}{n(n+1)} \sum_{i=1}^n i(n - i + 1) \exp(-x_i), g_1(x) = g_2(x) = g_3(x) = \delta_{\mathbf{R}_+^n}(x), \end{cases} \end{cases}$$

where  $x \in \mathbf{R}^n$ , n = 50 and  $\delta_{\mathbf{R}^n_+}$  is an indicator function (1.7) of the nonnegative orthant. We choose 1000 initial points, commonly for all algorithms, and randomly with a uniform distribution between  $\underline{c}$  and  $\overline{c}$ , where  $\underline{c} = (-2, \ldots, -2)^{\top}$ and  $\overline{c} = (4, \ldots, 4)^{\top}$  for (JOS1) and (JOS1-L1),  $\underline{c} = (-2, \ldots, -2)^{\top}$  and  $\overline{c} = (2, \ldots, 2)^{\top}$ for (FDS), and  $\underline{c} = (0, \ldots, 0)^{\top}$  and  $\overline{c} = (2, \ldots, 2)^{\top}$  for (FDS-CON). Moreover, we use backtracking for updating  $\alpha$  to satisfy (5.10), with 1 as the initial value of  $\alpha$  and 0.5 as the constant multiplied into  $\alpha$  at each iteration. Furthermore, at each iteration, we transform the subproblem (5.1) into their dual like (3.16) and solve them with the trust-region interior point method [19] using the scientific library SciPy.

Figure 5.1 and 5.2 and Tables 5.1 and 5.2 present the experimental results. Figure 5.1 and Table 5.1 implies that Algorithm 5.1 generates a wide range of Pareto solutions faster than Algorithm 4.1. Figure 5.2 plots the solutions only for the cases (a, b) = (0, 1/4), (3/4, 1/4), but other combinations also yield similar plots, including a wide range of Pareto solutions. Table 5.2 shows that the new momentum factors are fast enough to compete with the existing ones ((a, b) = (0, 1/4) or  $b = a^2/4$  and better than them in some cases.

CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR 114 MULTI-OBJECTIVE OPTIMIZATION

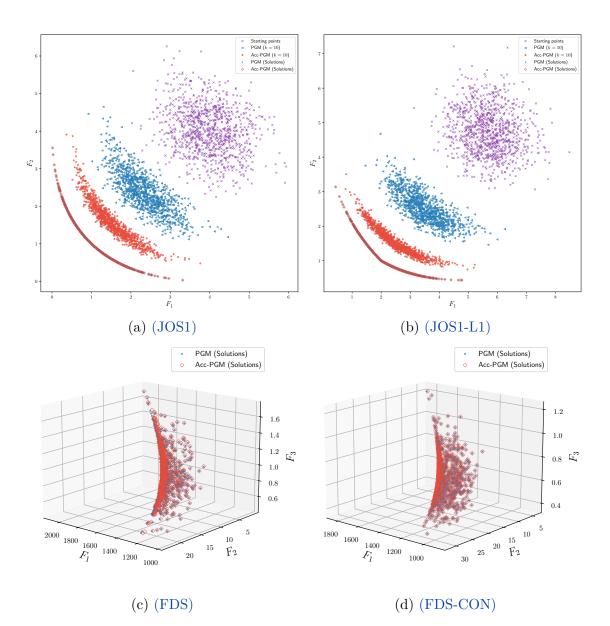


Figure 5.1: Objective function values obtained by Algorithms 4.1 and 5.1 with (a, b) = (0, 1/4)

Table 5.1: Average computational costs with Algorithms 4.1 and 5.1 with (a, b) = (0, 1/4)

| (a) (JOS1)         |                  |                  | (b) (JOS1-L1)          |                        |                 |  |
|--------------------|------------------|------------------|------------------------|------------------------|-----------------|--|
|                    | Algorithm 4.1    | Algorithm 5.1    |                        | Algorithm 4.1          | Algorithm 5.1   |  |
| Time [s]<br>Iters. | $15.5 \\ 231.7$  | $3.55 \\ 65.0$   | Time [s]<br>Iters.     | $13.2 \\ 219.6$        | $8.53 \\ 161.2$ |  |
| (c) (FDS)          |                  |                  | (d) (FDS-CON)          |                        |                 |  |
|                    | Algorithm 4.1    | Algorithm 5.1    |                        | Algorithm 4.1          | Algorithm 5.1   |  |
| Time [s]<br>Iters. | $99.10 \\ 636.1$ | $34.16 \\ 216.1$ | Time [s]<br>Iterations | $\frac{134.64}{873.6}$ | 40.03<br>260.8  |  |

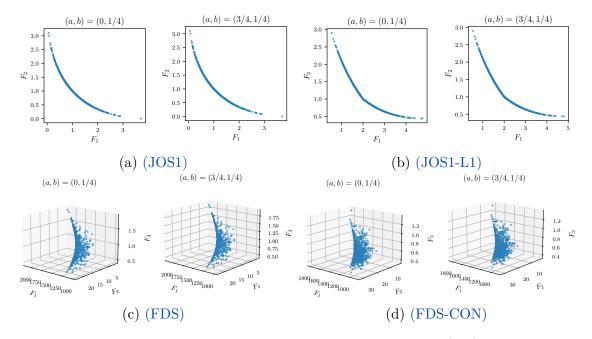


Figure 5.2: Pareto solutions obtained with some (a, b)

| a    | b              | Time [s]           | Iterations        | a       | b                                  | Time [s]         | Iterations         |
|------|----------------|--------------------|-------------------|---------|------------------------------------|------------------|--------------------|
| 0    | 0              | 6.442              | 97.0              | 0       | 0                                  | 10.733           | 157.512            |
| 0    | 1/8            | 5.158              | 81.217            | 0       | 1/8                                | 11.054           | 161.065            |
| 0    | 1/4            | 4.207              | 65.0              | 0       | 1/4                                | 11.122           | 161.734            |
| 1/6  | 1/144          | 4.244              | 67.0              | 1/6     | 1/144                              | 9.85             | 141.731            |
| 1/6  | 37/288         | 5.182              | 82.0              | 1/6     | 37/288                             | 9.994            | 144.863            |
| 1/6  | 1/4            | 4.268              | 66.0              | 1/6     | 1/4                                | 10.399           | 150.592            |
| 1/4  | 1/64           | 6.224              | 99.0              | 1/4     | 1/64                               | 9.271            | 135.804            |
| 1/4  | 17/128         | 7.239              | 113.566           | 1/4     | 17/128                             | 9.463            | 137.108            |
| 1/4  | 1/4            | 3.205              | 51.0              | 1/4     | 1/4                                | 9.662            | 139.848            |
| 1/2  | 1/16           | 4.51               | 72.0              | 1/2     | 1/16                               | 7.439            | 109.082            |
| 1/2  | 5/32           | 4.562              | 71.0              | 1/2     | 5/32                               | 7.642            | 110.204            |
| 1/2  | 1/4            | 4.466              | 70.0              | 1/2     | 1/4                                | 7.723            | 111.599            |
| 3/4  | 9/64           | 4.323              | 67.998            | 3/4     | 9/64                               | 5.253            | 77.366             |
| 3/4  | 25/128         | 3.104              | 49.0              | 3/4     | 25/128                             | 5.39             | 79.425             |
| 3/4  | 1/4            | 3.741              | 47.0              | 3/4     | 1/4                                | 5.678            | 82.37              |
|      | (c) (FDS)      |                    |                   |         | (d)                                | (FDS-CON         | )                  |
| a    | b              | Time [s]           | Iterations        | a       | b                                  | Time [s]         | Iterations         |
| 0    | 0              | 29.24              | 204.438           | 0       | 0                                  | 37.345           | 259.508            |
| 0    | 1/8            | 29.797             | 210.595           | 0       | 1/8                                | 37.439           | 261.522            |
| 0    | 1/4            | 30.565             | 214.934           | 0       | 1/4                                | 37.94            | 263.911            |
| 1/6  | 1/144          | 24.964             | 174.393           | 1/6     | 1/144                              | 32.463           | 227.063            |
| 1/6  | 37/288         | 25.375             | 177.944           | 1/6     | 37/288                             | 38.265           | 229.736            |
| 1/6  | 1/4            | 26.065             | 182.398           | 1/6     | 1/4                                | 45.661           | 231.958            |
| 1/4  | 1/64           | 22.94              | 159.737           | 1/4     | 1/64                               | 41.434           | 209.35             |
| 1/4  | 17/128         | 23.311             | 162.629           | 1/4     | 17/128                             | 33.664           | 211.69             |
| 1/4  | 1/4            | 23.976             | 166.918           | 1/4     | 1/4                                | 30.772           | 213.811            |
| 1/2  | 1/16           | 17.909             | 122.653           | 1/2     | 1/16                               | 22.92            | 158.448            |
| 1/2  | 5/32           | 18.14              | 123.96            | 1/2     | 5/32                               | 23.1             | 159.685            |
| 1/2  | 1/4            | 18.221             | 125.697           | 1/2     | 1/4                                | 23.539           | 162.226            |
| /    |                |                    |                   | 9/4     | O/CA                               | 17 009           | 110 010            |
| 3'/4 | 9/64           | 13.584             | 94.176            | 3/4     | 9/64                               | 17.092           | 118.616            |
|      | 9/64<br>25/128 | $13.584 \\ 13.674$ | $94.176 \\94.705$ | 3/4 3/4 | $\frac{9}{64}$<br>$\frac{25}{128}$ | 17.092<br>17.123 | 118.016<br>118.063 |

Table 5.2: Average computational costs of Algorithm 5.1 with various (a, b)

(b) (JOS1-L1)

(a) (JOS1)

### 5.5.2 Image deblurring (single-objective)

Since our proposed momentum factor is also new in the single-objective context, we also tackle deblurring the cameraman test image via a single-objective  $\ell_2$ - $\ell_1$  minimization with Algorithm 5.1, inspired by [11]. In detail, as shown in Figure 5.3, to a 256 × 256 cameraman test image with each pixel scaled to [0, 1], we generate an observed image by applying a Gaussian blur of size 9 × 9 and standard deviation 4 and adding a zero-mean white Gaussian noise with standard deviation  $10^{-3}$ .



(a) Original

(b) Blurred and noisy

Figure 5.3: Deblurring of the cameraman

Letting  $\theta$ , B, and W be the observed image, the blur matrix, and the inverse of the Haar wavelet transform, respectively, consider the single-objective problem (1.1) with m = 1 and

$$f_1(x) := \|BWx - \theta\|_2^2$$
 and  $g_1(x) = \lambda \|x\|_1$ ,

where  $\lambda := 2 \times 10^{-5}$  is a regularization parameter. Unlike in the previous subsection, we can compute  $\nabla f$ 's Lipschitz constant by calculating  $(BW)^{\top}(BW)$ 's eigenvalues using the two-dimensional cosine transform [59], so we use it constantly as  $\alpha^{-1}$ . Moreover, we use the observed image's Wavelet transform as the initial point.

Figure 5.4 shows the reconstructed image from the obtained solution. Images produced by all hyperparameters are similar, so we present only (a, b) = (0, 1/4)and (1/2, 1/4). Moreover, we summarize the numerical performance in Table 5.3 and Figure 5.5. Like the last subsection, this example suggests that our new momentum factors may occasionally improve the algorithm's performance even for single-objective problems.

## CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR 118 MULTI-OBJECTIVE OPTIMIZATION

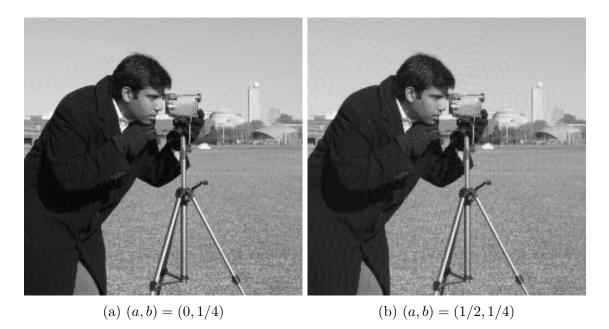


Figure 5.4: Deblurred image

| Table 5.3: Computational costs for the image deblurring | Table 5.3: | Computational | costs fo | or the | image | deblurring |
|---------------------------------------------------------|------------|---------------|----------|--------|-------|------------|
|---------------------------------------------------------|------------|---------------|----------|--------|-------|------------|

| a   | b      | Total time [s] | Iteration counts |
|-----|--------|----------------|------------------|
| 0   | 0      | 75.227         | 558              |
| 0   | 1/8    | 75.176         | 558              |
| 0   | 1/4    | 75.388         | 558              |
| 1/6 | 1/144  | 66.499         | 460              |
| 1/6 | 37/288 | 66.866         | 462              |
| 1/6 | 1/4    | 66.685         | 462              |
| 1/4 | 1/64   | 61.791         | 421              |
| 1/4 | 17/128 | 61.622         | 421              |
| 1/4 | 1/4    | 35.69          | 421              |
| 1/2 | 1/16   | 26.828         | 306              |
| 1/2 | 5/32   | 26.274         | 304              |
| 1/2 | 1/4    | 25.535         | 303              |
| 3/4 | 9/64   | 32.54          | 369              |
| 3/4 | 25/128 | 30.473         | 364              |
| 3/4 | 1/4    | 27.713         | 360              |

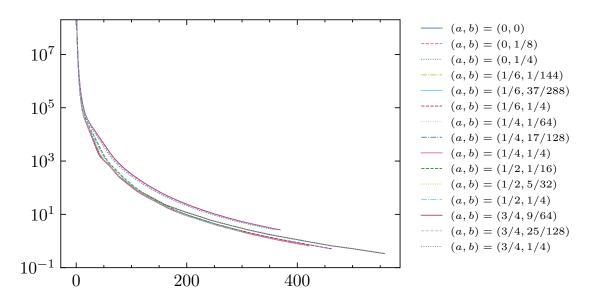


Figure 5.5: Values of  $u_{\infty}(x^k) = F_1(x) - F_1(x^*)$ , where  $x^*$  is the optimal solution estimated from the original image

# 5.6 Conclusions

We have successfully accelerated the proximal gradient method for multi-objective optimization by putting information on the previous points into the subproblem. Moreover, we have generalized the momentum factor in a form that is even new in the single-objective context and includes the known FISTA momentum factors [11, 24]. Furthermore, with the proposed momentum factor, we proved under reasonable assumptions that the algorithm has an  $O(1/k^2)$  convergence rate and that the iterates converge to Pareto solutions. Moreover, the numerical results reinforced these theoretical properties and suggested the potential for our new momentum factor to improve the performance.

## CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR 120 MULTI-OBJECTIVE OPTIMIZATION

# Chapter 6

# Conclusions

This thesis has proposed new merit functions, the proximal gradient method, and the accelerated proximal gradient method for non-smooth multi-objective optimization problems. We summarize the results obtained here as follows:

- (i) In Chapter 3, we have proposed three merit functions for non-smooth multiobjective optimization: (a) the gap function for lower semi-continuous multiobjective optimization; (b) the regularized gap function for convex multiobjective optimization; (c) the regularized and partially linearized gap function for composite multi-objective optimization. First, we have shown that they satisfy the properties of merit functions and proved the lower semicontinuity of the item (a) and the locally Lipschitz continuity of the items (b) and (c). We have also confirmed the differentiability of the items (b) and (c) under reasonable assumptions and that the stationary points of the items (b) and (c) solve the original multi-objective problem under strict convexity. Secondly, we have derived inequalities among different merit functions under certain conditions. We thirdly have demonstrated that the level-boundedness of the objective functions implies the level-boundedness of the associated merit functions. Finally, we proposed the multi-objective proximal-PL condition, weaker than the strong convexity, and proved that it provides the error-bound property of the proposed merit functions.
- (ii) In Chapter 4, we have developed the proximal gradient method for composite multi-objective optimization. We have shown that every accumulation point of the generated sequence, if it exists, is Pareto stationary. Moreover, we presented global convergence rates for the proposed algorithm, matching what

we know in scalar optimization for non-convex  $O(\sqrt{1/k})$  and convex O(1/k) cases. We also have extended the so-called Polyak-Łojasieqicz (PL) inequality for multi-objective optimization and established the linear convergence rate for multi-objective problems that satisfy such inequalities. Furthermore, we have converted the subproblems to well-known convex optimization problems for the robust multi-objective problem. Finally, we have reported some numerical results.

(iii) In Chapter 5, we have proposed the accelerated proximal gradient method for convex composite multi-objective optimization. We have proved the proposed methods'  $O(1/k^2)$  convergence rate and the global convergence property. This method includes some hyperparameters, which is new even for single-objective cases. We finally have reported some numerical results, showing that our proposed method is faster than the method without acceleration and that some choices of hyperparameters give better results than the classical algorithms.

We believe that these contributions have had some impact on non-smooth and composite multi-objective optimization. However, there are still many open problems. We conclude this thesis by describing future works related to our results.

- (i) We can consider our proposed merit function's natural extension to infinitedimensional vector optimization. We can also regard other famous merit functions' generalization to multi-objective or vector problems, such as the implicit Lagrangian [76] and the squared Fischer-Burmeister function [64]. Moreover, developing a new multi-objective algorithm using such merit functions would be interesting.
- (ii) Extending the many variants of the proximal gradient method in singleobjective optimization to multi-objective optimization problems is a challenge that needs addressing. Obtaining a theoretically sound extension will not be straightforward for any method. However, we believe that finding practical applications of composite multi-objective optimization, such as machine learning, will significantly impact this field.
- (iii) Our proposed method has the potential to achieve finite-time manifold (active set) identification [98] without the assumption of the strong convexity (or its generalizations such as PL conditions or error bounds [65]). Moreover, we took a single update rule of  $t_k$  for all iterations in this work, but the

adaptive change of the strategy in each iteration is conceivable, which has the potential to guarantee linear convergence under PL conditions, as in [7]. It might also be interesting to estimate the Lipschitz constant simultaneously with that change, like in [92]. In addition, an extension to the inexact scheme like [105] would be significant. Furthermore, it is crucial to extend the variants of the accelerated proximal gradient method to multi-objective optimization, as in [83, 28]. Moreover, applying our acceleration techniques to large-scale problems like stochastic accelerated gradient descent would be interesting. Developing internal techniques, such as a warm start for subproblems and inexact methods, would also be necessary for applications.

# Bibliography

- Y. Alber, A. N. Iusem, and M. V. Solodov. "On the projected subgradient method for nonsmooth convex optimization in a Hilbert space". In: *Mathematical Programming* 81.1 (Mar. 1998), pp. 23–35. ISSN: 1436-4646. DOI: 10.1007/BF01584842. URL: https://doi.org/10.1007/BF01584842.
- Y. Alber and A. N. Iusem. "Extension of subgradient techniques for nonsmooth optimization in Banach spaces". In: Set-Valued Analysis 9.4 (2001), pp. 315–335. ISSN: 1572-932X. DOI: 10.1023/A:1012665832688. URL: https: //doi.org/10.1023/A:1012665832688.
- [3] F. Alizadeh and D. Goldfarb. "Second-order cone programming". In: Mathematical Programming 95.1 (Jan. 2003), pp. 3–51. ISSN: 1436-4646. DOI: 10. 1007/S10107-002-0339-5. URL: https://doi.org/10.1007/s10107-002-0339-5.
- [4] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. "Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity". In: *Mathematical Programming* 168.1 (Mar. 2018), pp. 123–175. ISSN: 1436-4646. DOI: 10.1007/S10107-016-0992-8. URL: https://doi.org/10.1007/s10107-016-0992-8.
- [5] H. Attouch and J. Peypouquet. "The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1/k<sup>2</sup>". In: SIAM Journal on Optimization 26.3 (Sept. 2016), pp. 1824–1834. ISSN: 10526234. DOI: 10.1137/15M1046095. arXiv: 1510.08740. URL: https://doi.org/10.1137/15M1046095.
- [6] G. Auchmuty. "Variational principles for variational inequalities". In: Numerical Functional Analysis and Optimization 10.9-10 (1989), pp. 863-874. ISSN: 15322467. DOI: 10.1080/01630568908816335. URL: https://doi.org/10.1080/01630568908816335.

- [7] J.-F. Aujol, C. Dossal, and A. Rondepierre. FISTA is an automatic geometrically optimized algorithm for strongly convex functions. 2021. URL: https: //hal.archives-ouvertes.fr/hal-03491527/.
- [8] A. Auslender. Optimisation : méthodes numériques. Vol. 1. Paris: Masson, Jan. 1976. ISBN: 2-225-42900-6.
- [9] A. Beck. First-Order Methods in Optimization. Philadelphia, Pennsylvania, USA: Society for Industrial and Applied Mathematics, Oct. 2017. ISBN: 978-1-61197-498-0. DOI: 10.1137/1.9781611974997. URL: https://doi.org/ 10.1137/1.9781611974997.
- [10] A. Beck and Y. C. Eldar. "Strong duality in nonconvex quadratic optimization with two quadratic constraints". In: SIAM Journal on Optimization 17.3 (Jan. 2006), pp. 844–860. ISSN: 10526234. DOI: 10.1137/050644471. URL: http://epubs.siam.org/doi/10.1137/050644471.
- [11] A. Beck and M. Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems". In: SIAM Journal on Imaging Sciences 2.1 (Jan. 2009), pp. 183–202. ISSN: 19364954. DOI: 10.1137/080716542. URL: https: //doi.org/10.1137/080716542.
- [12] J. Y. Bello Cruz. "A subgradient method for vector optimization problems". In: SIAM Journal on Optimization 23.4 (2013), pp. 2169–2182. ISSN: 10526234. DOI: 10.1137/120866415. URL: https://doi.org/10.1137/120866415.
- [13] A. Ben-Tal and A. Nemirovski. "Robust convex optimization". In: Mathematics of Operations Research 23.4 (1998), pp. 769–805. ISSN: 0364765X. DOI: 10.1287/moor.23.4.769.
- [14] D. P. Bertsekas. Nonlinear Programming. Second. Belmont, Massachusetts: Athena Scientific, 1999.
- [15] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex analysis and optimization. Belmont, Mass.: Athena Scientific, 2003. ISBN: 1-886529-45-0.
- J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. New York, NY, USA: Springer New York, 2000. DOI: 10.1007/978-1-4612-1394-9. URL: https://doi.org/10.1007/978-1-4612-1394-9.

- [17] H. Bonnel, A. N. Iusem, and B. F. Svaiter. "Proximal methods in vector optimization". In: SIAM Journal on Optimization 15.4 (Jan. 2005), pp. 953–970. ISSN: 1052-6234. DOI: 10.1137/S1052623403429093. URL: https://doi.org/10.1137/S1052623403429093.
- [18] R. S. Burachik, L. M. Graña Drummond, A. N. Iusem, and B. F. Svaiter. "Full convergence of the steepest descent method with inexact line searches". In: *Optimization* 32.2 (1995), pp. 137–146. ISSN: 10294945. DOI: 10.1080/02331939508844042. URL: https://doi.org/10.1080/02331939508844042.
- [19] R. H. Byrd, M. E. Hribar, and J. Nocedal. "An interior point algorithm for large-scale nonlinear programming". In: *SIAM Journal on Optimization* 9.4 (Jan. 1999), pp. 877–900. ISSN: 1052-6234. DOI: 10.1137 / S1052623497325107. URL: https://doi.org/10.1137/S1052623497325107.
- [20] L. Calderón, M. A. Diniz-Ehrhardt, and J. M. Martínez. "On high-order model regularization for multiobjective optimization". In: *Optimization Methods and Software* (2020). ISSN: 10294937. DOI: 10.1080/10556788.2020.
  1719408. URL: https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1719408.
- G. A. Carrizo, P. A. Lotito, and M. C. Maciel. "Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem". In: *Mathematical Programming* 159.1-2 (Sept. 2016), pp. 339–369. ISSN: 0025-5610. DOI: 10.1007/s10107-015-0962-6. URL: https://doi.org/10.1007/s10107-015-0962-6.
- [22] E. Carrizosa and J. B. G. Frenk. "Dominating sets for convex functions with some applications". In: Journal of Optimization Theory and Applications 96.2 (Feb. 1998), pp. 281–295. ISSN: 0022-3239. DOI: 10.1023/A:1022614029984. URL: https://doi.org/10.1023/A:1022614029984.
- [23] A. L. Cauchy. "Méthodes générales pour la résolution des systèmes d'équations simultanées". French. In: Comptes rendus de l'Académie des Sciences de Paris 25 (1847), pp. 536–538.

- [24] A. Chambolle and C. Dossal. "On the convergence of the iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm"." In: Journal of Optimization Theory and Applications 166.3 (May 2015), pp. 968–982. ISSN: 1573-2878. DOI: 10.1007/S10957-015-0746-4. URL: https://doi.org/10.1007/s10957-015-0746-4.
- [25] C. Charitha and J. Dutta. "Regularized gap functions and error bounds for vector variational inequalities". In: *Pacific Journal of Optimization* 6.3 (2010), pp. 497-510. URL: http://www.ybook.co.jp/online2/oppjo/ vol6/p497.html.
- [26] G.-y. Chen, C.-J. Goh, and X. Q. Yang. "On Gap Functions for Vector Variational Inequalities". In: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Ed. by F. Giannessi. Boston, MA: Springer US, 2000, pp. 55–72. DOI: 10.1007/978-1-4613-0299-5\_4. URL: https://doi.org/10.1007/978-1-4613-0299-5\_4.
- [27] G.-y. Chen, C.-J. Goh, and X. Q. Yang. "The gap function of a convex multicriteria optimization problem". In: *European Journal of Operational Research* 111.1 (Nov. 1998), pp. 142–151. ISSN: 0377-2217. DOI: 10.1016/S0377-2217(97)00300-7. URL: https://doi.org/10.1016/S0377-2217(97) 00300-7.
- [28] K. Chen, E. H. Fukuda, and N. Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization". PhD thesis. Kyoto University, 2022. URL: http://www.amp.i.kyoto-u.ac.jp/tecrep/ps\_ file/2022/2022-002.pdf.
- [29] G. Cocchi and M. Lapucci. "An augmented Lagrangian algorithm for multiobjective optimization". In: *Computational Optimization and Applications* 77.1 (Sept. 2020), pp. 29–56. ISSN: 15732894. DOI: 10.1007/S10589-020-00204-Z/FIGURES/3. URL: https://link.springer.com/article/10. 1007/s10589-020-00204-z.
- [30] K. Deb and H. Jain. "An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints". In: *IEEE Transactions on Evolutionary Computation* 18.4 (2014), pp. 577–601. ISSN: 1089778X. DOI: 10.1109/TEVC. 2013.2281535. URL: https://doi.org/10.1109/TEVC.2013.2281535.

- [31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. "A fast and elitist multiobjective genetic algorithm: NSGA-II". In: *IEEE Transactions on Evolutionary Computation* 6.2 (Apr. 2002), pp. 182–197. ISSN: 1089778X. DOI: 10.1109/4235.996017. URL: https://doi.org/10.1109/4235.996017.
- J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun. "DPP-Net: Device-aware progressive search for Pareto-optimal neural architectures". In: *Computer Vision – ECCV 2018.* Ed. by V. Ferrari, H. Martial, C. Sminchisescu, and Y. Weiss. first. Munich: Springer Cham, 2018, pp. 540–555. ISBN: 9783030012519. DOI: 10.1007/978-3-030-01252-6\_32. arXiv: 1806.08198. URL: https://doi.org/10.1007/978-3-030-01252-6\_32.
- [33] J. Dutta, P. Kesarwani, and S. Gupta. "Gap functions and error bounds for nonsmooth convex vector optimization problem". In: *Optimization* 66.11 (2017), pp. 1807–1836. ISSN: 10294945. DOI: 10.1080/02331934.2017.1332622. URL: https://doi.org/10.1080/02331934.2017.1332622.
- [34] M. Ehrgott, J. Ide, and A. Schöbel. "Minmax robustness for multi-objective optimization problems". In: *European Journal of Operational Research* 239.1 (2014), pp. 17–31. ISSN: 03772217. DOI: 10.1016/j.ejor.2014.03.013.
- [35] M. El Moudden and A. El Ghali. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems". In: Computational Optimization and Applications 71.3 (Dec. 2018), pp. 719-741. ISSN: 15732894. DOI: 10.1007/S10589-018-0023-1/FIGURES/6. URL: https://link.springer.com/article/10.1007/s10589-018-0023-1.
- [36] M. El Moudden and A. El Mouatasim. "Accelerated diagonal steepest descent method for unconstrained multiobjective optimization". In: Journal of Optimization Theory and Applications 188 (Nov. 2021), pp. 220-242. ISSN: 15732878. DOI: 10.1007/s10957-020-01785-9. URL: https://doi.org/10.1007/s10957-020-01785-9.
- [37] T. Elsken, F. Hutter, and J. H. Metzen. "Efficient multi-objective neural architecture search via Lamarckian evolution". In: 7th International Conference on Learning Representations. 2019. arXiv: 1804.09081. URL: https: //openreview.net/forum?id=ByME42AqK7.

- H. Eschenauer, J. Koski, and A. Osyczka. Multicriteria Design Optimization.
   Ed. by H. Eschenauer, J. Koski, and A. Osyczka. Berlin, Heidelberg: Springer
   Berlin Heidelberg, 1990. ISBN: 978-3-642-48699-9. DOI: 10.1007/978-3-642-48697-5. URL: https://doi.org/10.1007/978-3-642-48697-5.
- [39] J. Fliege, L. M. Graña Drummond, and B. F. Svaiter. "Newton's method for multiobjective optimization". In: SIAM Journal on Optimization 20.2 (Jan. 2009), pp. 602–626. ISSN: 10526234. DOI: 10.1137/08071692X. URL: https: //doi.org/10.1137/08071692X.
- [40] J. Fliege and B. F. Svaiter. "Steepest descent methods for multicriteria optimization". In: *Mathematical Methods of Operations Research* 51.3 (Aug. 2000), pp. 479–494. ISSN: 1432-2994. DOI: 10.1007/s001860000043. URL: https://doi.org/10.1007/s001860000043.
- [41] J. Fliege, A. I. F. Vaz, and L. N. Vicente. "Complexity of gradient descent for multiobjective optimization". In: *Optimization Methods and Software* 34.5 (Aug. 2019), pp. 949–959. ISSN: 10294937. DOI: 10.1080/10556788.2018.
   1510928. URL: https://doi.org/10.1080/10556788.2018.1510928.
- [42] J. Fliege and R. Werner. "Robust multiobjective optimization & applications in portfolio optimization". In: *European Journal of Operational Research* 234.2 (Apr. 2014), pp. 422–433. ISSN: 03772217. DOI: 10.1016/j.ejor.2013. 10.028. URL: https://doi.org/10.1016/j.ejor.2013.10.028.
- [43] E. H. Fukuda, L. M. Drummond, and F. M. Raupp. "A barrier-type method for multiobjective optimization". In: *Optimization* 69.11 (Nov. 2019), pp. 2471–2487. ISSN: 10294945. DOI: 10.1080/02331934.2019.1576667. arXiv: 1803.11379. URL: https://www.tandfonline.com/doi/abs/10.1080/02331934.2019.1576667.
- [44] E. H. Fukuda, L. M. Drummond, and F. M. Raupp. "An external penalty-type method for multicriteria". In: *TOP* 24.2 (July 2016), pp. 493-513. ISSN: 18638279. DOI: 10.1007/S11750-015-0406-8/FIGURES/1. URL: https://link.springer.com/article/10.1007/s11750-015-0406-8.
- [45] E. H. Fukuda and L. M. Graña Drummond. "A survey on multiobjective descemt methods". In: *Pesquisa Operacional* 34.3 (Dec. 2014), pp. 585–620. ISSN: 0101-7438. DOI: 10.1590/0101-7438.2014.034.03.0585. URL: https://doi.org/10.1590/0101-7438.2014.034.03.0585.

- [46] E. H. Fukuda and L. M. Graña Drummond. "Inexact projected gradient method for vector optimization". In: *Computational Optimization and Applications* 54.3 (Apr. 2013), pp. 473–493. ISSN: 09266003. DOI: 10.1007/s10589– 012-9501-z. URL: http://doi.org/10.1007/s10589-012-9501-z.
- [47] E. H. Fukuda and L. M. Graña Drummond. "On the convergence of the projected gradient method for vector optimization". In: *Optimization* 60.8-9 (2011), pp. 1009–1021. ISSN: 02331934. DOI: 10.1080/02331934.2010.
  522710.
- [48] M. Fukushima. "Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems". In: *Mathematical Programming* 53.1 (Jan. 1992), pp. 99–110. ISSN: 1436-4646. DOI: 10.1007/ BF01585696. URL: https://doi.org/10.1007/BF01585696.
- [49] M. Fukushima. "Merit functions for variational inequality and complementarity problems". In: Nonlinear Optimization and Applications 1996 (1996), pp. 155–170. DOI: 10.1007/978-1-4899-0289-4\_11. URL: https://doi.org/10.1007/978-1-4899-0289-4\_11.
- [50] M. Fukushima and H. Mine. "A generalized proximal point algorithm for certain non-convex minimization problems". In: International Journal of Systems Science 12.8 (1981), pp. 989–1000. ISSN: 14645319. DOI: 10.1080/00207728108963798. URL: https://www.tandfonline.com/doi/abs/10.1080/00207728108963798.
- [51] S. Gass and T. Saaty. "The computational algorithm for the parametric objective function". In: Naval Research Logistics Quarterly 2.1-2 (1955), pp. 39–45.
   ISSN: 00281441. DOI: 10.1002/nav.3800020106. URL: https://doi.org/10.1002/nav.3800020106.
- [52] A. M. Geoffrion. "Proper efficiency and the theory of vector maximization". In: Journal of Mathematical Analysis and Applications 22.3 (June 1968), pp. 618–630. ISSN: 0022247X. DOI: 10.1016/0022-247X(68)90201-1. URL: https://doi.org/10.1016/0022-247X(68)90201-1.
- [53] A. A. Goldstein. "Constructive Real Analysis". In: SIAM Review 9.4 (Oct. 1967), pp. 759–759. ISSN: 0036-1445. DOI: 10.1137/1009133. URL: https://doi.org/10.1137/1009133.

- [54] A. A. Goldstein. "Convex programming in Hilbert space". In: Bulletin of the American Mathematical Society 70.5 (1964), pp. 709-710. ISSN: 0273-0979.
   DOI: 10.1090/S0002-9904-1964-11178-2. URL: https://doi.org/10. 1090/S0002-9904-1964-11178-2.
- [55] M. L. N. Gonçalves, F. S. Lima, and L. F. Prudente. Globally convergent Newton-type methods for multiobjective optimization. Optimization Online. 2021. URL: http://www.optimization-online.org/DB\_HTML/2020/08/ 7955.html.
- [56] L. M. Graña Drummond and B. F. Svaiter. "A steepest descent method for vector optimization". In: *Journal of Computational and Applied Mathematics* 175.2 (Mar. 2005), pp. 395–414. ISSN: 0377-0427. DOI: 10.1016/J.CAM.2004.06.018.
- [57] L. M. Graña Drummond and A. N. Iusem. "A projected gradient method for vector optimization problems". In: *Computational Optimization and Applications* 28.1 (Apr. 2004), pp. 5–29. ISSN: 09266003. DOI: 10.1023/B:COAP. 0000018877.86161.8b. URL: http://link.springer.com/10.1023/B:COAP.0000018877.86161.8b.
- [58] G. N. Grapiglia, J. Yuan, and Y.-x. Yuan. "On the convergence and worstcase complexity of trust-region and regularization methods for unconstrained optimization". In: *Mathematical Programming* 152.1-2 (Aug. 2015), pp. 491– 520. ISSN: 14364646. DOI: 10.1007/S10107-014-0794-9/TABLES/1. URL: https://link.springer.com/article/10.1007/s10107-014-0794-9.
- P. C. Hansen, J. G. Nagy, and D. P. O'Leary. *Deblurring Images: Matrices, Spectra, and Filtering.* Society for Industrial and Applied Mathematics, Jan. 2006. ISBN: 978-0-89871-618-4. DOI: 10.1137/1.9780898718874. URL: https://doi.org/10.1137/1.9780898718874.
- [60] D. W. Hearn. "The gap function of a convex program". In: Operations Research Letters 1.2 (Apr. 1982), pp. 67–71. ISSN: 0167-6377. DOI: 10.1016/0167-6377(82)90049-9.
- [61] A. J. Hoffman. "On approximate solutions of systems of linear inequalities". In: Journal of Research of the National Bureau of Standards 49.4 (1952), pp. 263-265. DOI: 10.1142/9789812796936\_0018. URL: https://doi.org/ 10.1142/9789812796936\_0018.

- [62] N. J. Huang, J. Li, and J.-C. Yao. "Gap functions and existence of solutions for a system of vector equilibrium problems". In: Journal of Optimization Theory and Applications 133.2 (May 2007), pp. 201-212. ISSN: 00223239. DOI: 10.1007/S10957-007-9202-4. URL: https://dl.acm.org/doi/abs/10.1007/s10957-007-9202-4.
- Y. Jin, M. Olhofer, and B. Sendhoff. "Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?" In: *Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation*. GECCO'01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 1042–1049. ISBN: 1558607749. DOI: 10.5555/2955239.
  2955427. URL: https://dl.acm.org/doi/10.5555/2955239.2955427.
- [64] C. Kanzow. "Nonlinear complementarity as unconstrained optimization". In: Journal of Optimization Theory and Applications 88.1 (1996), pp. 139–155.
   ISSN: 1573-2878. DOI: 10.1007/BF02192026. URL: https://link.springer. com/article/10.1007/BF02192026.
- [65] H. Karimi, J. Nutini, and M. Schmidt. "Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition". In: Machine Learning and Knowledge Discovery in Databases. Ed. by P. Frasconi, N. Landwehr, G. Manco, and J. Vreeken. Cham: Springer International Publishing, 2016, pp. 795–811. ISBN: 978-3-319-46128-1. DOI: 10.1007/978-3-319-46128-1\_50. arXiv: 1608.04636. URL: https://doi.org/10.1007/978-3-319-46128-1\_50.
- [66] Y.-H. Kim, B. Reddy, S. Yun, and C. Seo. "NEMO: Neuroevolution with multiobjective optimization of deep neural network for speed and accuracy". In: *ICML'17 AutoML Workshop*. 2017. URL: https://www.semanticscholar.org/paper/ 0a9c6947a0b6f79526e537cb83925ef60df674e8.
- [67] I. V. Konnov. "A Scalarization Approach for Vector Variational Inequalities with Applications". In: *Journal of Global Optimization* 32.4 (Aug. 2005), pp. 517-527. ISSN: 1573-2916. DOI: 10.1007/S10898-003-2688-X. URL: https://link.springer.com/article/10.1007/s10898-003-2688-x.
- [68] J. Li and N. J. Huang. "An extension of gap functions for a system of vector equilibrium problems with applications to optimization problems". In: *Jour*nal of Global Optimization 39.2 (Feb. 2007), pp. 247–260. ISSN: 1573-2916.

DOI: 10.1007/S10898-007-9137-1. URL: https://link.springer.com/article/10.1007/s10898-007-9137-1.

- [69] J. Li and N. J. Huang. "Implicit vector equilibrium problems via nonlinear scalarisation". In: Bulletin of the Australian Mathematical Society 72.1 (2005), pp. 161–172. ISSN: 1755-1633. DOI: 10.1017/S000497270003495X. URL: https://doi.org/10.1017/S000497270003495X.
- [70] J. Li and G. Mastroeni. "Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions". In: Journal of Optimization Theory and Applications 145.2 (May 2010), pp. 355–372. ISSN: 00223239. DOI: 10.1007/S10957-009-9625-1. URL: https://doi.org/10.1007/S10957-009-9625-1.
- [71] S. J. Li, K. L. Teo, X. Q. Yang, and S. Y. Wu. "Gap Functions and Existence of Solutions to Generalized Vector Quasi-Equilibrium Problems". In: *Journal of Global Optimization* 34.3 (Mar. 2006), pp. 427–440. ISSN: 1573-2916. DOI: 10.1007/S10898-005-2193-5. URL: https://link.springer.com/article/10.1007/s10898-005-2193-5.
- [72] X. Lin, H.-L. Zhen, Z. Li, Q. Zhang, and S. Kwong. "Pareto multi-Task learning". In: NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Dec. 2019, pp. 12060–12070. DOI: 10.5555/3454287.3455367. URL: https://dl.acm.org/doi/10.5555/3454287.3455367.
- [73] C. G. Liu, K. F. Ng, and W. H. Yang. "Merit functions in vector optimization". In: *Mathematical Programming* 119.2 (July 2009), pp. 215–237. ISSN: 00255610. DOI: 10.1007/s10107-008-0208-y. URL: http://doi.org/10.1007/s10107-008-0208-y.
- [74] L. R. Lucambio Pérez and L. F. Prudente. "Nonlinear conjugate gradient methods for vector optimization". In: SIAM Journal on Optimization 28.3 (Jan. 2018), pp. 2690–2720. ISSN: 1052-6234. DOI: 10.1137/17M1126588. URL: https://doi.org/10.1137/17M1126588.
- [75] M. E. Maghri and Y. Elboulqe. "Reduced Jacobian method". In: Journal of Optimization Theory and Applications 179.3 (Dec. 2018), pp. 917-943. ISSN: 15732878. DOI: 10.1007/S10957-018-1362-X/FIGURES/7. URL: https: //link.springer.com/article/10.1007/s10957-018-1362-x.

- [76] O. L. Mangasarian and M. V. Solodov. "Nonlinear complementarity as unconstrained and constrained minimization". In: *Mathematical Programming* 62.1-3 (Feb. 1993), pp. 277–297. ISSN: 00255610. DOI: 10.1007/BF01585171.
- [77] G. Mastroeni. "Gap Functions for Equilibrium Problems". In: Journal of Global Optimization 27.4 (Dec. 2003), pp. 411-426. ISSN: 1573-2916. DOI: 10.1023/A:1026050425030. URL: https://doi.org/10.1023/A: 1026050425030.
- [78] G. P. McCormick. "Anti-zig-zagging by bending". In: Management Science 15.5 (1969), pp. 315–320. URL: https://www.jstor.org/stable/2628138.
- [79] K. Miettinen. Nonlinear Multiobjective Optimization. Springer US, 1998,
   p. 298. ISBN: 9781461375449. DOI: 10.1007/978-1-4615-5563-6. URL: https://doi.org/10.1007/978-1-4615-5563-6.
- [80] M. Morishita. "A descent method for robust multiobjective optimization in the presence of implementation errors". Master. Kyoto University, 2016.
- [81] V. Morovati, H. Basirzadeh, and L. Pourkarimi. "Quasi-Newton methods for multiobjective optimization problems". In: 4OR 16.3 (Sept. 2018), pp. 261– 294. ISSN: 1619-4500. DOI: 10.1007/s10288-017-0363-1. URL: https: //doi.org/10.1007/S10288-017-0363-1.
- [82] Y. Nesterov. "A method for solving the convex programming problem with convergence rate O(1/k<sup>2</sup>)". Russian. In: Doklady Akademii Nauk SSSR 269 (1983), pp. 543-547. URL: http://mi.mathnet.ru/eng/dan/v269/i3/p543.
- [83] Y. Nishimura, E. H. Fukuda, and N. Yamashita. Monotonicity for multiobjective accelerated proximal gradient methods. June 2022. DOI: 10.48550/ arxiv.2206.04412. arXiv: 2206.04412. URL: https://arxiv.org/abs/ 2206.04412v1.
- [84] N. Parikh and S. Boyd. Proximal Algorithms. Vol. 1. 3. Boston Delft: Now Publishers, Inc., 2014, pp. 127–239. ISBN: 9781601987174. DOI: 10.1561/ 2400000003. URL: https://doi.org/10.1561/2400000003.
- [85] B. T. Polyak. "A general method for solving extremal problems". In: Doklady Akademii Nauk SSSR 174.1 (1967), pp. 33-36. URL: http://www. mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid= 33049&option\_lang=eng.

- [86] B. T. Polyak. "Gradient methods for minimizing functionals". In: USSR Computational Mathematics and Mathematical Physics 3.4 (Jan. 1963), pp. 864–878. ISSN: 00415553. DOI: 10.1016/0041-5553(63)90382-3. URL: https://doi.org/10.1016/0041-5553(63)90382-3.
- [87] B. T. Polyak. "Minimization of unsmooth functionals". In: USSR Computational Mathematics and Mathematical Physics 9.3 (Jan. 1969), pp. 14–29.
   ISSN: 0041-5553. DOI: 10.1016/0041-5553(69)90061-5.
- [88] Ž. Povalej. "Quasi-Newton's method for multiobjective optimization". In: Journal of Computational and Applied Mathematics 255 (Jan. 2014), pp. 765– 777. ISSN: 0377-0427. DOI: 10.1016/J.CAM.2013.06.045.
- [89] S. Qu, M. Goh, and F. T. Chan. "Quasi-Newton methods for solving multiobjective optimization". In: *Operations Research Letters* 39.5 (Sept. 2011), pp. 397–399. ISSN: 0167-6377. DOI: 10.1016/J.ORL.2011.07.008. URL: https://doi.org/10.1016/J.ORL.2011.07.008.
- [90] S. Qu, M. Goh, and B. Liang. "Trust region methods for solving multiobjective optimisation". In: *Optimization Methods and Software* 28.4 (Aug. 2013), pp. 796–811. ISSN: 10556788. DOI: 10.1080/10556788.2012.660483. URL: https://doi.org/10.1080/10556788.2012.660483.
- [91] R. T. Rockafellar and R. J. B. Wets. Variational Analysis. Vol. 317. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. ISBN: 978-3-540-62772-2. DOI: 10.1007/ 978-3-642-02431-3. URL: http://link.springer.com/10.1007/978-3-642-02431-3.
- [92] K. Scheinberg, D. Goldfarb, and X. Bai. "Fast first-order methods for composite convex optimization with backtracking". In: *Foundations of Computational Mathematics* 14.3 (June 2014), pp. 389–417. ISSN: 1615-3375. DOI: 10.1007/s10208-014-9189-9. URL: https://doi.org/10.1007/s10208-014-9189-9.
- [93] O. Sener. "Multi-task learning as multi-objective optimization". In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018, pp. 525–536.
  DOI: 10.5555/3326943.3326992. URL: https://dl.acm.org/doi/10.5555/3326943.3326992.

- [94] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. 1st ed. Vol. 3. Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 1–36. ISBN: 978-3-642-82120-2. DOI: 10.1007/978-3-642-82118-9. URL: https://doi.org/10.1007/978-3-642-82118-9.
- [95] M. Sion. "On general minimax theorems". In: *Pacific Journal of Mathematics* 8.1 (Mar. 1958), pp. 171–176. ISSN: 0030-8730. DOI: 10.2140/pjm.1958.8.
  171. URL: http://doi.org/10.2140/pjm.1958.8.171.
- J. F. Sturm. "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones". In: Optimization Methods and Software 11.1 (1999), pp. 625–653. ISSN: 10556788. DOI: 10.1080/10556789908805766.
- [97] W. Su, S. Boyd, and E. J. Candès. "A differential equation for modeling Nesterov's accelerated gradient method: theory and insights". In: *Journal of Machine Learning Research* 17.153 (2016), pp. 1–43. URL: https://jmlr. org/papers/v17/15-084.html.
- [98] Y. Sun, H. Jeong, J. Nutini, and M. Schmidt. "Are we there yet? Manifold identification of gradient-related proximal methods". In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR. 2019, pp. 1110–1119. URL: http://proceedings.mlr.press/ v89/sun19a.html.
- [99] K. Taji, M. Fukushima, and T. Ibaraki. "A globally convergent Newton method for solving strongly monotone variational inequalities". In: *Mathematical Programming 1993 58:1* 58.1 (Jan. 1993), pp. 369–383. ISSN: 1436-4646.
   DOI: 10.1007/BF01581276. URL: https://doi.org/10.1007/BF01581276.
- H. Tanabe, E. H. Fukuda, and N. Yamashita. A globally convergent fast iterative shrinkage-thresholding algorithm with a new momentum factor for single and multi-objective convex optimization. arXiv:2205.05262. May 2022. DOI: 10.48550/arxiv.2205.05262. arXiv: 2205.05262. URL: https://arxiv.org/abs/2205.05262v1.
- [101] H. Tanabe, E. H. Fukuda, and N. Yamashita. An accelerated proximal gradient method for multiobjective optimization. arXiv:2202.10994. Feb. 2022. arXiv: 2202.10994. URL: https://doi.org/10.48550/arXiv.2202.10994.

- [102] H. Tanabe, E. H. Fukuda, and N. Yamashita. "Convergence rates analysis of a multiobjective proximal gradient method". In: Optimization Letters, in press (Apr. 2022). ISSN: 1862-4472. DOI: 10.1007/s11590-022-01877-7. URL: https://doi.org/10.1007/s11590-022-01877-7.
- H. Tanabe, E. H. Fukuda, and N. Yamashita. New merit functions for multiobjective optimization and their properties. arXiv:2010.09333. Oct. 2022.
   arXiv: 2010.09333. URL: https://doi.org/10.48550/arXiv.2010.09333.
- [104] H. Tanabe, E. H. Fukuda, and N. Yamashita. "Proximal gradient methods for multiobjective optimization and their applications". In: *Computational Optimization and Applications* 72.2 (Mar. 2019), pp. 339–361. ISSN: 15732894.
  DOI: 10.1007/s10589-018-0043-x. URL: https://doi.org/10.1007/ s10589-018-0043-x.
- S. Villa, S. Salzo, L. Baldassarre, and A. Verri. "Accelerated and inexact forward-backward algorithms". In: SIAM Journal on Optimization 23.3 (Aug. 2013), pp. 1607–1633. ISSN: 10526234. DOI: 10.1137/110844805. URL: https://doi.org/10.1137/110844805.
- [106] J. Wang, Y. Hu, C. K. W. Yu, C. Li, and X. Yang. "Extended Newton Methods for Multiobjective Optimization: Majorizing Function Technique and Convergence Analysis". In: SIAM Journal on Optimization 29.3 (Sept. 2019), pp. 2388–2421. ISSN: 10526234. DOI: 10.1137/18M1191737. URL: https://epubs.siam.org/doi/10.1137/18M1191737.
- [107] Wayne State University, Mathematics Department Cofee Room. "Every convex function is locally Lipschitz". In: *The American Mathematical Monthly* 79.10 (Dec. 1972), pp. 1121–1124. ISSN: 00029890. DOI: 10.2307/2317434. URL: https://doi.org/10.2307/2317434.
- [108] D. J. White. "Multiobjective programming and penalty functions". In: Journal of Optimization Theory and Applications 43.4 (Aug. 1984), pp. 583-599.
   ISSN: 1573-2878. DOI: 10.1007/BF00935007. URL: https://link.springer.com/article/10.1007/BF00935007.
- [109] X. Q. Yang. "On the gap functions of prevariational inequalities". In: Journal of Optimization Theory and Applications 116.2 (2003), pp. 437–452. ISSN: 00223239. DOI: 10.1023/A:1022422407705. URL: https://doi.org/10.1023/A:1022422407705.

- [110] X. Q. Yang and J.-C. Yao. "Gap functions and existence of solutions to setvalued vector variational inequalities". In: *Journal of Optimization Theory* and Applications 115.2 (2002), pp. 407–417. ISSN: 00223239. DOI: 10.1023/A: 1020844423345.
- [111] L. A. Zadeh. "Optimality and non-scalar-valued performance criteria". In: *IEEE Transactions on Automatic Control* 8.1 (1963), pp. 59–60. ISSN: 15582523. DOI: 10.1109/TAC.1963.1105511. URL: https://doi.org/ 10.1109/TAC.1963.1105511.
- [112] H. Zou and T. Hastie. "Regularization and variable selection via the elastic net". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2 (Apr. 2005), pp. 301–320. ISSN: 1369-7412. DOI: 10.1111/j.1467-9868.2005.00503.x. URL: https://doi.org/10.1111/j.1467-9868.2005.00503.x.