2018 年台風 21 号による高潮の河川遡上に関する再現実験 Hindcast experiment for storm surge river run-up by Typhoon JEBI (2018)

○豊田将也*¹,森信人*²,金洙列*³,澁谷容子*⁴
 ○Masaya TOYODA, Nobuhito MORI, Sooyoul KIM and Yoko Shibutani

Strong typhoons can cause storm surges and river floods. A simultaneous occurrence of both along estuaries will cause compound flooding. A numerical model representing the run-up of a storm surge into rivers is necessary for simulating compound floods. In this study, a coupled wave-surge model integrating river inflows was developed to consider the run-up of the storm surge into rivers. The model successfully simulated the storm surge and river water level in Yodo and Ina rivers during Typhoon Jebi (2018). Then, a series of sensitivity experiments on river inflow from the upstream were conducted. As a result, there was no significant difference in water level between coupled and uncoupled models near the river mouth. However, a maximum difference in water level up to 1.2 m at Kema (14 km upstream) was revealed. In addition, the peak time of water levels also changed between coupled and uncoupled models.

1. はじめに

勢力の強い台風の襲来は高潮の河川遡上や河川 の増水を発生させ、これらのハザードが同時発生 することで河口付近において大規模な複合氾濫を 引き起こすことが懸念されている.現在、温暖化 後の台風に伴う高潮および大雨に起因する洪水災 害について事象毎に取り上げた研究事例はあるも のの、複合氾濫を対象に一体的かつ力学的に解く 数値モデルの開発研究はほとんどない.これは、 大気・海洋・河川の各イベントの時空間スケール が異なることや、各要素モデル間における境界条 件の設定の複雑さに起因する.しかし、今後甚大 化する台風災害の対策には、これら時空間スケー ルが異なるマルチハザードを包括的に考慮するこ とが必要となる.

そのような背景の中,風水害では過去最大の被 害総額1兆円を超える被害をもたらした 2018 年 台風 21 号(以降,台風 21 号)では,大規模な高 潮の河川遡上が確認された.この台風によって神 戸エリアで小河川からの高潮氾濫があり,淀川の 水位も堤防高まで 1mの高さに迫るなど,高潮と 河川氾濫による複合氾濫の危険性が明示された. 一方で,現在導入が進められている大気-海洋結 合モデルにおいては,高潮の河川遡上や上流から の洪水については考慮されていない.また依然と して,気象場や海洋場などの入力条件については 経験的または統計的手法に依存している事例も散 見される.しかし,経験的モデルの運用は風速 50 m/s を超えるスーパー台風や,台風内部の降水量 を考慮できないなどの課題が残されており,これ らの問題が災害時に想定外の被害を生み出す一因 となり得る.

本研究では、非線形長波方程式とスペクトル型 波浪モデル SWAN を双方向結合した波浪・高潮 結合モデル (SuWAT)をもとに、非線形長波モデル に直接河道と流入境界を組み込み、観測値または 水文モデルの結果を接合境界に与えることで、河 川流および高潮の河川遡上を考慮可能なモデルの 開発を行う.また台風気象場の計算における力学 的手法の必要性についても議論する.さらに上流 からの洪水の有無による河口水位への影響につい て感度実験を実施し、高潮・河川流の相互作用を 定量的に評価する.その際、開発したモデルの精 度検証には 2018 年台風 21号襲来時の観測値を 利用する.

- *1 豊橋技術科学大学建築・都市システム学系 toyoda@ace.tut.ac.jp
- *2 京都大学防災研究所
- *3 熊本大学くまもと水循環・減災研究教育センター
- *4 東洋建設株式会社鳴尾研究所

2. 数值計算手法

(1) 各モデルの計算領域と選定河川

本研究では、SuWATに河道を組み込み、図-1の フローに従って計算を行うシステムを開発した. SuWATの計算領域は,格子間隔を 7290 m (D1:本 州)から 30 m (D6: 大阪湾北東部)までを1/3の比 で 6 段階にダウンスケーリングした高解像度な ネスティングで構成されている. 地形, 防波堤お よび陸上の粗度係数は中央防災会議のデータを用 いた. D6では大阪エリアに大規模な海抜0 m地帯 が広がっていることが見て取れる.本研究では大 阪湾に流入する河川のうち、淀川および猪名川の 二河川を計算対象河川として選定し、D6に河道地 形を考慮した. 淀川では鳥飼大橋付近(直線距離 で河口から約 22.5 km) まで, 猪名川では軍行橋 付近(河口から約 13 km)まで計算領域として含 まれている.河川上流端では、観測値もしくは降 雨流出モデル (RRI: Rainfall-Runoff- Inundation)⁶⁾ からの水位を上流端で与えることで、河道内の河 川流を考慮可能とした.またSuWATに入力する気 象場は,経験的台風モデル (ETM)およびメソ気象 モデル (WRF)の二種類の手法を用いてそれぞれ 台風21号を再現する.これらを比較することで気 象場の計算手法の違いによる遡上高潮への影響を 議論する. いずれの気象場の場合も SuWAT の計 算領域は同じものを使用し、WRFの計算領域は SuWAT の D1 および D2 と等しい領域を同じ解 像度で計算した.

(2) 数値計算設定

台風21号の気象場を再現するために、ETMの気

衣-I WKF の計算設/

	Domain (D1)	Domain (D2)	
対象台風	2018年台風21号		
計算期間	2018年9月1日21時JST-2018年9月4日21時JST		
水平解像度	7.29 km	2.43 km	
計算格子数	240 x 180	471 x 271	
タイムステップ	30秒	10秒	
鉛直層数	33 layers (1000–50 hPa)		
初期・境界条件	NCEP FNL $(0.25^{\circ} \times 0.25^{\circ})$	Dl	
ナッジング	On(6時間毎) スペクトルナッジング	Off	
積雲対流過程	Kain-Fritsch scheme (Kain 2004)	Off	
雲微物理過程	WSM 6-class graupel scheme (Hong and Lim 2006)		
PBL過程	YSU scheme (Hong et al. 2006)		
放射過程	RRTMG scheme (Iacono et al. 2008)		
地表面過程	5-layer Thermal diffusion scheme (Dudhia 1996)		
海洋混合層過程	ld mixed layer model (Pollard and Thompson 1973)		

圧場はMyers式,風場は光田・藤井の SGW モデ ルを採用した.入力となる強度や位置については 気象庁ベストトラックを使用し,最大風速半径に ついては NOAA の衛星観測情報による推定値を 使用した.その際,台風強度および最大風速半径 の値は1時間毎にデータを水平内挿して入力した. WRFの初期・境界条件には,NCEP FNLデータを 使用した(0.25度格子).また6時間毎にスペクト ルナッジングを適用し,1時間毎の気圧場・風場の 出力を10分間隔に内挿してSuWATに入力した. SuWATのD3からD6にはD2に入力したWRFの出力 結果を領域毎に内挿したものを入力した.WRFの 計算は2018年9月1日21時JSTから2018年9月4日21 時JSTの計3日間とした.その他の詳細な計算設定 は**表**-1に示す.

SuWATの計算期間は 2018 年 9 月 2 日 18 時 JST から 2018年 9月4日18時JSTの計2日間で ある.海面抵抗係数はJanssenの波浪依存海面抵抗 係数を用い,既往研究に倣い風速制限を 30 m/s 以上では一定とした.河川の計算領域内の淀川上 (毛馬付近)には淀川大堰があり,高潮および洪 水時に淀川の水位を調整している.また台風によ る先行性降雨による洪水を考慮するため, Flather(1976)による放射条件を適用し,淀川および 猪名川の上流からの観測水位を側方境界条件とし て考慮した.その際,河川流を考慮する上流端は 淀川では東側,猪名川では北側に設定した.淀川 の流入水位は枚方観測所と毛馬観測所における観 測値の平均値とし,猪名川の流入水位は軍行橋観 測所による観測値を入力した.いずれも 60 分間

表-2	高潮の精度検証
	括弧内は観測との差

	観測値 (m)	ETM (m)	WRF (m)
大阪港	3.29	3.25 (-0.04)	3.23 (-0.06)
安治川水門	3.39	3.61 (+0.22)	3.38 (-0.01)
尻無川水門	3.47	3.00 (-0.47)	3.32 (-0.15)
木津川水門	3.73	3.48 (-0.25)	3.37 (-0.36)

隔で境界に入力される.

3. 計算結果

(1) 気象場と高潮の再現性

本題である高潮の河川遡上に関する議論の前に, 台風21号による気象場と大阪湾での高潮の再現性 について確認する.図-2は関西国際空港における 海面気圧の時系列である.関西国際空港で観測さ れた最低気圧は954 hPaであり(黒線),ETMによ る最低気圧は953 hPa(青線),WRFによる最低気 圧は958 hPaである(赤線).また観測された最大 風速は45.8 m/sであり,ETMで37.0 m/s,WRFで39.0 m/sとなった.最大風速 については,若干過小評 価する傾向にあるものの,最低気圧および最大風 速となる時刻も観測との誤差は1時間以内とな っている.また大阪に最接時の大阪,神戸,徳島 の気象官署の時系列観測値も確認し,台風21号 の気象場を再現できていると判断した.

図-3 (a)ETM 駆動と (b)WRF 駆動による 高潮の河川遡上に関する水位の時系列

続いて台風21号により発生した大阪湾での高潮 の再現性を確認する(表-2).最も大きな高潮となった大阪港では最大高潮偏差T.P. 3.29 m(以降全て T.P.基準)が観測された(表-2;左列).SuWATに よる計算結果は,ETMを用いた場合(ETM駆動) で 3.24 m(表-2;中央列),WRFを用いた場合(WRF 駆動)では 3.23 mとなり(表-2;右列),いずれ も高精度に最大水位が再現できた.大阪港のみな らず,淀川河口に位置する三大水門(安治川水門, 尻無川水門および木津川水門)についても同様に 観測された最大潮位を再現できている.高潮のピ ーク時刻についてはいずれの計算でも観測との誤 差は 10 分以内であった.

以上の精度検証より,台風 21 号の気象場およ び発生した高潮の規模について高精度に再現でき ていると判断し,以下では,高潮の河川遡上につ いて議論する.

(2) 高潮の河川遡上に関する再現実験

淀川および猪名川の2河川の河口域を対象に高 潮の河川遡上が河川水位に及ぼす影響について確 認する(図-3).河川流と高潮の遡上では、高潮の 方が運動量は大きいため, 台風通過時には上流に 向かう水位変化と流れが確認できる.続いて河川 水位の再現性について、淀川では福島と毛馬の2 地点,猪名川では戸ノ内の観測水位と比較した. まず淀川の2地点について検証する.福島(青)と 毛馬(赤)では、高潮の河川遡上により福島で3.95 m, 毛馬で2.80 mの水位ピークが観測されており, 計算結果はETM駆動で3.27 mおよび2.57 m, WRF 駆動では3.41 mおよび2.71 mとなった(図-3;青線 および赤線). 高潮の遡上による水位のピーク時刻 については誤差10分以内である.特に淀川大堰に おける水位変化が特徴的な毛馬では、高潮による ピークを挟んで水位が一定値に収束している. SuWATによる計算結果においても同様の時系列 が再現された. 続いて猪名川の戸ノ内(緑)の水 位を検証する. 観測されたピーク水位は3.57 mで あり, ETM駆動で3.06 m, WRF駆動で3.38 mとな った(図-3;緑線). また高潮の遡上による水位の ピーク時刻については、淀川と同様に誤差10分以 内の精度で再現できている.以上より、福島での ピーク水位を過小評価する傾向にあるものの,3 地点のピーク出現時刻は誤差10分以内と正確に表 現されており、高潮の河川遡上を再現できる. ま た淀川および猪名川のいずれにおいてもD6の境 界まで高潮の遡上が確認できており、これは災害 調査報告において,この二河川の20km程度上流で も高潮の遡上が確認されたという情報とも整合す る. したがって、本研究で構築したモデルは上流 からの河川および高潮の河川遡上の両方を精度良 く表現できることが示された.

次に気象場の計算手法による結果の違いが高潮 の河川遡上に与える影響について確認する.ETM 駆動とWRF駆動では、いずれの地点においても WRF駆動の方が遡上高潮による河川水位は観測 に近い値となり、より現実的な結果となった.こ れはWRFでは台風21号の温低化に伴う非同心円 構造や沿岸域の複雑地形を考慮できることで、よ り現実的な風場が計算できることに起因すると考 えられる.実際に、台風21号が大阪付近を通過し た際には、既に台風としての構造が崩れ始めてお り、その形状は非対称なものとなっていたことが ベストトラックの半径の数値からも推察できる.

図-4 (a)ETM 駆動と (b)WRF 駆動による 洪水流の有無に関する感度実験結果

以上より,高精度な遡上高潮の評価には気象モ デルのように複雑地形の影響を考慮した風速場が 必要であるといえる.その一方で,観測値とWRF 駆動のグラフを比較すると(図-3b),WRF駆動で は観測に比べて高水位が長時間表現されている. これは使用しているWRFの水平解像度が約2.4 km とSuWATのD6(30 m)に対して粗く,内挿する過程 で局所的な風速が弱められてしまっていることや, WRFで使用する標高データや土地利用データの 粗さに起因していると考えられる.

(3) 上流からの洪水流に関する感度実験

最後に上流からの洪水流による河口域水位に対 する影響について,洪水流を考慮する場合 (with river flow)と考慮しない場合 (w/o river flow)で感 度実験を行った (図-4).洪水流無しの場合は,上 流端に河川水位0 mが入力され,純粋に遡上高潮に よる変動量が出力される.洪水流の考慮の有無に よる結果を比較すると,最も海に近い淀川上の福

島地点(図-4;青および紫)では、上流からの流 入の有無に関わらず3 mを超える高い水位となっ た. 洪水流の有無による水位差は、ETM駆動の場 合で約0.02 m, WRF駆動の場合で0.01 m未満とな った.いずれの計算においても水位差は小さい. したがって、上流からの洪水は福島での高潮偏差 にはほとんど影響しないといえる.続いて同じ淀 川上で福島から6kmほど上流に位置する毛馬(図 -4;赤および茶)の結果について確認する.洪水 流無しの場合,高潮が発生するまで水位はほぼ0m となった. そして高潮の遡上によるピーク時の水 位はETM駆動で1.25 m, WRF駆動で1.54 mとなっ た. 洪水流有りの場合に比べてETM駆動で1.27 m, WRF駆動で1.17 mの水位差となり、いずれも洪水 流有りの場合に比べて大幅に水位が低下した.毛 馬では福島に比べて洪水流の有無による影響は非 常に大きい. 最後に猪名川の河口域に位置する戸 ノ内地点(図-4;緑および黄)では、洪水流の有 無による水位差はETM駆動で0.50m, WRF駆動で 0.39 mとなった. この水位差は福島と毛馬の中程 度に相当する.

さらに洪水流に関する感度実験から,洪水流の 有無により水位のピーク時刻にも変化が生じるこ とがわかった.これは高潮または河川単体のモデ ルでは高潮の河川遡上による水位変化を適切に表 現できないことを示唆している.河口からある程 度上流の地点では,高潮の遡上と上流からの河川 流の両方の影響を受け水位とそのピーク時刻が決 まる.したがって高潮の遡上時における河口水位 の適切な評価には,遡上高潮と河川流の相互関係 について考慮する必要があるといえる.

4. 結論

本研究は、波浪・高潮結合モデルに対して河道を 直接組み込むことで、高潮の河川遡上および上流 からの洪水流を考慮可能なモデルを開発した.ま た2018台風21号を対象に淀川および猪名川の水位 について、開発したモデルの精度検証を行った. さらに上流からの洪水流に関する感度実験を実施 した.その結果、メソ気象モデルによる気象場を 用いた方が遡上高潮による最大水位を精度よく表 現できることが明らかとなった.また、上流の洪 水流による影響は、河口から離れた地点ほど大き く、毛馬では水位差は最大約1.2mとなった.遡上 高潮による河川水位を適切に評価するためには, 上流からの流入および河道の考慮が必要である.

謝辞:本研究は特別研究員奨励費 No. 20J00218(代 表者,豊田将也),科学省科学研究基盤研究 A およ び統合的気候モデル高度化研究プログラム

(JPMXD0717935498), JSPS 科研費 No. 20K05046 (代表者,金洙列)による成果であることをここ に付記する.河川の観測値は淀川河川事務所,猪 名川河川事務所から提供して頂いた.ここに謝意 を表する.

参 考 文 献

- 日本損害保険協会:「2018年度発生した風水災に係る各種 損害保険の支払件数・支払保険金(見込含む)等の年度 末調査について」, https://www.sonpo.or.jp/news/release/ 2019/1905_02.html, (2021年4月12日閲覧), 2019.
- 澁谷容子,森信人,中條壮大,梅田尋慈:2019年台風19
 号の高潮再現および台風経路の再現期間と将来変化,土
 木学会論文集B2(海岸工学), Vol. 76, No. 2,
 pp.I 139-I 144, 2020.
- 金洙列,松見吉晴,安田誠宏,間瀬肇,水沼裕介:海浜流 推算における潮汐・波浪・高潮結合モデルの開境界条件 に関する研究,土木学会論文集B2(海岸工学), Vol. 67, No.2, pp.I 326-I 330, 2011.
- 森信人,中條壮大,安田誠宏,片岡智哉,鈴木高二朗,有 川太郎:2018年台風21号Jebiによる沿岸災害調査報告, 土木学会誌,12月号, pp.34-37, 2018.
- Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major US cities, *Nature Climate Change*, Vol. 5, pp. 1093-1097, 2015.
- Orton , P. M., Conticello, F. R., Cioffi, F., Hall, T. M., Georgas, N., Lall, U., Blumberg, A. F., and MacManus, K.: Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary, *Nat Hazards*, Vol.102, pp. 729-757, 2018.
- Kim, S. Y., Yasuda, T., and Mase, H.: Numerical analysis of effects of tidal variations on storm and waves, *App. Oce. Res.*, Vol. 30, No. 4, pp.311-322, 2007.
- Flather, R. A.: A storm surge prediction model for the Northern Bay of Bengal with application to the cyclone disaster in April 1991., *J. Phys. Oceanogr.*, Vol. 24, pp.172-190, 1994.