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Abstract This is the second part of the study by the author on the symmetry of the
linearized Boltzmann equation. The issue of the present part is the entropy production
and the Onsager—Casimir reciprocity relation in the steady non-equilibrium systems.
After the discussions on the definition of the entropy, entropy flow, and entropy pro-
duction in the non-equilibrium gas systems, the expression of the entropy production
in the steady state is presented. Then, for the systems weakly perturbed from the equi-
librium state, the entropy production is shown to be expressed in terms of the solution
of the linearized Boltzmann equation. The thermodynamic forces and fluxes and the
kinetic coefficients are defined solely from the expression of the entropy production.
The conventional-type Onsager—Casimir relation is shown to hold for the entire range
of the Knudsen number in bounded- and unbounded-domain systems, provided that
the state of the gas in a far field is a local Maxwellian satisfying the Boltzmann equa-
tion for the latter. As to the other unbounded-domain systems, a nonconventional
reciprocity is shown to hold.
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1 Introduction

Recently in [1] we have derived a symmetric relation of global quantities that widely
holds between two different steady problems described by the linearized Boltzmann
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equation. On the basis of the relation, we also derived general representations of the
mass, momentum, and heat fluxes passing through the domain boundary in terms
of the Green functions, i.e., the system response against the “input” from the sur-
roundings through the boundary (thepresentation theoremmSome of its applica-

tion examples were shown to recover the cross effects that had been discussed in the
literature as the Onsager—Casimir reciprocity relation. It suggests a certain connec-
tion of the theorem to this reciprocity. Actually, the representation theorem relies on
the symmetry properties embedded in the Boltzmann collision integral and the reflec-
tion kernel on the boundary, which are used in the existing works for justifying the
reciprocity based on the entropy-production consideration. The issue of the present
paper is to clarify that connection. Eventually, we will assert that the conventional
type Onsager—Casimir relation does hold for the entire range of the Knudsen number
in bounded- and unbounded-domain systems, provided for the latter that the state of
the gas at a far distance is a local Maxwellian satisfying the Boltzmann equation; in
the other unbounded-domain systems, the Onsager—Casimir relation no longer holds
and another reciprocity holds instead. The situations to be discussed in the present
paper forms a subclass of problems studied in [1], and the announced statements will
be shown as a consequence of the representation theorem, especially of the Green
reciprocity, established in [1].

According to the non-equilibrium thermodynamics, the entropy production in the
local equilibrium system is expressed by the products of the thermodynamic forces
and their conjugate fluxes. The latter is further expressed by a linear combination
of the former in the linear regime. The coefficients occurring in the combination are
called the kinetic coefficients. The Onsager—Casimir relation is the reciprocal relation
that holds between the kinetic coefficients. It was justified by the statistical mechanics
on the basis of the so-called micro-reversibility. [2, 3] In the case of gas systems, it
was also justified by the kinetic theory based on the first-order Chapman—Enskog
theory [2] for the systems such that the state of the gas is determined not only by the
local fluid-dynamic quantities but also their derivatives. Its extension by the use of
the second-order (the Burnett order) theory has also been made (see e.g. [4]). These
classical theories are based on the local argument and thus covers only the continuum
or slightly rarefied regimes of small Knudsen numbers.

In the meantime, it has been reported with a reliable numerical evidence that the
reciprocity between global quantities holds for the entire range of the Knudsen num-
ber in various specific problems of the linearized Boltzmann equation (e.g., [5-8]).
Motivated by this fact, there arose the studies trying to give a theoretical foundation
on the basis of the entropy production consideration. In the regime of intermediate
and large Knudsen numbers, the local state of the gas is determined not only by its
neighboring state but also by the state at a long distance. Thus, in contrast to the clas-
sical theories, those studies necessarily deal with the total entropy production in the
whole system, i.e., the entropy production in the interior of the gas region and that in
an interfacial region at the boundary due to the gas-surface interaction [4,9-11]. We
shall take the same strategy in the present work.

In the non-equilibrium thermodynamics, the state of the system is determined by
the local state variables and their variation plays the role of action that drives the sys-
tem away from the equilibrium state. The response of the system to the action is the



induced flow of mass, heat, etc. This is the origin of the terminology att&emody-

namic forceand theconjugate thermodynamic fluba gas systems of not necessarily
small Knudsen numbers, the state of the gas is determined by the condition at the
boundary, i.e., by the macroscopic quantities reflecting the state of the surroundings
of the considered domain. This means that the action to the system is the “input”
from the surroundings as the boundary data and the response is the fluxes induced by
the solution of the Boltzmann equation. In the present paper, we try to be faithful as
much as possible to this interpretation and define the thermodynamic forces and their
conjugate fluxes for the systems of arbitrary Knudsen number on the basis of the ex-
pression of the entropy production. In the course of discussions, it will be shown that
the entropy production retains its form of the products of the thermodynamic forces
and fluxes only when considered is a bounded or an unbounded domain such that the
state at a far distance is a local Maxwellian satisfying the Boltzmann equation for
the latter. It is this situation in which we can recover the conventional type Onsager—
Casimir relation, as announced in the first paragraph. In the remaining situation, we
need to define the thermodynamic fluxes in a tricky way from the entropy production.
The kinetic coefficients occurring in these fluxes will be shown to hold a reciprocity
relation. However, the entropy production is no longer expressed in terms of the ther-
modynamic fluxes, and the basic premise in the non-equilibrium thermodynamics in
the discussion on the Onsager—Casimir relation is broken.

The paper is organized as follows. After the definitions of the entropy, its flow,
and its production in nonequilibrium gases in Sect. 2, we describe the class of prob-
lems to be discussed in Sect. 3. Then, in Sect. 4, we rewrite the problems in terms
of the perturbed quantities in order to consider the entropy production in weakly per-
turbed systems. At this stage, the entropy production is shown to be described by
the solution of the linearized problems, in spite of the fact that it is of the second
order of the perturbation. A possible unfavorable feature of the entropy production
will also be discussed, which leads to considering a relative entropy production for
unbounded-domain systems. Sections 5 and 6 are the core of the present paper, de-
voted to develop a theory of reciprocity: the former deals with the case where the
conventional type Onsager—Casimir relation is recovered, while the latter the case
where a nonconventional reciprocity is obtained. lllustrative examples will be given
in Sect. 7, together with the arguments on the validity of [9,12], and the paper is
concluded in Sect. 8.

2 Preparation
2.1 H theorem and the entropy of a gas in the non-equilibrium state

Consider the behavior of a monatomic gas that is described by the Boltzmann equa-
tion:
of
ot
wheret is the time X is the position vectog is the molecular velocity, anfi(t, X, €)
is the velocity distribution function of the gas molecules. We introduce the following

af
figy = (0.1, 1)



4

functional of f (the so-called H function):

H(LX) = [ fin(f/co)de,

wherecy is a constant to maké/cy dimensionless. Integration of (1) multiplied by
1+In(f/co) over the whole space @fyields the equation

JH OH;
e :/In(f/co)J(f,f)d£, @)

where

Hi = / & fIn(f /co)de,

and [J(f, f)d¢ = 0 has been taken into account on the right-hand side. As is well-
known, the right-hand side of (2) is non-positive and is zero if and orflysfa (local)
Maxwellian. Whenf is a MaxwellianH andH; are given by

5
H= —p(EInT—In p+const), Hi = Hv;,

wherep is the density,T is the temperaturep is the pressure, ang is the flow
velocity of the gas. Since considered is the calorically perfect gas, the right-hand side
of the first equation is no other tharps/R, wheres s the specific entropy ari@the
specific gas constant defined By= k/mwith k andm being the Boltzmann constant

and the mass of a molecule. From this observation, we are motivated to define the
specific entropys and the entropy flovps, not only in the (local) equilibrium state

but also in the non-equilibrium state, by

ps(=—RH) = —R/ﬂn(f/co)dg, (3a)
ps (=~ RH) = R [ &fInf /co)ce, (3b)
and the specific entropy productidrs by
pAs:_R/ln(f/co)J(f,f)dg. (3¢)
We show below the thermodynamic suitability of the definition (3). [13]

Consider a gas in a fixed control volur¥e Integration of (2) multiplied by-R
yields

%/V(fRH)de W(—RH)nidz:—R/V/ln(f/co)J(f,f)dngZo, @)

wheren; and & are the inward unit vector normal to the boundéxyand the surface
element at positiorX . The equality holds if and only if is a (local) Maxwellian.
We examine the following two situations:



solid heat bath

Fig. 1 A gas surrounded by a solid heat bath. The volumis the gas region whose boundaty is
indicated by a solid line. The voluni&. is the white region inside the gas whose bound®ty is indicated
by a dash-dotted line. The volurivg is the region whose boundady/, is inside the heat bath indicated
by a dashed line. The volunzkV is the colored region.

1. Let the volumeV be surrounded by an adiabatic wall such that the gas molecules
are specularly reflected there. Then, on the boundsryHin; = 0 becausd is
symmetric with respect t§n; = 0. Thus (4) is reduced to

%/J‘RH)dX =R [In(f/c0)(f, F)gaX >o0.

If we employ the definition (3a), the left-hand side represents the time varia-
tion of the total entropys, = —R , HdX in the volumeV, and therefore the
above relation states that the entropy does not decrease in an isolated system.
It is consistent with the second law of thermodynamics. Further, the definition
(3c) leads to the natural interpretation of the quantity on the right-hand side, i.e.,
—RJy, [In(f/c)I(f, f)d€dX is the entropy productiodS, in the volumeV
defined byAS, = [, pAsdX.

2. Let the volumeV be surrounded by a solid heat bath at temperafyravhich
does not permit the molecular exchange through the bourddansince the re-
laxation process in a solid is much faster than that in a gas, we assume the local
equilibrium in the solid except for an infinitesimally thin layer adjacent to the
boundarydV. The present case requires a more careful consideration about the
boundary than the previous case. We consider two control volMnendV,
whose boundariedV_ anddV, are immediately next tdV on the gas and solid
sides respectively, i.e/,. CV C V;. Let us denote bV the infinitesimally thin
volume bounded byV_ andodV,, i.e.,V, =V_ + AV (see Fig. 1). The entropy
balance for the thin volumAV reads

dSwv

—/ pWSNinidz+/ psndz =ASy >0, (5)
dt oV, oV

whereSyy andASyy are the total entropy and the total entropy production in the
volumeAV, respectivelypy is the density of the solid; anglys,; is the entropy
flow in the solid. The most right equality in (5) holds if and only if the voluf\é

is in equilibrium with the heat bath. Sin@®/,. is inside the solid and the local
equilibrium is assumed there, the entropy flows,; is given bypwsSwi = awi/Tw,
whereqy; is the heat flow. Thus the sum of (5) and (4) withand dV being



replaced by_ andoV_ yields

d(SAV—R/ HdX)— Mdu/ (ps +RH)mdz
dt V_ v, Tw V-

:ASAVfR/\L/In(f/co)J(f,f)dng >0,

If we employ the definition (3a), the first term on the left-hand side represents
the time variation of the total entrof, in the total volumeV/,. defined by the

sum of the entropieSyy in AV andS,_inV_,i.e.S;, =S, +Sav. Further if we
employ the definition (3b), the last term on the left-hand side vanishes. Therefore,
with the aid of the definition (3c), we can rewrite the above relation as

ds,,
dt

~= | aundz=as, >0 ®)
Tw oV,

whereAS,, is the total entropy production in the volurie defined byAS,, =

AS, +ASyy. Because of the properties ¢in(f/co)J(f, f)d¢ andASyy, the

most right equality holds if and only if the gas is in the equilibrium with the
heat bath. The second term on the left-hand side represents the heat transferred
to the heat bath divided by its temperature. Therefore, the relation (6) states that
the variation of the total entropy in the volurive is not smaller than the heat

from the heat bath divided by its temperature, which is consistent again with the
second law of thermodynamics. Further it states that, aside from the heat transfer,
the entropy variation is due to the entropy production in the volMmevhich is

always non-negative.

In this way, we see that (3) is the appropriate definition of the entropy, entropy
flow, and entropy production inside the gas. In the present paper, we adopt it as their
definition and rewrite (2) as

adps 0dps

This is the equation of the (local) entropy balance.

2.2 Entropy flow through the interface and interfacial entropy production in the
steady state

In Sect. 2.1, we considered a gas in an adiabatic container or a gas surrounded by a
solid heat bath for the discussion of the suitable definitions of the entropy, entropy
flow, and entropy production. The entropy balance in the thin voldvieplays an
important role in the latter case. In the present paper, we are going to discuss the
entropy production in the gas that may be bounded not only by the simple solid wall
but also by the interface with its condensed phase (its liquid or solid), on the latter of
which the molecular exchange may occur in general. An imaginary boundary set in
a gas will also be considered. We shall call the simple solid surface and the interface
with the condensed phase the real boundary in the sequel. In the present subsection,



condensed
phase

Fig. 2 Surface elementXon the interface and the infinitesimally thin volumé.d'he hatched area i£d
and the colored volume i8A In the figure, the control surfacegdand &g are also shown. The former
is the control surface inside the condensed phase, while the latter is that inside the gas.

we discuss the local entropy balance for an infinitesimally thin volume containing
the real boundary in its interior. We shall limit ourselves to the steady situation. As
in Sect. 2.1, we assume the local equilibrium inside the solid/liquid except for an
infinitesimally thin layer adjacent to the boundary.

Let us consider a surface element dn the real boundary and control surfaces
dZg and & as shown in Fig. 2. For the sake of simple notation, we seiXhe
axis in the direction normal to the boundary pointing to the gas side in the present
subsection. Let us denote the quantities &n by putting the superscript L. Because
of the assumption of the local equilibrium, the entropy flols; passing through the
dX, is given by [2,14]

L
Pt —ptshvi+ 1 ®)

wherep, s, Vi, g, andT denote respectively the density, specific entropy, flow ve-
locity, heat flow and temperature. The first term on the right-hand side represents
the entropy carried by the flow} and the second the entropy exchange due to the
heat transfer. We are going to show that the right-hand side of (8) can be rewritten in
terms of the quantities related to the velocity distribution funcfiai gas molecules
in the steady situation. The conservation laws of the mass, momentum tangential to
the boundary, and energy are used for this purpose.

Consider the conservation of the mass, tangential momentum, and energy in the
thin volume & shown in Fig. 2. In the steady situation, since there is no increase of
mass, momentum, and energy, we have the relations

pvi =p- Vi, ©)
PVIVK+ P =p ViV + Pk, (k=2,3), (10)
1 1
oL+ Pajvj +Pva(e+ S [vl?) =ai + Py vy + PV (& + St ), (11)

wherepjj ande denote respectively the stress tensor and specific internal energy. We
have used the fact that the volunié i infinitesimally thin to neglect the exchanges
through the side surface o¥d With the aid of (9) and (10), the energy conservation
(11) is rewritten as

u+ paj(vj — vt

1 1
1) +pvi(e+ §|’U - ’U\IHZ) =01 + PiyVi +pvi(e + §|Vk|2), (12)
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Wherev"‘- = (0,V5,V5). Since the quantities with superscript L are those in the local

equilibrium state, the right-hand side of (12) is rewritten by the use of the thermody-
namic relationu- = e- —Tts- + p-/pt [14,15] as

1
q&+p&1v&+pvl<eL+5\v&|2>:TL(TL+vaLsL)+pv1(u +IWP). (3)

wherep is the specific Gibbs free energy (or the chemical potential). Here we have
used the fact that the diagonal components of the stress tensor are equal to the pres-
sure in the local equilibrium state, i.g}; = p-. On the other hand, the left-hand

side of (12) is rewritten as

1
G+ P (Vj —Vijj) + pva(e+ Slv - o)

_ _pTl L a
_ _RT /Elf In(.# /co)dg + pvi (RT In co(2nRT'-)3/2)’ (14)
by the use of the following Maxwellian
a € —vp P _
= R ex (— W) (a: constan, (15)
because the quantities without superscript L are definetldsy/follows:
—/fdg vi —/E-fd£ T—i/|5—v|2fdg e— ORT
p - ) P | — I ) - 3 R ) - 2 ’
p=PRT, p;= [(E-W(E-v)idE a=75 [(E-wle—vPrde,
Plugging (13) and (14) into (12), we obtain
q1 Lyl B / M pva L a/co Vil?
L phvis = —R [ &I d§+ (RT e )
(16)
We further simplify this expression by the following separate discussions:
(i) For the simple solid surfacgy; (= p“v4) = 0 and (16) is reduced to
ql L phis = <R [ &t In(.scr/co)de. (17)

where.Zcr is the .# with a being an arbitrary constantZcr represents the
velocity distribution function of gas molecules that is in the thermal equilibrium
with the solid surface at temperatuFé resting relative to the surface. The arbi-
trariness ofa comes from that of the gas density that is in thermal equilibrium
with the simple solid surface.



(i) For the interface with the condensed phase, is not necessarily zero. Let us
introduce the Maxwell#Zpg that is the # with the constand being the saturation
density psq; Of the gas at temperatuf. That is,.#pr represents the velocity
distribution function of the gas that is in phase equilibrium with the condensed
phase at temperatuiié- resting relative to the interface. Let us denote by putting
the subscript “sat” the gas quantities based#pr in place off. From (3a), the
entropyssatis given by

_ Psat 1L Psat
PsaSsat= T [esat RT-In 700(27TRTL)3/2}
Psat Psat L Psat
== = _RT-(1+In———=—=)|.
TL [esat‘i‘ Osat ( + 00(27TRTL)3/2):|

For the quantities with subscript “sat,” we may use the thermodynamic relation
Usat= €sat— T-Ssat+ Psat/Psas SO that we obtain from the above equation

Psat ) .

Usat= RTL <1+ In W

Since.Zpr is the velocity distribution function of the gas that is in phase equi-
librium with the condensed phasesatis equal tou". Therefore, (16) is reduced

to
|2

QII L _ \VII
TLtP Vis- = *R(/Elf [1-+In(.4pr/Co)|dE + V1 o )
Finally, consider the second term in the big parentheses. In general, the density of
the condensed phase is much larger than that ofgas{( p). Thus, we take the
limit p/p" — 0 with keeping the relatiopv, = p-vt [see (9)]. Then(vy)? =
v2(p/pt)? — 0 and the second term vanishes; (16) is finally reducéd to

L
L phis =R / £ F[L+In(.pr/Co)|dE. (18)
By plugging (17) or (18) into (8), we obtain the following expression of the entropy
flow pts; for the real boundary:

ptsp = —R/ ELHL+In(. /o) dE, (19)

where.,, representscr for the simple solid boundary an#/pR for the interface
with the condensed phase. Note tlfidh fd¢ = 0 for the simple solid boundary.

Next, we consider the entropy balance for the thin volurke Denoting by
Asyds the entropy production in\d, the entropy balance reads

Asy =ps;—p"sy,

since the steady state is considered. Here again we have used the fact that the volume
aV is infinitesimally thin. The first term on the right-hand side represents the entropy

2
1 There is a similar discussion in [9], where the tepm 2‘\I,;1-"FL seems dropped from the beginning.
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flow passing through the control surfacEglon the gas side and the second that
passing throughX on the solid/liquid side. Substitution of (19) and (3b) leads to

Asy =psi+R / ELF[1+ IN( My /o) dE (20)

=-R / ELfIN(f /M) — 1]0E. (21)

From the thermodynamic point of view, the entropy productsy, is required to

be non-negative and to be zero in the equilibrium state, i.es,.#,. If f obeys

the boundary condition (23) that appears later, we can prove this requirement to be
fulfilled by the use of the Darrozes—Guiraud inequality [16—18] and its extension (Ap-
pendix A; see also [9,18]). Due to this fact, it is often said that the kinetic boundary
condition (23) is consistent with the second law of thermodynamics.

3 Problem
3.1 Formulation and entropy production in the system

Consider the steady behavior of the gas in a doraimhich can be described by the
Boltzmann equation:

of
EiTN:J(f’f)' (22)

The boundaryd 7 of the domainZ is split into two parts a9% = 0 Zw + 0 %g.
Here d %, is the real boundary, i.e., a simple solid surface or an interface with the
condensed phase, ad@j is the imaginary boundary set in the gas, i.e., the gas may
occupy a region next t& acrossd Z.

On the real boundary %y, f is assumed to obey the following boundary condi-
tion:

(X0 =gx.0)+ [ [

& <0 |&nl

#(&,6X)H(X,€)d¢", >0, (23)

whereg is a given non-negative functiog & 0) andé, = £ - n with n being the unit
vector inward normal to the boundary at positi&n For a simple solid boundarg,—
0. TheZ is the so-called scattering kernel defined§gr> 0 andé;; < 0. If necessary,
we denote it byZcr for a simple solid boundary and ¥pg for an interface with
the condensed phase. We requ##go have the following properties: [18]

1. #(€",¢,X)>0foré&, >0andé; <0.
2. Consider the velocity distribution functiod,, of the gas that is in equilibrium
with the boundary at temperatufg moving with velocitywvy:

a € — vl
ot P Ry, )

MW:

where

__ [ an arbitrary constant fo# = Zcr
| pw/RTw for % = Jpr ’
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and py is the saturation pressure of the gas at temperair&he velocityvy

of the boundary does not have the component normal to the boungary.(=

0) because it does not deform in the steady problem. For this Maxwellian, the
following relation holds:

|én |

Mw(X,€) =0g(X,
(X,8) =9( £)+Eﬁ<0|5n|

%(5*751X)Mw(X,£*)d£*7 5n>07

and no other Maxwellians satisfy this relation (the uniqueness condition, for
short)?
3. The kernelZ satisfies the condition of detailed balance [17i4,,

for &, > 0 andé; < 0.

As to the imaginary boundary 7y, the condition to be imposed depends on
whether the domai® is bounded or unbounded.

(i) Inthe case of an unbounded domé&inwe assume tha4,, is confined in a finite
region, that s, there is a sphere of finite radius containing the real boundary inside.
0% is then identical to a sphere surface of radiuwith r — . Henceforth,
we denote the imaginary boundary of this casedsyy. We assume that the
asymptotic form off for large| X | is given:

f(X7£)Hn(X7€)7 aS|X|*>°° (248)

The functionn is required to satisfy the Boltzmann equation (22) (see footnote 4
appearing soon later). It should be noted that spatially one and two dimensional
problems are excluded.

(i) Inthe case of bounded domain, f is assumed to obey the following condition

nx.§)

M= [ 0 [ GP(XEX0) 5 (X8,

9 n(x’,¢)

£&>0, X€dZ, (24b)

whereé/, = ¢'-n/, n’ and &' denote the unit vector inward normal to the bound-

ary and the surface element at positi&i, andn is a given positive functiofl.
We requireZ” to have the following properties:
(@) #(X',&,X,€)>0foranyé,>0and¢/, <O0.

2 The uniqueness condition excludes the specular reflection boundaryfym

3 As remarked in footnote 16 in Appendix A, the condition of detailed balance is not necessarily re-
quired to make the kinetic boundary condition consistent with the second law of thermodynamics. Rather
it is required to derive the symmetric relation and the representation theorem in [1]. The reciprocity to be
shown in the present paper are obtained by fully relying on the results in [1].

4 Later at the end of Sect. 4.1, we shall restrjabf this case a Maxwellian whose average velocity has
no component normal to the boundary. Incidentally, in (24a} enough to be defined only at a far field,
but it will also be assumed later to satisfy (22) for the whole spack pie., inR3. The generality at the
present stage is merely for the sake of easy correspondence to [1].
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(b) The following equality holds for ang, > O:
/ dz’/ &' 2 (X', ¢, X,€) = 1.
d.@g EI{I/<O

(c) The following relation holds for ang, > 0 and§/, < 0:
|En‘r’(X7€)‘@(X/7£/7X7€) = |€rq"r’(X/v€/)‘@(Xa _gvX/a _6/)'

(d) The &7 is the kernel such that the following relation holds for dny
f
/Mg/fn[f(lnﬁ—l) +n]dédz = 0.

Now let us consider the total entropy production, which we denot& K, in
the system under consideration. Here the “total” means that we consider the sum of
the production inside the gas region and that in the infinitesimally thin volume
containing the real boundary inside. We denote the formef&yand the latter by
ASy. The expression ahS; is obtained by integrating (7) over the domain

A%(:/@pAst) :—/wpsnidZ:—/M psnidZ—/w psndx, (25)
Jw 9

where the Gauss divergence theorem has been used. On the other hand, the expression
of ASy is obtained by the integration of (20) with and.#,, being replaced by,
andM,, over the real boundarg 2.

2s.(= [ asidz) = / psnids + R/ /Enf [1+In(My/o)|dEdE. (26)
0% 0P 0%w
Thus,ASqta is expressed by the sum of (25) and (26) as
ASiral = R/ /Enf[1+ln(MW/co)]d§dZ—/ psnids,
0% 0%,

which is eventually rewritten as

—Rr/ n_
Asm—R/mw/fnfln(lvlw/cf))dgdu R/mg/fn<flnco n) deds

f
+R/Mg/5n {f (Inn—1> +n] deds, (27)

with the aid of (3b) and the mass conservation law. Note that the last term on the
right-hand side vanishes wheénis a bounded domain [see the property (d)Zey.
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3.2 Remark on the imaginary boundary of a bounded domain

Before proceeding further, we make an observation of the propertie®g of the
present subsection. We will show that the property (d) puts strict limitations on the
kernel 2.

Consider the kerne¥? without the property (d). As far a$’ is a usual positive
function, the following statement holds:

Lemma 1 For any f, the relation

/ /En {f (Inf—1> +n] dédz <0,
% n

holds, and the equality holds if and only if ij is a constant.

Proof LetF be a strictly convex function. Taking into account the properties (a) and
(b) of £, we have from (24b)

f | re s
" (n) =F (/d%/é@@(x €.X.8) g0 dz>

/
g/ P2(X'€, X ,€)F <f,> de'ds’,

0% Erg,<0 n
for &, > 0 on X € 0%y, wheref’ andn’ representf (X', ¢’) andn(X’,&’) respec-
tively. The most right equality holds if and only f{ X', &) /n (X", ¢') is a constant
with respect taX’ and¢’ in the rangef/, < 0. Because of the property (b), the equal-
ity condition is reduced to that/n is a constant over the whole range &€fand
X € d%4. Multiplying the above equation b§,n and integrating it over the range
of &, > 0 andX € 0%y, we have

/ / énnF (f) d¢dz
0%q J&n>0 n

!/ !/ L/ / ’
S/d@g /'En>oénn </mg 5;,<09(X &, X €F ('7’) dg dz) dgd

1Al ' , f/ -
:/ / / / |En/|’7‘@(x7€>X7€)F<,>d£d2d§dz
094 Jén>0.0 % r’],<0 n

f/
= "In'F [ — ) de'dY.
/a_%/égo"f"m (”I’) ¢

We have used the property (c) from the second to the third line and the property (b)
from the third to the last line. Finally I1€t(x) = x(Inx— 1) + 1 and transpose the most
right-hand side to the most left-hand side. The desired relation is obtained. O

Lemma 1, especially the equality condition, looks contradictory to the property
(d) that we have required o¥. However, if the limitation is raised t¢” and &
may be a generalized function, the equality condition of Lemma 1 is loosen and
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consequently the property (d) does not contradict the other properties (a) —4¢) of
(see [17,19] for instance). The simplest example is the case of a specular reflection
type or a periodic type boundary. As an illustration, let us consider the former, i.e.,
P =93(X'-X)d(¢ —€+2&n), whered is the Diracd-function. If  is even with
respect toéy, this &2 has the properties (a) — (c) and yields the relation from (24b)
that

_ Y l/ Idqs! N
M= [ [, P E XU =~ (X~ 26m).

It is easy to show that this relation leads to the property (d). In the same way, the
periodic type boundary can be shown to have the properties (a) — (d).

In summary, the property (d) puts strict limitations on the ket##feHowever, the
kernel of our familiar boundary conditions, such as the specular and periodic ones,
does have this property.

4 Entropy production in weakly perturbed systems

We shall consider the situation where the state of the gas is close to the reference
equilibrium state at rest with densifyy and temperatur@éy. It is convenient to use
the dimensionless quantities expressing the perturbation from the reference state.

4.1 Reformulation in terms of the perturbation

Let  and ¢ be dimensionless position and molecular velocity vectors defined by
x = X /L and¢ = (2RT)"V/%¢, whereL is a reference length. Let, Ty, Ry, uw,
and h be the perturbations of, Ty, pw, vw, andn from the reference state, i.e.,

f = po(2RTo) " ¥2(1+ @)E, Tw = To(1+ Tw), Pw = Po(1+Py), vw = (2RTo)Y %y,
andn = po(2RTo)~¥/?(1+ h)E, whereE(¢) = m%/2exp(—[¢|?) and pg = poRTo.

The perturbation®, Ty, Ry, uw, andh are supposed to be smaW(, | tw|, |Ry|, |uwl,

|h| <« 1). The domain and the boundarieszrspace corresponding 18, 0 2, 0 2,

0%, andd Zg will be denoted byD, D, dDy, dDg, anddDyg, respectively.

We will rewrite (27) in terms of the perturbation quantities. We chapda (27)
asco = po(2RTp) %2 and denote by the total entropy productiof S, divided
by poR(2RT)Y/2L?, i.e.,ASotal = PoR(2RT)Y2L%Giotai. By retaining the terms up to
the second order of the perturbations in (27), we obtain

Oiotal = /{;DW<anw<p>ds+ /‘;Dg<Znh((p_h)>dS
17 ) 17 ,
+§ADQ<Znh >d3+5./aDg<Zn((P—h) )dS,  (28)

wherel, = ¢ - n, Ow is a function ofx and¢ defined by

B {ZZiuwi(:c)+(|C|2— 3)tw(x) for # = %cr
~ | Ru(@) + 24 Ui (z) + (I¢]2 = 3) Tw(z) for Z = Zpr
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and the brackets represent {fxnoments:
(@) = / PEAC.

In obtaining (28), we have used the fact that

[ @gnEyds—o,
oD

a consequence of the mass and energy conservation laws. It should be noted that the
entropy production is the second order quantity with respect to the perturbation from
the reference state.

Up to this momentgp is the mere perturbation of and is the solution of the
dimensionless version of the original boundary-value problem (22)—(24), which is
nonlinear. Now let us consider the solution of the linearized version of this problem
and denote it byp. Because the difference betwepmand is the second order i,
we may replacep by @ in (28)> To be more precise, the replacement may cause the
third order difference on the right-hand side in (28). But it is of negligible order in the
expression (28). Therefore, hereinafter, we idengifyith @, i.e., @ is the solution of
the following linearized version of the boundary-value problem (22), (23), and (24):
% _2 220 (292)

=
o=0ut [ [SERC G0 6K, >0 2 e Dy, (29
zi<o |GnlE

¢:h+/5%/%<op<x ¢, 0)(¢f —H)dc'dS

for {n > 0, € Dy if D is a bounded domain  (29c)
@ —h as|xz| — «if Dis an unbounded domain (29d)

wherel/, =¢’-n'.In (29a), Kn is the Knudsen number defined byKi/L with ¢o
being the molecular mean free path in the gas at the reference staté(@ds the
linearized collision integral? (@)E = \/Tipolo/(2RTo)?J(E, 9E). In (29b),R(-, ;)

is the dimensionless version of the reflection ked#edf the resting real boundary at
temperaturdl, i.e.,R(-,-;-) = (2RTo)~¥2%(-,-;-).% If necessary, it will be denoted
by Rcr andRpg, corresponding to the notatiodcr and Zpr. Thegy is a function
of x and¢ defined by

g { Zr) (6P ) for R Rer
Ru(z) + 24 Ui (z) + (|¢]? — 3)Tw(z) for R=Regr’

5 The right-hand side of (28) witlp replaced byp is non-negative. It can be shown directly from the
linearized system [(29) fap appearing soon later] by using the well-known property@# (@)) < 0 and
the linearized version of the Darrozes—Guiraud inequality and its exter{gigq— gw)2) < 0. The proof
of these inequalities are omitted here.

6 The notatiorR is also used for the specific gas constant. Since no confusion is expected, we use the
same notation for the kernel @Dy, for the sake of easy correspondence with [1]. By the same reason, we
denote byP the kernel ordDy, expecting not to be confused with the perturbation part of the pressure.
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whereuy, -n = 0 because the steady problem is consideredsing*, andg;, denote
E(¢*), o(x,¢*), andgy (z, ¢*) respectively. In (29¢), dSs the surface element at po-
sitionz’ andP(-, -, -,-) is the dimensionless kernel defined®y- (2RTo) ~%/2L2.2.
Corresponding to the requirement pfin (24a),h in (29d) is a solution of the lin-
earized Boltzmann equation (29g).andh denotegp(z’,¢’) andh(x’,¢’). It should
be reminded that the real boundad,, is assumed to be confined in a finite re-
gion whenD is unbounded. Thus, the unbounded domain in spatially one- and two-
dimensional problems are excluded from the present discussion.

The properties required & andP are obtained from those required4fand &
(see Sect. 3.1), which we list below:

Properties oR

1. R(¢*,¢;x) > 0for {, > 0and{; <O.

2. Let us denote by (2RT)~%/2go(, ¢) the given non-negative functiag( X, £)
in (23) for the real boundary with,, = To andv,, = 0. Note thatgy = O for a
simple solid boundary. The following relation holds:

1251
Z5<0 |nl

E=00+ R(¢",¢;z)E"dCY,  4n>0.

3. (the unigueness condition): Lét(x,¢) be ¢ = co+ G +c4|C|2, wherecy, i,
andc, are independent @. Among suchp, only (i) ¢ = ¢ for R= Rcgr and (ii)
¢ = 0 for R= RpR satisfy the relation

0 Bl e e
¢E_/Zﬁ‘<0 |Zn‘R(C ,C@)¢ ETdC, (> 0.

4. (the condition of detailed balance):

14a R(C™, ¢ @)E" = [|R(=¢, ¢ @)E  for {h > 0 and; < 0.

Properties oP

(@) P(',¢’,z,¢) > 0for{, > 0 andZy, <O.
(b) The following equality holds:

1= [y Jo P& ¢ @ OKES, &>

(©) [&nlP(x,¢ 2, Q)E = |, |P(xz,—¢,x',—¢)E for { > 0 and{/, < 0.
(d) For any function®(x, {) satisfying

q>:/ / P(z',¢ 2,¢)®'dCdS, n>0, z € IDg,
dDg /], <0

the following equality holds:

/ / 2, P2EdcdS =0,
9Dg

where dS is the surface element at position
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Due to the property 3 dR, we may write

5
Ow = Ry + 2 Uy +(|C|2— E)T\M

not only forRpg but also forRcg. For the latterR,, may be considered as an arbitrary
constant (with respect tQ) or as the perturbation part of the saturation pressure of
the gas at temperatufg,.

Before proceeding further, we would like to matke little more restricted, i.e.,
we assuméd to fulfill the following:

1. In the case thdD is boundedh is of the form (see footnote 4):
h=P"(xz) 4+ 2 ul () + (|¢[> — g)rh(az) withu-n=0.  (30)

In view of the fact thah in (29c) may be arbitrarily given, this looks a very strong
restriction. With thish, however, we can cover most of physical problems spring-
ing to our mind (for instance, elementary channel flows such as the Poiseuille,
thermal creep, and Couette flows).

2. In the case thdD is unboundedh solves (29a) for the whole spacexfnot only
at a far distance. This requirement is usually fulfilled in the linearized problem.

We shall develop our theory with satisfying these restrictions. These restrictions,
together with the property (d) ¢, make the class of problems to be discussed here
narrower that the counterpart in [1]. We can use the results of [1] in the subsequent
discussions.

4.2 Preliminary to the theory of reciprocity relation
Going back to the expression of the entropy production (28), let us consider the last

term on its right-hand sidelf D is bounded, this term vanishes because of the prop-
erty (d) of P. If D is unboundedyp behaves, in general,

5
¢—h=2Zici+(|¢[*— 5)c+O(|z[~?)
at a far distance, wher@andc; are quantities 0O(|z|~1) and are independent ¢f

(see lemma 2 in [1]§.Thus,(Zn(@— h)?) decays sufficiently fast so thgﬁ;Dg (Cn(—
h)2)dS vanishes. Hence (28) is reduced to

_ Cdse L[z
Go= [ (Gon@)dS+ [ (@hlo—tydst; [ (@iPjds (31

7 This term corresponds to the last term on the right-hand side of (27).
8 The assumption thaD,, is confined in a finite region is inevitable to have this estimate. The estimate
given in [9] is invalid. The problem of a uniform flow past a sphere is a counter-example to the latter.
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It should be noted that the last term on the right-hand side vanisBesibounded,
due to (30). On the other hand,Dfis unbounded, this term vanishes only wlheis
the local Maxwellian of the form

00 00 [o0) 5 00
h= P+ 24U +2ziQijxj+(\c|2—§)r : (32)

whereP®”, %, u®, andQ® = (Qi‘]f’) are independent af and¢ and furtherQ® is an
alternating matrix Q7 = —Qf). It is seen as follows. Consider the situation where
the domain surrounded @Dy, sayD, is entirely occupied by the gas, i.e., there is
no body inside. Sinch solve (29a) for the whole space ®f so inD. Now by taking
the brackets of (29a) multiplied byh, integrating the result ovéd, and making use
of the Gauss divergence theorem, we obtain

1 e 21
5 <Znh>d5**\7_[ﬁ

2 JaDg

As is well known, the right-hand side is nonnegative and vanishes only Wh&n
the collision invariant. In other word$y, must be the linearized local Maxwellian
that solves (29a). The right-hand side of (32) is the most general form of such a
Maxwellian. [18,17]

If hfor an unbounded domaid is not of the form of (32), the last term of (31)
does not vanish. Even worse, it would diverge, becéwdiéferent from (32) implies
the integration of a finite quantity over an unbounded on the right-hand side of (33).
This is not surprising, because physically the integral on the right-hand side is no
other than the entropy production ihof the background gas that is out of equilib-
rium. In such a case, it is proper to consider the entropy production relative to the
background state, not to the reference equilibrium state, i.e.,

/5 (h#(h))da. (33)

1/
Orelative = Ototal — é/ <Znh2>ds (34)
oD

The observations in this subsection were lacking in the existing theories and will
be essential in the construction of our theory on the reciprocity based on the entropy
production. In the subsequent sections, we shall develop the theory for the two cases
separately, i.e., the case whéres of the form of (30) or (32) and the case whére
is not of the form of (32) for an unbounded domain. The close examination of the
far field behavior made here will reveal an erroneous conclusion by the theory of
Sharipov [9,12]. We will come back to this point in Sect. 7 with a specific example
(Example 3).

5 Theory of the Onsager—Casimir relation

In the present section, we exclusively consider the case whgré(,h?)dS vanishes,
i.e.,his given by (32) for an unbounded domain and by (30) for a bounded domain.
The physical problems to be studied are summarized as follows:

1. In the original dimensional notation,
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(a) the system which is described by the steady boundary-value problem (22),
(23), and (24b) when the domai# is bounded, whereZ and & respec-
tively have the properties 1 — 3 and (a) — (d) in Sect. 3.1. Furnjhisra local
Maxwellian whose average velocity has no component normal to the bound-
ary dDy.

(b) the system which is described by the steady boundary-value problem (22),
(23), and (24a) when the domainis unbounded, wher& has the properties
1-3in Sect. 3.1 and@ %, is confined in a finite region. Furtheris a local
Maxwellian satisfying (22).

The deviation from the reference state must be small enough.

2. In the notation of the linearized problem, the system which is described by the
steady boundary-value problem (29), whBrandP have the properties 1 — 4 and

(a) — (d) in Sect. 4his given by (32) whem is unbounded and by (30) whé&h

is bounded. In the former cas#,, is confined in a finite region.

Remember that one and two dimensional problems are excluded from the discussions
for unbounded? or D.

As discussed in Sect. 4.2, the dimensionless total entropy produggignis
given by

Ototal = /d . (@0u(9—gu)dS + /a o, @hte=n)ds (35a)

= /ww<zngwco>d5+ /ﬂ , (@ho)ds (35b)

The first line is of suggestive form for the discussion in the next paragraph. From the
first to the second lingngf,) = 0 andyp, (¢nh?)dS= 0 have been used.

Each term on the right-hand side of (35a) is a superposition of the product of
@ — 0w (or @ —h) and the source,, (or h) on the boundary. The latter is the source
that drives the system away from the reference equilibrium state. $ineea per-
turbation caused bg, andh, the fluxes({ngw(® — gw)) and({ngw (@ —h)) may be
considered as the “response” of the gas system at each point on the boundary to the
“driving forces” gw andh from the surroundings. According to the non-equilibrium
thermodynamics, the entropy production in the local equilibrium state is expressed by
the products of the thermodynamic forces and their conjugate thermodynamic fluxes.
The former are the “driving force” making the system away from the absolute equi-
librium state, while the latter are the response of the system to the force. Therefore, in
the situation under consideration, we may think that the entropy production retains its
form as the products of the thermodynamic forces and their conjugate fluxes even in
the non-equilibrium systems. We shall introduce the thermodynamic forces and their
conjugate thermodynamic fluxes on the basis of the above observation. Further we
introduce the kinetic coefficients by decomposing the thermodynamic fluxes in terms
of the thermodynamic forces. We will show that the kinetic coefficients thus defined
satisfy the same reciprocity as the Onsager—Casimir relation in the non-equilibrium
thermodynamics. We discuss the case of a bounded domain and that of an unbounded
domain separately.
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5.1 The case of a bounded domain

Sinceh is given by (30), the equation (35) is rewritten as

Gora = [ (Ie(@)Po(@) + Jay (@) |up(@)| + 37 (@) 0o(@) )dS (36)
where

(@) = (Gn), Jan(@) = (20ndiii6), Ir(z) = GnllC -~ 2)9),

[ Ru(=), tw(®), uw(x) onxz € dDy
Ry(x), To(x), up(z) = { Ph(z), T(z), u(z) onz € dDg °

and uy, is the unit vector in the direction aiy; thusuy - n = 0. Keeping in mind
the observation in the paragraph just before Sect. 5.1, we defirketraodynamic
forcesby Py(x), up(x), and 1p(x) and theirconjugate thermodynamic fluxéy
Jp(x), Ja, (z), anddr (z).°

In the meantime, we considered in [1] the boundary-value problem (29a)—(29c)
for the following three cases:

1. By(x) = 0(x —vy), up(x) =0, andtp(x) =0,
2. By(x) =0, up(x) = £(y)d(x —y), andty(x) =0,
3. By(x) =0, up(x) =0, andry(x) = d(x —y),

and denote the respective solutions®Y¥), G¥¥) andG(T¥), wheret is a unit

vector tangential to the boundad\D at positiony. We generically called them the
Green function, because each of them represents the response of the system to the
corresponding elemental external source. The solution of the boundary-value prob-
lem (29a)—(29c) can be expressed by the superposition of the Green functions as

0@.0)= | [Rm)G" (@.0) + un(y)|6 ™ (@.¢) + ()G (. ) 1dS,
(37)
where d$is the surface element at positignThus the thermodynamic fluxés(x),
Ja, (x), andJr (x) are expressed as

(tpiy) ;

Jp(x) : B (Pe) (P P(y)
Jap(z) | = / L) faew) ) (Tw) | (y) | dS, (38)

Jop | (Gpiz) Eb; (tip;)
JT(:E) L(P;'y) vy L(T;y) Tb(y

(Tyz) —(T;z) (T;z)
where
Lip) = (GG W) (@), LGY) = 200l 06 )) ().
) 5 . R

LY = (GalICP = 2)6 ) (@) (@ =Py, T).

9 In[1], Jp(z), Ja, (x), andJr (x) are respectively denoted oy (), Pajlpj (), andQn(z).
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Because of the form (38), we call the functidrf%j_’ﬁ) thekinetic coefficientswhere

a, o’ =P, ap, T.19In[1], we have shown that the Green functions are reciprocal (see
Lemma 3 and Corollaries 3 and 4 in this reference). Keeping in mind the form (30) of
h and the parityG(¢¥) = —G(~£¥) of the Green function, we obtain the reciprocity
of the kinetic coefficients as a direct consequence of that of the Green functions:

Proposition 1 (Onsager—Casimir relation 1: a bounded domain)or anyx, y €
0D, the following relations hold:
LY = eatLl@®) . (a,0' =P, T),

wheregp = &7 = Landégg, = —1.
Proposition 1 tells that the thermodynamic fluxes through the boundary at pasition
caused by the thermodynamic forcesgpare related to the fluxes gtcaused by the
forces onz. This is the most detailed description about the Onsager—Casimir relation
in the present situation, which, to our best knowledge, has not been achieved in the
literature. The corresponding detailed description will be derived also in the other
cases (Sects. 5.2 and 6).

Itis possible to formulate the theory not based on the point sources and responses
but based on a finite sum of the averaged ones, which is common in the literature. In
general, the external sources on the boundary can be expressed as

(39)
whereXF(,k), X£k>, andxék) are constants. The way of decomposition is not unique. We
may chose the constants and the corresponding external source distr%&(@

u (@), and1(¥ (z) as we like. Substitution of (39) into (36) yields

N IR S g G
Oiotal = ) JpgXp + Y X + > IragXr (40a)
k=1 k=1 k=1
where
/ I(x)RN (@)dS Iy / e ul (z)|ds
I = /d (@) (@)ds (40b)

We define thehermodynamic forcelsased on the decomposition (39))&, Xék)
andxék) and theirconjugate thermodynamic fluxes Jp(k), Jyk), andJdr ), where
1 <Kk < Np, Ny, or Nr. In this context, the change &%(x), up(x), and () is
made only through(ék), X, and X#k), with Pk(,k)(ac), ug‘)(az), and rék)(ac) being
fixed.

10 15 [1], ng;;’)), LE“ ) and LE Y) are denoted by" ¥ (z), P%¥ iy, (), and Q™Y (), respec-
tively.

@)’ @)
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Letus denote bypP® (k=1,...,Ng; B =P,u,T) the solution wher)(ék> =1and
the other thermal forces are zero:

0.0 = [ RI)GE™ (@.0)ds,
@9 /l% )65 (. ¢)ds,
Wz, ¢) = /0 ) 1t ()G (x,¢)dS,.

Then, (38) is rewritten as

Ja(m) =y Ligo X +2kLanu +ZLMXT>, (@ =PapT), (41)

F(1;kw) = <Zn‘PB(k)>> Lfgu[)w ZnZJUbJ(PB
LAY = (Gl - »ww» B=PuT).

Substitution into (40b) yields the following expression for the newly defined thermo-
dynamic fluxes:

Np Ny Ny
P(K) v (K) u(k)y (K T(K) g (K)
P => LgXp '+ > LggXi '+ Lggo X s (B=PRuT), (42)
( kzl B(K) kzl B(K) kzl B(k)

BK)  BK) ,BK)] _ B'K)pk) B ) | (k) | BK) (K
|:Lp(k) ) Lu(k) ) LT(k) } = /dD [L(P;m) F>b ’ L(ng);w‘ub |’ L(T;m) Ty ' | dS

with 8/ = P u, T. In the above mtegratlorPé ) E)k) andrbk> are a function ofc. We

call Lﬁ ) the kinetic coefficientdased on the decomposition (39), wh@e3’' =

P u, T and 1<k, K < Np, Ny, or Nr. These kinetic coefficients satisfy the following
reciprocity, which is readily obtained from Proposition 1:

Proposition 2 (Onsager—Casimir relation 2: a bounded domain)The following
relations hold

B'(K) _ B(k) _ .
LB(k) - gﬁgﬁ’l—ﬁl(k/>7 (Bvﬁl - P,LLT,]. S k7 k/ S NP1 NLI! or NT)a

wheregp = er = landg, = —1.
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5.2 The case of an unbounded domain

Sincehis given by (32), the equation (35) can be rewritten as

Gora= [ (30(@)Ru(@) + Ja, (@) ()| () u() ) 05
o+ ()P o Jgo (09 u”| + Jgo ()| + Ir ()T, (43)
with
(@) = () (@), Ja, (@) = (220 ) (@),
Ir(@) = @lcP @) @), e,
and

()= | oy G019, Ja () = /(,Dg (2804107 ) S

- 5
de()= [ (26GiQfx@ds I = [ (G- 3)eds

== aDg oD
wherey = uw/|uw|, 4° = u®/|u®], andQ” = Q% /|w®| with w® being the di-
mensionless angular velocity vector definedfy= —%eiijJﬂi (or QF = —&jKuy),
wheresg;j is the Eddington epsilon. We also den@le by Q (&%), following the no-
tation in [1], Sect. 4.3.3, where™ = w®/|w®|. As in the case of a bounded domain,
we define thehermodynamic forcesy Ry (x), uw(x), andty (x) on the real bound-
ary and byP*, u®, Q%, andt® at infinity. Theirconjugate thermodynamic fluxese
defined for the former three bip(x), Jz,, (), andJr(x) and for the latter four by
Jp(), Ja= (00), Ig=(e0), andJr (e0) 11

In [1], in addition to the Green functior3P¥), G¢¥), andG(T¥), wherey ¢

dDy (see Sect. 5.1), we considered the boundary-value problem (29a), (29b), and
(29d) for the four cases:

1. P"=1,4*=0,w” =0, 7" =0, andgy = 0,
2. P°"=0,u"=¢,w” =0,7" =0, andgy, = 0,
3. PP=0,u”=0,w” =¥, 1 =0, andgy =0,
4, P*=0,u”=0,w"=0,7° =1, andgy =0,

and denoted the solution for the respective case§®y), G&=), GL®:=) and
G(T*), where? is a unit vector. We also called them the Green functions. Since the
solution of the boundary-value problem (29a), (29b), and (29d) can be expressed by
the superposition of the Green functions:

o(x,¢) = /dD [Pu ()G (@, €) + uw(y)|G™¥) (2, ¢) + Tuw(y) G (2, ¢)1dS,

+PoGP®) 4 4”|GlET®) 4w |GQT) 4 1=GT) (44)

11 In the notation in [1]Jp(), Ja, (), Jr(z), IJp(), Jg= (), Jg= (), andJr () are denoted by
Un(x), Prjlwj (), Qn(x), — 4 (), —F{07 (), — T & (), and—2(eo).
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the thermodynamic fluxes can be written as follows:

Ja(@) = /aDW(LEZ?;>>PW<y>+L§“Wy|uw< ) +LG Y tuly) )dS + L P

(a® °°|
(a;x)

4L |+ L w0 +Ligm 1, (x € 0Dw;a =P, T), (45a)

W)= [ (Lﬁ&ﬂpﬂy)ﬂmy () [+ LY () ) dS, + L P

L+ LS W+ LT, (y=Pa®,Q7,T), (45b)

where

(aiy) (yi0) 7]

N AT

L(ﬂf;m)’l'éw;m) <ZnZJuWI (i), 2<Zan0wj5 (r:))

Lo L= | La(gP - 3)6), (@ll¢f— 360 |

(a:y) (yieo) ]

L(Ef-’;j‘;” L<§,P;°;’> (GGl Y > te¥el '°°>

L(ﬁf”;oo)v L(@w;w) :/ Aoo<2(nzj > o <2gn(] yie0) ds

ngglo)’l‘zéz?w) obg JkaQZﬂZJ > Jka<2Zan V°°>

L) ) (e (Zn(IC[2 = 3)GIT)), (Zn(I¢[? - 3)G¥=)

(Tie)? =(Tie0) |

with o = Py, T andy = P,ﬁ"",Qm,T. Note that the variable of integration in the
last integrals oved Dy is noty butx. We call thel's the kinetic coefficients? In

the meantime, we have shown the reciprocity of the Green functions in [1] (Lemma 3
and Corollaries 7 and 8 in this reference). Keeping in mind the form (3B)asfd

the notation correspondence in footnote 12 and making use of the @fify =
—Gtx) GlE®) = _G(-6°) andGR(®)*) = —G(-2():*) of the Green functions,

we find that the following reciprocal relations between the kinetic coefficients hold
as a special case of the reciprocity of the Green functions in [1]:

Proposition 3 (Onsager—Casimir relation 3: an unbounded domainfor anyx, y €
0dDy,, the following relations hold:

(a"y) _ (a:z) (o) _ (aiz) (Vi) (Vi)
Ligw) = Calarligry)y  Ligim) = Eaéliye), L _syay/LW )’

(a;z (v;)
wherea,a’ = Py, T; v,y = Q ,T,andep=¢er =1 and &, = s~ =
5 = 1.

1240 1], Lpe) L) andL{¥) are denoted by (), Py tui (=), and QY™ (); —L{3Y),

Lgiy) 7L(ﬂ‘y ,and— LE_‘:_‘O!:) by 4G y)( ), F a\(a y) (oo), ‘gi(u ‘y)o% (), and 2@y ( ); and

®)' T(Q
_L(WW) _L(Y“’) _L(V‘x’) , and— L(V°° by %(yw( )tgi()’:‘x’)aiw(oo)' ﬂi(y’w)d,}""(oo),andg(w’")(oo)_
)
x)

(Pieo)? (@)’ 7(Q7 )

See also footnote 10 fdu(“ y LE“ V) ) andLE“ i
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In the same way as in Sect. 5.1, we can formulate the theory on the basis of a
finite sum of the averaged sources and responses. To do it, we first rewrite the external
sources on the real boundary as

u Nr
Ru() = Y RO@XY, uw(@)= Y uld (@)X, twix)=Y @)X,
= k=1

(46a)
and correspondingly use the following notation for the external sources at infinity

0)

X =P X =, XV =T Xg=|w”|. (46b)

Then, substitution into (43) yields

Ototal = JRXR + %Jp Xp + ;J Dy Z)JT (47a)
where

J():JP(OO) J()—J () JT() J—I—(oo), ‘]R:‘J;m(oo)’
/ I(@PRP(@)dS Iy / 3,0 (@) |ui (@)]dS

) Jr(2)n (2)dS, (1< k< Np, Ny, or Ny). (47b)

JdDy

We call Xé”, XL(,'), Xé') and Xg (0 <| < Np, Ny, or Nt) the thermodynamic forces
based on the decomposition (46) alag), Jyq), Jr (), andJr theirconjugate thermo-

dynamic fluxesAs before, we introduce the notatig® (k=1,...,Ng; B=Pu,T)
representing the solution whéﬁém =1 and the other thermodynamic forces are zero:

oW (z,¢) = " R (4)GPY) (x,¢)dS,, (48a)
#¥(@.0) = [ uld ()]0 ) @, )ds, (48b)
0¥ (x,¢) = /ﬁ ()6 @ s, (48¢)

Then, (45) is rewritten as

Ja(x) = ZJL xF, + %L xu + %L +L'§ 2 %R, (49a)

Nt
_ PI) (1) ul) 3 (1) TI) o) | (R
() = I;L(Wm)xP + 3 LX)+ lZOL(V’m)XT + LR Xe, (49D)
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wherex € dDy; a =P, ay, T; y=Pa” Q ,T; and

- AR

Lﬁ((Pk:)w) t4 (Pﬁk)>

L(’flw;w) Zanquq)B(k > I (B = P,U,T,k: 17"'>N,B)a

Lg<k>) (G(I¢1? = 3)9°Y)

B9 | Bk .

L L | [ [ @ e o

L0 L | oo | 652280, (GG~ $0P)
[P0 U0 TO R (Peo) | (@59) | (Tiw) | (8%59)

5 ) Li‘j’;ﬂ - [ngsw;’ o ey e )]
[ Ly Ly Ly L Liyeor» Ly Liyrooy Liyon)

Substitution into (47b) yields the following expression for the newly defined thermo-

dynamic fluxes:
JB(')}:NP [ ”+[L/§|>]XR
{ Jr J; Lé‘
Ng;B=Pu,T), (50)

P(j
a
(J

U(i
s
LR

)
) J

0, <
Wy |8

i

(I

where the coefficientk’s are as follows:

BGi) yBG)  BG) | B() r B B B(i) | B()
[Lgow Llqu(o)a Lg(o)v I—RR ] — LEP@)? Lg},‘”m)’ Lg;oo)7 Lg)w;m)] ;
Lo Luoy Loy LR | [ Fpe)r Mooy bTion) Lo
i ; ; B() k) B() (K y BU) (k)
B(i) | BG)  B() L Ryv’, L , Lir T
[Lg(k)a L%k)v LE(@] :/ (P) "("k) (a\(,vk);m)m‘('\l'()l (Tiz) :Vk) S
LP(k)’ Lu(k)’ LT(k) dDy _LFP;:c)PW R L(Rﬂ\(,\l,();m)|uw |7 LI(?T;:D) Tw

(j=0,...,Ng;1 <K< Np,Ny, or Nr; B =Pu,T).

In the above integratiorlP,,(vk), ﬁ\(,'v‘), andr\f\,k) are a function ofe. We caIIL%'Q, Lg,('/),
Lg(l), andLR thekinetic coefficientbased on the decomposition (46), whgrg8’ =
P,u, T and 0<1,lI” < Np, Ny, or Ny. It is readily obtained from Proposition 3 that the

new kinetic coefficients satisfy the following reciprocity relations:

Proposition 4 (Onsager—Casimir relation 4: an unbounded domain)The follow-
ing relations hold:

G Bl B0 _ R
Loa)y = &seplpiy: Lr =erEslpq)

whereB,B8' =P u,T;0<I,I’<Np, Nyj,or Nr;andep = er =landg, = eg= —1.
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5.3 Summary

In Sect. 5, we discussed the case whﬁ,;gg((nh2>ds vanishes and showed that
the thermodynamic force, its conjugate thermodynamic flux, and the kinetic coef-
ficients can be naturally defined solely from the expression of the total entropy pro-
duction. The resulting kinetic coefficients satisfy essentially the same reciprocity as
(or a straightforward extension of) the original Onsager—Casimir relation in the non-
equilibrium thermodynamics. The presented reciprocity héddghe entire range

of the Knudsen numbefhe identity of the Onsager—Casimir reciprocity relation is
revealed to be the Green reciprocity established in [1].

6 Theory of nonconventional reciprocity

In the present section, we discuss the remaining case that the dbrisaimbounded
andfaDE;(ZnhZ)dS does not vanish, i.en,is not of the form (32). The physical prob-

lems to be studied are the following:

1. In the original dimensional notation, the system which is described by the steady
boundary-value problem (22), (23), and (24a), whetdas the properties 1 —
3 in Sect. 3.1. The domai® is unbounded, whil&@ %,, is confined in a finite
region. Furthem is a non local-Maxwellian satisfying (22) for the whole space
of X. The deviation from the reference state must be small enough.

2. In the notation of the linearized problem, the system which is described by the
steady boundary-value problem (29a), (29b), and (29d), wiRéras the proper-
ties 1 — 4 in Sect. 4h is not of the form (32) and satisfies (29a) for the whole
space ofe. The domairD is unbounded, whil@D,y is confined in a finite region.

As discussed in Sect. 4.2, it is proper to considerriiative entropy production
Orelative Father than the total one. The former is given by

- _ _hpds- t 2
Orsaive= [, (G0u(@0u)0S+ [ (&hip-tds—3 [ (&S 61

Let us decomposk as

Neo

h(z,¢) =3 hyg(a, QXL (52)

k=1

in such a way that eachy, solves (29a) for the whole space ®f wherex¥ is
a constant representing the magnitude ofktie component of the decomposition.
Since(Zng3) = 0, we can rewrite the equation (51) as

Neo
Orelative= /ﬁ N (Jp(m)PW(m)+J,;W(:c)|uw(a:)|+JT(a:)TW(m))dSJrkZle(k)Xo(ok)7

(53)
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whereJp(x), Ja,, (x), andJr (x) are the same as those at the beginning of Sect. 5.2
and

1
Joo(k) = /0Dg<5nh(k)((0 h))dS— 5/0DW<Znh<k)h>dS (54)

If we proceeded in a straightforward way, we would defineti@@modynamic forces
by Ry(x), uw(x), Tw(z), and X% and theirconjugate thermodynamic fluxéy
Jp(x), Ja, (), Ir(x), andJ, (k). Sinceq is expressed as

0(@.0) = | Ruy)C™ (@.) + [un(y) 6 (.)

Noo
+7(y)G T (@, O)lds + 3 X" (z,¢), (55)
k=1

with ¢(&*) being the solution of the boundary-value problem (29a), (29b), and (29d)
with gw = 0 andh = h), the substitution into the definitions db(x), Ja, (),

Jr(z), andJ, ) leads to the definition of the kinetic coefficients in the same way
as in Sect. 5. However, the kinetic coefficients thus defined are not reciprocal, except
for those already appeared in Sect. B Zhat is, the Onsager—Casimir reciprocity
relation is not recovered in the present situation.

In order to obtain a reciprocity, we have to abandon the basic premise in the non-
equilibrium thermodynamics that the entropy production is expressed by the products
of the thermodynamic forces and their conjugate thermodynamic fluxes. We need to
introduce the following fluxes

J(x) = (4n@) = pdp(),  Jay, () = (22n(—3))0wj @) = Eaydan (@),
5r(@) = @ol| P~ D)@ = e (@), (sp=er =1, £3, = ~1).

~ 1
Tt = [ Gl (@105 [ (s (=1 Na). (59

in place ofJp, Jz,,, Jr, andJW(k> and define them as thhermodynamic fluxeson-

jugate to thehermodynamic forcesfz), uw(x), Tw(x), andx¥, wherez € 9D,
and the function with superscript-" represents the original function with its ar-
gument of molecular velocity reversed, i.€; (z,¢) = ®(x,—¢). The following
lemma leads to a suggestive observation on the above thermodynamic fluxes:

Lemma 2 Let® and¥ be solutions of29a)for « € D. Then,({i®~ W) is divergence
free, i.e.,

7] _
dixi«iq) ¥)=0.

13 |f all the component oh in the decomposition (52) are an even or odd function with respe¢t to
or more precisely if only the even or odd parthgf, in J,) does contribute to the integrals defining
the kinetic coefficient (54), the reciprocity is recovered in the straightforward way. It is expected to rarely
occur, in viewing the fact that eadty is a solution of (29a). Actually, in most cases we encounter the
situation where the condition described in this footnote is violated.
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Proof Since both® and¥ solve (29a),[,i)q<6i @~ W) can be transformed as

_, 0¥ 21, 2 1
(@55 ) (@ W)=

X!~ JmKn
2 1, 9 g
= Trkn (WL (O) = (Wl ®) = —(Wl ),

where the well-known properties? (®)¥) = (Z(¥V)®P) and Z(P~) = L(P)~
have been used. The desired equality is obtained by transposing the most right-hand
side to the most left-hand side. O

(Wz(e7))

In view of this Iemma,jw(k> is analogous to the others in the sense that the inte-
grands in its definition in (56) are divergence free and behave as if they were a flow
of conservative quantity such as the mass, momentum, and energy. The surfaces of
integrationdDg and gDy, may be replaced with any closed surfaces obtained by
their continuous deformation. On the other hafigy, in (54) does not have such a
property harmonic with the others. The reversal of the molecular velocity causes this
remarkable difference between the fludéasandJ’s, and the reciprocity is recovered
for the former well-behaved fluxes. The rest of this section is devoted to show this
reciprocity. We stress again that the present thermodynamic fluxes and the kinetic co-
efficients induced from therave lost a direct connection to the entropy production
The entropy production is not expressed in terms of the thermodynamic fluxes

To show the reciprocity, which is nonconventional, substitute (55) into the defini-
tion of the fluxes. Then we have

F(Py) r(awy) [ (Ty) i (K;00)
Jn(@) Liew) Lipw) L) Lpia)
~ r(Py)  r(awy) ~(Ty) Ry Ne | 7 (Ki0)
i () [(Pw) (o) Ty [ ,
T = [ e S e | a5+ Y| ) | X0,
N B s e R D
00 r(Py) rluwy) r(hy ~(K';00

L) Like) L) L iceo)

wherex € dD, andRy, uy, andt,, in the integral are a function @j. The ['s are
given by

r(ay)  (Kieo) _ .
NL(C(P,:):) ) NLE(IID,Q:) <ZnG(a'y)>5P, <Zn(p(k ,oo)l>£P
Lo R = | 202000 G 2020d; 00 0, |
Egg_:y;7 I:gw;; <Zn(\(f|2— %)G(or;y)>£T7 <Zn(\(f\2— %)(p(k';oc)>£_r
Eg‘k’f)) _/ (Zahiy, G g { 0 }

wherea = P ay, T anduy and¢-moments ofG's andh's are a function ote. We
call L's thekinetic coefficientsThe following reciprocal relation holds among these
kinetic coefficients:
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Proposition 5 (Nonconventional reciprocity 1)For anyx, y € dDyy, the following
relations hold:

..(a;y) N(a ) ~ (ko) ~(a;x) ~ (k;00) . N(kl;oo)

L) = o) Naie) = by L) = L)

wherea,a’ = P4y, T and1 < k, k' < N.
Proof By the definitions ofI:Eg,;% and ngi_yw)), they are related to each other by

[ggjw) — ga/LEO’?y)) whereep = e1 = 1 andg;,, = —1. Thus the first equalit&gziym)) =
Lg y)) is easily obtained from Proposition 3, singe= €2, = 1. In order to prove the

second and third equalities, we make use of Proposition 2 in [1]. To illustrate the proof
of the second equality, let = P. Then, the equation (14) in [1] witp” = GP¥),
hA=0,g) = 6(xz —y), 1" =0 and¢® —(pk°° h® = hg, g\?\,:O,IB:Oyieldsthe
relation

5 G117 dS= | (@bl - y)o*)ds

By definition the left-hand side ils P )) while the right-hand side is reduced to

(2,0™®*) (y), which ISLE >)by defmltlon ButLE y>) E >) becausep = 1. This

completes the proof of the second equality foe= P. The second equality for the
othera’s can be proved in the same way. Finally we turn to the proof of the third
equality. In this case, the equation (14) in [1] wigt = =), WA = hy, gy =0,
A=0andg? = gk, h® = hy, g8 = 0,18 = 0 yields the relation

. 1
_ (kioo) L _
/¢7D§° <Znh(k/)((p h(k))>ds+ 2/0D°g° <Znh(k/)h(k)>ds

' 1
_ K00 _
= <Znh(k)(§0( = hi)))dS+ 2 /0D50<Znh(k)h(k')>dss

obg

which is reduced to
2/ (Lo g )dS =L 2/ (Lo e dS

The lastterm on both sides vanishes, which is seen as follows. Sinceathdh )
solve (29a){{; h<‘k) hq)) is divergence free by Lemma 2. Hengng@nh(‘k) h(e))dS=
0 is obtained by integrating%((ih(j()h(k/p = 0 over the domairD and using the
Gauss divergence theorem. By changing the rol& ahdk/, the other one is also
seen to vanish. O
Remark 1Since eacHn, is supposed to solve (29a) in the whole space afie see
that both [[,Dw@nh* hi))dS and[dDW@nh h())dS vanish. Therefore the second
~ . )
)

[ _ e
L) = /0D5°<Znh<k)((p( '~ hgy)ds

term in the definition oLE vanishes:
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Finally, as done in the latter half of Sect. 5.2, we make use of the decomposition
(46) of the external sources on the real boundary and formulate the theory on the
basis of a finite sum of the averaged sources and respansgge is rewritten as

Np

Ny Nt Noo
Orelative= ) Jp(k)xék) +3 Ju(k)xlgk) +3 \}T(k)x'|('k) +> oo X8, (57)
=1 =] =] =1

whereJgy andJde) (B =Pu,T; k=1,...,Ng) are those defined in (47b) and (54).

We call Xék), X, ~X§) and X thethermodynamlc forcebased on the present
decomposition andb ), Jy(k)» JT( K)» andJ, (k) defined below theiconjugate thermo-
dynamic fluxes

=  F@PRF@)ds Ju=] I w@)u(@)]ds
dDw JoDy Yw
Jrg = [, Fr@nd ()ds

andJ., ) is defined by (56).
By the use of the notation (48) again, (56) is rewritten as

Ne [ PO) , U0
a(w)}_ [ (@) | () aiz) | )
7 = ~p() | Xp + ORI R
{J ® '; L o) =2 [ Lo
Nt |:T(|') Noo E('i?)
+3 | 4y | XY, (a=Paw,T),
= [ L = L k)
with
PR (Kiw) , .
~L,5(F’k%’f>’ ~L<<kf’-””f (Zn@P ™)) e, <znfpk°°>ep
L(ﬂw;m)’ L(ﬁ",v;m) ZnZJUWprﬁ(k)>I5uW7 ZnZ]UWJfP > ;
[fT(!i)), [Eﬁ'}:? (Zn(IC2 = 3)@PENVer, (Zn(1C2— 5) X" )>£T
FBK)
) | = / ne (pﬁ ds— 2 [ 0 }ds,
'N-Et;'o:;) <Zn ( =) — h(k'))> 2 Jopy (Znh(k)h(k’)>

and substitution into the newly defined qufo(sk), J~U<k JT( K)s andJ k) leads to the
expression

N, Nt Neo
P PRIy L S UKy K) S TR K) S k) (k)
B = 2 Lpw X+ 2 LauXa T B bpig X ) Lggg X (58)

wheref3 =P,u,T,0 andk=1,...,Ng. TheL’s are defined as follows.



32

PB(K) oK) | _ [ B (K) r(Kieo) r_

i) Lo | = [Ehea) 6 |- 8/ =PuT).
We call thel’s occurring in (58) thekinetic coefficientased on the present decom-
position. We can readily show the reciprocity among these kinetic coefficients from
Proposition 5 with the aid of (48):

Proposition 6 (Nonconventional reciprocity 2) The following relations hold:

SBK) K
Lo =Lpw):

wheref, B’ =P,u,T,0;k=1,...,Ng;andK =1,...,Ng'.

The proof is omitted here.

In summary, in Sect. 6, we discussed the case Wf)ﬁ;ge{{nh2>ds does not van-
ish. The thermodynamic forces and fluxes are defined again solely from the expres-
sion of the entropy production, but the latter is defined in a way different from that
in Sect. 5. Consequently, the entropy production is no longer expressed by the prod-
ucts of the thermodynamic forces and fluxes. However, thus defined thermodynamic
fluxes originate from divergence free flows, and the kinetic coefficients induced from
them satisfy a reciprocity relatidior the entire range of the Knudsen number

If preferred, the theory developed in Sect. 5.2 may be merged as a special case
into the theory in this section. However, we separated the two for the sake of making
clear the situation where the conventional-type Onsager—Casimir relation does hold.

7 Supplemental discussions

In this section, we present three illustrative examples for the application of the theory
developed in Sects. 5 and 6. They are common in the literature. Examples 1, 2, and
3 here correspond to Examples 5, 1, and 3 in [1] and are representative of the cases
studied in Sects. 5.1, 5.2, and 6, respectively. In each example, the present reciprocity
theory leads to the same conclusion as that of the representation theorem in [1]. A
critical argument on an existing theory (e.g., [9,12,11]) will be given at the end of
the section in the connection to Example 3, the representative of the nonconventional
reciprocity.

Example 1(Poiseuille flow and thermal transpiration)

Consider a rarefied gas in a straight pipe [Fig. 3(a)]. The geometry of the pipe
cross-section S may be arbitrary but is uniform along the axis [Fig. 3(b)]. Two kinds
of gradient are imposed simultaneously: (i) a uniform gradient of temperature along
the pipe wall, i.e.Ty = To(1+Crx1) or Tw = Crxg; (ii) @ uniform gradient of pres-
sure along the axis, i.ep,= po(1+Cpx1) or P = Cpxq, whereCr andCp are a given
constant and are small enough to allow the linearization of the problem. Then, the
problem is described by (29a) and (29b) with = Crx1(|¢]? — g) under the restric-
tion of the perturbed pressuRe= Cpxs, wheredDy, in (29b) is to be considered as
the entire surface of the pipe-¢ < x; < ). We assume that the pipe surface is the
locally isotropic boundary [20, 18], so that the solution of the problem can be sought
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Fig. 3 Flow in a straight pipe. (a) A straight pipe of infinite length. (b) Cross section S and two-dimensional
position vectore | . (¢) The domairD for which the entropy production is considered.

in the forme(x,¢) = Y(z 1 ,¢) +X1[Cp + (|¢[2— 3)Cr], wherez | = (x,X3) andy

is odd in{;. Hence, if we takd as the domain & x; < 1 surrounded by the pipe
surface [Fig. 3(c)], the abowe solves the boundary-value problem (29a)—(29c) with
P(-,-,-,-) in (29¢) beingP(z',¢’,x,¢) = [8(X))d(x1 — 1) + 0(X| — 1) (x1)]d(x', —
x,)0(¢ —¢), and we can apply the reciprocity theory developed in Sect. 5.1 on the
basis of the entropy productiamg in the domainD. Here, in (29b),dD,, is the

pipe surface in X x3 <1 andgy = CTxl(\C|2 - g). On the other hand, in (29c),
dDg = {z|x1 = 0,1 andz, € S} andh= [Cp+ (|¢|2 - 3)Cr]x1.

We apply the second form of the theory in Sect. 5.1 andNput Ny =1, N, =0,
XF(,1> = Cp, XQ =Cr, Pé1> =06(xy—1), and Tél) = ([¢[> = 3)x1. Note thatgPV is
the solution whei€p = 1 andCr = 0 and thatp' @ is the solution wher = 1 and
Cp = 0. The former is the solution of the so-callediseuille flow while the latter
that of thethermal transpiration From (40a) and (42), we have

Ototal = Jp(1) Cp + J1(1) Cr,

_ P T()
Jp(]_) = LP(l)CP + LP(l) CT,

_ P T(1)
J'r(]_) = LT(l)CP + LT(l)CT’

and the relatiom;((i)) = L.Frﬁ)) holds by Proposition 2. By definitioh,'s are

P [ T P(1) p1) T
[L% L?ﬁ%] :/ [L(F»FET”)P?D(:B) L(TFETS)P?D(:C ]ds
Lo Lry D | L To (@) Lipigy Ty (2

each component of which is eventually reduced to

L = [@d e, 1) = - [(@e™)de.,

5 5
L0 == [@¢P =)@ Ve, L == [(lcP=3)e")de..

where we have used the conservation laws of mass and energy and, especially for
L71) andLy (3], the fact thaty is odd inds.

As is obvious from the above equatidrm; and L:,(%) represent the mass flux
through the cross-section of the pipe in the direction opposike toe the Poiseuille
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Fig. 4 A gas flow around a sphere. (a) Evaporation from and condensation onto a volatile sphere. (b)
Uniform flow and thermophoresis problems for a sphere. In both figures, the thick arrows implies the

surfacedDy is set at an infinitely far distance.

flow and thermal transpiration respectively, Whiﬁe%)) andLIEB the heat flux through

the cross-section of the pipe in the same direction in the respective flows. Thus, the
thermodynamic fluxedp 1) andJr 1) respectively represent the (dimensionless) mass
and heat fluxes through the cross-section of the pipe in the direction oppaositérto
short, the reciprocity implies that the mass flux induced in the thermal transpiration is
equal to the heat flux induced in the Poiseuille flow. This is consistent with the result

of Example 5in [1]. O

Example 2(Evaporation from and condensation onto a volatile sphere)

Consider a volatile sphere in an infinite expanse of a gas at a resting uniform
equilibrium state with pressurpy and temperaturdg [Fig. 4(a)]. The sphere is a
condensed phase of the gas whose temperature is K&ptalo(1+ Tw), wherety
is a constant. Assuming that, and the corresponding perturbed saturation pressure
Ry are small enough, we investigate the steady behavior of the gas in the domain
outside of the sphere.

In the present cas@,is the solution of the boundary-value problem (29a), (29b),
and (29d) withgy = Ry + (|¢|?— 3) Tw andh = 0, so that we can apply the reciprocity
theory developed in Sect. 5.2 to the domBinHere, in (29b)gDy, is the surface of
the spheréz| = 1. We make use of the second form in Sect. 5.2 andNput Nt =1,

Nu =0, X3! = Ry, X{V = 1, BV = 5(j@| — 1), and 1Y = (|¢2— )8 (|| — 1).
Then, from (47a) and (50), we have

Ototal = Jp(1) Rv + Jr(1) Tw,

_ P(®) T
Jp(]_) = LP(l) Ry + LP(l) Tw,

_ PO T(1)
\]-r(]_) = LT(l)PW + LT(l) Tw,



35

and the relatiorlL:,(%) = L.Fr’(&)) holds by Proposition 4. By definitioi,'s are

P(1) | T(1) (1) (1) T(L 1)
[ g,
P(1) , T(1) | = P(1 1)
LT(l) LT(l) 9Dw L( o (@ (x) L (T )TW (m)

each component of which is eventually reduced to
L2 = [@dDas LG = [(Ge)as
_ > 5 pn T _ | 2_ 2 T()
= [P 0ds LT = [(aa(¢P - 2)e" )ds

where S is an arbitrary closed surface surrounding the sphere and we have used the
conservation laws of mass and energy.

Again, as obvious from the above equatldlﬁ andL ( represent the mass
flux through the surface S toward a far field in the presence of pressure and tempera-
ture difference respectively, while.?((g and LIE; the heat flux in the corresponding
cases. Thus, the thermodynamic fludgg) andJr 1) respectively represent the (di-
mensionless) mass and heat fluxes through the surface S toward a far field. In short,
the reciprocity implies that the mass flux induced by the temperature difference is
equal to the heat flux induced by the pressure difference. This is the same as the re-
sult of Example 1 in [1]. O

Example 3(Uniform flow and thermophoresis problems for a sphere)

Consider a sphere in an infinite expanse of a gas, where the temperature of the
sphere is kept uniformly &f. At a far distance, the gas flows with a uniform velocity
(2RTo)Y/2(U,0,0) and its pressure and temperature are respectiwglnd To(1+
Crx1), whereU andCr are a constant small enough [Fig. 4(b)]. We are interested in
the steady behavior of the gas in the domaiautside of the sphere.

In the present case,is the solution of the boundary -value problem (29a), (29b),
and (29d) withg,, = 0 andh = 2Z;U + [x1(|¢|2 — 3) — ¥ZKnZ1A(|¢])]Cr, whereA
is the solution ofZ({1A) = —{1(|¢|? — 3) satisfying(|¢|?A) = 0. In (29b),dDy, is
the surface of the sphefe| = 1. Due to the form oh, there is no hope to recover
the conventional reciprocity, and we apply the theory of nonconventional reciprocity
developed in Sect. 6 to the domdin

Here we use the first form in Sect. 6 and plit= 2, X = U, x? = Cr, h(l) =

201, andhp) = x¢(|¢2 — $) — FKnA(¢]). Then, from (53) and (56), we have
Ototal = Jeo(1) U + Joo(2) Cr

HereL’s are given by
E‘1§Z§ ngﬁi -/ <znh(1><cp<1;°°> —hw)) {&ahy) (@)~ hz)
Ly Dg o (0 )

(
..,(1;00 ~(2:
L<2;°°) (2500)
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the diagonal components of which are eventually reduced to

e ~2{014,p%")
=) =" 1 ) ds
[Eﬁééxl bo. [“nm(lclz— )+ FKNGA( )9 H)

We have used the fact thﬁgDm (Znhi (J'?°°>>dS:—faDW(Zn L 0)dS and
dew(Znh h(j))dS=0, Wherej k= l ,2 (see, e.g., Lemma2and Remark 1). Propo-

©(2) _ (1)
sition 5 ylelds the relatlonm(l) =Ly 18

| 20te®)as
dDw

= [ (@nlleP - 0 mds- kn [ (azagas (659)
Dw 2 2 Dy,

As seen from the above equaticfrg;:; is the component of the force acting on the
sphere in the direction opposite g, i.e., the —x;-component of the momentum
transferred from the gas to the sphere, whes 0. LE ; is a more complicated flux
whenCr = 0: the first term represents the Welghted average of the heat flow from the
gas to the sphere with weigkt, while the second term the total of a generalized flow
(4Z1A@™)) from the gas to the sphere multiplied by'71/2)Kn. The reciprocity
relates the force on the sphere in a resting gas with a uniform temperature gradient
(thermophoresis problem & = 0) to the latter two fluxes in a uniform gas flow
(uniform flow problem oCT = 0). This is the same as the result of Example 3 in [1].

Incidentally,J...1) andJ,,(2) are given by
L&)y (2i)
Joo(1) = (1oo) L(loo)CT’
— L L)y (2i0)
Jo(2) =L (2oo) L(Zoo)CT’
where
Lieo 2i00 00 00
Lglzwi L§13m§ :/ [@nh(l)((l’(l —hy))) (dahy) (02 h(z))qu
Lé;zi Lg% a0g | {Zah2) (@) —hy))) (daha) (@13 — hiz)))
1 (¢nht h ) (Gahhe) s
-5 2
0Dy <Zﬂ 1)> <Znh(2)>
In the above equationjznhf1 ) and({nh(1)h2)) vanish, Whlle<Znh2 ) does not. The

non-diagonal components can be reduced only to
(Z0) _ (20 (Li0) _ (L) L0
L(l;OO) - 7L(1;00)7 L(Z;OO) - L(Z;OO) - \/F[Kn -/13D°g° <ZlZnA(‘CDq0( )>dsz

and the last integral does not vanish. This illustrates the failure of the conventional
type reciprocity. O
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In footnote 17 in [1], we pointed out that the relation (59) in Example 3 is different
from that given in [12] by Sharipov. It would be proper to explain the source of
this discrepancy, because it suggests a defect of his theory. Since [9] is the most
fundamental in his series of papers (e.g., [9,12,11]), we give comments mainly to
this reference. At a glance, his theory covers quite a wide class of problems, much
wider than ours. Actually it is not so, which will be clear soon. In the following
discussion, we assume that considered is a monatomic gas and there is no external
force.

As far as the systems of a bounded domain, which is assumed to be surrounded
solely by the real boundary in [9], we do not find any trouble in his theory. Troubles
arise in unbounded-domain systems, where in his case the real boundary is not nec-
essarily confined in a finite region. Unfortunately, the far field behavior is not well-
considered in [9], which leads to misunderstanding of the applicable range. Below
we explain the main points and related troubles in unbounded-domain systems:

1. In his formulation, a perturbation from a local resting Maxwellian is adopted.
Nevertheless, the perturbation is assumed to vanish or to approach a uniform
linearized Maxwellian in a far field. Such an assumption is erroneous in gen-
eral, because a local Maxwellian is not necessarily a solution of the Boltzmann
equation. His assumption is admissible only when the reference state is the local
Maxwellian satisfying the Boltzmann equation, which does not allow the varia-
tion of pressure and temperature in the linear regime [see (32)]. Therefore, the
reference state must be an uniform resting Maxwellian in his theory, and the ap-
plication to the thermophoresis problem is inappropriate. The discrepancy arises
from the wrong application made in [12].

2. Keeping in mind the item 1, we assume the reference state to be an absolute
Maxwellian and examine his estimate for the behavior of the gas in a far field.
Then, the key estimate (33) in [9] is found to be erroneous, as we have already
mentioned in footnote 8. There is a simple counter example, i.e., a uniform flow
past a sphere. Further, (31) in [9] is valid only whgqthere (the control surface
in a gas at infinity) is closed. lfy is not closed, the gas must be at rest in a far
field in order for (31) to hold.

3. The above items reveal that it is dangerous to trust unconditionally the applicabil-
ity conditions given in [9,12]. We can fix the hole of the theory by our estimate in
Sect. 4.2, but it requireSy to be closed. We do not know whether or not his state-
ment can be validated in a general context whgiis not closed. We can assure
the validity of reciprocity relations predicted by his theory only for a subclass of
the problems studied in the present paper.

More recently, the restriction on the behavior of the gas in a far field was removed in
[11], which allows a resting local Maxwellian to be the reference state, but instead
no estimate was made for the behavior in a far field: the tﬁ;,gg((nqozms in our
notation is left untouched in the expression of the entropy production. Consequently,
even if one can formally make a discussion as presented in [11], the thermodynamic
fluxes necessarily contain tirelefinite momentike (Z,@*) ")), which implies

that the type of the flux is not determined by the external sources from the surround-
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ings. This is unsatisfactory both theoretically and practicdilnother shortage in

[11] is a lack of consideration on possible divergence of the entropy production. As
we pointed out in Sect. 4.2, the entropy production diverges in most cases in the
considered situation and introducing the relative entropy is inevitable. The exam-
ple presented in [11] is @ery speciabne-dimensional half-space problem such that
() faDg<Zn(02>dS can be identified WittfaDg<Znh2>dS due to the rapid convergence

of @ to h and (ii) the entropy productioaxceptionallyremains finite. It is why the
pointed troubles did not come to the surface. The raised problems are all solved in
our theory!® Providing the detailed reciprocity (Propositions 1, 3, and 5) is also the
advantage of our theory, which revealed the identity of the Onsager—Casimir relation
to be the Green reciprocity. Proposing the thermodynamic fluxes (56) for the case of
nonconventional reciprocity is another feature of our theory.

8 Conclusion

In the present paper, we first introduced the thermodynamically appropriate defini-
tion of the entropy, entropy flow, and entropy production on the basis of the Boltz-
mann H theorem. Then, we derived the expression of the entropy production in the
steady non-equilibrium system composed of the gas and the interfacial volume with
the infinitesimal thickness at the real boundary. Aiming at the discussions for weakly
perturbed systems, we rewrite the expression in terms of perturbed quantities and
show that the production can be obtained by the use of the solution of the linearized
problem. Then, we determine the thermodynamic forces, their conjugate thermody-
namic fluxes, and the kinetic coefficients solely from the reduced form of the entropy
production, keeping in mind that the boundary data play a role of the “driving force”
and the induced fluxes play a role of the “system response.” We have shown that
the entropy production retains its form as the products of the thermodynamic forces
and fluxes only when the domain under consideration is bounded or unbounded, pro-
vided for the latter that the state of the gas at a far distance is a local Maxwellian
satisfying the Boltzmann equation. We have revealed that it is these cases that the
conventional type Onsager—Casimir relation is obtained. In the other systems, i.e.,
unbounded-domain systems such that the state of the gas at a far distance is not that
local Maxwellian, the entropy production is no longer expressed by the products of
the thermodynamic forces and fluxes, and the basic premise in the non-equilibrium
thermodynamics is broken. We have also presented the reciprocity that does hold in
this situation. These results were obtained by fully relying on the theory developed in

14 In the present paper, the reduction(d¢?) to ({nh(@ — h)) and (;h?) is made from (28) to (31).

This process is essential for killing the indefinite moments and for making the resulting reciprocal relation
useful.

15 One and two dimensional problems in an unbounded domain are excluded from our theory. In one
and two dimensional problems, the boundary data given in one place may influence the state of the gas in
a far field. Thus, the decomposition of the solution into the Green functions is prohibited. However, one-
dimensional problems are tractable (much easily than two-dimensional problems) because of the rapid
convergence of the solution at a far distance. The relation between the boundary data on the real boundary
and the state of the gas at a far distance is also well-understood by intensive studies of the Knudsen-layer
structure.
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[1], especially on the representation theorem and the Green reciprocity for the former
systems, and are valid irrespective of the Knudsen number of the system. Finally,
we presented illustrative examples and pointed out an erroneous conclusion by an
existing theory [9, 12], together with a critical argument about its foundation.

A Darrozes—Guiraud inequality in the steady problem

In this appendix, we present the Darrozes—Guiraud inequality generalized to include the case of the inter-
face with the condensed phase, as well as the simple boundary. [18,17,9] The generalization seems first
made in [9]. We assume the steady state and thus the interface may move only in its tangential direction.

Proposition 7 (Generalized Darrozes—Guiraud inequality)Suppose that the velocity distribution func-
tion f obey the following condition on the boundary:

&

f -

Z(&,&X)H(X,€)dE", & >0, (60)

where d X, £) andZ(£*,&; X)) are a given non-negative function satisfying the following properties:

1. #(¢",¢,X)>0foré,>0and&; <O0.
2. Let us denote byyl'the temperature of the boundary anddy its velocity, whera, - n = 0. Then,
the Maxwellian N}, representing the velocity distribution function of the gas in the equilibrium with

the boundary:
_ a € —ow[?
Mu(&) = o, 72 exp - 2RT, ):

with
a— an arbitrary constant foiZ = Zcr,
| pw for Z = %pr,

satisfies the relation

Ma(6) =a(X.€)+ | &l e & xMu(er)de”, &0, (61)

a<0 |En|
wherepy, is the saturation gas density at temperatugeahd g= 0 for #Z = Zcr. Further, any other

Maxwellian does not satisfy this relation (the uniqueness condition, for short).
3. Z satisfies the condition of detailed balanté:

€3 12(6", 6 X )Mw (£7) = |€n|Z2(—&, —€" X )Mw (§)

forany&, > 0andé&; < 0.

Then, the following inequality holds:
—/snf(lni—l)dgzo. 62)
My

Obviously the equality holds when=f My,.

16 The desired inequality can be proved under the weaker conditions

oo Herl& & X)dE <1, /’S Rl & X)de =1

for &; < 0in place of the condition of detailed balance.
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Proof We denotef (X,£*) and My (¢*) by f* andMy, in the sequel. LeF be a convex function and
consider the functiof (f/My). From (60), this function in the range &f > 0 is seen to satisfy
f 9 I€n | fr
F(——)=F(—=- enlg *.;X—d*
() =F (it * o 7€ 600 ,)

A <0 |En|

(9 g 1léal L
7F(M7w+(l Mw) Eﬁ*<0(1 Mw) ‘En‘ (E ﬁ X) d )
9

g l‘énl kg fr *
Sqag PO+ goF([ 0o g aE e X)) 63

where we have used the Jensen inequality taking into account the factthht-0y/My, < 1 due to the
property 1 and (61). Since (61) may be rewritten as

1— 1‘En‘
./E,f<0( Mw> ‘fn‘

AE X g —1

the Jensen inequality can be applied again to the most right-hand side of (63) to have

fy_ 9 g &1, o
F () S PO+ @ R ([0 e )—ds)
g g &, a
SWF(1)+(1_WW)/5*<0(1 MW) lIEnl #E £X) <M*>d€
9 &1, M :
—F@ [ e e X) g (e (64)

It should be noted that (64) is true even when /My = 0. Multiplying by §nMy, and integrating the
result with respect tg for &, > 0 yields

f o aME (e <R ) [ gt [ g (e 6 MG ()

n>

) [ dote [ (]l - Xomade) R ()

f*
:Fl/ d / M — g( X, —&)|F de”.
(1) ], o&ode+ [ I&ilIMG — (X € ) (G )de
Here we have used the property 3 from the second to the third line and (61) from the third to the fourth
line. Thus we obtain the inequality

JaMaF (M <F@) [ gt [ g IaX—€0)F ()€

Now let F(x) = x(Inx—1) + 1. SinceF (1) = 0, F(x) > 0, g > 0, andM,, is even iné,, we arrive at the
desired inequality:

/5n In—fld§<0
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