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Abstract The behavior of fluid-dynamic (or macroscopic) quantities of rar-
efied gases is studied, with a special interest in its non-analytic feature near
boundaries. It is shown that their gradients normal to the boundary diverge
even if the boundary is smooth, irrespective of the value of the (nonzero)
Knudsen number. The boundary geometry determines the diverging rate. On
a planar or concave boundary, the logarithmic divergence ln s should be ob-
served, where s is the normal distance from the boundary. In other cases, the
diverging rate is enhanced to be the inverse-power s−1/n, where n(≥ 2) is the
degree of the dominant terms of the polynomial which locally represents the
boundary. Some numerical demonstrations are given as well.

Keywords Boltzmann equation · kinetic theory · rarefied gas · singularity

1 Introduction

One of the characteristic features in gases at low pressure circumstances and/or
in micro-scales, which we generically call rarefied gases, is the ballistic aspect
in transport phenomena, which leads to the macroscopic behavior peculiar to
those gases. In the present paper, we are going to clarify that the gradients of
fluid dynamic quantities of rarefied gases, such as those of velocity and temper-
ature in the normal direction, can blow up in approaching the boundary, even
if the boundary and the distribution of physical quantities like temperature on
it are smooth. Such phenomenon is never expected in the usual viscous fluid,
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because the blow up of those gradients implies the infinite viscous force acting
on the body and the infinite heat transfer to the body. The present paper
largely extends our recent results in [13,14]; we are here going to establish a
general view on the above issue, especially the diverging rate and its depen-
dence on the boundary geometry, by a natural extension of the analyses in
[13,14]. The key is the combination of two concepts: the occurrence of discon-
tinuity at the microscopic level (i.e., at the level of the velocity distribution
function) and the local geometry of the boundary. This combination makes
our approach and main interest distinct from recent mathematical works on
the related topics, e.g., [4,3,2]. The present work also gives an insight on the
difference in structure between the S layer [6] and the Knudsen layer at their
bottoms. The former is known to appear, in addition to the latter, around a
convex body in the slip-flow regime, i.e., for small Knudsen numbers.

2 Prototype study of the formation of the gradient singularity

The (dimensionless) original Boltzmann equation can be written as [10]

∂f

∂t
+ ζi

∂f

∂xi
= J [f, f ],

where x is the spatial coordinates, ζ is the molecular velocity, f is the velocity
distribution function of gas molecules, and J is the collision operator. Here we
have included the Knudsen number in the definition of J . The linearized Boltz-
mann equation is obtained by putting f = (1+ϕ)E with E = π−3/2 exp(−ζ2i )
(the absolute Maxwellian at the reference equilibrium state at rest), and then
by retaining only the first order terms of ϕ. The result is as follows:

∂ϕ

∂t
+ ζi

∂ϕ

∂xi
= L[ϕ],

where L[ϕ] ≡ 2J [E, ϕE]/E. For finite range or cutoff intermolecular potentials,
L is known to take the form of [10]

L[ϕ] = −ν(|ζ|)ϕ+K[ϕ]. (1)

We are going to study the solution for the steady linearized Boltzmann
equation (possibly with a source)1over a smooth boundary:

ζi
∂ϕ

∂xi
= L[ϕ] + S, b.c. ϕ(xw, ζ) = ϕw(xw, ζ), ζ · n > 0, (2)

where S is a source term, ϕw represents the imposed data at the position
xw on the boundary, and n is the unit normal to the boundary, pointing to

1 The source S arises in the equation, if we put f = (1 + ϕ + g)E with g being a given

function. Then, S is related to g as S = −ζi
∂g
∂xi

+L[g] and is usually analytic in both x and

ζ. Such a formulation is common in treating, for instance, the Poiseuille and thermal creep
(transpiration) flow problems. See, e.g., Refs [10,13].
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the gas region. We suppose that the boundary is smooth enough for the unit
normal n to be defined everywhere and that the boundary data ϕw is smooth.
Throughout the paper, we use the dimensionless descriptions, unless otherwise
stated.

The macroscopic quantities such as the density ρ, flow velocity ui, temper-
ature T , pressure p, stress tensor pij , and heat flow vector qi are defined as
the moments of f ,

ρ =

∫
fdζ, ρui =

∫
ζifdζ, p = ρT =

2

3

∫
(ζi − ui)

2fdζ,

pij = 2

∫
(ζi − ui)(ζj − uj)fdζ, qi =

∫
(ζi − ui)(ζj − uj)

2fdζ,

and, after the linearization, their deviation from the reference equilibrium state
at rest, namely ω ≡ ρ − 1, ui, τ ≡ T − 1, P ≡ p − 1, Pij ≡ pij − δij , and
Qi ≡ qi, are expressed as the moments of ϕ: [10]

ω =

∫
ϕEdζ, ui =

∫
ζiϕEdζ, τ =

2

3

∫
(ζ2i − 3

2
)ϕEdζ,

Pij = 2

∫
ζiζjϕEdζ, Qi =

∫
ζi(ζ

2
j − 5

2
)ϕEdζ.

The central issue to be discussed is the possibility of the gradient of these
quantities to diverge in the direction normal to the boundary, or, a little more
generically, the possibility of

∂

∂xn
⟨ζk1 ζℓ2ζm3 ϕ⟩ → ±∞, (k, ℓ,m: non-negative integers),

when approaching the boundary, where xn = x ·n and ⟨·⟩ =
∫
· exp(−|ζ|2)dζ.

We will discuss the diverging rate as well.
Our strategy is as follows. We first study the occurrence of singularities for

the case

ζi
∂ϕ

∂xi
= −ν(|ζ|)ϕ, b.c. ϕ(xw, ζ) = ϕw(xw, ζ), ζ · n > 0,

which we call a partial model. Then, we study the case with a source term,
which we call a quasi-full model:

ζi
∂ϕ

∂xi
= −ν(|ζ|)ϕ+ S, b.c. ϕ(xw, ζ) = ϕw(xw, ζ), ζ · n > 0,

where S is no longer supposed to be analytic in x. Rather its spatial derivative
in the direction normal to the boundary may diverge with the same rate as
the moments of ϕ of the partial model with the same boundary data. We will
show that such a generalized source term S does not influence the structure
of the singularities in the partial model. The property of S supposed above
is motivated by that K[ϕ] is also a moment of ϕ, even though it depends not
only on x but also on ζ. Indeed, we have a strong numerical evidence [13] for
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the linearized Boltzmann equation for hard-sphere molecules that K[ϕ] shares
the same property with the moments of ϕ in x.2 Hence, once the assumption
on K[ϕ] is admitted, the statements to be established for the quasi-full model
apply to the original problem (2), because the property of S covers the key
property of K[ϕ] in x. Our discussions to be developed also apply to the
collisionless limit by setting ν ≡ 0 in the partial model. In Sects. 2.1–2.3, we
focus on a couple of simple boundary geometries. More general geometries will
be considered in Sect. 3 on the basis of the results in Sects. 2.1–2.3.

2.1 Partial model

2.1.1 Over a planar boundary

Let us first consider the following slab problem:

ζ1
∂ϕ

∂x1
+ζ2

∂ϕ

∂x2
= −νϕ, b.c. ϕ(x1 = ±1, x2, ζ) = g±(x2, ζ), ζ1 ≶ 0, (3)

where g± are given functions smooth in their arguments. We are going to solve
(3) and study the half-range moments ⟨·⟩+ =

∫
ζ1>0

· exp(−|ζ|2)dζ of ϕ. For
later convenience, we introduce the notation

tanα =
ζ2
ζ1

, X1 = x1 + 1, η =
√
ζ21 + ζ22 , w = ζ3,

and express ϕ as a function of (X1, x2, α, η, w), in place of (x1, x2, ζ1, ζ2, ζ3).
Since the specific form of g± is not given, there is no reference position in x2;
thus, without loss of generality, we may consider ϕ only on the X1-axis (or the
x1-axis). Then, the solution ϕ for ζ1 > 0 is written as

ϕ(X1, ζ) = g−(yw, ζ) exp(−
νX1

η cosα
), yw = −X1 tanα,

where α ∈ (−π/2, π/2) and 0 < X1 < 2. Our concern is the behavior of the
X1-derivative of the following half-range moments:

Ik,ℓ,m ≡⟨ηk cosℓ α sinm αϕ⟩+

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk+1 cosℓ α sinm α g−(yw, ζ) e
−η2−w2− νX1

η cosα ,

where k, ℓ, m (≥ 0) are integers. By direct calculation, we have

(Ik,ℓ,m)′ = −Jk,ℓ−1,m[η sinα∂1g− + νg−]

= −Jk+1,ℓ−1,m+1[∂1g−]− Jk,ℓ−1,m[νg−], (4)

Jp,q,r[h] =

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηp cosq α sinr α e−η2−w2− νX1
η cosα h(yw, ζ),

2 The assumption on K[ϕ] becomes rigorous if we use the model kinetic equations like the
Bhatnagar–Gross–Krook (BGK) model [1,15].
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where ′ represents the derivative with respect to X1 (or x1) and ∂1g− is the
derivative of g− with respect to its first argument. Remind that g− is smooth.
It is thus obvious that Jk,ℓ−1,m[η sinαg′−+ νg−] is bounded for ℓ ≥ 1, because
the integrand is bounded. Our task is, therefore, to examine its behavior for
ℓ = 0. By changing the integration variable α to µ = cosα (0 < arccosµ < π),
we have

Jk,−1,m[h] =Ik,m+ [h] + (−1)mIk,m− [h],

Ip,r± [h] =

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ 1

0

dµ

µ
ηp(1− µ2)

r−1
2 e−η2−w2− νX1

ηµ

× h(∓X1

√
1− µ2

µ
,± arccosµ, η, w),

which will be evaluated below.

Case A: ν >∃ δ > 0 (damping case) Although the factor (1−µ2)
r−1
2 in

the integrand of Ip,r± [h] diverges when r = 0 and µ → 1, its diverging rate is

to the power of −1/2, which is integrable. Hence we here consider Ip,1± [1] for
simplicity. Then,

Ip,1± [1] =

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

∫ 1

0

dµ
1

µ
e−

νX1
ηµ

=

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

E1(
νX1

η
)

=

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

[−γ − ln(
νX1

η
) + F1(

νX1

η
)],

where E1(x) =
∫∞
x

t−1e−tdt and F1(x) = γ + ln(x) + E1(x). Because 0 ≤
F1(x) ≤ 2

√
x,3 the integrals of the first and last terms in the square brackets

are bounded, and we are left with the factor lnX1 from the second term.
We thus conclude the occurrence of the logarithmic divergence from both
Jk+1,ℓ−1,m+1[∂1g−] and Jk,ℓ−1,m[νg−] in (4) with ℓ = 0 and ν ̸= 0.

Case B: ν ≡ 0 (collisionless case) By the same reason as the previous
case, we consider Ip,1± [h]:

Ip,1± [h] =

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

∫ 1

0

dµ
1

µ
h(∓X1

µ

√
1− µ2,± arccosµ, η, w).

3 By definition, F1(x) = γ+ln(x)+E1(x) = γ−
∫ 1
x t−1dt+

∫∞
x t−1e−tdt = γ−

∫ 1
x t−1(1−

e−t)dt+
∫∞
1 t−1e−tdt. It is easy to see that x−F1(x) is a monotonically increasing function

and F1(0) = 0, so that x ≥ F1(x) ≥ 0 for x > 0. Since 2
√
x ≥ x for 0 < x ≤ 1, the

desired inequality holds in this interval. For x > 1, consider g(x) ≡ 2
√
x − F1(x). Then, g

is a monotonically increasing function, because g′(x) = x−1(
√
x − 1 + e−x) ≥ 0 for x ≥ 1.

Therefore, g(x) ≥ g(1) = 2 − γ −
∫∞
1 t−1e−t ≥ 2 − γ − e−1 > 0, which shows the desired

inequality to hold for x > 1 as well.
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In contrast to the previous case, here we retain h, because the last integral
diverges if h is a constant. A proper assumption on h is required. Because of
the collisionless case, νg− vanishes and h is simply ∂1g−, i.e., the variation of
g− along the boundary. We thus adopt the finite range, the decaying, or the
periodic property in x2 as a proper assumption on h (or ∂1g−) to avoid an
indefinite growth of the boundary data g−.

Data with a finite range Suppose that there is a positive constant a > 0
such that h(x, ζ) = 0 for |x| > a. Then,

|Ip,1± [h]| = |
∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

∫ 1

Z

dµ
1

µ
h(∓X1

µ

√
1− µ2,± arccosµ, η, w)|

≤
∫ ∞

−∞
dw

∫ ∞

0

dη ηphmax(η, w)e
−η2−w2

∫ 1

Z

dµµ−1,

where

hmax(η, w)e
−η2−w2

= max
|x|≤a, |µ|≤1

|h(x, ζ)|e−|ζ|2 , Z = 1/
√
1 + (a/X1)2.

By direct calculation of the last integral, we have

|Ip,1± [h]| ≤ (

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

hmax)[− lnX1 +
1

2
ln(X2

1 + a2)],

and the logarithmic singularity manifests itself. Although we have estimated
|Ip,1± [h]| from above, the same singularity should occur as far as h does not
vanish as µ → Z. We thus conclude the logarithmic singularity in this case.

Decaying data Suppose that there is a set of a positive constant a > 0
and a function g such that |h(x, ζ)| < g(η, w)/(|x|+ a). Then,

|Ip,1± [h]| ≤
∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2

g

∫ 1

0

dµ

X1

√
1− µ2 + aµ

.

Direct calculation of the last integral yields

∫ 1

0

dµ

X1

√
1− µ2 + aµ

=

∫ π/2

0

cos θdθ

a sin θ +X1 cos θ
=

(π/2)X1 + a ln(a/X1)

X2
1 + a2

,

showing the logarithmic singularity again. Although we give the upper esti-
mate here, the same singularity should occur as far as h does not vanish as
µ → 0. We thus conclude the logarithmic singularity in this case.
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Periodic data Suppose that h(x, ζ) = g(η, w) exp(ikx) (k: a positive inte-
ger). Then,

Ip,1± [h] =

∫ ∞

−∞
dw

∫ ∞

0

dη ηpge−η2−w2

∫ 1

0

dµ

µ
e∓ik

X1
µ

√
1−µ2

=

∫ ∞

−∞
dw

∫ ∞

0

dη ηpge−η2−w2

(Ja ∓ iJb),

where

Ja =

∫ 1

0

dµ

µ
cos(k

X1

µ

√
1− µ2), Jb =

∫ 1

0

dµ

µ
sin(k

X1

µ

√
1− µ2).

By direct calculation, we have

Ja =− 1

2
[Ci (−ikX1) + Ci (ikX1)] cosh (kX1)− iSi (ikX1) sinh (kX1) ,

Jb =
π

2
exp(−kX1),

where Ci and Si are defined for all complex z as

Si(z) =

∫ z

0

sin(t)

t
dt, Ci(z) = γ + ln(z) +

∫ z

0

cos(t)− 1

t
dt.

Obviously, Jb is regular. As to Ja, Si is entire, but Ci has a logarithmic singular-
ity at the origin and has a branch cut along the negative real axis.4 Therefore,
the singularity in Ja is reduced to that in its first term:

−1

2
[Ci (−ikX1) + Ci (ikX1)] cosh (kX1) = − ln(kX1) cosh(kX1),

namely Ja has a logarithmic singularity. Although here g (and h) has been
assumed to be independent of µ, the same singularity should occur as far as
h does not vanish as µ → 0. We thus conclude the logarithmic singularity in
this case.

Summary In conclusion, the gradient of the moment ∂Ik,ℓ,m/∂X1 normal
to the boundary in (4) may diverge only when ℓ = 0, irrespective of whether
ν ≡ 0 or not. The diverging rate in approaching the boundary is always loga-
rithmic with respect to the normal distance from the boundary. Its occurrence
is due to Jk,ℓ−1,m[η sinα∂1g−+ νg−] with ℓ = 0 in (4). The former term in its
argument represents the effect of spatial variation of the boundary data along
the boundary, while the latter represents the “damping” effect embedded in
the collision dynamics. Thus, the latter does not occur in the collisionless case
ν ≡ 0. The results obtained so far are striking in the sense that the singu-
lar behavior is observed even when the smooth data is imposed on the flat
boundary.

4 Here, the value on the negative real axis is taken as the limit from above.
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(a) Convex case (b) Concave case

Fig. 1 Boundary shape and notation. (a) Convex cylindrical boundary, (b) Concave cylin-
drical boundary.

2.1.2 Over a convex boundary

Consider the problem

ζ1
∂ϕ

∂x1
+ζ2

∂ϕ

∂x2
= −νϕ, (5)

b.c. ϕ =

{
g+(θ, ζ), ζ · n(r = 1, θ) > 0,

g−(θ, ζ), ζ · n(r = R, θ) > 0,

where the spatial domain is 1 < r =
√

x2
1 + x2

2 < R and tan θ = x2/x1 with
−π < θ ≤ π. Since the form of g± is not specified, there is no reference
direction. Hence, without loss of generality, we may restrict ourselves to study
the behavior of the (partial) moments of ϕ when approaching the boundary
along the positive x1-axis.

Let us consider the solution of the problem for x2 = 0 in the range |α| <
α∗, where α∗ ≡ arcsin(1/x1) and tanα = ζ2/ζ1 [or α = arcsin(ζ2/η) with
η =

√
ζ21 + ζ22 ] (−π/2 < α < π/2) [see Fig. 1(a)]. As before we denote ζ3 by

w and consider the moments of ϕ in the range |α| < α∗(≤ π/2), because the
VDF has a jump discontinuity, in general, across α = ±α∗. Then, the solution
in that range is written as5

ϕ(x1,0, α, η, w) = g+(θw, αw, η, w) exp(−
ν

η
s),

s = (x2
1 + 1− 2x1 cos θw)

1/2 = x1 cosα− (1− x2
1 sin

2 α)1/2,

xw = cos θw = x1 − s cosα = x1 sin
2 α+ (1− x2

1 sin
2 α)1/2 cosα,

5 Here xw is the x1-coordinate of the intersection point of the molecular trajectory with
the boundary. Hence xw is one of the two solutions of x2

w + (xw − x1)2 tan2 α = 1 or
x2
w − 2xwx1 sin

2 α + x2
1 sin

2 α − cos2 α = 0. We adopt the larger of the solutions xw =

x1 sin
2 α± cosα(1− x2

1 sin
2 α)1/2, which is the one with a positive sign.
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yw = sin θw = −s sinα, αw = α− θw.

The partial-range moments to be considered are written as

Ik,ℓ,mcv =

∫ ∞

−∞
dw

∫ ∞

0

dη η

∫ α∗

−α∗

dα ηk cosℓ α sinm αϕ e−η2−w2

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk+1 cosℓ α sinm α g+(θw, αw, η, w) e
−η2−w2− ν

η s,

where k, ℓ, m are non-negative integers. Remind that α∗, θw, αw and s depend
on x1, so that their derivatives listed below occur when taking the derivative
of Ik,ℓ,mcv :

s′ = cosα+ (x1 sin
2 α)(1− x2

1 sin
2 α)−1/2, y′w = −s′ sinα,

x′
w = 1− s′ cosα = sin2 α{1− (x1 cosα)(1− x2

1 sin
2 α)−1/2},

θ′w = −α′
w = −(1− x2

1 sin
2 α)−1/2 sinα, α′

∗ = − 1

x1(x2
1 − 1)1/2

= − sin2 α∗

cosα∗
,

where ′ represents the partial derivative with respect to x1. Under the prepa-
ration above, we have

(
Ik,ℓ,mcv

)′
=

∫ ∞

−∞
dw

∫ ∞

0

dη α′
∗η

k+1 cosℓ α∗ sinm α∗e
−η2−w2− ν

η s∗

× [g+(θw∗, αw∗, η, w) + (−1)mg+(−θw∗,−αw∗, η, w)]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk+1 cosℓ α sinm α

× θ′w (∂1g+ − ∂2g+) e
−η2−w2− ν

η s

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα νηk cosℓ α sinm α s′g+ e−η2−w2− ν
η s

=−
∫ ∞

−∞
dw

∫ ∞

0

dη ηk+1 cosℓ−1 α∗ sinm+2 α∗e
−η2−w2− ν

η s∗

× [g+(θw∗, αw∗, η, w) + (−1)mg+(−θw∗,−αw∗, η, w)]

− Jk+1,ℓ,m+1
cv [∂1g+ − ∂2g+]− Jk,ℓ,m+2

cv [νx1g+]

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα νηk cosℓ+1 α sinm α g+ e−η2−w2− ν
η s

=− x
−(m+ℓ+1)
1 (x2

1 − 1)
ℓ−1
2 Ik+1,m

cv (x1)

− Jk,ℓ,m+1
cv [η∂1g+ − η∂2g+ + x1ν sinαg+]

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα νηk cosℓ+1 α sinm α g+ e−η2−w2− ν
η s,

(6)
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where

Ip,qcv (x1) =

∫ ∞

−∞
dw

∫ ∞

0

dη ηpe−η2−w2− ν
η s∗ [g+(θw∗, αw∗, η, w)

+ (−1)qg+(−θw∗,−αw∗, η, w)]

Jp,q,r
cv [h] =

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα
ηp cosq α sinr α

(1− x2
1 sin

2 α)1/2
e−η2−w2− ν

η sh,

and the quantities with the subscript ∗ represent their values at α = α∗:

x1 sinα∗ = 1, s∗ = (x2
1 − 1)1/2, αw∗ = α∗ − θw∗,

xw∗ = cos θw∗ = 1/x1, yw∗ = sin θw∗ = −(x2
1 − 1)1/2/x1.

It is obvious that the last term of (6) remains finite for any k, ℓ,m(≥ 0) and
that the first term of (6) remains finite for ℓ ≥ 1.

On the first term of (6) with ℓ = 0 The first term with ℓ = 0 is
−x−m−1

1 (x2
1− 1)−1/2Ik+1,m

cv (x1), where the integral I
k+1,m
cv (x1) remains finite.

Thus, the first term diverge with the rate of (x1 − 1)−1/2 as x1 ↘ 1, as far as
Ik+1,m
cv (x1) does not vanish in the same limit. It is indeed the case. Suppose
that g+ is a given constant, say C > 0. Then, the integral is estimated from
below as

|Ik+1,m
cv (x1)| = C|1 + (−1)m|

∫ ∞

−∞
dw

∫ ∞

0

dη ηk+1 e−η2−w2− ν
η s∗

= 2C|1 + (−1)m|
∫ ∞

0

dζ ζk+2

∫ π/2

0

dβ (cosβ)k+1 e−ζ2− νs∗
ζ cos β

≥ 2C|1 + (−1)m|
∫ 2

1

dζ ζk+2 e−ζ2

∫ π/2

0

dβ (cosβ)k+1 e−
2Rν12
cos β

= 2C|1 + (−1)m|
∫ 2

1

dζ ζk+2 e−ζ2

∫ ∞

1

dµ
e−2Rν12µ

µk+2(µ2 − 1)1/2

≥ 2−k−1C|1 + (−1)m|[
∫ 2

1

dζ ζk+2e−ζ2

∫ 2

1

dµ

(µ2 − 1)1/2
] e−4Rν12 ,

where ν12 = max1≤ζ≤2 ν(ζ). Therefore, the first term with ℓ = 0 diverges with
the rate of (x1 − 1)−1/2 as x1 ↘ 1 for the natural setting of the boundary
data, at least for even m.
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On the second term of (6) In order to examine the second term, let us
consider Jk,ℓ,m+1

cv [1]. Then,

|Jk,ℓ,m+1
cv [1]| ≤

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα
ηk cosℓ α e−η2−w2− ν

η s

(1− x2
1 sin

2 α)1/2

≤2

∫ ∞

−∞
dwe−w2

∫ ∞

0

dη e−η2

ηk
∫ α∗

0

dα
cosℓ α

(1− x2
1 sin

2 α)1/2

=2
√
π

∫ ∞

0

dη e−η2

ηk
∫ 1

0

dµ

(1− µ2)1/2x1[1− (µ/x1)2](1−ℓ)/2

≤

{
2
√
π(
∫∞
0

dηe−η2

ηk) 1
x1
K( 1

x1
), ℓ = 0,

2
√
π(
∫∞
0

dηe−η2

ηk) 1
x1

∫ 1

0
dµ

(1−µ2)1/2
ℓ ≥ 1,

where K is the complete elliptic integral of the first kind:

K(a) ≡
∫ 1

0

dµ√
(1− µ2)(1− a2µ2)

(0 < a2 < 1).

Because K(a) ∼ −(1/2) ln(1 − a2) as a ↗ 1, |Jk,ℓ,m+1
cv [1]| ≲ C ln(1/(x1 − 1))

for ℓ = 0 with a certain positive constant C. The diverging rate is, thus, at
most logarithmic,which is much weaker than that of the first term with ℓ = 0.
For ℓ ≥ 1, neither the first nor the second term diverges.

Summary In conclusion, the gradient of the moment
(
Ik,ℓ,mcv

)′
in (6) can

diverge again when ℓ = 0, irrespective of whether ν ≡ 0 or not. The dominant
diverging rate is 1/

√
x1 − 1, which is by far stronger than the logarithmic one

in the planar boundary case. This is due to the variation of the tangential di-
rection to the boundary when the spatial point under consideration approaches
the boundary along the x1-axis. Therefore, it is a purely geometric effect [see
the first term on the most right-hand side of (6)]. The result is again strik-
ing, because the singular behavior is induced even when the smooth data are
imposed on the smooth convex boundary.

2.1.3 Over a concave boundary

Consider the problem

ζ1
∂ϕ

∂x1
+ ζ2

∂ϕ

∂x2
= −νϕ, b.c. ϕ = g−(θ, ζ), ζ · n(r = 1, θ) > 0, (7)

where the spatial domain is x2
1 + x2

2 < 1 and tan θ = x2/x1 with −π <
θ ≤ π. By the same reason as before, without loss of generality, we may
restrict ourselves to study the behavior of moments of ϕ when approaching
the boundary along the x1-axis [see Fig. 1(b)].
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Let us introduce α and η by ζ1 = η cosα and ζ2 = η sinα, denote ζ3 by w
as before, and consider the moments of ϕ for the entire range of α. Then, the
solution is written as

ϕ(x1, 0,α, η, w) = g−(θw, αw, η, w) exp(−
ν

η
s), −π < α < π, (8)

s = x1 cosα+ (1− x2
1 sin

2 α)1/2,

xw = cos θw = x1 − s cosα = x1 sin
2 α− (1− x2

1 sin
2 α)1/2 cosα,

yw = sin θw = −s sinα, αw = α− θw,

and the moments to be considered at the position (x1, 0) are written as

Ik,ℓ,mcc ≡⟨ηk cosℓ α sinm αϕ⟩

=

∫ ∞

−∞
dw

∫ ∞

0

dη η

∫ π

−π

dα ηk cosℓ α sinm αϕ e−η2−w2

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk+1 cosℓ α sinm α g−(θw, αw, η, w) e
−η2−w2− ν

η s,

where k, ℓ, m are non-negative integers. Because θw, αw and s depend on x1,
their derivatives listed below occur when taking the derivative of Ik,ℓ,mcv :

s′ = cosα− (x1 sin
2 α)(1− x2

1 sin
2 α)−1/2,

x′
w = 1− s′ cosα = sin2 α{1 + (x1 cosα)(1− x2

1 sin
2 α)−1/2},

θ′w = −α′
w = (1− x2

1 sin
2 α)−1/2 sinα,

where ′ represents the partial derivative with respect to x1. Under the prepa-
ration above, we have

(
Ik,ℓ,mcc

)′
=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk+1 cosℓ α sinm α

× (∂1g− − ∂2g−)θ
′
w e−η2−w2− ν

η s

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα νηk cosℓ α sinm α g−s
′ e−η2−w2− ν

η s

=Jk,ℓ,m+1
cc [η∂1g− − η∂2g− + x1ν sinαg−]

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα νηk cosℓ+1 α sinm α g− e−η2−w2− ν
η s, (9)

where

Jp,q,r
cc [h] =

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα
ηp cosq α sinr α

(1− x2
1 sin

2 α)1/2
e−η2−w2− ν

η sh.

It is obvious that the last term of (9) remains finite for any k, ℓ,m(≥ 0).
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Estimate of the first term of (9) The estimate is almost parallel to that
of the second term of (6) in Sect. 2.1.2. Because the integrand diverges when
sinα → ±1 when x1 = 1, it is required to split the range of integration with
respect to α into (−π,−π/2), (−π/2, π/2) and (π/2, π). The value of s largely
differs between the ranges α ∈ (−π/2, π/2) and α ∈ (−π,−π/2) ∪ (π/2, π),
especially when x1 is close to unity. Thus, the contributions from the two
ranges are not expected to cancel out each other. Keeping this in mind, we
consider only the range α ∈ (−π,−π/2) ∪ (π/2, π), especially its half range
because only the even part of the integrand contributes. Our task is thus
reduced to study the following integral:

J̃cc =

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

π/2

dα ηk
cosℓ α sinm+1 α

(1− x2
1 sin

2 α)1/2
e−η2−w2− ν

η s,

and we have its upper estimate as

|J̃cc| ≤
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

π/2

dα ηk
| cosℓ α|√

1− x2
1 sin

2 α
e−η2−w2

=
√
π

∫ ∞

0

dηe−η2

ηk
∫ 1

0

dµ

(1− µ2)(1−ℓ)/2(1− x2
1µ

2)1/2

≤

{√
π(
∫∞
0

dηe−η2

ηk)K(x1), ℓ = 0,
√
π(
∫∞
0

dηe−η2

ηk)
∫ 1

0
dµ

(1−x2
1µ

2)1/2
, ℓ ≥ 1.

(10)

On one hand, |J̃cc| ≲ C ln(1−x1) for ℓ = 0, because K(a) ∼ −(1/2) ln(1−a2)
as a ↗ 1. On the other hand, because (0 <)x1 < 1,∫ 1

0

dµ

(1− x2
1µ

2)1/2
≤

∫ 1

0

dµ

(1− x1µ)1/2
=

2

x1
[1− (1− x1)

1/2],

and thus |J̃cc| remains finite for ℓ ≥ 1.
The lower estimate for the case ℓ = 0 is obtained as follows:

|J̃cc| =
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

π/2

dα
ηk sinm+1 α

(1− x2
1 sin

2 α)1/2
e−η2−w2− ν

η s

= 2

∫ ∞

0

dζ

∫ π/2

0

dβ

∫ π

π/2

dα
ζk+1 cosk β sinm+1 α

(1− x2
1 sin

2 α)1/2
e−ζ2− νs

ζ cos β

≥ 2(

∫ 2

1

dζζk+1e−ζ2

)(

∫ π/2

0

dβe−
2ν12
cos β cosk β)

∫ 1

0

µm+1dµ

(1− µ2)1/2(1− x2
1µ

2)1/2

≥ 2−m(

∫ 2

1

dζζk+1e−ζ2

)(

∫ π/2

0

dβe−
2ν12
cos β cosk β)

∫ 1

1/2

dµ√
(1− µ2)(1− x2

1µ
2)

= 2−m(

∫ 2

1

dζζk+1e−ζ2

)(

∫ π/2

0

dβe−
2ν12
cos β cosk β)[K(x1)− F (

1

2
, x1)],
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where F is the incomplete elliptic integral of the first kind

F (x, a) ≡
∫ x

0

dt√
(1− t2)(1− a2t2)

, (0 < a2 < 1),

and behaves regularly in a as a ↗ 1. Thus,K is dominant and |J̃cc| is estimated
to diverge with the common rate from both side.

Summary In conclusion, the gradient of the moment
(
Ik,ℓ,mcc

)′
in (9) may

diverge again only when ℓ = 0, irrespective of whether ν ≡ 0 or not. The
diverging rate is logarithmic, which is weaker than the convex case and is
the same as the planar case. The result is again striking, because the singular
behavior is mostly induced even when smooth data are imposed on the smooth
concave boundary.

2.2 Quasi-full model

2.2.1 Over a planar boundary

We now consider the slab problem for the quasi-full model

ζ1
∂ϕ

∂x1
+ζ2

∂ϕ

∂x2
= −νϕ+ S, b.c. ϕ(x1 = ±1, x2, ζ) = g±(x2, ζ), ζ1 ≶ 0,

(11)

which is obtained by adding the source S to the equation of problem (3). Here,
we suppose that S(x1, x2, ζ) behaves in the same way as the moments of ϕ
for the partial model and thus its derivative with respect to x1 may diverge
logarithmically in approaching the boundary. We use the same notation as in
Sect. 2.1.1.

The solution ϕ for ζ1 > 0 is written as

ϕ(X1, 0, ζ) = g−(yw, ζ)e
− νX1

η cosα +

∫ X1
cosα

0

1

η
e

ν
η (t− X1

cosα )S(x̃, ỹ, ζ)dt,

where α ∈ (−π/2, π/2) , yw = −X1 tanα, x̃ = t cosα, and ỹ = yw + t sinα.
The half-range moments at the position (X1, 0) are then given by substitution
as

Ik,ℓ,m =⟨ηk cosℓ α sinm αϕ⟩+

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk+1 cosℓ α sinm α g−(yw, ζ) e
−η2−w2− νX1

η cosα

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ α sinm α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )S(x̃, ỹ, ζ)dt,
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where k, ℓ, m (≥ 0) are integers. The difference from the partial model case is
the second term on the right-hand side. Then, by direct calculation, we have(
Ik,ℓ,m

)′
=− Jk,ℓ−1,m[η sinα∂1g− + νg−]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm α e−η2−w2

S(X1, 0, ζ)

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk−1ν cosℓ−1 α sinm α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )S(x̃, ỹ, ζ)dt

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm+1 α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )∂2S(x̃, ỹ, ζ)dt, (12)

where ∂2S and ∂1S that will appear soon later denote the derivatives of S
with respect to its second and first arguments, respectively. Since∫ X1

cosα

0

e
ν
η (t− X1

cosα )dt =
η

ν
(1− e−

νX1
η cosα ),

S(X1, 0, ζ) is rewritten as

S(X1, 0, ζ) = e−
νX1

η cosαS(X1, 0, ζ) +
ν

η

∫ X1
cosα

0

e
ν
η (t− X1

cosα )S(X1, 0, ζ)dt.

Substituting this into the second line of (12), we further transform (12) as
follows:(
Ik,ℓ,m

)′
=− Jk,ℓ−1,m[η sinα∂1g− + νg−]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm α

× e−η2−w2− νX1
η cosαS(X1, 0, ζ)

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk−1ν cosℓ−1 α sinm α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )[S(x̃, ỹ, ζ)− S(X1, 0, ζ)]dt

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm+1 α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )∂2Sdt
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=− Jk,ℓ−1,m[η sinα∂1g− + νg− − S(X1, 0, ζ)]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm α e−η2−w2

× {e−
νX1

η cosα [S(0, yw, ζ)− S(X1, 0, ζ)] +

∫ X1
cosα

0

e
ν
η (t− X1

cosα )∂tSdt}

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ−1 α sinm+1 α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )∂2Sdt

=− Jk,ℓ−1,m[η sinα∂1g− + νg− − S(0, yw, ζ)]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ α sinm α e−η2−w2

×
∫ X1

cosα

0

e
ν
η (t− X1

cosα )∂1Sdt. (13)

In the above transformation, we have used the integration by part for the sec-
ond equality and the relation ∂tS(x̃, ỹ, ζ) = cosα∂1S(x̃, ỹ, ζ)+sinα∂2S(x̃, ỹ, ζ)
for the last equality. Because the first term on the most right-hand side is the
same integration as that occurring in the partial model, the remaining task
is to study the contribution from the second term with keeping in mind that
∂1S(x̃, ·, ·) may behave like ln x̃ for 0 < x̃ < X1 ≪ 1, where x̃ = t cosα. We
thus finally reduce the problem to study the behavior of

J ≡
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηk cosℓ α sinm α e−η2−w2

∫ X1
cosα

0

e
ν
η (t− X1

cosα ) ln(t cosα)dt.

Since X1 ≪ 1, we have

|J | ≤ −
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηke−η2−w2

∫ X1
cosα

0

e
ν
η (t− X1

cosα ) ln(t cosα)dt

=−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ηke−η2−w2

× η

ν
{[e−

νX1
η cosα (e

ν
η t − 1) ln(t cosα)]

X1
cosα
0 −

∫ X1
cosα

0

t−1e−
νX1

η cosα (e
ν
η t − 1)dt}

=−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ν−1ηk+1e−η2−w2

× [(1− e−
νX1

η cosα ) lnX1 − e−
νX1

η cosαG(
νX1

η cosα
)],
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where G(x) =
∫ x

0
t−1(et − 1)dt. Because 0 ≤ G(x) ≤ 2

√
xex,6

|J | ≤ − lnX1

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π/2

−π/2

dα ν−1ηk+1e−η2−w2

(1− e−
νX1

η cosα )

+ 2X
1/2
1

∫ ∞

−∞
dw

∫ ∞

0

dην−1/2ηk+1/2e−η2−w2

∫ π/2

−π/2

dα (cosα)−1/2

≤− 2 lnX1

∫ ∞

0

dζ ν−1ζk+2e−ζ2

∫ π/2

−π/2

dβ (cosβ)k+1

∫ 1

0

dµ
(1− e−

νX1
ζµ cos β )√

1− µ2

+ 8
√
2X

1/2
1

∫ ∞

−∞
dw

∫ ∞

0

dην−1/2ηk+1/2e−η2−w2

∫ 1/2

0

dµ
√
µ
.

For ϵ ≪ 1 and a > 0,∫ 1

0

dµ
1− e−

a
µ√

1− µ2
=

∫ ϵ

0

dµ
1− e−

a
µ√

1− µ2
+

∫ 1

ϵ

dµ
1− e−

a
µ√

1− µ2

≤
∫ ϵ

0

dµ
1√

1− ϵ2
+

∫ 1

ϵ

dµ
1− e−

a
ϵ

√
1− µ

=
ϵ√

1− ϵ2
+ 2

√
1− ϵ(1− e−

a
ϵ ) ≤ 2(ϵ+ 1− e−

a
ϵ ).

Using the above, we have

|J | ≤ − 4 lnX1

∫ ∞

0

dζ ν−1ζk+2e−ζ2

∫ π/2

−π/2

dβ (cosβ)k+1(ϵ+ 1− e−
ν

ζ cos β
X1
ϵ )

+ 16X
1/2
1

∫ ∞

−∞
dw

∫ ∞

0

dην−1/2ηk+1/2e−η2−w2

≤− 4 lnX1

∫ ∞

0

dζ ν−1ζk+2e−ζ2

∫ π/2

−π/2

dβ (cosβ)k+1(ϵ+
ν

ζ cosβ

X1

ϵ
)

+ 16X
1/2
1

∫ ∞

−∞
dw

∫ ∞

0

dην−1/2ηk+1/2e−η2−w2

≤− 4 lnX1

∫ ∞

0

dζ ζk+1e−ζ2

π (ϵζν−1 +
X1

ϵ
)

+ 16X
1/2
1

∫ ∞

−∞
dw

∫ ∞

0

dην−1/2ηk+1/2e−η2−w2

.

By setting ϵ = X
1/2
1 , we have |J | ≲ X

1/2
1 lnX1, so that the last term of (13)

remains finite.

6 Obviously G(x) ≥ 0 for x ≥ 0. If we introduce Gn(x) ≡ (1/n)xnex−G(x) (n > 0), then
we have G′

1 = x−1{(x + x2 − 1)ex + 1} ≡ x−1g1(x). Because g′1 = (3x + x2)ex ≥ 0 and
g1(0) = 0, g1(x) is non-negative for x ≥ 0. Therefore G1 ≥ G1(0) = 0. Now compare G1/2

with G1. Because G1/2 − G1 = (2
√
x − x)ex, G1/2 ≥ G1 ≥ 0 holds for x ≤ 1. For x ≥ 1,

G′
1/2

= x−1{(x1/2 + 2x3/2 − 1)ex + 1} ≥ 0 and thus G1/2 ≥ G1/2(1) ≥ G1(1) ≥ 0. Thus

we conclude G1/2(x) ≥ 0, i.e., 0 ≤ G(x) ≤ 2
√
xex, for x ≥ 0.
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We thus conclude that the source term does not influence the diverging
rate of the gradient

(
Ik,ℓ,m

)′
in (13).

2.2.2 Over a convex surface

Consider the problem

ζ1
∂ϕ

∂x1
+ζ2

∂ϕ

∂x2
= −νϕ+ S,

ϕ =

{
g+(θ, ζ), ζ · n(r = 1, θ) > 0,

g−(θ, ζ), ζ · n(r = R, θ) > 0,

which is obtained by adding the source S to the equation of problem (5). Here,
we suppose that S(x1, x2, ζ) behaves in the same way as the moments of ϕ for
the partial model. We use the same notation as in Sect. 2.1.2, see Fig. 1(a).

The solution in the range |α| < α∗ and its moment on the positive x1-axis
are again of our present interest; the former is written as

ϕ(x1, 0, ζ) = g+(θw, αw, η, w)e
− νs

η +

∫ s

0

1

η
e−

ν
η (s−t)S(x̃, ỹ, ζ)dt,

where x̃ = xw + t cosα, ỹ = yw + t sinα, and the partial-range moments to be
considered on the x1-axis are written as

I[S] ≡
∫ ∞

−∞
dw

∫ ∞

0

dη η

∫ α∗

−α∗

dα ηk cosℓ α sinm αϕe−η2−w2

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk+1 cosℓ α sinm α g+(θw, αw, η, w)e
−η2−w2− ν

η s

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)S(x̃, ỹ, ζ)dt.

The difference from the partial model case is the second term in the above,
i.e., the partial model case is recovered by the above notation as I[0]. Then,
denoting the derivative in x1 by ′ , we have

I ′[S] =I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη α′
∗ η

k cosℓ α∗ sinm α∗ e
−η2−w2

×
∫ s∗

0

e−
ν
η (s∗−t)[S(x̃∗, ỹ∗, α∗, η, w) + (−1)mS(x̃∗,−ỹ∗,−α∗, η, w)]dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

s′S(x1, 0, ζ)

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

s′
ν

η

∫ s

0

e−
ν
η (s−t)S(x̃, ỹ, ζ)dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

×
∫ s

0

e−
ν
η (s−t)(x′

w∂1S + y′w∂2S)dt
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=I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη ηk cosℓ α∗ sinm α∗ α
′
∗ e

−η2−w2

×
∫ s∗

0

e−
ν
η (s∗−t)[S(x̃∗, ỹ∗, α∗, η, w) + (−1)mS(x̃∗,−ỹ∗,−α∗, η, w)]dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

s′S(x1, 0, ζ)

−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

s′

×{
∫ s

0

∂t[e
− ν

η (s−t)S(x̃, ỹ, ζ)]dt−
∫ s

0

e−
ν
η (s−t)(cosα∂1S + sinα∂2S)dt}

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

×
∫ s

0

e−
ν
η (s−t)(x′

w∂1S + y′w∂2S)dt

=I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη ηk cosℓ α∗ sinm α∗ α
′
∗ e

−η2−w2

×
∫ s∗

0

e−
ν
η (s∗−t)[S(x̃∗, ỹ∗, α∗, η, w) + (−1)mS(x̃∗,−ỹ∗,−α∗, η, w)]dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2− ν
η ss′S(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt

=I ′[0]−
∫ ∞

−∞
dw

∫ ∞

0

dη ηk cosℓ−1 α∗ sinm+2 α∗ e
−η2−w2

×
∫ s∗

0

e−
ν
η (s∗−t)[S(x̃∗, ỹ∗, α∗, η, w) + (−1)mS(x̃∗,−ỹ∗,−α∗, η, w)]dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk
cosℓα sinm+1α

(1− x2
1 sin

2α)1/2

× e−η2−w2− ν
η sx1sinαS(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ+1 α sinm α e−η2−w2− ν
η sS(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt,

where x̃∗ = xw∗ + t cosα∗ and ỹ∗ = yw∗ + t sinα∗. Note that all the terms
above, except for the last, are of the same type as those occurring in I ′[0].
After a few manipulations, we have the following final form

I ′[S] =− x
−(m+ℓ+1)
1 (x2

1 − 1)
ℓ−1
2 {Ik+1,m

cv (x1) + Ĩk,mcv (x1)}
+ Jk,ℓ,m+1

cv [−η(∂1g+ − ∂2g+) + x1 sinα{−νg+ + S(xw, yw, ζ)}]
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+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ+1α sinmα

× e−η2−w2− ν
η s{−νg+ + S(xw, yw, ζ)}

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt,

(14)

where

Ĩk,mcv (x1) =

∫ ∞

−∞
dw

∫ ∞

0

dη ηke−η2−w2

∫ s∗

0

e−
ν
η (s∗−t)

× [S(x̃∗, ỹ∗, α∗, η, w) + (−1)mS(x̃∗,−ỹ∗,−α∗, η, w)]dt.

Because the behavior of the first three terms of (14) is known by the analyses
for the partial model, the remaining task is to estimate the behavior of the
last term of (14) by taking into account that the derivative of S with respect
to the radial direction may diverge with the rate 1/

√
r − 1. Because

|∂1S| = |∂1r∂rS + ∂1θ∂θS| = | cos θ∂rS − (sin θ/r)∂θS| ≲
C√
r − 1

,

with some positive constant C, we evaluate the behavior of the last term of
(14) by considering the following integral:

|
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t) 1√

r − 1
dt|

≤
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ α∗

−α∗

dα ηke−η2−w2

∫ s

0

e−
ν
η (s−t)√r + 1√

t2 + 2t cos(θw − α)
dt

≤
√
π(R+ 1)

∫ ∞

0

dη

∫ α∗

−α∗

dα
ηke−η2√

2 cos(θw − α)

∫ s

0

1√
t
dt

=
√
2π(R+ 1)

∫ ∞

0

dη

∫ α∗

−α∗

dα
ηke−η2√

s
√
cosαw

≤4
√
πRx1(

∫ ∞

0

ηke−η2

dη)

∫ α∗

0

dα√
x1 cosα− s

=4
√
πRx1(

∫ ∞

0

ηke−η2

dη)

∫ α∗

0

dα

(1− x2
1 sin

2 α)1/4

=4
√
πRx1(

∫ ∞

0

ηke−η2

dη)

∫ 1

0

dµ

(1− µ2)1/4(x2
1 − µ2)1/2

≤4
√
πRx1(

∫ ∞

0

ηke−η2

dη)

∫ 1

0

dµ

(1− µ)3/4
= 16

√
πRx1(

∫ ∞

0

ηke−η2

dη),

which remains finite as x1 ↘ 1.
Therefore, we conclude that the source term does not change the structure

of the occurrence of diverging gradient.
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2.2.3 Over a concave surface

Consider the problem

ζ1
∂ϕ

∂x1
+ ζ2

∂ϕ

∂x2
= −νϕ+ S, b.c. ϕ = g−(θ, ζ), ζ · n(r = 1, θ) < 0, (15)

which is obtained by adding the source S to the equation of (7). Here, we
suppose that S(x1, x2, ζ) behaves in the same way as the moments of ϕ for
the partial model. We use the same notation as in Sect. 2.1.3, see Fig. 1(b).

The solution and its moments on the positive x1-axis are again of our
interest; the former is written as

ϕ(x1, 0, ζ) = g−(θw, αw, η, w)e
− νs

η +

∫ s

0

1

η
e−

ν
η (s−t)S(x̃, ỹ, ζ)dt, (16)

while the latter are

I[S] ≡⟨ηk cosℓ α sinm αϕ⟩

=

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk+1 cosℓ α sinm α g−(θw, αw, η, w) e
−η2−w2− ν

η s

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)S(x̃, ỹ, ζ)dt,

where x̃ = xw + t cosα and ỹ = yw + t sinα. The difference from the partial
model case is the second term; the first term, which we shall denote by I[0]
below, represents the corresponding moments for the partial model. Denoting
the derivative in x1 by ′, we have

I ′[S] =I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

s′S(x1, 0, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα (−ν/η)ηk cosℓ α sinm α

× e−η2−w2

s′
∫ s

0

e−
ν
η (s−t)S(x̃, ỹ, ζ)dt

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

×
∫ s

0

e−
ν
η (s−t)(x′

w∂1S + y′w∂2S)dt

=I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

s′

× {e−
ν
η sS(xw, yw, ζ) +

∫ s

0

e−
ν
η (s−t)∂tS(x̃, ỹ, ζ)dt}

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

×
∫ s

0

e−
ν
η (s−t)(x′

w∂1S + y′w∂2S)dt
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=I ′[0] +

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α

× e−η2−w2

s′e−
ν
η sS(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt

=I ′[0]−
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk
cosℓ α sinm+1 α

(1− x2
1 sin

2 α)1/2
e−η2−w2− ν

η s

× x1 sinαS(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ+1 α sinm α e−η2−w2− ν
η sS(xw, yw, ζ)

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt.

Here the second and third terms are of the same type as I ′[0] and induce the
same singularity as the partial model case. For later convenience, we rewrite
the result as

I ′[S] =Jk,ℓ,m+1
cc [η(∂1g− − ∂2g−)− x1 sinα{−νg− + S(xw, yw, ζ)}]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ+1 α sinm α

× e−η2−w2− ν
η s[−νg− + S(xw, yw, ζ)]

+

∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓ α sinm α e−η2−w2

∫ s

0

e−
ν
η (s−t)∂1Sdt. (17)

The remaining task is thus to estimate the behavior of the last term of (17).
By taking into account that the derivative of S(x, y, ζ) with respect to r =
(x2+y2)1/2 may diverge with the rate ln(1− r) if r ↗ 1. Because ∂1S is taken
along the path (x1, x2) = (x̃, ỹ), r = (x̃2 + ỹ2)1/2 in the present case, we have

|∂1S| = |∂1r∂rS + ∂1θ∂θS| = | cos θ∂rS − (sin θ/r)∂θS|
≲ −C ln(1− r) ≤ −C ln(1− r2) + C ln 2 = −C ln[−t(t+ 2 cosαw)/2].

We thus evaluate the last term by considering the following integral:

|
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηk cosℓα sinmα e−η2−w2

∫ s

0

e−
ν
η (s−t) ln[−t(t+ 2 cosαw)]dt|

≤ −
∫ ∞

−∞
dw

∫ ∞

0

dη

∫ π

−π

dα ηke−η2−w2

∫ s

0

[ln t+ ln(−t− 2 cosαw)]dt

=−
√
π

∫ ∞

0

dη ηke−η2

∫ π

−π

dα{s(ln s− 1)

+ (s+ 2 cosαw)[ln(−s− 2 cosαw)− 1]− 2 cosαw[ln(−2 cosαw)− 1]}.
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Here we have taken into account that 0 ≤ −t(t+2 cosαw) = 1− r2 ≤ 1. Since
x lnx is bounded for 0 ≤ x ≤ 2, the integrand is bounded, and the last term
(17) remains finite as x1 ↗ 1.

We thus conclude that the source term does not influence the structure of
the occurrence of diverging gradient.

2.3 Discussions

From the analyses in Sects. 2.1 and 2.2, it is now clear that the essence of the
singularities has already been embedded in the partial model. They are con-
fined in Jk,−1,m[·] of (13), Jk,0,m+1

cv [·] and x−m−1
1 (x2

1 − 1)−1/2{Ik+1,m
cv (x1) +

Ĩk,mcv (x1)} of (14), and Jk,0,m+1
cc [·] of (17) for the planar, convex and con-

cave boundary, respectively, and are commonly identified as the divergence of
the integrand for the molecular velocity nearly tangential to the boundary.
Among them, the diverging rate of J ’s is commonly logarithmic, while that of
x−m−1
1 (x2

1 − 1)−1/2{Ik+1,m
cv (x1) + Ĩk,mcv (x1)} is the inverse of the square root.

The latter occurs only when the boundary is convex.
In the kinetic description, for instance in (2), the boundary data of the

VDF are prescribed only for the molecules leaving the boundary, while the
VDF is determined by the kinetic equation for the molecules arriving at the
boundary. Consequently, the VDF data are mostly mismatched, making a
jump discontinuity in molecular velocity space in the direction tangential to the
boundary. In the convex boundary case, it propagates into the gas region along
the molecular trajectory (i.e., the characteristics of the equation), which in
turn causes the inverse square root singularity x−m−1

1 (x2
1−1)−1/2{Ik+1,m

cv (x1)+
Ĩk,mcv (x1)} by the variation effect of α∗ in approaching the boundary. In the
planar boundary case, however, the jump discontinuity does not propagate
into the gas, because its characteristics is never away from the boundary. In
the concave boundary case, as is clear from (16), the VDF itself is continuous
(except for η = 0). These explain the reason why the inverse square root
singularity exclusively occurs in the convex boundary case.

In [13], the source of the logarithmic singularity in the planar case was iden-
tified as the jump discontinuity of the VDF on the boundary in the spatially
one-dimensional setting. In the meantime, as is mentioned above, the jump
discontinuity does not exist in the concave case. Nevertheless, the logarithmic
singularity occurs commonly in the planar and concave cases. This seemingly
puzzling situation can be understood if we closely observe the arguments of
Jk,−1,m[·] of (13) and Jk,0,m+1

cc [·] of (17). Let us take the latter for instance,
i.e., Jk,0,m+1

cc [η∂1g−−η∂2g−−x1 sinα(−νg−+Sw)], where Sw = S(xw, yw, ζ),
and go back to (15). Then, the term ζ2∂ϕ/∂x2 in (15) on the positive x1-axis
can be written in terms of the cylindrical coordinates as

ζ2
∂ϕ

∂x2
=

η sinα

x1

∂ϕ

∂θ
− η sinα

x1

∂ϕ

∂α
,

where tan θ = x2/x1, tan(α+θ) = ζ2/ζ1, and r has been replaced by x1 because
θ = 0 on the positive x1-axis. If we substitute the expression of ϕ(x1, x2, ζ)
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corresponding to (16) into the right-hand side, we eventually obtain

ζ2
∂ϕ

∂x2
=
η sinα

x1
{(DΘw)0(∂1g− − ∂2g−)−

1

η

∂s

∂α
(−νg− + Sw)}e−

ν
η s

+ sinα

∫ s

0

e−
ν
η (s−t)∂2S(x̃, ỹ, ζ)dt,

where tanΘw = [r sin θ− s sin(α+ θ)]/[r cos θ− s cos(α+ θ)], which is reduced

to tan θw when θ = 0, and (DΘw)0 = ( ∂
∂θ −

∂
∂α )Θw

∣∣∣
θ=0

. By direct calculation,

we see that

(DΘw)0 = x1(x1 − s cosα) + x1 sinα
∂s

∂α
,

and that

ζ2
∂ϕ

∂x2
=

1

x2
1

∂s

∂α
{η(∂1g− − ∂2g−)− x1 sinα(−νg− + Sw)}e−

ν
η s

+ {− 1

x2
1

∂s

∂α
(1− x2

1 sin
2 α) + sinα(x1 − s cosα)}η(∂1g− − ∂2g−)e

− ν
η s

+ sinα

∫ s

0

e−
ν
η (s−t)∂2S(x̃, ỹ, ζ)dt. (18)

Here, it is crucial to note that

∂s

∂α
= −x1 sinα

(
1 +

x1 cosα

(1− x2
1 sin

2 α)1/2

)
,

is continuous if x1 is strictly less than unity, but is discontinuous at α = ±π/2
in the limit x1 → 1. Due to this fact, the second and third terms on the right-
hand side of (18) is continuous, while the first term has a jump discontinuity at
α = ±π/2, i.e., the direction of molecular velocity tangential to the boundary.
The part that actually generates the jump discontinuity in the first term in
(18) is

− cosα sinα

(1− x2
1 sin

2 α)1/2
{η(∂1g− − ∂2g−)− x1 sinα(−νg− + Sw)}e−

ν
η s,

which is exactly the same, except for the factor cosα, as that occurs in
Jk,0,m+1
cc [η∂1g− − η∂2g− − x1 sinα(−νg− + Sw)].
The origin of Jk,−1,m[η sinα∂1g− + νg− − Sw], where Sw = S(0, yw, ζ), in

(13) for the planar boundary case can be discussed in the same way. Here,
we shall take a short cut to explain it. Let us consider the difference of νϕ +
ζ2∂ϕ/∂x2 between its left and right limit at α = π/2. The limit from the
right is given by νg− + ζ2∂g−/∂x2, while the limit from the left is given by
νϕ + ζ2∂ϕ/∂x2 = Sw. These are the consequence of the fact that the former
is determined by the boundary data, while the latter is determined by solving
the equation itself. Thus, their difference is given by

ν(ϕ− g−) + ζ2
∂(ϕ− g−)

∂x2
= −(ζ2

∂g−
∂x2

+ νg− − Sw).
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The right-hand side is nothing else than the argument of Jk,−1,m[·] at α =
π/2, because ζ2∂g−/∂x2 = ζ2∂1g− = η sinα∂1g−. Therefore, the singularity
is induced in the present case by both the jump discontinuity of the VDF
itself and of its derivative. In particular, the latter may occur even in the
collisionless case. We shall omit the similar discussion for the convex case,
because Jk,0,m+1

cv [·] is not dominant.

In this way, we have now reached a unified view that the singularities of our
interest is the trace of the jump discontinuity of the VDF and/or its derivative
in the direction tangential to the boundary.

3 From prototype to general smooth boundary

In the present section, we shall extend the results for planar and cylindrical
convex/concave boundaries to general smooth boundaries.

The singularities that we have discussed in Sect. 2 are induced by the dis-
tribution of molecules that travel almost tangential to the boundary. Although
the boundary geometry has been limited so far, we can apply the obtained re-
sults to more general geometry of the boundary, as far as it is smooth. This is
because the free flight length of molecules traveling almost tangential to the
boundary is determined by the local geometry of the boundary, when the po-
sition under consideration is close to the boundary. Its global arrangement or
geometry does not affect the discussions developed in Sect. 2. We thus classify
the points on the boundary by following the differential geometry of surfaces
and discuss the singularity which is dominant there.

The local geometry of the surface is classified into four types. They are
represented by the elliptic, hyperbolic, parabolic and flat umbilic points. The
principal curvatures at a surface point are the maximum and minimum of the
normal curvatures there, where the normal curvature is the curvature of the
curve that is the intersection between the surface and the normal plane at
the point. At elliptic points, the principal curvatures have the same sign, and
thus the normal curvature in any tangential direction has the same sign. At
hyperbolic points, the principal curvatures have opposite signs. At parabolic
points, one of the principal curvatures is zero. At flat umbilic points (or level
points), both principal curvatures are zero, so that the normal curvature in any
tangential direction is zero. The key notion is that the surface can be locally
approximated by a circle, or a quadratic polynomial, in the normal plane, if
the normal curvature does not vanish.

(Case 1) at the elliptic point There are two possibilities: the boundary
is convex or concave. If convex, the boundary on any normal plane is circular
and the results for the cylindrical convex case in Sect. 2.2.2 apply. Therefore,
the singularity of 1/

√
s manifests itself, where and hereinafter s is the normal

distance from the boundary. If concave, the results for the cylindrical concave
case in Sect. 2.2.3 apply, and the singularity of ln s manifests itself.
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(Case 2) at the hyperbolic point There are two regions for the tangential
directions: one is the region in which the normal curvature is always positive,
another is the region in which the normal curvature is always negative. There
are two tangential directions along which the normal curvature is zero. They
are isolated and thus of measure zero in the tangential direction space. Then in
the region of positive normal curvature the results for the cylindrical convex
case apply, while in the region of negative normal curvature those for the
cylindrical concave case apply. Thus, the singularity of 1/

√
s from the positive

normal curvature side dominates.

(Case 3) at the parabolic point The normal curvature in any direction,
except for one direction, is positive or negative. If positive, the results for the
cylindrical convex case apply, and the singularity of 1/

√
s manifests itself. If

negative, the results for the cylindrical concave case apply, and the singularity
of ln s manifests itself. In fact, all the points on the inner and outer cylinder
surfaces fall into this category. Since the direction of zero normal curvature is
isolated, it does not contribute.

(Case 4) at the flat umbilic point The zero normal curvature in any
direction does not necessarily mean that the surface is plane. For every fixed
point on the smooth surface, we can assign a rectangular coordinates (x, y, z)
whose origin is located at that point with the z axis normal to the surface; thus
the x and y are the coordinates in the tangential plane. Then, in the vicinity
of the point under consideration, the surface is expressed by the polynomial
of x and y:

z = c20x
2 + c11xy + c02y

2 + c30x
3 + c21x

2y + c12xy
2 + c03y

3 + · · ·

=
∞∑

i+j=2

cijx
iyj ,

where cij are constants (i, j ≥ 0). When at least one of c20, c11, and c02 is
non-zero, the quadratic terms are dominant and the surface along the direction
tan θ = y/x is given by

z = (c20 cos
2 θ + c11 cos θ sin θ + c02 sin

2 θ)(x2 + y2) ≡ C2(θ)(x
2 + y2).

When C2(θ) is positive or negative for any θ, the point is elliptic. When the
maximum and minimum of C2(θ) have opposite sign, the point is hyperbolic.
When the maximum or minimum of C2(θ) is zero, the point is parabolic.
Clearly, the quadratic terms vanish only at the isolated values of θ, when one
of c20, c11 and c02 is non-zero.

The flat umbilic point is the point where c20, c11 and c02 are all zero [or
equivalently C2(θ) is identically zero]. Then, the cubic terms become domi-
nant, as far as one of c30, c21, c12 and c03 is non-zero. In the case, C3(θ) =∑3

i=0 ci,3−i cos
i θ sin3−i θ can be zero at most at the isolated values of θ, and

the case is reduced to the study of the canonical one z = x3 in the x-z plane.
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(a) Quadratic curve (b) Cubic curve

Fig. 2 Boundary shape and tangential direction.

When C2(θ) and C3(θ) are identically zero, then the quartic terms are domi-

nant, as far as C4(θ) =
∑4

i=0 ci,4−i cos
i θ sin4−i θ is not identically zero. Again,

in this condition, C4(θ) can be zero only at the isolated values of θ, and the
case is reduced to the study of the canonical one z = ±x4 in the x-z plane.
In this way, the study of the singularity at the flat umbilic point is reduced
to the study of the vicinity of the surface z = (±)n+1xn, where n ≥ 3 is an
integer.

First consider the case that the surface is expressed by a cubic curve on
a normal plane. There are two parts, one is convex and the other is concave.
The concave side gives rise to the ln z singularity, which is concluded from
the same argument as the cylindrical concave case in Sect. 2.2.3. On the other
hand, at the convex side another singularity may arise, which can be estimated
by a similar argument to the cylindrical convex case in Sect. 2.2.2. Here, the
key difference is the contribution arising from the change of integration range,
especially the change of the traveling direction of molecules tangential to the
boundary. In the cylindrical convex case in Sects. 2.1.2 and 2.2.2, the canonical
surface of which is quadratic, i.e., z = (1/2)x2, the slope cotα∗ of the tangen-
tial line is given by cotα∗ =

√
2s [see Fig. 2(a)]. Thus we have a singularity

proportional to ∂α∗/∂s ∼ −1/
√
2s, which recovers the result in Sect. 2.1.2.

The corresponding direction in the case of a cubic curve z = cx3 (c: a positive
constant) is given by the relation cotα∗ = 3cx2

∗ = (s + cx3
∗)/x∗, where x∗

is the x-coordinate of the point of tangency, from which the singularity pro-
portional to ∂α∗/∂s ∼ −(2c/s)1/3 is induced [see Fig. 2(b)]. In general, the
surface locally expressed by n-th polynomial z = cxn (c: a positive constant),
the tangential direction is given by cotα∗ = ncxn−1 = (s + cxn)/x, which
induces the singularity proportional to ∂α∗/∂s ∼ −((n− 1)c/s)1/n. Note that
when n is odd, this singularity occurs, but when n is even, the singularity
of the negative fractional power occurs only when the curve is convex. When
n is even and the curve is concave, the singularity ln s manifests itself. As
n → ∞, ∂α∗/∂s ∼ −((n − 1)c/s)1/n → −1 and the singularity degenerates.
Then the singularity of fractional power, which is related to the propagation
of discontinuity inside a gas, vanishes and the logarithmic singularity revives
to be dominant.
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4 Numerical demonstration

In the present section, we present some numerical results that support our
discussions and conclusions so far. The numerical computations to confirm
our assertion are really challenging, due to the necessity of the high accuracy
near the boundary. We thus restrict ourselves to the case of the BGK model
and/or the collisionless gas in the present paper. Numerical demonstration for
the case of the original Boltzmann equation is left for future work.

Here we demonstrate the singularities on the parabolic and flat umbilic
points. For the study of hyperbolic and elliptic points, spatially three dimen-
sional study is inevitable, which is limited to the collisionless gas here.

4.1 Rarefied gas between coaxial circular cylinders

Consider a rarefied gas between coaxial circular cylinders with radii L and LR
(R > 1). The inner cylinder is at rest and kept at a uniform temperature T0,
while the outer is rotating with a circumferential velocity (2RT0)

1/2uw and is
kept at a temperature T0(1+ τw), where R is the specific gas constant. Under
the assumption that |uw| ≪ 1 and |τw| ≪ 1, the problem can be linearized and
the behavior of a gas is described by the following linearized BGK equation
and diffuse reflection boundary condition on the cylinder surfaces:

ζr
∂ϕ

∂r
+
ζθ
r

∂ϕ

∂θ
+ ζz

∂ϕ

∂z
+

ζ2θ
r

∂ϕ

∂ζr
− ζrζθ

r

∂ϕ

∂ζθ
= LBGK[ϕ],

b.c. ϕ(r = 1, ζr > 0) = −2π1/2

∫
ζr<0

ζrϕEdζ,

ϕ(r = R, ζr < 0) = 2π1/2

∫
ζr>0

ζrϕEdζ + 2ζθuw + (ζ2 − 2)τw,

where (Lr, θ, Lz) is the spatial cylindrical coordinates, (2RT0)
1/2(ζr, ζθ, ζz) is

the corresponding coordinates for the molecular velocity, ρ0(2RT0)
−3/2[1 +

ϕ(r, θ, z, ζr, ζθ, ζz)]E with E = π−3/2 exp(−ζ2) and ζ = (ζ2r + ζ2θ + ζ2z )
1/2 is

the velocity distribution function of gas molecules, LBGK[ϕ] is the linearized
collision operator for the BGK model, the specific form of which in the present
case is given later. Below, we denote the density, temperature, flow velocity,
stress tensor, and heat flow of the gas by ρ0(1 + ω), T0(1 + τ), (2RT0)

1/2uα,
p0(δαβ +Pαβ), and p0(2RT0)

1/2Qα, respectively, where p0 = ρ0RT0, {α, β} =
{r, θ, z} and δαβ is Kronecker’s delta. They are defined as the moments of ϕ
as follows:

ω =

∫
ϕEdζ, uα =

∫
ζαϕEdζ, τ =

2

3

∫
(ζ2 − 3

2
)ϕEdζ, (19a)

Pαβ = 2

∫
ζαζβϕEdζ, Qα =

∫
ζα(ζ

2 − 5

2
)ϕEdζ. (19b)
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By the symmetry of the problem, uz, Qz, Pθz and Prz are all vanishing and
will not be considered. LBGK[ϕ] then takes the following reduced form:

LBGK[ϕ] =
1

k
{−ϕ+ ω + 2ζrur + 2ζθuθ + (ζ2 − 3

2
)τ}.

where k = (
√
π/2)Kn. Here, Kn is the reference Knudsen number defined by

the mean-free-path ℓ0 at the resting equilibrium state with temperature T0 and
density ρ0 divided by L, where ρ0 is the average density of the gas between
the cylinders.

Note that all the points on the boundary is the parabolic point in the
present example. The inner cylinder is convex, while the outer cylinder is
concave. In the numerical computations, we set R = 2. Before going further,
keep in mind that, according to our results of discussions, the gradients of ur,
Qr, Prr and Prθ with respect to r never diverge in approaching the boundary,
while those of the others can diverge with the rate depending on whether the
boundary is convex or not.

(Case I) Cylindrical Couette flow Let us set τw = 0. This is nothing
else than the Couette flow problem, which is axially symmetric, and all the
quantities occurring in (19) are zero, except for uθ, Prθ, andQθ. Their variation
near the inner and outer cylinders for various k are shown in Fig. 3 as a function
of the normal distance s from the boundaries, i.e., s = r−1 near the inner and
s(= R − r) = 2− r near the outer cylinder. As is clearly seen, the differences
of uθ and Qθ from their values at the boundary change in proportion to s1/2

near the inner and to s ln s near the outer cylinder as s → 0, respectively.
In contrast, the corresponding difference of Prθ changes in proportion to s as
s → 0.7 These are consistent with our theoretical predictions, not only on the
diverging rate of the gradient (say, for uθ and Qθ) but also on the finiteness
of the gradient of the moments which contain the multiplication of ζr in its
definition (i.e., Prθ). Incidentally, in the present problem, Qθ vanishes in the
collisionless limit, and uθ in the same limit behaves in the same way as Prθ

near the outer cylinder as is observed in the figure. The behavior of uθ is due
to that the boundary data along the outer cylinder surface is uniform and
the dynamics that induces the logarithmic divergence in the collisionless gas
is absent in the present case. Indeed, uθ in the collisionless case is readily
obtained as

uθ

uw
=

r

πR
(π +

1

r2

√
r2 − 1− arcsin

1

r
),

where 0 < arcsin(1/r) < π/2. Its gradient with respect to r is obviously finite
as r → R.

7 In order to discriminate s against s ln s, the quantities near the outer boundary are
shown by the semi-log plot of the difference from the values on the boundary divided by
the distance s. If the profile for small s is horizontal line, the difference grows in proportion
to s near the boundary. If the profile for small s is a straight line with non-zero slope, the
difference grows in proportion to s ln s near the boundary.
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(a) (b)

Fig. 3 Variations of uθ, Prθ and Qθ as a function of the normal distance s in Case I. (a)
Variations near the inner cylinder surface (s = r− 1). (b) Variations near the outer cylinder
surface (s = 2− r). In (b), the numbers in the legend are the number of grid intervals in r
used in the computations.

(Case II) Flow induced by the nonuniform surface temperature
Let us set uw = 0 and τw = a sin θ, where a is a small constant. Since the
surface temperature of the outer cylinder varies, the problem is no longer
axially symmetric. However, a similarity solution can be applied, so that ω,
ur, τ , Prr, Pθθ, Pzz and Qr are proportional to sin θ, while uθ, Prθ and Qθ are
proportional to cos θ. Here, we show the change of ω, ur, τ and Pθθ divided
by sin θ and that of uθ, Prθ and Qθ divided by cos θ near the inner and outer
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Fig. 4 Variations of ω, ur, τ , Pθθ, uθ, Prθ and Qθ near the inner cylinder as a function of
the normal distance s(= r − 1) from the boundary in Case II.
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Fig. 5 Variations of ω, ur, τ , Pθθ, uθ, Prθ and Qθ near the outer cylinder as a function of
the normal distance s(= 2− r) from the boundary in Case II. The pairs of numbers in the
legends are the pairs of the number of grid intervals in r and that in the azimuth angle of
the molecular velocity, i.e., θζ = arctan(ζθ/ζr), for its half range.
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Fig. 6 Configuration of the surface with varying normal curvature. The X1-coordinates
of the surface positions pointed by the arrows (a)-(d) are as follows: (a) X1/d = 0, (b)
X1/d = 0.5994, (c) X1/d = 0.8991 and (d) X1/d = 1.1993.

cylinders for various k in Figs. 4 and 5. As is clearly shown, ur, Prθ, and Qr

change from their values at the boundary in proportion to s as s → 0 both
near the inner and outer cylinders. In contrast, the others (ω, τ , Pθθ, uθ and
Qθ) change from their values at the boundary in proportion to s1/2 and s ln s
as s → 0 near the inner and outer cylinders, respectively. These are consistent
with our theoretical predictions. Incidentally, in the collisionless case, uθ ≡ 0
and the gradients of all the other quantities, except for Qθ, are readily seen
to be finite at the outer cylinder. The gradient of Qθ, however, diverges in
proportion to ln s as s → 0, which is in marked contrast to the behavior of uθ

in Case I. This is due to the effect of the boundary data variation along the
outer cylinder surface, which is absent in Case I.

4.2 Thermally induced flow around a surface with varying normal curvature

The concerned surface with varying normal curvature consists of parabolic
points and flat umbilic points (see Fig. 6). In the X1-X2 plane, the flat umbilic
points are represented by three different points, one is (X1, X2) = (0, d), and
the others are the inflection points of the curve X2 = d[1− tanh(X4

1/d
4)]. The

surface is locally approximated by a quartic curve at the former point, while it
is approximated by a cubic curve at the latter, i.e., the inflection points. Except
for the three flat-umbilic points, the surface is composed of parabolic points;
the surface is convex between the inflection points and is concave elsewhere.
The surface temperature is given by Tw = T0(1+δτb) with τb =

1
2 (1+cos(πX1

2d ))
and δ ≪ 1. The outer square surface at X1 = ±2d and X2 = 2d is kept at the
uniform reference temperature T0. On the entire surface, the diffuse reflection
is assumed. The quantities are to be made dimensionless in the same way as
in Sect. 4.1 with d being the reference length in place of L and ρ0 being the
average density of the gas. Accordingly, s represents the (dimensional) normal
distance divided by d and the reference Knudsen number in k = (

√
π/2)Kn

is defined by the mean-free-path at the reference equilibrium state divided
by d. The numerical computations have been carried out on the basis of the
linearized BGK model as in Sect. 4.1.
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Fig. 7 Variations of ω, τ , un and ut near the surface with varying curvature as a function of
the normal distance s from the surface. The curves (a)-(d) in the figure indicate the results
along the arrows (a)-(d) in Fig. 6. Note that the left vertical axis is for (a)-(c), while the
right vertical axis is for (d).

Figure 7 shows the variations of density ω, temperature τ , flow velocity
components un and ut in the directions normal and tangential to the boundary
near the representative surface points. As is clearly observed in the figure, ω,
τ and ut behave differently among the positions (a)-(c), while un behaves
commonly among those positions. Here, it should be reminded that the left
vertical axis in the figure is for (a)-(c)-plots, while the right vertical axis is
for (d)-plot. The slope of the former for small s is 3/4, 1/2 and 2/3 for (a),
(b) and (c), respectively, which implies the change in proportion to s3/4, s1/2

and s2/3. Hence, the results are consistent with the theoretical predictions in
Sect. 3. As for (d), the results are plotted against the right axis, and thus the
straight line with non-zero slope implies the change in proportion to s ln s,
while the straight line with zero-slope implies the change in proportion to s.
The density ω, temperature τ , tangential flow velocity ut change commonly
in proportion to s ln s for finite Knudsen numbers and tend to be proportional
to s in the collisionless gas limit (k = ∞), though ut ≡ 0 in the same limit.
In the meantime, un tends to change in proportion to s as s becomes smaller.
These observations are again consistent with the theoretical predictions for the
parabolic points in Case 3 of Sect. 3. One may wonder if the regular behavior
of ω and τ conflicts with our prediction. However, it should be noted that our
theory does not exclude the possibility of the occurrence of cancellation of the
singularity sources in the integrand as a result of integration. Actually, the
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Fig. 8 The inner surface z = −x2 + (cy)2 with x2 + y2 ≤ 1 and c = 1.

similar situation does happen in the next example in Sect. 4.3. The numerical
results are thus all consistent with our theory.

4.3 Collisionless gas near the saddle point of a surface

Consider a collisionless gas confined in a right circular cylinder with radius
2L. Let us set the Cartesian space coordinates (Lx,Ly, Lz) in the way that
the cylinder axis is in the z-direction and its surface is given by x2 + y2 = 22.
Inside the cylinder, there is another surface, which we call the inner surface
hereinafter, z = −x2 + c2y2 with x2 + y2 ≤ 1, where c ≥ 1 is a dimensionless
constant, see Fig. 8. The cylinder is kept at temperature T0(1+β cosφ), while
the inner surface is kept at temperature T0(1+βr cosφ). Here β ≪ 1, r = (x2+
y2)1/2 and φ (0 ≤ φ < 2π) is the polar angle in the x-y plane (tanφ = y/x).
In this example, the origin of the spatial coordinates is the saddle point of
the inner surface, a typical example of the hyperbolic point; see Case 2 in
Sect. 3. Under the diffuse reflection condition on the boundaries, the velocity
distribution function ρ0(2RT0)

1/2(1 + ϕ)E on the positive z-axis, where ρ0 is
a reference density, is obtained with the aid of the solution method in [7,8] in
the form

ϕ(0, 0, z > 0, ζ, θζ , φζ) =

{
β(ζ2 − 2)rw cosφw, 0 < θζ < θ∗,

β(ζ2 − 2) cosφc, θ∗ < θζ < π,
(20)

where (ζx, ζy, ζz) = (ζ sin θζ cosφζ , ζ sin θζ sinφζ , ζ cos θζ) is the molecular ve-
locity divided by (2RT0)

1/2, and rw, φw, φc and θ∗ occurring in (20) are given
as follows:

rw =
− cot θζ + (cot2 θζ + 4C(φw)z)

1/2

2C(φw)
,

φw = φζ + π (mod 2π), φc = φζ + π (mod 2π),

cot θ∗ =

{
cot θt = 2(|C(φζ)|z)1/2, φζ ∈ [φ∗, π − φ∗) ∪ [π + φ∗, 2π − φ∗),

cot θe = z − C(φζ), otherwise,
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(a) Double-log and semi-log plots in the
case of c = 1

(b) Fraction of the convex part
and magnitude of singularities
for various values of c

Fig. 9 The x-component of heat flow Qx, contributions to it from the convex part Qv and
from the concave part Qc near the saddle point.

where

C(φ) = − cos2φ+ c2 sin2φ,

φ∗ =
1

2
arccos

(
c2 − 1 + 2z

1 + c2

)
≤ 1

2
arccos

(
c2 − 1

1 + c2

)
≡ φh,

and the range of arccos is [0, π). In the present example, because of no flow
induced and asymmetry of the data in the boundary conditions, some sin-
gularity sources cancel out one another for the first few moments. Hence, we
here focus on the x-component of the heat flow p0(2RT0)

1/2Qx on the positive
z-axis at z = s (p0 = ρ0RT0 is the reference pressure), which is free from such
cancellations:

Qx(z =s) =

∫
ζx(ζ

2 − 5

2
)ϕEdζ = Qv +Qc,

Qv/β =− 4π−3/2

∫ φ∗

0

dφζ cos
2 φζ(

∫ θt

0

dθζ sin
2 θζrw +

∫ π

θt

dθζ sin
2 θζ)

− 4π−3/2

∫ φh

φ∗

dφζ cos
2 φζ(

∫ θe

0

dθζ sin
2 θζrw +

∫ π

θe

dθζ sin
2 θζ),

Qc/β =− 2π−3/2

∫ π−φh

φh

dφζ cos
2 φζ(

∫ θe

0

dθζ sin
2 θζrw +

∫ π

θe

dθζ sin
2 θζ).

Here Qv is the contribution from the range of azimuth angle corresponding to
the convex part of the inner boundary, Qc is that from the range of azimuth an-
gle corresponding to the concave part of the inner boundary. They are plotted
together with Qx in Fig. 9(a). As is clear from Fig. 9(a), the double-log plots
for Qx and Qv become straight lines with slope 1/2 for small s, which means
that Qx and Qv change from their values on the boundary in proportion to
s1/2 near the boundary. The semi-log plot for Qc in Fig. 9(a) becomes straight
line with non-zero slope for small s, which means that Qc changes from its
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value on the boundary in proportion to s ln s near the boundary. Therefore,
among the two types of singularity sources, the contribution from the convex
part is dominant, as expected. In order to estimate the magnitude of the sin-
gularity sources from the numerical data, we obtained as well the coefficient
cs of the fitting curve css

1/2 to |Qx(s) − Qx(0)|/β determined by the least
squares fitting with five sampling points within the distance 1.3 × 10−6 from
the boundary. The coefficients cℓ and cr of the fitting curve −cℓs ln s+ crs to
|Qc(s) − Qc(0)|/β were also obtained in the same way. The results are plot-
ted with markers in Fig. 9(b), together with the fraction of the convex part
in azimuth angle (the dashed line). As is clear from Fig. 9(b), the fraction
of the convex part decreases with increasing c; the s1/2-dependence of Qx is
weaken accordingly. The s ln s-dependence of Qc grows, on the contrary, in
accordance with the growth of fraction of the concave part, when c increases
up to around 102. These are consistent with our prediction in (Case 2) in
Sect. 3. Incidentally, if c increases further and beyond around 102, the s ln s-
dependence of Qc becomes weaker [see the most right two closed circles in
Fig. 9(b)]. This is due to the present setting of surface temperature distribu-
tion. In the present setting, as c grows largely, the variation of temperature
along the surface becomes milder with the fraction of the concave part almost
unchanged, and s ln s-dependence turns to decrease accordingly [see (9) with
ν = 0 in Sect. 2.1.3].

5 Concluding remarks

We have discussed in detail the blow up of gradients of macroscopic quantities
in approaching the boundary in steady rarefied gas flows, with the aid of
partial and quasi-full models of the linearized Boltzmann equation. The source
term in the quasi-full model mimics the essential spatial property of K[ϕ]
and thus our discussion applies to the original linearized Boltzmann equation
as well. As to the nonlinear Boltzmann equation, we are lacking evidence
for the spatial property of the nonlinear collision term near the boundary. If
the nonlinear collision term spatially behaves as the linearized one does, our
statements should apply, as they are, to the nonlinear Boltzmann equation as
well. Incidentally, the nonlinearity of the boundary data does not affect our
discussions on the collisionless gases, some examples of which can be found in
[14].

As briefly mentioned in the introduction, our results also give the insight
on the difference in structure between the S layer and the Knudsen layer at
their bottoms. According to [12], the S layer is the region where the disconti-
nuity of VDF remains around a convex body, while the Knudsen-layer is the
kinetic boundary layer which has been formulated as a half-space problem (the
so-called Milne and/or Kramers problems) based on the planar approximation
to the boundary geometry in the stretched scale of spatial coordinates. In-
deed, the structure of the S layer around a circular cylinder in [6] shows the
square-root growing rate in the normal distance from the cylinder surface,
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which agrees with our theoretical conclusions. The same growing rate can be
found in the problem of the thermophoresis around a spherical particle [11],
though the explicit form is not given in [11] (see the Acknowledgements). The
growing rate in these observations is in marked contrast with the structure
of the Knudsen-layer at its bottom. Indeed, the data of the Knudsen-layer
corrections tabulated in, e.g., [10, Table 3.3] and [9, Table 3.3] for the BGK
model, [5, Table 5.2] for the hard sphere molecules, show logarithmic type
(s ln s) dependence on the normal distance s, which agrees with our results for
the planar boundary case.

Recently, there are several attempts in the literature to extend a classical
approach such as the Navier-Stokes equation with adjustable viscosity, aiming
at the full description of the kinetic boundary layer in the slip-flow regime.
The presence of the kinetic effect discussed here shows a limitation of such an
approach.
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