
Change of motion of a swimming droplet

Saori Suda





Abstract
Swimming microdroplets driven by the Marangoni effect attract attention because
they are simple self-propelled models with fluidic features resembling living organ-
isms, such as swimming cells. Several experiments of swimming droplets have re-
ported that they not only move straightly but also exhibit more complex behavior.
Although the theoretical understanding of these changes in motion has progressed,
the effect of the mechanisms inside the droplet and the external perturbations
has not been clarified. Therefore, we studied how the swimming droplet’s inter-
nal mechanisms and external perturbations affect the droplet’s motion. First, we
experimentally studied the motion of the swimming water droplet when the droplet
size is changed. As a result, the droplets tend to take more curved trajectories as
their radii increase. Secondly, to clarify the relationship between curvilinear motion
and higher hydrodynamic modes, we developed and analyzed a three-dimensional
axis-asymmetric model consisting of the Stokes equation and an advection-diffusion
equation with surfactant influx and outflux terms. We estimated the surfactant
concentration on the surface by fitting the PIV results of the internal flow with the
solution of the Stokes equation and quantitatively verified the consistency between
the model and the experimental results. The analysis of the model suggested that
the angular response to external perturbations changes depending on the droplet
size. This is mainly caused by the change in the droplet size switching the swim-
ming mode of the stable equilibrium solution with the straight motion from puller
to pusher. We verified that the angular response to perturbations also affects the
global behavior of the droplet by performing numerical simulations using the estab-
lished model with the addition of perturbations. We introduced the thermal noise
modeled by the white noise and a kind of sporadic noise to mimic the perturbation
that is caused by the chemical trails. The numerical simulations with different types
of noise showed that the detailed characteristics of the trajectories were different,
although they are overall similar. Larger droplet size is expected to increase the
frequency of the encounter with noise sources or events because it also increases
the droplet’s speed and surface area, so we conducted numerical simulations with
varying the frequency of sporadic noise events. The results are consistent with the
experimental results of larger-sized droplets as they show more curly trajectories
and more oscillatory angular autocorrelation as the frequency increases. The ob-
tained results suggested that the types and properties of external perturbation have
a considerable effect on droplet motion.
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Chapter 1

General introduction

1.1 Overview

Research on microswimmers, which are swimming bodies of micrometer scale such as
microorganisms, has gained momentum in recent years [1, 2, 3, 4, 5]. Their motion
is governed by physics in the low Reynolds number regime, where the viscous effect
is stronger than the inertial effect, which leads to physics different from the macro
world. The understanding of the physics of microswimmers is expected to lead to
applications in bioengineering and environmental studies [6, 7]. Microswimmers in-
clude not only living organisms such as Escherichia coli and Paramecium but also
nonliving ones including nanorods and Janus particles [8, 3, 4]. Among nonliving mi-
croswimmers, swimming isotropic microdroplets have attracted attention as a simple
self-propelled model with fluidic features similar to living organisms such as cells
[9, 10]. Further research will not only contribute to a better understanding of mi-
croswimmers, but also to technologies that can be utilized to transport micrometer-
scale materials and to chemical engineering applications [11, 12, 13, 14, 15, 16, 17]

The swimming droplet is driven by the Marangoni effect. When the surfactant
concentration at the interface is inhomogeneous, convection flow occurs due to tan-
gential stress caused by the interfacial tension gradient (Fig. 1.1). This effect is
called the Marangoni effect. Depending on how the Marangoni effect is generated,
swimming droplets are generally classified into two types: reacting droplets, which
swim by chemical reaction, and solubilizing droplets, which swim by dissolution.
The latter, solubilizing droplet, is driven by the Marangoni effect caused by the
slow dissolution of the inner liquid into the outer field consisting of a surfactant
solution above the critical micelle concentration. Solubilizing droplets attract inter-
est because of their simple composition and their ability to swim for a few hours
[11, 9, 18, 19]. Several experiments have reported that these swimming droplets not
only move straight ahead but also exhibit more complex behavior. For example,
in an experimental system of a liquid crystal droplet, it has been shown that lin-
ear, random, and helical motions can be observed as the droplet size and velocity
change [20]. It has also been shown that an increase in viscosity results in a straight
to curvilinear transition [21]. Theoretical studies on such motion transitions have
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Figure 1.1: Schematic illustration of the Marangoni effect. When the surfactant
concentration at the interface is inhomogeneous, convection flow occurs due to tan-
gential stress caused by the interfacial tension gradient.

been progressing. For example, in a two-dimensional axisymmetric model, the de-
pendence on the Péclet number, which represents the ratio between advection and
diffusion effects, and the Damköhler number, which characterizes the strength of a
chemical reaction, has been studied [22]. It has also been suggested that droplet
motion is influenced not only by mechanisms inside the droplet but also by fluc-
tuations in the external field and the randomness of interfacial reactions [23, 22].
Furthermore, it has been shown that droplets leave chemical traces while moving,
which affect droplet motion [21, 24].

In this thesis, we report on research aimed to elucidate the mechanism of mo-
tion transition of a swimming droplet. In particular, we focused on the relationship
between higher hydrodynamic modes or external perturbations and droplet mo-
tion, which had not been clarified in detail, and attempted both experimental and
theoretical approaches. Specifically, we experimentally observed the motion of a
droplet when the droplet size is changed, which had not been confirmed in the
water-in-oil system. Additionally, we developed and analyzed a three-dimensional
axis-asymmetric model consisting of the Stokes equation and an advection-diffusion
equation with surfactant influx and outflux terms to clarify the relationship between
curvilinear motion and higher hydrodynamic modes. Numerical simulations of the
model with a noise term were also performed to clarify how external perturbations
affect the complex motion of the droplet.

1.2 Swimming solubilizing droplet

1.2.1 Introduction of swimming solubilizing droplet
Swimming droplets driven by the Marangoni effect are generally classified into two
types, reacting droplets and solubilizing droplets, depending on how the Marangoni
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effect is induced [9, 10]. The former, reacting droplets, are driven by the Marangoni
effect, which is caused by a chemical reaction that changes the structure of the
surfactant molecule at the interface, thereby changing the active properties of its
interfacial tension. The latter, solubilizing droplets, are driven by the Marangoni
effect, which is caused by the slow dissolution of the internal liquid into the external
field. In a surfactant solution above the critical micelle concentration, the droplet
slowly dissolves and swollen micelles are formed. As a result, the local interfacial
tension changes, and the Marangoni effect occurs. For the formation process of
swollen micelles, two mechanisms have been proposed: first, direct interaction be-
tween the micelles and the interface leads to the formation of swollen micelles (mi-
cellar pathway); second, some of the droplet’s constituent fluid molecules dissolve
into the external field near the droplet interface, thereby forming swollen micelles
(molecular pathway) [25]. The simplicity of this solubilizing droplet makes it useful
for fundamental studies of droplet motion and interactions. Typical experimen-
tal systems are pure water droplets in a saturated squalane solution of monoolein
and 4-pentyl-4’-cyanobiphenyl (5CB) oil droplets in a saturated aqueous solution of
tetradecyltrimethylammonium bromide (TTAB) [11, 26, 27].

1.2.2 Governing equation of a swimming solubilizing
droplet

The Stokes equation

Since the typical radius of swimming solubilizing droplets is tens to hundreds of
µm and the typical velocity is a few to tens of µm/s, the effect of inertia can be
neglected and their motion is described by the Stokes equation [9]. In the following,
we derive the Stokes equation.

The Navier-Stokes equation for incompressible fluids without the body-forces is
given by

ρ[∂tv + (v · ∇)v] = −∇p + η∆v, (1.1)
where ρ is the mass density, v is the advection velocity, p is the pressure, and η is
the dynamic viscosity. Let us consider its non-dimensionalization. Coordinates r
and velocity v are expressed in terms of dimensionless coordinates r̄ and velocity v̄
as follows:

r = L0r̄, (1.2a)
v = V0v̄, (1.2b)

where L0 is the characteristic length and V0 is the characteristic velocity. Similarly,
time t and pressure p are expressed in terms of dimensionless time t̄ and pressure p̄:

t = L0

V0
t̄, (1.3a)

p = ηV0

L0
p̄. (1.3b)
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Moreover, the derivatives are expressed in terms of dimensionless derivatives:

∂t = V0

L0
∂̄t, (1.4a)

∇ = 1
L0

∇̄ (1.4b)

By substituting Eqs. (1.2), (1.3), and (1.4) into Eq. (1.1), we obtain

Re[∂̄tv̄ + (v̄ · ∇̄)v̄] = −∇̄p̄ + ∆̄v̄, (1.5)

where the dimensionless number Re (called the Reynolds number) is defined by

Re ≡ ρV0L0

η
. (1.6)

The Stokes equation is obtained as an the approximation when the Reynolds number
is low:

0 = −∇̄p̄ + ∆̄v̄, (1.7)
where ∂tv was assumed to be controlled by the intrinsic time scale L0/V0.

The Marangoni flow generated by a non-uniform surface tension profile
at the droplet interface

Given a non-uniform interfacial tension distribution of the droplet, the flow field
caused by the Marangoni effect can be calculated [28]. First, the Stokes equation
is solved for a droplet fixed in space and a given non-uniform interfacial tension
distribution (the resulting flow field is denoted w). Next, the flow field v of a
passive droplet swimming at a given velocity vD is calculated. Then the complete
flow field u of a swimming droplet is given by the superposition u = v + w. Among
the results of this calculation, we utilize Eqs. (2.4) and Eqs. (3.3) in this thesis.

The advection-diffusion equation and Péclet number

The transport of surfactant is described by the advection-diffusion equation

∂tc + v · ∇c = D∆c, (1.8)

where c is the concentration, v is the flow field, and D is the diffusion coefficient.
The non-dimensionalization of this equation is similar to the case of the Navier–
Stokes equation. By substituting Eqs. (1.2), (1.3), and (1.4) into Eq. (1.8), we
obtain

∂̄tc + v̄ · ∇̄c = 1
Pe

∆̄c, (1.9)

where the dimensionless number Pe (called the Péclet number) is introduced by

Pe = L0V0

D
. (1.10)
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1.2.3 Motion transition of swimming solubilizing droplet
In previous studies, it was experimentally indicated that the mode of motion of a
swimming solubilizing droplet changes with swimming speed or with the viscosity of
the solution around the droplets [20, 21]. In the system of 4-pentyl-4’-cyanobiphenyl
(5CB) oil droplets in a saturated aqueous solution of tetradecyltrimethylammonium
bromide (TTAB), a transition from random to helical and then to linear motion
was observed as droplet size decreased at an approximately constant dissolution
rate [20]. It has been shown that the transition from helical to linear motion is
governed by the droplet speed, and that helical motion appears as the point de-
fect of the droplet is displaced from the direction of motion of the droplet. In the
system of a droplet of (S)-4-cyano-4’-(2-methylbutyl)biphenyl (CB15) in TTAB sat-
urated water-glycerol mixtures in quasi-two-dimensional (Hele-Shaw cell) systems,
the transition from quasiballistic to bimodal chaotic propulsion occurs by control-
ling the viscosity of the solution around the droplet [21]. The emergence of chaotic
behavior is correlated with the emergence of higher hydrodynamic modes accom-
panying an increase in Péclet number due to increased viscosity. It has also been
shown that when these higher hydrodynamic modes are dominant, the interaction
with self-generating chemical gradients causes continual switching between the two
modes of motion.

Theoretical investigations are also necessary to clarify the mechanism of mo-
tion transition of a swimming solubilizing droplet. Theoretical models of swimming
droplets include those focusing on the phoretic forcing contribution and those focus-
ing on droplet deformation [10, 29]. Moreover, there is a study in which numerical
simulations have been conducted for a simple two-dimensional axisymmetric model
that couples the Stokes equation with an advection-diffusion equation for the sur-
factant outside the droplet1 [22]. There, it was shown that when the Péclet number
is above a few tens, the coupling between the advection of the surfactant and the
motion of the droplet strengthens with increasing Péclet number, and the motion
transitions from steady translational motion to periodic and then to non-periodic
motion. The droplet is also shown to oscillate between pusher and puller due to the
interaction of secondary wake and primary wake and to move in zigzag trajectories
formed by triangular, square, and mixed waves.

1.3 Outline of the thesis
This thesis reports on research aimed at elucidating the mechanism of motion tran-
sition of a swimming droplet. In particular, we focused on the relationship between
higher hydrodynamic modes or external perturbations and droplet motion, the de-
tails of which have not been clarified. We elucidate them from both experimental
and theoretical approaches.

In Chapter 2, we report on the results of experiments on pure water droplets
in a saturated squalane solution of monoolein and the analysis of the model con-

1This study was published after the announcement of the main result of this thesis.
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1. General introduction

structed to clarify the mechanism of the phenomena observed in the experiments.
The experimental results show that a straight to curvilinear transition occurs as the
droplet size increases. To clarify the relationship between curvilinear motion and
higher hydrodynamic modes, a three-dimensional axis-asymmetric model consisting
of the Stokes equation and an advection-diffusion equation with surfactant influx
and outflux terms was developed. A comparison of the model with experimental
results indicated that the model is valid when the droplet radius is approximately
less than 200 µm. Then, an analysis of the model by applying the parameters of
the actual experimental system suggested that the angular response to the external
perturbation changes with droplet size.

In Chapter 3, we explain the details of the derivation of the model developed
in Chapter 2 and perform numerical simulations of the model with a noise term to
discuss how external perturbations contribute to the complex motion of the droplet.
First, we introduced a noise term to represent the characteristics of the noise in
the concentration field or chemical trails. Second, we numerically calculated the
sporadic noise with varying frequencies of noise events. The results suggested that
the angular response to external perturbations affects the global behavior and that
the type and characteristics of the noise affect the droplet motion.

In Chapter 4, we conclude the thesis and indicate some future works for research
of swimming droplets.
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Chapter 2

Straight-to-curvilinear motion
transition of a swimming droplet

2.1 Introduction

At the end of the 19th century, G. Quinke presented self-propelled droplets as a
model system for a migrating cell in an aqueous environment [30, 31]. It was stated
that the fluid convection inside and outside of the swimming droplet is similar to that
observed in the protoplasmic streaming of the amoeba cell [32]. Today, scientists
understand that the droplet systems are not living cells themselves because their
chemical systems are significantly different. However, physical and fluid-dynamical
essentialities show common characteristics with both systems, such as roll convec-
tion, and their behaviors should be elucidated more with the fluid dynamics of a
self-propelled object [33, 34, 28, 35, 36], physics of collective motions [2, 9], and force
balance of adhesion and surface tension under non-equilibrium conditions [37].

In recent decades, there has been an increased interest in the spatio-temporal
organization of self-propelled elements called active matters, such as swarms of
fishes, birds, animals, and microorganisms. It is expected that the recognition of
the physical phenomena that are unique to spontaneous and collective motions can
be applied to various fields involving statistical physics, chemical technology, and
life sciences [2, 3, 38]. Swimming droplets have been reexamined as an artificial
active matter system with the special property that its motility is controllable using
chemical means [9]. The motion of droplets induced by the Marangoni effect and
wetting phenomena have been studied from the viewpoint of fundamental sciences
[39, 40] and reaction control engineering [41, 42, 43]. While the driving forces in
these systems have been actively studied, the understanding of motion controls,
such as chemotactic motion [44] and spontaneous changes in motility, remains a
challenging task. Additionally, swimming droplets are still significant as models
of single and collective motion of living organisms. For example, various “living”
motions are observed even in individual droplets [45, 11, 9, 46, 21, 18]. However,
the emergence of motion diversity is not clearly understood.

Several examples of the motilities of swimming droplets have been reported.
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2. Straight-to-curvilinear motion transition of a swimming
droplet

Liquid crystals enable us to extract a specific mode of motion by controlling the
symmetry inside the droplets [47, 48, 20, 49], where straight, curvilinear, and spi-
ral motions, and their transitions, were demonstrated. As a simpler case, sponta-
neous symmetry-breaking of the motion of a swimming droplet in a two-dimensional
system was investigated both experimentally [50, 51] and theoretically [52], which
identified the straight-to-curvilinear motion transition. Recent experimental studies
reported that an increase of the external surfactant concentration or the viscosity
of the swimming medium causes the curvilinear motion of a swimming spherical
droplet [46, 21]. In addition, the previous studies showed the existence of a relation
between the emergence of the complex motion and the onset of higher hydrodynamic
modes [21, 53]. However, the exact connection is not yet explicitly confirmed.

In this study, we measured the motion and internal flow of a spherical swimming
water micro-droplet, and quantitatively identified a straight-to-curvilinear motion
transition. To reveal the relationship between the curvilinear motion and the higher
hydrodynamic modes, we developed a three-dimensional axis-asymmetric (torque-
free) model consisting of an advection-diffusion equation, with influx and outflux of
surfactants, coupled with the Stokes equation and investigated it analytically.

Experiments were conducted with following the previous study, where the indi-
vidual droplets continued active swimming motion for more than 30 minutes [11].
Water is solubilized by reverse micelles in the oil phase (Fig. 2.1(a)). The droplets
are driven by the Marangoni effect, induced by the inhomogeneity of the surface
tension or surface coverage of the surfactants, which correlate to the solubilization
rate and concentration of swollen reverse micelles nearby [54, 11]. A schematic
illustration of the swimming mechanism is shown in Fig. 2.1(b).

2.2 Methods
Experiments were conducted with water droplets dispersed in oil that included a
dissolved surfactant. Squalane oil (99%, Aldrich) with 25 mM 1-oleoyl-rac-glycerol
(99%, Sigma) solution was filled in a sample chamber (with a 10 mm inner diameter
and 2 mm height, made of a glass sheet floor and silicon sheet wall). The critical
micellar concentration (CMC) for MO in Sq is 1.5 mM [45]. We used an electro-
microinjector (FemtoJet 4i, Eppendorf) to generate spherical pure water droplets to
control the volume and number of droplets (Fig. 2.2). The procedure is the same
as in a previous study [20]. Water droplets larger than the mechanical limit of the
injector (radius R ≳ 200 µm) were formed by manual pipetting. To eliminate inter-
actions between the water droplets, the number of droplets placed in the chamber
was restricted to no more than five. The motion of the water droplets was observed
using an inverted bright-field microscope (Ti-E, Nikon) with x1, x4, and x20 mag-
nification objective lenses, and was captured at 10 frames/s using a complementary
metal-oxide-semiconductor camera (ORCA-Flash 4.0, Hamamatsu). Fig. 2.3 shows
a schematic illustration of the experimental method. For visualization of the flow
inside the droplets, 1-µm-diameter polystyrene beads (Fluoresbrite PolyFluor 497
Microspheres, Polysciences, Inc.) were used as probes for the flow, and the vector
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Marangoni flowEmitting water
with micelles

Oil + Surfactant

Water droplet

Water droplet

Oil + Surfactant

Surfactants

(b)(a)

Figure 2.1: (a) Solubilization of water around a swimming droplet. The water is
dyed using Acid Red 52 (Tokyo Chemical Industry Co., Ltd.). The red color gra-
dient around the droplet shows that the stained water inside the droplet was being
emitted. The black arrow represents the direction of the droplet’s movement. The
scale bar represents 200 µm. (b) Schematic illustration of the swimming mechanism
of a droplet. The droplet is driven by the Marangoni flow (green arrows) generated
by the solubilization of water (blue arrows).

fields were measured via particle imaging velocimetry with PIVlab in MATLAB
(Mathworks) [55]. All experiments were conducted at ambient temperature (25◦C).

2.3 Experimental Results
In Fig. 2.4(a), typical trajectories of the centroids of the droplets are represented
for three different radii scales. Fig. 2.4(b) displays the trajectories of the centroids
of the droplets for 30 ≲ R ≲ 400 µm.

The droplets tend to take more curved trajectories as their radii increase. To
confirm this observation quantitatively, we calculated the angular autocorrelation
function ⟨C(t, τ)⟩t of the direction of movement of the droplets with velocity v(t),
which is given as a function of lag time τ : ⟨C(t, τ)⟩t =

〈
v(t+τ)·v(t)

|v(t+τ)||v(t)|

〉
t
, where ⟨⟩t

represents the time average, and a three-point moving average was applied to the
velocity (Fig. 2.3(a)). The group of fastest relaxations (red lines) attained minimum
at τ ∼ 2.8 s, and its half τmin = 1.4 s was a suitable lag time to identify degree of
curved motion as arccos C(t, τmin). Qualitatively similar behavior has been observed
in other experimental systems [46, 21]. The oscillatory motion of the large droplets
is possibly related to the chaotic motion shown in a previous study [53]. To quantify
the persistence of the straight motion, we introduced the decay time of ⟨C(t, τ)⟩t by
fitting with that of the Brownian harmonic oscillator ⟨C(t, τ)⟩t = e−a1τ+a2 cos a3τ
[56]. The decay time 1/a1 was plotted as a function of the droplet radius, which
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2. Straight-to-curvilinear motion transition of a swimming
droplet
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Figure 2.2: (a) Photograph of the electro-microinjector producing a water droplet.
The scale bar represents 200 µm. (b) The size of water droplets produced by varying
the application pressure and time of an electro-microinjector. The graph showing
the radius of the produced droplets (left). The graph showing the volume of the
produced droplets (right). The application pressure is fixed at 5000 hPa (top). The
application time is fixed at 5 s (bottom).
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Cover glass

Silicon sheet Oil + Surfactanat

Capillary tip
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(a) (b)

Figure 2.3: Schematic illustration of the experimental method. (a) A silicon sheet
with a hole is pressed onto a cover glass, and oil with surfactant solution is poured
into the created chamber. (b) Water droplets were produced in oil with surfactant
solution using an electro-microinjector and observed from below using an inverted
bright-field microscope.

indicated that the decay times tend to change at approximately R ≈ 100 µm (Fig.
2.3(b)). The average speed increased with the radius and saturated at R ≈ 100 µm
(Fig. 2.3(c)).

Fig. 2.6 shows typical results of the flow inside the droplets in the equatorial
plane measured through particle imaging velocimetry (PIV) experiment. Besides
dipolar flow, quadrupolar flow was observed for some droplets with R ≳ 200 µm
when they turned. Furthermore, the PIV experiment evaluated contributions of the
flow modes (Fig. 2.8(b)) and especially the difference angle between the axes of
dipolar and quadrupolar flow fields, which corresponds Ψ/2 as we see later analysis.
The systematic correlation between the difference angle Ψ and the turning angle of
movement of the droplet (Fig. 2.8(a)) suggests that the angle plays an essential role
in the transition of the motion.

2.4 Theoretical Model
To validate this hypothesis and explain the mechanism of the transition, we devel-
oped a three-dimensional axis-asymmetric theoretical model, based on a theoretical
study of a swimming droplet driven by the Marangoni flow in a two-dimensional
system [52]. The velocity of the droplets was assumed to lie in the horizontal plane
in agreement with the experimental observations. In constructing the model, we
considered the flow on the surface of the droplets instead of the internal flow, which
is determined by the surfactant concentration on the droplet surface [28].

The surfactant concentration c(θ, ϕ) on the droplet surface, parametrized by the
polar angle θ and azimuthal angle ϕ, is assumed to obey,
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droplet

Figure 2.4: Trajectories of the centroids of the swimming droplets over 60 seconds.
(a) The typical trajectories of the droplet centroids. The radii of the water droplets
are 56 µm (left), 157 µm (middle), and 281 µm (right). The scale bars represent
200 µm. (b) Trajectories of the centroids of the droplets for three categories of
droplet radii. The starting points are set to the origin. The radii categories are
30 ≤ R < 100 µm (left), 100 ≤ R < 200 µm (middle), and 200 ≤ R < 400 µm
(right). Color variation depicts different droplets.

∂c

∂t
+ u · ∇c = D

R2 ∆spherec − αc + αβδ

(
θ − π

2 , ϕ − arg v
|v|

)
, (2.1)

where α and β are the characteristic duration of stay on the surface and the
relative rate of the supply of the surfactant, u is the flow field on the droplet
surface, D is the diffusion coefficient of the surfactant on the surface, and ∆sphere =

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 is the Laplacian operator on the unit sphere.
We expand the surfactant concentration c and the flow field u in terms of spher-

ical harmonics Y m
l using the solution of the Stokes equation in terms of the surface

tension distribution (given in Section 3.5) [28]. The terms with lower-degree spheri-
cal harmonics are retained so that the flow field inside the droplet is symmetrical in
the horizontal plane, as the droplet was not moving significantly in the vertical di-
rection and our focus here is the angle between the axes of dipolar and quadrupolar
flows. Thus we expand c as c(θ, ϕ) = c−1

1 Y −1
1 + c1

1Y
1

1 + c0
2Y

0
2 + c−2

2 Y −2
2 + c2

2Y
2

2 , where
c−1

1 = −(c1
1)∗ and c−2

2 = −(c2
2)∗ are complex numbers, and c0

2 is a real number. On
the equatorial plane, the term with (l, m) = (1, ±1) yields a dipolar flow, (2, 0) a
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Figure 2.5: Analysis of the experimental results. (a) Angular autocorrelation func-
tion ⟨C(t, τ)⟩t of the direction of movement of the droplets. The thin lines corre-
spond to the individual droplets, and the thick lines show the ensemble averages of
the droplets in the respective size categories. (b) Droplet radius dependence of the
decay time ⟨C(t, τ)⟩t. Each black dashed line represents an exponential fitting line
for the data points with R < 100 µm and ≥ 100 µm. (c) Droplet radius dependence
of the time-averaged speed of the droplets (red dots). Error bars represent the stan-
dard deviations of the speed. The blue line is a fitting curve using Eq. (3.24) with
R < 250 µm.

radial flow, and (2, ±2) a quadrupolar flow. Fig. 8 shows the streamlines of the flow
fields in the equatorial plane of the spherical droplets when the surfactant concen-
tration c is respectively represented only by the components (l, m) = (1, ±1), (2, 0)
or (2, ±2). We set the retained terms as c1

1 = ρeiν , c0
2 = Z, and c2

2 = µeiλ, where
ρ > 0 and µ > 0. The variables ρ and π − ν correspond to the strength and the
direction of the “dipolar flow”, respectively. Further, ρ and ν determine the velocity
of the droplet [28]:

v = 1
3

√
6
π

γρ

2η + 3η̂

 − cos ν
sin ν

0

 , (2.2)

where η is the oil viscosity, η̂ is the water viscosity, and γ is a factor of pro-
portionality between surface tension and concentration. Similarly, µ and π − λ/2
correspond to the strength and the direction of the “quadrupolar flow”.

From Eq. (2.1) and the solution of the Stokes equations, we obtain a system of
ordinary differential equations governing the motion of the droplet (the derivation
is described in Section 3.2). Nondimensionalization yields a system of equations:
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2. Straight-to-curvilinear motion transition of a swimming
droplet
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Figure 2.6: Typical results of the internal flow in each size of the droplet measured
through PIV. In the left column, the flow fields are shown. The small green arrows
represent the flow fields. The thick red arrows represent the velocity of the droplets,
and the lengths of them were normalized by the droplets radii. In the right column,
the vorticities of the flow fields are shown. The two figures at R = 243 µm represent
the flow field at different times of the same droplet.
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2.4. Theoretical Model

(1, ±1) (2, 0) (2, ±2)

Figure 2.7: The streamlines of the flow fields in the equatorial plane of the spherical
droplets when the surfactant concentration c is respectively represented only by the
components (l, m) = (1, ±1), (2, 0) or (2, ±2). We calculated them with the solution
of the Stokes equation in terms of the surface tension [28].

dρ̄

dt̄
= − 3

10R̄

√
5
π

(1 + χ)
(
−

√
6ρ̄µ̄ cos(λ − 2ν) + ρ̄Z̄

)
−
(

1 + 2L2

R̄2

)
ρ̄ + 1

4

√
6
π

,

(2.3a)

dν

dt̄
= 3

10R̄

√
30
π

(1 + χ)µ̄ sin(λ − 2ν), (2.3b)

dZ̄

dt̄
= 1

35R̄

√
5
π

(7ρ̄2 + 15χZ̄2 − 30χµ̄2) −
(

1 + 6L2

R̄2

)
Z̄ − 1

4

√
5
π

, (2.3c)

dµ̄

dt̄
= 1

40

√
30
π

(
−4ρ̄2

R̄
+ 5

)
cos(λ − 2ν) − 6

7R̄

√
5
π

χZ̄µ̄

−
(

1 + 6L2

R̄2

)
µ̄,

(2.3d)

dλ

dt̄
= − 1

40

√
30
π

(
−4ρ̄2

R̄
+ 5

)
sin(λ − 2ν)

µ̄
, (2.3e)

where the overlined symbols denote nondimensionalized quantities. The param-
eter L = ld/la is determined by constants ld =

√
D/α and la = γβ/α(2η + 3η̂),

corresponding to the characteristic lengths of diffusion and advection, respectively.
The parameter χ = (2η + 3η̂)/(5η + 5η̂) is calculated as 0.41 using the values of the
viscosity of squalane 28.33 × 10−3 kg/(m · s) [57] and water 0.89 × 10−3 kg/(m · s)
(0.1 MPa, 25 ◦C). The parameter L = D/2πLv∞ld is calculated as 0.0082 by fitting
the speed of droplets with Eq. (3.24) using experimental results.
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2. Straight-to-curvilinear motion transition of a swimming
droplet

To quantitatively verify the consistency between the model and the experimental
results, we estimated the surfactant concentration in the surface cm

l from the ob-
served flow field by fitting the PIV results of the internal flow with the solution of the
Stokes equation in terms of ρ, ν, Z, µ, and λ. The measured flow inside the droplet
was fitted using the least-squares method with the solution of the Stokes equation
around the spherical droplet in terms of the surface tension σ = Σ∞

(l,m)s
m
l Y m

l [28]:

ûr = −η

2(η + η̂)

[
r2

R2 − 1
]

er · vD + 1
η + η̂

∞∑
l=1

l∑
m=−l

[
rl+1

Rl+1 − rl−1

Rl−1

]
l(l + 1)sm

l

4l + 2 Y m
l , (2.4a)

ûθ = −η

2(η + η̂)

[
2r2

R2 − 1
]

eθ · vD + 1
η + η̂

∞∑
l=1

l∑
m=−l

[
(l + 3) rl+1

Rl+1 − (l + 1) rl−1

Rl−1

]
sm

l

4l + 2∂θY m
l ,

(2.4b)

ûφ = −η

2(η + η̂)

[
2r2

R2 − 1
]

eφ · vD + 1
η + η̂

∞∑
l=1

l∑
m=−l

[
(l + 3) rl+1

Rl+1 − (l + 1) rl−1

Rl−1

]
imsm

l

4l + 2
Y m

l

sin θ
,

(2.4c)

where x = r sin θ cos ϕ, y = r sin θ sin ϕ, and z = r cos θ. We reconstructed the vector
fields using the variables c1

1 = ρeiν , c0
2 = Z, and c2

2 = µeiλ, and the residual flow
field was defined by the difference between the reconstruction and the observation.
The relative strength of each term was estimated from the norm of each vector
field (Fig. 2.8(b)). The residual was large when R ≲ 50 µm, possibly caused by
the insufficient resolution of the image. When R ≳ 50 µm, as the droplet radius
increased, the quadrupolar terms (2, 0) and (2, ±2) became dominant, while the
dipolar term (1, ±1) diminished. The residual also increased due to higher-degree
terms.

Speeds of the droplets in the experiments are compared with ones predicted by
Eq. (2.2) using values of γρ estimated from the PIV results (Fig. 2.8(c)). The speed
was observed to be proportional to γρ for R < 200 µm (green dots), distributed along
the blue line representing the model with the same viscosity values as above.

Angular velocities are also estimated from the dimensional version of Eq. (2.3b).
We obtain a relation dν

dt
= 3

50

√
30
π

7η+8η̂
(η+η̂)(2η+3η̂)

γµ sin Ψ
R

, where Ψ = λ − 2ν. Fig. 2.8(d)
displays a scatter plot between the angular velocity of the motion vector of the
droplet adopting arccos C(t, τmin)/τmin and γµ sin Ψ/R evaluated from the PIV ex-
periments. The distribution normalized by γµ sin Ψ/R for R < 200 µm (green dots)
suggests a master curve, and that is represented by the above equation without free
fitting parameters (blue line), i.e., the model is consistent with the PIV result.

To investigate the possible scenarios of the motion transition, we conducted a
linear stability analysis for Eqs. (2.3). Solutions of stable straight motion should
satisfy dν/dt̄ = 0, i.e., sin Ψ = 0. This is further classified into two cases Ψ = 0 and
Ψ = π. Using the effective squirmer parameter 3

√
3

20ρ̄
(
√

6µ̄ cos Ψ−Z̄) [28], we see that
Ψ = 0 and Ψ = π corresponds to puller and pusher squirmer types, respectively, if
Z̄ is small. For Ψ = 0 and Ψ = π, we numerically calculated ρ̄, Z̄, µ̄ of Eqs. (2.3)
and the eigenvalues of the coefficient matrices of the linearized systems. A result
consistent with the experiment is obtained using the value D = 10−10 m2/s. There
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2.4. Theoretical Model

Figure 2.8: Results of PIV experiments. The flow modes were extracted from PIV
data of the internal flow, and were calculated into the concentration mode of the
chemical ρ, µ, λ, etc. (a) 2D density map between the difference angle Ψ = λ−2ν and
degree of curved motion as arccos C(t, τmin). The color indicates the density. (b) The
average ratio of flow modes observed in the PIV experiments, i.e., (l, m) = (1, ±1):
dipolar, (2, 0): radial, (2, ±2): quadrupolar, and the residual flow fields, given by the
norm of each vector field, on the droplet radius. Error bars represent the standard
deviations of the ratios. (c) Scatter diagram between the speed of the droplet |v|
and model suggested parameter γρ estimated from the PIV results. The green dots
represent 30 < R < 200 µm and red dots represent 200 ≤ R < 400 µm. The
model denotes the blue line as v = 7.77 × 106 × γρ µm s−1. (d) Scatter diagram
between angular velocity arccos C(t, τmin)/τmin and γµ sin Ψ/R. The green and red
dots represent the same range as those of (c). The blue line is predicted by the
present model without free fitting parameters as dν

dt
= 2.20 × 107 × γµ sin Ψ

R
rad s−1 .
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2. Straight-to-curvilinear motion transition of a swimming
droplet

are stable solutions with Ψ = 0 for R ≲ 34 µm (Fig. 2.9(a-1)), and with Ψ = π for
R ≳ 34 µm (Fig. 2.9(a-2)). Although both are stable, the growth of the perturbation
is different.

The rate of increase of the deviation from the solution is defined by ∆ν∞ =
M∆ν0 with a stimulus ∆ν0 and the following response ∆ν∞. In the ν − λ plane,
the trajectory of the solution of the system of ordinary differential equations (2.3)
is described by the following equation:

dλ

dν
= A2

A1
, (2.5)

where

dν

dt̄
= A1 sin Ψ = 3

10R̄

√
30
π

(1 + χ)µ̄ sin Ψ, (2.6a)

dλ

dt̄
= A2 sin Ψ = − 1

40µ̄

√
30
π

(
−4ρ̄2

R̄
+ 5

)
sin Ψ. (2.6b)

If A1 and A2 are assumed to be constant, we obtain

λ(ν) = A2

A1
(ν − ν0) + λ0, (2.7)

where (ν0, λ0) is the initial value for (ν, λ). By the stability of equilibrium solutions,
the final state of the system (ν∞, λ∞) is an equilibrium solution if the perturbation is
small enough. Let the initial value be (ν0 +∆ν0, λ0), where (ν0, λ0) is an equilibrium
solution. Let us first consider the case of Ψ = 0. In this case, equilibrium solutions
satisfy Ψ = λ − 2ν = 0. Therefore, we have

λ0 = 2ν0, (2.8a)
λ∞ = 2ν∞. (2.8b)

On the other hand, we have

λ∞ = λ(ν∞) = A2

A1
(ν∞ − ν0 − ∆ν0) + λ0, (2.9)

from (2.7). Solving (2.8) - (2.9) for ν∞, we obtain

ν∞ = ν0 + A2

A2 − 2A1
∆ν0. (2.10)

Because ∆ν∞ = ν∞ − ν0, the coefficient M is A2/(A2 − 2A1). The calculation for
the case Ψ = π is similar. Fig. 2.9(b) shows the coefficient M at a stable solution
of straight motion as a function of the droplet radius. If M < 1, a delayed effect
accompanied by an external stimulus ∆ν0 is rapidly damped and a straight motion
restarts. If M > 1, the effect leaves an imprint on the direction of movement for a
longer time, and it gradually turns toward ∼ M∆ν0. Actually, numerical simulation
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2.4. Theoretical Model

Figure 2.9: Analysis of solutions of straight motion for the diffusion coefficient D =
10−10 m2/s. (a) Values and stability of solutions of Ψ = 0: puller (a-1) and Ψ = π:
pusher (a-2). (b) Multiplier coefficient M of motion direction against stimulus versus
droplet radius R. (c) Time development of the direction of movement of the droplet
from the initial direction when the external stimulus 1◦ is applied to the direction
of movement. For the stable solution of straight motion at radius R =18 µm (blue)
and R =121 µm (magenta). (d) Schematic illustrations of motions of droplets under
stimuli in real space with M < 1 (d-1) and > 1 (d-2). (e) Schematic diagram of the
internal flow modes of the droplet.

of Eqs.(2.3) confirms the significantly longer relaxation time in the case of M > 1
than M < 1, and total deflection angles in droplet movements are magnified by
∼ M (Fig. 2.9(c)). Time developments of the respective motions under stimuli will
differ phenomenologically (Fig. 2.9(d)).

This responsiveness transition from M < 1 to M > 1 occurs around the radius
R ≈ 34 µm as a result of the change of swimming mode between puller and pusher
for the stable straight solution (Fig. 2.9(a)). Size of the droplet is one of essential
parameters to elevate the strengths of quadrupolar-flow and -concentration, there-
fore changes of stability and responsiveness of the direction of the quadrupolar flow
occur due to the droplet size variance. Since deviation of Ψ from the solutions 0 and
π corresponds left-right asymmetrical flow (Fig. 2.9(e)), effective periods exhibiting
the asymmetrical flow accompanied by turning motion is enlarged by the property
M > 1 (Fig. 2.9(d)). Apart from external stimuli such as thermal fluctuation, an in-
ternal perturbation is possibly induced by the self-generated chemical ununiformity
[21]. From the above discussion, we conclude that the observed motion transition
is precisely the transition of the angular response to perturbations.
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2. Straight-to-curvilinear motion transition of a swimming
droplet

2.5 Conclusion
There are two fundamental transitions observed in self-propelled objects: stationary-
moving and straight-curvilinear [54, 46, 21, 50, 51, 52]. In particular, the latter
transition is essential to the motion diversity. We experimentally and theoretically
revealed that even an isotropic swimming droplet, which has spherical symmetry,
exhibits a straight-to-curvilinear motion transition. Considering the simplicity of
the experimental system and the present model, it is probable that similar orbital
instability in straight swimming movement exists in a phase separation [40] and in
a living cell such as an amoeboid swimmer [30, 31, 58, 59, 60]. Further study in this
line would be of interest, as it may reveal a mechanism behind the rich variety of
living and active motions in nature.

2.6 Appendix

Equilibrium solutions and their stability
We numerically calculated for each equilibrium solution ρ̄, Z̄, and µ̄ of Eqs. (2.3) and
max(Re(ki)), where ki are the eigenvalues of the coefficient matrices of the linearized
system for equilibrium solutions. If max(Re(ki)) < 0, then all the eigenvalues have
negative real parts and therefore the corresponding equilibrium solution is stable.
At D = 10−9 m2/s, a line of stable equilibrium solutions is yielded for Ψ = 0 with
0 < R < 400 µm. At D = 10−10 m2/s, lines of stable equilibrium solutions exist. In
Fig. 2.10, we show the results when the diffusion coefficient D is from 10−9 m2/s to
10−12 m2/s.
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Figure 2.10: Analysis of equilibrium solutions when the diffusion coefficient D is
from 10−9 m2/s to 10−12 m2/s. (a) Values of equilibrium solutions for Ψ = 0 and
Ψ = π. (b) Graph of max(Re(ki)), where ki are the eigenvalues of the coefficient
matrices of the linearized system for equilibrium solutions for Ψ = 0 and Ψ = π. If
max(Re(ki)) < 0, then all the eigenvalues have negative real parts; therefore, the
corresponding equilibrium solution is stable.
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Chapter 3

Motion of a swimming droplet
under external perturbations

3.1 Introduction

Microswimmers such as swimming microorganisms are strongly affected by viscos-
ity, which has various implications in the physical characteristics of their motion
[8, 61]. In recent years, there has been an increase in the research activities on
microswimmers [1, 2, 3, 4, 5]. The fluid dynamics based on the behavioral patterns
of microswimmers will open up the potential for widespread applications in bioengi-
neering and environmental studies [6, 7]. There are many non-living microswimmers
such as Janus particles [4, 62]. In particular, swimming microdroplets have recently
gained significant attention because they are self-propelled simple models with flu-
idic features that resemble living organisms such as swimming cells [32]. Further
research will not only deepen our understanding of microswimmers, but also lead
to the development of applications in chemical engineering [13, 14, 15, 16, 17].
Swimming microdroplets driven by the Marangoni effect are suitable for practical
applications because they tend to swim for hours despite their simple composition
[11, 9, 18, 19, 10]. The Marangoni effect here is caused by the slow dissolution of the
internal liquid into an external surfactant solution that is more concentrated than
the critical micelle concentration. It has been experimentally demonstrated that
the motion of the swimming microdroplet changes from straight to curvilinear, and
further to chaotic, with an increase in the Péclet number Pe = UR/Do, where U is
the characteristic speed, R is the droplet radius, and Do is the diffusion coefficient
of surfactants on the outside field [20, 46, 19, 21].

Theoretical elucidation of these changes in motion has been progressing. An
axially symmetric model has been proposed that focuses on the adsorption of sur-
factants at the surface caused by dissolution, whereby it has been found that two
types of qualitatively different droplet behaviors may be stabilized [53]. In a two-
dimensional axis-asymmetric model, Li has studied the dependence of the motion of
droplets on the Péclet number and the Damköhler number, which characterizes the
strength of chemical reactions [22]. It has been suggested that the motion is affected
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3. Motion of a swimming droplet under external perturbations

not only by the mechanism inside the droplet, but also by fluctuations in the exter-
nal field and the randomness of the interfacial reaction [23, 22]. Since the droplet
moves curvilinearly while leaving a chemical trail, the chemical trail affects the
droplet motion as an external perturbation [21, 24]. The authors have constructed
a three-dimensional axis-asymmetric model, by combining an advection-diffusion
equation with the inflow and outflow of the surfactant and the Stokes equation, and
its correspondence with the experiment was confirmed [19]. The analysis suggests
that the angular response to perturbations changes depending on the droplet size.

The purpose of the current study is to investigate the effect of external per-
turbations on droplets driven by the Marangoni effect to consider the contribution
of external perturbations to the complex motion of droplets and the influence of
droplet size on this effect. We first give a detailed explanation of the derivation of
the model that was introduced in a previous study [19], which is used to describe
the motion of a droplet. This model is a system of ordinary differential equations,
and it is relatively easy to analyze. We then study the angular response to random
perturbations using numerical methods based on the model to consider how external
noises affect the motion of droplets and how the motion mechanism of droplets con-
tributes to it. Accordingly, we introduce random noises with different characteristics
so that the stimuli present in experimental settings are mimicked.

3.2 Derivation of the model

In this section, we provide a detailed derivation of the three-dimensional axis-
asymmetric model proposed and outlined in a previous study[19]. For mathematical
notations used in the derivation, see Section 3.5. The model describes the droplet
motion in terms of ordinary differential equations with five variables, which rep-
resent the mode of the surfactant distribution at the droplet surface. To describe
the concentration of surfactant at the droplet surface, we consider an advection-
diffusion equation with the terms representing the inflow and outflow of surfactant,
and couple it with the Stokes equation. By expanding the concentration and the
flow using the spherical harmonics Y m

l and leaving only the terms with degree and
order (l, m) = (1, ±1), (2, 0), and (2, ±2), five ordinary differential equations are
obtained. On the equatorial plane, the term with (l, m) = (1, ±1) yields a dipolar
flow, (2, 0) a radial flow, and (2, ±2) a quadrupolar flow.
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3.2. Derivation of the model

The model is given as follows:
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π

(
−4ρ̄2

R̄
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)
sin(λ − 2ν)

µ̄
, (3.1e)

where R̄ is the normalized radius of the droplet, and L and χ are the parameters
defined in Subsection 3.2.3 that describe the physical properties of the droplet sys-
tem. The variables ρ̄, ν, Z̄, µ̄ and λ describe the modes of distribution of surfactant
on the surface of the droplet, which determines the convection inside and outside
the droplet. In terms of the corresponding distribution, ρ̄ and ν correspond to the
first-degree spherical harmonics and Z̄, µ̄ and λ the second degree (the definitions
are given in Eqs. (3.18)). The motion of the droplet can be described in terms of
these quantities. For instance, the velocity of the droplet can be reconstructed from
ρ̄ and ν using Eq. (3.23).

The authors have demonstrated that the predictions from the present model are
consistent with the experimental results for radii less than 200 µm, under the choice
of parameters estimated from experimental results [19].

Later in this study, we perform numerical simulations using the present model
to analyze the effect of perturbations on droplet motion.

3.2.1 Basic assumptions
Droplets are driven by the Marangoni effect. Conversely, the motion of the droplets
induces a gradient in the surfactant concentration because the droplet constantly
moves toward a fresh solution, and leaves a trail of a waste product (swollen micelle)-
rich solution [25, 9, 10]. We incorporate this effect by introducing a supply term
limited to the pole at the direction of motion.

Because no significant vertical motion was observed in the experiments, we as-
sume that the velocity of the droplets lies in the horizontal plane [19]. Under these
considerations, the dynamics of the concentration c of the surfactant on the surface
is modeled by an advection-diffusion equation of the form

∂c

∂t
+ u · ∇c = D

R2 ∆spherec − αc + αβδ(θ − π

2 , ϕ − arg vD), (3.2)
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3. Motion of a swimming droplet under external perturbations

where u is the flow field on the droplet surface, D is the diffusion coefficient of
the surfactant on the surface, α is the inverse of the characteristic duration of
stay on the surface, and β is the relative rate of supply of the surfactant, ∆sphere =

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 is Laplacian operator on the unit sphere, vD = (vx, vy, 0)T

is the velocity of the droplet, and δ is the delta function. The function arg vD is
defined as the argument of the vector vD = (vx, vy, 0)T lying in the horizontal plane
when interpreted as a complex number vx + ivy.

Internal flow field and external flow field are described by the addition of solu-
tions for the Stokes equation corresponding to pumping active droplet and passive
droplet, respectively [28]. The formula for these flow fields are given in terms of the
surface tension σ, the viscosity outside the droplet η, viscosity inside the droplet η̂,
and radius of the droplet R as the parameters. According to the result, the flow
field u on the droplet surface is described by

ur = 0, (3.3a)

uθ = −η

2(η + η̂)eθ · vD + 1
η + η̂

∞∑
l=1

l∑
m=−l

sm
l

2l + 1∂θY
m

l , (3.3b)

uφ = −η

2(η + η̂)eφ · vD + 1
η + η̂

∞∑
l=1

l∑
m=−l

imsm
l

2l + 1
Y m

l

sin θ
, (3.3c)

where σ = Σ∞
l,msm

l Y m
l is the spherical harmonics expansion of the surface tension

distribution, and the velocity of the droplet vD is defined as

vD =
√

1
6π

1
2η + 3η̂

 s1
1 − s−1

1
i(s1

1 + s−1
1 )

−
√

2s0
1

 . (3.4)

The Stokes equation and advection-diffusion equation (3.2) are coupled by a
proportional relation between the concentration and the surface tension described
by

σ = σ0 − γc, (3.5)

where γ > 0 is the constant of proportionality. A similar treatment of the coupling
was studied for a two-dimensional droplet [52, 22].

3.2.2 Expansion of flow field and concentration of
surfactant

First, we expand the concentration c and the flow field u using spherical harmonic
functions, in order to obtain reduced ordinary differential equations from Eq. (3.2).

The expansion of the concentration is straightforward, from which we obtain

c =
∞∑

l=0

l∑
m=−l

clmY m
l , (3.6)
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where
clm =

∫ 2π

0

∫ π

0
c(ϕ, θ)(Y m

l )∗ sin θ dθ dϕ . (3.7)

Using the expression for the gradient in polar coordinates, the Eqs. (3.3) can be
rewritten into the following concise form:

u =
∞∑

l=0

l∑
m=−l

UlmR∇Y m
l . (3.8)

In this expression, the coefficients Ulm are given by

U11 = η

(η + η̂)

√
π

6 (vx − ivy) + 1
3(η + η̂)s11 = s11

2η + 3η̂
, (3.9a)

U1−1 = −η

(η + η̂)

√
π

6 (vx + ivy) + 1
3(η + η̂)s1−1 = s1−1

2η + 3η̂
, (3.9b)

and
Ulm = 1

η + η̂

slm

2l + 1 (3.10)

if l ≥ 2.
Because the coefficients Ulm are given in terms of slm, we may alternatively

represent them in terms of clm using the proportionality relation (3.5).

3.2.3 Expansion of the advection-diffusion equation
Next, we use the results in Subsection 3.2.2 in Eq. (3.2) to obtain reduced ordinary
differential equations.

The main problem is the advection term, which is nonlinear and therefore some
consideration is required to deal with it. However, because u ·∇c is a scalar function
on a sphere, we may expand it as follows.

u · ∇c =
∞∑

l=0

l∑
m=−l

AlmY l
m. (3.11)

Consequently, we obtain a system of ordinary differential equations, which describes
the dynamics of the droplet:

dclm

dt
+Alm = −

(
α + l(l + 1) D

R2

)
clm+αβ

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (0)e−im arg vD

. (3.12)

Let us determine the unknown coefficients Alm. Using the expressions obtained
in Subsection 3.2.2, we calculate as follows.

u · ∇c =
( ∞∑

r=0

r∑
s=−r

UrsR∇Y s
r

) ∞∑
p=0

p∑
q=−p

cpq∇Y q
p


= 1

R

∞∑
r=0

r∑
s=−r

∞∑
p=0

p∑
q=−p

UrscpqR
2
(
∇Y s

r · ∇Y q
p

)
.

(3.13)
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3. Motion of a swimming droplet under external perturbations

By multiplying both sides with (Y m
l )∗ and integrating over the unit sphere, we

obtain
Alm = 1

R

∞∑
r=0

r∑
s=−r

∞∑
p=0

p∑
q=−p

Gpqrs
lm Urscpq, (3.14)

where
Gpqrs

lm =
∫ π

0

∫ 2π

0
sin θ

(
R∇Y s

r · R∇Y q
p

)
(Y m

l )∗dϕdθ. (3.15)

The coefficients Gpqrs
lm can be regarded as describing the strength of coupling between

different modes of the distribution of the surfactant, and it is easy to show the
following properties:

Gpqrs
lm = 0 if q + s ̸= m, (3.16a)

Gpqrs
lm = Grspq

lm for all p, q, r, s, l, m. (3.16b)

The lowest degree and order independent terms of Gpqrs
lm are calculated as follows.

G221−1
11 = − 3

10

√
30
π

, (3.17a)

G1120
11 = − 3

10

√
5
π

, (3.17b)

G222−2
20 = −3

7

√
5
π

, (3.17c)

G111−1
20 = − 1

10

√
5
π

, (3.17d)

G2020
20 = 3

7

√
5
π

, (3.17e)

G2220
22 = −3

7

√
5
π

, (3.17f)

G1111
22 = − 1

10

√
30
π

. (3.17g)

The expansion coefficients obtained thus far are complex. To address this issue,
we introduce the polar coordinate expression of complex numbers and rewrite the
coefficients as follows.

c11 = ρeiν , (3.18a)
c20 = Z, (3.18b)
c22 = µeiλ, (3.18c)

We consider terms up to l = 2 which yield non-zero flow fields on the horizontal plane
in Eq. (3.14). This corresponds to considering only the direct interactions between
the terms that contribute to the two-dimensional motion in the three-dimensional
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3.2. Derivation of the model

space. By substituting slm with −γclm, we obtain the following system of ordinary
differential equations.

dρ

dt
= − 3

10R

√
5
π

(C1 + C2)
(
−

√
6ρµ cos(λ − 2ν) + ρZ

)
−
(

α + 2D

R2

)
ρ + αβ

4

√
6
π

,

(3.19a)
dν

dt
= 3

10R

√
30
π

(C1 + C2)µ sin(λ − 2ν), (3.19b)

dZ

dt
= 1

35R

√
5
π

(7C1ρ
2 + 15C2Z

2 − 30C2µ
2) −

(
α + 6D

R2

)
Z − αβ

4

√
5
π

, (3.19c)

dµ

dt
= 1

40

√
30
π

(
−4C1ρ

2

R
+ 5αβ

)
cos(λ − 2ν) − 6

7R

√
5
π

C2Zµ −
(

α + 6D

R2

)
µ,

(3.19d)
dλ

dt
= − 1

40

√
30
π

(
−4C1ρ

2

R
+ 5αβ

)
sin(λ − 2ν)

µ
, (3.19e)

where

C1 = γ

2η + 3η̂
, (3.20a)

C2 = γ

5(η + η̂) . (3.20b)

Because this system is in a dimensional form, it is difficult to directly com-
pare it with the experimental results. A more useful system is obtained by non-
dimensionalization. We normalize as follows to obtain the system in Eqs. (3.1):

t̄ = αt, (3.21a)
ρ̄ = ρ/β, (3.21b)
Z̄ = Z/β, (3.21c)
µ̄ = µ/β, (3.21d)
R̄ = R/la. (3.21e)

After the non-dimensionalization, we obtain a system of ordinary differential equa-
tions with three parameters R̄, L and χ = C2/C1 = (2η+3η̂)/(5η+5η̂). The param-
eter L = ld/la is determined using constants ld =

√
D/α and la = γβ/α(2η + 3η̂),

corresponding to the characteristic lengths of diffusion and advection, respectively.
When it is possible to estimate the values, the original parameters and variables
with dimensions are also used for comparison with the experimental values. Note
that the delta function of the supply term in Eq. (3.2) is smoothed out in this
approximation.
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3. Motion of a swimming droplet under external perturbations

3.2.4 Approximation to the first degree
If we consider the first-degree approximation within the spherical harmonics expan-
sion, we obtain the following model of the droplet motion:

dρ̄

dt
= −

(
α + 2D

R2

)ρ̄ − 1
4

√
6
π

α

α + 2D
R2

 , (3.22a)

dν

dt
= 0. (3.22b)

While it only shows stable straight motion, all of its parameters can be estimated
from the experiments.

Because s1
1 = −γβρ̄eiν and s−1

1 = γβρ̄e−iν , the velocity of the droplet is given in
terms of the variables ρ̄ and ν as

vD = −
√

1
6π

2γβρ̄

2η + 3η̂

 cos ν
− sin ν

0

 , (3.23)

using Eq. (3.4). Therefore, the equilibrium solutions of Eqs. (3.22) can be used to
obtain a formula connecting the radius and the speed of the droplet, which can be
further used to estimate the parameter ld from the experimental results:

v(R) = v∞

1 + 2l2
d

R2

, (3.24)

where v∞ = γβ/2π(2η + 3η̂) is the speed of the droplet when R is infinite.

3.3 Numerical simulation
In this section, we introduce random perturbations to the model derived in the
previous section and study the effect on motion.

From the analytical study, it has been suggested that the angular response to
perturbations in the direction of motion changes according to the droplet size under a
certain range of model parameters [19]. The rate of increase of the deviation from the
stable equilibrium solution with the straight motion is defined by ∆ν∞ = M∆ν0 in
terms of an initial perturbation ∆ν0 and the following response ∆ν∞. The coefficient
M is analytically calculated as M = A2/(A2 − 2A1), where dν/dt̄ = A1 sin (λ − 2ν)
and dλ/dt̄ = A2 sin (λ − 2ν) are from Eq. (3.1b) and (3.1e). It has been suggested
that the effect of perturbation is suppressed (M < 1) when R ≤ 34 µm and amplified
(M > 1) when R ≥ 34 µm under the choice of parameters that are estimated from
experimental results (Fig. 3.1). This is mainly caused by the change in droplet
size, switching the swimming mode of the stable equilibrium solution from puller
to pusher with straight motion. However, the discussion here concerns only single
noise events, and it is not obvious whether the overall motion of droplets may be
affected in a similar manner.
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3.3. Numerical simulation

(a) M < 1 (b) M > 1

Δν0

Δν∞

External stimulus

Δν0

Δν∞

External stimulus

Figure 3.1: Schematic illustrations of motions of droplets under external stimuli
with M < 1 (a) and M > 1 (b).

In this study, we verify whether the angular response to perturbations also af-
fects the global behavior of droplets by performing numerical simulations using the
established model with the addition of perturbations. As it is unclear what kind
of perturbation is applied to the droplet in the experiments, we will add random
perturbations of different natures, and observe how the motion is affected.

Here, we assume that the effect of perturbation is rapidly reflected in the mo-
tion of the droplet, and consequently, the overall distribution of the concentration
of surfactant on the surface remains unchanged. Accordingly, the perturbation is
introduced only to the direction of motion, which corresponds to adding a noise
term to the time evolution of ν.

In the experimental settings, two possible origins of perturbations to the motion
of droplets have been suggested in literature. One is the thermal noise of the con-
centration field [23, 22] and the other is the chemical trails [21, 24]. To simulate
their characteristics, we consider two scenarios for random perturbations. The ther-
mal noise is modeled by the white noise of the form Awξ, where Aw represents the
strength of noise and ξ is the Gaussian white noise. We introduce a kind of spo-
radic noise to mimic the perturbation that is caused by the chemical trails. More
specifically, we use the perturbation term of the following form:

N∑
k=1

ak exp
(
−(t − tk)2/w2

)
, (3.25)

where ak is uniformly distributed on −As ≤ ak ≤ As, tk is uniformly distributed
across the considered time interval 0 ≤ t ≤ T , and w is the occurring time of a
single perturbation event. In this case, the time average of the noise is expected to
be 0 and its variance is approximately

√
π
2

A2
sN

3T
. For the analysis below, we use the

frequency of noise events f = N/T instead of N.
The numerical simulations were performed under choice of parameters χ = 0.41

and L = 0.0082, which are the same values used in the previous study of a water-in-
oil droplet system [19]. The parameter χ = (2η + 3η̂)/(5η + 5η̂) is calculated as 0.41
using the values of the viscosity of squalane 28.33 × 10−3 kg/(m · s) [57] and water
0.89×10−3 kg/(m·s) (0.1 MPa, 25 ◦C). The parameter L = D/2πLv∞ld is calculated
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3. Motion of a swimming droplet under external perturbations

as 0.0082 by fitting the speed of droplets with Eq. (3.24) using experimental results.
The initial values are chosen to be those of the stable equilibrium solutions for
straight motion at each radius. For the model with white noise perturbations, the
numerical simulation was conducted using the Euler–Maruyama scheme with a time
step ∆t = 0.001. The model with sporadic noise was integrated numerically using
the Runge–Kutta method with a time step ∆t = 0.001. The choice of timestep does
not affect the results substantially as qualitatively similar results are obtained when
we halved the timestep.

In summary, the model with random perturbation has the following form:

dρ̄

dt̄
= − 3

10R̄

√
5
π

(1 + χ)
(
−

√
6ρ̄µ̄ cos(λ − 2ν) + ρ̄Z̄

)
−
(

1 + 2L2

R̄2

)
ρ̄ + 1

4

√
6
π

(3.26a)
dν

dt̄
= 3

10R̄

√
30
π

(1 + χ)µ̄ sin(λ − 2ν) + Noise (3.26b)

dZ̄

dt̄
= 1

35R̄

√
5
π

(7ρ̄2 + 15χZ̄2 − 30χµ̄2) −
(

1 + 6L2

R̄2

)
Z̄ − 1

4

√
5
π

(3.26c)

dµ̄

dt̄
= 1

40

√
30
π

(
−4ρ̄2

R̄
+ 5

)
cos(λ − 2ν) − 6

7R̄

√
5
π

χZ̄µ̄ −
(

1 + 6L2

R̄2

)
µ̄ (3.26d)

dλ

dt̄
= − 1

40

√
30
π

(
−4ρ̄2

R̄
+ 5

)
sin(λ − 2ν)

µ̄
: (3.26e)

where the noise term was either white noise or a term of the form of Eq. (3.25).
For comparison, we also consider simulations without the deterministic model terms.
In this case, we numerically analyzed the following equations, which can be consid-
ered as that of an active Brownian swimmer with only rotational diffusion when the
noise term is a white noise [63].

dρ̄

dt̄
= dZ̄

dt̄
= dµ̄

dt̄
= dλ

dt̄
= 0, (3.27a)

dν

dt̄
= Noise. (3.27b)

3.3.1 Response to random perturbations
First, the white noise of the form Awξ was introduced as a perturbation, and nu-
merical simulations were performed with Aw = 1. The results are shown in Fig. 3.2.
The trajectories of the centroids demonstrate that, when the model is included, the
trajectory tends to bend less when M < 1 (R = 18 µm), whereas it tends to bend
more when M > 1 (R = 50 µm) (Fig. 3.2 (a-1)(b-1)). This effect is also confirmed
through angular autocorrelation. We calculated the angular autocorrelation func-
tion of the direction of motion of the droplets with velocity vD(t), which is given as
a function of lag time τ : ⟨C(t, τ)⟩t =

〈
vD(t+τ)·vD(t)

|vD(t+τ)||vD(t)|

〉
t
, where ⟨⟩t represents the time
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3.4. Conclusion

average, and a three-point moving average is applied to the velocity. The results
show that for M < 1 (R = 18 µm), the decrease of angular autocorrelation in the
case with the model is more suppressed whereas for M > 1 (R = 50 µm), it is more
amplified compared to the model-less case (Fig. 3.2 (a-2)(b-2)).

Next, the sporadic noise was introduced as a perturbation, and numerical simu-
lations were performed using f = 0.05, w = 5, and As = 5. The results are shown in
Fig. 3.3 and were similar to those obtained using white noise; however, the detailed
characteristics of the trajectories were different. In the case of white noise, the ac-
cumulation of small perturbations results in a winding motion, whereas in the case
of sporadic noise, the direction of motion changed smoothly. It can be seen that the
characteristics of the noise are properly reflected in the motion.

3.3.2 Effect of changes in frequency of noise events on the
droplet motion

In experiments, it has been observed that a straight-to-curvilinear motion transition
occurs as the droplet radius increases [19]. A larger droplet radius is expected to
increase the frequency of encounters with noise sources or events, because it also
increases the speed and the surface area of the droplet. Therefore, we conducted
numerical simulations with varying values of f , which controls the frequency of noise
events. The results with R = 100 µm, As = 5, w = 5, and f = 0.05 or 0.5 are
shown in Fig. 3.4. For the trajectories of the centroid, the increased frequency
results in more curly trajectories (Fig. 3.4 (a)(b)). Fig. 3.4 (c) also shows the
increased decay in angular autocorrelation as f increases. Notably, each plot shows
oscillatory behavior when f = 0.5 although this effect is smoothed out and only a
monotonous decay is observable in the plot of the ensemble average. The oscillatory
behavior is also present in the experiments in the previous study when the droplet
size is large [19].

3.4 Conclusion
We analyzed various types and properties of noise that are directly applied on the
motion direction of the droplet. Numerical simulations with the addition of pertur-
bation confirmed the suppression and amplification of angular response suggested
by the analysis [19].

The numerical simulations of droplet motion with different types of noise, as-
suming thermal noise (white noise) and noise due to intermittent stimuli such as
chemical trails (sporadic noise), demonstrated that the detailed characteristics of the
trajectories were different, although overall, they are similar. This indicates that the
model widely contributes to the average properties of the motion, e.g. persistency
of the straight motion [20, 46, 19, 21].

The results of the numerical simulation when varying the frequency of sporadic
noise events f were consistent with the experimental results of the larger-sized
droplet, in that more curly trajectories and more oscillatory angular autocorrelation
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Figure 3.2: Results of the numerical simulation with Noise = Awξ with or without
the present deterministic model terms. Here, the parameter is set to Aw = 1. (a)
Results of M < 1 (R = 18 µm). (b) Results of M > 1 (R = 50 µm). (a-1)(b-1) Plots
of trajectories of droplet centroids over 60 s for 4 couples of samples. Starting points
are set to the origin. Red or blue plots indicate the results with or without the model
terms, respectively. Insets: Samples of time series data of the noise added. (a-2)(b-
2) Plot of angular autocorrelation function ⟨C(t, τ)⟩t of the direction of motion of
the droplets for 64 samples. Red or blue plots indicate the results with or without
the model terms, respectively. Thin lines correspond to the individual droplets, and
the thick lines show the ensemble averages of the droplets.
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Figure 3.3: Results of numerical simulation with Noise =∑N
k=1 ak exp (−(t − tk)2/w2) with or without the present deterministic model

terms. Here, parameters are f = 0.05, As = 5, and w = 5. (a) Results of M < 1
(R = 18 µm). (b) Results of M > 1 (R = 50 µm). (a-1)(b-1) Plots of trajectories
of droplet centroids over 60 s for 4 couples of samples. Starting points are set to
the origin. Red or blue plots indicate the results with or without the model terms,
respectively. Insets: Samples of time series data of the noise added. (a-2)(b-2)
Plot of angular autocorrelation function ⟨C(t, τ)⟩t of the direction of motion of the
droplets for 64 samples. Red or blue plots indicate the results with or without the
model terms, respectively. Thin lines correspond to the individual droplets, and
the thick lines show the ensemble averages of the droplets.
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Figure 3.4: Results of numerical simulation with Noise =∑N
k=1 ak exp (−(t − tk)2/w2) for varying values of f . Other parameters are

set to R = 100 µm, As = 5 and w = 5. (a)(b) Plots of trajectories of the droplet
centroids over 60 s for 64 samples. The starting points are set to the origin.
Color variation depicts different droplets. (a) Results of f = 0.05. (b) Results of
f = 0.5. Insets: Samples of time series data of the noise added. (c) Plot of angular
autocorrelation function ⟨C(t, τ)⟩t of the direction of motion of the droplets for
64 samples. Green plots show the results of f = 0.05 and orange plots show the
results of f = 0.5. The thin lines correspond to the individual droplets, and the
thick lines show the ensemble averages of the droplets.

are observed as f increases. Therefore, it is presumable that the noise experienced
by the droplets in the experimental setting shows similar characteristics to sporadic
noise. It can also be inferred that the increased frequency of noise events, such as
that proportional to R2 or vD, contributes to the rotational motion transition that
accompanies the increase in droplet size. Additionally, the results indicate that the
characteristics of the droplet motion are largely dependent on the time scale of the
frequency of noises relative to the response of motion.

Overall, the results obtained suggested that the types and properties of external
perturbation have a considerable effect on the droplet motion. It is noted that
we assumed simplifying hypotheses on the supply and removal of the surfactants
when deriving the model and consequently the interaction with microscopic factors
which act as sources of noises is possibly not modelled faithfully. Another possible
source of noise is the coupling of modes with spherical harmonics of degrees higher
than two, which correspond to fine distribution of surfactants. Therefore, it will be
interesting to clarify the kind of noise that is present in the actual droplet based
on further exploration using experimental and theoretical approaches. Elucidating
the effect of perturbations on droplet motion will be important also for controlling
droplets in engineering applications. Finally, while the nonlinear coupling of higher
degree modes contributes to the magnified effect of noises, it is expected that the
active Brownian model is useful if the approximation to the first degree is effective.
Droplets with smaller radius are examples of such situation and it will be interesting
to compare the experimental results with this simpler model.
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3.5. Appendix

3.5 Appendix

Mathematical preliminaries
In this article, the polar coordinates are defined as

r = r

 sin θ cos ϕ
sin θ sin ϕ

cos θ

 . (3.28)

The normal tangent vectors of the unit sphere are given by

eθ = dr
dθ

|r=1, (3.29a)

eϕ = dr
dϕ

|r=1. (3.29b)

Therefore each tangent vector field on the unit sphere has the form

u = uθeθ + uϕeϕ. (3.30)

The Laplacian operator on the sphere is given by

∆sphere = 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2 . (3.31)

The spherical harmonic functions are defined by

Y m
l (θ, φ) =

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (cos θ)eimφ, (3.32)

where |m| ≤ l. These are the eigenfunctions of the Laplacian operator and satisfy

∆sphereY
m

l = −l(l + 1)Y m
l . (3.33)

Sufficiently well-behaved functions on the sphere can be expanded in terms of
the spherical harmonic functions. Namely, a function c : S2 → C can be written as

c(ϕ, θ) =
∑
l,m

cm
l Y m

l (ϕ, θ), (3.34)

where the coefficients cm
l are calculated by

cm
l =

∫ π

0

∫ 2π

0
c(ϕ, θ)(Y m

l )∗ sin θ dθ dϕ . (3.35)

For example, the delta function δ can be expanded as follows:

δ(θ − θ0, ϕ − ϕ0) =
∞∑

l=0

l∑
m=−l

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (cos(θ0))e−imϕ0Y m

l . (3.36)
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Chapter 4

General conclusion

4.1 Conclusion

The purpose of this thesis is to contribute to clarifying the mechanism of the motion
transition of swimming droplets. First, experiments were conducted in a system of
water-in-oil droplets, which is a typical system of swimming droplets. As a re-
sult, the emergence of the straight-to-curvilinear motion transition with droplet
size, which has not been observed before, was revealed. To clarify the relation-
ship between curvilinear motion and higher hydrodynamic modes, we developed a
three-dimensional axis-asymmetric model consisting of the Stokes equation and an
advection-diffusion equation with surfactant inflow and outflow terms. This model
can be compared with the experimental results by introducing the characteristic
quantities of the experimental system as parameters, thus contributing to elucidat-
ing the mechanism of the experimentally observed phenomena. Next, applying the
parameters of the actual experimental system, analysis and numerical simulations of
the model revealed that the angular response to external perturbations varies with
droplet size, which in turn affects the global behavior. This is due to the contribution
of the higher hydrodynamics modes, which are responsible for the asymmetry with
respect to the axis of direction of a droplet. It was suggested that this effect con-
tributes to the straight-to-curvilinear motion transition observed in the experiment.
To further discuss how external perturbations contribute to the complex motion of
droplets, two different types of noise, the thermal noise modeled by the white noise
and a kind of sporadic noise to mimic the perturbation caused by the chemical trails,
were added to the model and numerical simulations were performed. The results
suggested that the types and characteristics of the noise affect the droplet motion.
Numerical simulations were also performed with varying the frequency of each noise
event of sporadic noise. The results indicated that the increase in the frequency
of noise events is likely to contribute to the curvilinear motion. In particular, it
is reasonable to assume such an effect when the droplet size increases. In general,
it was indicated that the transition of the swimming droplet motion is due to the
contribution of higher hydrodynamic modes and the noise affecting the droplet.
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4. General conclusion

4.2 Future problems
Although third or higher-degree hydrodynamic modes were not considered in this
model, the fitting results of the experimentally observed internal convection sug-
gested that higher terms may also exist. We would like to clarify the relationship
between the higher-degree terms and the motion.

Another interesting problem is to elucidate the practical effect of noise on the
complex motion of the droplet by investigating the actual noise on the droplets.
Concerning chemical traces, it has already been shown that chaotic behavior can
emerge due to interactions with the traces [21]. As a first step, we would like to
investigate more precisely the influence of chemical traces on droplets, which are
easier to observe, to approach the detailed mechanism of motion transition of a
swimming droplet.

For engineering applications of swimming droplets, it is necessary to investigate
the influence of geometric conditions around the droplet on its motion. In a pre-
vious study, it has been shown experimentally that the motion changes depending
on whether the space is three-dimensional or quasi-two-dimensional [20]. Moreover,
the effect of walls on the flow field around a swimming droplet has been stud-
ied experimentally and theoretically [64]. Furthermore, the behavior of swimming
droplets confined in capillaries with square and circular cross-sections has also been
studied [18]. We would like to contribute to engineering applications by furthering
the construction and analysis of models that take into account these geometrical
conditions.
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