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Chapter 1

Introduction

This thesis relates dynamical systems and variational problems . The field of dynamical
systems, broadly speaking, studies time evolutions of systems formulated as differential
equations or mappings. Henri Poincaré originated the field in the 1890s. Variational prob-
lems also have a long history, beginning with the brachistochrone curve problem presented
by Johann Bernoulli in the 1690s. Classically speaking, the calculus of variations involves
calculating differentiation in a functional space, and minimizing methods are a standard
way to obtain critical points of a functional. For some ordinary or partial differential
equations, there are functionals whose critical points correspond to their solutions. Vari-
ational problems can be formulated for symplectic mappings through Poincaré’s lemma.
Therefore we expect to obtain solutions of differential equations or orbits of mappings by
finding critical points of the corresponding functionals.

Our purpose is to show the existence of topologically or geometrically characteristic
solutions or orbits in chaotic dynamics by using minimizing methods and to study their
properties. This thesis mainly deals with twist maps and the n-body problem, especially
the restricted three-body problem, which is a special case of the three-body problem.
Twist maps are a class of area-preserving maps on the annulus satisfying twist condition
and the n-body problem is the problem of studying the individual behaviors of a group of
particles interacting with each other gravitationally and represented by a system of ordi-
nary differential equations. Both of them are parts of important subjects for dynamical
systems and have variational structures.

Area-preserving maps are two-dimensional symplectic mappings and they contain a lot
of significant maps, such as standard maps [4,9] and billiard maps [34,57]. In particular,
twist maps have been studied vigorously [3, 29, 32]. Based on [5], Mather [35] considered
a variational problem for twist maps to show the existence of periodic or quasi-periodic
orbits, and his ideas led to Aubry-Mather theory, as seen later. By applying Mather’s
approach, Yu [66] recently have shown the existence of infinitely many heteroclinic and ho-
moclinic orbits of twist maps between a pair of two periodic orbits called the neighboring,
which implies chaotic dynamics.

In addition, it is well-known that the n-body problem, including the restricted three-
body problem, is non-integrable when n ≥ 3 [31, 47, 61]. Whereas, beginning with the
figure-eight by Chenciner and Montgomery [18], a lot of periodic solutions of the full
n-body problem have been shown to exist by using variational approaches [13, 15, 53].
The restricted three-body problem is also an important research area that deals with
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CHAPTER 1. INTRODUCTION 4

significant issues in celestial mechanics, such as analyzing asteroid movement behavior and
orbit design for space probes. However, there are fewer studies on variational problems
for the restricted three-body problem compared with the full n-body problem, because
the corresponding action functional is more complicated [39].

What properties of dynamical systems does the existence of various periodic solutions
indicate in the n-body problem? To consider this issue, we can define braids for periodic
solutions in the n-body problem that are shown to exist by using minimizing methods.
This study of braids is motivated by the fact that braid theory is closely associated with
low-dimensional dynamical systems through mapping class groups [10]. Although the
n-body problem is not a low-dimensional dynamical system, our viewpoint sheds some
new light on the relationship between dynamical systems, variational analysis, and braid
theory.

In the rest of this chapter, we first review several basic terminologies for dynami-
cal systems and basic concepts of variational problems for ordinary differential equations
including the n-body problem, and area-preserving maps through previous research. Ad-
ditionally, we describe n-braids for periodic solutions of the planar n-body problem.

1.1 Variational structures for ordinary differential equa-

tions

For t ∈ R and x ∈ Rn, we set

ẋ = F (t, x) (1.1.1)

where ẋ = dx/dt and F : R×Rn → Rn is a smooth vector field. There are three key types
of time-global solutions for (1.1.1): periodic, heteroclinic, and homoclinic solutions .

Definition 1.1.1 (periodic, heteroclinic, and homoclinic solutions). Let x = x(t) be a
solution of (1.1.1). Then

(i) For T > 0, x(t) is said to be T -periodic if x(t) = x(t+T ) for all t ∈ R. Moreover, if
a constant vector e satisfies F (t, e) = 0 for all t ∈ R, then we call e an equilibrium
point. If e is an equilibrium point, then x(t) ≡ e is called a stationary solution.

(ii) The solution x(t) is said to be heteroclinic if there are two distinct equilibrium points
e1 and e2 with x(t) 6≡ ei (i = 1, 2) such that |x(t) − e1| → 0 as t → −∞ and
|x(t)− e2| → 0 as t → ∞.

(iii) The solution x is said to be homoclinic if there is an equilibrium point e with x(t) 6≡ e
such that |x(t)− e| → 0 as |t| → ∞.

What kinds of solutions appear in ordinary differential equations? This question is
extremely difficult to answer in general. However, we can often obtain a time-global solu-
tion with interesting geometric or topological behaviors by replacing the original system
with a variational problem.

We say ‘(1.1.1) has a variational structure’ when there is a functional A : X → R
such that if x ∈ X satisfies A′(x) = 0, then x is a weak solution of (1.1.1). Here, X
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is a functional space. A typical example is a potential system, which has a function
V : R× Rn → R such that:

ẍ =
∂V

∂x
(t, x). (1.1.2)

We set W 1,2([a, b]) := {x : [a, b] → Rn | ‖x‖2W 1,2 < ∞}, where a < b and:

‖x‖2W 1,2([a,b]) =

∫ b

a

(|ẋ|2 + |x|2)dt.

A function L : Rn × Rn → R is given by:

L(x, ẋ) :=
1

2
|ẋ|2 + V (t, x).

For the described system, consider a functional A : W 1,2([a, b]) → R given by:

A[a,b](x) =

∫ b

a

L(x, ẋ)dt. (1.1.3)

For simplicity, suppose that V is smooth and n = 1. To obtain a periodic solution, we
consider when both t and x are 1-periodic. We set:

X := W 1,2(T1) = {x : T1 → R | ‖x‖W 1,2(T1) < ∞},

and
A(x) := AT1(x).

Note that if x ∈ X, then x is continuous. It is well-known that x satisfying A′(x) = 0 is
a weak solution of (1.1.2), and also a classical solution if V is smooth. Thus, the problem
of finding a solution of (1.1.2) is replaced by the problem of finding a critical point of
(1.1.3).

What kinds of critical points does the functional have? The standard approach is to
find a minimum point of (1.1.3). Such methods are called minimizing methods or direct
methods . If we obtain x∗ satisfying:

A(x∗) = inf
x∈X

A(x), (1.1.4)

then it is a periodic solution of (1.1.2). (Note that the existence of x∗ is guaranteed in
the weak closure X̄ of X in general.)

Now we consider heteroclinic and homoclinic solutions. Given two equilibrium points
e1 and e2, let a functional A∞ and a set Y1 be defined by:

A∞(x) =

∫ ∞

−∞

1

2
|ẋ|2 + V (t, x)dt (1.1.5)

and

Y1 = {x ∈ Xloc | ‖x− e1‖L2[i,i+1] → 0 (i → −∞), ‖x− e2‖L2[i,i+1] → 0 (i → ∞)},
(1.1.6)
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where Xloc = W 1,2
loc (R,R). That is, x ∈ Xloc implies ‖x‖W 1,2([a,b]) < ∞ for any a, b with

a < b. Since the value of infx∈Y A∞(x) can always be infinity, we need to normalize
(1.1.5). We redefine A∞ as:

A∞(x) =
∑
i∈Z

ai(x), (1.1.7)

where:

ai(x) =

∫ ∞

−∞

1

2
|ẋ|2 + V (t, x)dt− c

and c is a constant determined from the choice of Y1. Since a minimizer converges to e1 or
e2 if ai ≥ 0 for all i ∈ Z, we can expect that x that gives the minimum of the functional
A∞ is a heteroclinic solution if x ∈ Y1. To obtain a homoclinic solution, we set:

Y2 = {x ∈ Xloc | ‖x− e1‖L2[i,i+1] → 0 (|i| → ∞)}. (1.1.8)

Note that this setting is not appropriate where e1 ∈ Y2 and can be a minimizer of (1.1.7).
Therefore we need to assume some technical constraints on Y2. However, adding con-
straints makes it more difficult to show that a minimizer is in Y2, not in Ȳ2\Y2. We omit
the detailed argument here. The above discussion is based on [49].

Although we considered a potential system, a similar approach is valid for partial
differential equations (e.g. see [50]). To delve deeper into the calculus of variations for
multivariable functions, we recommend [25]. Furthermore, there are approaches other
than minimizing methods to find critical points. For a well-known example, see [48] for a
minimax method.

1.2 Variational structures for area-preserving maps

Let f : Rn → Rn be a smooth function and f−1 be its inverse. Taking x0 ∈ Rn, we set
x = (xi)i∈Z by xi = f i(x0) and call it an orbit. For a given orbit x, we define periodic,
heteroclinic, and homoclinic orbits, relating to Definition 1.1.1.

Definition 1.2.1 (periodic, heteroclinic, and homoclinic orbits).

(i) The orbit x is said to be periodic if there is m ∈ N such that xi+m = xi for all i ∈ Z.
Moreover if x0 = f(x0), then we call x0 a fixed point.

(ii) The orbit x is said to be heteroclinic if there are two distinct fixed points e1 and e2,
such that xi 6= ej for all i ∈ Z and j = 1, 2, with |xi − e1| → 0 as i → −∞ and
|xi − e2| → 0 as i → ∞.

(iii) The orbit x is said to be homoclinic if there is a fixed point e such that xi 6= e for
all i ∈ Z and |xi − e| → 0 as |i| → ∞.

Generally, we do not know whether (1.1.1) has a variational structure except in trivial
cases such as potential systems. On the other hand, Poincare’s lemma in the following
shows what maps have a variational structure.

Lemma 1.2.2 (Poincaré). If a k-form ω satisfies dω = 0 on a simply connected domain
in Rn, then for 1 ≤ k ≤ n, there exists a k − 1-form η such that ω = dη.
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We check the variational structure of area-preserving maps through Lemma 1.2.2. A
map f : R2 → R2 ((x, y) 7→ (X,Y )) is said to be area-preserving if f satisfies:

dx ∧ dy = dX ∧ dY. (1.2.1)

Assume f ∈ C1 and is area-preserving. By simple calculation, (1.2.1) becomes:

d(Y dX − ydx) = 0.

By Lemma 1.2.2, there is a function h = h(x,X) satisfying:

dh = Y dX − ydx.

For the above h, we define a function H by:

H(xj, . . . , xk) :=
k−1∑
i=j

h(xi, xi+1) (1.2.2)

Although the critical points of H are not the orbits of f , the following discussion implies
that if f satisfies a twist condition, i.e., ∂X/∂y > 0, then f has a variational structure
and H is the corresponding function such as (1.1.3).

Let x = (xj, . . . , xk) be a critical point of (4.2.6). Clearly, x satisfies:

∂2h(xi−1, xi) + ∂1h(xi, xi+1) = 0,

where ∂1 = ∂/∂x and ∂2 = ∂/∂X. We will show that (xi, yi) (i = 1, · · · , n) is an orbit of
f , where:

yi = −∂1h(xi, xi+1). (1.2.3)

If h is well-defined, then we obtain:

f(xi, yi) = f(xi,−∂1h(xi, xi+1)) = (xi+1, ∂2h(xi, xi+1)) = (xi+1,−∂1h(xi+1, xi+2)),

and (xi, yi)
n
i=1 is an orbit. Since f ∈ C1, there is an inverse map and y can be regarded

as a map of (x,X). The twist condition implies:

∂yi
∂X

= −∂2∂1h(xi, xi+1) > 0,

so yi is monotone and is not a multivalued function. Moreover, yi does not diverge because
h is of class C2.

As in (1.1.7), we define the normalized function H∞ on RZ by:

H∞(x) =
∑
i∈Z

h(xi, xi+1)− c. (1.2.4)

Remark 1.2.3. For a 2n-dimensional mapping f : R2n → R2n((x1, y1, · · · , xn, yn) 7→
(X1, Y1, · · · , Xn, Yn)), (1.2.1) is replaced by a symplectic form, i.e.,

n∑
i=1

dxi ∧ dyi =
n∑

i=1

dXi ∧ dYi.

The above arguments relate to the Aubry-Mather theory, which was originated by [5]
and further developed by Mather [36–38]. Whereas we discussed periodic solutions in a
potential system, Mather [35] showed the existence of periodic or quasi-periodic orbits on
twist maps. Moreover, Bangert [6] obtained good conditions of h so that minimal sets
contain interesting configurations. We provide further detail in Chapter 2.
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1.3 Variational problems for the n-body problem

In this section, we introduce the n-body problem, which we will focus on in Chapters 3
and 4. The n-body problem, which is a potential system with singularities, is defined by:

miq̈i = −
∑
j ̸=i

mimj

|qi − qj|3
(qi − qj) (i = 1, · · · , n, q ∈ Rd), (1.3.1)

and the corresponding potential V is given by:

V (q1, · · · , qn) =
∑
i ̸=j

mi

|qi − qj|
(q ∈ Rd). (1.3.2)

It is well-known that (1.3.1) is integrable when n = 2 and non-integrable when n ≥ 3.
However, many works are proving periodic solutions of the n-body problem in the case
of n ≥ 3 by minimizing methods. Readers can see various figures of numerical periodic
solutions of the n-body problem in [55].

Let an action functional AT be given by:

AT (q) =

∫ T

0

n∑
i=1

mi

2
|q̇|2 +

∑
i<j

mimj

|qi − qj|
dt.

By considering the variational problem for (1.3.1), we can show the existence of periodic
solutions. However, our proof differs from the method in Section 1.1 because (1.3.2) has
singular points qi = qj.

We set:

X = {q = (q1, · · · , qn) ∈ (Rd)n},
∆ij = {q ∈ X | qi = qj},

∆ =
⋃
i<j

∆ij

and, by abuse of notation, can then define:

X = {q : [0, 1] → X | ‖q‖W 1,2([0,1]) < ∞}.

To prove that a minimizer is smooth, it suffices to show that it is not in ∆, i.e., it has
no collision. We explain the steps of the proof for showing periodic solutions as follows:

Step 1 Impose some ‘good’ constraints or boundary conditions on X.

Step 2 Show the existence of minimizers in the above set X.

Step 3 Show that a minimizer is not a trivial solution.

Step 4 Show that a minimizer has no collision.

Steps 1 and 4 are difficult. Although we show periodic solutions, we do not impose
a periodic boundary condition in Step 1. As an example to demonstrate why not, we
introduce the figure-eight.
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Example 1.3.1 (The figure-eight, [18]). The figure-eight solution is periodic in the planar
three-body problem with equal masses. Its existence was proved by Chenciner and Mont-
gomery. The proof is based on minimizing methods. They used isosceles triangles and a
linear configuration as the boundary conditions, as shown in Figure 1.1.

Figure 1.1: The figure-eight and its boundary conditions

In Step 4, we introduce two standard methods: level estimate and local estimate.

• Level estimate: Set

Xcol = {q ∈ X | q(s) ∈ ∆ for some s ∈ [0, 1]}.

We first estimate a constant C so that the value of infq∈Xcol
AT (q) is bounded below.

Next we construct a test path qtest ∈ X satisfying AT (qtest) ≤ C. Then we obtain:

inf
q∈Xcol

AT (q) > C ≥ AT (qtest) ≥ inf
q∈X

AT (q)

and a minimizer has no collision. This method of proof is called a level estimate (or
global estimate).

• Local estimate: Suppose that qcol collides at t = 0. We first analyze the behavior of
qcol on t ∈ [0, ε] for sufficiently small ε > 0 by using the blow-up technique. More-
over, taking another path q([0, ε]) with q(ε) = qcol(ε), we show Aε(q) < Aε(qcol).
This approach is called a local estimate.

The existence of the figure-eight is shown by the level estimate. For other results using
a level estimate, we refer to [11, 12]. Moreover, [53, 65] used a local estimate to show
periodic solutions. Other methods to prove no collision include the averaging method [33]
and rotating circle property [21], which we do not delve into in this thesis.

1.4 Braids and braid types of periodic solutions in

the planar n-body problem

The figure-eight was first found by Moore, using numerical calculation. In [45], Moore
classified numerical periodic solutions of the planar n-body problem with n-braids. In
broad strokes, an n-braid is the suspension of an n-point set. The corresponding braid
for a T -periodic solution, such as (x(t), y(t)), is determined by plotting (x(t), y(t), t) in
t ∈ [0, T ]. Figure 1.2 (the same as Figure 5.7) illustrates the corresponding braid for the
figure-eight in t ∈ [0, T/3].
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Figure 1.2: A figure-eight and its corresponding braid

However, because the corresponding braid can be changed if we see it from another
direction, braids seem unsuitable for periodic orbits. For example, the braid in Figure 1.2
is different from the one made by turning it over. Therefore, we need to give some kind
of equivalence classes. We consider using braid types as the equivalence class. We state
precise definitions of braids and braid types in Chapter 5.

1.5 Outline of the thesis

This thesis is divided into two main parts. Chapters 2-4 deal with minimizing methods and
Chapter 5 examines braid types for periodic solutions obtained by minimizing methods.
More specifically, Chapter 2 consider twist maps and provides the variational structure
for infinite transition orbits, which alternately passes the neighboring of two periodic or
fixed points an infinite times. Chapter 3 and 4 are related to variational problems for the
restricted three-body problem. In Chapter 3, we show the existence of several periodic
solutions of the planar circular restricted three-body problem with the blow-up technique
and a local estimate. Chapter 4 is devoted to the study of the special case. In the first half
of this chapter, we use our methods in Chapter 3 to deal with the spacial Hill problem.
The second half provides the existence proof of brake orbits in the two-center problem
by using a level estimate. In Chapter 5, we study braid types for a family of periodic
solutions in the planar 2n-body problem and calculate the corresponding stretch factors
with covering spaces.



Chapter 2

Infinite transition orbits for twist
maps

2.1 Introduction

In this chapter, we consider chaotic dynamics and variational structures of area-preserving
maps. The dynamics of such maps have been widely studied, with key findings by Poincaré
and Birkhoff. To explore these variational structures, we define a special class of area-
preserving maps called monotone twist maps:

Definition 2.1.1 (monotone twist maps). Set a map f : T×R → T×R and assume that
f ∈ C1 and a lift f̃ of f : R× R → R× R, (x, y) 7→ (X,Y ) satisfy the followings:

(f1) f̃ is area-preserving, i.e., dx ∧ dy = dX ∧ dY , and

(f2) ∂X/∂y > 0 (twist condition)

Then f is said to be a monotone twist map.

By Poincaré’s lemma, we get a generating function h for a monotone twist map f and
it satisfies dh = Y dX − ydx. That is,

y = ∂1h(x,X), Y = −∂2h(x,X).

For the above h, by abuse of notation, we define h : Rn+1 → R by

h(x0, x1, · · · , xn) =
n∑

i=1

h(xi, xi+1) (2.1.1)

We can regard h as a variational structure associated with f , because any critical point
of (2.1.1), say (x0, · · · , xn), gives us an orbit of f̃ by yi = −∂h1(xi, xi+1) = ∂h2(xi−1, xi).
This is known as the Aubry-Mather theory, which is so called because Aubry studied
critical points of the action h in [5] and Mather developed the idea (e.g. [35, 37]). We
briefly summarize Bangert’s investigation of good conditions of h for study in minimal
sets [6].

11
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We consider the space of bi-finite sequences of real numbers and define convergence of
a sequence xn ∈ RZ to x ∈ RZ by

lim
n→∞

|xn
i − xi| = 0 (∀i ∈ Z). (2.1.2)

Assume that a Lipschitz continuous map h : R2 → R satisfies (h1)-(h4), where they are
given by the followings:

(h1) For all (ξ, η) ∈ R2, h(ξ, η) = h(ξ + 1, η + 1);

(h2) lim
η→∞

h(ξ, ξ + η) ⇒ ∞;

(h3) If ξ < ξ̄ and η < η̄, then h(ξ, η) + h(ξ̄, η̄) < h(ξ, η̄) + h(ξ̄, η); and

(h4) If (x, x0, x1) and (ξ, x0, ξ1) are minimal and (x, x0, x1) 6= (ξ, x0, ξ1), then (x−ξ)(x1−
ξ1) < 0.

Definition 2.1.2 (minimal configuration/stationary configuration). A finite configura-
tion x = (xi)n≤i≤m is said to be minimal if, for any finite configuration {yi}n1

i=n0
with

yn0 = xn0 and yn1 = xn1,

h(xn0 , xn0+1, · · · , xn1−1, xn1) ≤ h(yn0 , yn0+1, · · · , yn1−1, yn1),

where n ≤ n0 < n1 ≤ m. An infinite configuration x = (xi)i∈Z is called minimal if,
for any n < m, we have x = (xi)

m
i=n is minimal. Moreover, a configuration x is called

locally minimal or a stationary configuration if for any i ∈ Z, it holds that ∂2h(xi−1, xi)+
∂1h(xi, xi+1) = 0.

For x = (xi) ∈ RZ, we define

α+(x) := lim
i→∞

xi

i
, α−(x) := lim

i→−∞

xi

i
.

Definition 2.1.3 (rotation number). If both α+(x) and α−(x) exist and α+(x) = α−(x)(=:
α(x)), then we call α(x) a rotation number of x.

Let Mα be a minimal set consisting of minimal configurations with rotation number
α. It is known that for any α ∈ R, the set Mα is non-empty and compact (see [6] for the
proof).

Definition 2.1.4 (periodic orbits). A configuration x = (xi) is said to be (q, p)-periodic
if x = (xi) ∈ RZ satisfies

Tp,qxi = xp+i + q,

for any i ∈ Z.

It is easily seen that if x is (q, p)-periodic, then its rotation number is p/q. This chapter
discusses the case where α ∈ Q. For α = p/q ∈ Q, we set

Mper
α := {x ∈ Mα | x is T(p,q)-periodic} ∩Mα.
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Definition 2.1.5 (neighboring). A pair of (p, q)-periodic minimal configurations x0, x1

with x0 6= x1 is called neighboring if there is no other x ∈ Mper
α with x0 < x < x1

Given a neighboring pair (x0, x1), we define:

M+
α (x

0, x1) = {x ∈ Mα | |xi − x0| → 0 (i → −∞) and |xi − x1| → 0 (i → ∞)} and

M−
α (x

0, x1) = {x ∈ Mα | |xi − x0| → 0 (i → ∞) and |xi − x1| → 0 (i → −∞)}.

Bangert [6] showed the following proposition.

Proposition 2.1.6. Given α ∈ Q, if Mα has a neighboring pair (x0, x1), then Mper
α ,M+

α

and M−
α are nonempty.

Although we have discussed minimal configuration in the preceding paragraph, there
are also interesting works that treat non-minimal orbits between periodic orbits, particu-
larly, [49] and [66]. In [49], Rabinowitz used minimizing methods to prove the existence
of three types of solutions-periodic, heteroclinic and homoclinic-in potential systems with
reversibility for time, i.e. V (t, x) = V (−t, x). Under an assumption called gaps, which
is similar to neighboring, for periodic and heteroclinic solutions, each non-minimal het-
eroclinic and homoclinic orbit can be given as n-transition orbits (n ≥ 2) between two
periodic orbits.

Definition 2.1.7 (n-transition orbits). An orbit is called an n transition orbit if it passes
between two periodic orbits, say u0 and u1, and alternately through a neighborhood of
them, where ‘n’ means the number of times it changes from a neighborhood of u0 to a
neighborhood of u1. When n is odd, these are heteroclinic orbits; when n is even, these
are homoclinic orbits.

Remark 2.1.8. The existence of 1-transition orbits ( i.e., minimal heteroclinic orbits)
does not require gaps for heteroclinic orbits. We can see this by considering a simple
pendulum system.

Rabinowitz’s approach can be applied to variational methods for area-preserving maps.
Yu [66] added h to the following assumption (h5)− (h6) to h:

(h5) There exists a positive continuous function p on R2 such that:

h(ξ, η′) + h(η, ξ′)− h(ξ, ξ′)− h(η, η′) >

∫ η

ξ

∫ η′

ξ′
p

if ξ < η and ξ′ < η′.

(h6) There is a θ > 0 satisfying the following conditions:

– ξ 7→ θξ2/2− h(ξ, ξ′) is convex for any ξ′, and

– ξ 7→ θξ′2/2− h(ξ, ξ′) is convex for any ξ.

Remark 2.1.9. One of a sufficient conditions for (h2)− (h5) is

(h̃) ∂1∂2h ≤ −δ < 0 for some δ > 0.

by taking a constant function ρ = δ as a positive function. If f satisfies ∂X/∂y ≥ δ for
some δ > 0, a generating function h for f satisfies (h̃). However, (h̃) is not a necessary
condition for satisfying (h2)− (h5).
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Clearly, (h5) implies (h3). Mather [37] proved that if h satisfies (h1)-(h6), then
∂2h(xi−1, xi) and ∂1h(xi, xi+1) exist in the meaning of the left-hand-side limit. In ad-
dition, he proved that if x is a locally minimal configuration, then it satisfies:

∂2h(xi−1, xi) + ∂1h(xi, xi+1) = 0.

Yu applied Rabinowitz’s methods to twist maps to show finite transition orbits of
monotone twist maps for all α ∈ Q. We will give a brief summary of his idea in the
case of α = 0 (i.e. (p, q) = (1, 0) in Definition 2.1.4). Let (u0, u1) be a neighboring
pair with α = 0. By abuse of notation, we then denote uj by the constant configuration
{xi = uj}i∈Z. We set

c := min
x∈R

h(x, x)(= h(u0, u0) = h(u1, u1)).

And:

I(x) =
∑
i∈Z

ai(x), (2.1.3)

where ai(x) = h(xi, xi+1)− c.
Yu studied local minimizers of I to show the existence of finite transition orbits. Given

a rational number α ∈ Q and a neighboring pair with (x0, x1), we let:

I+α (x
0, x1) = {x0 ∈ R | x ∈ M+

α (u
0, u1)} and

I−α (x
0, x1) = {x0 ∈ R | x ∈ M−

α (u
0, u1)}.

Under the above setting, he showed the following theorem.

Theorem 2.1.10 (Theorem 1.7, [66]). Given a rational number α ∈ Q, if

I+α (x
0, x1) 6= (x0

0, x
1
0) and I−α (x

0, x1) 6= (x0
0, x

1
0),

then there exist infinite number of 2k-transition heteroclinic orbits and 2k + 1-transition
homoclinic orbits which passes through the neighborhood of x0 and x1 alternately.

Furthermore, [49] proved the existence of an infinite transition orbit as a limit of
sequences of finite transition orbits. However, the variational structure of infinite tran-
sition orbits is an open question. To consider the question for twist maps, the following
proposition is essential.

Proposition 2.1.11 (Proposition 2.2, [66]). If I(x) < ∞, then |xi−u1| → 0 or |xi−u0| →
0 as |i| → ∞.

Since this implies that I(x) = ∞ if x is an infinite transition orbit, we need to fix
the normalization of I. Therefore, we focus on giving the variational structure of infinite
transition orbits of twist maps and discuss the conditions of h. Roughly speaking, our
main theorem and the steps of the proof imply the following theorem.

Theorem 2.1.12. The function J defined in Section 2.3.1 gives us the variational struc-
ture of infinite transition orbits.

This chapter is organized as follows. Section 2.2 deals with some results in [66] and
remarks. In Section 2.3, our main results are stated and proved in the case of α = 0.
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2.2 Preliminary

In this section, we would like to introduce properties of (2.1.3) and minimal configura-
tions using several useful results in [66]. Moreover, we study estimates of heteroclinic
configurations.

2.2.1 Properties of minimal configurations

Let (u0, u1) be a neighboring pair of Mper
0 and:

X = X(u0, u1) = {x = (xi)i∈Z | u0 ≤ xi ≤ u1 (∀i ∈ Z)},
X(n) = X(n;u0, u1) = {x = (xi)

n
i=0 | u0 ≤ xi ≤ u1 (∀i ∈ {0, · · · , n})}, and

X̂(n) = X̂(n;u0, u1) = {x = (xi)
n
i=0 | x0 = xn, u0 ≤ xi ≤ u1 (∀i ∈ {0, · · · , n})}.

(2.2.1)

Definition 2.2.1 ( [66]). For x ∈ X, we set:

d(x) := max
0≤i≤n

min
j∈{0,1}

|xi − uj|.

For any δ > 0, let C be a Lipschitz constant of h and :

ϕ(δ) := inf
n∈Z+

inf

{
n−1∑
i=0

ai(x) | x ∈ X̂(n) and d(x) ≥ δ

}
.

Remark 2.2.2. (1)We can replace Lipschitz continuity with local Lipschitz continuity on
[u0, u1]× [u0, u1]. (2)The function ϕ(δ) is positive for any δ > 0 and ϕ(0) = 0.

Lemma 2.2.3 (Lemma 2.7 and 2.8, [66]). For any n ∈ N and x ∈ X̂(n) satisfying
min |xi − uj| ≥ δ,

n−1∑
i=0

ai(x) ≥ nϕ(δ)

and for any n ∈ N and x ∈ X(n),

n−1∑
i=0

ai(x) ≥ −C|xn − x0|.

Proof. See [66]. This proof requires (h3).

Lemma 2.2.4 (Lemma 2.9, [66]). If x ∈ X satisfies |xi − u0| as |i| → ∞ and xi 6= u0 for
some i ∈ Z, then I(x) > 0.

We also need to check that each component of stationary configurations is not equal
to u0 or u1. This follows from the next lemmas.

Lemma 2.2.5 (Lemma 2.11, [66]). For any δ ∈ (0, u1 − u0], if (xi)
2
i=0 satisfies

(i) xi ∈ [u0, u1] for all i = 0, 1, 2;

(ii) x1 ∈ [u1 − δ, u1], and x0 6= u1 or x2 6= u1; and
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(iii) h(x0, x1, x2) ≤ h(x0, ξ, x2) for all ξ ∈ [u1 − δ, u1],

then x1 6= u1. This still holds if we replace every u1 by u0 and every [u1 − δ, u1] by
[u0, u0 + δ].

Lemma 2.2.6 (Lemma 2.12, [66]). If a finite configuration x = (xi)
n1
i=n0

satisfies

(i) xi ∈ [u0, u1] for all i = n0, · · · , n1 and

(ii) for any (yi)
n1
i=n0

satisfying yn0 = xn0, yn1 = xn1, and yi ∈ [u0, u1],

h(xn1 , xn1+1, · · · , xn2−1, xn2) ≤ h(yn1 , yn1+1, · · · , yn2−1, yn2),

then x is a minimal configuration. Moreover, if x also satisfies xn0 /∈ {u0, u1} or xn1 /∈
{u0, u1}, then xi /∈ {u0, u1} for all i = n0 + 1, · · · , n1 − 1.

Proof of the two lemmas above. See [66]. These proofs require (h4) and (h5).

Moreover, we may replace α = 0 with other rational numbers as seen below.

Definition 2.2.7 (Definition 5.1, [66]). For α = p/q ∈ Q\{0}, we set:

Xα(x
−, x+) := {x = (xi)i∈Z | x−

i ≤ xi ≤ x+
i (i ∈ Z)}.

where x− and x+ are (p, q)-periodic neighboring minimal configurations with x− < x+.

Definition 2.2.8 (Definition 5.2, [66]). For h1 and h2, we define h1 ∗ h2 : R2 → R by

h1 ∗ h2(x1, x2) = min
ξ∈R

(h1(x1, ξ) + h2(ξ, x2)).

We call this the conjunction of h1 and h2.

Using the conjunction, we denote H : R2 → R for α = p/q by:

H(ξ, ξ′) = h∗q(ξ, ξ′ + p),

where h∗q(x, y) = h1 ∗ h2 ∗ · · · ∗ hq (hi = h).

Definition 2.2.9 (Definition 5.5, [66]). For any y = (yi) ∈ X(x−
0 , x

+
0 ), we define x =

(xi) ∈ Xα(x
−, x+) as follows:

(i) xiq = yi + ip and

(ii) (xj)
(i+1)q
j=iq satisfies

h(xiq, · · · , x(i+1)q) = H(xiq, x(i+1)q) = H(yi, yi+1),

i.e., (xj)
(i+1)q
j=iq is a minimal configuration of h.

Although we focus on the case of rotation number α = 0, we may apply our proof to
all rational rotation numbers from the following.

Proposition 2.2.10 (Proposition 5.6, [66]). Let y ∈ X(x−
0 , x

+
0 ) and x ∈ Xα(x

−, x+) be
defined as above. If y is a stationary configuration of H, then x must be a stationary
configuration of h.
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2.2.2 Asymptotic behavior on I

Let X0 and X1 be given by:

X0 = {x ∈ X | |xi − u0| → 0 (i → ∞), |xi − u0| → 0 (i → −∞)} and

X1 = {x ∈ X | |xi − u0| → 0 (i → −∞), |xi − u0| → 0 (i → ∞)}.

By considering a local minimizer (precisely, a global minimizer in X0 or X1), Yu [66]
proved the existence of heteroclinic configurations, which Bangert showed in [6], as per
the following proposition.

Proposition 2.2.11 (Theorem 3.4 and Proposition 3.5, [66]). There exists a stationary
configuration x in X0 (resp. X1) satisfying I(x) = c0 (resp. I(x) = c1), where

c0 = inf
x∈X0

I(x), c1 = inf
x∈X1

I(x)

Moreover, x is monotone, i.e., xi < xi+1 (resp. xi > xi+1) for all i ∈ Z.

Let:

M0(u0, u1) = {x ∈ X | c0 = inf
x∈X0

I(x)} and

M1(u0, u1) = {x ∈ X | c1 = inf
x∈X1

I(x)}.

Set c∗ := I(x0) + I(x1), where xi ∈ Mi. From the above and Lemma 2.2.4, we
immediately obtain the following corollary.

Corollary 2.2.12. c∗ > 0

Proof. Choose x0 ∈ M and x1 ∈ M arbitrarily. From monotonicity, x0 and x1 intersect
exactly once. We define x+ and x− in X by x+

i := max{x0
i , x

1
i } and x−

i := min{x0
i , x

1
i }.

By (h3) and Lemma 2.2.3,

c∗ = I(x0) + I(x−) ≥ I(x+) + I(x−) > 0.

This completes the proof.

Next, we consider a minimal configuration under fixed ends. Let:

Y ∗,0(n, a, b) = X(n) ∩ {x0 = u0 + a} ∩ {xn = u0 + b} and

Y ∗,1(n, a, b) = X(n) ∩ {x0 = u1 − a} ∩ {xn = u1 − b}

and y0(n, a, b) = (y0i ) ∈ Y ∗,0(n, a, b) be a finite configuration satisfying:

n−1∑
i=0

ai(y
0(n, a, b)) = min

x∈Y ∗,0(n,a,b)

n−1∑
i=0

ai(x).

The assertion of the next lemma may appear confusing, but it is useful for our proof
in Section 2.3.
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Lemma 2.2.13. For any m0,m1 ∈ Z≥0(m0 < m1) and ρ0, ρ1, and δ with ρ0 + ρ1 + 2δ <
c∗/2C, there exists n0 such that for all n ≥ n0, there exists l ∈ [m0, n−m1]∩Z satisfying
|y0l (n, ρ0, ρ1)− u0| ≤ δ. A similar argument holds if u0 and y0 are replaced by u1 and y1.

Proof. We first consider the case m0 = m1 = 0. Let z = (zi)
n
i=0 be given by z0 = y∗0,

zn = y∗n and zi = u0 otherwise. Clearly, for any n ∈ Z>0,

n∑
i=0

ai(y
∗
l (n, ρ0, ρ1)) ≤

n∑
i=0

ai(z) ≤ C(ρ1 + ρ2) <
c∗
2
.

On the other hand, Lemma 2.2.3 and the definition of y0 imply that if x ∈ X(n) ∩
{min |xi − uj| ≥ δ}, then

n∑
i=0

ai(x) ≥ nϕ(δ)− C|ρ1 − ρ0|.

and
∑n

i=0 ai(x) > c∗/2 for sufficiently large n, which is a contradiction. The above remark
implies that for sufficiently large n, there exists l ∈ [0, n]∩Z such that |yl(n, ρ0, ρ1)−u0| ≤ δ
or |yl(n, ρ0, ρ1)− u1| ≤ δ. That is, either of the following two conditions holds:

(a) There exists l ∈ [0, n]∩Z such that |xl(n, ρ0, ρ1)−u0| ≤ δ and |xi(n, ρ0, ρ1)−u1| > δ
for all i ∈ [0, n] ∩ Z, or

(b) There exists l ∈ [0, n] ∩ Z such that |xl(n, ρ0, ρ1)− u1| ≤ δ.

To prove our claim for m0 = m1 = 0, it suffices to show that the case of (b) does not
occur for sufficiently large n. If (b) holds, then by Corollary 2.2.12,∑

i

ai(x) > c∗ − C(ρ1 + ρ2)− 2Cδ >
c∗
2
,

which is a contradiction.

In fact, yi(n, a, b) can be asymptotic to ui any number of times, as per the following
lemma.

Lemma 2.2.14. For any k, ρ0, ρ1 and δ with ρ0 + ρ1 + 2δ < c∗/2C, there exists n0 such
that for all n ≥ n0, there exist l1, · · · , lk ∈ [0, n] ∩ Z satisfying |y0li(n, ρ0, ρ1)− u0| ≤ δ for
all i = 1, · · · , k. A similar argument holds if u0 and y0 are replaced by u1 and y1.

Proof. We only discuss the case where k = 2. If we assume the lemma is false, then we set
j1 = bn/2c. For some j0 ∈ [0, n], there exists x = (xi)

j0+j1
i=j0

satisfying |xl(n, ρ0, ρ1)−u0| > δ
for all i ∈ [j0, · · · , j0 + j1]∩Z. On the other hand, (h1) and Lemma 2.2.13 imply that for
sufficiently large j1, it holds that

∑
ai(x) > c∗/2, which is a contradiction. Other cases

are shown in the same way.

Lemma 2.2.15. For any ε > 0, there exist n0 ∈ N≥0 and x ∈ M0(u0, u1) such that∑n−1
i=0 ai(x) ∈ (c0 − ε, c0 + ε) for all n ≥ n0.
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Proof. For sufficiently large n, there exists y ∈ M0 such that:

y0 − u0 < ε/2C, and u1 − yn < ε/2C.

By Lemma 2.2.3 and the monotonicity of y,∣∣∣∣∣
n−1∑
i=0

ai(y)− c0

∣∣∣∣∣ =
∣∣∣∣∣∑
i<0

ai(y) +
∑
i>n

ai(y)

∣∣∣∣∣ ≤ C((y0 − u0) + (u1 − yn)) < ε

as desired.

Next, we assume a gap condition, i.e.,

(u0, u1)\I0 and (u0, u1)\I1 are nonempty sets, (gap)

where I0 = I+0 (u
0, u1) and I1 = I−0 (u

0, u1). We will check the properties of the heteroclinic
configurations. Under (gap), the following lemma holds.

Lemma 2.2.16 (Proposition 4.1, [66]). For any ε > 0, there exist δi (i = 1, 2, 3, 4) and
positive constants e0 = e0(δ1, δ2) and e1 = e1(δ3, δ4) satisfying

inf{I(x) | x ∈ X0, x0 = u0 + δ1 or x0 = u1 − δ2} ≥ c0 + e0 and

inf{I(x) | x ∈ X1, x0 = u1 − δ3 or x0 = u0 + δ4} ≥ c1 + e1.

2.3 Statements and proofs of our main theorem

2.3.1 Variational settings and properties of action J

Let (u0, u1) be a neighboring pair and set

K = {k = (ki)i∈Z ⊂ Z | k0 = 0, ki < ki+1} and

P =

{
ρ = (ρi)i∈Z ⊂ R>0 | 0 < ρi < (u1 − u0)/2,

∑
i∈Z

ρi < ∞

}
.

(2.3.1)

For k ∈ K and ρ ∈ P , the set Xk,ρ is given by:

Xk,ρ =

( ⋂
i≡0,1

Y 0(ki, ρi)

)
∩

( ⋂
i≡−1,2

Y 1(ki, ρi)

)

where
Y j(l, p) = {x ∈ X | |xl − uj| ≤ p} (j = 0, 1)

and a ≡ b means a ≡ b (mod 4). (See (2.2.1) for the definition of X.)
To ensure the topological property of Xk,ρ, we first show the following lemma.

Lemma 2.3.1. The set X is sequentially compact.
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Proof. By Tychonoff’s theorem, X is a compact set. It suffices to check that X is metriz-
able. Let d : X ×X → R be given by

d(x, y) =
∑
i∈Z

|xi − yi|
2|i|

.

Clearly, d is a metric function. We show that convergence on d and (2.1.2) is equivalent.
Since for all i ∈ Z

|xi − yi|
2|i|

≤ d(x, y),

it is sufficient to show that for each x, y ∈ X, the function d(x, y) goes to 0 if (2.1.2)
holds. Let (xn) be a convergence sequence to y. There is a constant M > 0 such that for
all j ∈ Z

d(xn, y) ≤ c(j, n) +
M

2|j|

where c(j, n) =
∑

i≤|j| |xn
i − yi|/2|i|. Notice that for each j ∈ Z, c(j, n) → 0 as n → ∞.

Thus, for any ε > 0, we can take i0 and n0 such that M/2|i0| < ε/2 and c(i0, n0) < ε/2,
thus completing the proof.

Clearly, Xk,ρ is a closed subset of X, so we find the following.

Corollary 2.3.2. The set Xk,ρ is sequentially compact.

Now we define a renormalized action J : RZ → R on Xk,ρ by:

J(x) := Jk,ρ(x) =
∑
i∈Z

Ai(x), (2.3.2)

where

Ai(x) =


{
∑

j∈Ii h(xj, xj+1)} − |Ii|c i ≡ 0, 2

{
∑

j∈Ii h(xj, xj+1)} − c+i i ≡ 1

{
∑

j∈Ii h(xj, xj+1)} − c−i i ≡ −1

, (2.3.3)

Ii = {ki, ki + 1, . . . , ki+1 − 1} and |Ii| = ki+1 − ki. The notations c+ and c− represent

c+i = min
x∈Y 0(ki,ρi)∩Y 1(ki+1,ρi+1)

∑
j∈Ii

h(xj, xj+1) and

c−i = min
x∈Y 1(ki,ρi)∩Y 0(ki+1,ρi+1)

∑
j∈Ii

h(xj, xj+1).

Clearly, Ai(x) ≥ 0 for i ≡ ±1. Notice that (h1) implies that the values of c±i depend on
ρi, ρi+1 and ki+1 − ki.

To check the basic properties of J through the following discussion, we first show that
for an infinite orbit, say x, J(x) can be finite unlike I(x).

Lemma 2.3.3. If ρ ∈ P , then there exist y ∈ Xk,ρ and a constant M such that J(y) ≤ M
for all k ∈ K.
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Proof. For each i ≡ 1, choose some z+i = {z+i
j }j∈Ii satisfying c+i =

∑
j∈Ii h(z

+i
j , z+i

j+1).

Define z−i = {z−i
j }j∈Ii for each i ≡ −1 in a similar way. We construct a test sequence

y = (yi)i∈Z as follows:

yj =


u0 if j ∈ Ii\{ki} and i ≡ 0

z+i
j if j ∈ Ii ∪ {ki+1} and i ≡ 1

ui if j ∈ Ii\{ki} and i ≡ 2

z−i
j if j ∈ Ii ∪ {ki+1} and i ≡ −1

. (2.3.4)

Since Ai(y) = 0 for i ≡ ±1:

J(y) =
∑
i∈Z

Ai(x) =
∑
i∈2Z

Ai(x) ≤ C
∑
i∈Z

ρi.

This completes the proof.

The above lemma implies that J overcomes the problem referred to in Proposition
2.1.11. Next, we show that J is bounded below.

Lemma 2.3.4. If ρ ∈ P , then J(x) > −∞ for all x ∈ Xk,ρ.

Proof. For i ≡ 0, 2, we see that Ai(x) = ai(x). By Lemma 2.2.3 and Ai(x) ≥ 0 for i ≡ ±1,

J(x) ≥ −C
∑
i∈Z

max{ρi, ρi+1} ≥ −2C
∑
i∈Z

ρi > −∞.

By a similar argument, we obtain a constant γ such that for any n ∈ N,∑
|i|≤n

Ai(x) ≥ γ,

thus completing the proof.

To ensure that J has a minimizer in Xk,ρ, we present the following lemma.

Lemma 2.3.5. The function J is well-defined on R ∪ {+∞}, i.e.,

α := lim inf
n→∞

∑
|i|≤n

Ai(x) = lim sup
n→∞

∑
|i|≤n

Ai(x) =: β.

Proof. For the proof, we use a similar argument to Yu’s proof of Lemma 6.1 and Propo-
sition 2.9 in [66]. By contradiction, we assume α < β. First, we consider the case where
β = +∞. For α < +∞, we take a constant α̃ with α̃ > α + 1 − 2γ. Then there are
constants n0 and n1 such that n0 < n1 and:∑

|i|≤n0

Ai(x) ≥ α̃ and
∑
|i|≤n1

Ai(x) ≤ α + 1.

Then,

2γ > α + 1− α̃ ≥
∑
|i|≤n1

Ai(x)−
∑
|i|≤n0

Ai(x) =

−n0∑
i=−n1

Ai(x) +

n1∑
i=n0

Ai(x).
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Combining the first term and end terms implies

−n0∑
i=−n1

Ai(x) < γ or

−n0∑
i=−n1

Ai(x) < γ.

This contradicts Lemma 2.3.4.
Next, we assume β < +∞. Since α < β, there are two sequences of positive integers

{mj → ∞}j∈N and {lj → ∞}j∈N satisfying mj < mj+1, lj < lj+1 and mj + 1 < lj <
mj+1 − 1 for all j ∈ Z>0, and:

β = lim
j→∞

∑
i≤|mj |

Ai(x) > lim
j→∞

∑
i≤|lj |

Ai(x) = α.

Then we can find j � 0 such that

∑
i≤|lj |

Ai(x)−
∑

i≤|mj |

Ai(x) =

−mj∑
i=−lj

Ai(x) +

lj∑
i=mj

Ai(x) <
α− β

2
.

Since |lj| and |mj| are finite for fixed j, the above calculation does not depend on the
order of the sums. Thus, we obtain:

−mj∑
i=−lj

Ai(x) +

lj∑
i=mj

Ai(x) ≥
∑

i∈[−lj ,−mj ]∩2Z

Ai(x) +
∑

i∈[mj ,lj ]∩2Z

Ai(x)

=
∑

i∈[−lj ,−mj ]∩2Z

ai(x) +
∑

i∈[−lj ,−mj ]∩2Z

ai(x)

For sufficiently large j, we have∑
i∈[−lj ,−mj ]∩2Z

ai(x) ≥ −C
∑
i

|x−mj
− x−lj | >

α− β

4

and ∑
i∈[−lj ,−mj ]∩2Z

ai(x) ≥ −C
∑
i

|x−mj
− x−lj | >

α− β

4

because ρ ∈ P implies ∑
|i|>n

ρi → 0 (n → ∞).

Therefore

−mj∑
i=−lj

Ai(x) +

lj∑
i=mj

Ai(x) >
α− β

2
,

which is a contradiction.

Proposition 2.3.6. For all k ∈ K and ρ ∈ P , there exists a minimizer of J in Xk,ρ.
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Proof. By Lemmas 2.3.3 and 2.3.4, we can take a minimizing sequence x = (xn)n∈N of
J in Xk,ρ. Since Xk,ρ is sequentially compact, there exists x̃ ∈ Xk,ρ with xnk

→ x̃. It is
enough to show that for any ε > 0, there exists j0 and n0 ∈ N such that:∑

|i|>j0

Ai(x
n) > −ε (for all n ≥ n0) and

∑
|i|>j0

Ai(x̃) < ε. (2.3.5)

because if the above inequalities hold, we obtain:

J(x̃) =
∑
|i|≤j0

Ai(x) +
∑
|i|>i0

Ai(x)

≤ lim
n→∞

∑
|i|≤j0

Ai(x
n) + ε = lim

n→∞
(
∑
i∈Z

Ai(x
n)−

∑
|i|>j0

Ai(x
n)) + ε

≤ lim
n→∞

∑
i∈Z

Ai(x
n) + 2ε.

Using an arbitrary value of ε, we have J(x̃) ≤ limn→∞
∑

i∈ZAi(x
n) and x̃ is the infimum

(or greatest lower bound) of J .
We now show the first inequality of (2.3.5). Lemma 2.2.3 implies that for any n ∈ N

and j ∈ N: ∑
|i|>j

Ai(x
n) ≥ −C

∑
|i|>j

max{ρ2i, ρ2i+1} ≥ −C
∑
|i|>j

ρi. (2.3.6)

Note that Ai ≥ 0 for i ≡ 1, 2. Since
∑

i∈Z ρi is finite, we have
∑

|i|>j ρi < ε/C for
sufficiently large j. Hence, the first inequality holds.

To check the second inequality, it suffices to show that
∑

i∈Z Ji(x̃) is finite. If
∑

i∈Z Ji(y)
is infinite, then for any M > 0, there is a j0 such that:

M ≤
∑
|i|≤j0

Ai(x̃) =
∑
|i|≤j0

Ai( lim
n→∞

xn) = lim
n→∞

∑
|i|≤j0

Ai(x
n),

since a finite sum
∑

|i|≤j0
Ai(x) is continuous. On the other hand, for any δ > 0, there

exists n0 such that if n ≥ n0, then (2.3.6) gives:∑
|i|≤j0

Ai(x
n) = J(xn)−

∑
|i|>j0

Ai(x
n)

< inf
x∈Xk,ρ

J(x) + δ + C
∑
|i|>j0

ρi,

so
∑

|i|≤j0
Ai(x

n) is finite, which is a contradiction.
These results and the continuity of the finite sum of Ai imply that, for any ε > 0,

J(ỹ) =
∑
|i|≤i0

Ai(y) +
∑
|i|>i0

Ai(y) ≤ lim
n→∞

∑
|i|≤i0

Ai(y
n) + ε ≤ lim

n→∞

∑
i∈Z

Ai(y
n) + 2ε.

By using an arbitrary value of ε, we have J(ỹ) ≤ limn→∞
∑

i∈ZAi(y
n).
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2.3.2 Properties of the minimizer

Let x∗ = (x∗
i )i∈Z be a minimizer in Proposition 2.3.6. First, we show the properties of Ai

for i ≡ 0, 2 if ρi’s are sufficiently small.

Proposition 2.3.7. For any ρ ∈ P and a positive sequence δ = (δi)i∈Z, if δ satisfies

ρ2i + ρ2i+1 + 2max{δ2i, δ2i+1} < c∗/2C,

then there exists a sequence k = (ki)i∈Z that satisfies the following: there is a sequence
l = (li)i∈Z satisfying

(l1) l2i, l2i+1 ∈ (k2i, k2i+1) ∩ Z with l2i < l2i+1 and

(l2) |x∗
li
− xj| < δi, where j = 0 if i ≡ 0, 1 and j = 1 if i ≡ −1, 2.

Proof. It is immediately shown from (h1), Lemmas 2.2.13 and 2.2.14.

To see that x∗ is an infinite transition orbit, it suffices to show that x∗ is not on the
boundary of Xk,ρ. We set Ĩ0 := (u0, u1)\I0 and Ĩ1 := (u0, u1)\I1. We assume a gap
condition for periodic and heteroclinic configurations, i.e., Ĩ0 and Ĩ1 are nonempty sets.

Remark 2.3.8. Notice that ρ ∈ Ĩi can be chosen as arbitrarily small.

We choose ρ and k in the following steps:

Step 1 First we take ρ ∈ P so that:

(p1) u0 + ρi ∈ Ĩ0 for all i ≡ 1, 2 and u1 − ρi ∈ Ĩ1 for all i ≡ −1, 0 and

(p2) For any i ∈ Z, ρ2i + ρ2i+1 < c∗/2C

Step 2 To determine |k2i − k2i+1|, we define a positive sequence (ei)i∈Z by:

ei =

{
e0(ρ2i+1, ρ2(i+1)) (i : even)

e1(ρ2i+1, ρ2(i+1)) (i : odd)
.

Choose a positive sequence (δi)i∈Z so that:

(d) 2max{δ2i, δ2i+1} < c∗/2C − (ρ2i + ρ2i+1)

Then, through Proposition 2.3.7 for (ρi) and (δi), we can obtain |k2i − k2i+1| and li
for each i ∈ Z such that (l1) and (l2) in Proposition 2.3.7 hold.

Step 3 For δ in Step 2, choose (εi)i∈Z so that:

(e1) εi + 2C(δ2i+1 + δ2(i+1)) < ei/2 and

(e2) εi/2C < min{δ2i+1, δ2(i+1)}.

For each εi, Lemma 2.2.15 gives ni and xi ∈ Mi(u0, u1) such that
∑n−1

i=0 ai(x) ≤ c0+ε
for all n ≥ ni. For (ni)i∈Z and (xi)i∈Z, we choose |k2i+1 − k2(i+1)| satisfying

(k1) |k2i+1 − k2(i+1)| ≥ ni and
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(k2) xi ∈ M0 ∩ Y 0(0, ρ2i) ∩ Y 1(|k2i−1 − k2i|, ρ2i+1) when i is even and xi ∈ M1 ∩
Y 1(0, ρ2i) ∩ Y 0(|k2i−1 − k2i|, ρ2i+1) when i is odd.

Step 4 By the above steps and k0 = 0, the sequence k = (ki)i∈Z is determined.

Now we are ready to state our main theorem when the rotation number α is zero.

Theorem 2.3.9. For any ρ = (ρi) ∈ P and k = (ki) chosen in the above steps, there
exists a stationary configuration x∗ in Xk,ρ with rotation number α = 0.

Proof. Lemmas 2.2.5 and 2.2.6 implies that x∗
i /∈ {u0, u1} for all i ∈ Z. For a contradiction

argument, we assume x∗
k1

= u0 + ρ1.
Hereafter, x∗

i will be written simply as xi unless there is potential for confusion. Let
y be:

yi =


xi i ∈ [k1 − l1, k2 + l2] ∩ Z
u1 i > k2 + l2

u0 i < k1 − l1

.

Since y ∈ X0, Lemma 2.2.16 and (h1) yield:

co + e0 ≤ I(y)

=
∑

i∈[k1−l1,k2+l2−1]∩Z

ai(x) +
∑

i<k1−l1

ai(x) +
∑

i>k2+l2

ai(x)

≤
∑

i∈[k1−l1,k2+l2−1]∩Z

ai(x) + C(δ1 + δ2)

By the above remark and ai = Ai for i ≡ 0, 2,

k1−1∑
i=k1−l1

(h(xi, xi+1)− c) + A1(x) +

k2+l2−1∑
i=k2

(h(xi, xi+1)− c)

> c0 + e0 − C(δ1 + δ2) + (|I1|c− c+1 ).

On the other hand, (h1) implies that x0 ∈ M0 in Step 3 satisfies:

k1−1∑
i=k1−l1

(h(x0
i , x

0
i+1)− c) + A1(x

0) +

k2+l2−1∑
i=k2

(h(x0
i , x

0
i+1)− c) < c0 + ε0 + (|I1|c− c+1 )

We define a test sequence z = (zi)i∈Z by

zi =

{
x0
i−k1

i ∈ [k1 − l1, k2 + l2] ∩ Z
xi otherwise

.

By Lipschitz continuity, the monotonicity of x0 and (e2), we find:

|h(xk1+l1−1, x
0
k1−l1

)− h(xk1+l1−1, xk1+l1)| ≤ C|x0
k1−l1

− xk1−l1| < Cδ1 and

|h(x0
k2+l2

, xk2+l2+1)− h(xk2+l2 , xk2+l2+1)| ≤ C|x0
k2+l2

− xk2+l2| < Cδ2.
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Hence

J(z)− J(x∗) < c0 + ε0 + C(δ1 + δ2)− (c0 + e0 − C(δ1 + δ2))

= 2(δ1 + δ2) + ε0 − e0 < −e0

2
< 0,

which is a contradiction. The same proof works for the remaining cases. For example, if
x∗
ki
= u0 + ρi or x

∗
ki
= u1 − ρi for all i ∈ Z, a similar argument yields:

J(ẑ)− J(x∗) <
∑
i∈Z

2(δ2i+1 + δ2(i+1)) + εi − ei < −
∑
i∈Z

ei

2
< 0,

where ẑ = (ẑi)i∈Z is given by:

ẑi =


xj
i−k2j+1

i ∈ [k2j+1 − l2j+1, k2(j+1) + l2(j+1)] ∩ Z and j : even

xj
i−k2j+1

i ∈ [k2j+1 − l2j+1, k2(j+1) + l2(j+1)] ∩ Z and j : odd

xi otherwise

.

This completes the proof.

Moreover, we immediately obtain the following corollary.

Corollary 2.3.10. Given α ∈ Q, if

I+α (x
0, x1) 6= (x0

0, x
1
0) and I−α (x

0, x1) 6= (x0
0, x

1
0),

there exists a stationary configuration x∗ of J with infinite transitions and rotation number
α.

Proof. This follows from Proposition 2.2.10 and Theorem 2.3.9.



Chapter 3

Periodic solutions in the planar
restricted three-body problem

3.1 Introduction

The restricted three-body problem has long been studied. It is a special case of the
three-body problem and is known to be non-integrable. It deals with significant issues
in celestial mechanics, such as analyzing asteroid movement behavior and orbit designing
for space probes (see [56] for more details). This chapter aims to show the existence of
multiple periodic orbits in the planar circular restricted three-body problem (R3BP).

Chenciner and Montgomery successfully applied a variational method to the three-
body problem. They showed the existence of a remarkable periodic orbit called the
figure-eight orbit (see [18]), which has led to many works on the n-body problem. As a
recent result in this field, we refer the reader to [65]. Compared with the n-body problem,
there are few results on the restricted three-body problem using the variational methods
because the technical parts of the level estimates for the restricted three-body problem are
more difficult. In [39], Moeckel showed the existence of the transit orbit in the R3BP for
regions from around the earth to around the moon. The result in [54] yields the existence
of orbits realizing symbolic sequences in the Sitnikov problem. Arioli et al. showed the
existence of periodic orbits revolving around Jupiter in [1]. Chen proved the existence of
the orbits moving away from the center in [14].

The R3BP is defined by

ẍ = ∇V (x) (x ∈ C), (3.1.1)

where

V (x, t;µ) =
1− µ

|x+ µeit|
+

µ

|x− (1− µ)eit|
(3.1.2)

and µ ∈ (0, 1) is a parameter. Here C is regarded as R2. In the rotating coordinate
system, the equations are represented by

ẍ = x+ 2ẏ +
∂U

∂x

ÿ = y − 2ẋ+
∂U

∂y
,

(R3BPµ)

27
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where

U(x;µ) =
1− µ√

(x+ µ)2 + y2
+

µ√
(x− (1− µ))2 + y2

.

Here x = x+ iy and i =
√
−1.

We aim to show the existence of periodic orbits under several boundary conditions in
the R3BP. Our proof will use an elementary minimization argument and a level estimate
of the action functional in the R3BP. The steps of our proof give a new method for a level
estimate in the rotating coordinate system.

The result of this chapter is organized as follows. Section 3.2 states our main theo-
rems. Section 3.3 contains preliminaries for our proof including basic facts on variational
methods. Section 3.4 provides the proofs of the main theorems. In Section 3.5, we discuss
how the obtained periodic orbits behave and state open problems.

3.2 Main results

We define Xo, X−, X+, and Y as follows:

Xo := {(x, 0) | −µ ≤ x ≤ 1− µ},
X− := {(x, 0) | x < −µ},
X+ := {(x, 0) | 1− µ < x} and

Y := {(0, y) | −∞ < y < ∞}.

Set X = {Xo, X−, X+}.
We state our main theorems. Each set T (A,B)(⊂ R) in the following theorems is

defined in Section 3.4.

Theorem 3.2.1. For any A,B ∈ X and T ∈ T (A,B), there is a 2T -periodic orbit
(x(t), y(t)) of (R3BPµ) such that x(2(k−1)T ) ∈ A, x((2k−1)T ) ∈ B and ẋ(2(k−1)T ) =
y(2(k − 1)T ) = y((2k − 1)T ) = ẋ((2k − 1)T ) = 0 for k ∈ Z.

This theorem shows the existence of periodic orbits that are orthogonal to the x-axis
for µ ∈ (0, 1). In the case of µ = 1/2, we can show the existence of more symmetric
periodic orbits that are orthogonal to the x-axis and y-axis.

Theorem 3.2.2. Set µ = 1/2. For any A ∈ X and T ∈ T (A, Y ), there exists a 4T -
periodic orbit (x(t), y(t)) of (R3BPµ) that satisfies x(2(k− 1)T ) ∈ A and ẋ(2(k− 1)T ) =
y(2(k − 1)T ) = ẏ((2k − 1)T ) = x((2k − 1)T ) = 0 for k ∈ Z.

Remark 3.2.3. Figures 3.1 and 3.2 may show the outlines of the given periodic orbits
obtained from Theorems 3.2.1 and 3.2.2 respectively. As a result, the shape of the obtained
orbits is symmetric about the x-axis. Moreover, the orbits from Theorem 3.2.2 are sym-
metric about the y-axis. Note that ‘may’ indicates we do not know their detailed global
behavior, as will be discussed in Section 3.5.

Remark 3.2.4. The word ‘periodic’ in this chapter is used in reference to the rotating
coordinate system. Therefore, in the stationary coordinate system, ‘T -periodic’ orbits are
periodic if T/2π ∈ Q and quasi-periodic if T/2π /∈ Q.
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Figure 3.1: Periodic solutions in Theorem 3.2.1

Figure 3.2: Periodic solutions in Theorem 3.2.2

3.3 Preliminaries

3.3.1 Lagrangians in the stationary and rotating coordinates

We use two different Lagrangian functions in this chapter. One is the original Lagrangian
which is time-periodic:

L(x, ẋ, t;µ) =
1

2
(ẋ2 + ẏ2) + V (x, t;µ), (3.3.1)

where V is introduced in (3.1.2) in Section 3.1. The other Lagrangian is in rotating
coordinates and is time-independent:

LR3BP(x, ẋ;µ) =
1

2
(ẋ2 + ẏ2) + xẏ − yẋ+

1

2
(x2 + y2) + U(x;µ). (3.3.2)

We will check that, up to a variable change, the two Lagrangian functions coincide. Indeed,
using z = x+ iy ∈ C, we can write (3.3.1) as

L(z, ż, t;µ) =
1

2
ż ˙̄z +

1− µ

|z + µeit|
+

µ

|z − (1− µ)eit|
.

Similarly, using w = x+ iy ∈ C, we can write (3.3.2) as

LR3BP(w, ẇ;µ) =
1

2
(w + iẇ)(w̄ − i ˙̄w) +

1− µ

|w − µ|
+

µ

|w − (1− µ)|
.
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Substituting z(t) = w(t)eit in the above, we have

1

2
ż ˙̄z +

1− µ

|z + µeit|
+

µ

|z − (1− µ)eit|

=
1

2
(ẇeit + iweit)( ˙̄we−it − iwe−it) +

1− µ

|weit + µeit|
+

µ

|weit − (1− µ)eit|

=
1

2
(ẇ + iw)( ˙̄w − iw) +

1− µ

|w + µ|
+

µ

|w − (1− µ)|
.

Hence, the values of the two Lagrangian functions are the same, so switching between
them does not affect our results.

3.3.2 Some well-known facts in variational problems

Let D be an open set in Rn, and A, B ⊂ D be nonempty subsets of affine subspaces in
Rn, for example, a line segment or a half-line. Consider

Ω(A,B) = {x ∈ H1([0, T ],D) | x(0) ∈ A,x(T ) ∈ B}

where the norm is defined by

‖x‖H1 =

(∫ T

0

|x|2dt+
∫ T

0

|ẋ|2dt
)1/2

.

The action functional AT (x;µ) is given by

AT (x;µ) =

∫ T

0

L(x, ẋ, t;µ)dt, (3.3.3)

where T > 0 is constant and L is defined by (3.3.1).
We consider a minimizer of AT , say x∗, i.e., x∗ satisfying

AT (x
∗;µ) = inf

x∈Ω(A,B)
AT (x;µ).

The existence is ensured under some boundary conditions. To show the existence, we can
use some useful lemmata. We first define coercivity.

Definition 3.3.1 (coercivity). The action functional AT is said to be coercive if it satisfies
AT (x;µ) → ∞ as ‖x‖H1 → ∞.

Hereinafter, Ω(A,B) is denoted to Ω. The following lemma results from Tonelli’s
theorem [60].

Lemma 3.3.2. Assume that AT is weakly lower semi-continuous. If AT |Ω is coercive,
then there exists a minimizer x∗ of AT in the weak closure Ω̄ of Ω.

It is well-known that action functionals for potential systems are weakly semi-continuous
(see for example [27]). We state some sufficient conditions for coercivity in the next three
lemmata.
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Lemma 3.3.3. Let A and B be nonempty sets. If at least one of A and B is bounded,
then AT |Ω is coercive.

Lemma 3.3.4. Let A and B be nonempty sets. Suppose there is a constant |C0| < 1 such
that for any a ∈ A and b ∈ B, it holds that a · b ≤ C0|a||b|. Then, AT |Ω is coercive.

See [12] for proofs of the above two lemmata.

Lemma 3.3.5. Let A and B be unbounded sets. Set Ad := {a ∈ A | |a| ≤ d} and
Bd := {b ∈ B | |b| ≤ d}. Suppose there is a constant M > 0 such that for any a ∈ A\AM

and b ∈ B\BM , it holds that a ·b ≤ C1|a||b|, where C1 ∈ [−1, 1). Then, AT |Ω is coercive.

Proof. Set Ω(A,B) =
⋃n

i=1

⋃m
j=1 Ω(Ai, Bj) such that A =

⋃n
i=1Ai and B =

⋃m
j=1Bj. It is

easily seen that if A|Ω(Ai,Bj) is coercive for each i ∈ {1, .., n} and j ∈ {1, ..,m}, then so is
A|Ω(A,B). Under the assumption, we divide Ω(A,B) into the following:

Ω(A,B) = Ω(AM , BM) ∪ Ω(A\AM , BM) ∪ Ω(AM , B\BM) ∪ Ω(A\AM , B\BM).

Applying Lemma 3.3.3 yields that A|Ω(AM ,BM ), A|Ω(A\AM ,BM ), and A|Ω(AM ,B\BM ) are co-
ercive. In the case C1 ∈ (−1, 1), Lemma 3.3.4 gives coercivity of A|Ω(A\AM ,B\BM ). Hence,
it suffices to consider the case C1 = −1. Then, x(T ) = −C2x(0) (C2 > 0). It is clear
that |x(0)− x(T )| = (1 + C2)|x(0)|. The rest of the proof is the same as that of Lemma
3.3.3.

From the calculation in Section 3.3.1, if AT (x;µ) is coercive, then so is the action
functional corresponding to the Lagrangian (3.3.2) instead of (3.3.1).

3.3.3 Reversibility

Consider the following ordinary differential equations:

q̇ = F (q) (q ∈ Rn). (3.3.4)

Definition 3.3.6 (Reversibility). Let R be an involutory linear map from Rn to Rn, i.e.,
R2 = Id. If (4.2.3) satisfies FR+RF = 0, then (4.2.3) is said to be reversible with respect
to R.

It is easy to show the following lemma.

Lemma 3.3.7. Assume that (4.2.3) satisfies reversibility with respect to R. Then if q(t)
is a solution of (4.2.3), so is Rq(−t).

Set Fix(R) = {q ∈ Rn | Rq = q}. Assume that (4.2.3) is reversible with respect to R
and let q be a solution for (4.2.3). Then,

q(s) ∈ Fix(R) ⇐⇒ q(s+ t) = Rq(s− t).

See [51] for a more detailed explanation of reversible systems.
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Moreover (R3BPµ) can be represented by

d

dt


x
y
vx
vy

 =


vx
vy

x+ 2vy +
∂U
∂x

y − 2vx +
∂U
∂y


=: F


x
y
vx
vy




and the system is reversible with respect to

R :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (3.3.5)

Indeed

FR


x
y
vx
vy

+RF


x
y
vx
vy

 = F


x
−y
−vx
vy

+R


vx
vy

x+ 2vy +
∂U
∂x

y − 2vx +
∂U
∂y

 = 0.

If µ = 1/2, then (R3BPµ) is reversible with respect to −R. By the above remarks, we
obtain the following proposition.

Proposition 3.3.8. The system of (R3BPµ) has reversibility with respect to R defined by
(3.3.5). Moreover, it is also reversible with respect to −R if µ = 1/2.

3.3.4 Sundman’s estimate

In the case that some particles collide at t = 0 in the n-body problem, the asymptotic
behavior of each particle xi(t) is represented by xi(t) ∼ c+ ait

2/3 + o(t) as t → 0+. This
estimate is called Sundman’s estimate. From [7], there is a wide class in which Sund-
man’s estimate holds, including the classical n-body problems with Newtonian, quasi-
homogeneous, and logarithmic potentials.

We prove that this asymptoticity holds for (R3BPµ). We analyze the singular points
in (R3BPµ) using the Levi-Civita regularization. Consider the following transformation
to study the singular point at (1− µ, 0):

(x− (1− µ), y) 7→
(
ξ21 − ξ22 , 2ξ1ξ2

)
To construct canonical transformation, we set

(px, py) 7→
(
ξ1η1 − ξ2η2
2(ξ21 + ξ22)

,
ξ2η1 + ξ1η2
2(ξ21 + ξ22)

)
. (3.3.6)

The potential part becomes

Ũ(ξ1, ξ2;µ) =
1− µ√

(ξ21 + ξ22)
2 + 2(ξ21 − ξ22) + 2µ− 1

+
µ√

(ξ21 + ξ22)
2

=
1

ξ21 + ξ22

(
(1− µ)(ξ21 + ξ22)√

(ξ21 + ξ22)
2 + 2(ξ21 − ξ22) + 2µ− 1

+ µ

)
.
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Thus, we obtain

H̃(ξ1, ξ2, η1, η2;µ) =
‖η‖2

8‖ξ‖2
− (1− µ)

ξ1η2 + ξ2η1
2‖ξ‖2

+
1

2
(ξ2η1 − ξ1η2)

+
1

‖ξ‖2

(
µ+

(1− µ)‖ξ‖2√
‖ξ‖4 + 2(ξ21 − ξ22) + 2µ− 1

)
,

where ξ = (ξ1, ξ2) and η = (η1, η2). If (x(t), y(t)) is a solution of (R3BPµ), H̃ is conserved
along each solution, say H̃ = h. Set Γ := ‖ξ‖2(H̃ − h). The canonical equations with
respect to Γ become

dξ1
dτ

= ‖ξ‖2H̃η1 = η1 − (1− µ)ξ2 + o(|ξ|2 + |η|2)

dξ2
dτ

= ‖ξ‖2H̃η2 = η2 − (1− µ)ξ1 + o(|ξ|2 + |η|2)

dη1
dτ

= −‖ξ‖2H̃ξ1 = (1− µ)η2 − 2(1− µ− h)ξ1 + o(|ξ|2 + |η|2)

dη2
dτ

= −‖ξ‖2H̃ξ2 = (1− µ)η1 − 2(1− µ− h)ξ2 + o(|ξ|2 + |η|2).

(3.3.7)

The solutions ξ(τ) of (3.3.7) imply the solutions ξ(τ(t)) of the canonical equation for

Hamiltonian H̃ by changing the time variable according to
dτ

dt
=

1

‖ξ‖2
. Note that since

the right hand sides of (3.3.7) are analytic at (ξ1, ξ2) = (0, 0), the solutions are also
analytic.

Considering (ξ1, ξ2) = (0, 0) and the Taylor expansion at τ = 0, we obtain

ξ1(τ) =
∞∑
i=1

aiτ
i, ξ2(τ) =

∞∑
i=1

biτ
i, η1(τ) =

∞∑
i=0

ciτ
i, η2(τ) =

∞∑
i=0

diτ
i. (3.3.8)

Substituting (3.3.8) into (3.3.7), we can determine the coefficients. The relation between
t and ξ yields

t =

∫
‖ξ‖2dτ

=

∫
(a1τ + a2τ

2 + · · · )2 + (b1τ + b2τ
2 + · · · )2dτ

= (a21 + b21)

∫
τ 2dτ + o(τ 4)

=
1

3
(a21 + b21)τ

3 + o(τ 4).

This implies that x(t) and y(t) are represented by the forms x(t) = (1− µ) +
∞∑
i=2

ãit
i/3

and y(t) =
∞∑
i=2

b̃it
i/3.
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3.4 Proofs of the main theorems

3.4.1 Variational settings

As observed in Section 3.3.2, we can consider the action functional with Lagrangian
(3.3.2) as having the same property of the one associated with (3.3.1). Define the action
functional BT by

BT (x;µ) =

∫ T

0

LR3BP(x, ẋ;µ)dt, (3.4.1)

where x = (x, y) and LR3BP is given by (3.3.2). The Euler-Lagrange equation of (3.3.2)
is equivalent to (R3BPµ). We consider six types of boundary conditions. Denote Ωi by
Ωi = {x ∈ H1([0, T ],D) | x(0) ∈ Ai,x(T ) ∈ Bi} for each i = 1, ..6, where

Case 1: A1 = Xo and B1 = Xo;

Case 2: A2 = Xo and B2 = X+;

Case 3: A3 = X+ and B3 = X+;

Case 4: A4 = X− and B4 = X+;

Case 5: A5 = Xo and B5 = Y ;

Case 6: A6 = X+ and B6 = Y .

We summarize our variational settings in the table below.

Case Ai → Bi µ Period Region of time T (A,B)

Case 1 Xo → Xo µ ∈ (0, 1) 4T T > TL1(µ)
Case 2 Xo → X+ µ ∈ (0, 1) 4T T > 0
Case 3 X+ → X+ µ ∈ (0, 1) 4T T > TL2(µ) and T 6= 2nπ (n ∈ Z+)
Case 4 X− → X+ µ ∈ (0, 1) 4T T > 0 and T 6= (2n− 1)π (n ∈ Z+)
Case 5 Xo → Y µ = 1/2 2T 2T > TL1(1/2)
Case 6 X+ → Y µ = 1/2 2T T > 0 and T 6= (n− 1

2
)π (n ∈ Z+)

Table 3.1: Variational settings

Here, TLi
, i = 1, 2, are defined in section 3.4.2. Now, we can define the time interval

T (A,B) in Theorems 3.2.1 and 3.2.2. For example, following Table 3.1, we have:

T (X+, X+) = {T ∈ R | T > TL2(µ) and T 6= 2nπ (n ∈ Z+)}

We do not need to consider the case of (A,B) = (X−, X−) by replacing µ into 1−µ, i.e.,

T (X−, X−) = {T ∈ R | T > TL2(1− µ) and T 6= 2nπ (n ∈ Z+)}.

In a similar way, the cases of (A,B) = (Xo, X+) and (X+, Y ) lead to the ones of (A,B) =
(Xo, X−) and (X−, Y ). In addition, the set T (A,B) satisfies that T (A,B) = T (B,A) for
any A,B ∈ X from its construction. Hence, it is sufficient to only consider the six cases
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in Table 3.1. To prove that (3.4.1) attains the minimum at some x∗
i under each boundary

condition, it is sufficient to show that (3.3.3) is coercive in Ωi for each i ∈ {1, ..., 6} from
Lemma 3.3.2. Applying Lemma 3.3.3 to Cases 1, 2, and 5 yields the coercivity of B|Ω1 ,
B|Ω2 and B|Ω5 . Hence, we obtain the following proposition:

Proposition 3.4.1. For each i ∈ {1, 2, 5}, the action functional BT |Ωi
attains the mini-

mum.

Next, we focus on Case 2. If T = (n− 1
2
)π, X+ is a subset of Y in the original

coordinates and is an unbounded set. Set a constant map sequence an(t) := (n, 0).
It is easy to check AT > 0 and limn→∞AT (an;µ) = 0, so AT |Ω2 does not attain the
minimum. Hence, AT |Ω2 does not possess the minimum if T = (n− 1

2
)π. By contrast,

invoking Lemma 3.3.4 and 3.3.5 yields that AT |Ω2 has coercivity if T 6= (n− 1
2
)π. Similar

considerations apply to Cases 5 and 6 and we get the next proposition.

Proposition 3.4.2. The functionals BT |Ω3, BT |Ω4 and BT |Ω6 are coercive except for
T = 2nπ, T = (2n− 1)π and T = (n− 1

2
)π respectively.

If the obtained minimizers are not singular, we get periodic orbits from the following
proposition.

Proposition 3.4.3. If x∗ is a collision-free critical point of BT |Ωi
(i = 1, .., 6), it connects

with the reversed solution smoothly. In addition, it is a periodic orbit that is orthogonal
to each boundary condition.

Proof. The variational standard argument implies that a critical point of BT |Ω1 satisfies
ẋ(0) = 0 and ẏ(T ) = 0. Applying similar arguments to the rest of the boundary con-
ditions, we conclude that each critical point of BT |Ωi

(i = 1, .., 6) is orthogonal to each
boundary condition. Combining Lemma 3.3.7 and Proposition 3.3.8 gives a new solution
Rx∗

i (−t). Moreover, we obtain another solution −Rx∗
i (−t) in Cases 5 and 6. Connecting

these, we obtain a periodic orbit.

3.4.2 Estimate of equilibrium points

The R3BP has three equilibrium points L1, L2, and L3 on the x-axis. It is sufficient to
consider L1 and L2 by symmetry with respect to µ. It is clear that L1 = (l1, 0) ∈ Ω3

and L2 = (l2, 0) ∈ Ω5. In the case of µ = 1/2, L1 = (0, 0) ∈ Ω1. We need to study a
condition under which a minimizer is not identical to the equilibrium points. To check
this, we calculate the second variation B′′

T at L1 and L2. A simple calculation implies that
for i = 1, 2,

B′′
T (Li;µ)(δ1, δ2) =

∫ T

0

δ̇21 + δ̇22 +

(
1 +

∂2U

∂x2

)
δ21 +

(
1 +

∂2U

∂y2

)
δ22 + 2(δ1δ̇2 − δ2δ̇1)dt

=

∫ T

0

δ̇21 + δ̇22 + δ21 + δ22 + αi(µ)(2δ
2
1 − δ22) + 2(δ1δ̇2 − δ2δ̇1)dt,

(3.4.2)

where

αi(µ) =
1

2

∂2U(x;µ)

∂x2

∣∣∣∣
x=Li

= − ∂2U(x;µ)

∂y2

∣∣∣∣
x=Li

(i = 1, 2).
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If (3.4.2) at Li is negative for some δ1 and δ2, then Li is not a minimizer (i = 1, 2). In
Cases 1 and 3, we take a test path as δ(t) = (δ1(t), δ2(t)) =

(
ν1 cos

(
− π

T
t
)
, ν2 sin

(
− π

T
t
))
.

Then the second variation can be estimated by

B′′
T (L1;µ)(δ1, δ2)

=
T

2

{
(1 + γ2 + 2α1(µ))ν

2
1 + 4γν1ν2 + (1 + γ2 − α1(µ))ν

2
2

}
=

T

2

{
(1 + γ2 + 2α1(µ))

(
ν1 +

2γ

(1 + γ + 2α1(µ))
ν2

)2

+

(
(1 + γ2 − α1(µ))−

4γ2

(1 + γ2 + 2α1(µ)

)
ν2
2

}
where γ = − π

T
. This calculation shows that if (1 + γ2 − α1(µ))− 4γ2/(1 + γ2 + 2α1(µ)) < 0,

that is, γ4 + (α1(µ) − 2)γ2 + 1 + α1(µ) − 2α(µ)2 < 0, then there are constants ν1 > 0
and ν2 > 0 such that B′′

T (L1;µ)(δ1, δ2) < 0. We conclude that for i = 1, 2, the equilibrium
point Li is not a minimizer if

T > π

√
2

−(αi(µ)− 2) +
√

αi(µ)(9αi(µ)− 8)
=: TLi

(µ). (3.4.3)

This is the definition of TLi
(µ) in Table 3.1.

In Case 5, we take a new test path as δ(t) =
(
ν1 cos

(
− π

2T
t
)
, ν2 sin

(
− π

2T
t
))

and set
γ = − π

2T
It immediately follows that if T > TL1(µ)/2, then L1 is not a minimizer.

Remark 3.4.4. One can not precisely calculate the position of L1 except for the case of
µ = 1/2. However, if we have two functions gi : R → R (i = 1, 2) that satisfy the inequality
g1(µ) ≤ L1 ≤ g2(µ), the second derivative can be estimated by

∂2U

∂x2
= 2

1− µ

d31
+ 2

µ

d32
≤ 2

1− µ

(g1(µ) + µ)3
+ 2

µ

((1− µ)− g2(µ))3
=: β1(µ)

∂2U

∂y2
= −1− µ

d31
− µ

d32
≤ − 1− µ

(g2(µ) + µ)3
− µ

((1− µ)− g1(µ))3
=: β2(µ).

Using β1 and β2, the upper bound of the second variation is given by

B′′
T (L1;µ)(δ1, δ2) ≤

∫ T

0

δ̇21 + δ̇22 + δ21 + δ22 + 2β1(µ)δ
2
1 + β2(µ)δ

2
2 + 2(δ1δ̇2 − δ2δ̇1)dt.

Remark 3.4.5. For sufficiently small µ, it is known that d1 = 1+ 3−1/3µ1/3 + o(µ2) and
d2 = 3−1/3µ1/3 + o(µ2) (See [30]). Applying these yields

lim
µ→0

αi(µ) = lim
µ→0

(
1 +

(1− µ)(d31 − 1)

d31d2

)
= lim

µ→0

(
1 +

(1− µ)(d1 − 1)(d21 + d1 + 1)

d31d2

)
= lim

µ→0

(
1 +

(1− µ)(d21 + d1 + 1)

d31

)
= 4.

Thus for each i = 1, 2, limµ→0 TLi
(µ) = π/(−1 + 2

√
7)1/2(=: T0). This period is the same

as one in [30]. By contrast, limµ→1 TL2(µ) = π and then our theorems imply the existence
of 2π-periodic orbits.
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3.4.3 Elimination of interior collisions

To guarantee that the obtained minimizers are smooth, it suffices to show that each
minimizer has no collision. Marchal’s theorem in [33] states that any minimizer has
no collision in (0, T ) in the n-body problem under the fixed-ends constraint (x(0) =
a, x(T ) = b). We confirm that it holds for (R3BPµ).

Proposition 3.4.6. Let H1 denote the Sobolev space. If

BT (x
∗;µ) = inf

x∈H1
BT (x;µ),

then for any µ ∈ (0, 1), the point x∗ has no collision for any t ∈ (0, T ).

Proof. Suppose a collision occurs at t = a. By a time transformation, we can assume
a = 0 without loss of generality. Let

B̃T (x;µ) =

∫ T ′′

−T ′
L̃R3BP(x, ẋ;µ)dt, (3.4.4)

where T ′ + T ′′ = T and

L̃R3BP(x, ẋ;µ)

:= LR3BP(x+ (µ, 0), ẋ;µ)

=
1

2
(ẋ2 + ẏ2) + xẏ − yẋ+

1

2
(x2 + y2) + µ(ẏ + x) +

µ√
x2 + y2

+
1− µ√

(x+ 1)2 + y2
.

(3.4.5)

There is no loss of generality in considering B̃T instead of BT since we just use a coordinate
transformation.

Let (xcol, ycol) denote an orbit with a collision at t = 0. We take xθ and yθ as the
following:

xθ =

{
xcol +R0(t) cos θ t ∈ [−T ′, 0),

xcol +R1(t) cos θ t ∈ [0, T ′′]

and

yθ =

{
ycol +R0(t) sin θ t ∈ [−T ′, 0),

ycol +R1(t) sin θ t ∈ [0, T ′′].

where R0(t) =

(
1 +

t

T ′

)
ρ and R1(t) =

(
1− t

T ′′

)
ρ.

A simple calculation shows that∫
S1

∫ T

0

xθẏθ − yθẋθ + µ(ẏθ + xθ)dtdθ =

∫
S1

∫ T

0

xcolẏcol − ycolẋcol + µ(ẏcol + xcol)dtdθ
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and

1

|S1|

∫
S1

∫ T

0

1

2
(x2

θ + y2θ)dtdθ =

∫ T

0

1

2
(x2

col + y2col)dt+

∫ T

0

R1(t)
2dt

=

∫ T

0

1

2
(x2

col + y2col)dt+
T

3
ρ2.

The rest of the part is similar to the Kepler problem. As a result in [17], the estimate of
interior collisions is given by

1

|S1|

∫
S1

B̃T (xθ;µ)dθ − B̃T (xcol;µ)

≤
(
T

3
+

1

2T

)
γ2t

4/3
0 (1 +O(t0)) + (

π

2
− 3)

t
1/3
0

γ
(1 +O(t0)) + ((

π

2
− 1)

t
1/3
0

γ
+O(t

4/3
0 log(1/t0))

= (π − 4)
t
1/3
0

γ
+O(t

4/3
0 log(1/t0)) ≤ 0,

where t0 is sufficiently small and ρ = γt
2/3
0 +O(t

2/3
0 ).

3.4.4 Elimination of boundary collisions

By Proposition 3.4.6, we only need to consider orbits that have a collision at t = 0 or T .
If a collision occurs at t = 0, it is shown that the orbit, say (xcol, ycol), is represented by

xcol =
∞∑
j=0

c1jt
j/3, ycol =

∞∑
j=0

c2jt
j/3

We say that an orbit has ρ-collision if it has a collision at t = 0 and lim
t→+0

ẏ(t)/ẋ(t) = tan ρ.

In the case of a double collision in the N -body problem, Proposition 5.7 of [24] implies
that if the collision angle ρ satisfies −π < ρ < π, it is not a minimizer. As seen in Section
3.3, the asymptotic behavior of the R3BP is the same as in the N -body problem, so we
can adapt the approach in [24] to the R3BP. Hence, in the R3BP, it suffices to consider
the case ρ = ±π, i.e. the velocity of y(0) is 0.

As seen in Section 3.3, Sundman’s estimate is a useful way to study a collision path.
Substituting Sundman’s estimate into (R3BPµ) and applying coefficient comparison, we
obtain

xcol(t) = (1− µ) + c1t
2/3 + o(t2), ycol(t) = c2t

5/3 + o(t2), (t ∈ [0, ε]), (3.4.6)

where c1 = (9/2)1/3µ1/3, c2 = −(9/2)1/3µ1/3, and ε is sufficiently small. By a polar coor-
dinate, (3.4.1) can be written as

BT ((r, θ);µ) =

∫ T

0

1

2
(ṙ2 + r2θ̇2) + r2θ̇ +

1

2
r2 +

1− µ

r1
+

µ

r2
dt

where r1 and r2 represent the distance from (−µ, 0) and from (1− µ, 0) respectively.



CHAPTER 3. 39

Proposition 3.4.7 (Local estimate, The case of ρ = ±π). Minimizers under our boundary
conditions do not have π and (−π)- collision.

Proof. Applying a polar transformation to (3.4.6), π-collision orbits are represented by
the following:

rcol(t) = (1− µ) + c1t
2/3 + o(t2)

θcol(t) =
c2

1− µ
t5/3 + o(t2).

(3.4.7)

For sufficiently small ε > 0, we deform θcol(t) to θde(t) =
c2

1− µ
ε2/3t+ o(t2) in t ∈ [0, ε]

and do not change rcol(t), i.e. rde := rcol. Thus, we obtain∫ ε

0

K(rcol, θcol)−K(rcol, θde)dt =

∫ ε

0

1

2
r2col{(θ̇2col − θ̇2de) + 2(θ̇col − θ̇de)}dt

Because the main terms of rcol are 1− µ, it is sufficient to calculate

1

2

∫ ε

0

(1− µ)2{(θ̇2col − θ̇2de) + 2(θ̇col − θ̇de)}dt. (3.4.8)

Note that θcol and θde have the same boundary and this implies∫ ε

0

(θ̇col − θ̇de)dt = 0.

By the above remarks, (3.4.8) is calculated as follows:∫ ε

0

1

2
(1− µ)2(θ̇2col − θ̇2de)dt+

∫ ε

0

(1− µ)2(θ̇col − θ̇de)dt,

=
1

2
(1− µ)2

∫ ε

0

(θ̇col − θ̇de)(θ̇col + θ̇de)dt

=
1

2
(1− µ)2

∫ ε

0

(
5

3

c2
1− µ

t2/3 − c2
1− µ

ε2/3
)(

5

3

c2
1− µ

t2/3 +
c2

1− µ
ε2/3 + o(t2)

)
dt

=
1

2
(1− µ)2

∫ ε

0

(
5

3

c2
1− µ

)2

t4/3 −
(

c2
1− µ

)2

ε4/3 + o(t2)dt

=
1

2
(1− µ)2 · 4

21

(
c2

1− µ

)2

ε7/3 + o(ε3) =
2

21
(1− µ)2

(
c2

1− µ

)2

ε7/3 + o(ε3) > 0

Next, we consider the value of the potential part. The Taylor expansion shows

r21 = rcol(s)
2 + 2µ (1− µ)

(
1 +

c1 s
2

1− µ

)
cos

(
c2 s

5

1− µ

)
+ µ2

r22 = rcol(s)
2 − (2− 2µ) (1− µ)

(
1 +

c1 s
2

1− µ

)
cos

(
c2 s

5

1− µ

)
+ (1− µ)2 ,

(3.4.9)

where s = t1/3. Substituting (3.4.9) into the potential U , we obtain∫ ε

0

U(rcol, θcol)− U(rcol, θde)dt = − µc22
1− µ

ε4/3
∫ ε

0

t2 + o(t4)dt

= c4ε
13/3 + o(ε5) < 0.
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Hence, the orbit (xcol, ycol) is not a minimizer. In the same manner, we can see that (−π)-
collision orbits are not minimizers. A similar approach is valid when a collision occurs at
t = T .

Moreover, collisions with both primaries do not occur since such an orbit can be
changed in t ∈ [0, ε] similar to the above, and the action value of the deformed orbit is
smaller.

3.5 Global behavior of the obtained minimizers and

open problems

In this section, we discuss the remaining problems including open problems. Theorems
3.2.1 and 3.2.2 show the existence of periodic solutions; however, we do not know how
their minimizers behave in time t ∈ (0, T ). More precisely, we discuss the following:

Q1. Do the obtained periodic solutions in Theorems 3.2.1 and 3.2.2 have the same topol-
ogy as Figures 3.3 and 3.4?

Q2. Our main theorems (Theorems 3.2.1 and 3.2.2) show the existence of 2T - or 4T -
periodic solutions. Are these periods minimal?

Q3. Are periodic orbits obtained under different boundary conditions different?

Although we do not answer these questions completely, we can partially solve them.

Figure 3.3: Minimizers of Cases 1 - 4

Figure 3.4: Minimizers of Cases 5 and 6
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First, we consider Q1. Orbit 5 in Figure 3.4 satisfies the boundary condition of Case
5. In the R3BP, the integral of the second term xẏ−yẋ in (3.3.2) corresponds to the area
and gives a negative value for minimizers. If the direction of the orbits is clockwise, the
second term is negative. If it is counter-clockwise, it is positive. We focus on minimizers
of (3.4.1), so it is sufficient to consider clockwise orbits. By contrast, the integral of the
third term (x2 + y2)/2 in (3.3.2) is a positive value, so it is difficult to see the behavior of
minimizers in the R3BP. The same difficulty occurs for Figures 3.3 and 3.4. For example,
is orbit 1 in Figure 3.5 a minimizer of Case 1? Hence, all we can show here is that
minimizing orbits are clockwise.

Figure 3.5: Irregular types

We move on to Q2. If we obtain a T -periodic solution that follows from one of the
main theorems, T may not be the minimal period of the solution. For any n,m ∈ N, nT -
periodic and mT -periodic solutions may be the same. We can not show that all periodic
solutions are distinct, but we can prove the existence of an infinite number of periodic
solutions. The proof is based on Rabinowitz’s idea in [48].

Proposition 3.5.1. Assume that there is a T0-periodic solution that has a minimal period
T0 > 0. Then we get infinitely many T -periodic solutions satisfying T ∈ (0, T0).

Proof. We choose T = T0/4. Cases 2, 4, and 6 in Table 3.1 show the existence of a
T0/2-periodic solution. Clearly, its minimal period is not T0, so we obtain a new periodic
solution and T ′ is defined by a minimal period of the new solution. We now apply this
argument again with T replaced by T ′. The rest of the proof is simple.

We discuss the final question. Q3 asks, for instance, whether periodic orbits of Theo-
rems 3.2.1 and 3.2.2 are different for µ = 1/2. There is another problem. Consider orbit
2 in Figure 3.5. Is this a minimizer of Case 1 or an orbit consisting of minimizers in Case
2? We guess that if T − TL1(µ) is sufficiently small, this problem does not occur because
a minimizer of this case may be closed to each equilibrium point. However, it remains an
open problem whether a periodic solution satisfies another boundary condition for large
T > 0.
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Special cases of the restricted
three-body problem

In this chapter, we treat special cases of the restricted three-body problem, the Hill
problem and planar two-center problem.

4.1 The Hill problem

4.1.1 Main results

The Hill problem models the motion of an asteroid or artificial satellite close to the second
primary in the R3BP. Particles around the Earth are the most affected by the gravitational
force of the Earth. Thus the motion is modeled by the Kepler problem

Ẍ = − X

(X2 + Y 2 + Z2)3/2

Ÿ = − Y

(X2 + Y 2 + Z2)3/2

Z̈ = − Z

(X2 + Y 2 + Z2)3/2
.

Other forces which affect the particles are the gravitational force of the Sun, the Coriolis
and the centrifugal force due to the Earth’s revolution. The model which involves these
force is the spatial Hill problem:

Ẍ = 2Ẏ + 3X − X

(X2 + Y 2 + Z2)3/2

Ÿ = −2Ẋ − Y

(X2 + Y 2 + Z2)3/2
(4.1.1)

Z̈ = −Z − Z

(X2 + Y 2 + Z2)3/2
.

The Hill problem is more accurate than the Kepler problem for particles around the Earth
like artificial satellites (see [30, 56] for more detail). This problem has been studied to
design orbits of space probes. See [26] for example.

42
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In Section 4.1, we show the existence of several symmetric periodic orbits in the Hill
problem. Let

LX+ = {(X, 0, 0) | X > 0}, LX− = {(X, 0, 0) | X < 0},
LY+ = {(0, Y, 0) | Y > 0}, LY− = {(0, Y, 0) | Y < 0},
PXZ = {(X, 0, Z) | (X,Z) ∈ R\{(0, 0)}}, PY Z = {(0, Y, Z) | (Y, Z) ∈ R\{(0, 0)}}.

Let T0 > 0 be the constant determined by cosT0 = T0, which is approximately 0.739.

Theorem 4.1.1. For the spatial Hill problem (4.1.1), the followings hold.

(i) For each 0 < T < 1, there is a 2T -periodic orbit satisfying q(0) ∈ LX+, q(T ) ∈ LX−.

(ii) For each 0 < T < 1, there is a 4T -periodic orbit satisfying q(0) ∈ LX+, q(T ) ∈ LY+.

(iii) For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈ LX+, q(T ) ∈
LY−.

(iv) For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈ LX+, q(T ) ∈
PY Z.

(v) For each 0 < T < 1, there is a 2T -periodic orbit satisfying q(0) ∈ LY+, q(T ) ∈ LY−.

(vi) For each 0 < T < T0, there is a 4T -periodic orbit satisfying q(0) ∈ LY+, q(T ) ∈
PXZ.

See figure 4.1.

LX+

LX-

LY+

LY-

PYZ

PXZ

i

ii
iii

iv

v

vi

Figure 4.1: Boundary conditions

To prove this theorem, we use a variational method. The Lagrangian for the Hill
problem (4.1.1) is

L =
Ẋ2

2
+

Ẏ 2

2
+

Ż2

2
+XẎ − Y Ẋ +

3X2

2
− Z2

2
+

1√
X2 + Y 2 + Z2

.
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The Hill problem is equivalent to the variational problem with respect to the action
functional

AT =

∫ T

0

Ldt.

The result is organized as follows. Next section, we show the coercivity condition for
the existence of a minimizer under the boundary conditions corresponding to each orbit in
Theorem 4.1.1. We also show that the obtained minimizers have no collision by applying
our previous result. In Section 4.1.3, we state the reversibility of the Hill problem and show
that the obtained minimizers are periodic orbits. From the viewpoint of an application
to the trajectory design for artificial satellites, we need orbits on a prescribed plane. For
example, geosynchronous satellites move directly above the Earth’s equator. We also
prove the existence of several periodic orbits in the constrained problem. Section 4.1.4 is
devoted to the study of the existence of periodic orbits of the holonomic constraint system
on a prescribed plane. The last section, we show the numerical solutions.

4.1.2 Coercivity and the existence of minimizers

For subsets D1, D2 ⊂ R3, let

Ω(D1, D2;T ) = {γ ∈ H1([0, T ],R3\{0}) | γ(0) ∈ D1, γ(T ) ∈ D2}.

Here H1 denotes the Sobolev space. By taking LX+, . . . , PY Z in Section 1 as D1 and
D2, we will show the existence of a minimizer of AT |Ω(D1,D2;T ). We call the functional
AT |Ω(D1,D2;T ) coercive if AT |Ω(D1,D2;T )(γ) → ∞ as ‖γ‖H1 → ∞(γ ∈ Ω(D1, D2;T )). It is

well-known that there is a minimizer of AT |Ω(D1,D2;T ) on Ω(D1, D2;T )(γ) if the functional
is coercive.

By changing variables

X = (cos t)x+ (sin t)y, Y = −(sin t)x+ (cos t)y, Z = z,

the Lagrangian becomes

Lrot =
1

2
(ẋ2 + ẏ2 + ż2)

+
3(cos2 t)x2

2
− 3(cos2 t)y2

2
+ 3 cos(t) sin(t)xy − x2

2
+ y2

− z2

2
+

1√
x2 + y2 + z2

.

We estimate the terms on its second line by using the polar coordinate (x, y) = r(cos θ, sin θ):

3(cos2 t)x2

2
− 3(cos2 t)y2

2
+ 3 cos(t) sin(t)xy − x2

2
+ y2

=
3r2 cos(2t− 2θ)

4
+

1

4
r2 ≥ −1

2
r2 = −1

2
(x2 + y2).

Therefore, we get

Lrot ≥
1

2
(ẋ2 + ẏ2 + ż2)− 1

2
x2 − 1

2
y2 − 1

2
z2 +

1√
x2 + y2 + z2

=: L̃.
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Define

ÃT =

∫ T

0

L̃dt.

If ÃT |Ω(D1,D2;T ) is coercive, so is AT |Ω(D1,D2;T ).
Let

(x(0), y(0)) · (x(T ), y(T )) = |(x(0), y(0))||(x(T ), y(T ))| cos ρ.

For example, in the case of D1 = LX+, D2 = LX− which corresponds to (i) in Theorem
4.1.1, the boundary condition is represented by

x(0) > 0, y(0) = z(0) = 0

(cosT )x(T ) + (sinT )y(T ) < 0,−(sinT )x(T ) + (cosT )y(T ) = 0, z(T ) = 0

(x(T ), y(T ), z(T )) ∈ {ξ(cos(T + π), sin(T + π), 0) | ξ > 0}.

Hence, ρ = T + π.
Note that ∫ T

0

|ẋ|2dt ≥ 1

T

(∫ T

0

|ẋ|dt
)2

.

Let
rmax = max

t∈[0,T ]
|x(t)|.

If |ρ| < π/2,

ÃT ≥ 1

2T
(r2max sin

2 ρ)− 1

2
Tr2max =

r2max

2
(
sin2 ρ

T
− T ).

If π/2 < |ρ| < π,

ÃT ≥ 1

2T
(r2max)−

1

2
Tr2max =

r2max

2
(
1

T
− T ).

In the case that
‖x‖H1 = (‖ẋ‖2L2 + ‖x‖2L2)1/2 → ∞

and that ‖x‖2L2 < ∞, ÃT diverges to infinity since

ÃT ≥ 1

2
‖ẋ‖2L2 −

1

2
‖x‖2L2 .

In the case of ‖x‖2L2 → ∞, rmax → ∞, and hence AT diverges if T < | sin ρ|(|ρ| < π/2) or
T < 1(|ρ| > π/2). Now we adapt these computations to our setting in Theorem 4.1.1.

(i) LX+ → LX−: since ρ = π + T , AT is coercive if 0 < T < 1;

(ii) LX+ → LY+: since ρ = π/2 + T , AT is coercive if 0 < T < 1;

(iii) LX+ → LY−: since ρ = π/2− T , AT is coercive if 0 < T < sin(π/2− T ) = cosT ;

(iv) LX+ → PY Z : since ρ = π/2− T , AT is coercive if 0 < T < sin(π/2− T ) = cosT ;

(v) LY+ → LY−:since ρ = π + T , AT is coercive if 0 < T < 1;
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(vi) LY+ → PXZ :since ρ = π/2− T , AT is coercive if 0 < T < sin(π/2− T ) = cosT .

The structure of the collision singularity (X,Y, Z) = (0, 0, 0) is essential same as ones
of the restricted three-body problem. We established a method to avoid the collision
singularities in the restricted three-body problem. We can apply the method to the Hill
problem and show that the obtained minimizers have no collision.

4.1.3 Reversibility

Consider ordinary differential equations:

ẋ = F (x) (x ∈ Rn) (4.1.2)

where F : Rn → Rn is a smooth function.

Definition 4.1.2 (Reversible). Let R be an linear map from Rn to Rn. If F (x) satisfies

F (Rx) +RF (x) = 0,

then (4.1.2) is said to be reversible with respect to R.

With a simple calculation, we get the following proposition:

Proposition 4.1.3. In a reversible system with respect to R, if x(t) is a solution of Eq.
(4.1.2), so is Rx(−t).

We define
Fix(R) = {x ∈ Rn | Rx = x}.

It is easy to see that, for a solution x(t) of (4.1.2) and a real value s ∈ R, x(s) ∈ Fix(R)
is satisfied if and only if x(s+ t) = Rx(s− t).

By letting (VX , VY , VZ) = (Ẋ, Ẏ , Ż), we rewrite the Hill problem (4.1.1) as the first-
order differential equations:

Ẋ = VX

Ẏ = VY

Ż = VZ

V̇X = 2VY + 3X − X

(X2 + Y 2 + Z2)3/2

V̇Y = −2VX − Y

(X2 + Y 2 + Z2)3/2

V̇Z = −Z − Z

(X2 + Y 2 + Z2)3/2
.

This system is reversible with respect to the following four linear maps:

R1 = diag(1,−1, 1,−1, 1,−1)

R2 = diag(1,−1,−1,−1, 1, 1)

R3 = diag(−1, 1, 1, 1,−1,−1)

R4 = diag(−1, 1,−1, 1,−1, 1).
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For those linear maps,

Fix(R1) = {t(X,Y, Z, VX , VY , VZ) | Y = VX = VZ = 0}
Fix(R2) = {t(X,Y, Z, VX , VY , VZ) | Y = Z = VX = 0}
Fix(R3) = {t(X,Y, Z, VX , VY , VZ) | X = VY = VZ = 0}
Fix(R4) = {t(X,Y, Z, VX , VY , VZ) | X = Z = VY = 0}.

Consider Case (i). From the first variational formula, ∂L
∂ẋ
(0) · LX+ = ∂L

∂ẋ
(T ) · LX− = 0

Since
∂L

∂ẋ
= (Ẋ − Y, Ẏ +X, Ż),

Ẋ(0) = 0, Ẋ(T ) = 0

Therefore,

(
x(0)
ẋ(0)

)
,

(
x(T )
ẋ(T )

)
∈ Fix(R3). We have(

x(t)
ẋ(t)

)
= R3

(
x(−t)
ẋ(−t)

)
,

(
x(T + t)
ẋ(T + t)

)
= R3

(
x(T − t)
ẋ(T − t)

)
.

Therefore, we get(
x(t+ 2T )
ẋ(t+ 2T )

)
=

(
x(T + (t+ T ))
ẋ(T + (t+ T ))

)
= R3

(
x(T − (t+ T ))
ẋ(T − (t+ T ))

)
= R3

(
x(−t)
ẋ(−t)

)
=

(
x(t)
ẋ(t)

)
.

Hence the obtained orbit is 2T -periodic. The other cases (ii)-(vi) are similar.

4.1.4 Holonomic constraint

From the point of view of an application to orbits of artificial satellites, we need orbits on
a prescribed plane. A prescribed plane is not invariant under the flow of the Hill problem
in general. Hence we constraint the system to a prescribed plane with an external force
like a jet by an artificial satellite.

Let c = (c1, c2, c3) be a unit vector and consider the plane perpendicular to c passing
the origin(Figure 4.2). The holonomic system is represented by the Lagrangian system
with the Lagrangian

L̄ =
1

2
(ẋ2 + ẏ2) + c3(xẏ − yẋ) + λ1x

2 + λ2y
2 +

1√
x2 + y2

where λ1 ≤ 0 ≤ λ2 are the constants determined by

λ1 + λ2 = −3c21 + c23 + 2, λ1λ2 = −3

4
c22.

The equations are

ẍ = 2c3ẏ + 2λ1x− x

(x2 + y2)3/2

ÿ = −2c3ẋ+ 2λ2y −
y

(x2 + y2)3/2
.

(4.1.3)
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c

Figure 4.2: Holonomic constraints
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ly-
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Figure 4.3: Boundary conditions in the constrained problem

Let

lX+ = {(X, 0) | X > 0}
lX− = {(X, 0) | X < 0}
lY+ = {(0, Y ) | Y > 0}
lY− = {(0, Y ) | Y < 0}.

See Figure 4.3.

Theorem 4.1.4. For the holonomic system (4.1.3), the followings hold:

(i) For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 2T -periodic orbit satisfying
q(0) ∈ lX+, q(T ) ∈ lX−.

(ii) For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 4T -periodic orbit satisfying
q(0) ∈ lX+, q(T ) ∈ lY+.

(iii) For each 0 < T < min{π, T1}, there is a 4T -periodic orbit q(0) ∈ lX+, q(T ) ∈ lY−.
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(iv) For each 0 < T < min{π/2, 1/(c23 − 2λ1)}, there is a 2T -periodic orbit satisfying
q(0) ∈ lY+, q(T ) ∈ lY−.

The proof is similar to one for Theorem 4.1.1. To apply these orbits for artificial
satellites, we need to control it for c-direction. But this must be less costly than in the
case of the Kepler problem.

4.2 The two-center problem

4.2.1 Introduction and the main theorem

The n-center problem is given by the following set of ordinary differential equations
(ODEs):

q̈ = −
n∑

k=1

mk

|q − ak|3
(q − ak) (q ∈ Rd), (4.2.1)

where ak ∈ Rd is a constant vector. A solution q(t) of (4.2.1) is called a brake orbit if
there are real numbers T1 and T2 (T2 > T1) such that

q̇(T1) = q̇(T2) = 0 (4.2.2)

and q(t) is not a stationary point, i.e. an equilibrium point. A brake orbit is a periodic
orbit with period 2(T2 − T1), as we will demonstrate in Section 4.2.2.

The two-center problem is a simplified model of the restricted three-body problem [56].
The two-center problem is integrable, but its first integrals are complicated(for further
details, see [2]). It is not obvious what types of periodic solutions exist.

Various Lagrange systems have been researched over many years to find periodic so-
lutions with variational methods. In the n-center problem, it is shown that there exist
periodic orbits that move around one or several primaries ( [58], [64]). The brake orbits
that we prove to exist in this chapter do not wind around primaries.

Brake orbits are a special type of periodic orbits. Using collision manifold, Chen
[16] proved that brake orbits exist in the planar isosceles three-body problem. Moeckel,
Montgomery, and Venturelli [41] showed the existence of brake orbits using variational
methods with respect to the Jacobi-Maupertuis functional. However, the Lagrangian
functional has not previously been used to find brake orbits.

In this chapter, we will show that a brake orbit exists in the planar two-center problem
by using the Lagrangian action functional. We can set m1 = 1 and a1 = −a2 = (1, 0)
without loss of generality for the planar two-center problem as stated in Section 4.2.4.
More precisely, we prove the following theorem:

Theorem 4.2.1. If (m,T ) ∈ D, then a 4T -periodic brake orbit q(t)(= (q1(t), q2(t))) exists
in the planar two-center problem. The orbit is orthogonal to the x-axis at t = 0 and has
zero velocity at t = T . The orbit q(t) satisfies (q1(t), q2(t)) = (q1(−t),−q2(−t)). Here,
the set D is defined by

D := {(m,T ) | T > α(m) , f(m,T, c) ≥ 0 (∃c ≥ 0)}
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where

α(m) =

√
2πm1/4

(1 +
√
m)2

.

f(m,T, c) =
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3

−

(
2

3
c2T 1/3 +

∫ T

0

1√
(1− b)2 + c2t4/3

+
m√

(1 + b)2 + c2t4/3
dt

)
,

and

b =

√
m− 1√
m+ 1

.

Figure 4.4 shows the domain D drawn with MATLAB.

Figure 4.4: Domain D

Remark 4.2.2. We can expand the theorem to a larger domain than D. See appendix.

Section 4.2 is organized as follows. Section 4.2.2 and 4.2.3 provide background in-
formation on brake orbits and variational methods. In Section 4.2.4, we introduce the
variational settings in the planar two-center problem and set the boundary condition. In
Section 4.2.5, we complete the proof of Theorem 4.2.1 by eliminating the possibility that
the minimizer is an equilibrium solution or a collision path. In Section 4.2.6, we extend
the theorem to a larger domain than D.

4.2.2 Brake orbits

Consider ODEs:

q̇ = F (q) (q ∈ Rn). (4.2.3)

Definition 4.2.3 (Reversible). Let R be an involuntary liniear map from Rn to Rn, i.e.,
R2 = En. If (4.2.3) satisfies

FR +RF = 0,

then (4.2.3) is said to be reversible with respect to R .
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With a simple calculation, we get the following proposition:

Proposition 4.2.4. In reversible systems, if q(t) is a solution of (4.2.3), then so is
Rq(−t).

We define
Fix(R) = {q(s) ∈ Rn | Rq(s) = q(s)}

For a solution q(t) and a real value s ∈ R, it holds that q(s) ∈ Fix(R) is satisfied if and
only if q(s+ t) = Rq(s− t). See [51] for a more detailed explanation of reversible systems.

Consider the following Lagrangian:

L(q, q̇) =
1

2
|q̇|2 + V (q) (q, q̇ ∈ Rn). (4.2.4)

The differential equations of the Lagrangian system(
q̇
ṗ

)
=

(
p

−V (q)

)
(4.2.5)

are reversible with respect to

R =

(
En 0
0 −En

)
.

In this case, the fixed space is Fix(R) = {(q,0) | q ∈ Rn}.

Proposition 4.2.5. Brake orbits of Lagrangian system (4.2.4) with q̇(T1) = q̇(T2) = 0
are 2(T2 − T1)-periodic orbits.

Proof. This system has fix points at p(T1) = q̇(T1) = p(T2) = q̇(T2) = 0. Since q is
invariant under R, we see that q(T1 + t) = q(T1 − t) and q(T2 + t) = q(T2 − t), i.e.,

q(t) = q(t+ 2(T2 − T1)).

This concludes the proof.

Since the n-center problem is a Lagrangian system with form (4.2.4), we get

Corollary 4.2.6. In the n-center problem, if a solution q satisfies (4.2.2), then it is a
2(T2 − T1)-periodic orbit.

4.2.3 Existence of the minimizer

Let CA,B,T be the set of C2 curves in an open set D ⊂ Rn connecting from A to B :

{q ∈ C2([0, T ],D) | q(0) ∈ A, q(T ) ∈ B}

where A,B ⊂ D are affine spaces. The action functional for (4.2.4) is defined by:

A(q) =

∫ T

0

L(q, q̇)dt.

The following is well-known.
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Proposition 4.2.7. Let L be a Lagrangian of the form (4.2.4) and A be the action
functional. If q ∈ CA,B,T is a critical value of A, then q(t) satisfies the Euler-Lagrange
equation in (0, T ). Moreover, in the case (4.2.4), q̇(0) is orthogonal to A and q̇(T ) is
orthogonal to B. If A = D (B = D resp.), then q̇(0) = 0 (q̇(T ) = 0 resp.)

We take

H1(I,D) =

{
q : I → D | q ∈ L2(I,D),

dq

dt
∈ L2(I,D)

}
where I = [0, T ]. The norm is defined by

‖q‖H1 :=

√∫ T

0

|q(t)|2 + |q̇(t)|2dt.

Definition 4.2.8 (coercive). Let Ω ⊂ H1(I,D). We call the functional A|Ω coercive if
A(q) → ∞ as ‖q‖H1 → ∞ (q ∈ Ω).

In general, action functionals for potential systems are weakly semi-continuous [27].

Lemma 4.2.9 ( [60]). Assume that A is weakly lower semi-continuous. If A|Ω is coercive,
then there exists a minimizer q∗ of A in the weak closure Ω̄ of Ω.

Lemma 4.2.10. Define Ω by

Ω = {q ∈ H1(I,D) | q(0) ∈ A, q(T ) ∈ B}.

If A is a bounded set and non-empty, then A|Ω is coercive.

Proof. Although we now prove this lemma, note that similar proofs have been applied in
other settings (see for example [12]).

For any q ∈ Ω, we take

δ(q) = max
s1,s2∈[0,T ]

|q(s1)− q(s2)|.

By the Cauchy-Schwarz inequality, we have

δ(q)2 ≤
(∫ T

0

|q̇|dt
)2

≤ T

∫ T

0

|q̇|2dt.

Setting ξ = sup
q∈A

|q|, we see that

|q(t)| ≤ |q(0)|+ |q(t)− q(0)| ≤ ξ + δ(q).

Since

‖q‖2L2 =

∫ T

0

|q(t)|2dt ≤ (ξ + δ(q))2T ≤ (ξ +
√
T‖q̇‖L2)2T,

we obtain
‖q‖2H1 = ‖q‖2L2 + ‖q̇‖2L2 ≤ (ξ +

√
T‖q̇‖L2)2T + ‖q̇‖2L2 .

Hence we get
A(q) → ∞ (‖q‖H1 → ∞).
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4.2.4 Variational settings for the two-center problem

We consider the planar two-center problem i.e. take n = 2 and d = 2 in (4.2.1). We fix
masses and positions of the primaries as follows:

• m1 = 1，m2 = m ≥ 1．

• Fix the position of the primaries at a1 and a2.

• a1 = a = (1, 0)，a2 = −a．

We can assume the above setting without loss of generality for the two-center problem,
because for any a1, a2 ∈ R2, m1 > 0 and m2 > 0, the problem can be reduced to the
above case with appropriate transformations and scaling.

We define its action functional by

A(q) =

∫ T

0

L(q, q̇)dt, (4.2.6)

where L(q, q̇) =
1

2
|q̇|2 + 1

|q − a|
+

m

|q + a|
and q ∈ H1(I,R2). The planar two-center

problem is equivalent to the following variational problem:

A′(q) = 0. (4.2.7)

We fix a positive number T and search for a brake orbit q(t) = (q1(t), q2(t)) satisfying

• q1(0) ∈ (−1, 1) and q2(0) = 0.

• q̇(T ) = 0.

• q1(t) = q1(−t), q2(t) = −q2(−t).

To obtain such brake orbits, we take a class of curves as follows:

Ω = {q(t) = (q1(t), q2(t)) ∈ H1([0, T ],R2) | −1 < q1(0) < 1, q2(0) = 0}.

From Lemma 4.2.9 and 4.2.10, (4.2.6)has a minimizer in the weak closure Ω̄ of Ω. Let
q∗(t) = (q∗1(t), q

∗
2(t)) be a minimizer. If q∗ is neither a trivial solution nor a collision

solution, then from Proposition 4.2.5 and 4.2.7, it is a quarter part of a brake orbit (See
Figure 4.5).

m2 m1

Figure 4.5: q∗(t) (t ∈ [0, T ])
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The system is reversible with respect to:

R


x
y
px
py

 =


x
−y
−px
py


R =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 .

By corollary 4.2.4 if q(t) = (q1(t), q2(t)) is a solution, then so is q(t) = (q1(−t),−q2(−t)).
Thus, we get the entire trajectory of a 4T -periodic brake orbit as shown in Figure 4.6.

m2 m1

Figure 4.6: A whole brake orbit

4.2.5 Proof of the main theorem

Let qeq denote an equilibrium point of (4.2.6), i.e.

1

|qeq − a|3
(qeq − a) +

m

|qeq + a|3
(qeq + a) = 0.

From a simple calculation, qeq is determined by:

qeq = (b, 0)

(
b =

√
m− 1√
m+ 1

)
.

and the value of the action functional at qeq is

A(qeq) =

∫ T

0

1

|qeq − a|
+

m

|qeq + a|
dt =

1

2
(1 +

√
m)2T.
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We will obtain a condition under the equilibrium point is not the minimizer by estimating
the second variation, which is A′′(q)(δ) is given by

A′′(q)(δ) =

∫ T

0

(δ(t), δ̇(t))∇2L(q)(δ(t), δ̇(t))Tdt,

where q ∈ H1([0, T ],R2) and δ ∈ H1([0, T ],R2). (For details, see [62].) If there exists δ
such that A′′(q)(δ) is negative, then q is not the minimizer of (4.2.6). Since

∇2L(qeq) =


2γ 0 0 0
0 −γ 0 0
0 0 1 0
0 0 0 1

 (
γ =

(1 +
√
m)4

8
√
m

)
,

we obtain

A′′(qeq)(δ) =

∫
δ̇21 + δ̇22 + γ(2δ21 − δ22)dt. (4.2.8)

We substitute

δ = (δ1(t), δ2(t)) = (0, sinωt)
(
ω =

π

2T

)
(4.2.9)

into (4.2.8). Since∫ T

0

δ̇21 + δ̇22 + γ(2δ21 − δ22)dt

= ω2

(
T

2
+

1

4ω
sin(2ωT )

)
− γ

(
T

2
− 1

4ω
sin(2ωT )

)
=

T

2
(ω2 − γ),

the second variation of qeq for (4.2.9) is negative if

π

2
√
γ
=

√
2πm1/4

(1 +
√
m)2

< T.

Thus, the following lemma is proved.

Lemma 4.2.11. If T >

√
2πm1/4

(1 +
√
m)2

, qeq is not a minimizer of A(q).

Next, we give an estimate of collisions.

Lemma 4.2.12. The set Ωcol is given by

Ωcol = {q ∈ Ω | q has collisions.},

Then, A|Ωcol
is minimized by an orbit that moves along the x-axis (see Figure 4.7).

m2 m1

Figure 4.7: Minimizer with collisions
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Proof. Assume that qcol collides with m1 and

qcol(t) = r(t)(cos θ(t), sin θ(t)) + (1, 0).

The value of action functional at qcol is

A(qcol) =

∫ T

0

1

2
|q̇col|2 +

1

|qcol − a|
+

m

|qcol + a|
dt

=

∫ T

0

1

2
(ṙ2 + (rθ̇)2) +

1

|r|
+

m√
r2 + 4 + 2r cos θ

dt

≥
∫ T

0

1

2
ṙ2 +

1

|r|
+

m√
r2 + 4 + 2r

dt.

This inequality becomes an equality if and only if θ(t) is identically zero. We can obtain
a similar estimate in the case where qcol collides with m2, and it is no less than the former
one since m ≥ 1. It follows that the collision path moves on the x-axis as in Figure
4.7.

We call the solution of Lemma 4.2.12 a collision-ejection solution of the two-center
problem and represent it by

qcol(t) = (qcol(t), 0).

By Lemma 4.2.12, we consider only a collision-ejection solution to get a lower bound
estimate for the value of the action functional for any collision path.

Lemma 4.2.13 ( [27]). Let µ > 0, ρ > 0 be constants. For r ∈ H1([0, T ],R), define

B(r) =
∫ T

0

µ

2
ṙ2 +

ρ

|r|
dt. (4.2.10)

If there exists t0 ∈ [0, T ] satisfying r(t0) = 0, then the inequality,

B(r) ≥ B(µ, ρ, T ) :=
3

2
π2/3ρ2/3µ1/3T 1/3,

holds and B(r) = B(µ, ρ, T ) if and only if r(t) is a collision-ejection solution of the Kepler
problem. Moreover, if r(t) is a collision-ejection solution with r(0) = 0, then

r(T ) = 2π−2/3µ−1/3ρ1/3T 2/3.

In (4.2.10), we take µ = 1 and ρ = m + 1. Let q̃(t) = (q̃(t), 0) where q̃(t) − 1 is a
minimizer of (4.2.10). From Lemma 4.2.13, we have

q̃(T ) = 2π−2/3T 2/3(m+ 1)1/3 + 1. (4.2.11)

Lemma 4.2.14.
qcol(T ) < q̃(T ).
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Proof. Suppose

qcol(T )≥q̃(T ) (4.2.12)

and

Fcol(q) = − 1

q − 1
− m

q + 1
, F̃ (q) = −m+ 1

q − 1
.

Note that we now have

qcol(0) = q̃(0) = 1 (4.2.13)

q̇col(T ) = ˙̃q(T ) = 0 (4.2.14)

0 > Fcol(q) > F̃ (q). (4.2.15)

We take
t0 := sup{t ≥ 0 | qcol(t) = q̃(t)}.

By (4.2.12) and (4.2.13), there exists t0(< T ) such that qcol(t0) = q̃(t0). By (4.2.12) and
(4.2.15), 0 > Fcol(qcol(t)) > F̃ (q̃(t)) holds. By q̈col = Fcol, ¨̃q = F̃ and (4.2.14), for any
t ∈ [t0, T ), the following inequality holds:

0 > q̇col(t) =

∫ t

T

q̈coldt =

∫ t

T

Fcol(qcol(t))dt >

∫ t

T

F̃ (q̃(t))dt =

∫ t

T

¨̃qdt = ˙̃q(t).

Since qcol(t0) = q̃(t0), we obtain

0 >

∫ t0

T

˙̃q(t)− q̇col(t)dt = qcol(T )− q̃(T ).

This contradicts (4.2.12).

Lemma 4.2.15. For any qcol in collision solutions,

A(qcol) > g(m,T ) :=
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3

Proof. From Lemma 4.2.12, we have∫ T

0

1

|qcol + a|
dt =

∫ T

0

1

qcol + 1
dt ≥ m

qcol(T ) + 1

∫ T

0

dt =
m

qcol(T ) + 1
T

>
π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3.

By (4.2.11), we obtain

A(qcol) =

∫ T

0

1

2
|q̇col|2 +

1

|qcol − a|
dt+

∫ T

0

m

|qcol + a|
dt

>
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3.
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At the end of our proof, we show that the value of the test path is smaller than one
of the collision path.

Lemma 4.2.16. If f(m,T, c) ≥ 0, the collision path qcol is not a minimizer.

Proof. We take a test path:

qc(t) = (b, ct
2
3 ) (c ≥ 0).

If A(qcol) > A(qc), then qcol is not a minimizer. The value of the functional with respect
to the test path is

A(qc) =
2

3
c2T 1/3 +

∫ T

0

1√
(1− b)2 + c2t4/3

+
m√

(1 + b)2 + c2t4/3
dt.

By Lemma 4.2.15, it is sufficient to show that if g(m,T ) ≥ A(qc). This inequality is
equivalent to f(m,T, c) ≥ 0.

Now, we show that domain D is nonempty without numerical calculation. Let

g̃(T ) :=
3

2
π2/3T 1/3.

Clearly g(m,T ) > g̃(T ) holds, therefore we obtain g̃(T ) ≥ A(qeq), i.e. if

T <
3
√
3π

(1 +
√
m)3

(= β(m)),

then qcol is not a minimizer and if T > α(m), then qeq is not a minimizer. If there exists
T such that α(m) < T < β(m), then

∅ 6= {(m,T ) | α(m) < T < β(m) , f(m,T, 0) ≥ 0} ⊂ D,

so D is nonempty. The inequality α(m) < β(m) is equivalent to

√
m(

√
m+ 1)2 − 27

2
< 0. (4.2.16)

For 1 ≤ m < 3.1164778, (4.2.16) holds.

4.2.6 Extension of D

In this section, we will reconsider the estimate of (4.2.6) of collisions. For all λ ∈ (0, 1),
let

A(q) = A1(λ, q − 1) +A2(λ, q + 1),

where

A1(λ, q) =

∫ T

0

1− λ

2
q̇2 +

1

|q|
dt (4.2.17)
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and

A2(λ, q) =

∫ T

0

λ

2
q̇2 +

m

|q|
dt. (4.2.18)

By [27], we get the following estimate of (4.2.17):

A1(λ, q − 1) >
3

2
π2/3(1− λ)1/3T 1/3.

To estimate (4.2.18), we will use a comparison of (4.2.18) and a part of the linear Kepler
orbit.

We fix H and assume −m/2 < H < 0. Let Q(t) denote a collision-ejection solution
with respect to (4.2.18) satisfying Q(t0) = 2, Q̇(T + t0) = 0 and

H =
λ

2
Q̇2 − m

|Q|
.

Thus, we obtain

A2(λ, q + 1) >

∫ T+t0

t0

λ

2
Q̇2 +

m

|Q|
dt

=

∫ T+t0

0

λ

2
Q̇2 +

m

|Q|
dt−Ht0 − 2

∫ t0

0

m

|Q|
dt.

Gordon [27] gives ∫ T+t0

0

λ

2
Q̇2 +

m

|Q|
dt =

3

2
π2/3λ1/3m2/3(T + t0)

1/3.

Lemma 4.2.17. If −H < 0, let T (x,H) denote the time from 0 to x with energy H.
Then, it holds the following equation holds:

T (x,H) = m

√
λ

2(−H)3

{
sin−1

(√
−xH

m

)
−

√
−xH

m

(
1 +

xH

m

)}
Proof. By the definition of T (x,H), we get

T (x,H) =

√
λ

2

∫ x

0

1

Q̇
dQ =

√
λ

2

∫ x

0

√
Q

HQ+m
dQ

= m

√
λ

2(−H)3

∫ −H
m
x

0

√
q

1− q
dq

= m

√
λ

2(−H)3

∫ θ0

0

(1− cos 2θ)dθ (θ0 = sin−1

(√
−xH

m

)
)

= m

√
λ

2(−H)3

{
sin−1

(√
−xH

m

)
−

√
−xH

m

(
1 +

xH

m

)}
.

This completes the proof.
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The relation of T and t0 is indicated by the above lemma:

T = (T + t0)− t0 = T (xmax, H)− T (2, H)

= m

√
λ

2(−H)3

{
cos−1

(√
−2H

m

)
+

√
−2H

m

(
1 +

2H

m

)}

Substituting H = −m

2
y for any y ∈ (0, 1), we obtain

T := T̄ (m.λ, y) = 2

√
λ

m
· 1
y

{
cos−1

(√
y
)

√
y

+
√

1− y

}
and

t0 = 2

√
λ

m
· 1
y

{
sin−1

(√
y
)

√
y

−
√
1− y

}
.

It follows that

T + t0 =
πm

2

√
λ

2(−H)3
=

π

y

√
λ

my
(4.2.19)

and

−Ht0 =
√
mλ

{
sin−1

(√
y
)

√
y

−
√

1− y

}
.

Moreover, we have

2

∫ t0

0

m

|Q|
dt = 2m

√
λ

2(−H)

∫ t0

0

1

Q

√
Q

−Q− (m/H)
dQ

= 2m

√
λ

2(−H)

∫ 2

0

√
1

q(1− q)
dq

= 2m

√
λ

2(−H)

∫ θ0

0

2dθ (θ0 = sin−1

(√
−2H

m

)
)

= 2m

√
2λ

−H
sin−1

(√
−2H

m

)
= 4

√
mλ

y
sin−1 (

√
y) .

Hence, since for all λ ∈ (0, 1) and y ∈ (0, 1),

A2(λ, q) >
√
mλ

{
3
√
y
cos−1 (

√
y)−

√
1− y

}
,

we get

A(qcol) > ḡ(m,λ, y), (4.2.20)
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where

ḡ(m,λ, y) =
3

2
π2/3(1− λ)1/3T̄ (m,λ, y)1/3 +

√
mλ

{
3
√
y
cos−1 (

√
y)−

√
1− y

}
.

In the same way as the proof of Lemma 4.2.16, if ḡ(m,λ, y)−A(qc) ≥ 0, then qcol is not
a minimizer.

From the above discussion, we show the following theorem extending the domain
beyond D.

Theorem 4.2.18. If (m,T ) ∈ D′, then 4T -periodic brake orbits q(t)(= (q1(t), q2(t)))
satisfying the same condition of Theorem 4.2.1 exists in the planar two-center problem.
Here, the set D′ is defined by

D′ :=

{
(m,T ) ∈ R2

∣∣∣∣ T > α(m) and ∃λ, y ∈ (0, 1) such that
f̄(m,λ, y, c) ≥ 0 and T = T̄ (m,λ, y).

}
where

f̄(m,λ, y, c) = ḡ(m,λ, y)−A(qc)

and

T̄ (m,λ, y) = 2

√
λ

m
· 1
y

{
cos−1

(√
y
)

√
y

+
√

1− y

}
.

Figure 4.8 illustrates domain D′.

Figure 4.8: the domain D′
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Braid types of periodic solutions in
the planar n-body problem

5.1 Introduction

Consider the motion of m points in the plane R2

x(t) = (x1(t), . . . , xm(t)),

where xi(t) ∈ R2 is the position of the ith point at t ∈ R. Let Qm(t) = {x1(t), . . . , xm(t)}.
We assume the following.

• x(t) is collision-free, i.e., for any t ∈ R, xi(t) 6= xj(t) if i 6= j.

• There exists t0 > 0 such that

Qm(t+ t0) = Qm(t).

Then we have a (geometric) braid

b(x(t), [0, t0]) =
⋃

t∈[0,t0]

{
(x1(t), t), . . . , (xm(t), t)

}
⊂ R2 × [0, t0]

with base points Qm(0)(= Qm(t0)). The actual location of base points is irrelevant for
the study of braids. To remove the data of the location, we consider its braid type〈
b(x(t), [0, t0])

〉
instead of the braid (See Section 5.3.1 for the definition of braid types).

We investigate periodic solutions of the planar N -body problem given by the following
ODEs.

miẍi = −
∑
j ̸=i

mimj
xi − xj

|xi − xj|3
, xi ∈ R2, mi > 0 (i = 1, . . . , N). (5.1.1)

Suppose that x(t) = (x1(t), . . . , xN(t)) is a periodic solution with period T of (5.1.1). The
solution x(t) determines a (pure) braid b(x(t), [0, T ]) and its braid type

〈
b(x(t), [0, T ]

〉
.

Braid types can be used to classify periodic solutions of the planar N -body problem.

62
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Question 5.1.1 (Montgomery [44], (cf. Moore [45])). For any pure braid b with N
strands, is there a periodic solution of the planar N-body problem whose braid type is
equal to 〈b〉?

Question 5.1.1 is wide open for every N > 3. In the case of N = 3 Question 5.1.1
is true by work of Moeckel-Montgomery [40]. For other studies on braids obtained from
periodic solutions, see a pioneer work by Moore [45]. See also [23,42,43].

Remark 5.1.2. We consider the following Newton equations

miẍi = −
∑
j ̸=i

mimj
xi − xj

|xi − xj|α+1
, xi ∈ R2, mi > 0 (i = 1, . . . , N), (5.1.2)

where α ≥ 1. The case α = 2 corresponds to (5.1.1) describing the motion of n bodies
under the influence of the gravitation. One can ask the same question as Question 5.1.1
for the planar N-body problem given by (5.1.2). It is known by Montgomery [43] that
Question 5.1.1 is true for any “tied” braid type when α ≥ 3 (i.e., under the assumption
that the force is strong).

According to the Nielsen-Thurston classification of surface automorphisms [20], braids
fall into three types: periodic, reducible and pseudo-Anosov. (See Section 5.3.3.) To a
braid b of pseudo-Anosov type, there is an associated stretch factor λ(b) > 1, and this is
a conjugacy invariant of pseudo-Anosov braids. Since the Nielsen-Thurston type is also a
conjugacy invariant, one can define the stretch factor λ(〈b〉) := λ(b) for the pseudo-Anosov
braid type 〈b〉 of b. See (5.3.1) in Section 5.3.3.

The stretch factor tells us a dynamical complexity of pseudo-Anosov braids. In this
chapter we ask the following question related to Question 5.1.1.

Question 5.1.3. Let b be a pure braid with N strands. Suppose that b is of pseudo-Anosov
type. Is there a periodic solution of the planar N-body problem whose braid type is equal
to 〈b〉?

The stretch factor of each pseudo-Anosov braid with 3 strands is a quadratic irrational
(Section 5.3.4). This is not necessarily true for pseudo-Anosov braids with more than
3 strands. Moore [45] and Chenciner-Montgomery [18] found a simple choreographic
solution to the 3-body problem such that the three bodies chase one another along a
figure-8 curve. The braid type of the solution is pseudo-Anosov and its stretch factor is
the 6th power of the 1st metallic ratio s1 (Example 5.3.6), i.e., golden ratio, where the
kth metallic ratio sk (k ∈ N) is given by

sk =
1

2
(k +

√
k2 + 4) = k +

1

k +
1

k +
1

k +
.. .

The study of braid types of the periodic solutions has been relatively less investigated.
We hope that the following result sheds some light on Question 5.1.3. Let b·c be the floor
function.
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Theorem 5.1.4. For n ≥ 2 and p ∈ {1, . . . , bn
2
c}, there exists a periodic solution xn,p(t)

of the planar 2n-body problem with equal masses whose braid type Xn,p is pseudo-Anosov

with the stretch factor (s2p)
2n
d , where d = gcd(n, p).

A representative of the braid type Xn,p in Theorem 5.1.4 is the (n
d
)th power (βn,p)

n
d of

the 2n-braid βn,p introduced in Section 5.4. In 2006, the third author proved the existence
of a family of multiple choreographic solutions xn,p(t) of the planer 2n-body problem with
equal masses [52]. Some of the solutions in the family had already found by Chen [11,12]
and Ferraio-Terracini [21]. The orbit of the periodic solution xn,p(t) consists of 2d closed
curves, each of which is the trajectory of n

d
bodies. The braid types Xn,p(t) in Theorem

5.1.4 are realized by xn,p(t) given in [52]. More precisely, for n ≥ 2 and p ∈ {1, . . . , bn
2
c},

there exists a periodic solution

xn,p(t) = (x1(t), . . . , x2n(t))

with period T > 0 of the planar 2n-body problem such that

xi(t+ ( d
n
)T ) = xσn,p(i)(t) for i = 1, . . . , 2n,

where σn,p = (1, 3, . . . , 2n − 1)p(2, 4, . . . , 2n)−p ∈ S2n is a permutation of 2n elements.
Thus, the braid yn,p := b(xn,p(t), [0, (

d
n
)T ]) and the braid type Yn,p := 〈yn,p〉 are obtained

from the solution xn,p(t), and the (n
d
)th power (yn,p)

n
d represents the braid type Xn,p. See

Figure 5.1 for periodic solutions xn,p(t) for 0 ≤ t ≤ ( d
n
)T . Theorem 5.1.4 follows from the

following (see Remark 5.3.4).

Theorem 5.1.5. For n ≥ 2 and p ∈ {1, . . . , bn
2
c}, the braid type Yn,p is pseudo-Anosov

with the stretch factor (s2p)
2. In particular, the braid type Xn,p of the solution xn,p(t) is

pseudo-Anosov with the stretch factor (s2p)
2n
d .

Since sk < sk′ if k < k′, we immediately have the following result.

Corollary 5.1.6. Let Xn,p be the braid type as in Theorem 5.1.5. For n ≥ 2 and p, p′ ∈
{1, . . . , bn

2
c} with p < p′, we have the following.

(1) λ(Xn,p) < λ(Xn,p′) if gcd(n, p) = gcd(n, p′). In particular Xn,p 6= Xn,p′.

(2) λ(Xn,p) < λ(Xn,p′) if n is prime. In particular Xn,p 6= Xn,p′.

The 2n bodies for the solution xn,p(t) form a regular 2n-gon at the initial time t = 0,
and the next first time is t = ( d

2n
)T when the 2n bodies form a regular 2n-gon again. See

Figure 5.1 for xn,p(t) at t = ( d
2n
)T . From the viewpoint of the configuration of the “next”

regular 2n-gon, it is proved in [52] that xn,p(t) and xn,p′(t) are distinct solutions for distinct
p, p′ ∈ {1, . . . , bn

2
c} (Remark 5.2.1). On the other hand, from the viewpoint of braid types,

Corollary 5.1.6 tells us that Xn,p is different from Xn,p′ if gcd(n, p) = gcd(n, p′).
Table 5.1 shows the stretch factor λn,p = λ(Xn,p) and the entropy log(λn,p) for several

pairs (n, p). One can see from this table that λ(Xn,p) 6= λ(Xn,p′) if p 6= p′ up to n = 11.
Therefore the braid types Xn,p and Xn,p′ of the solutions for p 6= p′ ∈ {1, . . . , bn

2
c} are

distinct up to n = 11.
Because of an intriguing formula of metallic ratios, s3k = sk3+3k for example, stretch

factors λ(Xn,p) happen to coincide with the ones for different pairs (n, p′) occasionally (see
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t = dT
n

t = 3dT
4n

t = dT
2n

t = dT
4n

t = 0
(1) (2) (3) (4)

t = dT
n

t = 3dT
4n

t = dT
2n

t = dT
4n

t = 0
(5) (6) (7) (8)

Figure 5.1: xn,p(t) for 0 ≤ t ≤ ( d
n
)T : (1) x2,1(t). (2) x3,1(t). (3) x4,1(t). (4) x4,2(t). (5)

x5,1(t). (6) x5,2(t). (7) x6,1(t). (8) x6,2(t).
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Table 5.1: Some examples obtained from Theorem 5.1.4.

(n, p) d Xn,p = 〈(βn,p)
n
d 〉 λn,p = (s2p)

2n
d log(λn,p) = (2n

d
) log(s2,p)

(2, 1) 1 (β2,1)
2 (s2)

4 3.525494348078172

(3, 1) 1 (β3,1)
3 (s2)

6 5.288241522117257

(4, 1) 1 (β4,1)
4 (s2)

8 7.050988696156343
(4, 2) 2 (β4,2)

2 (s4)
4 5.774541900715241

(5, 1) 1 (β5,1)
5 (s2)

10 8.813735870195430
(5, 2) 1 (β5,2)

5 (s4)
10 14.436354751788103

(6, 1) 1 (β6,1)
6 (s2)

12 10.576483044234514
(6, 2) 2 (β6,2)

3 (s4)
6 8.661812851072861

(6, 3) 3 (β6,3)
2 (s6)

4 7.273785836928267

(7, 1) 1 (β7,1)
7 (s2)

14 12.339230218273601
(7, 2) 1 (β7,2)

7 (s4)
14 20.210896652503344

(7, 3) 1 (β7,3)
7 (s6)

14 25.458250429248935

(8, 1) 1 (β8,1)
8 (s2)

16 14.101977392312687
(8, 2) 2 (β8,2)

4 (s4)
8 11.549083801430482

(8, 3) 1 (β8,3)
8 (s6)

16 29.095143347713069
(8, 4) 4 (β8,4)

2 (s8)
4 8.378850189044405

(9, 1) 1 (β9,1)
9 (s2)

18 15.864724566351773
(9, 2) 1 (β9,2)

9 (s4)
18 25.985438553218586

(9, 3) 3 (β9,3)
3 (s6)

6 10.910678755392400
(9, 4) 1 (β9,4)

9 (s8)
18 37.704825850699820

(10, 1) 1 (β10,1)
10 (s2)

20 17.627471740390860
(10, 2) 2 (β10,2)

5 (s4)
10 14.436354751788103

(10, 3) 1 (β10,3)
10 (s6)

20 36.368929184641338
(10, 4) 2 (β10,4)

5 (s8)
10 20.947125472611013

(10, 5) 5 (β10,5)
2 (s10)

4 9.249753365091010

(11, 1) 1 (β11,1)
11 (s2)

22 19.390218914429944
(11, 2) 1 (β11,2)

11 (s4)
22 31.759980453933828

(11, 3) 1 (β11,3)
11 (s6)

22 40.005822103105473
(11, 4) 1 (β11,4)

11 (s8)
22 46.083676039744226

(11, 5) 1 (β11,5)
11 (s10)

22 50.873643508000555
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Example 5.4.1). Nevertheless, we conjecture that Xn,p 6= Xn,p′ for all p, p
′ ∈ {1, . . . , bn

2
c}

with p 6= p′.
The organization of Chapter 5 is as follows. In Section 5.2 we introduce a family of

periodic solutions xn,p(t) in [52] of the planar 2n-body problem. In Section 5.3 we briefly
review the necessarily background on braid groups. We prove Theorem 5.1.5 in Section
5.4. In Section 5.5, we give new numerical periodic solutions xn,p(t) of the planar 2n-body
problem when p > bn

2
c.

5.2 Periodic solutions of the planar 2n-body problem

This section is devoted to explain the periodic solutions xn,p(t). The existence was proven
with the variational method. They have high symmetries because they can be represented
as elements of a functional space limited by several group actions. The minimizers of the
action functional under the symmetry correspond to those solutions. They are also re-
garded as orbits on the shape sphere. They are constructed through minimizing methods,
and we omit analytic techniques for the proof and describe geometric properties of xn,p(t)
including the group actions and shape sphere.

5.2.1 Symmetry

Let G be a finite group. We consider a 2-dimensional orthogonal representation ρ : G →
O(2), a homomorphism σ : G → S2n to the symmetric group on 2n elements, and another
2-dimensional orthogonal representation τ : G → O(2). We will denote by Λ, the set of
T -periodic orbits. The action of G to Λ is defined by

g · ((x1, . . . , x2n)(t)) = (ρ(g)xσ(g−1)(1), . . . , ρ(g)xσ(g−1)(2n))(τ(g
−1)(t))

for g ∈ G and x(t) = (x1, . . . , x2n)(t) ∈ Λ, where the above ρ, σ, τ represent respectively
actions of G on R2 by orthogonal transformations, on indices {1, 2, . . . , 2n} by permu-
tations, and on the circle R/TZ. Specifically, we take G as the group Gn,p := 〈gn, hn,p〉
generated by the two elements gn and hn,p, where

ρ(gn) =

(
cos(π

n
) − sin(π

n
)

sin(π
n
) cos(π

n
)

)
,

σ(gn) = (1, 2, . . . , 2n),

τ(gn) =

(
1 0
0 −1

)
and

ρ(hn,p) = 1,

σ(hn,p) = (1, 3, . . . , 2n− 1)−p(2, 4, . . . , 2n)p,

τ(hn,p) =

(
cos(2πd

n
) − sin(2πd

n
)

sin(2πd
n
) cos(2πd

n
)

)
(d := gcd(n, p)).

Let us denote by ΛG
n,p, the invariant set under the action of Gn,p in Λ, i.e.,

ΛG
n,p = {x(t) ∈ Λ | xi(t) = ρ(g)xσ(g−1)(i)(τ(g

−1)(t))

(i = 1, 2, . . . , 2n, g ∈ Gn,p, t ∈ R)}.
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We now check the properties of ΛG
n,p. First, from the invariance under gn, we have

gn · ((x1, x2, . . . , x2n)(t)) = (e
πi
n x2n, e

πi
n x1, . . . , e

πi
n x2n−1)(−t).

Here we identify R2 with C. In particular, x1(t), x2(−t), . . . , x2n−1(t), x2n(−t) forms a
regular 2n-gon, and n bodies with odd indices and n bodies with even indices rotate in
mutually opposite directions.

Second, since

ρ(g2n) =

(
cos(2π

n
) − sin(2π

n
)

sin(2π
n
) cos(2π

n
)

)
,

σ(g2n) = (1, 3, . . . , 2n− 1)(2, 4, . . . , 2n) and

τ(g2n) = 1,

the configuration always consists of two regular n-gons, which are formed by n bodies
x1(t), x3(t), . . . , x2n−1(t) of odd indices and n bodies x2(t), x4(t), . . . , x2n(t) of even indices.
Thus, to determine the positions of 2n bodies x1, . . . , x2n, it is sufficient to know the
positions of two bodies x1 and x2. In fact for each k ∈ {1, . . . , n} and t ∈ R,

x2k−1(t) = ω(k−1)x1(t), x2k(t) = ω(k−1)x2(t),

where ω = e2πi/n. This enables us to use the shape sphere (introduced in Section 5.2.2)
which represents configurations of 2n bodies in the periodic solutions.

Lastly, the invariance under hn,p tells us that

hn,p · ((x1, x2, . . . , x2n)(t)) = (xσ(h−1
n,p)(1)

, xσ(h−1
n,p)(2)

, . . . , xσ(h−1
n,p)(2n)

)(t− dT
n
),

and hence
xi

(
t+ dT

n

)
= xσ(h−1

n,p)(i)
(t) (i = 1, 2, . . . , 2n),

where
σ(h−1

n,p) = (1, 3, . . . , 2n− 1)p(2, 4, . . . , 2n)−p ∈ S2n. (5.2.1)

This implies that xn,p(t) consists of 2d closed curves and n
d
bodies chase one another

along each closed curve. See Figure 5.1.

5.2.2 The shape sphere

We consider the group action on the circle S1 to C2 by

z · (x1, x2) = (zx1, zx2), z ∈ S1, (x1, x2) ∈ C2.

The quotient space (C2 − {0})/S1 under the above action is realized by the following
projection:

π : C2 − {0} −→ R3 − {0} (∼= (C2 − {0})/S1)

(x1, x2) 7−→ u(t) = (u1, u2, u3)
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where

(u1, u2, u3) = (|x1|2 − |x2|2, 2Re(x1x̄2), 2Im(x1x̄2))

= (r21 − r22, 2r1r2 cos(θ1 − θ2), 2r1r2 sin(θ1 − θ2)).

Here x1 = r1e
iθ1 and x2 = r2e

iθ2 . Set the rays

A± = {(±s, 0, 0) | s ∈ R>0},

B2k =

{(
0, s cos(

2πk

n
), s sin(

2πk

n
) | s ∈ R>0

)}
(k ∈ Z) and

B2k−1 =

{(
0, s cos(

(2k − 1)π

n
), s sin(

(2k − 1)π

n
) | s ∈ R>0

)}
(k ∈ Z).

In the quotient space (C2 − {0})/S1, the sets A± and B2k correspond to collisions of the
original 2n bodies. If u(t) ∈ A+ (resp. A−), then all bodies with odd (resp. even) indeces
collide at t ∈ R and if u(t) ∈ B2k, then two regular n-gons fit. See Figure 5.4 for the
configurations of 8 bodies corresponding to B0, B2, B4 and B6.

Let u(t)(= un,p(t)) be a curve corresponding to the solution xn,p(t). As a result, u(t)
passes through neither A± nor B2k, because xn,p(t) has no collision ( [52, Proposition 3]).
On the other hand, each B2k−1 represents a configuration where 2n bodies form a regular
2n-gon. See Figure 5.4 for the configurations of 8 bodies corresponding to B−1, B1, B3

and B5.
Set

M(k) =

 −1 0 0
0 cos(2πk

n
) sin(2πk

n
)

0 sin(2πk
n
) − cos(2πk

n
)

 .

It is easy to see that M(k) is an orthogonal matrix with eigenvalues λ = 1,−1. The
eigenvector for λ = 1 is Bk, and hence M(k) represents π-rotation with respect to Bk.
The invariance under gn is associated with u1(−t)

u2(−t)
u3(−t)

 = M(−1)

 u1(t)
u2(t)
u3(t)


and it implies that u(t) and u(−t) are symmetric with respect to B−1. In other words,
rotating this curve π with respect to B−1, u(t) coincides with u(−t). In particular u(0) ∈
B−1. Similarly, the invariance under hn,p is associated with u1(t+ 2T̄ )

u2(t+ 2T̄ )
u3(t+ 2T̄ )

 =

 1 0 0
0 cos(4πp

n
) − sin(4πp

n
)

0 sin(4πp
n
) cos(4πp

n
)

 u1(t)
u2(t)
u3(t)

 ,

where T̄ = dT
2n
. Substituting −(t + T̄ ) into t and applying the invariance under gn, we

obtain  u1(−t+ T̄ )
u2(−t+ T̄ )
u3(−t+ T̄ )

 = M(2p− 1)

 u1(t+ T̄ )
u2(t+ T̄ )
u3(t+ T̄ )

 .
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Taking t = 0 gives  u1(T̄ )
u2(T̄ )
u3(T̄ )

 = M(2p− 1)

 u1(T̄ )
u2(T̄ )
u3(T̄ )

 ,

and hence u(t+ T̄ ) and u(−t+ T̄ ) are symmetric with respect to B2p−1 and u(T̄ ) ∈ B2p−1.
It means that the original configuration of 2n bodies forms a regular 2n-gon again at t = T̄ .
Other symmetries with respect to B2jp−1 for j = 2, 3, . . . can be seen in the same manner.

Remark 5.2.1. It is proved in [52, Proposition 5] that u(t) /∈ B2k−1 for all t ∈ (0, T̄ ) and
k ∈ Z . It implies that xn,p(t) and xn,p′(t) are distinct smooth solution for p 6= p′ in the
sense that u(T̄ ) belongs to B2p−1, that is in the sense that the configuration of the first
regular 2n-gon lives in the distinct B2p−1 for each p.

Consider the projection from R3−{0} to the 2-sphere S2. The projective space is called
the shape sphere. The image of u(t) ∈ R3 − {0} under the projection is also denoted by
the same notation u(t), and we call a family {u(t)}t (on the shape sphare) the shape
curve. Determining the shape curve u(t) for t ∈ (0, T̄ ), we obtain the shape curve u(t)
for all t ∈ R from the above symmetries. For example, we show the shape curves u(t) for
t ∈ R when (n, p) = (3, 1) and (n, p) = (4, 2) in Figure 5.2. Each point Bi in Figure 5.2
indicates the projection of the ray Bi onto the shape sphere. The solid arrows (resp. the
dotted arrows) illustrate the shape curve u(t) in the front side on the shape sphere, i.e.,
u1(t)(= |x1(t)|2 − |x2(t)|2) > 0, (resp. the back side, i.e., u1(t) < 0). The dotted arrow
of label 2 follows from symmetry of the solid arrow of label 1 with respect to B1. The
remaining cases are treated in the same fashion.

(a) (n, p) = (3, 1) (b) (n, p) = (4, 2)

Figure 5.2: The shape curve u(t) for t ∈ R when (1) (n, p) = (3, 1) and (2) (n, p) = (4, 2).

The point Bi in the figure is the projection of the ray Bi onto the shape sphere.

Remark 5.2.2. Though the set ΛG
n,p does not determine how the shape curve u(t) moves

on the shape sphere for t ∈ (0, T̄ ), we can prove through variational arguments that it does
not happen like Figure 5.3(1) or (2). See [52, Propositions 5 and 6] for the proof.

Figure 5.4 illustrates the projection of the shape curve u(t) onto the u2u3-plane to-
gether with the configuration of 8 bodies corresponding to each Bi when (n, p) = (4, 1)
and (4, 2).
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(a) Error type 1: Across the u2u3-plane (b) Error type 2: Non-monotonicity

Figure 5.3: Error types of the shape curve u(t) (0 ≤ t ≤ T̄ ) when (n, p) = (4, 2). (1)
Error type 1: u(t) (0 ≤ t ≤ T̄ ) is across the u2u3-plane. (2) Error type 2: u(t) is not
monotone. For the shape curve u(t) (0 ≤ t ≤ T̄ ), see the solid arrow with label 1 in
Figure 5.2(2).

5.3 Braid groups and mapping class groups

5.3.1 Geometric braids

In this section, we recall definitions of (geometric) braids and the braid types. For
the basics on braid groups, see Birman [8]. Let D be a closed disk in the plane R2 and
Qm = {q1, . . . , qm} be a set of m points in the interior of D. Let γ1, . . . , γm be mutually
disjoint m arcs in D × [0, 1] with the following properties.

• ∂(γ1 ∪ · · · ∪ γm) = {(q1, t), . . . , (qm, t) | t ∈ {0, 1}} ⊂ D × {0, 1},
• γi (i = 1, . . . ,m) starts at (qi, 0) = γi ∩ (D×{0}) and it goes up monotonically with
respect to the [0, 1]-factor. In particular γi ∩ (D × {t}) consists of a single point for
0 ≤ t ≤ 1.

We call b = γ1 ∪ · · · ∪ γm ⊂ D × [0, 1] a (geometric) braid with base points Qm and call
each γi a strand of the braid b. We say that braids b and b′ with base points Qm are
equivalent if there is a 1-parameter family of braids with base points Qm deforming b to
b′. By abuse of notations, the equivalence class [b] is also denote by b.

For braids b and b′ with base points Qm, the product bb
′ is defined as follows. We first

stuck b on b′ and concatenate them to get disjoint arcs properly embedded in D × [0, 2].
By normalizing its height, we obtain a braid (in D × [0, 1]) with the same base points
Qm and this is the braid bb′. The set of all braids with base points Qm with this product
gives a group structure. The group is called the (geometric) braid group with base points
Qm and it is denoted by B(Qm). Note that the identity element 1Qm ∈ B(Qm) is given
by a braid consisting of straight arcs.

Let Am = {a1, . . . , am} be a set of m points in the interior of D such that a1, . . . , am lie
on a segment in this order. We write Bm = B(Am) and call Bm the m-braid group. The
isomorphism class of the above braid group B(Qm) with base points Qm does not depend
on the location of base points, and B(Qm) is isomorphic to Bm. To define braid types
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(a) (n, p) = (4, 1)

(b) (n, p) = (4, 2)

Figure 5.4: The projection of the shape curve u(t) for t ∈ R onto the u2u3-plane when
(1) (n, p) = (4, 1) and (2) (n, p) = (4, 2). The configuration of 8 bodies corresponding to
Bi is illustrated.
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1 i i+1

(1) (2)

m 1 2 31 2 3

(4)

1 2 3

(3) (5)

1 2 3 41 2 3

(6)

Figure 5.5: (1) σi ∈ Bm. (2) σ1σ
−1
2 ∈ B3. (3) (σ1σ

−1
2 )3 ∈ P3 < B3. (4) σ

2
1σ

−2
2 ∈ P3 < B3.

(5) A full twist ∆2 ∈ P3 < B3. (6) A half twist ∆ ∈ B4.

of geometric braids with arbitrary base points Qm, we now take an isomorphism between
B(Qm) and Bm. We first choose an orientation preserving homeomorphism f : D → D
such that f(Am) = Qm. Then take an isotopy {ft}0≤t≤1 on D between the identity map
idD and f , i.e., f0 = idD and f1 = f . We consider two kinds of mutually disjoint m arcs
γ+ and γ− properly embedded in D × [0, 1] as follows.

γ+ =
⋃

t∈[0,1]

{
(ft(a1), t), . . . , (ft(am), t)

}
,

γ− =
⋃

t∈[0,1]

{
(f1−t(a1), t), . . . , (f1−t(am), t)

}
.

Note that Qm = f1(Am) = {f(a1), . . . , f(am)} and Am = f0(Am) = {a1, . . . , am}. Because
of this, it makes sense to stack a braid b ∈ B(Qm) on γ+, and we obtain the resulting
disjoint m arcs b ·γ+ ⊂ D× [0, 2]. Then we stack γ− on b ·γ+. As a result we have disjoint
m arcs

γ− · b · γ+ ⊂ D × [0, 3].

By normalizing the height of the arcs, we obtain a braid (inD×[0, 1]) with base points Am,
and we still denote it by the same notation γ− · b · γ+. In particular if b = 1Qm ∈ B(Qm),
then γ−1Qmγ

+ = 1Am ∈ Bm. The correspondence b 7→ γ− · b · γ+ gives us an isomorphism
between B(Qm) and Bm.

For an element b ∈ Bm, we put indices 1, . . . ,m at the bottoms of strands so that the
index i indicates (ai, 0) ∈ D × {0}. Let σi be an element of Bm as in Figure 5.5(1). The
braid group Bm is generated by σ1, σ2, . . . , σm−1, and it has the following braid relations.

(B1) σiσj = σjσi (|i− j| ≥ 2).

(B2) σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ m− 2).

See Figure 5.5(2)–(6) for some braids. There is a surjective homomorphism

σ̂ : Bm → Sm

from Bm to the symmetry group Sm of m elements sending each σj to the transposition
(j, j+1). The kernel of σ̂ is called the pure braid group (or colored braid group) Pm < Bm.
An element of Pm is called a pure braid. See Figure 5.5(3)(4)(5) for some pure braids.

Let Z(Bm) be the center of Bm which is an infinite cyclic group generated by a full
twist ∆2, where a half twist ∆ = ∆m ∈ Bm is given by

∆m = (σ1σ2 . . . σm−1)(σ1σ2 . . . σm−2) . . . (σ1σ2)σ1.
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See Figure 5.5(6) for a half twist ∆ ∈ B4.
Given a braid b ∈ Bm, consider the projection b in the quotient group

B2n = B2n/Z(B2n).

The braid type 〈b〉 of b is a conjugacy class of b in B2n.
In the case of the braid group B(Qm) with base points Qm, the braid type 〈b〉 of

b ∈ B(Qm) is defined by the braid type
〈
γ− · b · γ+

〉
of the braid γ− · b · γ+ ∈ Bm (with

base points Am), where γ+ and γ− are arcs as above. The braid type 〈b〉 is well-defined,
i.e., it does not depend on the above orientation preserving homeomorphism f : D → D
and the isotopy {ft}0≤t≤1.

Example 5.3.1.

(1) For the 3-braid σ1σ
−1
2 , it follows that

σ̂(σ1σ
−1
2 ) = σ̂(σ1)σ̂(σ

−1
2 ) = (12)(23) = (123) ∈ S3,

see Figure 5.5(2). Hence σ̂((σ1σ
−1
2 )3) = 1 ∈ S3 which means that (σ1σ

−1
2 )3 ∈ P3.

(2) For the 3-braid σ2
1σ

−2
2 , it follows that

σ̂(σ2
1σ

−2
2 ) = σ̂(σ2

1)σ̂(σ
−2
2 ) = 1 · 1 = 1 ∈ S3,

see Figure 5.5(4). Hence σ2
1σ

−2
2 ∈ P3.

Example 5.3.2. For the Euler’s periodic solution of the planar 3-body problem, three
bodies are collinear at every instant. A full twist ∆2 = (σ1σ2σ1)

2 = (σ1σ2)
3 ∈ B3 (Figure

5.5(5)) represents the braid type of the solution. Since Z(B3) is generated by ∆2, the braid
type of the Euler’s periodic solution is trivial. Similarly, it is the trivial braid type for the
Lagrange’s periodic solution of the planar 3-body problem, since the triangle formed by the
three bodies is equilateral for all time.

5.3.2 Mapping class groups

Let X1, . . . , Xn be possibly empty subspaces of an orientable manifold M . For instance
M is a connected orientable surface Σg,m of genus g ≥ 0 with m punctures (possibly
m = 0) and Xi (i = 1, . . . , n) is a finite set in Σg,m. Let Homeo+(M,X1, . . . , Xn) be the
group of orientation-preserving self-homeomorphisms of M that map Xi onto Xi for each
i = 1, . . . , n. We do not require that homeomorphisms fix the boundary ∂M pointwise.
The mapping class group MCG(M,X1, . . . , Xn) is defined by

MCG(M,X1, . . . , Xn) = π0(Homeo+(M,X1, . . . , Xn)),

that is the group of isotopy classes of elements of Homeo+(M,X1, . . . , Xn). When X is
an empty subspace of M , then we write MCG(M) = MCG(M,X). We apply elements of
mapping class groups from right to left, i.e., we apply g first for the product fg.
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(1) (2)

∞

m
∞

m

si

i i+11 n

(3)

Figure 5.6: (1) A pair (Σ0,m, {∞}). (2) An m-punctured plane. (3) A half twist hi.

Let Dm = D \ Am be an m-punctured disk, where Am = {a1, . . . , am} is the set of
m points in the interior of D as in Section 5.3.1. By definition, MCG(Dm) is the group
of isotopy classes of elements of Homeo+(Dm) which fix ∂D setwise. In this chapter, we
mainly consider an m-punctured disk Dm or an m-punctured sphere Σ0,m as an orientable
manifold M for the mapping class groups. We take a point in Σ0,m and call it ∞.
An element f ∈ Homeo+(Σ0,m, {∞}) means that f fixes the point ∞. Puncturing the
point ∞, we think of MCG(Σ0,m, {∞}) as a subgroup of MCG(Σ0,m+1). Also we may
regard MCG(Σ0,m, {∞}) as the mapping class group of an m-punctured plane. See Figure
5.6(1)(2).

The mapping class group MCG(Dm) is generated by h1, . . . , hm−1, where hi is the
right-handed half twist about a segment si connecting the ith and (i + 1)th punctures,
see Figure 5.6(3). More precisely, let Di ⊂ int(D) be a closed disk such that Di contains
the two points ai and ai+1 together with a segment si between the punctures ai and
ai+1. Moreover Di contains no other points of Am. Then the right-handed half-twist
hi ∈ MCG(Dm) is a mapping class that fixes the exterior of Di and rotates si in Di by
π in the counter-clockwise direction. Hence hi interchanges the ith puncture with the
(i+ 1)th puncture.

We now recall a relation between Bm and MCG(Dm). There is a surjective homomor-
phism

Γ : Bm → MCG(Dm)

which sends σi to hi for i = 1, . . . ,m − 1. The kernel of Γ is the center Z(Bm), and
hence Bm = Bm/Z(Bm) is isomorphic to MCG(Dm). Collapsing ∂D to the point ∞ in
the sphere, we have a homomorphism

c : MCG(Dn) → MCG(Σ0,m, {∞}).

By abuse of notations, we simply denote by b, the mapping class c(Γ(b)) ∈ MCG(Σ0,m, {∞}).
Also we denote by 〈b〉, the conjugacy class

〈
c(Γ(b))

〉
of c(Γ(b)) ∈ MCG(Σ0,m, {∞}). Note

that this notation 〈b〉 is the same as the braid type of b ∈ Bm.

5.3.3 Nielsen-Thurston classification

According to the Nielsen-Thurston classification [59], mapping classes fall into three types:
periodic, reducible and pseudo-Anosov. Assume that 3g − 3 +m ≥ 1. A mapping class
ϕ ∈ MCG(Σg,m) is periodic if ϕ is of finite order. A mapping class ϕ ∈ MCG(Σg,m) is
reducible if there is a collection of mutually disjoint and non-homotopic essential simple
closed curves C1, . . . , Cj in Σg,m for j ≥ 1 such that C1∪· · ·∪Cj is preserved by ϕ. Here a
simple closed curve C in Σg,m is essential if each component of Σg,m\C has negative Euler
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characteristic. (There is a mapping class that is periodic and reducible.) A mapping class
ϕ ∈ MCG(Σg,m) is pseudo-Anosov if ϕ is neither periodic nor reducible. Note that the
Nielsen-Thurston type is a conjugacy invariant, i.e., two mapping classes are conjugate to
each other in MCG(Σg,m), then their Nielsen-Thurston types are the same.

Pseudo-Anosov mapping classes have many important properties for the study of dy-
namical systems. For more details which we describe below, see [19, 20]. A homeomor-
phism Φ : Σg,m → Σg,m is pseudo-Anosov if there exist a constant λ = λ(Φ) > 1 and a
pair of transverse measured foliations (F+, µ+) and (F−, µ−) such that

Φ((F+, µ+)) = (F+, λµ+) and Φ((F−, µ−)) = (F−, 1
λ
µ−).

This means that Φ preserves both foliations F+ and F−, and it contracts the leaves of
F− by 1

λ
and it expands the leaves of F+ by λ. The invariant foliations F+ and F− are

called the unstable and stable foliations for Φ, and λ > 1 is called the stretch factor for Φ.

Remark 5.3.3. The invariant foliations F+ and F− for the pseudo-Anosov homeomor-
phism Φ are singular foliations which mean that they have common singularities in the
interior of Σg,m or at punctures of Σg,m. The number of singularities is finite. A 1-pronged
singularity may occur at a puncture of Σg,m, yet there are no 1-pronged singularities in
the interior of Σg,m.

Each pseudo-Anosov mapping class ϕ ∈ MCG(Σg,m) contains a pseudo-Anosov home-
omorphism Φ as a representative of ϕ. We set λ(ϕ) = λ(Φ) and call it the stretch factor
of the mapping class ϕ = [Φ]. The stretch factor λ(ϕ) is a conjugacy invariant of pseudo-
Anosov mapping classes. Moreover λ(ϕ) is the largest eigenvalue of a Perron-Frobenius
integral matrix. Thus λ(ϕ) is an algebraic integer which is a real number grater than 1
and |λ′| < λ(ϕ) holds for each conjugate element λ′ 6= λ(ϕ). The logarithm log(λ(ϕ)) of
the stretch factor λ(ϕ) is called the entropy of ϕ.

Remark 5.3.4. If ϕ ∈ MCG(Σg,m) is pseudo-Anosov, then ϕk is pseudo-Anosov for all
k ≥ 1 and the equality λ(ϕk) = (λ(ϕ))k holds.

Recall the two homomorphisms

Γ: Bm → MCG(Dm), and

c : MCG(Dm) → MCG(Σ0,m, {∞}) < MCG(Σ0,m+1).

We say that a braid b ∈ Bm is periodic (resp. reducible, pseudo-Anosov) if the mapping
class c(Γ(b)) is of the corresponding type. When b is a pseudo-Anosov braid, the stretch
factor λ(b) of b is defined by the stretch factor λ(c(Γ(b))) of the mapping class c(Γ(b)).
In this case, it makes sense to say that the braid type 〈b〉 is pseudo-Anosov, and we can
define the stretch factor λ(〈b〉) of the braid type 〈b〉 by

λ(〈b〉) = λ(b) = λ(c(Γ(b))), (5.3.1)

since both Nielsen-Thurston type and the stretch factor are conjugacy invariants.
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5.3.4 Pseudo-Anosov 3-braids

It is well-known that for positive integers kj’s, ℓj’s and r, the 3-braid

σk1
1 σ−ℓ1

2 . . . σkr
1 σ−ℓr

2

is pseudo-Anosov. Moreover any pseudo-Anosov 3-braid α is conjugate to a braid

σk1
1 σ−ℓ1

2 . . . σkr
1 σ−ℓr

2

in B3 which is unique up to a cyclic permutation. See Murasugi [46] for example. Then
the stretch factor λ(α) is the eigenvalue greater than 1 of

M(k1,ℓ1,...,kr,ℓr) =

(
1 1
0 1

)k1 (1 0
1 1

)ℓ1

. . .

(
1 1
0 1

)kr (1 0
1 1

)ℓr

. (5.3.2)

See Handel [28] for example.

Example 5.3.5 (Metallic 3-braids (Appendix A in [22])). For p ≥ 1, the 3-braid σ2p
1 σ−2p

2

is pseudo-Anosov, and the stretch factor λ(σ2p
1 σ−2p

2 ) is the eigenvalue greater than 1 of

M(2p,2p) =

(
1 + 4p2 2p

2p 1

)
. Thus

λ(σ2p
1 σ−2p

2 ) = (p+
√
p2 + 1)2 =

(1
2
(2p+

√
4p2 + 4)

)2
= (s2p)

2.

Figure 5.7: (1) The figure-8 solution x(t) with period T . (2) A representative braid
σ−1
1 σ2 ∈

〈
b(x(t), [0, T

3
])
〉
.

Example 5.3.6. Let us consider the figure-8 solution x(t) = (x1(t), x2(t), x3(t)) by Moore
[45] and Chenciner-Montgomery [18], see Figure 5.7. The periodic solution x(t) has a
property such that

x1(t+
T
3
) = x2(t), x2(t+

T
3
) = x3(t), x3(t+

T
3
) = x1(t),

where T > 0 is the period of x(t). This property tells us that x(t) determines a braid
b(x(t), [0, T

3
]). One sees that σ−1

1 σ2 ∈ B3 is a representative of
〈
b(x(t), [0, T

3
])
〉
and

(σ−1
1 σ2)

3 represents the braid type
〈
b(x(t), [0, T ])

〉
of the solution x(t). It is easy to see

that σ−1
1 σ2 is conjugate with σ1σ

−1
2 in B3. By (5.3.2), σ1σ

−1
2 is a pseudo-Anosov braid

with the stretch factor (s1)
2. Thus the braid type of the figure-8 solution is pseudo-Anosov

with the stretch factor (s1)
6 (Remark 5.3.4), and hence it is a non-trivial braid type in

contrast with the Euler’s solution and Lagrange’s solution (Example 5.3.2).
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5.4 Proof of Theorem 5.1.5

For n ≥ 2 and p ≥ 1, we define braids un, vn, βn,p ∈ B2n as follows.

un = (σ1σ2 . . . σ2n−1)(σ1σ3 . . . σ2n−1)
−1,

vn = (σ1σ2 . . . σ2n−1)
−1(σ1σ3 . . . σ2n−1) and

βn,p = up
nv

p
n.

See also Figure 5.8 together with the braid relation (B1) in Section 5.3.1. It is easy to
check that σ̂(un) = (1, 3, . . . , 2n − 1) and σ̂(vn) = (2, 4, . . . , 2n)−1. Hence by (5.2.1), we
have

σ̂(βn,p) = σ̂(up
nv

p
n) = (1, 3, . . . , 2n− 1)p(2, 4, . . . , 2n)−p = σ(h−1

n,p). (5.4.1)

(1)

(2) (3)

un

vn (4)

un

vn

un

vn

2

2

1  2   3   4   5   6   7   8 1  2   3   4   5   6   7   81  2   3   4   5   6   7   8

1  2   3   4   5   6   7   8

βn,1 βn,2

Figure 5.8: Case n = 4. (1) un. (2) vn. (3) βn,1 = unvn. (4) βn,2 = u2
nv

2
n.

Proof of Theorem 5.1.5. The proof consists of the following two steps. In Step 1, we
prove that for n ≥ 2 and any p ≥ 1, the braid βn,p is pseudo-Anosov with λ(βn,p) = (s2p)

2.
(We have no restriction on p in Step 1.) In Step 2, we prove that for any n ≥ 2 and
p ∈ {1, . . . , bn

2
c}, the braid types of βn,p and yn,p = b(xn,p(t), [0,

d
n
]) are the same. In other

words, βn,p ∈ 〈yn,p〉. Since Xn,p =
〈
(yn,p)

n
d

〉
, it follows that Xn,p =

〈
(βn,p)

n
d

〉
. Hence by

Step 1 together with Remark 5.3.4, Xn,p is a pseudo-Anosov braid type with the stretch
factor

λ(Xn,p) = λ
(
(βn,p)

n
d

)
= (λ(βn,p))

n
d = (s2p)

2n
d .

Step 1. For n ≥ 2 and p ≥ 1, the braid βn,p is pseudo-Anosov with λ(βn,p) = (s2p)
2. In

particular λ(βn,p) < λ(βn,p′) if p < p′.



CHAPTER 5. 79

(1)

(2) (3)

0

0 0

0

∞ ∞

x1
x2

x3

x4 x5

x6

x7

x8

x
1

x
2

Figure 5.9: Case n = 4. (1) An n-fold branched cover p : Σ0,2n → Σ0,2 with branched
points 0 and ∞, where punctures lie on the equators. (2) The upper hemisphere for Σ0,2n.
(3) The upper hemisphere for Σ0,2.
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Figure 5.10: Case n = 4. (1) A lift ã = ãn ∈ MCG(Σ0,2n, {0}, {∞}) of (2) a = σ2
1 ∈

MCG(Σ0,2, {0}, {∞}). (3) A lift b̃ = b̃n ∈ MCG(Σ0,2n, {0}, {∞}) of (4) b = σ−2
2 ∈

MCG(Σ0,2, {0}, {∞}). For (2) and (4), a and b (as elements of B3) have base points x1,
0, and x2.
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0

x1

x2
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x1 x2 x3 x4 x5 x6 x
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0

∞
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Figure 5.11: Case n = 4. (1) An arc in the equator. (2) A segment in the plane. (3) The
braid un corresponding to ã• ∈ MCG(Σ0,2n, {∞}). (The arc in (1) is identified with the
segment in (2).) For (1) and (2), arrows indicate the image of the punctures under ã.

Proof of Step 1. We consider a 2-punctured sphere Σ0,2 and denote the two punctures of
Σ0,2 by x1 and x2. We pick two points in Σ0,2 and call them 0 (the north pole) and ∞
(the south pole). Given n ≥ 2, we take an n-fold branched cover

p : Σ0,2n → Σ0,2

with branched points 0 and ∞. (We cut a longitude of Σ0,2 between 0 and ∞, take n
copies of the resulting surface, and past them to make an 2n-punctured sphere.) We
denote lifts of 0,∞ ∈ Σ0,2 by 0,∞ ∈ Σ0,2n respectively. Let x1, x2, . . . , x2n be punctures
of Σ0,2n such that p sends x2k (resp. x2k−1) to x2 (resp. x1). In the view from 0 ∈ Σ0,2n in
the upper hemisphere, we may assume that x1, . . . , x2n lie on the equator counterclockwise
and these 2n punctures form the regular 2n-gon. See Figure 5.9.

Let a = σ2
1, b = σ−2

2 ∈ B3. Since a and b are pure 3-braids, we can regard a and b
as elements of MCG(Σ0,2, {0}, {∞}), see Figure 5.10(2)(4). We lift a and b to Σ0,2n, and
call them

ã, b̃ ∈ MCG(Σ0,2n, {0}, {∞}) < MCG(Σ0,2n+1, {∞}).

(Clearly both ã and b̃ fix the two points 0 and ∞.) We have

ã(x2k−1) = x2k+1 and ã(x2k) = x2k for k = 1, . . . , n,

b̃(x2k−1) = x2k−1 and b̃(x2k) = x2k−2 for k = 1, . . . , n,

where we interpret indices modulo 2n. Notice that ã rotates the regular n-gon x1x3 . . . x2n−1

by π
n
counterclockwise about the north pole 0; b̃ rotates the regular n-gon x2x4 . . . x2n by

π
n
clockwise about the same point 0, see Figure 5.10(1)(3). In other words, under the

action of ã, each puncture x2i−1 (i = 1, . . . , 2n) with odd index is passing through in front
of the puncture x2i with even index from the view of the north pole 0 ∈ Σ0,2n. Similarly,

under the action of b̃, each puncture x2i (i = 1, . . . , 2n) with even index is passing through
in front of the puncture x2i−1 with odd index.

Forgetting the point 0 ∈ Σ0,2n, we think of ã and b̃ as elements, say ã• and b̃• of

MCG(Σ0,2n, {∞}) respectively. To find the planar 2n-braids for ã• and b̃•, we cut the
equator of Σ0,2n at a point between the consecutive punctures x2n and x1 (in the cyclic
order) into an arc, and we regard the arc as a segment in the plane containing the punc-

tures x1, . . . , x2n in this order, see Figure 5.11(1)(2). Then from the actions of ã• and b̃•

on 2n punctures in the plane, one sees that 2n-braids corresponding to ã•, b̃• are given by
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un, vn ∈ B2n respectively. See Figure 5.11(3). (Although we do not need braid represen-

tatives corresponding to ã and b̃ in the proof of Step 1, Figure 5.10(1) and (3) illustrate

these representatives for ã and b̃ respectively in case n = 4.)
We define

ϕp = (ã)p(̃b)p ∈ MCG(Σ0,2n, {0}, {∞}) < MCG(Σ0,2n+1, {∞}).

It follows that ϕp is a lift of apbp = σ2p
1 σ−2p

2 ∈ MCG(Σ0,2, {0}, {∞}). Recall that apbp is
a pseudo-Anosov mapping class with the stretch factor (s2p)

2, see Example 5.3.5. Since
ϕp is a lift of apbp, ϕp is also pseudo-Anosov with the same stretch factor as apbp. Hence
λ(ϕp) = (sp)

2.

Forgetting the point 0 ∈ Σ0,2n, we obtain ϕ•
p ∈ MCG(Σ0,2n, {∞}) from ϕp = (ã)p(̃b)p.

Note that ϕ•
p = (ã•)p(̃b•)p is a mapping class corresponding to the braid βn,p = up

nv
p
n.

Claim. The stable/unstable foliation F+/− of ϕp is not 1-pronged at 0 ∈ Σ0,2n.

For the proof of Step 1, it is enough to prove Claim. The reason is that if F+/− is not
1-pronged at the point 0 ∈ Σ0,2n, then the same singular foliations F+ and F− are still
invariant foliations for ϕ•

p, see Remark 5.3.3. This implies that ϕ•
p (and hence the braid

βn,p) is pseudo-Anosov with the same stretch factor (sp)
2 as ϕp, i.e.,

λ(βn,p)
(
= λ(ϕ•

p)
)
= λ(ϕp) = (s2p)

2.

Proof of Claim. Let us consider the stable/unstable foliation F+ and F− for the pseudo-
Anosov element apbp. Then F+/− has 1-pronged singularities at each of the two punctures
of Σ0,2 and at each of the two points 0 and ∞. Let F+ and F− denote lifts of F+ and F−

respectively. It follows that F+/− is the stable/unstable foliation for ϕp, and F+/− has a
1-pronged singularity at each of the 2n punctures and F+/− has n-pronged singularities
(n ≥ 2) at the points 0 and ∞ in Σ0,2n. In particular F+/− is not 1-pronged at 0 ∈ Σ0,2n.
This completes the proof of Claim.

By Claim, we finished the proof of Step 1.

Recall that yn,p = b(xn,p(t), [0, 2T̄ ]) and T̄ = dT
2n
.

Step 2. βn,p ∈ 〈yn,p〉. In particular (βn,p)
n
d ∈ Xn,p =

〈
(yn,p)

n
d

〉
.

Proof of Step 2. Let us consider the shape curve u(t) (t ∈ [0, 2T̄ ]) for the solution xn,p(t).
By the arguments in Section 5.2.2, the shape curve u(t) (t ∈ [0, 2T̄ ]) satisfies the following
properties.

(s1) u(0) ∈ B−1, u(T̄ ) ∈ B2p−1 and u(2T̄ ) ∈ B4p−1.

(s2) u1(t) > 0 for 0 < t < T̄ .

(s3) u1(t) < 0 for T̄ < t < 2T̄ .

(s4) xi(2T̄ ) = xσ(h−1
n,p)(i)

(0) for i = 1, . . . , 2n.

Recall that n bodies with odd indices and n bodies with even indices rotate in mutually
opposite directions. The above (s1) (u(0) ∈ B−1, u(T̄ ) ∈ B2p−1) and (s2) tell us that each
of bodies x2i(t)’s (i = 1, . . . , n) with even indices is passing through in front of bodies with
odd indices (in the time interval (0, T̄ )) from the view of the origin 0 ∈ R2. Similarly (s1)
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(u(T̄ ) ∈ B2p−1, u(2T̄ ) ∈ B4p−1) and (s3) imply that each of bodies x2i−1(t)’s (i = 1, . . . , n)
with odd indices is passing through in front of the bodies with even indices (in the time

interval (T̄ , 2T̄ )). These properties connect up (̃b)p ∈ MCG(Σ0,2n, {0}, {∞}) with u(t)
for t ∈ [0, T̄ ] (resp. (ã)p ∈ MCG(Σ0,2n, {0}, {∞}) with u(t) for t ∈ [T̄ , 2T̄ ]), see Figure
5.10(3)(4). Recall that the permutation σ̂(βn,p) of the braid βn,p = up

nv
p
n coincides with

σ(h−1
n,p), see (5.4.1). Putting these properties together with (s4), we conclude that the 2n-

braid up
nv

p
n(= βn,p) is a representative of the braid type 〈yn,p〉 of yn,p = b(xn,p(t), [0, 2T̄ ]).

This completes the proof of Step 2.

By Steps 1 and 2, we have finished the proof of Theorem 5.1.5.

We end this section with an example.

Example 5.4.1. Corollary 5.1.6 and Table 5.1 may suggest that λ(Xn,p) does not coincide
with λ(Xn,p′) for different pairs (n, p) 6= (n, p′). However, the stretch factors happen to
coincide for different pairs occasionally: The kth metallic ratio sk has a formula (sk)

3 =
sk3+3k for each k ∈ N. In particular (s6)

3 = s234 when k = 6. We now claim that
λ(Xn,3) = λ(Xn,117) for all n = 322k with k ≥ 5. Then 117 ≤ bn

2
c. By Theorem 5.1.4, we

have λ(Xn,3) = (s6)
2n
3 = (s6)

3·2k+1
and λ(Xn,117) = (s234)

2n
9 = (s234)

2k+1
. By the equality

(s6)
3 = s234, we have

λ(Xn,3) = ((s6)
3)2

k+1

= (s234)
2k+1

= λ(Xn,117).

5.5 New numerical periodic solutions of the 2n-body

problem

We numerically found the periodic solutions xn,p(t) for p = 1, . . . , bn
2
c in Figure 5.1. In

order to obtain those, we consider the Fourier series of the solutions and compute the
Fourier coefficient by using the steepest descent method. Though the existence of the
periodic orbits theoretically guarantees for p = 1, . . . , bn

2
c, new numerical solutions are

obtained for several pairs with (n, p) with bn
2
c < p < n. See Figure 5.12.

Then it is natural to ask the following question.

Question 5.5.1. For n ≥ 2 and bn
2
c < p < n, does there exist a periodic solution xn,p(t)

of the planar 2n-body problem whose braid type Xn,p is given by the braid (βn,p)
n
d with

d = gcd(n, p)?

If the answer of Question 5.5.1 is positive, then Theorem 5.1.4 is extended to some
pairs (n, p) with bn

2
c < p < n, i.e. if the answer of Question 5.5.1 is positive, then the braid

type Xn,p of the periodic solution xn,p(t) of the planar 2n-body problem is pseudo-Anosov

with the stretch factor (s2p)
2n
d . See also Step 1 of the proof of Theorem 5.1.5.
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t = dT
n

t = 3dT
4n

t = dT
2n

t = dT
4n

t = 0
(1) (2) (3) (4)

Figure 5.12: (1) x3,2(t). (2) x4,3(t). (3) x5,3(t). (4) x5,4(t).



Chapter 6

Conclusions

In this thesis, using minimizing methods, we proved infinitely many transition orbits in
twist maps as well as multiple periodic solutions of the restricted three-body problem
and related problems. Moreover, as a related issue to periodic solutions of the n-body
problem, we examined braid types determined from a family of periodic solutions in the
planar 2n-body problem. We summarize our key results as follows.

(i) In Chapter 2, we established the variational structure for infinite transition orbits
between two periodic orbits. We first introduced several results for finite transi-
tion orbits and the corresponding variational structures [49, 66]. The functionals or
functions such as (1.1.7) and (1.2.4) always take infinite values for infinite transi-
tion orbits. We therefore solved this problem by considering a renormalized function
defined on a set Xk,ρ, which is determined by two bi-infinite sequences, k and ρ.
Moreover, we showed that, for some k and ρ, the renormalized function has a mini-
mizer on Xk,ρ and the minimizer implies infinite transition orbits.

(ii) In Chapters 3 and 4, we examined the restricted three-body problem and two related
problems. Chapter 3 provided the proof for multiple periodic solutions that rotate
clockwise around one or two primaries. Chapter 4 dealt with the Hill problem and
the two-center problem. In the first half, we considered a holonomic constraint and
showed the existence of periodic orbits, such as orbits restricted to a specific plane,
in a similar way to the local estimate used in Chapter 3. In the latter half, using
the global estimate, we demonstrated the existence of brake orbits in the planar
two-center problem, which can be regarded as a simpler model of the restricted
three-body problem.

(iii) In Chapter 5, we studied braid types of planar periodic solutions. More precisely,
we studied braid types determined from periodic solutions with high symmetries of
the planar 2n-body problem in [52]. We first showed that each 2n-braid type can be
regarded as a 3-braid by using a covering space and that all of their braid types are
pseudo-Anosov. In addition, we found that their stretch factors are always powers
of metallic ratios.

We conclude this thesis by stating potential future works.

(i) In Chapter 2, we assumed that two periodic configurations, u0 and u1, have the same
rotation number. Future work could consider the case where the rotation numbers
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are different. As a related paper to this problem, we refer to [63], which discusses
minimal configurations in such a case.

(ii) In Chapter 3, all of the obtained orbits rotate clockwise around one or two primaries.
Therefore, the following question arises: how do we show the existence of periodic or-
bits that rotate counterclockwise or that involve both clockwise and counterclockwise
rotations (as in Figure 6.1)?

Figure 6.1: One of the remaining cases we have not proved

(iii) Chapter 5 established the braid types determined from a family of periodic solutions
of the 2n-body problem. However, Montgomery’s question (Question 5.1.1), which
motivated our study, focused on showing the existence of periodic solutions deter-
mined from braids, so our result does not answer his question. Given an n-braid or
n-braid type, there remains the question of how to show the existence of a periodic
solution that realizes the n-braid or n-braid type in the case of n ≥ 4.
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