MARKET PRICING FOR MATROID RANK VALUATIONS*

KRISTÓF BÉRCZI ${ }^{\dagger}$, NAONORI KAKIMURA ${ }^{\ddagger}$, AND YUSUKE KOBAYASHI§

Abstract

In this paper, we study the problem of maximizing social welfare in combinatorial markets through pricing schemes. We consider the existence of prices that are capable of achieving optimal social welfare without a central tie-breaking coordinator. In the case of two buyers with matroid rank valuations, we give polynomial-time algorithms that always find such prices when one of the matroids is a partition matroid or both matroids are strongly base orderable. This result partially answers a question raised by Dütting and Végh [Private communication, 2017]. We further formalize a weighted variant of the conjecture of Dütting and Végh, and show that the weighted variant can be reduced to the unweighted one based on the weight-splitting theorem for weighted matroid intersection by Frank. We also show that a similar reduction technique works for M^{\natural}-concave functions or, equivalently, for gross substitutes functions.

Key words. pricing scheme, Walrasian equilibrium, gross substitutes valuation, matroid rank function

AMS subject classifications. 90C27, 91B52

DOI. 10.1137/20M1386335

1. Introduction. In this paper, we study the problem of maximizing social welfare in combinatorial markets through pricing schemes. Let us consider a combinatorial market consisting of indivisible goods and buyers, where each buyer has a valuation function that describes the buyer's preferences over the subsets of items. The goal is to allocate the items to buyers in such a way that the social welfare, that is, the total sum of the buyers' values, is maximized. Such an allocation can be found efficiently under reasonable assumptions on the valuations [31]. As an application of the Vickrey-Clarke-Groves (VCG) mechanism $[6,21,36]$ for welfare maximization, the VCG auction is another illustrious example. However, the problem becomes much more intricate if the optimal welfare ought to be achieved using simpler mechanisms employed in real world markets, such as pricing.

In a pricing scheme, the seller sets the item prices, and the utility of a buyer for a given bundle of items is defined as the value of the bundle with respect to the buyer's

[^0]valuation, minus the total price of the items in the bundle. Ideally, the prices are set in such a way that there exists an allocation of the items to buyers in which the market clears and everyone receives a bundle that maximizes her utility. A pair of pricing and allocation possessing these properties is called a Walrasian equilibrium, ${ }^{1}$ while we will refer to the price vector itself as Walrasian pricing. The fundamental notion of Walrasian equilibrium first appeared in [37], and the definition immediately implies that the allocation in a Walrasian equilibrium maximizes social welfare. Therefore, the problem might seem to be settled for markets that admit such an equilibrium.

Cohen-Addad et al. [7] observed that Walrasian prices alone are not sufficient to coordinate the market. The reason is that ties among different bundles have to be broken up carefully by a central coordinator, in a manner consistent with the corresponding optimal allocation. However, in real markets, buyers walk into the shop in an arbitrary sequential order and choose an arbitrary best bundle for themselves without caring about social optimum. In their paper, it is shown that the absence of a tie-braking rule may result in an arbitrarily bad allocation. In particular, no static prices can give more than $2 / 3$ of the social welfare when three buyers with unit-demand valuations arrive sequentially.

To overcome these difficulties, Cohen-Addad et al. [7] introduced the notion of dynamic pricing schemes. In this setting, the seller is allowed to dynamically update the prices between buyer arrivals. Achieving optimal social welfare based on dynamic pricing would be clearly possible if the order in which buyers arrive was known in advance. Nevertheless, determining an optimal dynamic pricing scheme is highly nontrivial when the prices need to be set before getting access to the preferences of the next buyer.

The main open problem in [7] asked whether any market with gross substitutes valuations has a dynamic pricing scheme that achieves optimal social welfare. A market with gross substitutes valuations is known to be an important class of markets having Walrasian prices [24]. It is worth noting that the existence of an optimal scheme reduces to the existence of an appropriate initial price vector; an optimal allocation then can be determined by induction. For a formal definition, we refer the reader to [1].

As a starting step towards understanding the general case, we consider the existence of a static pricing scheme for a two-buyer market with matroid rank valuations, because a matroid rank function is a fundamental example of gross substitutes valuations. Here, a matroid with a ground set S and a base family \mathcal{B} is denoted by $M=(S, \mathcal{B})$, and we denote $p(X):=\sum_{s \in X} p(s)$ for $p: S \rightarrow \mathbb{R}$ and $X \subseteq S$.

Conjecture 1.1. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be matroids with rank functions r_{1} and r_{2}, respectively. Then, there exists a function $p: S \rightarrow \mathbb{R}$ (called a price vector) satisfying the following conditions:

1. For $B_{1} \in \arg \max _{X \subseteq S}\left(r_{1}(X)-p(X)\right)$ and $B_{2} \in \arg \max _{Y \subseteq S \backslash B_{1}}\left(r_{2}(Y)-\right.$ $p(Y))$, we have $r_{1}\left(B_{1}\right)+r_{2}\left(B_{2}\right)=\max \left\{r_{1}(X)+r_{2}(Y) \mid X, Y \subseteq \bar{S}, X \cap Y=\emptyset\right\}$.
2. For $B_{2} \in \arg \max _{Y \subseteq S}\left(r_{2}(Y)-p(Y)\right)$ and $B_{1} \in \arg \max _{X \subseteq S \backslash B_{2}}\left(r_{1}(X)-\right.$ $p(X))$, we have $r_{1}\left(B_{1}\right)+r_{2}\left(B_{2}\right)=\max \left\{r_{1}(X)+r_{2}(Y) \mid X, Y \subseteq S, X \cap Y=\emptyset\right\}$.

This conjecture can be interpreted as follows. There are two buyers and each buyer $i \in\{1,2\}$ has a valuation function r_{i}. If buyer i comes to a shop first, then she chooses an arbitrary bundle B_{i} that maximizes her utility $r_{i}-p$, and the second

[^1]buyer chooses a best bundle in $S \backslash B_{i}$. The requirements mean that any choice of B_{i} results in an allocation maximizing the social welfare. Thus, whoever comes first, we can achieve the optimal social welfare.

As we will see in Lemma 2.6, Conjecture 1.1 can be reduced to the following conjecture.

Conjecture 1.2. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be matroids with a common ground set S such that there exist disjoint bases $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ with $B_{1} \cup B_{2}=S$. Then, there exists a function $p: S \rightarrow \mathbb{R}$ (called a price vector) satisfying the following conditions:

1. For $B_{1} \in \arg \min _{X \in \mathcal{B}_{1}} p(X)$, we have $S \backslash B_{1} \in \mathcal{B}_{2}$.
2. For $B_{2} \in \arg \min _{X \in \mathcal{B}_{2}} p(X)$, we have $S \backslash B_{2} \in \mathcal{B}_{1}$.

In the conjecture, there are two buyers and each buyer $i \in\{1,2\}$ wants to buy a set of items that forms a basis in \mathcal{B}_{i}. If buyer i comes to a shop first, then she chooses a cheapest set B_{i} in \mathcal{B}_{i} with an arbitrary tie-breaking rule. The requirements mean that, regardless of the choice of B_{i}, the remaining set $S \backslash B_{i}$ is a desired set for the other buyer.

Note that Conjecture 1.2 was first suggested by Dütting and Végh [11]. In their original conjecture, the price vector p is chosen to have all different values, that is, $p\left(s_{1}\right) \neq p\left(s_{2}\right)$ for $s_{1} \neq s_{2}$, which implies that $B_{i} \in \arg \min _{X \in \mathcal{B}_{i}} p(X)$ is unique for $i=1,2$. However, this difference is not essential, because we can apply a perturbation to p without affecting the requirements in Conjecture 1.2.

Previous work. The notion of Walrasian equilibrium dates back to 1874 [37], originally defined for divisible goods. In their analysis of the matching problem, Kelso, Jr. and Crawford [24] introduced the so-called gross substitutes condition, and showed the existence of Walrasian prices for gross substitutes valuations. Gul and Stacchetti [22] later verified that, in a sense, this condition is necessary to ensure the existence of a Walrasian equilibrium. ${ }^{2}$

It was first observed by Cohen-Addad et al. [7] and Hsu et al. [23] that Walrasian prices are not sufficient to control the market, as ties must be broken in a coordinated fashion that is consistent with maximizing social welfare. A natural idea for resolving this issue would be trying to find Walrasian prices where ties do not occur. However, Hsu et al. showed that minimal Walrasian prices always induce ties. Even more, Cohen-Addad et al. proved that no static prices can give more than $2 / 3$ of the social welfare when three buyers with unit-demand valuations arrive sequentially. As a workaround, they proposed a dynamic pricing scheme for matching markets (i.e., unit-demand valuations), where the prices are updated between buyer-arrivals based upon the current inventory without knowing the identity of the next buyer. On the negative side, they presented a market with coverage valuations where Walrasian prices do exist, but no dynamic pricing scheme can achieve the optimal social welfare. Meanwhile, Hsu et al. showed that, under certain conditions, minimal Walrasian equilibrium prices induce low over-demand and high welfare. Recently, Berger, Eden, and Feldman [1] considered markets beyond unit-demand valuations, and gave a characterization of all optimal allocations in multidemand markets. Based on this, they provided a polynomial-time algorithm for finding optimal dynamic prices up to three multidemand buyers.

[^2]To overcome the limitations of Walrasian equilibrium, Feldman, Gravin, and Lucier [16] proposed a relaxation called combinatorial Walrasian equilibrium in which the seller can partition the items into indivisible bundles prior to sale, and they provided an algorithm that determines bundle prices obtaining at least half of the optimal social welfare.

Another line of research concentrated on posted-price mechanisms in online settings. As alternatives to optimal auctions, Blumrosen and Holenstein [2] studied posted-price mechanisms and dynamic auctions in Bayesian settings under the objective of maximizing revenue. They gave a characterization of the optimal revenue for general distributions, and provided algorithms that achieve the optimal solution. Chawla et al. [3,4$]$ developed a theory of sequential posted-price mechanisms, and provided constant-factor approximation algorithms for several multidimensional multiunit auction problems and generalizations to matroid feasibility constraints. In [15], Feldman, Gravin, and Lucier verified the existence of prices that, in expectation, achieve at least half of the optimal social welfare for fractionally subadditive valuations, a class that includes all submodular functions. Dütting et al. [9,10] provided a general framework for posted-price mechanisms in Bayesian settings. Chawla, Miller, and Teng [5] showed that static, anonymous bundle pricing mechanisms are useful when buyers' preferences have complementarities. Ezra et al. [14] provided upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with static prices for several classes of valuations, such as submodular, XOS, or subadditive. A setting related to online bipartite matching, called the Max-Min Greedy matching, was considered in [12].

Our results. In the present paper, we concentrate on combinatorial markets with two buyers having matroid rank valuations, where the matroid corresponding to buyer i is denoted by $M_{i}=\left(S, \mathcal{B}_{i}\right)$ for $i=1,2$. Since this setting is reduced to Conjecture 1.2, in which each buyer has to buy a set of items that forms a basis of a matroid, we focus on Conjecture 1.2.

While Conjecture 1.2 remains open in general, we give polynomial-time ${ }^{3}$ algorithms for two important special cases. In the first one, one of the matroids is a partition matorid. Although partition matroids have relatively simple structure, finding the proper price vector p is nontrivial even in this seemingly simple case.

THEOREM 1.3. If M_{1} is a partition matroid and M_{2} is an arbitrary matroid, then Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be computed in polynomial time.

Next, we consider strongly base orderable matroids, a class of matroids with distinctive structural properties. Roughly, in a strongly base orderable matroid, for any pair of bases, there exists a bijection between them satisfying a certain property (see section 2 for the formal definition). Note that various matroids appearing in combinatorial and graph optimization problems belong to this class, such as partition, laminar, transversal matroids, or, more generally, gammoids.

Theorem 1.4. If both M_{1} and M_{2} are strongly base orderable, then Conjectures 1.1 and 1.2 hold. Furthermore, a price vector p satisfying the conditions can be computed in polynomial time if, for any pair of bases, the bijection between them can be computed in polynomial time.

[^3]As an application of Theorem 1.4, we deduce a result to bipartite matchings that might be of independent interest. For a vertex v in a graph, let $\delta(v)$ denote the set of all the edges incident to v.

Corollary 1.5. For a bipartite graph $G=(U, V ; E)$ containing a perfect matching, there exists a weight function $w: E \rightarrow \mathbb{R}$ satisfying the following conditions:

1. For each $u \in U$, let e_{u} be a lightest edge in $\delta(u)$ with respect to w. Then, $\left\{e_{u} \mid u \in U\right\}$ is a perfect matching in G.
2. For each $v \in V$, let e_{v} be a heaviest edge in $\delta(v)$ with respect to w. Then, $\left\{e_{v} \mid v \in V\right\}$ is a perfect matching in G.
Another contribution of this paper is to show the equivalence between Conjecture 1.2 and its weighted counterpart as below.

Conjecture 1.6. For $i \in\{1,2\}$, let $M_{i}=\left(S, \mathcal{B}_{i}\right)$ be a matroid, and let $w_{i}: S \rightarrow$ \mathbb{R} be a weight function. Assume that there exist disjoint bases $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ with $B_{1} \cup B_{2}=S$. Then, there exists a function $p: S \rightarrow \mathbb{R}$ satisfying the following conditions:

1. For $B_{1} \in \arg \max _{X \in \mathcal{B}_{1}}\left(w_{1}(X)-p(X)\right)$, we have that B_{1} is a maximizer of $w_{1}(X)+w_{2}(S \backslash X)$ subject to $X \in \mathcal{B}_{1}$ and $S \backslash X \in \mathcal{B}_{2}$.
2. For $B_{2} \in \arg \max _{X \in \mathcal{B}_{2}}\left(w_{2}(X)-p(X)\right)$, we have that B_{2} is a maximizer of $w_{1}(S \backslash X)+w_{2}(X)$ subject to $S \backslash X \in \mathcal{B}_{1}$ and $X \in \mathcal{B}_{2}$.

Clearly, Conjecture 1.2 is a special case of Conjecture 1.6 ; this follows easily by setting $w_{1} \equiv w_{2} \equiv 0$. Somewhat surprisingly, the reverse implication also holds for arbitrary matroids.

Theorem 1.7. If Conjecture 1.2 is true, then Conjecture 1.6 is also true.
More generally, we prove that Theorem 1.7 can be generalized to the case with gross substitutes valuations, i.e., M^{\natural}-concave functions. See Theorem 6.3 in section 6 for details.

Based on Theorem 1.7 and the properties of partition and strongly base orderable matroids, we have the following corollaries.

Corollary 1.8. If M_{1} is a partition matroid and M_{2} is an arbitrary matroid, then Conjecture 1.6 holds, and a price vector p satisfying the conditions can be computed in polynomial time.

Corollary 1.9. If both M_{1} and M_{2} are strongly base orderable, then Conjecture 1.6 holds. Furthermore, a price vector p satisfying the conditions can be computed in polynomial time if, for any pair of bases, the bijection between them can be computed in polynomial time.

Paper organization. The rest of this paper is organized as follows. Basic definitions and notation are given in section 2 . Theorems 1.3 and 1.4 are proved in sections 3 and 4 , respectively. The connection between unweighted and weighted variants of the problem is discussed in section 5 . The reduction technique is extended to gross substitutes valuations in section 6 . We conclude the paper in section 7 .

2. Preliminaries.

Basic notation. The sets of reals, nonnegative reals, integers, and non-negative integers are denoted by $\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, and \mathbb{Z}_{+}, respectively. Let S be a finite set. Given a subset $B \subseteq S$ and elements $x, y \in S$, we write $B-x+y$ for short to denote the set $(B \backslash\{x\}) \cup\{y\}$. The symmetric difference of two sets X and Y is $X \triangle Y:=$
$(X \backslash Y) \cup(Y \backslash X)$. For a function $f: S \rightarrow \mathbb{R}$, we use $f(X):=\sum_{x \in X} f(x)$. For two vectors $x, y \in \mathbb{R}^{S}$, we denote $x \cdot y:=\sum_{s \in S} x(s) y(s)$.

Matroids and matroid intersection. Matroids were introduced as an abstract generalization of linear independence in vector spaces [32,38]. A matroid M is a pair (S, \mathcal{I}) where S is the ground set of the matroid and $\mathcal{I} \subseteq 2^{S}$ is the family of independent sets satisfying the independence axioms: (I1) $\emptyset \in \mathcal{I}$, (I2) $X \subseteq Y \in \mathcal{I} \Rightarrow X \in \mathcal{I}$, and (I3) $X, Y \in \mathcal{I},|X|<|Y| \Rightarrow \exists e \in Y \backslash X$ s.t. $X+e \in \mathcal{I}$. A loop is an element that is nonindependent on its own. The rank of a set $X \subseteq S$ is the maximum size of an independent set contained in X, and is denoted by $r(X)$. Here r is called the rank function of M. Maximal independent sets of M are called bases and their set is denoted by \mathcal{B}. Alternatively, matroids can be defined through the basis axioms: (B1) $\mathcal{B} \neq \emptyset$, and (B2) $B_{1}, B_{2} \in \mathcal{B}, x \in B_{1} \backslash B_{2} \Rightarrow \exists y \in B_{2} \backslash B_{1}$ s.t. $B_{1}-x+y \in \mathcal{B}$. In this paper, a matroid is denoted by a pair (S, \mathcal{B}), where S is a ground set and \mathcal{B} is a family of bases.

For a matroid $M=(S, \mathcal{B})$ and for $T \subseteq S$, deleting T gives a matroid M^{\prime} on the ground set $S \backslash T$ such that a subset of $S \backslash T$ is independent in M^{\prime} if and only if it is independent in M. For $T \subseteq S$, contracting T gives a matroid M^{\prime} on the ground set $S \backslash T$ whose rank function is $r^{\prime}(X)=r(X \cup T)-r(T)$, where r is the rank function of M. Adding a parallel copy of an element $s \in S$ gives a new matroid $M^{\prime}=\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ on ground set $S^{\prime}=S+s^{\prime}$, where $\mathcal{B}^{\prime}=\left\{X \subseteq S^{\prime}\right.$: either $X \in \mathcal{B}$, or $s \notin X, s^{\prime} \in$ X, and $\left.X-s^{\prime}+s \in \mathcal{B}\right\}$. The direct sum $M_{1} \oplus M_{2}$ of matroids $M_{1}=\left(S_{1}, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S_{2}, \mathcal{B}_{2}\right)$ on disjoint ground sets is a matroid $M=\left(S_{1} \cup S_{2}, \mathcal{B}\right)$ whose bases are the disjoint unions of a basis M_{1} and a basis of M_{2}. The sum or union $M_{1}+M_{2}$ of $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ on the same ground set is a matroid $M=(S, \mathcal{B})$ whose independent sets are the disjoint unions of an independent set of M_{1} and an independent set of M_{2}.

For a basis $B \in \mathcal{B}$, let us consider the bipartite graph $G=(S, E[B])$ defined by $E[B]:=\{(x, y) \mid x \in B, y \in S \backslash B, B-x+y \in \mathcal{B}\}$. Krogdahl [25,26,27] verified the following statement (see also [34, Theorem 39.13]).

Theorem 2.1 (see Krogdahl $[25,26,27])$. Let $M=(S, \mathcal{B})$ be a matroid, and let $B \in \mathcal{B}$. Let $B^{\prime} \subseteq S$ be such that $|B|=\left|B^{\prime}\right|$ and $E[B]$ contains a unique perfect matching on $B \triangle B^{\prime}$. Then $B^{\prime} \in \mathcal{B}$.

In the weighted matroid intersection problem, we are given two matroids $M_{1}=$ $\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ on the same ground set together with a weight function $w: S \rightarrow \mathbb{R}$, and the goal is to find a common basis maximizing $w(B)$, that is, $B \in \arg \max \left\{w(B) \mid B \in \mathcal{B}_{1} \cap \mathcal{B}_{2}\right\}$. The celebrated weight-splitting theorem of Frank [17] gives a min-max relation for the weighted matroid intersection.

Theorem 2.2 (Frank [17]). The maximum w-weight of a common basis of $M_{1}=$ $\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ is equal to the minimum of $\max \left\{w_{1}(B) \mid B \in \mathcal{B}_{1}\right\}+$ $\max \left\{w_{2}(B) \mid B \in \mathcal{B}_{2}\right\}$ subject to $w=w_{1}+w_{2}$. In particular, for an optimal weightsplitting $w=w_{1}+w_{2}$, it holds that $\arg \max \left\{w(B) \mid B \in \mathcal{B}_{1} \cap \mathcal{B}_{2}\right\}=\arg \max \left\{w_{1}(B) \mid\right.$ $\left.B \in \mathcal{B}_{1}\right\} \cap \arg \max \left\{w_{2}(B) \mid B \in \mathcal{B}_{2}\right\}$.

A k-uniform matroid is a matroid $M=(S, \mathcal{B})$, where $\mathcal{B}=\{X \subseteq S| | X \mid=k\}$ for some $k \in \mathbb{Z}_{+}$. A partition matroid $M=(S, \mathcal{B})$ is the direct sum of uniform matroids, or in other words, $\mathcal{B}=\left\{X \subseteq S| | X \cap S_{i} \mid=k_{i}\right.$ for $\left.i=1, \ldots, q\right\}$ for some partition $S=S_{1} \cup \cdots \cup S_{q}$ of S and $k_{i} \in \mathbb{Z}_{+}$for $i=1, \ldots, q$. Each S_{i} is called a partition class.

For further details on matroids and the matroid intersection problem, we refer the reader to $[33,34]$.

Dual matroids. The dual of a matroid $M=(S, \mathcal{B})$ is the matroid $M^{*}=\left(S, \mathcal{B}^{*}\right)$, where $\mathcal{B}^{*}=\left\{B^{*} \subseteq S \mid S \backslash B^{*} \in \mathcal{B}\right\}$. Given one of the standard oracles for M, the same oracle for M^{*} can be constructed as well.

We now rephrase Conjecture 1.2 by using dual matroids. Suppose that M_{1} and M_{2} are matroids as in Conjecture 1.2, and let $M_{2}^{*}=\left(S, \mathcal{B}_{2}^{*}\right)$ be the dual matroid of M_{2}. Then, we can see that $S \backslash B_{1} \in \mathcal{B}_{2}$ is equivalent to $B_{1} \in \mathcal{B}_{2}^{*}$, and $B_{2} \in$ $\arg \min _{X \in \mathcal{B}_{2}} p(X)$ is equivalent to $S \backslash B_{2} \in \arg \max _{X \in \mathcal{B}_{2}^{*}} p(X)$. Therefore, by replacing M_{2} and $S \backslash B_{2}$ with M_{2}^{*} and B_{2}, respectively, Conjecture 1.2 is equivalent to the following conjecture.

Conjecture 2.3. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be matroids with a common ground set S such that there exists a common basis $B \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$. Then, there exists a function $p: S \rightarrow \mathbb{R}$ satisfying the following conditions:

1. For $B_{1} \in \arg \min _{X \in \mathcal{B}_{1}} p(X)$, we have $B_{1} \in \mathcal{B}_{2}$.
2. For $B_{2} \in \arg \max _{X \in \mathcal{B}_{2}} p(X)$, we have $B_{2} \in \mathcal{B}_{1}$.

The motivation of the proposed problems is multifold. Conjecture 2.3 bears a lot of similarities with the problem of packing common bases in the intersection of two matroids. If M_{1} and M_{2} share two disjoint common bases, then setting the prices low on one of them and high on the other gives a desired p.

When applied to $w \equiv 0$, the weight-splitting theorem of Frank (Theorem 2.2) asserts the existence of prices p such that the set of common bases equals the intersection of the minimum-cost bases in M_{1} and the maximum-cost bases in M_{2}, with respect to p; this trivially holds already for $p=0$. Conjecture 2.3 asserts that one can choose weights p with the stronger property that the minimum-cost bases in M_{1} are all in M_{2}, and the maximum-cost bases in M_{2} are all in M_{1}.

Another motivation comes from polyhedral aspects of matroids. When the base polyhedra of two matroids intersect in a common face, one can select an appropriate price vector p as a separating direction. The conjecture asserts a strong separation property for the general setting.

Strongly base orderable matroids. A matroid $M=(S, \mathcal{B})$ is strongly base orderable if for any two bases $B_{1}, B_{2} \in \mathcal{B}$, there exists a bijection $f: B_{1} \rightarrow B_{2}$ such that $\left(B_{1} \backslash X\right) \cup f(X) \in \mathcal{B}$ for any $X \subseteq B_{1}$, where we denote $f(X):=\{f(e) \mid e \in X\}$. Davies and McDiarmid [8] observed the following (see also [34, Theorem 42.13]).

Theorem 2.4 (see Davies and McDiarmid [8]). Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=$ $\left(S, \mathcal{B}_{2}\right)$ be strongly base orderable matroids. If $X \subseteq S$ can be partitioned into k bases in both M_{1} and M_{2}, then X can be partitioned into k common bases. Furthermore, such k common bases can be computed in polynomial time if the bijection f can be computed in polynomial time for any pair of bases.

The following technical lemma about strongly base orderable matroids will be used in the proof of Corollary 1.9.

Lemma 2.5. Let $M=(S, \mathcal{B})$ be a strongly base orderable matroid, let $q: S \rightarrow \mathbb{R}$ be a function, and define a matroid $\hat{M}=(S, \hat{\mathcal{B}})$ by $\hat{\mathcal{B}}=\arg \max _{X \in \mathcal{B}} q(X)$. Then \hat{M} is strongly base orderable.

Proof. Let $B_{1}, B_{2} \in \hat{\mathcal{B}}$. Since both B_{1} and B_{2} are bases of $M=(S, \mathcal{B})$, there exists a bijection $f: B_{1} \rightarrow B_{2}$ such that $\left(B_{1} \backslash X\right) \cup f(X) \in \mathcal{B}$ for any $X \subseteq B_{1}$. Since $q\left(B_{1}\right) \geq q\left(\left(B_{1} \backslash X\right) \cup f(X)\right)$ for any $X \subseteq B_{1}$ by $B_{1} \in \hat{\mathcal{B}}$, it holds that $q(X) \geq q(f(X))$. In particular, $q(x) \geq q(f(x))$ for any $x \in B_{1}$. Since $B_{2} \in \hat{\mathcal{B}}$, we obtain $q\left(B_{1}\right)=$ $q\left(B_{2}\right)=q\left(f\left(B_{1}\right)\right)$, which shows that $q(x)=q(f(x))$ for any $x \in B_{1}$. Therefore,
$q\left(B_{1}\right)=q\left(\left(B_{1} \backslash X\right) \cup f(X)\right)$ for any $X \subseteq B_{1}$, and hence $\left(B_{1} \backslash X\right) \cup f(X) \in \hat{\mathcal{B}}$. This shows that \hat{M} is strongly base orderable.

Market model. In a combinatorial market, we are given a set S of indivisible items and a set J of buyers. Each buyer $i \in J$ has a valuation function $v_{i}: 2^{S} \rightarrow \mathbb{R}$ that describes the buyer's preferences over the subsets of items. Given prices $p: S \rightarrow$ \mathbb{R}, the utility of buyer $i \in J$ for a subset $X \subseteq S$ is defined by $u_{i}(X)=v_{i}(X)-p(X)$. The buyers arrive in an undetermined order, and the next buyer always picks a subset of items that maximizes her utility. The goal is to set the prices in such a way that no matter which buyer arrives next, the final allocation of items maximizes the social welfare. In a dynamic pricing scheme, the prices can be updated between buyer arrivals based on the remaining sets of items and buyers.

We focus on the case of two buyers with matroid rank functions as valuations. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be matroids with rank functions r_{1} and r_{2}, respectively. The valuation of agent i is r_{i} for $i=1,2$. The valuations are accessed through one of the standard matroid oracles (e.g., independence or rank oracle). As described in the introduction, this setting can be reduced to the case in which each buyer always chooses a basis that maximizes her utility, that is, Conjecture 1.1 can be reduced to Conjecture 1.2.

Lemma 2.6. If Conjecture 1.2 is true, then Conjecture 1.1 is also true.
Proof. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be matroids as in Conjecture 1.1, and let $\hat{B}_{1} \in \mathcal{B}_{1}$ and $\hat{B}_{2} \in \mathcal{B}_{2}$ be a pair of bases that maximizes $\left|\hat{B}_{1} \cup \hat{B}_{2}\right|$. For $i \in\{1,2\}$, let M_{i}^{\prime} be the matroid obtained from M_{i} by deleting $S \backslash\left(\hat{B}_{1} \cup \hat{B}_{2}\right)$ and contracting $\hat{B}_{1} \cap \hat{B}_{2}$. Then, $M_{1}^{\prime}=\left(S^{\prime}, \mathcal{B}_{1}^{\prime}\right)$ and $M_{2}^{\prime}=\left(S^{\prime}, \mathcal{B}_{2}^{\prime}\right)$ are matroids with a common ground set $S^{\prime}:=\left(\hat{B}_{1} \cup \hat{B}_{2}\right) \backslash\left(\hat{B}_{1} \cap \hat{B}_{2}\right)$ such that there exist disjoint bases $\hat{B}_{1} \backslash \hat{B}_{2} \in \mathcal{B}_{1}^{\prime}$ and $\hat{B}_{2} \backslash \hat{B}_{1} \in \mathcal{B}_{2}^{\prime}$ whose union is S^{\prime}. Hence, by assuming that Conjecture 1.2 is true, there exists a price vector $p^{\prime}: S^{\prime} \rightarrow \mathbb{R}$ with the following conditions:

1. For $B_{1}^{\prime} \in \arg \min _{X \in \mathcal{B}_{1}^{\prime}} p^{\prime}(X)$, we have $S^{\prime} \backslash B_{1}^{\prime} \in \mathcal{B}_{2}^{\prime}$.
2. For $B_{2}^{\prime} \in \arg \min _{X \in \mathcal{B}_{2}^{\prime}} p^{\prime}(X)$, we have $S^{\prime} \backslash B_{2}^{\prime} \in \mathcal{B}_{1}^{\prime}$.

We observe that we can modify the price vector p^{\prime} so that $0<p^{\prime}(s)<1$ for every $s \in S^{\prime}$, by replacing $p^{\prime}(s)$ with $\alpha \cdot p^{\prime}(s)+\beta$ for some $\alpha>0$ and $\beta \in \mathbb{R}$. By using such a function p^{\prime}, define $p: S \rightarrow \mathbb{R}$ by

$$
p(s)= \begin{cases}p^{\prime}(s) & \text { if } s \in S^{\prime} \\ 0 & \text { if } s \in \hat{B}_{1} \cap \hat{B}_{2} \\ 1 & \text { if } s \in S \backslash\left(\hat{B}_{1} \cup \hat{B}_{2}\right)\end{cases}
$$

For $B_{1} \in \arg \max _{X \subseteq S}\left(r_{1}(X)-p(X)\right)$, the definition of p shows that $B_{1}=B_{1}^{\prime} \cup\left(\hat{B}_{1} \cap\right.$ \hat{B}_{2}) for some $B_{1}^{\prime} \in \arg \min _{X \in \mathcal{B}_{1}^{\prime}} p^{\prime}(X)$. Since this implies $S^{\prime} \backslash B_{1}^{\prime} \in \mathcal{B}_{2}^{\prime}$, it holds that $S^{\prime} \backslash B_{1}^{\prime}$ is a maximal independent set of M_{2} in $S \backslash B_{1}$ by the maximality of $\left|\hat{B}_{1} \cup \hat{B}_{2}\right|$. Therefore, if $B_{2} \in \arg \max _{Y \subseteq S \backslash B_{1}}\left(r_{2}(Y)-p(Y)\right)$, then $B_{2}=S^{\prime} \backslash B_{1}^{\prime}$ and hence

$$
\begin{aligned}
r_{1}\left(B_{1}\right)+r_{2}\left(B_{2}\right) & =\left|B_{1}^{\prime}\right|+\left|\hat{B}_{1} \cap \hat{B}_{2}\right|+\left|S^{\prime} \backslash B_{1}^{\prime}\right|=\left|\hat{B}_{1} \cup \hat{B}_{2}\right| \\
& =\max \left\{r_{1}(X)+r_{2}(Y) \mid X, Y \subseteq S, X \cap Y=\emptyset\right\}
\end{aligned}
$$

which shows the first requirement of Conjecture 1.1. The same argument works for $B_{2} \in \arg \max _{X \subseteq S}\left(r_{2}(X)-p(X)\right)$. Therefore, p satisfies the requirements in Conjecture 1.1.

Note that a pair of bases $\hat{B}_{1} \in \mathcal{B}_{1}$ and $\hat{B}_{2} \in \mathcal{B}_{2}$ maximizing $\left|\hat{B}_{1} \cup \hat{B}_{2}\right|$ can be computed in polynomial time by applying a matroid intersection algorithm to M_{1} and M_{2}^{*}. Note also that the price vector p obtained in the above proof is not necessarily a Walrasian price.

We also consider a weighted variant of the problem, formally defined as Conjecture 1.6, where each buyer chooses a basis that maximizes her utility, and the goal is to find a price vector p that achieves the optimal social welfare $\max \left\{w_{1}(X)+w_{2}(S \backslash X) \mid\right.$ $\left.X \in \mathcal{B}_{1}, S \backslash X \in \mathcal{B}_{2}\right\}$. Recently, Berger, Eden, and Feldman [1] investigated the existence of optimal dynamic pricing schemes for k-demand valuations. A valuation $v: 2^{S} \rightarrow \mathbb{R}_{+}$is k-demand if $v(X)=\max \left\{\sum_{s \in Z} v(s)|Z \subseteq X,|Z| \leq k\}\right.$. Although this problem is similar to our weighted variant for k-uniform matroids, our results do not directly generalize their work because choosing a basis is a hard constraint in our setting.
3. Partition matroids. The aim of this section is to prove the existence of a required price vector p for instances where M_{1} is a partition matroid. Our proof constructs a directed graph based on exchangeability of items, which was also used in [7] for markets with unique optimal allocations.

THEOREM 1.3. If M_{1} is a partition matroid and M_{2} is an arbitrary matroid, then Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be computed in polynomial time.

Proof. Since Conjectures 1.2 and 2.3 are equivalent by replacing M_{2} with its dual M_{2}^{*}, we show Conjecture 2.3. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ be a partition matroid defined by partition $S=S_{1} \cup \cdots \cup S_{q}$ and upper bounds $k_{i} \in \mathbb{Z}_{+}$for $i=1, \ldots, q$ so that $\left|S_{i}\right| \geq k_{i}$, that is, $\mathcal{B}_{1}=\left\{X \subseteq S| | X \cap S_{i} \mid=k_{i}\right.$ for $\left.i=1, \ldots, q\right\}$. Let $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be an arbitrary matroid such that M_{1} and M_{2} have a common basis.

Let $B_{1} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ be an arbitrary common basis. Take another common basis $B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ (possibly $B_{2}=B_{1}$) such that $\left|B_{1} \cap B_{2}\right|$ is minimized. We consider a bipartite digraph $D=(V, E)$ defined by

$$
\begin{align*}
V= & \left(B_{1} \cap B_{2}\right) \cup\left(S \backslash\left(B_{1} \cup B_{2}\right)\right) \\
E= & \left\{(x, y) \mid x \in B_{1} \cap B_{2}, y \in S \backslash\left(B_{1} \cup B_{2}\right), B_{1}-x+y \in \mathcal{B}_{1}\right\} \tag{3.1}\\
& \cup\left\{(y, x) \mid x \in B_{1} \cap B_{2}, y \in S \backslash\left(B_{1} \cup B_{2}\right), B_{2}-x+y \in \mathcal{B}_{2}\right\} .
\end{align*}
$$

Claim 3.1. The digraph D is acyclic.
Proof. Let $x \in B_{1} \cap B_{2}$ and $y \in S \backslash\left(B_{1} \cup B_{2}\right)$. As M_{1} is a partition matroid, $B_{1}-x+y \in \mathcal{B}_{1}$ implies that x and y are contained in the same partition class. Therefore, $B_{1}-x+y \in \mathcal{B}_{1}$ if and only if $B_{2}-x+y \in \mathcal{B}_{1}$.

Now suppose to the contrary that D contains a dicycle. Choose a dicycle C with the smallest number of vertices, which implies that C has no chord. We claim that $B_{2}^{\prime}:=B_{2} \triangle V(C)$ is a common basis of M_{1} and M_{2}. To see $B_{2}^{\prime} \in \mathcal{B}_{2}$, observe that the bipartite graph corresponding to B_{2} contains a unique perfect matching on $V(C)$ by the choice of C, hence Theorem 2.1 applies. We also obtain $B_{2}^{\prime} \in \mathcal{B}_{1}$ by the same argument, since $B_{1}-x+y \in \mathcal{B}_{1}$ if and only if $B_{2}-x+y \in \mathcal{B}_{1}$ as described above. Since $\left|B_{1} \cap B_{2}^{\prime}\right|<\left|B_{1} \cap B_{2}\right|$, this contradicts that $\left|B_{1} \cap B_{2}\right|$ is minimized.

Let $n=|S|$. We now consider a function $p: S \rightarrow \mathbb{R}$ satisfying the following: $p(x):=0$ for $x \in B_{1} \backslash B_{2}, p(x):=n+1$ for $x \in B_{2} \backslash B_{1}, p(x)$ are distinct values in $\{1,2, \ldots, n\}$ for $x \in V$, and $p(x)<p(y)$ for $(x, y) \in E$. Note that such a function exists
by Claim 3.1, which can be found easily by the topological sorting. In what follows, we show that p satisfies that $\arg \min _{X \in \mathcal{B}_{1}} p(X)=\left\{B_{1}\right\}$ and $\arg \max _{X \in \mathcal{B}_{2}} p(X)=\left\{B_{2}\right\}$.

CLAIM 3.2. $\arg \min _{X \in \mathcal{B}_{1}} p(X)=\left\{B_{1}\right\}$ and $\arg \max _{X \in \mathcal{B}_{2}} p(X)=\left\{B_{2}\right\}$.
Proof. To see that B_{1} is a minimum weight basis of M_{1} with respect to p, it suffices to show that $p(x) \leq p(y)$ holds for each pair $x \in B_{1}, y \in S \backslash B_{1}$ with $B_{1}-x+y \in \mathcal{B}_{1}$; see, e.g., [19, Lemma 13.2.13]. However, this is a direct consequence of the definition of p. Now suppose that there exists $B_{1}^{\prime} \in \arg \min _{X \in \mathcal{B}_{1}} p(X)$ different from B_{1}, and let $x \in B_{1} \backslash B_{1}^{\prime}$. Clearly, $0<p(x)<n+1$, hence x is the unique element with its p-value. By the symmetric exchange axiom, there exists $y \in B_{1}^{\prime} \backslash B_{1}$ such that $B_{1}-x+y \in \mathcal{B}_{1}$ and $B_{1}^{\prime}+x-y \in \mathcal{B}_{1}$. By both B_{1} and B_{1}^{\prime} being optimal, this implies $p(x)=p(y)$, a contradiction.

A similar argument shows arg $\max _{X \in \mathcal{B}_{2}} p(X)=\left\{B_{2}\right\}$.
Since $B_{1}, B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$, this claim shows that p satisfies the requirements in Conjecture 2.3. Thus, Conjecture 2.3 holds, and hence Conjecture 1.2 also holds. In the proof of Lemma 2.6, we modify given matroids by deleting and contracting some elements, but this modification does not affect the assumption M_{1} being a partition matroid. Therefore, the above together with Lemma 2.6 shows that Conjecture 1.1 also holds.

Remark 3.3. Note that in the proof of Theorem 1.3, we fixed the basis $B_{1} \in$ $\mathcal{B}_{1} \cap \mathcal{B}_{2}$ arbitrarily. That is, for any $B_{1} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$, the optimal price vector p can be set in such a way that the maximum utility of the buyer corresponding to M_{1} is attained on B_{1}. It is not difficult to see that the analogous statement holds for any basis $B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ and the buyer corresponding to M_{2}.

Remark 3.4. Even when \mathcal{B}_{1} is a base family of a partition matroid as in Theorem 1.3 , if \mathcal{B}_{2} is an arbitrary set family of S, then the requirements in Conjecture 1.2 do not necessarily hold. To see this, suppose that $S=\{1,2,3,4\}, \mathcal{B}_{1}=$ $\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$, and $\mathcal{B}_{2}=\{\{2,4\},\{1,2\},\{3,4\}\}$. Then, $\left(B_{1}, B_{2}\right)=$ $(\{1,3\},\{2,4\})$ is a unique pair of disjoint sets such that $B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}$, and $B_{1} \cup B_{2}=S$. If p satisfies the requirements in Conjecture 1.2, then $p(1)<p(2)$ and $p(3)<p(4)$ hold by the first requirement and $p(4)<p(1)$ and $p(2)<p(3)$ hold by the second requirement. This shows that such p does not exist.
4. Strongly base orderable matroids. In this section, we show that Conjectures 1.1 and 1.2 hold for strongly base orderable matroids. The proof is based on a similar approach to that of Theorem 1.3. In particular, we take two common bases of the given matroids. Nevertheless, there are small but crucial differences. A key difference is that we use Theorem 2.4 for the strongly base orderable case, while we use a property of partition matroids in the proof of Theorem 1.3. In the following argument, to utilize Theorem 2.4, we add parallel copies of some elements and sometimes regard the two common bases as disjoint sets.

ThEOREM 1.4. If both M_{1} and M_{2} are strongly base orderable, then Conjectures 1.1 and 1.2 hold. Furthermore, a price vector p satisfying the conditions can be computed in polynomial time if, for any pair of bases, the bijection between them can be computed in polynomial time.

Proof. In order to show Conjecture 1.2, we first show Conjecture 2.3 under the assumption that M_{1} and M_{2} are strongly base orderable. Let $M_{1}=\left(S, \mathcal{B}_{1}\right)$ and $M_{2}=\left(S, \mathcal{B}_{2}\right)$ be strongly base orderable matroids that have a common basis. We take two common bases $B_{1}, B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ (possibly $B_{1}=B_{2}$) such that $\left|B_{1} \cap B_{2}\right|$ is
minimized. For each element $x \in S$, we add a parallel copy x^{\prime} of x to the matroid M_{i} and denote the matroid thus obtained by $M_{i}^{+}=\left(S \cup S^{\prime}, \mathcal{B}_{i}^{+}\right)$for $i \in\{1,2\}$. We denote $X^{\prime}:=\left\{x^{\prime} \mid x \in X\right\}$ for $X \subseteq S$. Let $2 M_{i}^{+}=\left(S \cup S^{\prime}, 2 \mathcal{B}_{i}^{+}\right)$be the sum of two copies of M_{i}^{+}. As M_{i}^{+}clearly has two disjoint bases, we have $2 \mathcal{B}_{i}^{+}:=\left\{Y_{1} \cup Y_{2} \mid\right.$ Y_{1} and Y_{2} are disjoint bases of $\left.M_{i}^{+}\right\}$.

Claim 4.1. For $i \in\{1,2\}, 2 M_{i}^{+}$is a strongly base orderable matroid.
Proof. Fix $i \in\{1,2\}$. We can easily see that M_{i}^{+}is strongly base orderable. Suppose that we are given two bases $X_{1}, X_{2} \in 2 \mathcal{B}_{i}^{+}$, and suppose also that $X_{1}=$ $Y_{1}^{1} \cup Y_{1}^{2}$ and $X_{2}=Y_{2}^{1} \cup Y_{2}^{2}$, where $Y_{1}^{1}, Y_{1}^{2}, Y_{2}^{1}, Y_{2}^{2} \in \mathcal{B}_{i}^{+}$. Since M_{i}^{+}is strongly base orderable, for $j \in\{1,2\}$, there exists a bijection $f_{j}: Y_{1}^{j} \rightarrow Y_{2}^{j}$ such that ($Y_{1}^{j} \backslash$ $X) \cup f_{j}(X) \in \mathcal{B}_{i}^{+}$for any $X \subseteq Y_{1}^{j}$. Then, f_{1} and f_{2} naturally define a bijection $f: X_{1} \rightarrow X_{2}$ such that $\left(X_{1} \backslash X\right) \cup f(X) \in 2 \mathcal{B}_{i}^{+}$for any $X \subseteq X_{1}$. This shows that $2 M_{i}^{+}$is strongly base orderable.

Let $X_{0}:=\left(B_{1} \cup B_{2}\right) \cup\left(B_{1} \cap B_{2}\right)^{\prime}$. Then, X_{0} is a common basis of $2 M_{1}^{+}$and $2 M_{2}^{+}$. We consider a bipartite digraph $D^{+}=\left(V, E^{+}\right)$defined by

$$
\begin{aligned}
V= & \left(B_{1} \cap B_{2}\right) \cup\left(S \backslash\left(B_{1} \cup B_{2}\right)\right), \\
E^{+}= & \left\{(x, y) \mid x \in B_{1} \cap B_{2}, y \in S \backslash\left(B_{1} \cup B_{2}\right), X_{0}-x+y \in 2 \mathcal{B}_{1}^{+}\right\} \\
& \cup\left\{(y, x) \mid x \in B_{1} \cap B_{2}, y \in S \backslash\left(B_{1} \cup B_{2}\right), X_{0}-x+y \in 2 \mathcal{B}_{2}^{+}\right\} .
\end{aligned}
$$

Claim 4.2. The digraph D^{+}is acyclic.
Proof. Suppose to the contrary that D^{+}contains a dicycle. Choose a dicycle C with the smallest number of vertices, which implies that C has no chord. Then, $X_{0} \triangle V(C)$ is a common basis of $2 M_{1}^{+}$and $2 M_{2}^{+}$by Theorem 2.1. By Theorem 2.4 and Claim $4.1, X_{0} \triangle V(C)$ can be partitioned into two common bases of M_{1}^{+}and M_{2}^{+}. Then, $\tilde{B}_{1}, \tilde{B}_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ and $\left|\tilde{B}_{1} \cap \tilde{B}_{2}\right|<\left|B_{1} \cap B_{2}\right|$. This contradicts that $\left|B_{1} \cap B_{2}\right|$ is minimized.

We now consider the digraph $D=(V, E)$ defined by (3.1). For $x \in B_{1} \cap B_{2}$ and $y \in S \backslash\left(B_{1} \cup B_{2}\right)$, we observe that $B_{1}-x+y \in \mathcal{B}_{1}$ implies $X_{0}-x+y \in 2 \mathcal{B}_{1}^{+}$and $B_{2}-x+y \in \mathcal{B}_{2}$ implies $X_{0}-x+y \in 2 \mathcal{B}_{2}^{+}$. This shows that D is a subgraph of D^{+}, and hence D is acyclic by Claim 4.2. Therefore, we can find a function $p: S \rightarrow \mathbb{R}$ such that $p(x):=0$ for $x \in B_{1} \backslash B_{2}, p(x):=|S|+1$ for $x \in B_{2} \backslash B_{1}, p(x)$ are distinct values in $\{1,2, \ldots,|S|\}$ for $x \in V$, and $p(x)<p(y)$ for $(x, y) \in E$. Then, Claim 3.2 shows that $\arg \min _{X \in \mathcal{B}_{1}} p(X)=\left\{B_{1}\right\}$ and $\arg \max _{X \in \mathcal{B}_{2}} p(X)=\left\{B_{2}\right\}$. Since $B_{1}, B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}, p$ satisfies the requirements in Conjecture 2.3, thus, Conjecture 2.3 holds.

This proof can be converted to a polynomial-time algorithm for computing p as follows. We first pick up two arbitrary common bases $B_{1}, B_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ and construct a digraph D^{+}as above. If D^{+}is acyclic, then we can find an appropriate function p. Otherwise, the proof of Claim 4.2 shows that we can find $\tilde{B}_{1}, \tilde{B}_{2} \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$ with $\left|\tilde{B}_{1} \cap \tilde{B}_{2}\right|<\left|B_{1} \cap B_{2}\right|$. Then, we update $B_{i} \leftarrow \tilde{B}_{i}$ for $i \in\{1,2\}$, construct D^{+}, and repeat this procedure. Since $\left|B_{1} \cap B_{2}\right|$ decreases monotonically, this procedure is executed at most $|S|$ times.

Recall that Conjectures 1.2 and 2.3 are equivalent by replacing M_{2} with M_{2}^{*}. Since M_{2} is strongly base orderable if and only if M_{2}^{*} is strongly base orderable, Conjecture 1.2 also holds for strongly base orderable matroids.

This together with Lemma 2.6 shows that Conjecture 1.1 also holds. We note that if M_{1} and M_{2} are strongly base orderbale matroids, then the matroids M_{1}^{\prime} and
M_{2}^{\prime} obtained by deletion and contraction in the proof of Lemma 2.6 are also strongly base orderable.

Finally in this section, we show how Corollary 1.5 follows from Theorem 1.4.
Corollary 1.5. For a bipartite graph $G=(U, V ; E)$ containing a perfect matching, there exists a weight function $w: E \rightarrow \mathbb{R}$ satisfying the following conditions:

1. For each $u \in U$, let e_{u} be a lightest edge in $\delta(u)$ with respect to w. Then, $\left\{e_{u} \mid u \in U\right\}$ is a perfect matching in G.
2. For each $v \in V$, let e_{v} be a heaviest edge in $\delta(v)$ with respect to w. Then, $\left\{e_{v} \mid v \in V\right\}$ is a perfect matching in G.
Proof. Let $\mathcal{B}_{1}=\{F \subseteq E| | F \cap \delta(u) \mid=1$ for any $u \in U\}$ and $\mathcal{B}_{2}=\{F \subseteq$ $E||F \cap \delta(v)|=1$ for any $v \in V\}$. By definition, $\left(E, \mathcal{B}_{1}\right)$ and $\left(E, \mathcal{B}_{2}\right)$ are partition matroids, and hence they are strongly base orderable matroids. Since Conjecture 2.3 holds for strongly base orderable matroids and $\mathcal{B}_{1} \cap \mathcal{B}_{2}$ is the set of perfect matchings in G, we obtain the corollary.
3. Reduction from the weighted case to the unweighted case. In this section, we show that the weighted problem can be reduced to the unweighted one, and prove Theorem 1.7.

Proof. Since Conjectures 1.2 and 2.3 are equivalent, it suffices to show that Conjecture 1.6 is true by assuming that Conjecture 2.3 is true.

Suppose that we are given $M_{i}=\left(S, \mathcal{B}_{i}\right)$ and $w_{i}: S \rightarrow \mathbb{R}$ for $i \in\{1,2\}$ as in Conjecture 1.6. We first consider the problem of finding a maximum weight common basis of M_{1} and M_{2}^{*} with respect to $w_{1}-w_{2}$, where $M_{2}^{*}=\left(S, \mathcal{B}_{2}^{*}\right)$ is the dual matroid of M_{2}. By Theorem 2.2, there exist two functions $q_{1}: S \rightarrow \mathbb{R}$ and $q_{2}: S \rightarrow \mathbb{R}$ with $q_{1}+q_{2}=w_{1}-w_{2}$ such that

$$
\begin{equation*}
\underset{X \in \mathcal{B}_{1} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)-w_{2}(X)\right)=\left(\underset{X \in \mathcal{B}_{1}}{\arg \max } q_{1}(X)\right) \cap\left(\underset{X \in \mathcal{B}_{2}^{*}}{\arg \max } q_{2}(X)\right) . \tag{5.1}
\end{equation*}
$$

Define $\hat{\mathcal{B}_{1}}=\arg \max _{X \in \mathcal{B}_{1}} q_{1}(X)$ and $\hat{\mathcal{B}_{2}}=\arg \max _{X \in \mathcal{B}_{2}^{*}} q_{2}(X)$. Then, it is known that $\hat{M}_{i}=\left(S, \hat{\mathcal{B}}_{i}\right)$ is also a matroid for $i \in\{1,2\}$ (see [13]). By (5.1), we obtain

$$
\begin{equation*}
\underset{X \in \mathcal{B}_{1} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)-w_{2}(X)\right)=\hat{\mathcal{B}_{1}} \cap \hat{\mathcal{B}_{2}} . \tag{5.2}
\end{equation*}
$$

This together with $\mathcal{B}_{1} \cap \mathcal{B}_{2}^{*} \neq \emptyset$ shows that $\hat{\mathcal{B}_{1}} \cap \hat{\mathcal{B}_{2}} \neq \emptyset$, and hence $\hat{M_{1}}$ and \hat{M}_{2} satisfy the assumptions in Conjecture 2.3. Therefore, by assuming that Conjecture 2.3 is true, there exists a function $\hat{p}: S \rightarrow \mathbb{R}$ satisfying the following conditions:
(a) For any $B_{1} \in \arg \min _{X \in \hat{\mathcal{B}}_{1}} \hat{p}(X)$, it holds that $B_{1} \in \hat{\mathcal{B}}_{2}$.
(b) For any $B_{2} \in \arg \max _{X \in \hat{\mathcal{B}_{2}}} \hat{p}(X)$, it holds that $B_{2} \in \hat{\mathcal{B}}_{1}$.

Let $\delta:=\min \left\{\left|q_{i}(X)-q_{i}(Y)\right|^{\mid} \mid i \in\{1,2\}, X, Y \subseteq S, q_{i}(X) \neq q_{i}(Y)\right\}$, and let ε be a positive number such that $\varepsilon \cdot|\hat{p}(X)|<\delta / 2$ for any $X \subseteq S$. We now show that $p:=w_{1}-q_{1}+\varepsilon \cdot \hat{p}$ satisfies the requirements of Conjecture 1.6. Let B_{1} be a set in $\arg \max _{X \in \mathcal{B}_{1}}\left(w_{1}(X)-p(X)\right)=\arg \max _{X \in \mathcal{B}_{1}}\left(q_{1}(X)-\varepsilon \cdot \hat{p}(X)\right)$. Since $-\delta / 2<$ $\varepsilon \cdot \hat{p}(X)<\delta / 2$ for any $X \subseteq S$, we have that $B_{1} \in \arg \max _{X \in \mathcal{B}_{1}} q_{1}(X)=\hat{\mathcal{B}_{1}}$ and $B_{1} \in \arg \min _{X \in \hat{\mathcal{B}_{1}}} \hat{p}(X)$. Then (a) shows that $B_{1} \in \hat{\mathcal{B}_{2}}$. Therefore,

$$
\begin{aligned}
B_{1} \in \hat{\mathcal{B}_{1}} \cap \hat{\mathcal{B}_{2}} & =\underset{X \in \mathcal{B}_{\perp} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)-w_{2}(X)\right) \\
& =\underset{X \in \mathcal{B}_{1} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)+w_{2}(S \backslash X)\right)
\end{aligned}
$$

holds by (5.2), which means that p satisfies the first requirement in Conjecture 1.6.
Similarly, let B_{2} be a set in

$$
\begin{aligned}
\underset{X \in \mathcal{B}_{2}}{\arg \max }\left(w_{2}(X)-p(X)\right) & =\underset{X \in \mathcal{B}_{2}}{\arg \max }\left(-q_{2}(X)-\varepsilon \cdot \hat{p}(X)\right) \\
& =\underset{X \in \mathcal{B}_{2}}{\arg \max }\left(q_{2}(S \backslash X)+\varepsilon \cdot \hat{p}(S \backslash X)\right)
\end{aligned}
$$

This shows that $S \backslash B_{2} \in \arg \max _{X \in \mathcal{B}_{2}^{*}} q_{2}(X)=\hat{\mathcal{B}}_{2}$ and $S \backslash B_{2} \in \arg \max _{X \in \hat{\mathcal{B}_{2}}} \hat{p}(X)$. Then (b) shows that $S \backslash B_{2} \in \hat{\mathcal{B}_{1}}$. Therefore,

$$
\begin{aligned}
S \backslash B_{2} \in \hat{\mathcal{B}_{1}} \cap \hat{\mathcal{B}_{2}} & =\underset{X \in \mathcal{B}_{1} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)-w_{2}(X)\right) \\
& =\underset{X \in \mathcal{B}_{1} \cap \mathcal{B}_{2}^{*}}{\arg \max }\left(w_{1}(X)+w_{2}(S \backslash X)\right)
\end{aligned}
$$

holds by (5.2), which means that p satisfies the second requirement in Conjecture 1.6. Therefore, Conjecture 1.6 is true if Conjecture 2.3 is true.

Remark 5.1. Algorithmically, if we can compute \hat{p}, then we can compute p efficiently as follows. Since w_{1} and w_{2} are rational-valued when they are given as a part of input, by multiplying by the common denominator, we may assume that w_{1} and w_{2} are integral. Then, we can take q_{1} and q_{2} so that they are integral [17]. Therefore, we have that $\delta \geq 1$, and hence $\varepsilon:=1 /\left(1+2 \sum_{s \in S}|\hat{p}(s)|\right)$ satisfies the conditions in the proof. This shows that we can compute $p:=w_{1}-q_{1}+\varepsilon \cdot \hat{p}$.

By Theorem 1.7, we obtain Corollaries 1.8 and 1.9 as follows. In the proof of Theorem 1.7, we consider Conjecture 2.3 for matroids $\hat{M}_{i}=\left(S, \hat{\mathcal{B}}_{i}\right)$, where $\hat{\mathcal{B}_{1}}=$ $\arg \max _{X \in \mathcal{B}_{1}} q_{1}(X)$ and $\hat{\mathcal{B}}_{2}=\arg \max _{X \in \mathcal{B}_{2}^{*}} q_{2}(X)$. Observe that if M_{1} is a partition matroid, then so is \hat{M}_{1}. Furthermore, Lemma 2.5 shows that if M_{i} is strongly base orderable, then so is \hat{M}_{i}. Since Theorems 1.3 and 1.4 imply that Conjecture 2.3 also holds for these cases, we obtain Corollaries 1.8 and 1.9.
6. Gross substitutes valuations. In this section, we show that the reduction technique in section 5 works also for M^{\natural}-concave functions or, equivalently, gross substitutes functions. M^{\natural}-concave functions are introduced by Murota and Shioura [30] and play a central role in the theory of discrete convex analysis. A function $f: \mathbb{Z}^{S} \rightarrow \mathbb{R} \cup\{-\infty\}$ is said to be M^{\natural}-concave if it satisfies the following exchange property:
$\left(\mathbf{M}^{\natural}-\mathbf{E X C}\right) \forall x, y \in \operatorname{dom} f, \forall i \in \operatorname{supp}^{+}(x-y), \exists j \in \operatorname{supp}^{-}(x-y) \cup\{0\}:$

$$
f(x)+f(y) \leq f\left(x-\chi_{i}+\chi_{j}\right)+f\left(y+\chi_{i}-\chi_{j}\right)
$$

where $\operatorname{dom} f=\left\{x \in \mathbb{Z}^{S} \mid f(x)>-\infty\right\}, \operatorname{supp}^{+}(x)=\{i \in S \mid x(i)>0\}, \operatorname{supp}^{-}(x)=$ $\{i \in S \mid x(i)<0\}$ for $x \in \mathbb{Z}^{S}, \chi_{i}$ is the characteristic vector of $i \in S$, and χ_{0} is the all-zero vector $\mathbf{0}$. When we consider a function f on $\{0,1\}^{S}, f$ can be regarded as a function on \mathbb{Z}^{S} by setting $f(x)=-\infty$ for $x \in \mathbb{Z}^{S} \backslash\{0,1\}^{S}$. It is shown by Fujishige and Yang [20] that a function f on $\{0,1\}^{S}$ is M^{\natural}-concave ${ }^{4}$ if and only if it is a gross substitutes function (see also [28, Theorem 6.34]). See survey papers [29,35] for more details on M^{\natural}-concave and gross substitutes functions. For a set $Q \subseteq \mathbb{Z}^{S}$, we define

[^4]a function f_{Q} on \mathbb{Z}^{S} by $f_{Q}(x)=0$ if $x \in Q$ and $f_{Q}(x)=-\infty$ otherwise. We say that a set $Q \subseteq \mathbb{Z}^{S}$ is M^{\natural}-convex if f_{Q} is an M^{\natural}-concave function. It is known that a set is M^{\natural}-convex if and only if it is the set of integer points/vectors in an integral g-polymatroid $[18,19]$. Let 1 denote the all-one vector in \mathbb{Z}^{S}.

We are interested in the existence of a pricing scheme for the two-buyer case with gross substitutes valuations (or, equivalently, M^{b}-concave valuations), which is stated as follows.

Conjecture 6.1. For $i=1,2$, let $v_{i}:\{0,1\}^{S} \rightarrow \mathbb{R} \cup\{-\infty\}$ be an M^{\natural}-concave function. Then, there exists a vector $p \in \mathbb{R}^{S}$ satisfying the following conditions:

1. For $x_{1} \in \arg \max _{x \in\{0,1\}^{S}}\left(v_{1}(x)-p \cdot x\right)$, we have $x_{1} \in \arg \max _{x \in\{0,1\}^{S}}\left(v_{1}(x)+\right.$ $\left.v_{2}(1-x)\right)$.
2. For $x_{2} \in \arg \max _{x \in\{0,1\}^{S}}\left(v_{2}(x)-p \cdot x\right)$, we have $x_{2} \in \arg \max _{x \in\{0,1\}^{S}}\left(v_{1}(\mathbf{1}-\right.$ $\left.x)+v_{2}(x)\right)$.
In Conjecture 6.1, a set in S is represented by its characteristic vector. If buyer i comes to a shop first, then she chooses an arbitrary set x_{i} maximizing her utility $v_{i}(x)-p \cdot x$. Then, the second buyer takes the set of all the remaining items whose characteristic vector is $\mathbf{1}-x_{i}$. Conjecture 6.1 asserts that, regardless of the choice of x_{i}, this mechanism gives an allocation maximizing the social welfare.

As an unweighted version of this conjecture, we consider the following conjecture.
Conjecture 6.2. For $i=1,2$, let $Q_{i} \subseteq\{0,1\}^{S}$ be an M^{\natural}-convex set such that there exist $x_{1} \in Q_{1}$ and $x_{2} \in Q_{2}$ with $x_{1}+x_{2}=1$. Then, there exists a vector $p \in \mathbb{R}^{S}$ satisfying the following conditions:

1. For $x_{1} \in \arg \min _{x \in Q_{1}}(p \cdot x)$, we have $\mathbf{1}-x_{1} \in Q_{2}$.
2. For $x_{2} \in \arg \min _{x \in Q_{2}}(p \cdot x)$, we have $\mathbf{1}-x_{2} \in Q_{1}$.

In Conjecture 6.2, each buyer i has an admissible set Q_{i} instead of a valuation. More precisely, each buyer i wants to buy a set of items whose characteristic vector x_{i} belongs to a given M^{\natural}-convex set Q_{i}. We can easily see that Conjecture 6.2 is a special case of Conjecture 6.1, in which $v_{i}=f_{Q_{i}}$ for $i=1,2$. We now prove that the reverse implication also holds, which means that Conjecture 6.1 can be reduced to the unweighted case.

Theorem 6.3. If Conjecture 6.2 is true, then Conjecture 6.1 is also true.
Proof. Let $v_{2}^{*}:\{0,1\}^{S} \rightarrow \mathbb{R} \cup\{-\infty\}$ be the function defined by $v_{2}^{*}(x)=v_{2}(\mathbf{1}-x)$ for $x \in\{0,1\}^{S}$. Then, v_{2}^{*} is also an M^{\natural}-concave function. Consider the problem of maximizing $v_{1}(x)+v_{2}^{*}(x)$ subject to $x \in\{0,1\}^{S}$. By the M-convex intersection theorem (see $\left[28\right.$, Theorem 8.17]), there exists a vector $q \in \mathbb{R}^{S}$ such that

$$
\begin{equation*}
\underset{x \in\{0,1\}^{S}}{\arg \max }\left(v_{1}(x)+v_{2}^{*}(x)\right)=\left(\underset{x \in\{0,1\}^{S}}{\arg \max }\left(v_{1}(x)-q \cdot x\right)\right) \cap\left(\underset{x \in\{0,1\}^{S}}{\arg \max }\left(v_{2}^{*}(x)+q \cdot x\right)\right) . \tag{6.1}
\end{equation*}
$$

Define $Q_{1}=\arg \max _{x \in\{0,1\}^{S}}\left(v_{1}(x)-q \cdot x\right), Q_{2}^{*}=\arg \max _{x \in\{0,1\}^{S}}\left(v_{2}^{*}(x)+q \cdot x\right)$, and $Q_{2}=\left\{\mathbf{1}-x \mid x \in Q_{2}^{*}\right\}$. Then, it is known that Q_{1} and Q_{2}^{*} are M^{\natural}-convex sets (see [28, Theorem 6.30(2)]), and so is Q_{2} (see [28, Theorem 6.13(2)]). By (6.1), we obtain $\arg \max _{x \in\{0,1\}^{S}}\left(v_{1}(x)+v_{2}^{*}(x)\right)=Q_{1} \cap Q_{2}^{*}$. This shows that $Q_{1} \cap Q_{2}^{*} \neq \emptyset$, and hence Q_{1} and Q_{2} satisfy the assumptions in Conjecture 6.2. Therefore, by assuming that Conjecture 6.2 is true, there exists a vector $\hat{p} \in \mathbb{R}^{S}$ satisfying the following conditions:
(a) For any $x_{1} \in \arg \min _{x \in Q_{1}}(\hat{p} \cdot x)$, it holds that $\mathbf{1}-x_{1} \in Q_{2}$.
(b) For any $x_{2} \in \arg \min _{x \in Q_{2}}(\hat{p} \cdot x)$, it holds that $\mathbf{1}-x_{2} \in Q_{1}$.

Then, by the same argument as the proof of Theorem 1.7, $p:=q+\varepsilon \cdot \hat{p}$ satisfies the requirements in Conjecture 6.1 , where ε is a sufficiently small positive number.

Remark 6.4. In a market model, it is common to assume that each valuation v_{i} is monotone and $v_{i}(\emptyset)=0$. We note that these assumptions are not required in the proof of Theorem 6.3. In return for this, the obtained price vector p is not necessarily nonnegative.

We note that Conjecture 1.2 is a special case of Conjecture 6.1, as the characteristic vectors of all the bases of a matroid form an M^{\natural}-convex set. This relationship supports the importance of Conjecture 1.2. It is unknown whether the converse implication holds, i.e., we do not know whether Conjecture 1.2 implies Conjecture 6.1.
7. Conclusion. We considered the existence of prices that are capable of achieving optimal social welfare without a central tie-breaking coordinator. Although such pricing looks similar to well-known Walrasian pricing, it is less understood even for two-buyer markets with gross substitute valuations. This paper focuses on two-buyer markets with matroid rank valuations, and we gave polynomial-time algorithms that always find such prices when one of the matroids is a partition matroid or both matroids are strongly base orderable. This result partially answers a question of Dütting and Végh. However, deciding the existence of optimal dynamic prices for more than two matroids remains an interesting open problem. We further formalized a weighted variant of the conjecture of Dütting and Végh, and showed that the weighted variant can be reduced to the unweighted one based on the weight-splitting theorem of Frank. We also showed that a similar reduction technique works for M^{\natural}-concave functions or, equivalently, for gross substitutes functions.

Acknowledgments. The authors are grateful to the reviewer for the helpful comments, and for suggesting further motivations of the problem from the perspective of matroids. We would like to also thank Akihisa Tamura for drawing our attention to the fact that the proof of Theorem 1.3 works for arbitrary partition matroids.

REFERENCES

[1] B. Berger, A. Eden, and M. Feldman, On the power and limits of dynamic pricing in combinatorial markets, in Proceedings of the 16th International Conference on Web and Internet Economics (WINE), Lecture Notes in Comput. Sci. 12495, Springer, 2020, pp. 206219.
[2] L. Blumrosen and T. Holenstein, Posted prices vs. negotiations: an asymptotic analysis, in EC'08: Proceedings of the 9th ACM Conference on Electronic Commerce, 2008, 49.
[3] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, Multi-parameter mechanism design and sequential posted pricing, in Proceedings of the Forty-Second ACM Symposium on Theory of Computing, ACM, New York, 2010, pp. 311-320.
[4] S. Chawla, D. L. Malec, and B. Sivan, The power of randomness in Bayesian optimal mechanism design, in Proceedings of the 11th ACM Conference on Electronic Commerce, ACM, New York, 2010, pp. 149-158.
[5] S. Chawla, J. B. Miller, and Y. Teng, Pricing for online resource allocation: Intervals and paths, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2019, pp. 1962-1981, https://doi.org/10.1137/1. 9781611975482.119.
[6] E. H. Clarke, Multipart pricing of public goods, Public Choice, (1971), pp. 17-33.
[7] V. Cohen-Addad, A. Eden, M. Feldman, and A. Fiat, The invisible hand of dynamic market pricing, in Proceedings of the 2016 ACM Conference on Economics and Computation, ACM, New York, 2016, pp. 383-400.
[8] J. Davies and C. McDiarmid, Disjoint common transversals and exchange structures, J. London Math. Soc. (2), 2 (1976), pp. 55-62.
[9] P. Dütting, M. Feldman, T. Kesselheim, and B. Lucier, Prophet Inequalities Made Easy: Stochastic Optimization by Pricing Non-Stochastic Inputs, preprint, https://arxiv.org/ abs/1612.03161, 2016.
[10] P. Dütting, M. Feldman, T. Kesselheim, and B. Lucier, Prophet inequalities made easy: Stochastic optimization by pricing non-stochastic inputs, in Proceedings of the IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2017, pp. 540551.
[11] P. DÜtting and L. A. Végh. Private communication, 2017.
[12] A. Eden, U. Feige, and M. Feldman, Max-min greedy matching, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), LIPIcs. Leibniz Int. Proc. Inform. 145, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2019, 7.
[13] J. Edmonds, Matroids and the greedy algorithm, Math. Programming, 1 (1971), pp. 127-136.
[14] T. Ezra, M. Feldman, T. Roughgarden, and W. Suksompong, Pricing multi-unit markets, in Proceedings of the International Conference on Web and Internet Economics, Springer, 2018, pp. 140-153.
[15] M. Feldman, N. Gravin, and B. Lucier, Combinatorial auctions via posted prices, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2014, pp. 123-135, https://doi.org/10.1137/1.9781611973730.10.
[16] M. Feldman, N. Gravin, and B. Lucier, Combinatorial Walrasian equilibrium, SIAM J. Comput., 45 (2016), pp. 29-48, https://doi.org/10.1137/13094339X.
[17] A. Frank, A weighted matroid intersection algorithm, J. Algorithms, 2 (1981), pp. 328-336.
[18] A. Frank, Generalized polymatroids, in Finite and Infinite Sets, Vols. 1, 2, Colloq. Math. Soc. János Bolyai 37, North-Holland, Amsterdam, 1984, pp. 285-294.
[19] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, Oxford, 2011.
[20] S. Fujishige and Z. Yang, A note on Kelso and Crawford's gross substitutes condition, Math. Oper. Res., 28 (2003), pp. 463-469.
[21] T. Groves, Incentives in teams, Econometrica, 41 (1973), pp. 617-631.
[22] F. Gul and E. Stacchetti, Walrasian equilibrium with gross substitutes, J. Econom. Theory, 87 (1999), pp. 95-124.
[23] J. Hsu, J. Morgenstern, R. Rogers, A. Roth, and R. Vohra, Do prices coordinate markets?, in Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, ACM, New York, 2016, pp. 440-453.
[24] A. S. Kelso, Jr and V. P. Crawford, Job matching, coalition formation, and gross substitutes, Econometrica, 50 (1982), pp. 1483-1504.
[25] S. Krogdahl, A Combinatorial Base for Some Optimal Matroid Intersection Algorithms, Tech. Report STAN-CS-74-468, Computer Science Department, Stanford University, Stanford, CA, 1974.
[26] S. Krogdahl, A Combinatorial Proof for a Weighted Matroid Intersection Algorithm, Tech. Report Computer Science Report 17, Institute of Mathematical and Physical Sciences, University of Tromso, Tromso, Norway, 1976.
[27] S. Krogdahl, The dependence graph for bases in matroids, Discrete Math., 19 (1977), pp. 4759.
[28] K. Murota, Discrete Convex Analysis, SIAM Monogr. Discrete Math. Appl., SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718508.
[29] K. Murota, Discrete convex analysis: A tool for economics and game theory, The Journal of Mechanism and Institution Design, 1 (2016), pp. 151-273.
[30] K. Murota and A. Shioura, M-convex function on generalized polymatroid, Math. Oper. Res., 24 (1999), pp. 95-105.
[31] N. Nisan and I. Segal, The communication requirements of efficient allocations and supporting prices, J. Econ. Theory, 129 (2006), pp. 192-224.
[32] H. Nishimura and S. Kuroda, A Lost Mathematician, Takeo Nakasawa: The Forgotten Father of Matroid Theory, Birkhäuser Verlag, Basel, 2009.
[33] J. Oxley, Matroid Theory, Oxford University Press, Oxford, 2011.
[34] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms Combin. 24, Springer-Verlag, Berlin, 2003.
[35] A. Shioura and A. Tamura, Gross substitutes condition and discrete concavity for multi-unit valuations: a survey, Journal of the Operations Research Society of Japan, 58 (2015), pp. 61-103.
[36] W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders, The Journal of Finance, 16 (1961), pp. 8-37.
[37] L. Walras, Éléments d'économie politique pure, ou, Théorie de la richesse sociale, F. Rouge, 1896.
[38] H. Whitney, On the abstract properties of linear dependence, in Hassler Whitney Collected Papers, Springer, 1992, pp. 147-171.

[^0]: *Received by the editors December 15, 2020; accepted for publication (in revised form) August 25, 2021; published electronically November 8, 2021. A preliminary version of this paper appears in Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020) [1].
 https://doi.org/10.1137/20M1386335
 Funding: This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The first author was supported by the János Bolyai Research Fellowship and the Momentum Programme of the Hungarian Academy of Sciences, grant LP2021-1/2021, and by the Hungarian National Research, Development and Innovation Office-NKFIH, grants FK128673, ÚNKP-20-5, and TKP2020-NKA-06. The second author was supported by JSPS KAKENHI grants JP17K00028, JP18H05291, 20H05795, and 21H03397. The third author was supported by JSPS KAKENHI grants JP18H05291, JP19H05485, and JP20K11692.
 ${ }^{\dagger}$ MTA-ELTE Momentum Matroid Optimziation Research Group and MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös Loránd University, Budapest, 1111 Hungary (kristof.berczi@ttk.elte.hu).
 ${ }^{\ddagger}$ Department of Mathematics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522 Japan (kakimura@math.keio.ac.jp).
 ${ }^{\S}$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502 Japan (yusuke@kurims.kyoto.ac.jp).

[^1]: ${ }^{1}$ Walrasian equilibrium is often called competitive pricing, or market equilibrium, in the literature.

[^2]: ${ }^{2}$ The simplest example of gross substitutes valuations is unit demand preferences, when each agent can enjoy at most one item. Gul and Stacchetti showed that gross substitutes preferences form the largest set containing unit demand preferences for which an existence theorem can be obtained.

[^3]: ${ }^{3}$ In matroid algorithms, it is usually assumed that the matroids are accessed through independence oracles, and the complexity of an algorithm is measured by the number of oracle calls and other conventional elementary steps.

[^4]: ${ }^{4}$ An M^{\natural}-concave function f with $\operatorname{dom} f \subseteq\left\{x \in\{0,1\}^{S} \mid x(S)=k\right\}$ for some $k \in \mathbb{Z}_{+}$is called a valuated matroid in the literature.

