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Abstract. In this paper, we study the problem of maximizing social welfare in combinatorial
markets through pricing schemes. We consider the existence of prices that are capable of achieving
optimal social welfare without a central tie-breaking coordinator. In the case of two buyers with
matroid rank valuations, we give polynomial-time algorithms that always find such prices when one
of the matroids is a partition matroid or both matroids are strongly base orderable. This result
partially answers a question raised by Diitting and Végh [Private communication, 2017]. We further
formalize a weighted variant of the conjecture of Diitting and Végh, and show that the weighted
variant can be reduced to the unweighted one based on the weight-splitting theorem for weighted
matroid intersection by Frank. We also show that a similar reduction technique works for M¥-concave
functions or, equivalently, for gross substitutes functions.
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1. Introduction. In this paper, we study the problem of maximizing social
welfare in combinatorial markets through pricing schemes. Let us consider a combi-
natorial market consisting of indivisible goods and buyers, where each buyer has a
valuation function that describes the buyer’s preferences over the subsets of items.
The goal is to allocate the items to buyers in such a way that the social welfare, that
is, the total sum of the buyers’ values, is maximized. Such an allocation can be found
efficiently under reasonable assumptions on the valuations [31]. As an application
of the Vickrey—Clarke-Groves (VCG) mechanism [6,21,36] for welfare maximization,
the VCG auction is another illustrious example. However, the problem becomes much
more intricate if the optimal welfare ought to be achieved using simpler mechanisms
employed in real world markets, such as pricing.

In a pricing scheme, the seller sets the item prices, and the wtility of a buyer for a
given bundle of items is defined as the value of the bundle with respect to the buyer’s
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valuation, minus the total price of the items in the bundle. Ideally, the prices are set
in such a way that there exists an allocation of the items to buyers in which the market
clears and everyone receives a bundle that maximizes her utility. A pair of pricing
and allocation possessing these properties is called a Walrasian equilibrium,' while we
will refer to the price vector itself as Walrasian pricing. The fundamental notion of
Walrasian equilibrium first appeared in [37], and the definition immediately implies
that the allocation in a Walrasian equilibrium maximizes social welfare. Therefore,
the problem might seem to be settled for markets that admit such an equilibrium.

Cohen-Addad et al. [7] observed that Walrasian prices alone are not sufficient
to coordinate the market. The reason is that ties among different bundles have to
be broken up carefully by a central coordinator, in a manner consistent with the
corresponding optimal allocation. However, in real markets, buyers walk into the shop
in an arbitrary sequential order and choose an arbitrary best bundle for themselves
without caring about social optimum. In their paper, it is shown that the absence
of a tie-braking rule may result in an arbitrarily bad allocation. In particular, no
static prices can give more than 2/3 of the social welfare when three buyers with
unit-demand valuations arrive sequentially.

To overcome these difficulties, Cohen-Addad et al. [7] introduced the notion of
dynamic pricing schemes. In this setting, the seller is allowed to dynamically update
the prices between buyer arrivals. Achieving optimal social welfare based on dynamic
pricing would be clearly possible if the order in which buyers arrive was known in
advance. Nevertheless, determining an optimal dynamic pricing scheme is highly
nontrivial when the prices need to be set before getting access to the preferences of
the next buyer.

The main open problem in [7] asked whether any market with gross substitutes
valuations has a dynamic pricing scheme that achieves optimal social welfare. A
market with gross substitutes valuations is known to be an important class of markets
having Walrasian prices [24]. It is worth noting that the existence of an optimal scheme
reduces to the existence of an appropriate initial price vector; an optimal allocation
then can be determined by induction. For a formal definition, we refer the reader
to [1].

As a starting step towards understanding the general case, we consider the exis-
tence of a static pricing scheme for a two-buyer market with matroid rank valuations,
because a matroid rank function is a fundamental example of gross substitutes val-
uations. Here, a matroid with a ground set S and a base family B is denoted by
M = (S,B), and we denote p(X) := > .y p(s) for p: § — Rand X C 5.

CONJECTURE 1.1. Let My = (S,B1) and My = (S,Bs) be matroids with rank
functions r1 and 1o, Tespectively. Then, there exists a function p : S — R (called a
price vector) satisfying the following conditions:

1. For By € argmaxxcg(r1(X) — p(X)) and By € argmaxycg g, (r2(Y) —
p(Y)), we have r1(B1)+r2(B2) = max{r;(X)+r2(Y) | X, Y C S, XnNY = 0}.
2. For By € argmaxycg(r2(Y) — p(Y)) and By € argmaxycg p,(r1(X) —
p(X)), we have r1(By)+ra(B2) = max{ri(X)+r2(Y) | X, Y C S, XNY = 0}.

This conjecture can be interpreted as follows. There are two buyers and each
buyer ¢ € {1,2} has a valuation function r;. If buyer ¢ comes to a shop first, then
she chooses an arbitrary bundle B; that maximizes her utility r; — p, and the second

I'Walrasian equilibrium is often called competitive pricing, or market equilibrium, in the litera-
ture.
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buyer chooses a best bundle in S\ B;. The requirements mean that any choice of B;
results in an allocation maximizing the social welfare. Thus, whoever comes first, we
can achieve the optimal social welfare.

As we will see in Lemma 2.6, Conjecture 1.1 can be reduced to the following
conjecture.

CONJECTURE 1.2. Let My = (S,B1) and My = (S, Bs) be matroids with a com-
mon ground set S such that there exist disjoint bases By € By and By € By with
B1 U By =S5. Then, there exists a function p: S — R (called a price vector) satisfy-
ing the following conditions:

1. For By € argminypz, p(X), we have S\ By € Bs.
2. For B, € argminy g, p(X), we have S\ By € B;.

In the conjecture, there are two buyers and each buyer i € {1,2} wants to buy a
set of items that forms a basis in B;. If buyer i comes to a shop first, then she chooses
a cheapest set B; in B; with an arbitrary tie-breaking rule. The requirements mean
that, regardless of the choice of B;, the remaining set S\ B; is a desired set for the
other buyer.

Note that Conjecture 1.2 was first suggested by Diitting and Végh [11]. In their
original conjecture, the price vector p is chosen to have all different values, that is,
p(s1) # p(s2) for s1 # s, which implies that B; € argminycg. p(X) is unique for
i = 1,2. However, this difference is not essential, because we can apply a perturbation
to p without affecting the requirements in Conjecture 1.2.

Previous work. The notion of Walrasian equilibrium dates back to 1874 [37],
originally defined for divisible goods. In their analysis of the matching problem,
Kelso, Jr. and Crawford [24] introduced the so-called gross substitutes condition, and
showed the existence of Walrasian prices for gross substitutes valuations. Gul and
Stacchetti [22] later verified that, in a sense, this condition is necessary to ensure the
existence of a Walrasian equilibrium.?

It was first observed by Cohen-Addad et al. [7] and Hsu et al. [23] that Walrasian
prices are not sufficient to control the market, as ties must be broken in a coordi-
nated fashion that is consistent with maximizing social welfare. A natural idea for
resolving this issue would be trying to find Walrasian prices where ties do not occur.
However, Hsu et al. showed that minimal Walrasian prices always induce ties. Even
more, Cohen-Addad et al. proved that no static prices can give more than 2/3 of
the social welfare when three buyers with unit-demand valuations arrive sequentially.
As a workaround, they proposed a dynamic pricing scheme for matching markets
(i.e., unit-demand valuations), where the prices are updated between buyer-arrivals
based upon the current inventory without knowing the identity of the next buyer.
On the negative side, they presented a market with coverage valuations where Wal-
rasian prices do exist, but no dynamic pricing scheme can achieve the optimal social
welfare. Meanwhile, Hsu et al. showed that, under certain conditions, minimal Wal-
rasian equilibrium prices induce low over-demand and high welfare. Recently, Berger,
Eden, and Feldman [1] considered markets beyond unit-demand valuations, and gave
a characterization of all optimal allocations in multidemand markets. Based on this,
they provided a polynomial-time algorithm for finding optimal dynamic prices up to
three multidemand buyers.

2The simplest example of gross substitutes valuations is unit demand preferences, when each
agent can enjoy at most one item. Gul and Stacchetti showed that gross substitutes preferences form
the largest set containing unit demand preferences for which an existence theorem can be obtained.
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To overcome the limitations of Walrasian equilibrium, Feldman, Gravin, and
Lucier [16] proposed a relaxation called combinatorial Walrasian equilibrium in which
the seller can partition the items into indivisible bundles prior to sale, and they pro-
vided an algorithm that determines bundle prices obtaining at least half of the optimal
social welfare.

Another line of research concentrated on posted-price mechanisms in online set-
tings. As alternatives to optimal auctions, Blumrosen and Holenstein [2] studied
posted-price mechanisms and dynamic auctions in Bayesian settings under the ob-
jective of maximizing revenue. They gave a characterization of the optimal revenue
for general distributions, and provided algorithms that achieve the optimal solution.
Chawla et al. [3,4] developed a theory of sequential posted-price mechanisms, and
provided constant-factor approximation algorithms for several multidimensional mul-
tiunit auction problems and generalizations to matroid feasibility constraints. In [15],
Feldman, Gravin, and Lucier verified the existence of prices that, in expectation,
achieve at least half of the optimal social welfare for fractionally subadditive valua-
tions, a class that includes all submodular functions. Diitting et al. [9,10] provided a
general framework for posted-price mechanisms in Bayesian settings. Chawla, Miller,
and Teng [5] showed that static, anonymous bundle pricing mechanisms are useful
when buyers’ preferences have complementarities. Ezra et al. [14] provided upper and
lower bounds on the largest fraction of the optimal social welfare that can be guar-
anteed with static prices for several classes of valuations, such as submodular, XOS,
or subadditive. A setting related to online bipartite matching, called the Max-Min
Greedy matching, was considered in [12].

Our results. In the present paper, we concentrate on combinatorial markets
with two buyers having matroid rank valuations, where the matroid corresponding
to buyer ¢ is denoted by M; = (S,B;) for ¢ = 1,2. Since this setting is reduced to
Conjecture 1.2, in which each buyer has to buy a set of items that forms a basis of a
matroid, we focus on Conjecture 1.2.

While Conjecture 1.2 remains open in general, we give polynomial-time® algo-
rithms for two important special cases. In the first one, one of the matroids is a
partition matorid. Although partition matroids have relatively simple structure, find-
ing the proper price vector p is nontrivial even in this seemingly simple case.

THEOREM 1.3. If M7 is a partition matroid and Ms is an arbitrary matroid, then
Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be
computed in polynomial time.

Next, we consider strongly base orderable matroids, a class of matroids with
distinctive structural properties. Roughly, in a strongly base orderable matroid, for
any pair of bases, there exists a bijection between them satisfying a certain property
(see section 2 for the formal definition). Note that various matroids appearing in
combinatorial and graph optimization problems belong to this class, such as partition,
laminar, transversal matroids, or, more generally, gammoids.

THEOREM 1.4. If both My and M, are strongly base orderable, then Conjec-
tures 1.1 and 1.2 hold. Furthermore, a price vector p satisfying the conditions can
be computed in polynomial time if, for any pair of bases, the bijection between them
can be computed in polynomaial time.

3In matroid algorithms, it is usually assumed that the matroids are accessed through indepen-
dence oracles, and the complexity of an algorithm is measured by the number of oracle calls and
other conventional elementary steps.
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As an application of Theorem 1.4, we deduce a result to bipartite matchings that
might be of independent interest. For a vertex v in a graph, let §(v) denote the set
of all the edges incident to v.

COROLLARY 1.5. For a bipartite graph G = (U, V'; E) containing a perfect match-
ing, there exists a weight function w : E — R satisfying the following conditions:
1. For each u € U, let e, be a lightest edge in 6(u) with respect to w. Then,
{ew | uw € U} is a perfect matching in G.
2. For each v € V, let e, be a heaviest edge in §(v) with respect to w. Then,
{ex | v € V'} is a perfect matching in G.

Another contribution of this paper is to show the equivalence between Conjec-
ture 1.2 and its weighted counterpart as below.

CONJECTURE 1.6. Fori € {1,2}, let M; = (S, B;) be a matroid, and let w; : S —
R be a weight function. Assume that there exist disjoint bases By € By and By € Bs
with By U Bo = S. Then, there exists a function p : S — R satisfying the following
conditions:

1. For By € argmaxy g, (w1(X) — p(X)), we have that By is a mazimizer of

w1 (X) + w2 (S \ X) subject to X € By and S\ X € Bs.
2. For By € argmaxycp, (w2(X) — p(X)), we have that By is a mazimizer of

w1 (S\ X) + wa(X) subject to S\ X € By and X € Bs.

Clearly, Conjecture 1.2 is a special case of Conjecture 1.6; this follows easily by
setting w; = wo = 0. Somewhat surprisingly, the reverse implication also holds for
arbitrary matroids.

THEOREM 1.7. If Conjecture 1.2 is true, then Conjecture 1.6 is also true.

More generally, we prove that Theorem 1.7 can be generalized to the case with
gross substitutes valuations, i.e., Mf-concave functions. See Theorem 6.3 in section 6
for details.

Based on Theorem 1.7 and the properties of partition and strongly base orderable
matroids, we have the following corollaries.

COROLLARY 1.8. If My is a partition matroid and Ms is an arbitrary matroid,
then Conjecture 1.6 holds, and a price vector p satisfying the conditions can be com-
puted in polynomial time.

COROLLARY 1.9. If both My and M, are strongly base orderable, then Conjec-
ture 1.6 holds. Furthermore, a price vector p satisfying the conditions can be com-
puted in polynomial time if, for any pair of bases, the bijection between them can be
computed in polynomial time.

Paper organization. The rest of this paper is organized as follows. Basic def-
initions and notation are given in section 2. Theorems 1.3 and 1.4 are proved in
sections 3 and 4, respectively. The connection between unweighted and weighted
variants of the problem is discussed in section 5. The reduction technique is extended
to gross substitutes valuations in section 6. We conclude the paper in section 7.

2. Preliminaries.

Basic notation. The sets of reals, nonnegative reals, integers, and non-negative
integers are denoted by R, Ry, Z, and Z, respectively. Let S be a finite set. Given
a subset B C S and elements x,y € S, we write B — x 4+ y for short to denote the
set (B\ {z}) U {y}. The symmetric difference of two sets X and Y is XAY :=
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(X\Y)U(Y\ X). For a function f: S — R, we use f(X):= ) .y f(z). For two
vectors z,y € R¥, we denote -y := Y g (s)y(s).

Matroids and matroid intersection. Matroids were introduced as an abstract
generalization of linear independence in vector spaces [32,38]. A matroid M is a pair
(S,Z) where S is the ground set of the matroid and Z C 2° is the family of independent
sets satisfying the independence azioms: (I11) P e Z, (I12) X CY € Z = X € Z, and
M) X, Y €¢Z, [ X| <|Y|=3JecY\Xst. X+eecZ A loopisan element
that is nonindependent on its own. The rank of a set X C S is the maximum size
of an independent set contained in X, and is denoted by r(X). Here r is called the
rank function of M. Maximal independent sets of M are called bases and their set is
denoted by B. Alternatively, matroids can be defined through the basis axioms: (B1)
B?é @, and (B2) Bl,BQ € B,I S Bl\BQ = EIy € BQ\Bl s.t. By —Tr+ycE B. In
this paper, a matroid is denoted by a pair (S, B), where S is a ground set and B is a
family of bases.

For a matroid M = (S,B) and for T C S, deleting T gives a matroid M’ on the
ground set S\ T such that a subset of S\ T is independent in M’ if and only if it is
independent in M. For T C S, contracting T gives a matroid M’ on the ground set
S\ T whose rank function is r'(X) = #(X UT) — r(T'), where r is the rank function
of M. Adding a parallel copy of an element s € S gives a new matroid M’ = (S, B’)
on ground set S’ = S+ s, where B/ = {X C 5’ : either X € B, or s ¢ X, s €
X,and X — s’ + s € B}. The direct sum My & My of matroids M; = (S1,B;) and
My = (S2,Bs) on disjoint ground sets is a matroid M = (S; U Sa, B) whose bases are
the disjoint unions of a basis M; and a basis of My. The sum or union My + M>
of My = (S5,B1) and Mz = (S, B2) on the same ground set is a matroid M = (5, B)
whose independent sets are the disjoint unions of an independent set of M; and an
independent set of Ms.

For a basis B € B, let us consider the bipartite graph G = (S, E[B]) defined by
E[B] :=={(z,y) |z € B,y € S\ B, B—z+y € B}. Krogdahl [25,26,27] verified the
following statement (see also [34, Theorem 39.13)).

THEOREM 2.1 (see Krogdahl [25,26,27]). Let M = (S,B) be a matroid, and
let B € B. Let B C S be such that |B| = |B’| and E[B] contains a unique perfect
matching on BAB’. Then B’ € B.

In the weighted matroid intersection problem, we are given two matroids M; =
(S,B1) and My = (S,B2) on the same ground set together with a weight function
w : S — R, and the goal is to find a common basis maximizing w(B), that is,
B € argmax{w(B) | B € By N By}. The celebrated weight-splitting theorem of
Frank [17] gives a min-max relation for the weighted matroid intersection.

THEOREM 2.2 (Frank [17]). The mazimum w-weight of a common basis of My =
(S,B1) and My = (S,Bs) is equal to the minimum of max{wy(B) | B € B} +
max{wz(B) | B € By} subject to w = w1 + wa. In particular, for an optimal weight-
splitting w = w1 + wa, it holds that argmax{w(B) | B € By N Bz} = arg max{w;(B) |
B € By} Nnargmax{ws(B) | B € Ba}.

A Ek-uniform matroid is a matroid M = (S, B), where B={X C S| |X| =k} for
some k € Zy. A partition matroid M = (S, B) is the direct sum of uniform matroids,
or in other words, B={X C S| |XNS;| =k; fori=1,...,q} for some partition
S=5U---US;of Sand k; € Z, fori=1,...,q. Each S; is called a partition class.

For further details on matroids and the matroid intersection problem, we refer
the reader to [33,34].
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Dual matroids. The dual of a matroid M = (S, B) is the matroid M* = (.S, B*),
where B* = {B* C S| S\ B* € B}. Given one of the standard oracles for M, the
same oracle for M* can be constructed as well.

We now rephrase Conjecture 1.2 by using dual matroids. Suppose that M; and
M are matroids as in Conjecture 1.2, and let M3 = (S,B;) be the dual matroid
of M. Then, we can see that S\ By € By is equivalent to By € B3, and By €
arg miny ¢, p(X) is equivalent to S\ By € argmaxx g, p(X). Therefore, by replacing
My and S\ By with M3 and Bs, respectively, Conjecture 1.2 is equivalent to the
following conjecture.

CONJECTURE 2.3. Let My = (S,B1) and My = (S, Bs) be matroids with a com-
mon ground set S such that there exists a common basis B € By N By. Then, there
exists a function p: S — R satisfying the following conditions:

1. For By € argminy ., p(X), we have By € Bs.
2. For B, € argmaxy g, p(X), we have By € By.

The motivation of the proposed problems is multifold. Conjecture 2.3 bears a lot
of similarities with the problem of packing common bases in the intersection of two
matroids. If My and M share two disjoint common bases, then setting the prices low
on one of them and high on the other gives a desired p.

When applied to w = 0, the weight-splitting theorem of Frank (Theorem 2.2)
asserts the existence of prices p such that the set of common bases equals the inter-
section of the minimum-cost bases in M; and the maximum-cost bases in M, with
respect to p; this trivially holds already for p = 0. Conjecture 2.3 asserts that one
can choose weights p with the stronger property that the minimum-cost bases in M;
are all in M, and the maximum-cost bases in My are all in M;.

Another motivation comes from polyhedral aspects of matroids. When the base
polyhedra of two matroids intersect in a common face, one can select an appropriate
price vector p as a separating direction. The conjecture asserts a strong separation
property for the general setting.

Strongly base orderable matroids. A matroid M = (S, B) is strongly base
orderable if for any two bases Bi, Bo € B, there exists a bijection f : By — Bs such
that (By \ X)U f(X) € B for any X C By, where we denote f(X) :={f(e) |e € X}.
Davies and McDiarmid [8] observed the following (see also [34, Theorem 42.13]).

THEOREM 2.4 (see Davies and McDiarmid [8]). Let My = (S,B1) and My =
(S, B2) be strongly base orderable matroids. If X C S can be partitioned into k bases
in both My and Ms, then X can be partitioned into k common bases. Furthermore,
such k common bases can be computed in polynomial time if the bijection f can be
computed in polynomial time for any pair of bases.

The following technical lemma about strongly base orderable matroids will be
used in the proof of Corollary 1.9.

LEMMA 2.5. Let M = (S, B) be a strongly base orderable matroid, let ¢ : S — R
be a function, and define a matroid M = (S,B) by B = arg maxyep q(X). Then M
is strongly base orderable.

Proof. Let By, By € B. Since both B; and Bs are bases of M = (S, B), there
exists a bijection f : By — Bs such that (B; \ X)U f(X) € B for any X C B;. Since
q(B1) > q((B1\ X)U f(X)) for any X C By by By € B, it holds that ¢(X) > q(f(X)).
In particular, ¢(z) > ¢(f(z)) for any = € B;. Since By € B, we obtain ¢(B;) =
q(B2) = q(f(B1)), which shows that ¢(z) = ¢(f(x)) for any « € By. Therefore,
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q(B1) = q((B1 \ X) U f(X)) for any X C By, and hence (B \ X) U f(X) € B. This
shows that M is strongly base orderable. 0

Market model. In a combinatorial market, we are given a set S of indivisible
items and a set J of buyers. Each buyer i € J has a valuation function v; : 25 — R
that describes the buyer’s preferences over the subsets of items. Given prices p: S —
R, the utility of buyer ¢ € J for a subset X C S is defined by u;(X) = v;(X) — p(X).
The buyers arrive in an undetermined order, and the next buyer always picks a subset
of items that maximizes her utility. The goal is to set the prices in such a way that
no matter which buyer arrives next, the final allocation of items maximizes the social
welfare. In a dynamic pricing scheme, the prices can be updated between buyer
arrivals based on the remaining sets of items and buyers.

We focus on the case of two buyers with matroid rank functions as valuations.
Let My = (S,B1) and My = (5,B2) be matroids with rank functions r; and 7o,
respectively. The valuation of agent i is r; for ¢ = 1,2. The valuations are accessed
through one of the standard matroid oracles (e.g., independence or rank oracle). As
described in the introduction, this setting can be reduced to the case in which each
buyer always chooses a basis that maximizes her utility, that is, Conjecture 1.1 can
be reduced to Conjecture 1.2.

LEMMA 2.6. If Conjecture 1.2 is true, then Conjecture 1.1 is also true.

Proof. Let My = (S,B;1) and My = (S, B2) be matroids as in Conjecture 1.1, and
let By € By and By € By be a pair of bases that maximizes JBl UABQ|. For i € {1, 2},
let M/ be the matroid obtained from M; by deleting S\ (B; U By) and contracting
BiNBy. Then, M} = (', B,) and M} = (S’, B}) are matroids with a common ground
set S = (Bl U Bg) \ (Bl N Bg) such that there exist disjoint bases By \Bg € B} and
By \ By € Bl whose union is S’. Hence, by assuming that Conjecture 1.2 is true, there
exists a price vector p’ : S — R with the following conditions:

1. For B} € argminy g p'(X), we have S’ \ By € Bj.

2. For B; € argminy g, p'(X), we have S"\ B € Bj.
We observe that we can modify the price vector p’ so that 0 < p’(s) < 1 for every
s € 5, by replacing p'(s) with a-p'(s) + 8 for some « > 0 and 8 € R. By using such
a function p’, define p : S — R by

p'(s) ifses,
p(s) =140 if s € By N By,
1 lfSGS\(BlLJBQ)

For By € argmax ycg(r1(X) —p(X)), the definition of p shows that B; = Bj U (BN
By) for some B) € arg miny e p'(X). Since this implies 5"\ By € By, it holds that
S’\ B is a maximal independent set of My in S\ B by the maximality of |B; U By|.
Therefore, if By € argmaxy c g\ g, (r2(Y) —p(Y)), then By = S"\ By and hence

ri(Br) +ra(Bz) = [Bi| +|B1 N Bo| + |8\ Bi| = |B1U By
=max{r1(X)+r(Y)| X,Y CS, XNY =0},
which shows the first requirement of Conjecture 1.1. The same argument works for

By € argmaxycg(ra(X) — p(X)). Therefore, p satisfies the requirements in Conjec-
ture 1.1. O
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Note that a pair of bases B, € By and By € B, maximizing |B1 U B’g| can be
computed in polynomial time by applying a matroid intersection algorithm to M7 and
M. Note also that the price vector p obtained in the above proof is not necessarily
a Walrasian price.

We also consider a weighted variant of the problem, formally defined as Conjec-
ture 1.6, where each buyer chooses a basis that maximizes her utility, and the goal is to
find a price vector p that achieves the optimal social welfare max{w (X)+w2(S\ X) |
X € By, S\ X € By}. Recently, Berger, Eden, and Feldman [1] investigated the ex-
istence of optimal dynamic pricing schemes for k-demand valuations. A valuation
v: 2% — Ry is k-demand if v(X) = max{}" ., v(s) | Z C X, |Z| < k}. Although
this problem is similar to our weighted variant for k-uniform matroids, our results do
not directly generalize their work because choosing a basis is a hard constraint in our
setting.

3. Partition matroids. The aim of this section is to prove the existence of a
required price vector p for instances where M; is a partition matroid. Our proof
constructs a directed graph based on exchangeability of items, which was also used
in [7] for markets with unique optimal allocations.

THEOREM 1.3. If M7 is a partition matroid and Ms is an arbitrary matroid, then
Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be
computed in polynomial time.

Proof. Since Conjectures 1.2 and 2.3 are equivalent by replacing Ms with its dual
M, we show Conjecture 2.3. Let My = (S,B;) be a partition matroid defined by
partition S = S; U---U S, and upper bounds k; € Z, for i = 1,...,q so that
|Sl‘ Z ki, that iS, Bl = {X g S | ‘XOSA = ]Cz for ¢ = ].,,q} Let MQ = (S,BQ) be
an arbitrary matroid such that M; and My have a common basis.

Let By € By N By be an arbitrary common basis. Take another common basis
By € By N By (possibly Ba = By) such that | By N Ba| is minimized. We consider a
bipartite digraph D = (V, E) defined by

V= (Bl mBQ)U(S\(Bl UBQ)),
(31) E:{(x,y)|xeBlﬂBg7yES\(B1UB2)7Bl—x+y€Bl}
U{(y,x)|x€BlﬁBg,y€S\(B1UBQ), BQ*I“FZJGBQ}.

CrAM 3.1. The digraph D is acyclic.

Proof. Let x € BN By and y € S\ (By U By). As M; is a partition matroid,
By —x +y € By implies that x and y are contained in the same partition class.
Therefore, By —x +y € By if and only if Bo —x +y € B.

Now suppose to the contrary that D contains a dicycle. Choose a dicycle C with
the smallest number of vertices, which implies that C' has no chord. We claim that
Bl := ByAV(C) is a common basis of My and Ms. To see B} € Bs, observe that
the bipartite graph corresponding to By contains a unique perfect matching on V(C)
by the choice of C, hence Theorem 2.1 applies. We also obtain B} € B; by the same
argument, since By — z +y € By if and only if B, — z + y € By as described above.
Since | By N Bj| < | By N By, this contradicts that | By N Ba| is minimized. d

Let n = |S|. We now consider a function p : S — R satisfying the following:
p(z) :=0for x € By \ By, p(x) :==n+ 1 for x € By \ By, p(x) are distinct values in
{1,2,...,n}forz € V,and p(x) < p(y) for (z,y) € E. Note that such a function exists
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by Claim 3.1, which can be found easily by the topological sorting. In what follows, we
show that p satisfies that argminy s p(X) = {B1} and argmaxycp, p(X) = {B2}.

CLAM 3.2. argminy g p(X) = {B1} and argmaxycp, p(X) = {B2}.

Proof. To see that By is a minimum weight basis of M; with respect to p, it suffices
to show that p(z) < p(y) holds for each pair « € By, y € S\ By with By —z+y € By;
see, e.g., [19, Lemma 13.2.13]. However, this is a direct consequence of the definition
of p. Now suppose that there exists B] € argminy s p(X) different from By, and let
x € By \ By. Clearly, 0 < p(xz) < n+1, hence x is the unique element with its p-value.
By the symmetric exchange axiom, there exists y € B} \ By such that By —z+y € B;
and B} +x —y € By. By both By and Bj being optimal, this implies p(z) = p(y), a
contradiction.

A similar argument shows argmaxy s, p(X) = {B2}. d

Since By, Bs € B1 N By, this claim shows that p satisfies the requirements in
Conjecture 2.3. Thus, Conjecture 2.3 holds, and hence Conjecture 1.2 also holds. In
the proof of Lemma 2.6, we modify given matroids by deleting and contracting some
elements, but this modification does not affect the assumption M; being a partition
matroid. Therefore, the above together with Lemma 2.6 shows that Conjecture 1.1
also holds. O

Remark 3.3. Note that in the proof of Theorem 1.3, we fixed the basis By €
B1 N By arbitrarily. That is, for any By € By N By, the optimal price vector p can
be set in such a way that the maximum utility of the buyer corresponding to M is
attained on Bj. It is not difficult to see that the analogous statement holds for any
basis By € B; N By and the buyer corresponding to M.

Remark 3.4. Even when B is a base family of a partition matroid as in The-
orem 1.3, if By is an arbitrary set family of S, then the requirements in Conjec-
ture 1.2 do not necessarily hold. To see this, suppose that S = {1,2,3,4}, By =
{{1,3},{1,4},{2,3},{2,4}}, and By = {{2,4},{1,2},{3,4}}. Then, (By,Bs) =
({1,3},{2,4}) is a unique pair of disjoint sets such that By € By, By € By, and
B; U By = S. If p satisfies the requirements in Conjecture 1.2, then p(1) < p(2) and
p(3) < p(4) hold by the first requirement and p(4) < p(1) and p(2) < p(3) hold by
the second requirement. This shows that such p does not exist.

4. Strongly base orderable matroids. In this section, we show that Con-
jectures 1.1 and 1.2 hold for strongly base orderable matroids. The proof is based
on a similar approach to that of Theorem 1.3. In particular, we take two common
bases of the given matroids. Nevertheless, there are small but crucial differences. A
key difference is that we use Theorem 2.4 for the strongly base orderable case, while
we use a property of partition matroids in the proof of Theorem 1.3. In the follow-
ing argument, to utilize Theorem 2.4, we add parallel copies of some elements and
sometimes regard the two common bases as disjoint sets.

THEOREM 1.4. If both My and Ms are strongly base orderable, then Conjec-
tures 1.1 and 1.2 hold. Furthermore, a price vector p satisfying the conditions can
be computed in polynomial time if, for any pair of bases, the bijection between them
can be computed in polynomial time.

Proof. In order to show Conjecture 1.2, we first show Conjecture 2.3 under the
assumption that M; and My are strongly base orderable. Let M; = (5,8;) and
My = (S, B3) be strongly base orderable matroids that have a common basis. We
take two common bases By, By € B N By (possibly By = Bs) such that |By; N Ba| is
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minimized. For each element z € S, we add a parallel copy 2’ of x to the matroid
M; and denote the matroid thus obtained by M;" = (SU S’ Bf) for i € {1,2}. We
denote X’ := {2/ | x € X} for X C S. Let 2M;" = (S U S’,2B;") be the sum of
two copies of M;". As M;" clearly has two disjoint bases, we have 2B; := {Y; U Y3 |
Y1 and Y5 are disjoint bases of Mf}.

CLAM 4.1. Fori € {1,2}, 2M;" is a strongly base orderable matroid.

Proof. Fix i € {1,2}. We can easily see that M;r is strongly base orderable.
Suppose that we are given two bases X1, X, € 28;7 and suppose also that X; =
Y UY? and Xy = Y3t UYE, where Y1, Y2 Y3, Y2 € Bf. Since M, is strongly
base orderable, for j € {1,2}, there exists a bijection f; : Y7 — Y§ such that (Y7 \
X)U f;(X) € Bff for any X C Ylj. Then, fi; and fo naturally define a bijection
f: X1 — Xo such that (X; \ X)U f(X) € 2B/ for any X C X;. This shows that
2M;t is strongly base orderable. |

Let X := (B1UB3)U(B1NBy)'. Then, X is a common basis of 2M;" and 2M, .
We consider a bipartite digraph Dt = (V, E1) defined by

V= (Bl mBg)U(S\(Bl UBQ))7
Et ={(x,y) | € BIN By, y € S\ (B1UBy), Xo —x +y € 2B}
U{(y,.’ﬂ)|1’€BlﬂB2,y€S\(B1UBg),Xo*.T‘l’yGQBJ}.

CLAIM 4.2. The digraph DV is acyclic.

Proof. Suppose to the contrary that DT contains a dicycle. Choose a dicycle
C with the smallest number of vertices, which implies that C has no chord. Then,
XoAV(C) is a common basis of 2M;" and 2M," by Theorem 2.1. By Theorem 2.4
and Claim 4.1, X, AV (C) can be partitioned into two common bases of M;™ and M, .
Then, By, By € By N By and |Bl N B2| < |B1 N By|. This contradicts that |By N Ba| is
minimized. ]

We now consider the digraph D = (V, E) defined by (3.1). For € B; N By and
y € S\ (B; UBy), we observe that By —x +y € B; implies Xy — x +vy € 2B, and
By—x+y € By implies Xo—x+y € 2B5. This shows that D is a subgraph of D, and
hence D is acyclic by Claim 4.2. Therefore, we can find a function p : S — R such that
p(z) =0 for x € By \ By, p(x) :=|S| + 1 for x € By \ By, p(z) are distinct values in
{1,2,...,|S]} for z € V, and p(z) < p(y) for (z,y) € E. Then, Claim 3.2 shows that
argminy g, p(X) = {B1} and argmaxyp, p(X) = {Ba}. Since By, By € B1 N By, p
satisfies the requirements in Conjecture 2.3, thus, Conjecture 2.3 holds.

This proof can be converted to a polynomial-time algorithm for computing p as
follows. We first pick up two arbitrary common bases By, By € B; N B2 and construct
a digraph DV as above. If DT is acyclic, then we can find an appropriate function
p. Otherwise, the proof of Claim 4.2 shows that we can find Bl, By € By N By with
|B; N By| < |By N By|. Then, we update B; + B; for i € {1,2}, construct Dt
and repeat this procedure. Since | By N Bz| decreases monotonically, this procedure is
executed at most |S| times.

Recall that Conjectures 1.2 and 2.3 are equivalent by replacing M, with MJ.
Since My is strongly base orderable if and only if MJ is strongly base orderable,
Conjecture 1.2 also holds for strongly base orderable matroids.

This together with Lemma 2.6 shows that Conjecture 1.1 also holds. We note
that if M; and My are strongly base orderbale matroids, then the matroids M| and
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MY obtained by deletion and contraction in the proof of Lemma 2.6 are also strongly
base orderable. 0

Finally in this section, we show how Corollary 1.5 follows from Theorem 1.4.

COROLLARY 1.5. For a bipartite graph G = (U, V; E) containing a perfect match-
ing, there exists a weight function w : E — R satisfying the following conditions:

1. For each u € U, let e, be a lightest edge in §(u) with respect to w. Then,

{ew | w € U} is a perfect matching in G.
2. For each v € V, let e, be a heaviest edge in §(v) with respect to w. Then,

{ev | v € V'} is a perfect matching in G.
Proof. Let By = {FF C E | |[FNdé(u)| = 1foranyu € U} and By = {F C
E | |FNné(v)| =1forany v € V}. By definition, (EF,B;) and (E,Bz) are partition
matroids, and hence they are strongly base orderable matroids. Since Conjecture 2.3
holds for strongly base orderable matroids and B; N By is the set of perfect matchings
in GG, we obtain the corollary. ]

5. Reduction from the weighted case to the unweighted case. In this
section, we show that the weighted problem can be reduced to the unweighted one,
and prove Theorem 1.7.

Proof. Since Conjectures 1.2 and 2.3 are equivalent, it suffices to show that Con-
jecture 1.6 is true by assuming that Conjecture 2.3 is true.

Suppose that we are given M; = (5,B;) and w; : S — R for i € {1,2} as in
Conjecture 1.6. We first consider the problem of finding a maximum weight common
basis of M; and M with respect to wq —we, where M3 = (.9, B3) is the dual matroid
of Ms. By Theorem 2.2, there exist two functions ¢; : S — R and ¢5 : S — R with
q1 + g2 = w1 — weo such that

(5.1) argmax (w1 (X) —wq (X)) = (argmaqu(X)> N (arg maqu(X)>.
X €E€BNB; XeB, XeB;
Define B, = arg maxy g, ¢1(X) and By = arg maxx gy g2(X). Then, it is known
that M; = (S, 5;) is also a matroid for i € {1,2} (see [13]). By (5.1), we obtain

(5.2) arg max (wy (X) — wo (X)) = By N Bo.
XeBinB;

This together with By N B # () shows that BN B = (), and hence M; and M, satisfy
the assumptions in Conjecture 2.3. Therefore, by assuming that Conjecture 2.3 is
true, there exists a function p: S — R satisfying the following conditions:

(a) For any By € argminy g p(X), it holds that By € Bs.

(b) For any B € argmaxy ;. p(X), it holds that By € B,.

Let § := min{|¢;(X) —¢@Y)| | i € {1,2}, X, Y C S, ¢;(X) # ¢:(Y)}, and let
¢ be a positive number such that ¢ - [(X)| < §/2 for any X C S. We now show
that p := w1 — q1 + € - p satisfies the requirements of Conjecture 1.6. Let By be a
set in argmax yp, (w1 (X) —p(X)) = argmaxycp, (¢1(X) — - p(X)). Since —6/2 <
€-p(X) < /2 for any X C 5, we have that By € argmaxycp, ¢1(X) = B, and
By € argminyp p(X). Then (a) shows that By € Bs,. Therefore,

By € By N By = argmax (wy (X) — wo (X))
XeBiNB3

= argmax (w1 (X) + wa(S\ X))
XeBiNB;
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holds by (5.2), which means that p satisfies the first requirement in Conjecture 1.6.
Similarly, let By be a set in

arg max(wy(X) — p(X)) = argmax(—gz(X) — e - p(X))
XeBs XeBs

— argmax(qx(5\ X) + = - 58\ X)).
XeBs

This shows that S\ By € argmaxycp: ¢2(X) = By and S\ B, € arg maxy 5 P(X).
Then (b) shows that S\ By € B;. Therefore,

S\ By € By N By = argmax (w1 (X) — wa(X))
XeBiNB3

= arg max (w1 (X) + w2(S\ X))
XeBiNB3

holds by (5.2), which means that p satisfies the second requirement in Conjecture 1.6.
Therefore, Conjecture 1.6 is true if Conjecture 2.3 is true. 0

Remark 5.1. Algorithmically, if we can compute p, then we can compute p effi-
ciently as follows. Since w; and wsy are rational-valued when they are given as a part
of input, by multiplying by the common denominator, we may assume that w; and
wy are integral. Then, we can take ¢; and g2 so that they are integral [17]. Therefore,
we have that 0 > 1, and hence € := 1/(14+ 23 ¢ |p(s)|) satisfies the conditions in
the proof. This shows that we can compute p :=w; —¢1 +¢ - p.

By Theorem 1.7, we obtain Corollaries 1.8 and 1.9 as follows. In the proof of
Theorem 1.7, we consider Conjecture 2.3 for matroids M; = (S, B;), where B; =
argmaxycp, q1(X) and By = argmaxycp; g2(X). Observe that if M; is a partition

matroid, then so is M}. Furthermore, Lemma 2.5 shows that if M; is strongly base
orderable, then so is M;. Since Theorems 1.3 and 1.4 imply that Conjecture 2.3 also
holds for these cases, we obtain Corollaries 1.8 and 1.9.

6. Gross substitutes valuations. In this section, we show that the reduc-
tion technique in section 5 works also for M?*-concave functions or, equivalently,
gross substitutes functions. Mf-concave functions are introduced by Murota and Sh-
ioura [30] and play a central role in the theory of discrete convex analysis. A function
f: 7% — RU{—o0} is said to be Mi-concave if it satisfies the following exchange
property:

(M*-EXC) Vz,y € domf, Vi € suppt(z —y), 3j € supp~ (z —y) U {0}:

fx)+ fly) < flz—xi +x5) + Fly+xi — x5),

where domf = {z € Z%|f(x) > —oo}, suppT(z) = {i € S | z(i) > 0}, supp™ (x) =
{i € S| (i) <0} for v € Z, x; is the characteristic vector of i € S, and xq is the
all-zero vector 0. When we consider a function f on {0,1}°, f can be regarded as a
function on Z° by setting f(z) = —oo for z € Z°\ {0,1}°. It is shown by Fujishige
and Yang [20] that a function f on {0,1}° is Mf-concave? if and only if it is a gross
substitutes function (see also [28, Theorem 6.34]). See survey papers [29,35] for more
details on M?-concave and gross substitutes functions. For a set Q C Z°, we define

4An Mb-concave function f with domf C {z € {0,1}% | z(S) = k} for some k € Zy is called a
valuated matroid in the literature.
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a function fo on Z% by fo(z) = 0if # € Q and fg(x) = —oo otherwise. We say
that a set Q C Z° is M'-convex if fo is an ME-concave function. It is known that
a set is MA-convex if and only if it is the set of integer points/vectors in an integral
g-polymatroid [18,19]. Let 1 denote the all-one vector in Z°.

We are interested in the existence of a pricing scheme for the two-buyer case with
gross substitutes valuations (or, equivalently, Mf-concave valuations), which is stated
as follows.

CONJECTURE 6.1. For i = 1,2, let v; : {0,1}% — RU {—0c0} be an M?-concave
function. Then, there exists a vector p € R® satisfying the following conditions:
1. Forzy € argmax,¢ g 13s (v1(z) —p-x), we have x1 € argmax,¢ g 1ys (v1(z) +
va(1 — x)).
2. For xy € argmax,¢ g1y (v2(2) —p- ), we have r2 € argmax, o 13s(v1(1—
) + va(x)).
In Conjecture 6.1, a set in S is represented by its characteristic vector. If buyer
i comes to a shop first, then she chooses an arbitrary set x; maximizing her utility
v;(x) — p - x. Then, the second buyer takes the set of all the remaining items whose
characteristic vector is 1 — x;. Conjecture 6.1 asserts that, regardless of the choice of
x;, this mechanism gives an allocation maximizing the social welfare.
As an unweighted version of this conjecture, we consider the following conjecture.

CONJECTURE 6.2. Fori = 1,2, let Q; C {0,1}° be an MP-conver set such that
there exist x1 € Q1 and xo € Qo with x1 +x2 = 1. Then, there exists a vector p € R®
satisfying the following conditions:

1. For z; € argmin,cq,, (p- ), we have 1 — 1 € Q2.
2. For xp € argmin, g, (p- x), we have 1 — x5 € Q1.

In Conjecture 6.2, each buyer ¢ has an admissible set @); instead of a valuation.
More precisely, each buyer ¢ wants to buy a set of items whose characteristic vector
x; belongs to a given MP-convex set Q;. We can easily see that Conjecture 6.2 is a
special case of Conjecture 6.1, in which v; = fg, for ¢ = 1,2. We now prove that the
reverse implication also holds, which means that Conjecture 6.1 can be reduced to
the unweighted case.

THEOREM 6.3. If Conjecture 6.2 is true, then Conjecture 6.1 is also true.

Proof. Let v3 : {0,1}° — RU{—00} be the function defined by vj(z) = vo(1 — )
for # € {0,1}%. Then, v} is also an M"-concave function. Consider the problem
of maximizing v;(z) 4+ vj(z) subject to = € {0,1}*. By the M-convex intersection
theorem (see [28, Theorem 8.17]), there exists a vector ¢ € R® such that

(6.1) argmax(vi(z)+v3(x)) = (arg max (v (z) —q-x)) N (arg max(vg(x)—&—q-x)).
z€{0,1}5 z€{0,1}5 z€{0,1}5

Define Q1 = argmax, o 13s(v1(z) — ¢+ x), Q3 = argmax ¢ g 135 (v3(x) + ¢ - ), and
Qy = {1 —x | 2 € Q5}. Then, it is known that @Q; and Q% are M%-convex sets
(see [28, Theorem 6.30(2)]), and so is Q2 (see [28, Theorem 6.13(2)]). By (6.1), we
obtain argmax,¢ (o 1ys(v1(z) +v3(2)) = Q1 N Q3. This shows that Q1 N Q3 # 0, and
hence 1 and @2 satisfy the assumptions in Conjecture 6.2. Therefore, by assuming
that Conjecture 6.2 is true, there exists a vector p € R satisfying the following
conditions:

(a) For any z; € argmin, g, (p- ), it holds that 1 —z; € Qa.

(b) For any x5 € argmin,cq, (p- ), it holds that 1 — x5 € Q1.
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Then, by the same argument as the proof of Theorem 1.7, p := ¢ + ¢ - p satisfies the
requirements in Conjecture 6.1, where ¢ is a sufficiently small positive number. O

Remark 6.4. In a market model, it is common to assume that each valuation v;
is monotone and v;(0) = 0. We note that these assumptions are not required in the
proof of Theorem 6.3. In return for this, the obtained price vector p is not necessarily
nonnegative.

We note that Conjecture 1.2 is a special case of Conjecture 6.1, as the character-
istic vectors of all the bases of a matroid form an M"-convex set. This relationship
supports the importance of Conjecture 1.2. It is unknown whether the converse im-
plication holds, i.e., we do not know whether Conjecture 1.2 implies Conjecture 6.1.

7. Conclusion. We considered the existence of prices that are capable of achiev-
ing optimal social welfare without a central tie-breaking coordinator. Although such
pricing looks similar to well-known Walrasian pricing, it is less understood even for
two-buyer markets with gross substitute valuations. This paper focuses on two-buyer
markets with matroid rank valuations, and we gave polynomial-time algorithms that
always find such prices when one of the matroids is a partition matroid or both ma-
troids are strongly base orderable. This result partially answers a question of Diitting
and Végh. However, deciding the existence of optimal dynamic prices for more than
two matroids remains an interesting open problem. We further formalized a weighted
variant of the conjecture of Diitting and Végh, and showed that the weighted variant
can be reduced to the unweighted one based on the weight-splitting theorem of Frank.
We also showed that a similar reduction technique works for M®-concave functions or,
equivalently, for gross substitutes functions.
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