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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS
VIA ALTERNATING CYCLES∗
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Abstract. Motivated by adjacency in perfect matching polytopes, we study the shortest recon-
figuration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest
sequence of perfect matchings which transforms one given perfect matching to another given perfect
matching such that the symmetric difference of each pair of consecutive perfect matchings is a single
cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching
polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite,
but it can be solved in polynomial time when the graph is outerplanar.
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1. Introduction. Combinatorial reconfiguration is a fundamental research sub-
ject that sheds light on solution spaces of combinatorial (search) problems and con-
nects various concepts, such as optimization, counting, enumeration, and sampling.
In its general form, combinatorial reconfiguration is concerned with properties of the
configuration space of a combinatorial problem. The configuration space of a combi-
natorial problem is often represented as a graph, but its size is usually exponential
in the instance size. Thus, algorithmic problems on combinatorial reconfiguration are
not trivial and require novel tools for resolution. For recent surveys, see [28, 15].

Two basic questions have been encountered in the study of combinatorial re-
configuration. The first question concerns the existence of a path between two given
solutions in the configuration space, namely, the reachability of the two solutions. The
second question concerns the shortest length of a path between two given solutions,
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1103
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Fig. 1. Two sequences of perfect matchings between M and N under the alternating cycle
model. The sequence ⟨M,M1,M2, N⟩ is shortest even though it touches the edge in M ∩ N twice.
On the other hand, ⟨M,M ′

1,M
′
2,M

′
3, N⟩ is not shortest, although it touches only the edges in M△N .

if it exists. The second question is usually referred to as a shortest reconfiguration
problem.

In this paper, we focus on reconfiguration problems of matchings, namely, sets
of independent edges. There are several ways of defining the configuration space for
matchings, and some of them have already been studied in the literature [16, 20, 14,
6, 4]. We will explain them in section 1.1.

We study yet another configuration space for matchings which we call the alter-
nating path/cycle model. The model is motivated by adjacency in matching poly-
topes, which we will see soon. In the model, we are given an undirected and un-
weighted graph G and also an integer k ≥ 0. The vertex set of the configuration
space consists of the matchings in G of size at least k. Two matchings M and N
in G are adjacent in the configuration space if and only if their symmetric difference
M△N := (M ∪N)\(M ∩N) is a single path or cycle. In particular, we are interested
in the case where k = |V (G)|/2, namely, the reconfiguration of perfect matchings. In
that case, the model is simplified to the alternating cycle model since M △N cannot
have a path. See Figure 1 as an example.

The reachability of two perfect matchings is trivial under the alternating cycle
model: The answer is always yes. This is because the symmetric difference of two
perfect matchings always consists of vertex-disjoint cycles. Therefore, we focus on the
shortest perfect matching reconfiguration under the alternating cycle model.

1.1. Related work.

Other configuration spaces for matchings. As mentioned, reconfiguration
problems of matchings have already been studied under different models [16, 20, 14, 6,
4]. These models chose more elementary changes as the adjacency on the configuration
space. Then the situation changes drastically under such models: even the reachability
of two matchings is not guaranteed.

Matching reconfiguration was initiated by the work of Ito et al. [16]. They pro-
posed the token addition/removal model of reconfiguration, in which we are also given
an integer k ≥ 0, and the vertex set of the configuration space consists of the match-
ings of size at least k.1 Two matchings M and N are adjacent if and only if they differ

1Precisely, their model is defined in a slightly different way, but it is essentially the same as this
definition.
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1104 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

in only one edge. Ito et al. [16] proved that the reachability of two given matchings
can be checked in polynomial time.

Another model of reconfiguration is token jumping, introduced by Kamiński et al.
[20]. In the token jumping model, we are also given an integer k ≥ 0, and the
vertex set of the configuration space consists of the matchings of size exactly k. Two
matchings M and N are adjacent if and only if they differ in only two edges. Kamiński
et al. [20, Theorem 1] proved that the token jumping model is equivalent to the token
addition/removal model when two given matchings have the same size. Thus, using
the result by Ito et al. [16], the reachability can be checked in polynomial time also
under the token jumping model [20, Corollary 2].

On the other hand, the shortest matching reconfiguration is known to be hard.
Gupta et al. [14] and Bousquet et al. [6] independently proved that the problem is
NP-hard under the token jumping model. Then the problem is also NP-hard under
the token addition/removal model because the shortest lengths are preserved under
the two models [20, Theorem 1].

Recently, Bonamy et al. [4] studied the reachability of two perfect matchings
under a model close to ours, namely, the alternating cycle model restricted to length
four. In the model, two perfect matchings M and N are adjacent if and only if
their symmetric difference M △N is a cycle of length four. Then the answer to the
reachability is not always yes, and Bonamy et al. [4] proved that the reachability
problem is PSPACE-complete under this restricted model.

Relation to matching polytopes. Our alternating cycle model (without any
restriction of cycle length) for the perfect matching reconfiguration is natural when we
see the connection with the simplex methods for linear optimization, or combinatorial
shortest paths of the graphs of convex polytopes.

In the combinatorial shortest path problem of a convex polytope, we are given a
convex polytope P , explicitly or implicitly, and two vertices v, w of P . Then we want
to find a shortest sequence u0, u1, . . . , ut of vertices of P such that u0 = v, ut = w
and uiui+1 forms an edge of P for every i = 0, 1, . . . , t − 1. Often, we are only in-
terested in the length of such a shortest sequence, and we are also interested in the
maximum shortest path length among all pairs of vertices, which is known as the
combinatorial diameter of the polytope P . The combinatorial diameter of a polytope
has attracted much attention in the optimization community from the motivation of
better understanding of simplex methods. Simplex methods for linear optimization
start at a vertex of the feasible region, follow edges, and arrive at an optimal vertex.
Therefore, the combinatorial diameter dictates the best-case behavior of such meth-
ods. The famous Hirsch conjecture states that every d-dimensional convex polytope
with n facets has the combinatorial diameter at most n− d. This has been disproved
by Santos [34], and the current best upper bound of (n−d)log2 O(d/ log d) for the combi-
natorial diameter was given by Sukegawa [35]. On the other hand, for 0/1-polytopes
(i.e., polytopes in which the coordinates of all vertices belong to {0, 1}), the Hirsch
conjecture holds [27].

The shortest perfect matching reconfiguration under the alternating cycle model
can be seen as the combinatorial shortest path problem of a perfect matching polytope.
The perfect matching polytope of a graph G is defined as follows. The polytope lives
in RE(G); namely, each coordinate corresponds to an edge of G. Each vertex v of the
polytope corresponds to a perfect matching M of G as ve = 1 if e ∈ M and ve = 0
if e ̸∈ M . The polytope is defined as the convex hull of those vertices. It is known
that two vertices u, v of the perfect matching polytope form an edge if and only if
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1105

the corresponding perfect matchings M,N have the property that M △ N contains
only one cycle [9]. This means that the graph of the perfect matching polytope
is exactly the configuration space for perfect matchings under the alternating cycle
model.

Further related work. As mentioned before, the matching reconfiguration has
been studied by several authors [16, 20, 14, 6, 4]. Extension to b-matchings has been
considered, too [26, 17].

Shortest reconfiguration has attracted considerable attention. Starting from an
old work on the 15-puzzle [32], we see the work on pancake sorting [8], triangula-
tions of point sets [22, 30] and simple polygons [2] under flip distances, and also
independent set reconfigurations [36], satisfiability reconfiguration [25], coloring re-
configuration [19], and token swapping problems [38, 24, 39, 5, 37, 21]. A tantalizing
open problem is to determine the complexity of computing the rotation distance of
two rooted binary trees (or equivalently the flip distance of two triangulations of a
convex polygon, or the combinatorial shortest path of an associahedron).

The computational aspect of the combinatorial shortest path problem on convex
polytopes is not well investigated. It is known that the combinatorial diameter is
hard to determine [11] even for fractional matching polytopes [33]. In the literature,
we find many papers on the adjacency of convex polytopes arising from combinatorial
optimization problems [13, 23, 3, 10]. Among others, Papadimitriou [29] proved that
determining whether two given vertices are adjacent in a traveling salesman polytope
is coNP-complete. This implies that computing the combinatorial shortest path be-
tween two vertices of a traveling salesman polytope is NP-hard. However, to the best
of the authors’ knowledge, all known combinatorial polytopes with such adjacency
hardness stem from NP-hard combinatorial optimization problems, and the associ-
ated polytopes have exponentially many facets. We also point out the work on a
randomized algorithm to compute a combinatorial “short” path [7].

1.2. Our contribution. To the best of the authors’ knowledge, known results
under different models do not have direct relations to our alternating cycle model
because their configuration spaces are different. In this paper, we thus investigate the
polynomial-time solvability of the shortest perfect matching reconfiguration under the
alternating cycle model. The results of our paper are twofold.

1. The shortest perfect matching reconfiguration under the alternating cycle
model can be solved in polynomial time if the input graph is outerplanar.

2. The shortest perfect matching reconfiguration under the alternating cycle
model is NP-hard even when the input graph is planar or bipartite.

Since outerplanar graphs form a natural and fundamental subclass of planar graphs,
our results exhibit a tractability border among planar graphs.

The hardness result for bipartite graphs implies that the computation of a com-
binatorial shortest path in a convex polytope is NP-hard even when an inequality
description is explicitly given. This is because a polynomial-size inequality descrip-
tion of the perfect matching polytope can be explicitly written down from a given
bipartite graph.

We point out that the hardness results have been independently obtained by
Aichholzer et al. [1]. Indeed, they proved the hardness for planar bipartite graphs
(i.e., an input graph is planar and bipartite).

Technical key points. Compared to recent algorithmic developments on reach-
ability problems, only a few polynomial-time solvable cases are known for shortest
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1106 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

reconfiguration problems. We now explain two technical key points, especially for
algorithmic results on shortest reconfiguration problems.

The first point is the symmetric difference of two given solutions. Under sev-
eral known models (not only for matchings) that employ elementary changes as
the adjacency on the configuration space, the symmetric difference gives a (good)
lower bound on the shortest reconfiguration. This is because any reconfiguration se-
quence (i.e., a path in the configuration space) between two given solutions must
touch all elements in their symmetric difference at least once. For example, in
Figure 1, the symmetric difference of two perfect matchings M and N consists of
16 edges, and hence it gives the lower bound of 16/4 = 4 under the alternating
cycle model restricted to length four [4]. In such a case, if we can find a reconfig-
uration sequence touching only the elements in the symmetric difference (e.g., the
sequence ⟨M,M ′

1,M
′
2,M

′
3, N⟩ in Figure 1), then it is automatically the shortest un-

der that model. However, this useful property does not hold under our alternat-
ing cycle model because the length of an alternating cycle for reconfiguration is not
fixed.

The second point is the characterization of unhappy moves that touch elements
contained commonly in two given solutions. For example, the shortest reconfiguration
sequence ⟨M,M1,M2, N⟩ in Figure 1 has an unhappy move since it touches the edge
in M ∩N twice. In general, analyzing a shortest reconfiguration becomes much more
difficult if such unhappy moves are required. A well-known example is the (general-
ized) 15-puzzle [32], in which the reachability can be determined in polynomial time,
while the shortest reconfiguration is NP-hard. As illustrated in Figure 1, the shortest
perfect matching reconfiguration requires unhappy moves even for outerplanar graphs,
and hence we need to characterize the unhappy moves to develop a polynomial-time
algorithm.

2. Problem definition. In this paper, a graph always refers to an undirected
graph that might have parallel edges and does not have loops. For a graph G, we
denote by V (G) and E(G) the vertex set and edge set of G, respectively. An edge
subset M ⊆ E is called a matching in G if no two edges in M share the end vertices.
A matching M is perfect if |M | = |V (G)|/2.

A graph is planar if it can be drawn on the plane without edge crossing. Such a
drawing is called a plane drawing of the planar graph. A face of a plane drawing is a
maximal region of the plane that contains no point used in the drawing. There is a
unique unbounded face which is called the outer face. A planar graph is outerplanar
if it has an outerplane drawing, i.e., a plane drawing in which all vertices are incident
to the outer face.

For a matching M in a graph G, a cycle C in G is called M -alternating if edges
in M and E(G) \M alternate in C. We identify a cycle with its edge set to simplify
the notation. We say that two perfect matchings M and N are reachable (under
the alternating cycle model) if there exists a sequence ⟨M0,M1, . . . ,Mt⟩ of perfect
matchings in G such that

(i) M0 = M and Mt = N ;
(ii) Mi = Mi−1 △ Ci for some Mi−1-alternating cycle Ci for each i = 1, . . . , t.

Such a sequence is called a reconfiguration sequence between M and N , and its length
is defined as t.

For two perfect matchings M and N , the subgraph M △ N consists of disjoint
M -alternating cycles C1, . . . , Ct. Thus, it is clear that M and N are always reachable
for any two perfect matchings M and N by setting Mi = Mi−1△Ci for i = 1, . . . , t. In
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1107

this paper, we are interested in finding a shortest reconfiguration sequence of perfect
matchings. That is, the problem is defined as follows:

Shortest Perfect Matching Reconfiguration
Input: A graph G and two perfect matchings M and N in G
Find: A shortest reconfiguration sequence between M and N .

We denote by a tuple I = (G,M,N) an instance of Shortest Perfect Matching
Reconfiguration. Also, we denote by OPT(I) the length of a shortest reconfigu-
ration sequence of an instance I. We note that it may happen that OPT(I) is much
shorter than the number of disjoint M -alternating cycles in M △N (see Figure 1).

3. Polynomial-time algorithm for outerplanar graphs. In this section, we
prove that there exists a polynomial-time algorithm for Shortest Perfect Match-
ing Reconfiguration on an outerplanar graph as follows.

Theorem 3.1. Shortest Perfect Matching Reconfiguration on outer-
planar graphs G can be solved in O(|V (G)|5) time.

We give such an algorithm in this section. Let I = (G,M,N) be an instance of
the problem such that G = (V,E) is an outerplanar graph. We first observe that it
suffices to consider the case when G is 2-connected.

Lemma 3.2. Let I = (G,M,N) be an instance of Shortest Perfect Match-
ing Reconfiguration and G1, . . . , Gp be the 2-connected components of G. Fur-
thermore, for every i = 1, . . . , p, let Ii = (Gi,M ∩ E(Gi), N ∩ E(Gi)) be an in-
stance of Shortest Perfect Matching Reconfiguration. Then OPT(I) =∑p

i=1 OPT(Ii).

Proof. Let G1, . . . , Gp be 2-connected components in G. Then, since any M ′-
alternating cycle is contained in some Gi for a perfect matching M ′ of G, it suffices
to solve the problem for each Gi. Specifically, it holds that OPT(I) =

∑p
i=1 OPT(Ii),

where Ii = (Gi,M ∩ E(Gi), N ∩ E(Gi)).

Since the 2-connected components of a graph can be found in linear time, the
reduction to 2-connected outerplanar graphs can be done in linear time, too.

We fix an outerplane drawing of a given 2-connected outerplanar graph G and
identify G with the drawing for the sake of convenience. We denote by Cout the outer
face boundary. Then Cout is a cycle since G is 2-connected. We denote the set of the
inner edges of G by Ein = E \ Cout. In other words, Ein is the set of chords of Cout.

3.1. Technical highlight. As mentioned in the introduction, two technical re-
sults are required to develop a polynomial-time algorithm for Shortest Perfect
Matching Reconfiguration: a lower bound on the length of a shortest reconfig-
uration sequence and the characterization of unhappy moves. We here explain our
ideas roughly and will give detailed descriptions in the next subsections.

Since G is planar, we can define its “dual-like” graph G∗. Then G∗ forms a
tree since G is outerplanar and 2-connected. (The definition of G∗ will be given in
section 3.2, and an example is given in Figure 2.) We make a correspondence between
an edge in G∗ and a set of edges in G. Then we will define the length ℓ(e∗) of each
edge e∗ in G∗ so that it represents the “gap” between M and N when we are restricted
to the edges in the corresponding set of e∗. It is important to notice that any cycle C
in G corresponds to a subtree of G∗, and vice versa. Indeed, we focus on a cut C∗ of
G∗ clipping the subtree from G∗, that is, the set of edges in G∗ leaving the subtree.
If we apply an M -alternating cycle C to a perfect matching M of G, then it changes
lengths ℓ(e∗) of the edges e∗ in the corresponding cut C∗.
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1108 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

For our algorithm, we need a (good) lower bound for the length of a shortest
reconfiguration sequence between two given perfect matchings M and N . Recall that
|M △N | does not give a good lower bound under the alternating cycle model. This
is because we can take a cycle of an arbitrary (non-fixed) length, and hence |M △N |
can decrease drastically by only a single alternating cycle. Furthermore, no matter
how we define the length ℓ(e∗) of each edge e∗ in G∗, the total length of all edges in
G∗ does not give a good lower bound. This is because a cycle C of nonfixed length in
G may correspond to a cut C∗ having many edges in G∗, and hence it can change the
total length drastically. Our key idea is to focus on the total length of each path in
G∗; that is, we take the diameter of G∗ (with respect to length ℓ) as a lower bound.
Then, because G∗ is a tree, any path in G∗ can contain at most two edges from the
corresponding cut C∗. Therefore, regardless of the cycle length, the diameter of G∗

can be changed by only these two edges. By carefully setting the length ℓ(e∗) as in
(1), we will prove that the diameter of G∗ is not only a lower bound but indeed gives
the shortest length under the assumption that Ein ∩M ∩N is empty. Therefore, the
real difficulty arises when Ein ∩M ∩N is not empty.

In the latter case, we will characterize the unhappy moves. Assume that we know
the set F ⊆ Ein ∩M ∩N of chords that are not touched in a shortest reconfiguration
sequence between M and N ; in other words, all chords in (Ein ∩M ∩N) \F must be
touched for unhappy moves in that sequence. Then we subdivide a given outerplanar
graph G into subgraphs G1, . . . , G|F |+1 along the chords in F . Notice that each edge in
F appears on the outer face boundaries in two of these subgraphs. Furthermore, each
chord e in these subgraphs satisfies e ∈ (Ein∩M ∩N)\F if e ∈ M ∩N . Therefore, all
chords in these subgraphs are touched for unhappy moves as long as they are in M∩N .
Under this assumption, we will prove that the diameter of G∗

i gives the shortest length
of a reconfiguration sequence between M ∩E(Gi) and N ∩E(Gi). Thus, we can solve
the problem in polynomial time if we know F , which yields a shortest reconfiguration
sequence between M and N . Finally, to find such a set F of chords, we construct a
polynomial-time algorithm which employs a dynamic programming method along the
tree G∗.

3.2. Preliminaries: Constructing a dual graph. Let I = (G,M,N) be
an instance of Shortest Perfect Matching Reconfiguration such that G is
a 2-connected outerplanar graph. Since G is planar, we can define the dual of G.
In fact, we here construct a graph G∗ obtained from the dual by applying a slight
modification as follows. The construction is illustrated in Figure 2. Let V ∗ be the set
of faces (without the outer face) of G. For a face v∗ ∈ V ∗, let Ev∗ ⊆ E(G) be the set
of edges around v∗. We denote the set of faces touching the outer face by U∗, i.e.,
U∗ = {v∗ ∈ V ∗ | Ev∗ ∩Cout ̸= ∅}. We make a copy of U∗, denoted by Ũ∗. We set the
vertex set of G∗ to be V ∗ ∪ Ũ∗. For v∗, w∗ in V ∗, an edge v∗w∗ in G∗ exists if and
only if the faces v∗ and w∗ share an edge in Ein, i.e., |Ev∗ ∩ Ew∗ | = 1. Also, G∗ has
an edge between u∗ and ũ∗ for every u∗ ∈ U∗, where ũ∗ ∈ Ũ∗ is the copy of u∗. Thus
the edge set of G∗ is given by

E(G∗) = {v∗w∗ | v∗, w∗ ∈ V ∗, |Ev∗ ∩ Ew∗ | = 1} ∪ {u∗ũ∗ | u∗ ∈ U∗}.

The first part is denoted by E∗
in, and the second part is denoted by Ẽ∗. We observe

that G∗ is a tree since G is 2-connected and outerplanar. A face of G that touches
only one face (other than the outer face) is called a leaf in G∗ − Ũ∗. We note that
there is a one-to-one correspondence between edges in Ein of G and E∗

in of G∗. Thus,
for each e ∈ Ein, we denote by e∗ the corresponding edge in E∗

in, and vice versa. We
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1109

(a) G and M. (b) G and N. (c) G*.

Fig. 2. The construction of G∗ and the length function ℓ. In (c), the edge lengths are depicted
by different styles: Thick solid lines represent edges of length two, thin solid lines represent edges of
length one, and dotted lines represent edges of length zero.

extend this correspondence to Ẽ∗; that is, u∗ũ∗ ∈ Ẽ∗ corresponds to the edge set
Eu∗ ∩ Cout for u∗ ∈ U∗, and vice versa.

It follows from the duality that there is a relationship between a cut in G∗ and a
cycle in G. Suppose that we are given a cycle C in G. Then, since G is outerplanar,
the cycle C surrounds a set X∗ of faces such that X∗ does not have the outer face.
The set X∗ induces a connected graph (subtree) in G∗, and the set of edges leaving
from X∗ yields a cut C∗ = {e∗ = v∗w∗ | v∗ ∈ X∗, w∗ ∈ V (G∗) \X∗}. Conversely, let
X∗ ⊆ V ∗ be a vertex subset of G∗ such that the subgraph induced by X∗ is connected.
Then the set of edges leaving from X∗ yields a cut C∗ in G∗, which corresponds to a
cycle in G.

We classify faces in U∗ into two groups. For a face u∗ in U∗, the edge set Eu∗∩Cout

forms a family Pu∗ of disjoint paths. Since M and N are perfect matchings, each path
P in Pu∗ is both M -alternating and N -alternating. In addition, P satisfies either

(i) E(P ) ⊆ M △N or
(ii) (M △N) ∩ E(P ) = ∅.

Furthermore, we observe that either (i) holds for every path P in Pu∗ or (ii) holds for
every path P in Pu∗ . Indeed, since M △ N consists of disjoint cycles, if some path
P in Pu∗ satisfies (i), then P is included in a cycle C in M △ N that separates u∗

from the outer face. Since the other paths in Pu∗ touch the outer face, they are on C.
Thus, every path satisfies (i), which shows the observation. We divide U∗ into two
groups U∗

1 and U∗
2 , where each face in U∗

1 satisfies (i) for every path, while each face
in U∗

2 satisfies (ii) for every path.
For an edge e∗ in E(G∗), we define the length ℓ(e∗) to be

(1) ℓ(e∗) =


|M ∩ {e}|+ |N ∩ {e}| if e∗ ∈ E∗

in;

1 if e∗ = u∗ũ∗ ∈ Ẽ∗ such that u∗ ∈ U∗
1 ;

0 if e∗ = u∗ũ∗ ∈ Ẽ∗ such that u∗ ∈ U∗
2 .

See Figure 2 for an example. Let ℓ(u∗, v∗) be the length of the (unique) path from u∗

to v∗ in G∗. We define the gap between M and N in the graph G as the diameter of
G∗; that is, we define

gap(I) = max{ℓ(u∗, v∗) | u∗, v∗ ∈ V (G∗)}.

This value is simply denoted by gap(M,N) if G is clear from the context.

3.3. Characterization for the disjoint case. Let I = (G,M,N) be an in-
stance of Shortest Perfect Matching Reconfiguration such that G is a 2-
connected outerplanar graph. In this subsection, we show that if Ein ∩ M ∩ N is
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1110 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

empty, we can characterize the optimal value with gap(I), which leads to a simple
polynomial-time algorithm for this case. We note that if Ein ∩M ∩N is empty, then
no edge in Ein belongs to both M and N , and hence ℓ(e∗) can only take values 0 or 1.

Lemma 3.3. It holds that gap(M,N) is even.

Proof. Consider a path P ∗ whose length is equal to gap(M,N) in G∗. We may
assume that the end vertices of P ∗ are in Ũ∗, as otherwise we can extend the path to
some vertex in Ũ∗ without decreasing the length. Let ũ, ṽ ∈ Ũ∗ be the end vertices
of P ∗. This means that the faces u and v touch the outer face. Take arbitrary edges
eu ∈ Eu ∩ Cout and ev ∈ Ev ∩ Cout. Then (P ∩ Ein) ∪ {eu, ev} forms a cut C in G
by the duality. By the definition of ℓ, for w ∈ {u, v}, it holds that ℓ(w, w̃) = 0 if and
only if |M ∩ {ew}| = |N ∩ {ew}|. Hence, the parity of

∑
e∗∈E(P∗) ℓ(e

∗) is the same
as that of |M ∩ C| + |N ∩ C|. Since M and N are perfect matchings, the parities of
|M ∩ C| and |N ∩ C| are the same. Therefore, |M ∩ C| + |N ∩ C| is even, and thus
gap(M,N) is also even.

A main theorem of this subsection is to give a characterization of the optimal
value with gap(M,N).

Theorem 3.4. Let I = (G,M,N) be an instance of Shortest Perfect Match-
ing Reconfiguration such that G is a 2-connected outerplanar graph. If Ein∩M∩N
is empty, then it holds that OPT(I) = gap(M,N)/2.

Proof. To show the theorem, we first prove the following claim.

Claim 1. For any M -alternating cycle C, it holds that

gap(M,N) ≤ gap(M △ C,N) + 2.

Proof of Claim 1. By the duality, the cycle C in G corresponds to a cut C∗ in
G∗ such that the inside is connected. Such a cut intersects with any path in G∗ at
most twice, as G∗ is a tree, and only the intersected edges can change the length by
one. Therefore, the distance can be decreased by at most 2.

Consider a shortest reconfiguration sequence ⟨M0,M1, . . . ,Mt⟩ from M0 = M to
Mt = N . Then t = OPT(I). For each i = 1, . . . , t, it then holds that gap(Mi−1, N) ≤
gap(Mi, N) + 2. By repeatedly applying the above inequalities, we obtain

gap(M,N) = gap(M0, N) ≤ gap(Mt, N) + 2t = 2t = 2OPT(I)

since gap(Mt, N) = 0. Hence, it holds that OPT(I) ≥ gap(M,N)/2.
It remains to show that OPT(I) ≤ gap(M,N)/2. We prove the following claim.

Claim 2. There exists an M -alternating cycle C such that

(2) gap(M,N) = gap(M △ C,N) + 2.

Proof of Claim 2. We prove the claim by induction on the number of edges.
We first observe that we may assume that Ein \ (M ∪ N) = ∅. Otherwise, we

can just delete all the edges in Ein \ (M ∪ N) and apply the induction to find an
M -alternating cycle C that satisfies (2) for the modified graph. Since the deleted
edges are neither in M nor in N , by (1) the deletion does not change the gap. Thus,
C is a desired cycle in G as well. Therefore, we may assume that all the edges in E∗

in

have length one.
In addition, we may assume that any leaf u∗ in G∗ − Ũ∗ belongs to U∗

1 . In other
words, M and N are distinct in Eu∗ ∩ Cout. Indeed, suppose that there exists a leaf
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1111

X∗
r∗

Ẽ∗

M∗

(b) (c) (d)(a)

Fig. 3. Illustration of the proof of Claim 2. (a) The perfect matching M is shown in bold red.
(b) The perfect matching N is shown in bold blue. (c) The graph G∗. (d) The center r and the
chosen set X∗.

u∗ in U∗
2 . Then ℓ(u∗, ũ∗) = 0. Since any chord is in either M or N by the above

observation and the assumption that Ein ∩M ∩N = ∅, ℓ(u∗, v∗) = 1, where v∗ is the
unique neighbor to u∗ in G∗ − Ũ∗. We delete Eu∗ \Ein from G, M , and N and then
delete all the isolated vertices. We denote the obtained graph by G′. This corresponds
to deleting the leaf u∗ with ũ∗ from G∗ and adding ṽ∗ to G∗ if necessary. We can see
that, in the modified graph (G′)∗, we have ℓ(v∗, ṽ∗) = 1, as Eu∗ ∩Ev∗ is in either M
or N . Hence, this deletion preserves gap(M,N). We then apply the induction to G′

to find an M -alternating cycle C that satisfies (2). This cycle is a desired one in G.
Thus, we may assume that any leaf u∗ in G∗ − Ũ∗ belongs to U∗

1 .
Since gap(M,N) is even by Lemma 3.3, we have gap(M,N) = 2d for some positive

integer d. Let u∗
1, u

∗
2 ∈ V (G∗) be a pair of vertices such that ℓ(u∗

1, u
∗
2) = gap(M,N) =

2d, and let r∗ ∈ V ∗ be the middle point of the unique u∗
1-u∗

2 path in G∗. Note that
such r∗ always exists because ℓ(u∗

1, u
∗
2) is even and all the edges in G∗ have length

one. By the maximality of ℓ(u∗
1, u

∗
2), for every v∗ ∈ V (G∗), the r∗-v∗ path has length

at most d. Let X∗ ⊆ V ∗ be a minimal vertex subset of G∗ such that
• r∗ ∈ X∗;
• the subgraph induced by X∗ is connected in G∗;
• the cut C∗ = {e∗ = u∗v∗ | u∗ ∈ X∗, v∗ ∈ V (G∗) \ X∗} has only edges in
M∗ ∪ Ẽ∗, where M∗ = {e∗ ∈ E∗

in | e ∈ M ∩Ein}. Note that C∗ may contain
edges in Ẽ∗, whereas M∗ is defined as a subset of E∗

in.
Such X∗ always exists, as V ∗ satisfies all the conditions. The cut C∗ corresponds to
a cycle C in G. An example is given in Figure 3.

We claim that C is M -alternating. Assume not. Then there exist two consecutive
edges e = uv, e′ = vw in C such that e, e′ ̸∈ M , which implies that e, e′ ∈ Cout as
E(C∗) ⊆ M∗ ∪ Ẽ∗. Since M is a perfect matching, the vertex v is incident to another
edge f in M . Since G is 2-connected and outerplanar, f is a chord of C. However, this
contradicts that X∗ was chosen to be minimal. Thus, C is an M -alternating cycle.

Consider taking M △C. Let ℓ′ be the length defined by (1) with M △C and N .
It follows that, for an edge e∗ ∈ E(G∗),

ℓ′(e∗) =

{
ℓ(e∗) if e∗ ̸∈ C∗,

1− ℓ(e∗) if e∗ ∈ C∗.

We will show that, for any vertex ṽ∗ in Ũ∗, we have ℓ′(r∗, ṽ∗) ≤ d − 1. This proves
the claim, as, for any two vertices ũ∗, ṽ∗ in Ũ∗, it holds that

ℓ′(ũ∗, ṽ∗) ≤ ℓ′(r∗, ũ∗) + ℓ′(r∗, ṽ∗) ≤ 2d− 2.

Since r∗ ∈ X∗ and no vertex in Ũ∗ is in X∗, the r∗-ṽ∗ path P intersects with
C∗ exactly once. Hence, the length of P is changed by 1 by taking M △ C. So, if
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1112 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

(a) G and E′
in = {e1, e2}. (b) G1, G2, G3 when F = E′

in.

e1 e2

(c) G1, G2 when F = {e2}.

Fig. 4. Decomposition of the outerplanar graph in Figure 2. The edges in E′
in are shown with

bold lines.

ℓ(r∗, ṽ∗) ≤ d − 2, then ℓ′(r∗, ṽ∗) ≤ d − 1. Thus, it suffices to consider the case when
ℓ(r∗, ṽ∗) ≥ d− 1, i.e., ℓ(r∗, ṽ∗) = d− 1 or d.

Assume that ℓ(v∗, ṽ∗) = 0, which implies that v∗ ∈ U∗
2 , and hence v∗ is not a

leaf in G∗ − Ũ∗. In this case, there exists a leaf u∗ in G∗ − Ũ∗ such that ℓ(r∗, u∗) ≥
ℓ(r∗, v∗) + 1. Since u∗ ∈ U∗

1 , we obtain

ℓ(r∗, ũ∗) = ℓ(r∗, u∗) + 1 ≥ ℓ(r∗, v∗) + 2 = ℓ(r∗, ṽ∗) + 2 ≥ d+ 1,

which is a contradiction.
Thus, we may assume that ℓ(v∗, ṽ∗) = 1. If the r∗-ṽ∗ path P intersects C∗ ∩M∗,

then the intersected cut edge has length one, and hence we see that ℓ′(r∗, ṽ∗) =
ℓ(r∗, ṽ∗) − 1 ≤ d − 1. Otherwise, that is, if P intersects with C∗ ∩ Ẽ∗, then the
intersected cut edge is (v∗, ṽ∗), and hence ℓ′(r∗, ṽ∗) = ℓ(r∗, ṽ∗) − 1 ≤ d − 1. Thus,
ℓ′(r∗, ṽ∗) ≤ d− 1 in each case.

For a perfect matching Mi−1 in G, it follows from Claim 2 that there exists an
Mi−1-alternating cycle Ci such that gap(Mi−1, N) = gap(Mi−1 △ Ci, N) + 2. Define
Mi = Mi−1△Ci, and repeat finding an alternating cycle satisfying the above equation.
The repetition ends when gap(Mi, N) = 0, which means that Mi = N . The number of
repetitions is equal to gap(M,N)/2, and therefore we have OPT(I) ≤ gap(M,N)/2.
Thus, the proof is complete.

3.4. General case. Let I = (G,M,N) be an instance of Shortest Perfect
Matching Reconfiguration such that G is a 2-connected outerplanar graph. De-
fine E′

in = Ein ∩M ∩N . In this subsection, we deal with the general case; that is, E′
in

is not necessarily empty. Then there is a case when changing an edge in E′
in reduces

the number of reconfiguration steps as in Figure 1. We call such a move an unhappy
move. The key idea of our algorithm is to detect a set of edges necessary for unhappy
moves.

Since G is outerplanar and 2-connected, any F ⊆ E′
in divides the inner region

of Cout into |F | + 1 parts R1, . . . , R|F |+1. For each i = 1, . . . , |F | + 1, let Gi be
the subgraph of G consisting of all the vertices and the edges in Ri and its boundary.
Thus, each edge e ∈ F appears on the outer face boundaries in two of these subgraphs.
See Figure 4. Let GF = {G1, . . . , G|F |+1}. Note that each graph in GF is outerplanar
and 2-connected. For each H ∈ GF , let IH = (H,M ∩ E(H), N ∩ E(H)). We now
show the following theorem.

Theorem 3.5. OPT(I) =
1

2
min

F⊆E′
in

∑
H∈GF

gap(IH).D
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SHORTEST RECONFIGURATION OF PERFECT MATCHINGS 1113

Proof. Let ⟨M0,M1, . . . ,Mt⟩ be a shortest reconfiguration sequence from M0 = M
to Mt = N . We denote by Ci the Mi−1-alternating cycle with Mi = Mi−1△Ci. Define

Fopt = {e ∈ E′
in | e ̸∈ Ci ∀i},

which is the set of edges in E′
in that are not touched in the shortest reconfiguration

sequence; in other words, all edges in E′
in \ Fopt are touched for unhappy moves in

the sequence. Then Ci is contained in some H ∈ GFopt
because Fopt ⊆ Mi−1, Ci

is an Mi−1-alternating cycle, and Ci ∩ Fopt = ∅. Thus, Ci can be used to obtain a
reconfiguration sequence from M ∩ E(H) to N ∩ E(H) in H. Therefore, we have

(3) OPT(I) =
∑

H∈GFopt

OPT(IH).

We can also see that

(4) OPT(I) ≤
∑

H∈GF

OPT(IH)

for any F ⊆ E′
in.

To evaluate OPT(IH) for H ∈ GF , we slightly modify the instance IH by replacing
every inner edge of H contained in M ∩ N by two parallel edges each in M and N ,
respectively. The obtained graph is denoted by H ′, and the corresponding instance
is denoted by IH′ . Since a reconfiguration sequence for IH′ can be converted to one
for IH (by identifying the parallel edges), it holds that OPT(IH) ≤ OPT(IH′), and
hence

(5) OPT(I) ≤
∑

H∈GF

OPT(IH) ≤
∑

H∈GF

OPT(IH′)

holds for any F ⊆ E′
in by (4). Moreover, by the definition of Fopt, there exists an

index i such that e ∈ Ci for any e ∈ E′
in \Fopt. Therefore, for H ∈ GFopt

, the shortest
reconfiguration sequence for IH can be converted to a reconfiguration sequence for
IH′ . Thus, OPT(IH) ≥ OPT(IH′) holds for H ∈ GFopt , and hence

(6) OPT(I) =
∑

H∈GFopt

OPT(IH) ≥
∑

H∈GFopt

OPT(IH′)

by (3). By (5) and (6), we obtain

(7) OPT(I) = min
F⊆E′

in

∑
H∈GF

OPT(IH′),

and Fopt is a minimizer of the right-hand side.
By (7) and Theorem 3.4, we obtain

(8) OPT(I) =
1

2
min

F⊆E′
in

∑
H∈GF

gap(IH′)

because each IH′ satisfies the condition in Theorem 3.4. Since (H ′)∗ is obtained from
H∗ by subdividing some edges of length two into two edges of length one, the diameter
of (H ′)∗ is equal to that of H∗; that is, gap(IH′) = gap(IH). Therefore, we obtain
the theorem by (8).
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1114 ITO, KAKIMURA, KAMIYAMA, KOBAYASHI, AND OKAMOTO

As an example, we apply this theorem to the instance in Figure 2. See Figure 4(c).
If F consists of only the right thick edge in Figure 2(c), then GF consists of two graphs
G1 and G2 such that gap(IG1

) = 6 and gap(IG2
) = 2. Since we can check that such

F attains the minimum in the right-hand side of Theorem 3.5, we obtain OPT(I) = 4
by Theorem 3.5.

In order to compute the value in Theorem 3.5 efficiently, we reduce the problem
to Min-Sum Diameter Decomposition, whose definition will be given later.

For F ⊆ E′
in, let F ∗ be the edge subset of E∗

in corresponding to F , and let
GF = {G1, . . . , G|F |+1}. Then G∗−F ∗ consists of |F |+1 components T1, T2, . . . , T|F |+1

such that Ti coincides with G∗
i (except that some edges of length zero are missing)

for i = 1, . . . , |F | + 1. In particular, for each i, we have gap(IGi) = max{ℓ(u∗, v∗) |
u∗, v∗ ∈ V (Ti)}, where ℓ is the length function on E(G∗) defined by the instance
I = (G,M,N). We call max{ℓ(u∗, v∗) | u∗, v∗ ∈ V (Ti)} the diameter of Ti, which is
denoted by diamℓ(Ti). Then Theorem 3.5 shows that

(9) OPT(I) =
1

2
min

F⊆E′
in

|F |+1∑
i=1

diamℓ(Ti).

Therefore, we can compute OPT(I) by solving the following problem in which T = G∗

and E0 = (E′
in)

∗.
Min-Sum Diameter Decomposition
Input: A tree T , an edge subset E0 ⊆ E(T ), and a length function ℓ : E(T ) →

Z≥0

Find: An edge set F ⊆ E0 that minimizes
∑

T ′ diamℓ(T
′), where the sum is

taken over all the components T ′ of T − F .
In the subsequent subsection, we show that Min-Sum Diameter Decomposi-

tion can be solved in time polynomial in |V (T )| and L :=
∑

e∈E(T ) ℓ(e).

Theorem 3.6. Min-Sum Diameter Decomposition can be solved in
O(|V (T )|L4) time, where L :=

∑
e∈E(T ) ℓ(e).

Since (9) shows that Shortest Perfect Matching Reconfiguration on
outerplanar graphs is reduced to Min-Sum Diameter Decomposition in which
L = O(|V (T )|), we obtain Theorem 3.1.

3.5. Algorithm for Min-Sum Diameter Decomposition. The remain-
ing task is to show Theorem 3.6, that is, to give an algorithm for Min-Sum Diameter
Decomposition that runs in O(|V (T )|L4) time. For this purpose, we adopt a dy-
namic programming approach.

We choose an arbitrary vertex r of a given tree T and regard T as a rooted tree
with the root r. For each vertex v of T , we denote by Tv the subtree of T , which
is rooted at v and is induced by all descendants of v in T (see Figure 5(a)). Thus,
T = Tr for the root r. Let w1, w2, . . . , wq be the children of v, ordered arbitrarily. For
each j ∈ {1, 2, . . . , q}, we denote by T j

v the subtree of T induced by {v} ∪ V (Tw1
) ∪

V (Tw2
) ∪ · · · ∪ V (Twj

). For example, in Figure 5(b), the subtree T j
v is surrounded

by a thick dotted rectangle. For notational convenience, we denote by T 0
v the tree

consisting of a single vertex v. Then Tv = T 0
v for each leaf v of T . Our algorithm

computes and extends partial solutions for subtrees T j
v from the leaves to the root r

of T by keeping the information required for computing (the sum of) diameters of a
partial solution.

We now define partial solutions for subtrees. For a subtree T j
v and an edge subset

F ′ ⊆ E0 ∩ E(T j
v ), the frontier for F ′ is the component (subtree) in T j

v − F ′ that
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･･･

･･･

･･･

･･･

wq

v

v

v

r

(a) T                                                     (b) Tv

wjw1

Tv

Tv
j

x : length of a longest path from v
y : diameter of the frontier

z : total diameter of 
    non-frontier components

(c) Tv
j

Fig. 5. (a) Subtree Tv in the whole tree T , (b) subtree T j
v in Tv, and (c) an (x, y, z)-separator

of T j
v .

contains the root v of T j
v . We sometimes call it the v-frontier for F ′ to emphasize

the root v. For three integers x, y, z ∈ {0, 1, . . . , L}, the edge subset F ′ is called an
(x, y, z)-separator of T j

v if the following three conditions hold (see also Figure 5(c)):
• x = max{ℓ(v, u) | u ∈ V (TF ′)}, where TF ′ is the v-frontier for F ′. That is,

the longest path from v to a vertex in TF ′ is of length x.
• y = diamℓ(TF ′). That is, y denotes the diameter of the v-frontier TF ′ for F ′.
• z =

∑
T ′ diamℓ(T

′), where the sum is taken over all the components T ′ of
(T − F ′) \ TF ′ .

Note that x ≤ y always holds for an (x, y, z)-separator of T j
v . We then define the

following function: For a subtree T j
v and two integers x, y ∈ {0, 1, . . . , L}, we let

f(T j
v ;x, y) = min

{
z | T j

v has an (x, y, z)-separator
}
.

Note that f(T j
v ;x, y) is defined as +∞ if T j

v does not have an (x, y, z)-separator for
any z ∈ {0, 1, . . . , L}. Then the optimal objective value to Min-Sum Diameter
Decomposition can be computed as min{y + f(T ;x, y) | x, y ∈ {0, 1, . . . , L}}.

For a given tree T , our algorithm computes f(T j
v ;x, y) for all possible triplets

(T j
v , x, y) from the leaves to the root r of T as follows.

Initialization. We first compute f(T 0
v ;x, y) for all vertices v ∈ V (T ) (including

internal vertices in T ). Recall that T 0
v consists of a single vertex v. Therefore, we

have

f(T 0
v ;x, y) =

{
0 if x = y = 0,

+∞ otherwise.

Notice that we have computed f(Tv;x, y) for all leaves v of T since Tv = T 0
v if v is a

leaf.

Update. We now consider the case where j ≥ 1. To compute f(T j
v ;x, y), we classify

(x, y, z)-separators of T j
v into the following two groups (a) and (b).

(a) The vertices v and wj are contained in the same component (see also Figure 6(a)).
In this case, the edge vwj is not deleted, and the v-frontier for an (x, y, z)-

separator of T j
v contains both v and wj . Therefore, we can obtain the v-frontier
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Twj
Tv

j Tv
j-1

vv

wjwj

Twj
Tv

j Tv
j-1

vv

wjwj

(a) (b) 

Fig. 6. (x, y, z)-separators of a subtree T j
v and their restrictions to subtrees T j−1

v and Twj .

for an (x, y, z)-separator of T j
v by merging the v-frontier for some (x′, y′, z′)-separator

of T j−1
v with the wj-frontier for some (x′′, y′′, z′′)-separator of Twj . Thus, we define

fa(T j
v ;x, y) := min

{
f(T j−1

v ;x′, y′) + f(Twj
;x′′, y′′)

}
,

where the minimum is taken over all integers x′, y′, x′′, y′′ ∈ {0, 1, . . . , L} such that
x = max{x′, x′′ + ℓ(vwj)} and y = max{y′, y′′, x′ + ℓ(vwj) + x′′}.

(b) The vertices v and wj are contained in different components (see also Figure 6(b)).
In this case, the edge vwj is deleted, and hence this case happens only when

vwj ∈ E0. Then the v-frontier for an (x, y, z)-separator of T j
v is the v-frontier for

some (x′, y′, z′)-separator of T j−1
v . Note that wj is contained in a nonfrontier com-

ponent for the (x, y, z)-separator of T j
v , but the component forms the wj-frontier for

some (x′′, y′′, z′′)-separator of Twj
, as illustrated in Figure 6(b). Thus, we need to

take the diameter of the wj-frontier into account when we compute f(T j
v ;x, y) from

f(T j−1
v ;x′, y′) and f(Twj

;x′′, y′′). Therefore, we define

fb(T j
v ;x, y) := min

{
f(T j−1

v ;x′, y′) + f(Twj
;x′′, y′′) + y′′

}
,

where the minimum is taken over all integers x′, y′, x′′, y′′ ∈ {0, 1, . . . , L} such that
x = x′ and y = y′.

Then we can compute f(T j
v ;x, y) as follows:

f(T j
v ;x, y) =

{
min

{
fa(T j

v ;x, y), f
b(T j

v ;x, y)
}

if vwj ∈ E0,

fa(T j
v ;x, y) otherwise.

Since x′, y′, x′′, y′′ ∈ {0, 1, . . . , L}, this update can be done in O(L4) time for each
subtree T j

v . The number of subtrees T j
v is equal to |V (T )| + |E(T )| = 2|V (T )| − 1.

Therefore, this algorithm runs in O(|V (T )|L4) time in total.
Note that we can easily modify the algorithm so that we obtain not only the

optimal value but also an optimal solution. This completes the proof of Theorem 3.6.
We note here that the algorithm can be modified so that the running time is

bounded by a polynomial in |V (T )| by replacing the domain {0, 1, . . . , L} of x and y
with D := {ℓ(u, v) | u, v ∈ V (T )}. This modification is valid because f(T j

v ;x, y) =
+∞ unless x, y ∈ D. Since |D| = O(|V (T )|2), the modified algorithm runs in
O(|V (T )||D|4) = O(|V (T )|9) time. Note that, although this bound is polynomial
only in |V (T )|, it is worse than O(|V (T )|L4) when L = O(|V (T )|).

4. NP-hardness for planar graphs and bipartite graphs. In this section,
we prove that Shortest Perfect Matching Reconfiguration is NP-hard even
when the input graph is planar or bipartite.
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Theorem 4.1. Shortest Perfect Matching Reconfiguration is NP-hard
even for planar graphs of maximum degree three.

We reduce the Hamiltonian Cycle Problem, which is known to be NP-
complete even when a given graph is 3-regular and planar [12].

Hamiltonian Cycle Problem
Input: A 3-regular planar graph H = (V,E)

Question: Decide whether H has a Hamiltonian cycle, i.e., a cycle that goes
through all the vertices exactly once.

Proof. Let H be a 3-regular planar graph, which is an instance of the Hamil-
tonian Cycle Problem. We assume that |V (H)| ≥ 3; otherwise, the problem is
trivial. For each vertex v ∈ V (H), we define a 8-vertex graph Dv (see also the top
right in Figure 7):

V (Dv) = {v1, v2, v3, v4, v5, v6, v7, v8},
E(Dv) = {v1v2, v2v3, v3v4, v4v1, v4v5, v5v7, v3v6, v6v8}.

The 4-cycle formed by v1, v2, v3, v4 is denoted by Cv.
We construct an instance I = (G,M,N) of our problem as follows (see Figure 7

as an example). We subdivide each edge e = uv in H twice, and the obtained vertices
are denoted by ue and ve, where ue is closer to u. Then, for each vertex v ∈ V (H),
we replace v with the graph Dv and connect v7 to v

e
(1)
v

and v
e
(2)
v

, v8 to v
e
(2)
v

and v
e
(3)
v

,

where e
(1)
v , e(2)v , e(3)v are edges incident to v and the order follows the plane drawing

of H. Let Ev = {v7ve(1)v
, v7ve(2)v

, v8ve(2)v
, v8ve(3)v

}. The resulting graph is denoted by
G; i.e., G is defined as follows:

V (G) =

 ⋃
v∈V (H)

V (Dv)

 ∪

 ⋃
e=uv∈E(H)

{ue, ve}

 ,

E(G) =

 ⋃
v∈V (H)

E(Dv) ∪ Ev

 ∪ {ueve | e ∈ E(H)}.

It follows that G is a planar graph of maximum degree three. Furthermore, we define
initial and target perfect matchings M and N in G, respectively, to be

M = {v1v2, v3v4, v5v7, v6v8 | v ∈ V (H)} ∪ {ueve | e ∈ E(H)},
N = {v1v4, v2v3, v5v7, v6v8 | v ∈ V (H)} ∪ {ueve | e ∈ E(H)}.

This completes the construction of our corresponding instance I = (G,M,N). The
construction can be done in polynomial time.

We then give the following claims. Recall that t∗ is the length of a shortest
reconfiguration sequence for the constructed instance I.

Claim 3. It holds that t∗ ≥ 2.

Proof of Claim 3. We observe that if t∗ = 1, then M△N must consist of a single
M -alternating cycle, but it is not true for our instance I. Thus, the length of a
reconfiguration sequence is at least two.

We remark that G has an M -alternating path from v
(x)
e to v

(y)
e for any x, y ∈

{1, 2, 3} with x ̸= y. This implies that, for a cycle C in H, there exists a corresponding
M -alternating cycle C ′ in G such that it goes through vertices of Dv for every v ∈
V (C) and edges ueve for every e ∈ E(C).
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e(1)

e(2)

e(3)

v1

v4
v5

v7

v2

v3
v6

v8

ve(1) ve(3)
ve(2)

v Dv

Fig. 7. Reduction for planar graphs of maximum degree three. Top left: a yes instance H of the
Hamiltonian Cycle Problem with a thick (green) Hamiltonian cycle. Top right: the constructed
fragment Dv. Bottom left: the initial perfect matching M (red). Bottom middle: the target perfect
matching N (blue). Bottom right: the perfect matching obtained as M △C, where C corresponds to
the Hamiltonian cycle of H.

Claim 4. If H has a Hamiltonian cycle C, then it holds that t∗ = 2.

Proof of Claim 4. We see that G has an M -alternating cycle C ′, corresponding
to C of H, that has one edge v3v4 of Cv for each v ∈ V (C). Then M ′ = M △C ′ is a
perfect matching. In a similar way, G has an M ′-alternating cycle C ′′, corresponding
to C, that uses three edges v3v2, v2v1, and v1v4 of Cv for each v ∈ V (C). Then
M ′ △ C ′′ is equal to N . Thus, we can find a reconfiguration sequence of length two,
which is shortest by Claim 3.

Claim 5. If t∗ = 2, then H has a Hamiltonian cycle.

Proof of Claim 5. We denote by ⟨M,M ′, N⟩ a shortest reconfiguration sequence
of I. Let C = M △ M ′. If C = Cv for some v ∈ V (H), then M ′ △ N consists of
more than one cycle as |V (H)| ≥ 3, which contradicts that M ′ and N are adjacent.
Therefore, we may assume that C is not Cv for any v ∈ V (H). We will prove that
the edge subset F = {e ∈ E(H) | ueve ∈ C} forms a Hamiltonian cycle in H. We
denote by WC the set of vertices in H used in F . Let WC = V (H) \ WC . Since
M ′∩Cv and N ∩Cv are distinct for v ∈ WC , the symmetric difference M ′△N has at
least |WC | disjoint M ′-alternating cycles. Moreover, for a vertex v ∈ WC , we see that
M ′ ∩Cv = {v1v2} and N ∩Cv = {v1v4, v2v3}, which are distinct. Hence, M ′△N has
at least one M ′-alternating cycle disjoint from

⋃
v∈WC

V (Dv). Therefore, we have at
least |WC |+ 1 disjoint M ′-alternating cycles. However, M ′ △N must consist of one
cycle (see the proof of Claim 3), implying that WC = ∅. This means that C goes
through Cv for every v, and hence C ′ is a Hamiltonian cycle in H. Thus, the claim
holds.

Therefore, it follows that H has a Hamiltonian cycle if and only if t∗ = 2. This
completes the proof of Theorem 4.1.

The hardness for bipartite graphs of maximum degree three can be obtained with
a similar proof.
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v+ v−
v1

v2

v3 v4

v5
v6

Fig. 8. Reduction for bipartite graphs of maximum degree three. Top left: a yes instance H of
the Directed Hamiltonian Cycle Problem with a thick (green) directed Hamiltonian cycle. Top
middle: the constructed fragment Dv. Bottom left: the initial perfect matching M (red). Bottom
middle: the target perfect matching N (blue). Bottom right: the perfect matching obtained as M△C,
where C corresponds to the directed Hamiltonian cycle of H.

Theorem 4.2. Shortest Perfect Matching Reconfiguration is NP-hard
even for bipartite graphs of maximum degree three.

We reduce the directed Hamiltonian cycle problem, which is known to be NP-
complete even if digraphs have maximum in- and out-degree two [31].

Directed Hamiltonian Cycle Problem
Input: A digraph H = (V,E) of maximum in- and out-degree two

Question: Decide whether H has a directed Hamiltonian cycle, i.e., a directed
cycle that goes through all the vertices exactly once.

Proof. Let H be a digraph, which is an instance of the directed Hamiltonian cycle
problem. We assume that |V (H)| ≥ 3; otherwise, the problem is trivial. For each
vertex v ∈ V (H), we define a 6-vertex graph Dv (see the top right in Figure 8):

V (Dv) = {v+, v−, v1, v2, v3, v4, v5, v6},
E(Dv) = {v+v1, v1v2, v2v3, v3v4, v4v5, v5v2, v5v6, v6v−}.

The cycle of length four formed by v2, v3, v4, v5 is denoted by Cv.
We construct an instance I = (G,M,N) of our problem as follows. The vertex

set and the edge set of G are defined as

V (G) =
⋃

v∈V (H)

V (Dv), E(G) =
⋃

v∈V (H)

E(Dv) ∪ {u−v+ | uv ∈ E(H)},

respectively. Namely, for each directed edge from u to v in H, we add an undirected
edge to G between u− and v+. This finishes the construction of G. Note that G
is bipartite and that its maximum degree is at most three as both the maximum
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in-degree and the maximum out-degree of H are at most two. Let M and N be
defined as

M =
⋃

v∈V (H)

{v+v1, v2v3, v4v5, v6v−},

N =
⋃

v∈V (H)

{v+v1, v2v5, v3v4, v6v−}.

Refer to Figure 8 for the illustration. Let t∗ be the length of a shortest reconfiguration
sequence for I.

Claim 6. It holds that t∗ ≥ 2.

Proof. If t∗ = 1, then M △N must consist of one M -alternating cycle, but this
is not the case for our instance I. Thus, the length of a reconfiguration sequence is
at least two.

Claim 7. If H has a directed Hamiltonian cycle C, then it holds that t∗ = 2.

Proof. We see that G has an M -alternating cycle C ′, corresponding to C of H,
that has four edges v+v1, v2v3, v4v5, v6v

− of Dv for each v ∈ V (C). Then M ′ =
M △ C ′ is a perfect matching. In a similar way, G has an M ′-alternating cycle
C ′′, corresponding to C, that uses three edges v+v1, v2v5, and v6v

− of Cv for each
v ∈ V (C). Then M ′△C ′′ is equal to N . Thus, we can find a reconfiguration sequence
of length two, which is the shortest by Claim 6.

Claim 8. If t∗ = 2, then H has a directed Hamiltonian cycle.

Proof. Let ⟨M,M ′, N⟩ be a shortest reconfiguration sequence of I. Let C =
M △ M ′. If C = Cv for some v ∈ V (H), then M ′ △ N consists of more than one
cycle as |V (H)| ≥ 3, which contradicts that M ′ and N are adjacent. Therefore, we
may assume that C is not Cv for any v ∈ V (H). We will prove that the edge subset
F = {uv ∈ E(H) | u−v+ ∈ C} forms a Hamiltonian cycle in H. We denote by WC

the set of vertices in H used in F . Let WC = V (H) \WC . Since M ′ ∩Cv and N ∩Cv

are distinct for v ∈ WC , the symmetric difference M ′ △N has at least |WC | disjoint
M ′-alternating cycles. Moreover, for a vertex v ∈ WC , we see that M ′ ∩Cv = {v3v4}
and N ∩ Cv = {v3v4, v2v5}, which are distinct. Hence, M ′ △N has at least one M ′-
alternating cycle disjoint from

⋃
v∈WC

V (Dv). Therefore, we have at least |WC | + 1
disjoint M ′-alternating cycles. However, M ′ △ N must consist of one cycle (see the
proof of Claim 6), implying that WC = ∅. This means that C goes through Cv for
every v, and hence C ′ is a Hamiltonian cycle in H. Thus, the claim holds.

Therefore, it follows that H has a directed Hamiltonian cycle if and only if t∗ = 2.
This completes the proof.

Note that the reduction does not produce a planar graph even when the input
digraph has a planar underlying graph. The example in Figure 8 contains a K5-minor.

The proofs actually show that Shortest Perfect Matching Reconfigura-
tion is NP-hard to approximate within a factor of less than 3/2.

5. Conclusion. In this paper, we studied the shortest reconfiguration problem
of perfect matchings under the alternating cycle model, which is equivalent to the
combinatorial shortest path problem on perfect matching polytopes. We prove that
the problem can be solved in polynomial time for outerplanar graphs, but it is NP-
hard and even APX-hard for planar graphs and bipartite graphs.
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Several questions remain unsolved. For polynomial-time solvability, our algorithm
runs only for outerplanar graphs, and it looks difficult to extend the algorithm to
other graph classes. A next step would be to try k-outerplanar graphs for fixed
k ≥ 2.

One way to tackle NP-hard cases is approximation. We only know the NP-
hardness of approximating within a factor of less than 3/2. We believe the existence
of a polynomial-time constant-factor approximation. Note that we do not obtain a
constant-factor approximation by flipping alternating cycles in the symmetric differ-
ence of two given perfect matchings one by one.

This paper was mainly concerned with reconfiguration of perfect matchings. Al-
ternatively, we may consider reconfiguration of maximum matchings, or maximum-
weight matchings. In those cases, we need to adopt the alternating path/cycle model.
Then the question is related to the combinatorial shortest path problem on faces of
matching polytopes. Note that the perfect matching polytope is also a face of the
matching polytope. Therefore, the study on maximum-weight matchings will be a
generalization of this paper.

To the best of the authors’ knowledge, the combinatorial shortest path problem
of 0/1-polytopes has not been well investigated, while the adjacency in 0/1-polytopes
has been extensively studied in the literature. This paper opens up a new perspective
for the study of combinatorial and computational aspects of polytopes and connects
them with the study of combinatorial reconfiguration.

Acknowledgment. The authors thank anonymous referees of the preliminary
version [18] and of this journal version for their helpful suggestions.
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