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problem is fixed-parameter tractable with respect to the number of scenarios.
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1. Introduction

Robust recoverable optimization, or recoverable robust opti-
mization, is a field of mathematical optimization that deals with 
uncertainty, which was introduced by Liebchen et al. [24]. For ex-
ample, when we want to construct a communication network, we 
solve a minimum-cost spanning tree problem in the traditional op-
timization framework. However, it may happen that some of the 
links will fail or communication cost will change in the future. 
In such a case, we may want to construct the network again, but 
at the same time we want to avoid computing the network from 
scratch because it may be costly.

To deal with such changes, in the framework of robust recover-
able optimization, we take two-stage decision making. At the first 
stage, we construct a spanning tree that is not necessarily of min-
imum cost, but is possibly robust under future changes. Before the 
second stage, changes happen and we know all the changes. Then, 
at the second stage, we modify the spanning tree from the first 
stage to adapt the changes. The overall goal is to minimize the 
sum of the construction cost at the first stage and the modifica-
tion cost at the second stage.
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This setup arises not only in communication networks, but also 
in scheduling and railway optimization [24]. Recently, robust re-
coverable versions of standard combinatorial optimization prob-
lems have also been studied [5,6,9,10,15].

In this paper, we deal with structural changes in the future for 
uncertainty. Namely, we face with changes of combinatorial struc-
tures before the second stage. In the example of communication 
networks, this corresponds to link failure. We also assume that at 
the first stage, we know a finite number of scenarios that repre-
sent uncertainty, and each scenario corresponds to a change that 
happens before the second stage.

The simplest form of the problem we study in this paper can be 
described as follows. We are given an undirected graph G = (V , E). 
Let s be the number of scenarios, and for each i ∈ {1, 2, . . . , s} we 
are given a subgraph Gi = (V , Ei) of G as a scenario. Namely, in 
each scenario, the edges in E \ Ei will be useless by failure. We 
assume that each subgraph Gi is connected, and thus contains a 
spanning tree. Then, we want to find a spanning tree T = (V , B)

of G and a spanning tree Ti = (V , Bi) for each i ∈ {1, 2, . . . , s} such 
that maxi |B � Bi | is as small as possible, where � denotes the 
symmetric difference. Note that maxi |B � Bi | corresponds to the 
cost at the second stage since |B � Bi | is the “distance” between 
B and Bi . Further note that we ignore the first-stage cost since 
the cost of every spanning tree (i.e., the number of edges in every 
spanning tree) is identical.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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We actually study the following decision problem. Namely, in-
stead of minimizing maxi |B � Bi |, we decide if there exist span-
ning trees T , T1, T2, . . . , Ts with maxi |B � Bi | ≤ 2k for a given 
natural number k. Note that |B � Bi | is always even since |B| =
|V | − 1 = |Bi|. If we can solve this decision problem, then we 
can also solve the minimization problem by, for example, binary 
search. On the other hand, if we can solve the minimization prob-
lem, then we can also solve the decision problem by comparing 
the optimal value and 2k. Therefore, the decision problem and the 
minimization problem are polynomial-time equivalent.

Notice that the existence of a spanning tree Ti = (V , Bi) of Gi

with |B � Bi | ≤ 2k is equivalent to the condition that |B ∩ Ei | ≥
|V | − k − 1 (see Lemma 1).

The simplest form that we explained so far can be generalized 
to the following setup in terms of matroids (necessary definitions 
for matroids will be introduced in the next section). Let M = (E, I)

be a matroid, where I is the family of independent sets. The family 
of bases of M is denoted by B(M). For a set X ⊆ E , we denote the 
rank of X by rk(X) = max{|I| | I ∈ I, I ⊆ X}, and the rank of M is 
the size of its base.

This paper studies the following problem.

Robust Recoverable Matroid Base Problem

Input: A matroid M = (E, I) of rank r, s subsets E1, E2, . . . , Es ⊆
E , where rk(Ei) = r for each i ∈ {1, 2, . . . , s}, and a posi-
tive integer k.

Output: A base B ∈ B(M) such that |B ∩ Ei | ≥ r − k for each i ∈
{1, 2, . . . , s}, or “no” if no such base B exists.

When a matroid M is obtained from a graph G = (V , E), i.e., M
is a graphic matroid, r is the number of edges in a maximal for-
est of G , I is the family of edge sets of forests of G , B(M) is the 
family of edge sets of maximal forests of G , rk(Ei) is the number 
of edges in a maximal forest of the subgraph Gi = (V , Ei). There-
fore, if r = |V | − 1, then the condition that rk(Ei) = r implies that 
the graph Gi contains a spanning tree, and Robust Recoverable 
Matroid Base Problem corresponds to the robust recoverable opti-
mization problem that we introduced for communication networks 
above.

In general, the condition rk(Ei) = r means that the restriction 
of M to Ei contains a base of M, which intuitively means that each 
scenario contains a feasible solution to the original setting.

The following are the results of this paper.

1. Robust Recoverable Matroid Base Problem is NP-hard even 
when k ≥ 1 is constant, and M is a uniform matroid or a 
graphic matroid. Note that s is part of the input.

2. When s is a parameter and k is arbitrary, Robust Recoverable 
Matroid Base Problem is fixed-parameter tractable. In partic-
ular, if s is constant and k is arbitrary, Robust Recoverable 
Matroid Base Problem can be solved in polynomial time. Note 
that M does not have to be a uniform matroid or a graphic 
matroid, but M can be a general matroid.

Fixed-parameter tractability is defined as follows. We consider 
a problem that is associated with a number p, called a parameter, 
apart from the input (such a problem is sometimes called a param-
eterized problem). Then, the problem is fixed-parameter tractable if 
there exists a function f : Z+ →Z+ such that the problem can be 
solved in time f (p)poly(n), where n is the input size and poly is 
a polynomial. For example, 2pn2 is allowed for such running time, 
but np is not. In particular, when p is constant, a fixed-parameter 
tractable problem can be solved in polynomial time, and in that 
case the degree of the polynomial running time does not depend 
on p.
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The class of fixed-parameter tractable problems is often de-
noted by FPT. For details of fixed-parameter tractability, we refer 
to textbooks [26,11].

Note that Robust Recoverable Matroid Base Problem can easily 
be solved when k = 0. In such a case, we only require that |B ∩
Ei | ≥ r, but this is equivalent to B ⊆ Ei since |B| = r. Therefore, we 
consider the restriction of M to E1 ∩ E2 ∩ · · · ∩ Es , and find a base 
of that restriction. Then, we check that its size is equal to r. A base 
of the restriction of a matroid can be found in polynomial time by 
the greedy algorithm.

Related work

Robust recoverable matroid base problem has also been stud-
ied in the literature, but the authors in the literature mainly 
discuss the uncertainty for weights, i.e., the change of weights. 
Namely, we are given as input a matroid M = (E, I), s + 1 weights 
w0

e , w1
e , . . . , ws

e ∈ R+ for each element e ∈ E , and a natural num-
ber k ∈N . We want to find s + 1 bases B0, B1, . . . , Bs ∈ B(M) such 
that |B0 � Bi | ≤ 2k for every i ∈ {1, 2, . . . , s} and∑
e∈B0

w0
e + max

i∈{1,2,...,s}
∑
e∈Bi

wi
e

is minimized. We call this variant the weight change version for 
short. The Robust Recoverable Matroid Base Problem of this pa-
per can be cast to the weight change version by setting for each 
e ∈ E and i ∈ {1, 2, . . . , s}, w0

e = 1, and

wi
e =

{
1 if e ∈ Ei,

∞ if e /∈ Ei,

where ∞ represents a sufficiently large positive constant.
Consider the case where M is a uniform matroid. Averbakh [7]

proved that the weight change variant is weakly NP-hard when 
s = 2. Kasperski and Zieliński [20] proved that the weight change 
variant is strongly NP-hard when k and s are part of the in-
put. Kasperski and Zieliński [21] proved that the weight change 
variant is strongly NP-hard when k = 2 (but s is part of the in-
put). Kasperski, Kurpisz and Zieliński [19] proved that the weight 
change variant is NP-hard to approximate within any constant fac-
tor. An approximation algorithm of factor ln s is known [20,19].

Consider the case where M is a graphic matroid. Kasperski, 
Kurpisz, and Zieliński [18] proved that the weight change variant 
is weakly NP-hard even when s = 2 and k = 0. They also proved 
that the variant is strongly NP-hard when s and k are part of the 
input.

For general matroids, Büsing [8] proved that the weight change 
variant can be solved in polynomial time when s = 1 and k is an 
arbitrary constant. However, she did not show that the problem is 
fixed-parameter tractable with respect to the parameter k.

Table 1 summarizes the results in the literature and this paper. 
Note that the results of this paper are not obtained as conse-
quences of those in the literature since the hardness results there 
use specific weights that do not correspond to our setting (see 
above).

In the literature, there have been papers on various versions 
of robust combinatorial optimization problems. Famous are the 
min-max and min-max regret versions [22,4]. We can cast the 
problem of finding a (minimum-cost) base in a matroid to these 
setups: In the min-max version, we are given a matroid M on a 
ground set E , cost ci(e) for each element e ∈ E and each scenario 
i ∈ {1, . . . , s}, and then we want to find a single base B ∈ B(M)

that minimizes max{∑e∈B ci(e) | i ∈ {1, . . . , s}}; In the min-max re-
gret version, we are given the same input as the min-max version, 
and then we want to find a single base B ∈ B(M) that minimizes 
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Table 1
Results on robust recoverable matroid base problem. The mark ∗ represents the results of this paper.

Change

Matroid #Scenarios Robustness k Weight Structure

Uniform 2 arbitrary NP-hard [7]
Uniform arbitrary 2 NP-hard [21]
Graphic 2 0 NP-hard [18]
General 1 constant Poly [8]

Uniform arbitrary 1 NP-hard [∗]
Graphic arbitrary 1 NP-hard [∗]
General parameter arbitrary FPT [∗]
max{∑e∈B ci(e) − ∑
e∈B∗

i
ci(e) | i ∈ {1, . . . , s}}, where B∗

i ∈ B(M) is 
the minimum-cost base in scenario i (i.e., with respect to ci ).

For the minimum-cost spanning tree problem, both the min-
max version and the min-max regret version are NP-hard [22,3]. 
When the number of scenarios is constant, the min-max version 
and the min-max regret version have fully polynomial-time ap-
proximation schemes [3]. On the other hand, when the number of 
scenarios is non-constant, the min-max version and the min-max 
regret version have no polynomial-time approximation algorithms 
with approximation factor better than 3/2 [3].

The Robust Recoverable Matroid Base Problem of this paper 
can be cast to the min-max version by setting for each e ∈ E and 
i ∈ {1, 2, . . . , s}, ci(e) = 1 if e ∈ Ei , and 0 if e /∈ Ei . If the minimum 
value is at least r −k, the output must be “Yes;” Otherwise the out-
put must be “No.” By the same reduction, the Robust Recoverable 
Matroid Base Problem can be cast to the min-max regret version. 
Here, we should point out that the known NP-hardness proofs for 
the min-max version are hard to adapt to Robust Recoverable Ma-

troid Base Problem. In the proof of Kouvelis and Yu [22], the edge 
costs are not bound to zero or one. On the other hand, the proof 
by Aissi et al. [3] only uses the edge costs of zero and one, but 
with their proof we cannot directly guarantee that rk(Ei) = r and 
the hardness when k = 1 is hard to derive.

We also point out that the pseudo-polynomial-time algorithms 
by Aissi et al. [2] for the min-max version and the min-max regret 
version do not imply the fixed-parameter tractability of Robust Re-

coverable Matroid Base Problem when the number of scenario is 
a parameter since the running time of their algorithms has the 
number of scenarios in the exponent of the number of edges.

Another line of research studies the bulk-robust version [1]. If 
we cast the problem of finding a (minimum-cost) base in a ma-
troid to the bulk-robust setting, we are given a matroid M on 
a ground set E , cost c(e) for each element e ∈ E and s subsets 
S1, . . . , Ss ⊆ E of the ground set, and then we want to find a 
minimum-cost set F ⊆ E such that F \ Si contains a base of M for 
every i ∈ {1, . . . , s}. Even when M is a graphic matroid or a uniform 
matroid of rank one, the bulk-robust version is NP-hard while 
there exists a polynomial-time approximation algorithm with ap-
proximation ratio O (log(rs)), where r = rk(M).

Yet another line of research pursues the demand-robust version 
[14,17]. If we cast the problem of finding a (minimum-cost) base 
in a matroid to the demand-robust setting, we are given a ma-
troid M = (E, I), cost c(e) for each element e ∈ E , s independent 
sets I1, . . . , Is ∈ I , and a real number λi > 1 for each i ∈ {1, . . . , s}. 
Then, we want to find s + 1 sets F0, F1, . . . , Fs ⊆ E such that 
Ii ⊆ F0 ∪ Fi for every i ∈ {1, . . . , s}. The objective is to minimize ∑

e∈F0
c(e) + max{∑e∈Fi

λic(e) | i ∈ {1, . . . , s}}.

2. Preliminaries

An undirected graph G = (V , E) is a pair of its vertex set V and 
its edge set E . In this paper, a graph is undirected and finite. For 
a graph G = (V , E) and an edge subset F ⊆ E , if the graph (V , F )

contains no cycle, then it is called a forest.
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Let E be a finite set. A matroid on E is a set system M = (E, I)

that consists of E and a family I ⊆ 2E satisfying the following con-
ditions:

(I1) ∅ ∈ I;
(I2) If X ⊆ Y and Y ∈ I , then X ∈ I;
(I3) If X, Y ∈ I and |X | > |Y |, then there exists e ∈ X \ Y such that 

Y ∪ {e} ∈ I .

A set I ∈ I is called an independent set of M, and E is called the 
ground set of M. We often write I(M) for I to emphasize I is the 
family of independent sets of the matroid M.

For a matroid M = (E, I), a maximal independent set is called 
a base of M. The family of bases of M is denoted by B(M). Bases 
in B(M) have the same size and their size is called the rank of M. 
For a set X ⊆ E , we denote rk(X) = max{|I| | I ∈ I, I ⊆ X}.

Restriction is an operation to create a matroid from another 
matroid, and defined as follows. Let M = (E, I) be a matroid, 
and F ⊆ E . Then, the restriction of M to F is the set system 
M|F = (F , I|F ), where I|F = {I ∩ F | I ∈ I}. It is known that M|F
is a matroid. The restriction M|F is also called the deletion of E \ F
from M.

A typical example of matroids is obtained from graphs. Let G =
(V , E) be a graph, and let F be the family of edge sets of forests 
in G . Namely, F = {F ⊆ E | (V , F ) is a forest}. Then, (E, F) is a 
matroid called a graphic matroid or a cycle matroid.

Another typical example of matroids is a uniform matroid. Let 
r be a non-negative integer, E be a finite set with |E| ≥ r, and I
be the family of all subsets of E of size at most r. Namely, I =
{X ⊆ E | |X | ≤ r}. Then, M = (E, I) is a matroid of rank r called a 
uniform matroid.

Partition matroids are also used in this paper. A partition of a 
finite set E is a family {E1, E2, . . . , Et} of subsets of E such that 
E1 ∪ E2 ∪ · · · ∪ Et = E and Ei ∩ E j = ∅ for all i 
= j. A partition 
matroid defined on the partition {E1, E2, . . . , Et} of E is a matroid 
M = (E, I) such that there exist natural numbers d1, d2, . . . , dr for 
which

I = {X ⊆ E | |X ∩ Ei | ≤ di ∀i ∈ {1,2, . . . , t}}.
Now, consider a general matroid M and fix an index i ∈

{1, 2, . . . , s}. The requirement |B ∩ Ei | ≥ r − k for the output of
Robust Recoverable Matroid Base Problem is equivalent to the 
condition that there exists Bi ∈ B(M|Ei ) such that |B � Bi | ≤ 2k, 
as the next lemma shows.

Lemma 1. Let M = (E, I) be a matroid of rank r, and consider Ei ⊆ E
with rkM(Ei) = r and B ∈ B(M). Then, the following two conditions are 
equivalent.

1. There exists Bi ∈ B(M|Ei ) such that |B � Bi | ≤ 2k.
2. |B ∩ Ei | ≥ r − k.

The proof is postponed to the online appendix.
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In this paper, when we take a matroid M = (E, I) as input to 
algorithms, we assume that M is given as an independence oracle. 
Namely, the oracle accepts a subset X ⊆ E as a query, and decides 
whether X ∈ I . For graphic matroids, uniform matroids and parti-
tion matroids, such oracles can be constructed in polynomial time 
concretely, in which each query can be processed in linear time.

The common independent set problem of two matroids can 
be solved in polynomial time [16]. This is a basic fact in ma-
troid optimization. Let M1 = (E, I1) and M2 = (E, I2) be matroids. 
Their intersection is defined as M1 ∩ M2 = (E, I1 ∩ I2). Note that 
M1 ∩ M2 is not necessarily a matroid. However, the maximum-size 
set X ∈ I1 ∩ I2 can be obtained in polynomial time.

3. Hardness

In this section, we prove that Robust Recoverable Matroid Base 
Problem is NP-hard. The proofs are postponed to the online ap-
pendix.

Theorem 2. The Robust Recoverable Matroid Base Problem is NP-
hard even if a given matroid is uniform and k ≥ 1 is constant.

Note that a uniform matroid is not necessarily a graphic ma-
troid.

Theorem 3. The Robust Recoverable Matroid Base Problem is NP-
hard even if a given matroid is graphic and k ≥ 1 is constant.

4. Fixed-parameter tractability: warm-up

We will prove that Robust Recoverable Matroid Base Problem

is fixed-parameter tractable when the number s of scenarios is 
a parameter. Before that, in this section, we prove that Robust 
Recoverable Matroid Base Problem is fixed-parameter tractable 
when s and k are parameters. Then, in the next section we explain 
an algorithm when s is a parameter. We remind that a scenario is 
given as a subset Ei ⊆ E of the ground set E .

For a positive integer s, let [s] = {1, 2, . . . , s}. For a non-empty 
subset X ⊆ [s], let

E X =
(⋂

i∈X

Ei

)
\

⎛
⎝ ⋃

i∈[s]\X

Ei

⎞
⎠ ,

and let E∅ = E \ ⋃
X⊆[s],X 
=∅ E X . Then, {E X | X ⊆ [s]} is a partition 

of E of size at most 2s . Intuitively speaking, the set E X collects 
the elements of E that are present exactly in the scenarios corre-
sponding to X . If B is a solution to Robust Recoverable Matroid 
Base Problem, then

|B| = r (1)

and for every i ∈ [s]∑
X⊆[s] : i∈X

|B ∩ E X | = |B ∩ Ei| ≥ r − k. (2)

Let t X = |B ∩ E X | for every X ⊆ [s]. Then, Eq. (1) can be rewritten 
as∑
X⊆[s]

t X = r, (3)

and Eq. (2) can be rewritten as∑
t X ≥ r − k. (4)
X⊆[s] : i∈X
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Our algorithm first lists all {t X | X ⊆ [s]} that satisfy Eqs. (3)
and (4), and then for each candidate {t X | X ⊆ [s]} we check the 
existence of a base B ∈ B(M) that satisfies |B ∩ E X | = t X for ev-
ery subset X ⊆ [s]. If such a base B exists for some {t X | X ⊆ [s]}, 
then B is a solution to Robust Recoverable Matroid Base Problem. 
For a fixed {t X | X ⊆ [s]}, such a base B can be found by solv-
ing the common independent set problem for the matroid M and 
the partition matroid defined over {E X | X ⊆ [s]}. Since the size of 
{E X | X ⊆ [s]} is bounded by 2s from above, the number of possible 
{t X | X ⊆ [s]} is bounded by r2s

from above. Therefore, the running 
time of this algorithm is O (r2s

poly(|E|)). Below, to improve this 
running time, we give a better upper bound for the number of 
possible {t X | X ⊆ [s]}.

Theorem 4. The Robust Recoverable Matroid Base Problem can be 
solved in O ((sk)2s

poly(|E|)) time.

Proof. Let B be a solution to a given instance of Robust Recov-

erable Matroid Base Problem. We show that |B \ E[s]| ≤ sk. This 
means that 

∑
X�[s] t X ≤ sk, which further implies that the number 

of possible {t X | X ⊆ [s]} is bounded by (sk)2s |E| from above. Then, 
the proof will be finished.

By the definition of our problem, it holds that∑
i∈[s]

|B ∩ Ei | ≥
∑
i∈[s]

(r − k) ≥ s(r − k).

On the other hand,∑
i∈[s]

|B ∩ Ei | =
∑
e∈B

|{i ∈ [s] | e ∈ Ei}|

≤ s|B| − |B \ E[s]|
= sr − |B \ E[s]|.

By combining these two, we obtain |B \ E[s]| ≤ sk. �
5. Fixed-parameter tractability: main result

In the previous section, we proved the fixed-parameter tractabil-
ity with respect to s and k. In this section, we will prove the 
fixed-parameter tractability with respect to s only. To this end, we 
use a result by Edmonds for matroid polytopes.

Lemma 5 (Edmonds [16]). Let M = (U , I) be a matroid and I ⊆ U . 
Then, I ∈ I if and only if |I ∩ U ′| ≤ rk(U ′) for every subset U ′ ⊆ U . �

Let P be the set of (t, x) ∈Z2[s] × {0, 1}E that satisfy the follow-
ing conditions:∑

X⊆[s]
t X = r, (5)

∑
X⊆[s] : i∈X

t X ≥ r − k (∀i ∈ [s]), (6)

∑
e∈E X

xe = t X (∀X ⊆ [s]), (7)

∑
e∈E ′

xe ≤ rk(E ′) (∀E ′ ⊆ E). (8)

Lemma 6. A solution to Robust Recoverable Matroid Base Problem 
exists if and only if P 
= ∅.
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Proof. Assume that B is a solution to Robust Recoverable Ma-

troid Base Problem. Then, let t X = |B ∩ E X | for each X ⊆ [s]. We 
already showed that Eqs. (5) and (6) are satisfied in Section 4. Let 
x = χB , the characteristic vector of B . Then, Eq. (7) is satisfied since 
t X = |B ∩ E X |. Furthermore, by Lemma 5, Eq. (8) is also satisfied. 
Hence, (t, x) ∈ P .

Assume that P 
= ∅, and let (t, x) be an element of P . Define B
as the set of e ∈ E with xe = 1. Then, from Eqs. (5) and (7), it holds 
that |B| = r. Therefore, Eq. (8) and Lemma 5 imply that B ∈ B(M). 
Since |B ∩ E X | = t X for every X ⊆ [s] from Eq. (7), it holds that for 
each i ∈ [s]
|B ∩ Ei | =

∑
X⊆[s] : i∈X

|B ∩ E X | =
∑

X⊆[s] : i∈X

t X .

Hence, by Eq. (6) it follows that |B ∩ Ei | ≥ r −k for every i ∈ [s], and 
B is a solution to Robust Recoverable Matroid Base Problem. �

From Lemma 6, to decide the existence of a solution to Robust 
Recoverable Matroid Base Problem, it suffices to decide whether 
P 
= ∅. Furthermore, from the proof of Lemma 6, we can construct 
a solution to Robust Recoverable Matroid Base Problem from an 
element of P provided that P 
= ∅.

For each subfamily S ⊆ 2[s] , we denote by δ(S) the set of e ∈
E for which there exists S ∈ S such that e ∈ E S . Namely, δ(S) =⋃

S∈S E S .
The following result by McDiarmid [25] is inevitable for our al-

gorithm. To state the result, we introduce some terms and symbols.
A bipartite graph is denoted by (A, B; F ) with a bipartition A ∪

B of the vertex set and its edge set F . For a vertex v ∈ A ∪ B , we 
denote by δ(v) the set of edges incident to v . For a vertex subset 
X ⊆ A (or X ⊆ B), we denote by ∂(X) the set of vertices adjacent 
to a vertex in X .

Lemma 7 (McDiarmid [25, Proposition 2B]). Let G = (A, B; F ) be a bi-
partite graph, M = (B, J ) be a matroid, and y ∈ ZA+ be an integral 
vector. Then, there exist a vector x ∈ZB+ and a vector z ∈ZF+ such that∑

b∈B ′
xb ≤ rk(B ′) (∀B ′ ⊆ B),

∑
e∈δ(a)

ze = ya (∀a ∈ A),

∑
e∈δ(b)

ze = xb (∀b ∈ B)

if and only if∑
a∈A′

ya ≤ rk(∂(A′)) (∀A′ ⊆ A).

The application of Lemma 7 to our situation immediately gives 
the following lemma, by using the bipartite graph (A, B; F ) defined 
by

A = 2[s], B = E, and

F = {{X, e} | X ∈ 2[s], e ∈ E X ⊆ E},
and by setting y = t and z{X,e} = xe if e ∈ E X ; The detail is left to 
the reader.

Lemma 8. Let t ∈ Z2[s]
+ . Then, there exists x ∈ {0, 1}E that satisfies 

Eqs. (7) and (8) if and only if∑
t X ≤ rk(δ(S)) (∀S ⊆ 2[s]). �
X∈S
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By Lemma 8, P is non-empty if and only if there exists t that 
satisfies the following conditions:∑

X⊆[s]
t X = r, (9)

∑
X⊆[s] : i∈X

t X ≥ r − k, (∀i ∈ [s]), (10)

∑
X∈S

t X ≤ rk(δ(S)) (∀S ⊆ 2[s]), (11)

t ∈Z2[s]
+ . (12)

When such t exists, we compute a maximum-size common inde-
pendent set I∗ of M and the matroid M′ = (E, I ′) defined as

I ′ = {I ⊆ E | ∀X ⊆ [s], |I ∩ E X | ≤ t X },
and define x = χI∗ , the characteristic vector of I∗ . Then, x ∈ {0, 1}E

satisfies Eqs. (7) and (8).
To decide whether there exists t that satisfies Eqs. (9)–(12), we 

use an algorithm for integer programming. As in the next lemma, 
the fixed-parameter tractability of integer programming is well-
known.

Lemma 9 (Lenstra [23]). Let U , V be finite sets, A ∈ RV ×U a matrix, 
and b ∈ RV a vector. If the rank of A is �, then the problem of deciding 
whether the set

{x ∈ZU | Ax ≤ b}
is empty is fixed-parameter tractable with respect to �. �

The running time of the current fastest algorithm to solve the 
problem in Lemma 9 is 2O (� log�) multiplied by a polynomial of the 
input size [12,13].

If we write Eqs. (9)–(12) in the form of Lemma 9, the coefficient 
matrix will have 2s columns and 2 + s + 22s + 2s rows. Hence, we 
can apply Lemma 9 with � ≤ 2s , and obtain the following theorem.

Theorem 10. The Robust Recoverable Matroid Base Problem can be 
solved in O (2O (s2s)poly(|E|)) time. �

In particular, when s = O (log log |E|), Robust Recoverable Ma-

troid Base Problem can be solved in polynomial time.

6. Conclusion

Possible future work is to investigate other models of robust-
ness. This paper concentrated on minimizing maxi |B � Bi |, but we 
may also minimize 

∑
i |B � Bi |, which corresponds to the expecta-

tion minimization of the second-stage modification cost.
Approximation should also be studied. For example, we may try 

to approximate the minimum possible value of k such that there 
exists a basis B with |B ∩ Ei | ≥ r − k for all i ∈ {1, . . . , s}.
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