A result of the Gauss-Bonnet theorem for coherent tangent bundles over surfaces with boundary

Kyoya Hashibori*
Department of Mathematics, Hokkaido University

1 Introduction

In this paper, I present an original generalization of Fact3.3 of [2] to the case of 2-manifolds with boundary. The classical Gauss-Bonnet theorem is discussed on regular surfaces, and it is well known that there are two types, the local and global theorem. The following theorem is a generalization of the classical global Gauss-Bonnet's theorem for coherent tangent bundles.

Theorem 1.1 (Fact3.3 of [2]) Let $(M, \mathcal{E},\langle\rangle, D,, \varphi)$ be a coherent tangent bundle over a compact oriented 2-dimensional manifold M, and suppose that the singular set $\Sigma(\varphi)$ consists of singular points of the first and admissible second kind. We denote by K the Gaussian curvature of the induced metric $d s^{2}=$ $\varphi^{*}\langle$,$\rangle . Then it holds that$

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{M} K d \hat{A}=\chi\left(M^{+}\right)-\chi\left(M^{-}\right)+\# S^{+}-\# S^{-} \tag{1}\\
2 \pi \chi(M)=\int_{M} K d A+2 \int_{\Sigma(\varphi)} \kappa_{s} d s \tag{2}
\end{gather*}
$$

where $\# S^{+}$(resp. $\# S^{-}$) are the numbers of positive (resp. negative) singular points of the second kind, and κ_{s} is the singular curvature of $\Sigma(\varphi)$.

The concepts described in the above theorem are defined precisely in §2. I discuss a generalization of (1) and (2) for manifolds with boundary (See Theorem3.3 for details).

[^0]
2 Preliminaries

From now on, let M be a compact oriented 2-manifold with boundary.
The set of C^{∞} - functions on M is denoted by $C^{\infty}(M)$, and the set of C^{∞} sections of a vector bundle \mathcal{E} is denoted by $\Gamma(\mathcal{E})$. Let \mathcal{E}^{*} be a dual vector bundle of $\mathcal{E} .\langle,\rangle \in \Gamma\left(\mathcal{E}^{*} \otimes \mathcal{E}^{*}\right)$ is called an inner product on \mathcal{E}, when \langle, defines a positive definite inner product on each fiber $\mathcal{E}_{p}(p \in M)$. A map $D: \Gamma(T M) \times \Gamma(\mathcal{E}) \ni(X, \xi) \mapsto D_{X} \xi \in \Gamma(\mathcal{E})$ is called a connection on \mathcal{E} if, for any $f, g \in C^{\infty}(M), X, Y \in \Gamma(T M), \xi, \eta \in \Gamma(\mathcal{E})$, the following conditions hold.
(1) $D_{f X+g Y} \xi=f D_{X} \xi+g D_{Y} \xi$,

$$
\begin{equation*}
D_{X}(\xi+\eta)=D_{X} \xi+D_{X} \eta, \tag{2}
\end{equation*}
$$

(3) $D_{X}(f \xi)=(X f) \xi+f D_{X} \xi$.

A connection D on \mathcal{E} with an inner product is called a metric connection if it holds that

$$
X\langle\xi, \eta\rangle=\left\langle D_{X} \xi, \eta\right\rangle+\left\langle\xi, D_{X} \eta\right\rangle(X \in \Gamma(T M), \xi, \eta \in \Gamma(\mathcal{E})) .
$$

Definition 2.1 Let \mathcal{E} a vector bundle of rank 2 with an inner product \langle,$\rangle ,$ $D: \Gamma(T M) \times \Gamma(\mathcal{E}) \rightarrow \Gamma(\mathcal{E})$ a metric connection on \mathcal{E}, and $\varphi: T M \rightarrow \mathcal{E}$ a bundle homomorphism. A 5-tuple $(M, \mathcal{E},\langle\rangle, D,, \varphi)$ is called a coherent tangent bundle if, for any $X, Y \in \Gamma(T M)$, it holds that

$$
D_{X} \varphi(Y)-D_{Y} \varphi(X)-\varphi([X, Y])=0 .
$$

Example 2.2 Let (M, g) be a 2-dimensional Riemannian manifold and ∇ : $\Gamma(T M) \times \Gamma(T M) \rightarrow \Gamma(T M)$ a Levi-Civita connection on $T M$. If we take an identity map id : $T M \rightarrow T M$ as a bundle homomorphism, then a 5 -tuple $(M, T M, g, \nabla, \mathrm{id})$ is a coherent tangent bundle. This shows that the concept of coherent tangent bundles is a generalization of Riemannian manifolds.

From now on, let \mathcal{E} be a oriented vector bundle.
If, for each point $p \in M,\left(d s^{2}\right)_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is defined by

$$
\left(d s^{2}\right)_{p}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\left\langle\varphi_{p}\left(\boldsymbol{v}_{1}\right), \varphi_{p}\left(\boldsymbol{v}_{2}\right)\right\rangle\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in T_{p} M\right),
$$

$d s^{2}$ is called the first fundamental form of φ. A point $p \in M$ is called a regular point of φ if $\varphi_{p}: T_{p} M \rightarrow \mathcal{\mathcal { E } _ { p }}$ is a linear isomorphism. A point $p \in M$ is called a singular point of φ if φ_{p} is not a linear isomorphism. The set of singular points of φ is denoted by $\Sigma(\varphi)$.

Let $(U ; u, v)$ be a positive local coordinate system of $M,\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ an positive orthonormal basis field on $\left.\mathcal{E}\right|_{U}$, and $\left\{\omega_{1}, \omega_{2}\right\}$ a dual basis field of $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$. If a section $\mu:\left.\left.U \rightarrow \mathcal{E}^{*}\right|_{U} \wedge \mathcal{E}^{*}\right|_{U}$ is defined by

$$
\mu:=\omega_{1} \wedge \omega_{2},
$$

then μ is independent of the choice of positive orthonormal basis fields of $\left.\mathcal{E}\right|_{U}$. Therefore, μ is defined on M. A differential 2 form $d \hat{A}$ on M is called a signed area form of \mathcal{E} if, for each point $p \in M,(d \hat{A})_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is defined by

$$
(d \hat{A})_{p}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\mu\left(\varphi_{p}\left(\boldsymbol{v}_{1}\right), \varphi_{p}\left(\boldsymbol{v}_{2}\right)\right)\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in T_{p} M\right)
$$

If a signed area density function $\lambda \in C^{\infty}(U)$ is defined by

$$
\lambda:=\mu\left(\varphi\left(\frac{\partial}{\partial u}\right), \varphi\left(\frac{\partial}{\partial v}\right)\right),
$$

then it holds that

$$
\Sigma(\varphi) \cap U=\{p \in U \mid \lambda(p)=0\}, d \hat{A}=\lambda d u \wedge d v
$$

In particular, $d \hat{A}$ defines a C^{∞}-differential 2 form on M. On the other hand, $d A:=|\lambda| d u \wedge d v$ does not depend on the choice of positive local coordinate systems of M. Thus, $d A$ defines a continuous differential 2 form on M, and $d A$ is called an area form of \mathcal{E}. If we set
$M^{+}:=\left\{p \in M \backslash \Sigma(\varphi) \mid d A_{p}=d \hat{A}_{p}\right\}, M^{-}:=\left\{p \in M \backslash \Sigma(\varphi) \mid d A_{p}=-d \hat{A}_{p}\right\}$,
then $\Sigma(\varphi)$ is coincide with ∂M^{+}and ∂M^{-}, respectively. Using a signed area density function λ, we have

$$
M^{+} \cap U=\{p \in U \mid \lambda(p)>0\}, M^{-} \cap U=\{p \in M \mid \lambda(p)<0\} .
$$

Since $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ is the positive orthonormal basis field on $\left.\mathcal{E}\right|_{U}$, it holds that

$$
2\left\langle D_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{i}\right\rangle=\left\langle D_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{i}\right\rangle+\left\langle\boldsymbol{e}_{i}, D_{X} \boldsymbol{e}_{i}\right\rangle=X\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{i}\right\rangle=0(X \in \Gamma(T U)) .
$$

Thus, $D_{X} \boldsymbol{e}_{1}$ is orthogonal to \boldsymbol{e}_{1}, and a C^{∞}-differential 1 form ω on U is defined by

$$
D_{X} \boldsymbol{e}_{1}=-\omega(X) \boldsymbol{e}_{2}, D_{X} \boldsymbol{e}_{2}=\omega(X) \boldsymbol{e}_{1}
$$

The exterior derivative $d \omega$ does not depend on the choice of positive orthonormal basis fields of $\left.\mathcal{E}\right|_{U}$. Therefore, $d \omega$ defines a C^{∞}-differential 2 form on M. Let K be the Gaussian curvature of $d s^{2}$ on the set of regular points of φ. Then it holds that

$$
d \omega=K d \hat{A}=\left\{\begin{array}{cc}
K d A & \left(\text { on } M^{+} \backslash \Sigma(\varphi)\right), \\
-K d A & \left(\text { on } M^{-} \backslash \Sigma(\varphi)\right) .
\end{array}\right.
$$

A singular point $p \in \Sigma(\varphi) \cap U$ is called non-degenerate if it holds that

$$
\left(\lambda_{u}(p), \lambda_{v}(p)\right) \neq(0,0)
$$

If $p \in \Sigma(\varphi) \cap U$ is non-degenerate, by the implicit function theorem, there exists a regular curve $\gamma(t)$ on U through the point p such that it holds $\lambda(\gamma(t))=0$. This curve γ is called a singular curve, the tangent vector $\dot{\gamma}(t)$ is called a singular vector, and a 1-dimensional vector space generated by $\dot{\gamma}(t)$ is called a singular
direction. A tangent vector $\boldsymbol{v} \in T_{p} U \backslash\{\mathbf{0}\}$ at $p \in \Sigma(\varphi) \cap U$ is called a null vector if it holds that $\varphi_{p}(\boldsymbol{v})=\mathbf{0}$, and a vector space generated by the null vector is called a null direction. We remark that a null direction at a non-degenerate singular point is 1-dimensional.

From now on, we assume that $\Sigma(\varphi)$ consists of non-degenerate singular points of φ. A singular point of $\Sigma(\varphi)$ is called a singular point of the first kind (resp. singular point of the second kind) if the singular and null direction at the point are different (resp. same). If there are only singular points of the first kind around a singular point of the second kind of φ, the point is called an admissible singular point of the second kind.

Figure 1:
From now on, we assume that $\Sigma(\varphi)$ consists of singular points of the first kind and admissible second kind.

If a singular point $p \in \Sigma(\varphi) \cap U$ is a first kind, there is a singular curve $\gamma(t)$ through the point p. Since the point p is the first kind, the singular and null directions at the point p are different, and the singular and null directions along γ change continuously, so we retake $(U ; u, v)$ such that $\Sigma(\varphi) \cap U$ consists of singular points of the first kind. Then we set

$$
\begin{equation*}
\kappa_{s}(t):=\operatorname{sgn}\left(\lambda_{\eta}(t)\right) \frac{\mu\left(\varphi_{\gamma(t)}(\dot{\gamma}(t)), D_{\dot{\gamma}(t)}(\varphi \circ \dot{\gamma})\right)}{\left|\varphi_{\gamma(t)}(\dot{\gamma}(t))\right|^{3}}, \tag{3}
\end{equation*}
$$

where $\eta(t)$ is a null vector at each point $\gamma(t)$ such that $\{\dot{\gamma}(t), \eta(t)\}$ is positively oriented, and we set

$$
\lambda_{\eta}(t):=(d \lambda)_{\gamma(t)}(\eta(t)),\left|\varphi_{\gamma(t)}(\dot{\gamma}(t))\right|:=\sqrt{\left\langle\varphi_{\gamma(t)}(\dot{\gamma}(t)), \varphi_{\gamma(t)}(\dot{\gamma}(t))\right\rangle} .
$$

The equality (3) is called a singular curvature. We remark that κ_{s} is independent of the choice of parameters of γ, the orientation of γ, the orientation of M, and the orientation of \mathcal{E}. If a point $p \in M$ be an admissible singular point of the second kind and $\gamma(t)$ is a singular curve through $p, \kappa_{s}(t) d s\left(d s:=\left|\varphi_{\gamma(t)}(\dot{\gamma}(t))\right| d t\right)$ defines a bounded differential 1 form on $\gamma(t)$.

Consider triangulating M. We triangulate $M^{ \pm} \cup \Sigma(\varphi)$ such that vertexes are singular points of the second kind. Then we triangulate M by subdividing such that their triangles on $M^{ \pm}$are properly congruent on $\Sigma(\varphi)$. As a result, such a triangulation has the following properties.

- Singular points appear on edges of a triangle, and the interior of the triangle consists of regular points. A singular point appears on an edge
other than a vertex only if the edge consists of singular points (Such an edge is called a singular edge).
- A triangle has at most one singular edge.
- All edges other than a singular edge are gathered at singular vertexes from directions other than a null direction.
- There is no possibility that points at both ends of a singular edge are singular points of the second kind at the same time.

Triangles obtained by triangulation are classified into the following four types.
(1) A triangle consists of regular points.
(2) A triangle with one singular vertex consists of regular points except for that vertex.
(3) A triangle with one singular edge consists of regular points except for that edge, and does not have singular points of the second kind.
(4) A triangle with one singular edge consists of regular points except for that edge, and have a singular point of the second kind.
We remark that, at a non-degenerate singular point p, there exists a positive local coordinate system (u, v) with the origin at point p such that the null direction is parallel to the u-axis along the singular curve passing through point p. If the vertex A of $\triangle A B C$ is a singular point and we take the above local coordinate system (u, v) around A, the angle $\angle A$ is defined as follows:

$$
\angle A:= \begin{cases}\pi & \text { if the } u \text {-axis passes through the interior of } \triangle A B C, \\ 0 & \text { otherwise. }\end{cases}
$$

Figure 2:

3 The Gauss-Bonnet Theorem

Let $\gamma(t)$ be the parameterization of one of the sides of the triangles obtained by triangulating M. We define the geometric curvature $\tilde{\kappa}_{g}$ of γ as follows:

$$
\tilde{\kappa}_{g}(t)=\left\{\begin{array}{cl}
\kappa_{g}(t) & \text { if } \gamma(t) \in M^{+}, \\
-\kappa_{g}(t) & \text { if } \gamma(t) \in M^{-}, \\
\kappa_{s}(t) & \text { if } \gamma(t) \in \Sigma(\varphi),
\end{array} \quad \kappa_{g}(t):=\frac{\mu\left(\varphi_{\gamma(t)}(\dot{\gamma}(t)), D_{\dot{\gamma}(t)}(\varphi \circ \dot{\gamma})\right)}{\left|\varphi_{\gamma(t)}(\dot{\gamma}(t))\right|^{3}} .\right.
$$

Theorem 3.1 (Local Gauss-Bonnet Theorem) Let $(M, \mathcal{E},\langle\rangle, D,, \varphi)$ be a coherent tangent bundle over a compact oriented 2-manifold. If $\triangle A B C$ is a triangle obtained by triangulating M, then it holds that

$$
\int_{\partial \triangle A B C} \tilde{\kappa}_{g} d s+\int_{\triangle A B C} K d A=\angle A+\angle B+\angle C-\pi
$$

Let $p \in \Sigma(\varphi)$ be an admissible singular point of the second kind. The sum of interior angles on side $M^{+}\left(\right.$resp. $\left.M^{-}\right)$at p is denoted by $\alpha_{+}(p)\left(\right.$ resp. $\left.\alpha_{-}(p)\right)$. Then it holds that

$$
\alpha_{+}(p)+\alpha_{-}(p)=2 \pi, \alpha_{+}(p)-\alpha_{-}(p) \in\{-2 \pi, 0,2 \pi\} .
$$

A point p is called positive (resp. null, negative), If $\alpha_{+}(p)-\alpha_{-}(p)>0$ (resp. $\left.\alpha_{+}(p)-\alpha_{-}(p)=0, \alpha_{+}(p)-\alpha_{-}(p)<0\right)$.

Figure 3:
Suppose that $\Sigma(\varphi)$ and ∂M satisfy the following conditions:
(1) $\Sigma(\varphi)$ and ∂M are transversal.
(2) All singular points on $\Sigma(\varphi) \cap \partial M$ are the first kind.
(3) The null direction of a singular point on $\Sigma(\varphi) \cap \partial M$ is not tangent to ∂M.
(1) implies that tangent directions of $\Sigma(\varphi)$ and ∂M at a singular point on ∂M are different. (2) implies that a null direction at the singular point on ∂M is not tangent to $\Sigma(\varphi)$.

Definition 3.2 We take a local coordinate system (u, v) around a singular point p on ∂M such that the null direction along the singular curve is parallel to the u-axis. The point p is called positive (resp. negative) if the u-axis passes through $M^{+}\left(\right.$resp. $\left.M^{-}\right)$
The sum of interior angles on side M^{+}(resp. M^{-}) at a singular point p on ∂M is denoted by $\beta_{+}(p)\left(\right.$ resp. $\left.\beta_{-}(p)\right)$. Then it holds that

$$
\beta_{+}(p)+\beta_{-}(p)=\pi, \beta_{+}(p)-\beta_{-}(p) \in\{-\pi, \pi\} .
$$

By Definition3.2, a point p is positive (resp. negative) if and only if it holds that $\beta_{+}(p)-\beta_{-}(p)=\pi$ (resp. $\left.\beta_{+}(p)-\beta_{-}(p)=-\pi\right)$.

Figure 4:

Theorem 3.3 Let $(M, \mathcal{E},\langle\rangle, D,, \varphi)$ be a coherent tangent bundle over a compact oriented 2 -manifold with boundary M, and suppose that the singular set $\Sigma(\varphi)$ consists of singular points of the first kind and admissible second kind. We set

$$
\int_{M} K d A:=\int_{M^{+}} K d A+\int_{M^{-}} K d A .
$$

Then it holds that

$$
\begin{aligned}
\int_{M} K d A+2 \int_{\Sigma(\varphi)} \kappa_{s} d s+\int_{\partial M} \tilde{\kappa}_{g} d s= & 2 \pi \chi(M)-\pi(\#(\Sigma(\varphi) \cap \partial M)), \\
\int_{\partial M} \kappa_{g} d s+\int_{M} K d \hat{A}= & 2 \pi\left\{\chi\left(M^{+}\right)-\chi\left(M^{-}\right)\right\}+2 \pi\left(\# S^{+}-\# S^{-}\right) \\
& +\pi\left(\#(\Sigma(\varphi) \cap \partial M)^{+}-\#(\Sigma(\varphi) \cap \partial M)^{-}\right),
\end{aligned}
$$

where $\# S^{+}$(resp. $\# S^{-}$) are the numbers of positive (resp. negative) singular points of the second kind, $\#(\Sigma(\varphi) \cap \partial M)$ is the numbers of singular points on ∂M, and $\#(\Sigma(\varphi) \cap \partial M)^{+}$(resp. $\#(\Sigma(\varphi) \cap \partial M)^{-}$) are the numbers of positive (resp. negative) singular points on ∂M.

Remark 3.4 The result presented here is closely related to Theorem 2.20 of [4]. Their theorem is a generalization of Theorem B of [1] to the case of manifolds with boundary, and it is generalized by considering peaks instead of admissible singular points of the second kinds. Several applications are presented in [4].

References

[1] K. Saji, M. Umeraha, K. Yamada, Behavior of corank-one singular points on wave fronts, Kyushu Journal of Mathematics, Vol. 62 (2008), 259-280.
[2] K. Saji, M. Umehara, K. Yamada, Coherent tangent bundles and GaussBonnet formulas for wave fronts, J. Geom. Anal. 22 (2012), no. 2, 383-409.
[3] K. Saji, M. Umeraha, K. Yamada, The geometry of fronts, Annals of Mathematics, 169 (2009), 491-529.
[4] W. Domitrz and M. Zwierzyński, The Gauss-Bonnet Theorem for Coherent Tangent Bundles over Surfaces with Boundary and Its Applications, The Journal of Geometric Analysis (2020) 30:3243-3274.

[^0]: *hashibori.kyoya.a7@elms.hokudai.ac.jp

