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1 Introduction 

In this paper, I present an original generalization of Fact3.3 of [2] to the case 
of 2-manifolds with boundary. The classical Gauss-Bonnet theorem is discussed 
on regular surfaces, and it is well known that there are two types, the local and 
global theorem. The following theorem is a generalization of the classical global 
Gauss-Bonnet's theorem for coherent tangent bundles. 

Theorem 1.1 (Fact3.3 of [2]) Let (M, £,〈,〉，D,1.p) be a coherent tangent 
bundle over a compact oriented 2-dimensional manifold M, and suppose that the 
singular set :E(1.p) consists of singular points of the first and admissible second 
kind. We denote by K the Gaussian curvature of the induced metric ds2 = 

¢*〈，〉.Thenit holds that 

1 ~ JM KdA=x(M打一x(M―)＋＃s+-#S―,
27r }M 

21rx(M) = JM KdA + 21叩） K,3ds,

(1) 

(2) 

where #S+ (resp. #S-) are the numbers of positive (resp. negative) singular 
points of the second kind, and K,8 is the singular curvature of :E(r_p). 

The concepts described in the above theorem are defined precisely in §2. I 
discuss a generalization of (1) and (2) for manifolds with boundary (See Theo-
rem3.3 for details). 
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2 Preliminaries 

From now on, let M be a compact oriented 2-manifold with boundary. 
The set of C00-functions on Mis denoted by C00(M), and the set of C00-

sections of a vector bundle £ is denoted by r(£). Let £* be a dual vector 
bundle of£. 〈，〉 Er(£* i8I £*) is called an inner product on £, when〈,〉
defines a positive definite inner product on each fiberら (pE M). A map 
D : r(TM) X r(£) :3 (X,＜)→ Dx(E r(£) is called a connection on £ if, for 
皿 yf,g E C00(M),X,Y E r(TM),(,TJ E虚）， thefollowing conditions hold. 

(1) Dtx+9Y(= f Dx(+ gD心

(2) Dx((+ TJ) = Dx(+ DxTJ, 

(3) Dx(f() = (Xf)(+ f Dx(. 

A connection D on £ with an inner product is called a metric connection if it 
holds that 

X〈ふ n〉=〈Dxふ n〉+〈~,Dx'f/ 〉 (XE I'(TM)，い，'I]EI'(£)). 

Definition 2.1 Let £ a vector bundle of rank 2 with an inner product〈,〉，
D: r(TM) X r(£)→r(£) a metric connection on£, and cp: T M→£ a bundle 
homomorphism. A 5-tuple (M, £,〈,〉，D,cp) is called a coherent tangent bundle 
if, for any X, YE  r(TM), it holds that 

Dxcp(Y) -D匹 (X)-c.p([X, Y]) = 0. 

Example 2.2 Let (M,g) be a 2-dimensional Riemannian manifold and▽ : 

r(TM) X r(TM)→r(TM) a Levi-Civita connection on TM. If we take an 
identity map id : TM→TM  as a bundle homomorphism, then a 5-tuple 
(M,TM,g，▽，id) is a coherent tangent bundle. This shows that the concept of 
coherent tangent bundles is a generalization of Riemannian manifolds. 

From now on, let E be a oriented vector bundle. 
If, for each point p E M, (ds加： TpMXTpM→良 isdefined by 

(ds加(v心） ＝〈叫叫叫切）〉（V1心2E TpM), 

d茫 iscalled the first fundamental form of r.p. A point p E M is called a regular 
point of r.p if咋： TpM→ら isa linear isomorphism. A point p E M is called a 
singular point of r.p if <pp is not a linear isomorphism. The set of singular points 
of r.p is denoted by ~(r.p). 

Let (U; u, v) be a positive local coordinate system of M, { e心｝ anpositive 
orthonormal basis field on Elu, and {w1,w2} a dual basis field of {e1,e2}-If a 
sectionμ: U→E* lu I¥ E* lu is defined by 

μ :＝叫＾匹，
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thenμ is independent of the choice of positive orthon?rmal basis fields of Elu-
Therefore, μ is defined on M. A differential 2 form dA on M is called a signed 
area form of E if, for each point p EM, (dA)p: TpM x乃M →良 isdefined by 

(dA)p(v1, v叫＝ μ(r.pp(v1),r.pp(v2))(v1,v2 E TpM). 

If a signed area density function入E000 (U) is defined by 

入＝ μ （や（羞），や（羞）），
then it holds that 

叩） nU={pEUI入(p)= O}, dA =入duI¥ dv. 

In particular, dA defines a C00-differential 2 form on M. On the other hand, 
dA :=|入|duI¥ dv does not depend on the choice of positive local coordinate 
systems of M. Thus, dA defines a continuous differential 2 form on M, and dA 
is called an area form of £. If we set 

Af+ :={PE M＼叩（r.p)I dAp = d心｝， M―:={PEM\~(r.p) I dAp = -dん｝，
then ~(r.p) is coincide with 8M+ and 8M-, respectively. Using a signed area 
density function入， wehave 

M+ n u = {p E u I入(p)> O}, M-nu= {p E M I入(p)<O}.

Since {e1,e2} is the positive orthonormal basis field on £1u, it holds that 

2〈Dxei,ei〉=〈Dxei,ei〉+〈ei,Dxei〉=X〈ei,ei〉=0(XE r(TU)). 

Thus, Dxe1 is orthogonal to e1, and a 000-differential 1 form won U is defined 
by 

Dxe1=―叫X)e2,Dxe2 = w(X)e1・

The exterior derivative dw does not depend on the choice of positive orthonormal 
basis fields of Elu-Therefore, dw defines a C00-differential 2 form on M. Let 
K be the Gaussian curvature of ds2 on the set of regular points of cp. Then it 
holds that 

dw=kdA= ｛ kdA(onM心 (r.p)），
-KdA (on M立 (r.p)).

A singular point p E ~(r.p) n U is called non-degenerate if it holds that 

（入u(P)，入v(P))=/ (0, 0). 

If p E ~(1.p) n U is non-degenerate, by the implicit function theorem, there exists 
a regular curve,(t) on U through the point p such that it holds入（,(t))= 0. 
This curve I is called a singular curve, the tangent vectorう(t)is called a singular 
vector, and a I-dimensional vector space generated byう(t)is called a singular 
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direction. A tangent vector v E TpU¥{O} at p E ~(r_p) n U is called a null vector 
if it holds that (f)p(v) = 0, and a vector space generated by the null vector is 
called a null direction. We remark that a null direction at a non-degenerate 
singular point is 1-dimensional. 

肝omnow on, we assume that ~ (r_p) consists of non-degenerate singular points 
of r_p. A singular point of ~( r_p) is called a singular point of the first kind (resp. 
singular point of the second kind) if the singular and null direction at the point 

are different (resp. same). If there are only singular points of the first kind 
around a singular point of the second kind of r_p, the point is called an admissible 

singular point of the second kind. 

Figure 1: 

null direction 
null direction 

singular curve 

From now on, we assume that :E（cp) consists of singular points of the first 
kind and admissible second kind. 

If a singular point p E :E(cp) n U is a first kind, there is a singular curve 

1(t) through the point p. Since the point p is the first kind, the singular and 
null directions at the point p are different, and the singular and null directions 

along'Y change continuously, so we retake (U; u, v) such that :E (cp) n U consists 
of singular points of the first kind. Then we set 

応 (t):= sgn（入'f/(t))
μ('P,(t)（夕(t)),Dw)('P oう））

I巴(t)（う(t))l3,
(3) 

where TJ(t) is a null vector at each point'Y(t) such that｛う（t),TJ(t)} is positively 
oriented,皿 dwe set 

入r,(t):= (d入）1（t)(n(t)）， |¢1(t)（う(t))I:= V〈'P,(t)（う（t)),巴(t)（う(t)）〉．

Theeq叫 ity(3) is called a singular curvature. We remark that Ks is independent 

of the choice of parameters of 1, the orientation of 1, the orientation of M, and 
the orientation of £. If a point p E M be an admissible singular point of the sec-

ond kind and,(t) is a singular curve through p,凡（t)ds(ds :=|巳(t)（う(t))ldt) 
defines a bounded differential 1 form on,(t). 

Consider triangulating M. We triangulate M士 U~(cp) such that vertexes 
are singular points of the second kind. Then we triangulate M by subdividing 
such that their triangles on M士 areproperly congruent on ~(cp). As a result, 

such a triangulation has the following properties. 

• Singular points appear on edges of a triangle, and the interior of the 
triangle consists of regular points. A singular point appears on an edge 
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other than a vertex only if the edge consists of singular points (Such an 

edge is called a singular edge). 

• A triangle has at most one singular edge. 

• All edges other than a singular edge are gathered at singular vertexes from 
directions other than a null direction. 

• There is no possibility that points at both ends of a singular edge are 

singular points of the second kind at the same time. 

Triangles obtained by triangulation are classified into the following four 
types. 

(1) A triangle consists of regular points. 

(2) A triangle with one singular vertex consists of regular points except for 

that vertex. 

(3) A triangle with one singular edge consists of regular points except for that 
edge, and does not have singular points of the second kind. 

(4) A triangle with one singular edge consists of regular points except for that 

edge, and have a singular point of the second kind. 

We remark that, at a non-degenerate singular point p, there exists a positive 

local coordinate system (u, v) with the origin at point p such that the null 
direction is parallel to the u-axis along the singular curve passing through point 
p. If the vertex A of△ABC is a singular point and we take the above local 

coordinate system (u, v) around A, the angle乙Ais defined as follows: 

乙A:={ ~ 

三

if the u-axis passes through the interior of△ABC, 

otherwise. 

国
Figure 2: 

3 The Gauss-Bonnet Theorem 

Let 1(t) be the parameterization of one of the sides of the triangles obtained by 

triangulating M. We define the geometric curvature焉 ofI as follows: 

焉(t)= {—氏畠信腐::：： ％（t) ：＝ μ ('-P1(t)け(t)）， D1(t)伶。う））
叫） if1(t) E叩）， 1巴(t)（う(t))l3 ・
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Theorem 3.1 (Local Gauss-Bonnet Theorem) Let (M, £,〈，〉，D,r.p) be a 
coherent tangent bundle over a compact oriented 2-manifold. If△ABC is a 
triangle obtained by triangulating M, then it holds that 

J 杓ds+ LARrJ KdA =乙A＋乙B十乙C-1r.
8△ABC △ABC 

Let p E I; (r.p) be an admissible singular point of the second kind. The sum of 
interior皿 gleson side M+ (resp. M-) at pis denoted by a+(P) (resp. a_(p)). 

Then it holds that 

a+(P) + a_(p) = 21r, a+(P) -a_ (p) E { -21r, 0, 21r }. 

A point pis called positive (resp. null, negative), If a+(P) -a_(p) > 0 (resp. 

叫 (p)-a_(p) = 0,叫（p)-a_(p) < 0). 

ヽ
I 

、 I / 、O In / 

null 

Figure 3: 

Suppose that ~(r_p) and fJM satisfy the following conditions: 

(1) ~ (<p) and 8 M are transversal. 

(2) All singular points on ~(<p) n fJM are the first kind. 

(3) The null direction of a singular point on ~ (<p) n fJ M is not tangent to 8 M. 

(1) implies that tangent directions of ~(r_p) and fJM at a singular point on fJM 
are different. (2) implies that a null direction at the singular point on fJM is 

not tangent to ~(<p). 

Definition 3.2 We take a local coordinate system (u, v) around a singular point 

p on fJM such that the null direction along the singular curve is parallel to the 
u-axis. The point p is called positive (resp. negative) if the u-axis passes through 
Af+ (resp. M-) 

The sum of interior angles on side Af+ (resp. M-) at a singular point p on fJM 

is denoted by(3＋（p) (resp.(3＿（p)). Then it holds that 

(3＋(p) +(3＿（p) = 1r,(3＋(p) -(3＿（p)E{-1r,1r}. 

By Definition3.2, a point p is positive (resp. negative) if and only if it holds 

that(3＋(p) -(3＿（p) = 1r (resp. f3+(P) -(3＿（p) = -1r). 
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Figure 4: 

Theorem 3.3 Let (M,£,〈，〉，D,1.p) be a coherent tangent bundle over a com-
pact oriented 2-manifold with boundary M, and suppose that the singular set 
〗位） consists of singular points of the first kind and admissible second kind. 
We set 

JM KdA := !M+ KdA + fM-KdA 

Then it holds that 

JM KdA+2 i(ゃ)ksds + J8M焉ds

laM t,,9ds + JM K dA 

2双 (M)-1r(#(:E(r_p) n 8M)), 

加 {x(M+)-x(M―)｝ ＋21r(#S+ -#S―) 

+1r(#(:E(c.p) n fJM)+-#（叩） nfJM)―)，

where #S+ (resp. #S-) are the numbers of positive (resp. negative) singular 
points of the second kind, #(:E（cp) n fJM) is the numbers of singular points on 
fJM, and #(:E(c.p) n fJM)+ (resp. #(:E（c.p) n fJM)-) are the numbers of positive 
(resp. negative) singular points on fJM. 

Remark 3.4 The result presented here is closely related to Theorem 2.20 of [4]. 
Their theorem is a generalization of Theorem B of [1] to the case of manifolds 
with boundary, and it is generalized by considering peaks instead of admissible 
singular points of the second kinds. Several applications are presented in [4]. 
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