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APPENDIX TO "DIFFEOMORPHISM CLASSES OF THE DOUBLING CALABI-YAU 

THREEFOLDS WITH PICARD NUMBER TWO" 

Naoto Yotsutani 

Kagawa University 

1. INTRODUCTION 

This is an appendix to the author's paper entitled "Diffeomorphism classes of the doubling Calabi-
Yau threefolds with Picard number two [Y21]" where he proved that any two of the doubling Calabi-
Yau 3-folds with Picard number 2 are not diffeomorphic to each other when the underlying Farro 3-folds 
are distinct. We refer the reader to [Y21] for background on the problem and terminology discussed in 
this note. 

As listed in Table 1 below, there are 8 doubling Calabi-Yau 3-folds M with Picard number 2 
which have the same Hodge numbers (h1•1(M), h2•1(M)). These 8 overlapping Hodge numbers 
(h1,1(M), h2•1(M)) are listed with ✓ on the table. Furthermore, in Table 1, V denote the under-
lying Farro 3-folds which are the ingredients for the doubling construction of Calabi-Yau 3-folds in 
[DY14]. See [DY14, Section 6], for more details. This note aims to summarize computational details 
of 

(i) the cubic forms, and 
(ii) the入-invariants

which we will use for the proof of Theorem 1.1 in [Y21]. 

TABLE 1. The doubling Calabi-Yau 3-folds with Picard number 2 and the underlying 
Farro 3-folds with Picard number 1 

ID in [FG] -Kゃh1,2(V) (hl,l(M), h2,1(M)) 

1-1 2 52 (2, 128) 
1-2 4 30 ✓ (2, 86) 
1-3 6 20 (2, 68) 
1-4 8 14 ✓ (2, 58) 
1-5 10 10 (2, 52) 
1-6 12 7 (2,48) 
1-7 14 5 (2,46) 
1-8 16 3 ✓ (2, 44) 
1-9 18 2 ✓ (2, 44) 

1-10 22 

゜
✓ (2, 44) 

1-11 8 21 (2, 72) 
1-12 16 10 ✓ (2, 58) 
1-13 24 5 (2, 56) 
1-14 32 2 ✓ (2, 58) 
1-15 40 

゜
(2, 62) 

1-16 54 

゜
(2, 76) 

1-17 64 

゜
✓ (2, 86) 

Date: July 3, 2022. 
Key words and phrases. Calabi-Yau manifolds, diffeornorphisrn, cubic iutersectiou form. 
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2. (h1•1(M), h2•1(M)) = (2, 86) CASE 

These doubling Calabi-Yau 3-folds are listed in Table 1 with the underlying Farro 3-folds, (a) ID 1-2 
and(b）ID 1-17. Geometric description of the corresponding Fano 3-folds are 

(a) aquartichypersurfaceinCP4; V(4) c CP4,and 
(b）the projective space (CP釘

2.1. ID 1-2: V(4) c (CP4 case. Let V be a quartic hypersurface in (CP4. Note that Vis the Fano 
3-fold with -Kや＝ 4(see [IsPr99, p.215]). By Lefschetz Hyperplane Theorem, we have more specific 
description of V such as 

1 

゜゜゜
1 

゜hP,q(V) = 0 30 30 
，゚ 

H3 -KV 3 
g = g(V) =— +1=-+1=3 

2 2 

゜
1 

゜゜゜1 

where g denotes the genus of Fano variety. In particular，が＝ 4for the ample generator H E 

正（V,Z). Let D E I -K v I be a smooth anticanonical divisor and let C E IV瓜1)I be a smooth curve 
in D which represents the intersection class of D • D. Then the degree of C is 2g -2 and this is the 

reason why g =ユ立＋ 1is called the genus of a Farro 3-fold [IsPr99, p.32]. Taking Y; to be the 
blow-ups Blc(V) of V along C, we again denote the exceptional divisors by凡 fori = 1, 2. Then the 
cohomology rings of Y; are 

が (Y』= C〈吋(H),Ei〉=C〈Hi,Ei〉

and the proper transforms Di of D in Y; are Hi -Ei. Let o =〈-D1,D分＝〈E1-H1,H2 -E叶
Then we see that any element in H2 (Y1, Z) x炉 (Y2,Z) is written as 

(aH1 + bl訂，clら＋ （a+ b -c)H2) = (a+ b)(H1, H2) -(b + c)(H1 -E1, 0) -cふ

Thus we conclude that 

正（M,Z)竺〈(H1加），（H1-E1,0)〉

up to torsion. Hence in this case, we take e1 = (H1, H2) and e2 = (H1 -E1, 0) as generators of 
印 (M,Z).

Now we compute the cubic products of ei inが (M,Z). Let us denote by町： Y;= Blc(V) --+ V 
two copies of the blow-ups of V along C for i = 1, 2. Let L be a fiber over a point on C under 
the blow-up'lri-Since the intersection number is preserved by the total transform, we see that Hf = 
(1r; 1が＝か＝ 4.Moreover, HiL = 0 and EiL = -1. Let d be the degree of C. Since a hyperplane 
in V will intersect C in d points, its inverse image Hi in Y; will meet the exceptional divisor Ei in d 
fibers. Thus 

Hぶ＝ dL= (2g -2)L = 4L and Ef = -4H[ + SL. 

Then we see that 

H訊＝ 4HiL=O, H閤＝ 4EiL= -4 and 

Ef = -4H閏＋SLEi= -8. 

In sum, we find the following table of the multiplication of the intersection forms on H2* (Y;, Z): 

Hf L が (Y⑰) H i Ei 記 (Y;,Z) 仇 i_1~8L
H2(Y;, Z) 炉(~,Z) 
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Plugging these values into the products, we find that 

ey = (H1,H州＝厨＋Hi=8, 

ふ＝（H1,H位(H1-E1,0) = Hf-H訊＝ 4,

e心＝（H1,H2)(H1 -E1, 0)2 = Hf -2H糾＋H悶＝ 4-4 = 0, 

e~ = (H1 -E1, 0)3 = Hf -3H国＋ 3H悶— Ef = 4 -0 + 3 ・ (-4) -(-8) = 0. 

Next we calculate the 入—invariantof the resulting doubling Calabi-Yau 3-fold M. Since Vis a degree 
4 smooth hypersurface in <CP4, the total Chem classes of V are given by the formula 

(1 + H)5 
(1 + 4H) 

= (1+5H +lOHり(1-4H + 16Hり＋ O(Hり＝ l+H+6が＋O(H3).

Hence we find that the second Chem classes of ~ are given by 

(2.1) C2 (Y°;)＝吋(c2(V)+ TJc)―吋(c1(V))・ E; = 7H,2 -Hぶ

by [GH, p.610], where 1/C denotes the class of the blow-up center CE IO瓜1)I-Then the products of 
c2(M) and ei (i = 1, 2) are 

釘 •c2(M) = 7Hf-H訊＋7H?-H糾＝ 56= 8 ・ 7, 

e2互 (M)= (7Hf-H心）（H1-E1) 

= 7Hf-H詞— 7H糾＋H国
= 7 ・ 4 -4 = 24 = 8 ・ 3. 

Since the subgroup { e E〈e1,e2〉|e・ c2 (M) = 0 } ofが (M,Z), Z) is generated by a single element 
3e1 -7e2, the 入—invariant of M is 

入(M)= l(3e1 -7e州I= l27ef -189eie2 + 441碍— 343e~I
= 127. 8 -189. 41 = 540. 

2.2. ID 1-17: CP3 case. The detailed calculations are written in [Y21]. Hence this subsection only 
collects the most basic part of computation on the cubic forms and the 入—invariant.

We set V = CP汽D E IOv(4)1, C E IV瓜4)1and 1r; : Yi = Blc(V) --+ V for i = 1, 2, 
respectively. Then we have H2(Yi) = (C〈H;,E,〉withE; = 1r;1(C) and H;＝吋(H)C Yi for 
HE炉 (V,Z). Furthermore, the proper transform D; of Din Y; is 4H; -E; for each i. Then the 
straightforward computation shows that any element in炉 (Y1,Z) X炉 (Y2,Z) can be expressed as 

(a+ 4b)(H1, H2) -(b + c)(4H1 -E1, 0) -cb, b :=〈E1-4H1,4H2 -E分．

This yields that 

が (M,Z)竺〈(H1,Hか(4H1-E1, 0)〉

up to torsion. Taking e1 = (H1, H2) and e2 = (4H1 -E1, 0) as generators of Hi(M, Z), we see that 

ef = (H1,H州＝ H{+H?= 2, 

efe2 = (H1, H2)2(4H1 -E1, 0) = 4H{ -H訊 ＝ 4,

叩各＝（H1加）（4H1-E1, 0)2 = l6H{ -8H国＋H国＝ 0,

叫＝（4H1-E州＝ 64H{-48Hf E1 + 12H但 f-E{ = 0. 

As we have seen in Section 2.1, the second Chern class of Y; is c2(Y;) = 22H; -4Hぶ foreach i. 
Thus the subgroup { e E〈e□2〉|e・ c2(M) = 0} ofが (M,Z) is generated by 6e1 -lle2. Then the 
入-invariantis入(M)= l(6e1 -11四）打＝ 4320.
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3. (h1•1(M),h2•1(M)) = (2,44) CASE 

In this case, the corresponding doubling Calabi-Yau 3-folds are listed in Table 1 with the underlying 
Fano 3-folds, (a) ID 1-8, (b) ID 1-9 and (c) ID 1-10. We remark that these Fano 3-folds have the 
following geometric description: 

(a) a section of Plticker embedding of SGr(3, 6) by codimension 3 subspace, where SGr(3, 6) is 
the Lagrangian Grassmannian; V(l, 1, 1)<-+ SGr(3,6), 

(b）a section of G2Gr(2, 7) by codimension 2 subspace; V(l, 1)→伍Gr(2,7), and 

(c) the zero locus of (A予）①3on Gr(3, 7) where V→Gr(3, 7) is the tautological rank 3 vector 

bundle over the Grassmannian Gr(3, 7). 

In the above description (b), G2Gr(2, 7) denotes the adjoint G2-Grassmannian which is the zero locus 

of the section s E (¥3で correspondingto the G2-invariant 3-form. See [FG], [IsPr99, Chapter 4], 
[D08, Section 5] for more details. Systematically, all of these Fano 3-folds are expressed as anticanon-
ically embedded Fano 3-folds V = ½9_2 c (CP9+1 with Picard number 1 and genus g. Moreover, 

we may assume that Pic(V) = H • Z where H is the unique generator of印 (V,Z)and H = -Kv 
for each case (a) g = 9 : V16 c (CP10, (b) g = 10：Vis C CP11 and (c) g = 12 :五 C(Cp13, 

respectively. 

3.1. ID 1-9：屈 cICP11 case. Firstly, we consider case(b）． LetV =応 CICP11 b e an antlcanom-
cally embedded Fano 3-fold with genus g = 10, Pic(V) = Z ・Hand -K v = H. Here and hereafter, 
we use the same notation as in Section 2. According to [FG], we have -Kも＝ 18and 

1 

゜゚゚1 

゜(3.1) hP,q(V) = 0 2 2 0. 

゜
1 

゜゜゚1 

Let D E IOv(l)I b e an anticanonical divisor and CE  IO瓜1)I a smooth curve in D. Setting Y; to be 
two copies of the blow-up Blc(V) for i = 1, 2, we see that炉 (Y。)＝ C〈Hi,Ei〉and炉 (M,Z)竺

〈(H1,H砂，（H1-E1,0)〉upto torsion. This yields that generators of炉 (M,Z) are given by e1 = 
(H1, H2) and e2 = (H1 -E1, 0). 

In the same manner as the previous computation in Section 2.1, we find that Hl = 18, HiL = 0 and 
EiL = -1 where Lis a fiber over a point on C under the blow-up. Moreover, ford = deg C, we have 

Hi丘＝ dL= (2g -2)L = 18L and 

H[Ei = Hi(Hぶ） ＝18HiL = 0. 

~ 2:1 
Let T = 2g be the number of branches of the double curve Y; っ C —→ C C V. By the list in [GH, 

p.623], we see that 

E; = -dH; + (4d + 2g -2 -2T)L 

= -18H; + (72 + 20 -2 -40)L = -18H; + 50L, 

H図＝ H正18H;+ 50L) = -18Hf + 50HiL = -18 ・ 18 = -324, 

屁＝且（ー18H;+ 50L) = -18Ei祀＋50EiL= -50. 

Consequently, we have the following table of the multiplication of the intersection forms on H2* (Yi, Z): 
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Hf L が (Y;,Z) 
H, 18 0 

E; 0 -1 

炉 (Y;,Z) 

Hi 
E, 

印(~,Z)

Hi 且印(Yi,Z) 
H2 

t 18L 
18£ -18H'f + 50L 

Substituting these values into the cubic products, we see that 

ef = (H1,H州＝ Hf+HJ= 36, 

ふ＝（H1,H位(H1-E1, 0) = Hf -H詞 ＝ 18,

疇＝（H1,H2)(H1 -E1, 0)2 = Hf -2H試＋疇＝ー306,

碕＝（H1-Ei,0)3 = Hf-3HfE1 + 3H麿— Ef = -904. 

Next we compute the入-invariantof the doubling Calabi-Yau 3-fold M. Since V =囮 Cl('.pll 

is an anticanonically embedded Fano 3-fold with -K v = H, we see that the first Chem class of V 
is given by c1(V) = H. In order to find the second Chem class of V, we use the Riemann-Roch-
Hirzebruch formula 

n p 竺l)qdimHq(V，伊） ＝Iv td(V) ch(/¥T*V) (3.2) 

for n = 3 and p = 0. This yields the equality 

i?-1)9dimH9(v,n°) = [ (1 + ~c1(V) + f ゜q=0 (-1)qdim印 (V炉） =~ (1 + ~c1(V) ＋誓1(V)2 + c2(V)) + ~c1(V)c2(V)) ch(AT*V) 

(3.3) 

⇔ ho,o -ho,1 + ho,2 -ho,3 = ~ Iv c1 (V)位 (V)

Suppose that c2 (V) = a印 fora E Q. Then the Hodge diamond (3.1) and the equality (3.3) imply that 

面IvaH3 
4 

=1 ⇔ a = -
v 3 

by fv か＝（—Kも） ＝18. Thus, we find c2(V)＝れl2.As we have seen in (2.1), the second Chern 
classes of }"i are given by 

叫Y2)＝吋(c2(V)+ TJc)―可(c1(V))・ Ei 

= 7r: （砂＋H2)-Hぶ＝；H;-Hぶ

Then the products of c2 (M) and e; are 

7 7 
釘 •c2(M) = ~Hf- HfE1 + ~H?- H誌＝ 84= 6 ・ 14, 

3 

e2互 (M)＝ （Hl -E心 (Y1)3 = （Hl -m (iHf -H心）
7 7 

= ~Hf +H国＝ー・ 18+ (-324) = -282 = -6 ・ 47. 
3 3 

Since the subgroup { e E〈e1,e2〉|e・ c2(M) = 0} of炉 (M,Z) is generated by 47釘＋ 14e2,we see 
that the 入—invariant of M is given by 

入(M)= 1(47釘＋ 14e2ドI= l473er + 3. 472. 14. eie2 + 3. 47. 142e1e~ + 143e~I = 5529560. 
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3.2. ID 1-8：加 cICP10 case. Secondly, we shall consider case (a). We refer the reader to [Y21] for 
details. The most essential part of the calculation can be summarized as follows. 

We suppose that V = V16 c ICP10, g = 9, Pic(V) = Z • H and -K v = H. Furthermore, we have 

-Kや＝ 16and 

1 
0 0 

hP,q(V) = 0 
0

0

 

3
 

1

1

 

3
 

0

0

 

0. 

0 0 
1 

Setting D E IOv(l)I, C E IO瓜1)1and 7ri : Y; = Blc(V) —• V for i = 1, 2, we see that 
H立）＝ C〈Hi,Ei〉and炉 (M,Z)竺〈(H叫），（H1-E1,0)〉-E1, 0)) up to torsion. Hence two gener-
ators of H2(M, Z) are taken as e1 = (H1, H2) and e2 = (H1 -E1, 0). Consequently, we find the 
values of the cubic forms as follows: 

er= (H1, H2)3 =Hf+ H? = 32, 

eie2 = (H1, H研(H1-E1,0)=Hf-H訊＝ 16,

e1e~ = (H1,H砂(H1-E1, 0)2 = Hf -2H訊＋H濁＝ー240,

噂＝（H1-E1, 0)3 = Hf-3H匡＋3H直f-Ef= -708. 

As we computed in Section 3.1, the second Chem class of V is calculated by the Riemann-Roch-
Hirzebruch formula (3.2), from which we conclude that c2(V)＝肛炉． Thusthe second Chern classes 
of Y; are 

疇）＝ 7r:（？が＋H2)-Hぶ＝ ？厨— Hぶ
2 2 

for i = 1, 2. Then the subgroup { e E〈e1,e2〉|e• c2(M) = 0} of H2(M, Z) is generated by 27釘＋

l0e2. This implies that the 入—invariant is入（M)= l(27e1 + l0e2)列＝ 1672224.

3.3. ID 1-10: Vi2 c ICP13 case. Finally, we consider case (c), that is, V = V22 c ICP13 is an 
anticanonically embedded Fano 3-fold with genus g = 12, Pic(V) = Z ・Hand -K v = H. Note that 
the unique such 3-fold with Aut(V) = PGL(2, IC) is called the Mukai-Umemura 3-fold, and we refer 
the reader to [D08, Ti97] and references therein for more details. 

As one can see in [FG], the Hodge diamond of Vis 

1 

゜゚゚1 

゜(3.4) hp,q(V)= 0 

゜゚ ゜゜
1 

゜゜゚1 

and -Kや＝ 22.Let D E IOv(l)I be an anticanonical divisor, C E IO爪1)I a smooth curve in 
D and 17; two copies of the blow-up Blc(V) as usual. Then we see that炉 (Y』=C〈Hi,Ei〉and
正 (M,Z)竺〈（H1加），（H1-E1,0)〉upto torsion. Hence two generators of印 (M,Z) are given 
by e1 = (H1, H2) and e2 = (H1 -E1, 0). The straightforward computation shows that Hf = 22, 
HiL = 0 and EiL = -1. Furthermore, we have 

Hふ＝ dL= (2g -2)L = 22L and 

H[Ei = Hi(Hぶ）＝ 22HiL= 0. 
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~ 2:1 
Again, let T = 2g be the number of branches of the double curve C→C c V. Then we see that 

E; = -dH;+(4d+2g-2-2T)L 

= -22H; + (88 + 24 -2 -48)£ = -22H; + 72£, 

H亙＝凡(-22H; + 72£) = -22Hf + 72HiL = -22 ・ 22 = -484, and 

屈＝凡(-22H;+ 72£) = -22EiH; + 72EiL = -72. 

Consequently, we have the following table of the multiplication of the intersection forms on H2* (Y;, Z): 

H; L H4(Y;,Z) I Hi E，が（Y;,Z) 

1; I 202°1 仇盆＿22嘉[72L 

炉 (Y;,Z) 印(~,Z:;)

Substituting these values into the cubic products, we see that 

ef = (H1, H2)3 =Hf+ H? = 44, 

eie2 = (H1加）2(H1-E1, 0) = Hf -Hf E1 = 22, 

叩 §=(H1,H砂(H1-E1, 0)2 = Hf -2H試＋H国＝ー462,

e~ = (H1 -E1, 0)3 = Hf-3Hf E1 + 3H濁— Ef = -1358. 

Now, we compute the入-invariant.As we have seen in Section 3.1, the first Chem class of Vis given 
by c1 (V) = H. In order to calculate the second Chem class of V, we use (3.2) for n = 3 and p = 0. 
Then we obtain 

(3.5) 砂0_ hO,l + h0,2 _ h0,3 =五JV釘 (V)c2(V).

Suppose that c2(V) = aH2 for a E Q. Since the left hand side of (3.5) is 1 by (3.4), we see that 

上J叩＝ 1 ⇔ a=竺
24 v 11 

where we used J, V 炉＝（—Kじ） ＝22. Thus, we find c2 (V)＝什H2.By (2.1), the second Chem 
classes of 17; are 

c立）＝吋(c2(V)+'r/C)ー叶(c1(V))・ E; 

12 --~ --~ ¥ --_ 23 
= 1r; (H H2 + H2) -Hぶ＝ーHf-Hぶ・

1 1 1 1 

Then the products of c2 (M) and e; are 

23 23 
釘 •c2(M) = ;';Hf -H詞＋ーH?-H糾＝ 92= 2 ・ 46, 

1 1 1 1 

e2 ・ c2(M) = (H1 -E1)叫Y1)= (H1 -E1)（界厨ーH心）
＝汀厨＋ H濁＝胃 •22 + (-484) = -438 = -2 ・ 219. 

Since the subgroup { e E〈e1,e2〉|e・ c2(M) = 0} of炉 (M,Z) is generated by 219e1 +46e2, we see 
that 

入(M)= l(219e1 + 46e2)31 = l2193ef + 3 ・ 2192 ・ 46 ・ ere2 + 3 ・ 219 ・ 46伍吟＋ 463e~I = 122501896. 
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4. (h1•1(M), h2•1(M)) = (2, 58) CASE 

Now we consider the case where the doubling Calabi-Yau 3-folds have the s皿 eHodge numbers 
(h1•1(M), h2•1(M)) = (2, 58), that is, the underlying Fano 3-folds are (a) ID 1-4, (b) ID 1-12 and 
(c) 1-14. These Fano 3-folds are described as follows: 

(a) a complete intersection of three quadrics in CP色V(2,2, 2) c CP見
(b）a hypersurface of degree 4 in the weighted projective space CP(l, 1, 1, 1, 2); 

V(4) c CP4(14, 2), and 
(c) a complete intersection of two quadrics in CP5; V(2, 2) c CP互

c CP5 case. Let V be a smooth complete intersection of 3 quadrics in CP尺4.1. ID 1-14: V(2, 2) c CP5 
which is the Fano 3-fold with -Kや＝ 32and 

1 

゜゚゚1 

゜hp,q(V) = 0 2 2 0. 

゜
1 

゜゜゚1 

By the adjunction formula, we see that 

Kv(2)竺 (Kcps+ [V(2)]) lv(2) = -4H, and 

Kv竺 (Kv(2)+ [Vl) Iv= (-4 + 2)H = -2H 

where H E H(V,Z) is the ample generator and V(2) c CP5 is a smooth quadric hypersurface in 
CP互LetD = 2H E I -K v I b e an anticanonical divisor and C E I 0瓜2)1a smooth curve in 
D representing the intersection class of D ・ D. For i = 1, 2, we take the blow-ups Y; = Blc(V) 
which have the cohomology rings炉 (Y;)= C〈Hi,Ei〉.Thenthe proper transforms Di of D in Y; are 
2Hi -Ei. Thus we set 8 by〈-D1,D砂＝〈E1-2H1,2H2 -E 2〉.Weobserve that any element in 
印 (Y1,Z) x炉 (Y2,Z) is written as 

(aH1 + bE1, cE2 +(a+ 2b -2c)H2) = (a+ 2b)(H1, H2) -(b + c)(2H1 -E1, 0) -cふ

Consequently, we find that 

が (M,Z)竺〈(H1,Hか(2H1-E1, 0)〉

up to torsion. This implies that two generators of印 (M,Z) can be taken as e1 = (H1, H2) and 

e2 = (2H1 -E1, 0). 
In order to compute the cubic forms inか (M,Z), we first see that the Fano genus g of Vis 

-Kや 32
g= — +1= — +1 = 17. 

2 2 

Then the straightforward computation shows that HJ = 32, HiL = 0 and EiL = -1 where Lis a 
fiber over a point on C under the blow-up. Furthermore, ford= deg C, we have 

Hぶ＝ dL= (2g -2)£ = 32£ and 

H仕且＝比(Hぶ）＝ 32HiL= 0. 

In the same manner as in Section 3, let us denote the number of branches of the double curve C by T. 
Then we find that 

E; = -dHf + (4d + 2g -2 -2r)L = -32Hf + (128 + 34 -2 -68)£ = -32厨＋92£,

H;崎＝ H;(-32Hf+ 92£) = -32Hf + 92H;L = -32 ・ 32 = -1024, and 

岱＝凡(-32虎＋92£)= -32Ei虎＋92尻L= -92. 
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In the following table, we summarize the values of the multiplication of the intersection forms on 
H2*(Y;, Z): 

Hf L が (Y;,Z) 

Hi 32 0 

Ei 0 -1 

炉 (Y;,Z) 

Hi 
Ei 

炉 (Yi,Z) 

H; 凡印(Y;,Z) 

H2 
t 

32L 
32£ -32Hf + 92£ 

Substituting these values into the cubic forms, we find that 

ef = (H1加）3=H?＋的＝ 64,

eie2 = (H1, H2戸(2H1-E1,0) = 2Hf-H詞＝ 64,

叩名＝ （H1,H砂(2H1-E1, 0)2 = 4Hf -4H訊＋H尻＝ 4・ 32 -1024 = -896, 

e~ = (2H1 -E1, 0)3 = 8Hf -12H国＋6H1Ef-Ef = 8 ・ 32 + 6 ・ (-1024) -(-92) = -5796. 

Next we compute the入-invariant.Since V is a complete intersection of two quadrics in CP5, the 
total Chem classes of V are given by the formula 

(1 + H)6 
(1 + 2H)2 

= (1 +6H +（］）的(1+2H)―2+0(Hり

= (1 +6H + 15Hり(l-4H + 12Hり＋O(Hり＝ 1+ 2H +3が＋O(H判

Hence the second Chem classes of ~ are computed as 

c立）＝吋(c2(V)+ 7/c)ー吋(c1(V))・ Ei 

＝可(3が＋4が）ー 2Hぶ＝ 7H'f-2Hぶ

Then the products of c2 (M) and ei are given by 

e1互 (M)= 7Hf-2H訊＋ 7HJ-2H詞＝448= 26 ・ 7, 

e2互 (M)= (2H1 -Eリ(7Hf-2H心）

= l4Hf-4H糾— 7H匡＋ 2H国

= 14 ・ 32 -2 ・ 210 = -1600 = 26 ・ (-25). 

Since the subgroup { e E〈e□2〉|e・ c2(M) = 0} of H2(M, Z , Z) is generated by a single element 
25e1 + 7e2, the入-invariantof M is 

入(M)= l(25e1 + 7e2)31 = 125胃＋3・ 252 ・ 7eie2 + 3 ・ 25 ・ 7％碕＋疇

= 1253 ・ 64 + 3 ・ 252 ・ 7 ・ 64 + 3 ・ 25 ・ 72 ・ (-896) + 73 ・ (-5796)1 = 3440828. 

4.2. ID 1-12: V(4) c CP(l4, 2) case. Let V be a smooth hypersurface of degree 4 in the weighted 
projective space (CP4(14, 2), which is the Fano 3-fold with -Kも＝ 16and 

1 

゜゜゜
1 

゜hP,q(V) = 0 10 10 0. 

゜
1 

゜゜゜1 

By the adjunction formula, we find that 

Kv竺 (Kl'+[V]) Iv = (CJil'(-6)＋（う11'(4))1v= CJil'(-2)lv = Ov(-2) 

where we denote the weighted projective space CP4(14, 2) by JP'. Let D = 2H E I -K v I be a smooth 
anticanonical divisor and C E ICJ瓜2)1a smooth curve in D. Let Y; = Blc(V) be the blow-ups 
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of V along C and炉 (X)＝ C〈Hi,E,〉thecohomology rings of Y; for i = 1, 2. For the proper 
transforms Di = 2Hi -Ei of D in Y;, we set t5 by〈-D1,D砂＝〈E1-2H1,2H2 -E砂． Repeating
the s皿 ecomputation in Section 4.1, we see that two generators of印 (M,Z) are e1 = (H1, H2) and 
e2 = (2H1 -E1, 0). 

Now we compute the cubic products of ei in H6(M, Z). Firstly, the genus of the Fano 3-fold Vis 
given by 

g=$+1＝堕＋ 1= 9. 
2 2 

Secondly, we readily see that 

厨＝ 16, HiL = 0, EiL = -1 

Hぶ＝ dL= (2g -2)L = 16£, and 

H閏＝ Hi(Hぶ） ＝l6HiL = 0. 

Let T = 2g be the number of branches of the double curve C. Then we find that 

Ef = -dH; + (4d + 2g -2 -2T)L = -16祀＋ （64 + 18 -2 -36)L = -l6H[ + 44L, 

H麿＝凡(-l6Hf+ 44L) = -l6Hf + 44HiL = -16 ・ 16 = -256, and 

屁＝ Ei(-l6H[+44L) = -16E屈＋44EiL= -44. 

The following table collects the values of the multiplication of the intersection forms on H2* (Y;, Z): 

H,2 L 炉 (Y;,Z) I Hi 凪印(Y;,Z) 

Hi | 16 0 Hi Ht 16L 
Ei I 0 一1 Ei I 16L -16H; + 44L 

炉 (Y;,Z) が(~,Z)

Substituting these values into the cubic forms, we find that 

ey = (H1,H州＝厨＋HJ=32, 

eie2 = (H1,H位(2H1-E1,0) = 2Hf-H訊＝ 32,

叩各＝（H1,H砂(2H1-E1, 0)2 = 4Hf -4H糾＋H悶＝ 4・ 16 -256 = -192, 

e~ = (2H1 -E1, 0)3 = 8Hf -12H閲＋ 6H国— Ef = 8 -16 + 6 ・ (-256)-(-44) = -1364. 

Let us compute the 入—invariant. Since V is a hypersurface of degree 4 in the weighted projective 
space (C戸 (14,2), the total Chem classes of V are given by 

(1 + H)4(1 + 2H) /,, rn,  (4 
= (1 +4H +し）炉）（1+ 2H)(l +4H)―1 +O(Hり

(1 + 4H) 
= (1+4H +6Hり(1+ 2H)(l -4H + 16が）＋ O(Hり
= 1+2H +6が＋ O(Hり．

Thus the second Chem classes of Y; are 

c立）＝吋(6が＋4が）ー 2Hぶ＝ lOH，2ー2Hぶ

Then we see that the products of c2 (M) and ei are 

釘 •c2(M) = lOHf-2H国＋ IOHJ-2H詞＝ 320= 26 ・ 5, 

e2互 (M)= (2H1 -Eリ(IOHf-2H心）

= 20Hf -4Hi E1 -lOHf E1 + 2H心f

= 20 ・ 16 + 2 ・ (-256) = -192 = 26. (-3). 
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Since the subgroup { e E〈e1,e2〉|e・ c2 (M) = 0 } ofが (M,Z)is generated by a single element 

3e1 + 5e2, the入-invariantof M is 

入(M)= l(3e1 + 5e2)31 = 13賛＋ 3・ 32 ・ 5e加＋3.3.5気碕＋疇

= 127 ・ 32 + 3 ・ 27 ・ 5 ・ 32 + 9 ・ 25 ・ (-192) + 125 ・ (-1364)1 = 208516. 

4.3. ID 1-4: V(2, 2, 2) c <CP6 case. We refer the reader to [Y21] for the detailed computation of this 

example. This subsection collects the minimum amount of calculation necessary to see the values of 

the cubic forms and the入-invariants.

Let V = V(2, 2, 2) c <CP6 be a complete intersection of three quadrics in <CPりAsusual, we 

set D E IOv(l)I, C E IO瓜1)1and 1r; : Y; = Blc(V) --+ V for i = 1, 2. Then we see that the 

proper transform Di of D in Y; is H; -Ei and炉 (Y』=C〈H;,E;〉foreach i. Thus any element in 

炉 (Y1,Z) x炉 (Y2,Z) can be written as 

(a+ b)(H1,H叫ー (b+ c)(H1 -E1, 0) -ct:5, t5 :=〈E1-H1,H2 -E砂．

This implies that 

炉 (M,Z)~<(H1, H2), (H1 -E1, 0)〉
up to torsion. Setting e1 = (H1, H2) and e2 = (H1 -E1, 0) as generators of庁 (M,Z), we find that 

er= (H1，虹＝尻＋H?= 16, 

ふ＝（H1,H忙(H1-E1,0) = Hf-H訊＝ 8,

疇＝ （H1, H2)(H1 -E1, 0)2 = Hf -2H訊＋H国＝ー56,

e~ = (H1 -E1, 0)3 ＝厨ー 3H知＋ 3H国— Ef = -164. 

In the same manner as the previous calculation in Section 4.1, the second Chem class ofY; is c2(Y;) = 

4H,2 -Hぶ foreach i. Consequently, the subgroup { e E〈e1,e2〉|e・ c2 (M) = 0 } of正 (M,Z) is 

generated by e1 + 2e2. Hence we conclude that the入-invariantis入(M)= l(e1 + 2e叫打＝ 1920.
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