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Abstract

The homotopy type of the space of rational curves on a toric variety has been
well studied by several authors since the work of Segal [27] appeared (cf. [9], [10],
(12], [15], [18], [25]). In this note we shall consider the real analogue of these spaces.
In particular, we report about the homotopy type of spaces of algebraic loops on a
toric variety. This result is based on the joint works with A. Kozlowski given in [19].

1 Introduction

First we shall recall several basic definitions and facts about toric topology.

Fans and toric varieties. A convex rational polyhedral cone o in R" is a subset of R"
of the form

(1.1) o = Cone(S) = Cone(my, -+ ,my) = {Z)\kmk : A > 0 for any k}

k=1

for a finite set S = {my.};_, C Z".* A convex rational polyhedral cone o is called strongly
convez if o N (—o) = {0,}, and its dimension dimo is the dimension of the smallest
subspace in R"™ which contains 0. A face 7 of o is a subset 7 C o of the form

(1.2) T=0oN{zeR": L(x) =0}

for some linear form L on R”, such that L(x) > 0 for any ¢ € 0. If {k: L(my) = 0,1 <
k < s} ={iy, - ,i}, we easily see that 7 = Cone(m,,--- ,m;,). Thus, a face 7 of o is
also a strongly convex rational polyhedral cone if ¢ is so.

A finite collection X of strongly convex rational polyhedral cones in R™ is called a fan
in R™ if every face 7 of 0 € ¥ belongs to ¥ and the intersection of any two elements of ¥
is a face of each.

“When S is the emptyset (), we set Cone(()) = {0,,} and we may also regard it as one of strongly convex
rational polyhedral cones in R™, where we denote by 0,, the zero vector in R™ defined by 0,, = (0,---,0) €
R™.



An n dimensional irreducible normal variety X (over C) is called a toric variety if it
has a Zariski open subset T = (C*)" and the action of Tg on itself extends to an action of
T% on X. The most significant property of a toric variety is the fact that it is characterized
up to isomorphism entirely by its associated fan ¥. We denote by Xy the toric variety
associated to a fan X.

Since the fan of TZ is {0, } and this case is trivial, we always assume that any fan ¥ in
R" satisfies the condition {0,} G X.

Definition 1.1. Let ¥ be a fan in R such that {0,} & ¥ and let

(1.3) E(1) = {p1,-- ,pr}

denote the set of all one dimensional cones in X. For each integer 1 < k < r, we denote by
ny € Z" the primitive generator of py, such that

Note that py = Cone(ng) = Rsq - ny for each 1 <k <. O

Polyhedral products and homogenous coordinates. Next, recall the definition of
polyhedral products and homogenous coordinates of toric varieties.

Definition 1.2. Let K be a simplicial complex on the vertex set [r] = {1,2,--- ,7},% and
let (X, A) be a pair of based spaces such that A C X.

(i) Let Zx (X, A) denote the polyhedral product of the pair (X, A) with respect to K
given by the union

(15) ZK(X7 A) = U(X>A)o7
oeK
where we set (X, A)7 = {(z1, -+ ,2,) € X" :x, € Aif k ¢ o}.
When (X, A) = (D?,5"), we write Zx = Zx(D?, S") and it is called the moment-angle
complex of K.
(ii) For a fan ¥ in R™, let Ky, denote the underlying simplicial complex of ¥ defined by

(16) IC)] = {{i17 e 77:5} C [T] . CjOI'lC('I’Li],’I’Li27 e ,nis) S Z}

Note that Ky is a simplicial complex on the vertex set [r].
(iii) Let G, C T = (C*)" denote the multiplicative subgroup of T¢ defined by

(L.7) Gy ={(p1, -+, pr) € Tt : H(uk)<"’“m> =1forall meZ"},

k=1

2Let K be some set of subsets of [r]. Then the set K is called an abstract simplicial complez on the
vertex set [r] if the following condition holds: if 7 C o and ¢ € K, then 7 € K. In this paper by a
simplicial complex K we always mean an an abstract simplicial complex, and we always assume that a
simplicial complex K contains the empty set ().
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where (, ) denotes the standard inner product on R" given by (u,v) = Y ;_, vy for
U= (U, ,u,) and v = (vy,- -+ ,v,) € R™

(iv) Consider the natural Gy-action on Z,,(C,C*) given by coordinate-wise multi-
plication, i.e. p-x = (zy, -, ) for (u,x) = (g1, ), (@1, ,2,)) € Gs x
Zi,.(C,C*). We denote by Zk,.(C,C*)/Gy, the corresponding orbit space and let

(18) gs : ZKX((C,(C*) — Z}CX(C,C*)/GE
denote the canonical projection. O

Lemma 1.3 ([6], [7], [19]). Suppose that the set {ny},_; of all primitive generators spans
R" (i.e. S R - my = RY).

(i) There is a natural isomorphism
(1.9) Xy = 2, (C,C)/Gsx.

(ii) If f : CP™ — Xy, is a holomorphic map, there exists an r-tuple D = (dq,--- ,d,) €
(Z>o)" of non-negative integers satisfying the condition y_,_, dyny, = 0 and homogenous
polynomials f; € Clzg, -+, zm| of degree d; (i = 1,2,--- ,r) such that polynomials { f;}ico
have no common root except 0 € C™** for each o € 1(Ks) and that the diagram

_— (Frofo) .
Cmi{0} ——— Zi,(C,C)
(1.10) " l qzl
cpm —L, z (C,CY/Gs = Xs

is commutative, where 7y, : C™"*1\ {0} — CP™ denotes the canonical Hopf fibering and
the map gx. is a canonical projection induced from the identification (1.9). In this case,

we call this holomorphic map [ as a holomorphic map of degree D = (dy, -+ ,d,) and we
represent it as
(1.11) f=10fh fl
Moreover, if g; € Clzo,- - , zm] i a homogenous polynomial of degree d; (1 < i <) such
that f = [f1,--, fr] =191, -, gs], there exists some element (py,--- , ) € Gx such that
fi =i+ gi for each 1 <i <. Thus, such r-tuple (f1,---, f.) of homogenous polynomials
representing the holomorphic map f is uniquely determined up to Gx-action.

(i) Let hy € Clzo,- -, zm] be a homogenous polynomial of the degree dy for each

1 < k < r such that the polynomials {hy, }reo have no common real root except 0,1 € R™+?
for each o € I(Kyx). Then there is a unique map h : RP™ — Xy, such that the following
diagram

(h1,+ hor)
S

R™1\ {0} 2k, (C,C¥)
(1.12) wm% qzl
RP™ — s 2 (C,C)/Gy = Xx
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is commutative if and only if Y, _, dpmy = 0, where v,z : R™\ {0} — RP™ denotes
the canonical double covering. O

Remark 1.4. We call the map h determined by an r-tuple (hy,--- ,h,) of homogenous
polynomials given in (iii) of Lemma 1.3 as an algebraic map and we write h = [hy,- -+ , h,].

Note that two different such r-tuples of polynomials can determine the same maps.
In fact, if we multiply all polynomials in such an r-tuple by the same polynomial which
does not have any real roots except 0,,, we obtain the same algebraic map. For example,
suppose that (hq,---,h,) is the r-tuple of homogenous polynomials in Clz, -, zy,] of
degree dy, - -+ ,d, satisfying the same condition as before. If (ay,---,a,) € N" is the -
tuple of positive integers and it satisfies the condition >",_, axyng = 0,, we can easily see
that h = [hh T ahr} - [(gl)alhh M) (gl)arhr} - [(92)a1h1> M) (gQ)GThT} for g1 = ZL:O Zl%
and go = (20 + 21)? + D _jy 27 o

Assumptions. Let ¥ be a fan in R" satisfying the condition (1.3) as in Definition 1.1.
From now on, we assume that the following two conditions hold.

(1.9.1) Thereis an r-tuple D, = (di,--- ,d}) € N" of positive integers such that Y, _, djny, =
0,.

(1.9.2) The set {n;},_, of primitive generators spans Z" over Z.

Remark 1.5. Note that Xy is a compact iff J, .y, 0 = R™. Note also that Xy is simply
connected if and only if >, _,Z - n, = Z". Hence, the condition (1.9.2) always holds if
Xy is compact or simply connected. On the other hand, if the condition (1.9.2) holds, one
can easily see that the set {ny}}_; spans R” over R, and there is an isomorphism (1.9) for
the space Xyx.. Moreover, we know that the condition (1.9.1) holds if Xy is compact and
non-singular [7, Theorem 3.1]. O

Remark 1.6. Let ¥ denote the fan in R? given by ¥ = {{0,}, Cone(e;), Cone(ey)} for
the standard basis e, = (1,0), ez = (0,1). Then the toric variety Xx of 3 is C* which has
trivial homogenous coordinates. It is clearly a (simply connected) smooth toric variety, and
the condition (1.9.1) also holds. However, in this case, Y"»_, dyny = 05 iff (d1, ds) = (0,0).
Hence, it follows from Lemma 1.3 that there are no algebraic maps RP™ — Xy, = C?
other than the constant maps. Assuming the condition (1.9.1) guarantees the existence of
non-trivial algebraic maps RP™ — Xy.. Of course, it would be sufficient to assume that
D = (dy,...,d.) #(0,...0) but if d; = 0 for some 4, then the number d(D,X) (defined in
(2.2)) is not a positive integer and our assertion (Theorem 2.2 below) is vacuous. For this
reason, we will assume the condition dj > 1 for each 1 <k <7 in (1.9.1). O

Let Xy be a non-singular toric variety and make the identification
(1.13) Xy = 21, (C,C") /Gy

Let zg,- -, z, be variables. Now we consider the space of all tuples of polynomials which
define based algebraic maps.
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Definition 1.7. (i) For each d,m € N, let H¢ (C) denote the space of all homogenous
polynomials f(zo,- -, zm) € Clzp, - , 2] of degree d.

(ii) For each r-tuple D = (dy,--- ,d,) € N', let Pol,,(RP™, Xy;) denote the space of
r-tuples f = (fi(z0,- s 2m)s 5 [r(20, -+ s 2m)) € HU(C) x -+ x He(C) of homogenous
polynomials satisfying the following two conditions:

(1.14.1) f(x) = (fi(z), -, f-(x)) € U(Ks) for any point & = (xg, - , 2,) € R™\{0,,,11}.
(1.14.2) f(e1) = (fi(er), -, f-(e1)) =(1,1,--- 1), where e; = (1,0,---,0) € R™!, O

Definition 1.8. We always assume the identification Xy, = U(Ky)/Gy;, and denote by
[y1, -+ ,y-] the point in Xy, represented by (y1,--- ,y.) € U(Kyx). Moreover, we choose the
two points [1:0:---:0] € RP™ and x = [1,--- ,1] € Xy as the base-points of RP™ and
Xy, respectively.

Let D = (dy,--- ,d,) € N" be an r-tuple of positive integers such that >, _, dyny = 0,,.
Then by using Lemma 1.3, for each r-tuple

f - (f1(20> e azm)a e -,f'r(207 et azm)) S POIB(RPmaXE)

one can define based algebraic map

(1.14) /] = [fi- s /o] - (RP™, [eq]) = (X5, %) by
(1.15) f([=]) = [filz),- -, fila)]
for [] = [zo : -+ : m,] € RP™, where z = (z9,-* ,2p,) € R™™\ {0,,11}. Hence,

we denote by Map},(RP™, Xy;) the path-component of Map®(RP™, X;) which contains all
algebraic maps of degree D, and we obtain the natural map

(1.16) ipm ¢ Polly(RP™, Xy) — Map’ (RP™, X))

given by

(1.17) ipm(f) =[f] =11, fi]

for f=(filz0,  »2m), , fr(2z0, + , 2m)) € Polp(RP™, X)), O

When m = 1, we make the identification RP' = S' = R U oo and choose the points oo
as the base-point of RP!. Then, by setting z = 2 we can view a homogenous polynomial
f(z0,21) € Clz0, z1] of degree d as a monic polynomial fx(z) € C[z] of degree d. Thus,
when m = 1, one can redefine the space Polj, (St Xy) as follows.

Definition 1.9. (i) Let P¢ denote the space of all monic polynomials f(z) = 2% +a; 241 +
~oo+ag 12+ ag € C[z] of degree d, and let

(1.18) PP =P% x P2 x ... x P™.
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Note that there is a homeomorphism ¢ : P? 2= C% given by ¢(z% + S0 apz?7F) =
(ay,--- ,aq) € C%
(ii) For any r-tuple D = (dy,--- ,d,) € N", let Pol}, (S, Xy) denote the space of all

r-tuples (fi(z),---, f-(2)) € PP of monic polynomials satisfying the following condition
(1):
(1) The polynomials f;, (2),- -, fi. () have no common realroot for any o = {iy, -+ ,i,} €

I(Ks), ie. (fi(@), -, fi(a)) # O, for any o € R.

When the condition »,_, dyny, = 0,, holds, by identifying Xy = Z,(C,C*)/Gy, and
RP! = S' = R U oo, one can define a natural map

(1.19) ip =ipy : Polhy(Sh, Xy) — Map*(S!, Xy) = QX5 by
) a), -, fola faelR
(1.20) in(fi(2),-- fr(2)(a) = [fi(e) fr(a)] nes
[1a1>"'71] if a =00
for (fi(2), -+, fr(2)) € Pol}(S!, Xx) and a € S = RU oo, where we choose the points co

and [1,1,---,1] as the base-points of S* and Xs..
Note that Pol},(S?, Xy) is simply connected and that the map Qgs. : Q2 (C,C*) —

1Xs, is a universal covering. Thus, when Y, _, dyn; = 0,, the map ip lifts to the space
02k, (C,C*) ~ QZ,, and there is a map

(1.21) jp : Polh(S', X5) — QZk,,
such that
(122) qu OjD = iD'

Remark 1.10. Even if Y7, _, dyny, # 0,, we can define the two maps
ip: Polh(SY, Xy) — QXy, jp : Polh(Sh, Xy) — Q2.
by using stabilization maps. The detail is given in [19]. O
Now we need to define the numbers r,;,(3) and d(D, X).

Definition 1.11. Let ¥ be a fan in R™ as in Definition 1.1.

(i) We say that aset S = {n,,- -, n;, } is primitive in ¥ if Cone(S) ¢ X but Cone(T) €
Y for any proper subset T' g S.

(i) For D = (dy,- - ,d,;) € N" define integers rmi,(X) and d(D, X;m) by

Tmin(2)

(123) min{s € N: {n;,--- ,n,; } is primitive in X},
. d(D,%;m)

(2rmin(X) —m — 1)dupin — 2, where di,, = min{dy, -+ ,d.}.
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Definition 1.12. Recall that a map g : V' — W is called a homology (resp. homotopy)
equivalence through dimension N if the induced homomorphism g, : H,(V;Z) — H(W;Z)
(resp. gi : (V) = mx(W)) is an isomorphism for all k < N. O

Now recall the following result.

Theorem 1.13 ([13]). Let m > 2 be a positive integer, Xx, be a compact smooth toric vari-
ety and D = (dy,--- ,d,) € N be an r-tuple of positive integers such that >, _, dpyny, = 0,,.
Then the natural map ip., : Pol,(RP™, Xy) — Map},(RP™, Xy,) is a homology equivalence
through dimension d(D,%;m). O

Note that the above result does not hold for the case m = 1. For example, this can be
seen in [11] for the case Xy, = CP”. In fact, the main purpose of this paper is to investigate
the result corresponding to this theorem for the case m = 1.

2 Main results

Previous results. First, recall the following result concerning to the homotopy type of
space of rational curves one a toric variety.

Theorem 2.1 ([18]). Let Xy be a simply connected non-singular toric variety associated
to the fan ¥ such that the condition (1.9.1) is satisfied. Then if D = (dy,--- ,d,) € N" and
> iy A = 0y, the inclusion map

Z.D,hol : HOI*D(SQ7XE) i) QQDXZ

is a homotopy equivalence through dimension d.(D,X) if rmm(X) > 3 and a homology
equivalence through dimension dyo(D,Y) = dpin — 2 if rmm(2) = 2.

Here, Q02 Xs, (resp. Hol},(S%, X)) denotes the space of based continuous (resp. based
holomorphic) maps from S? to Xx. of degree D, and d.(D,X) is the number given by

(2.1) d(D,Y) = (2rmin(X) — 3)dmin — 2, where dyn, = min{dy, -+ ,d.}. O

The main results of this note. The main result of this paper is to consider the real
analogue of the above result and this is stated as follows.

Theorem 2.2 ([19]). Let D = (dy,--- ,d,) € N be an r-tuple of positive integers and let
Xy be a simply connected non-singular toric variety such that the condition (1.9.1) holds.
Then there is map

jD : POI*D(SI,XE) — SZZ)CZ

which is a homotopy equivalence through dimension d(D,X), where the number d(D,X) is
given by

(2.2) d(D,%) =d(D,%;1) = (2rpin(X) — 2)dmim — 2. O



Corollary 2.3 ([19]). Under the same assumption as in Theorem 2.2, there is the map
ip : Polj (S, Xy) = QX induces an isomorphism

(’LD)* . ’/Tk(POl*D(Sl,Xx)) i) 7Tk(QX);) & 7Tk+1(X);)
forany 2 <k <d(D,X). O

Corollary 2.4 ([19]). Let D = (dy,-- - ,d,) € N" be an r-tuple of positive integers satisfying
the condition Y, _, dyny = 0,,, and let Xx. be a simply connected compact non-singular toric
variety. Let X3(1) denote the set of all one dimensional cones in 3, and Xy any fan in R™
such that $(1) C ¥; G X.

(i) Then Xy, is a non-singular open toric subvariety of Xy, and there is the map

jD : POI*D(SI,Xxl) — SZZXI

which is a homotopy equivalence through dimension d(D, ).
(ii) Moreover, there is the map ip : Polj (St Xx,) — QXx, which induces the isomor-
phism

o

(ip)« - Te(Polp (S, X5,)) — mi(2Xy,) = mepr (X))
for any 2 <k <d(D,%). O

Examples. Finally consider the example of the main results. Since the case Xy = CP"
was already well known, we consider the case that Xy, is the Hirzerbruch surface H (k).

Definition 2.5. For an integer k € Z, let H(k) be the Hirzerbruch surface defined by
H(k) = {([wo : 1 : @3], [y1 : y2]) € CP? x CP" : zyyf = apy5 } C CP? x CP".

Since there are isomorphisms H(—k) = H(k) for k # 0 and H(0) = CP' x CP!, without
loss of generality we can assume that & > 1. Let 3, denote the fan in R? given by

Y = {Cone(ni,niﬂ) (1 <4< 3),Cone(ny,ny),Cone(n;) (1 <j<4), {O}},

where we set ny = (1,0), my = (0,1), ng = (=1,k), ny = (0,—1).

It is easy to see that X is the fan of H(k) and that H(k) is a compact non-singular
toric variety. Note that Xz (1) = {Cone(n;) : 1 < i < 4}. Since {ny, n3} and {ny, ny} are
only primitive in Xp, rum(Xx) = 2.

Moreover, for D = (dy, ds, d3,ds) € N* the equality 21:1 dpmy, = 05 holds iff (dz, dy) =
(dh k‘dl + d2) ThllS, if Zi:l dknk = 027 we have dmin = min{dl, dg, d37 d4} = min{dh dg}

U

Example 2.6. Let D = (dy,dy,ds,dy) € N* k € N, and X be a fan in R? such that
(1) = {Cone(n;) : 1 <i <4} C X C Xy as in Definition 2.5.
(i) Xy is a non-singular open toric subvariety of H(k) if ¥ G ¥.
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(ii) If Zizl dpny, = 09, the equality (ds,ds) = (di,kdy + do) holds and the map jp :
Pol},(S', Xx) — QZx,, is a homotopy equivalence through dimension 2min{d;,ds} — 2.
Moreover, the map ip : Polj(S*, X5) = QX induces an isomorphism

(ip)s : Tr(Pol(Sh, X)) — mr(0X5) 2 Myt (X)

for any 2 < k < 2min{d;,ds} — 2.

(iti) If 3p_, dpmy # 0o, there is a map jp : Polp(S', X5) — Q2 which is a ho-
motopy equivalence through dimension 2min{dy,ds,ds,ds} — 2, and there is a map ip :
Pol}, (S, Xx) — QXyx which induces an isomorphism

(ZD)* . Wk(POl*D(Sl,Xz)) — Wk(QXz) = 7T]€+1(X2)
fOT any2§k§Qmin{dl,dg,d37d4}—2. 0

Remark 2.7. As we considered as above, the space Pol},(S?, X5) can be regarded as one
of real analogues of the space Hol},(S%, Xx). In our previous paper [17], we investigate the
homotopy type of the space Polyi’m((C) of resultants of bounded multiplicity. We can also
consider the real analogues of it, and we shall investigate the homotopy types of them in
the subsequent papers ([20], [21]). O
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