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TVERBERG'S THEOREM FOR CELL COMPLEXES 

SHO RASUi, DAISUKE KISHIMOTO, MASAHIRO TAKEDA, AND M. TSUTAYA 

1. INTRODUCTION 

This is a survey of the paper [13]. 

Radon's theorem on configurations of points in the Euclidean space states that 

given and d + 2 points in配， wecan partition these points into two subsets whose 
convex hulls have a point in common. It is natural to consider more points and more 

subsets, and Tverberg [17] generalized Radon's theorem along this direction: any 

given (d+ l)(r-1) + 1 points in配 canbe a partitioned into r disjoint subsets whose 
convex hulls have a point in common. It is useful to translate Tverberg's theorem 
in terms of an affine map: given any affine map f:△（d+l)(r-1)→配， thereare 
pairwise disjoint faces u1,...ぶ of△(d+l)(r-l)such that f（び1),・ ・ ・, f(びr)have a 
point in common. This theorem has been of great interest in combinatorics for over 

50 years, and a variety of its generalization have been obtained. See comprehensive 
surveys [1, 3, 6] for history and developments around Tverberg's theorem. Now we 
consider a topological generalization. 

Question 1.1. What happens if a map△(d+l)(r-1)→配 isnot affine but only 

continuous? 

Here is an answer to this question, which is now called the topological Tverberg 

theorem. 

Theorem 1.2. If r is a prime power, then for any continuous map f:△（d+l)(r-1)→ 
訊 thereare pairwise disjoint facesび1,・・・,urof△(d+l)(r-l) such that f（叫...'
f（叫 havea point in common. 

Remarks on the topological Tverberg theorem are in order. The topological 

Tverber苔theoremwas proved by Barany, Shlosman and Szucs [4] when r is a prime, 

and by Ozaydin [16] and Volovoikov [18] when r is a prime power. As long as we 
look at the proof the condition for r being a prime power seems quite technical. 

But Frick [9] proved that the condition that r is a prime power is necessary. 
Let us consider a generalization of the topological Tverberg theorem. In [10], 
Tverberg asked whether or not it is possible to generalize the topological Tverberg 

theorem to continuous maps from (d + l)(r -1)-polytopes into配． Theanswer 
is positive because the boundary of a convex n、-polytopeis a refinement of the 

boundary of an n-simplex as in [11, p. 200] and the result follows from the topolog-
ical Tverberg theorem. Then Tverberg's question does not contribute to a proper 
generalization of the topological Tverberg theorem, and so we further ask: 

Question 1.3. For which CW  complexes can we generalize the topological Tver-
berg theorem to continuous maps from them into Euclidean spaces? 

Recently, B紅紐y,Kalai and Meshulam [2] and Blagojevic, Haase and Ziegler [5] 
constructed affirmative examples of matroid complexes for Question 1.3 in a purely 
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combinatorial way. In this survey, we give a new affirmative class of regular CW  
complexes from a topological point of view. 

To state the main theorem, we set notation and terminology. Let X be a regular 

CW  complex. A face of X means its closed cell. For faces 0-1,..., O"k of X, let 
X（吐・..四） denotethe subcomplex of X consisting of faces which do not intersect 

with o-1,...，びk・ Recall that a space Y is called n-acyclic if几(Y)= 0 for*さn.
For convenience, a non-empty space will be called (-1)-acyclic, so that any n-acyclic 
space for n ::>: 0 will be assumed non-empty. We define a regular CW  complex that 
we are going to consider in this paper. 

Definition 1.4. We say that a regular CW  complex X is k-complementary n-

acyclic if X (0-1,...，叫 is(n-dimび1-• • ・ -dim o-i)-acyclic for any pairwise disjoint 
facesび1,...,O"i of X such that dimび1+ ・ ・ ・ + dimo-i::; n +land 0さiさk.

Now we state the main theorem. 

Theorem 1.5. If X is an (r -l)-complementary (d(r-l)-l)-acyclic regular CW  

complex and r is a prime power, then for any continuous map f: X →配， there

are pairwise disjoint facesび1'...，年。fX such that f(o-1),..., f（叫 havea point 
zn common. 

Since a (d + 1)-simplex is k-complementary (d -k)-acyclic for 1 <::: k <:'. d + l, 
the topological Tverberg theorem is recovered by Theorem 1.5. Moreover, we can 
prove: 

Proposition 1.6. Every simplicial d-sphere is k-complementary (d-k)-acyclicfor 
l,Sk,Sd+l. 

Then we get: 

Corollary 1. 7. If S is a simplicial ((d + l) (r -l) -1)-sphere and r is a prime 

power, then for any continuous map f: S→配， thereare pai加 isedisjoint faces 
u1,...，年。fS such that f(u1),..., f(ur) have a point in common. 

Griinbaum and Sreedharan [12] constructed a simplicial 3-sphere which is not 
polytopal. Moreover, Kalai [14] proved that ford large, "most" simplicial d-spheres 

are not polytopal. Then Corollary 1.7, hence Theorem 1.5 is a substantial gen-
eralization of the topological Tverberg theorem. We began with a property of a 
configuration of points in the Euclidean space and ended up with a property of a 
simplicial sphere. 

2. SKETCH OF THE PROOF 

Let X be a regular CW  complex. The discretized configuration space 

Confr(X) 

is defined as the subcomplex of the direct product xr consisting of faces <71 x • • • x巧
such thatび1,...,びrare pairwise disjoint faces of X. The discretized configuration 

space is often called the deleted product in combinatorics, alternatively. Let△ = 
{(xi,...,叫） E （配）rI X1 =... =叫｝． Thereis a homotopy equivalence 

(2.1) （酎）r —△ c:c Sd(r-1)-1 _ 

Note that the symmetric group江 actson Confr(X) and（配）r＿△ by permuting 
of entries. The following lemma is proved in [6, Theorem 3.9]. 

Lemma 2.1. Let X be a regular CW  complex. If there is a continuous map X→配

such that f（び1)n..•n/(びr) = 0 for all pai加 isedisjoint facesび1,...，びrof X, then 
there is a ~r-map 

Confr(X)→ （酎）r＿△． 
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If r is a prime, then the actions of Z/r c江 onConfr(X) and （配）r —△ are
free. So we can apply the Borsuk-Ulam theorem to Lemma 2.1. If r is a prime 
power, then we can also apply a generalization of the Borsuk-Ulam theorem in [18] 
(cf. [7]). More precisely, we get: 

p roposition 2.2. Let X be a regular CW  complex such that Confr(X) is (d(r -
1) -1)-acyclic. If r is a prime power, then for any continuous map f: X→記
there are pairwise disjoint facesび1,...,(J"rofX suchthatf（び1),・ ・ ・, f ((J"r) have a 
point in common. 

In order to compute the homology of Confr(X), we shall give its homotopy 
decomposition. Let P be a poset. Hereafter, we understand P as a category 
such that objects are elements of P and there is a unique morphism x→y for 
x > y E P. For x E P, let P'.'::'.x = {y E PI y'.S x}. The order complex△(P) is the 
geometric realization of an abstract simplicial complex whose simplices are finite 
chains xa < x1 < ・ ・ ・＜咋 inP. Let F: P→Top be a functor. We define two 
maps 

f,g: II△(P←)x F(y)→ II △(P'.'::'.x) x F(x) 
x<yEP のEP

by 

f = H 1• (P~x) X F(y > x) and g = II lx,y X lF(y), 
x<yEP x<yEP 

where伍，y:△（p'.oX)→△(P'.oy) denotes the inclusion for x < y. As in [19], the ho-
motopy colimit hocolim F is defined to be the coequalizer of f and g. By definition, 
there is a natural projection 

(2.2) 1r : hocolim F→ △(P). 
We recall a property of regular CW  complexes that we are going to use. For a 
CW  complex X, let P(X) denote its face poset. The following lemma is proved in 
[15, Theorem 1.6, Chapter III]. 

Lemma 2.3. Let X be a regular CW  complex. Then there is a homeomoryhism 

△(P(X)）ごx
竺

which restricts to a homeomorphism△(P(X)叫→(Jfor each face(J． 

Now we describe Confr(X) in terms of a homotopy colimit. Similarly to the 
Fad ell-Neuwirth fi bration [ 8], we consider the first projection 7r : Conf r (X)→X. 
Then for each face(Jof X, we have 

T―l (Int((J）） ＝Conf口 (X((J））．

Thus since X ((J）C X(r) for(J ＞r, Confr(X) is obtained by gluing(JxConf口 (X((J））
along the inclusions 

(Jx Confr-1(X(CJ)）←T x Confr-1(X((J））→ T x Confr-1(X(r)) 

for(J ＞r. In other words, Confr(X) is homeomorphic to the coequalizer of two 
maps 

f,g: Il TX Confr-1(X((J））→ II T x Conf→(X(r)) 
Tく咋P(X) rEP(X) 

defined by 

f = II lr X知 and g = II 好，aX lconfr_i(X（a)), 
TくのEP(X) TくびEP(X)
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where 0a,T: Confr-1(X(CT))→Confr-1(X(T)) and lT,a: T→CT are inclusions for 
び＞ T.Now we define a functor Fr: P(X)→Top by 

Fr（び） ＝Confr-1(X（<J)) and F（び＞ T)= 0a,T・

By Lemma 2.3, there is a natural homeomorphism△(P(X):c:;a)竺 CTfor each face 
CT of X. Then by the above observation, we get: 

Theorem 2.4. There is a homeomorphism 

Confr(X)竺 hocolimFr.

Then we can apply the Bousfield-Kan spectral sequence to compute the homology 
ofConfr(X). However, the E1-term of the Bousfield-Kan spectral sequence includes 
a plenty of degenerate elements, and so we will apply the following variant of the 
Bousfield-Kan spectral sequence. 

Proposition 2.5. Let X be a regular CW  complex, and let F: P(X)→Top be a 
functor. Then there is a spectral sequence 

尻，q 竺〶 Hq(F （(T)) ⇒ Hp+q (hocolim F). 

Now we get: 

咋 P(X)
dima=p 

Lemma 2.6. Let X be a regular CW  complex, and let F: P(X)→Top be a functor 
such that F(a) is (n -dim a) acyclic for each a E P(X) with dim a：：：：：いl.Then 
there is an isomorphism for *：：：：： n 

H,(hocolimF) ~ H,(X) 

Thus we obtain the following corollary which completes the proof of Theorem 
1.5 by Proposition 2.2. 

Corollary 2.7. If X is an (r -l)-complementary n-acyclic regular CW  complex, 
then Confr(X) is n-acyclic. 

3. ATOMICITY 

Theorem 1.5 shows that the Tverberg property is possessed not only by a simplex 
but also by a variety of CW  complexes. But the Tverberg property of some CW  
complexes can be deduced from the that of other complexes. For example, as 
mentioned in Section 1, the Tverberg property of a polytopal sphere is deduced 
from a simplex. This section studies CW  complexes having the Tverberg property 
that is not induced from other CW  complexes. 
We say that a regular CW  complex X is (d, r)-Tverberg if for any continu-
ous map f: X →配， thereare pairwise disjoint facesび1,..．心 ofX such that 
f（叫，．．．，f(叫 havea point in common. For example, by Theorem 1.5, (r -1)-
complementary (d(r-1)-1)-acyclic regular CW  complexes are (d, r)-Tverberg. Let 
X be a (d, r)-Tverberg regular CW  complex. Observe that a regular CW  complex 
Y is (d, r)-Tverberg if either of the following conditions is satisfied: 

(1) Xis a subcomplex of Y; 
(2) Y is a refinement of X, that is, X 竺 Yand each face of X is the union of 
faces of Y. 

This observation leads us to: 

Definition 3.1. A (d, r)-Tverberg regular CW  complex is called atomic if it does 
not include a proper subcomplex which is (d, r)-Tverberg or it is not a refinement 
of a proper (d, r)-Tverberg complex. 



133
TVERBERG'S THEOREM FOR CELL COMPLEXES 

Here is a fundamental problem on (d, r)-Tverberg complexes. 

Problem 3.2. Given d, r and n, are there only finitely many atomic (d, r)-Tverberg 

finite complexes of dimension n? 

First, we consider 1-dimensional (1, 2)-Tverberg finite complexes. Let Cn denote 

the cycle graph with n vertices for n ~ 3. Then by Corollary 1.7, Cn is (1, 2)-

Tverberg. Let Y be the Y-shaped graph depicted below. Then by the intermediate 

value theorem, we can see that Y is (1, 2)-Tverberg too. 

了
Proposition 3.3. The only atomic 1-dimensional (1, 2)-Tverberg finite complexes 

are C3 and Y. 

Remark 3.4. If we remove its center vertex of Y, then it becomes disconnected. 
Hence Y is not 1-complementary 0-acyclic, so that we cannot apply Theorem 1.5 

ford= land r = 2 to deduce that Y is (1, 2)-Tverberg. However, we can directly 

see wgt2;2 (Conむ(Y))= 1, implying that Y is (1, 2)-Tverberg, because Conむ(Y)is 

a hexagon so that Lemma ?? applies. 

Next, we consider (2, 2)-Tverberg polyhedral 2-spheres. Let 8幻 denotethe 
boundary of an n-simplex. 

Proposition 3.5. The only atomic (2, 2)-Tverberg polyhedral 2-sphere is 8△釘

The following 2-sphere is an atomic (2, 2)-Tverberg complex, and so there may 

be other atomic (2, 2)-Tverberg 2-spheres which are not polyhedral. 

Then we pose a problem much weaker than Problem 3.2 but still interesting. 

Problem 3.6. Are there only finitely many atomic (2, 2)-Tverberg 2-spheres? 
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