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TORSION IN THE SPACE OF COMMUTING ELEMENTS IN A 

LIE GROUP 

MASAHIRO TAKEDA 

ABSTRACT. Let G be a compact connected Lie group, and let Hom（か，G)
denote the space of homomorphisms from a free abelian groupか toG. We 
study the problem of which primes p Hom（か，G)has p-torsion in homo!-
ogy. We give a new homotopy decomposition of the space, and we prove that 
Hom(zm, SU(n)) form~ 2 hasp-torsion in homology if and only if p :Sn. In 
this text we overview the proof and observe some examples. 

1. INTRODUCTION 

This text is based on the joint work with Daisuke Kishimoto "Torsion in the 
space of commuting elements in a Lie group" [14]. In this text, the focus will be on 
introducing the results of this joint work and observing examples. 

Let G be a compact connected Lie group. Let Hom（左，G)denote the space of 
homomorphisms from a free abelian groupか toG. This space has induced topol-

ogy of the space of continuous maps fromか toG. Hom（か，G)is homeomorphic 
to the subspace of the Cartesian product am consisting of (g1,... gm) E am such 

that 9i9j = 9j9i for all i,j. So we call Hom（か，a)the space of commuting ele-
ments in a. We denote Hom（か，a)ias the connected component of Hom（か，G）
containing the trivial homomorphism. 

Since Hom(Z叫 a)is identified with the based moduli space of the flat bundle, 
Hom（か，a)is studied in geometry and mathematical physics, for example [1, 7, 
12, 17, 18]. And there are many results about Hom（か，a)in topology, for example 
[2, 3, 4, 5, 6, 9, 10, 13, 15, 16]. 

In this text we denote Ta maximal torus of a and W the Weyl group of a. Let 
lF be a field of characteristic not dividing the order of W or 0. In [5] Baird described 
the cohomology of Hom（か，a)iwith coefficient lF as a certain ring of invariants 
of W. Based on this result, Ramras and Stafa [15] proved that the Poincare series 
of the cohomology of Hom（か，a)iwith the coefficient lF is given by 

rr~=l (1 -t2d;) 

|W| ど
det(l + twr 

det(l -t知）＇
wEW  

where d1,..., dr are the characteristic degrees of W. This formula doesn't depend 
on the characteristic of『 aslong as its characteristic does not divide the order of 

W or is zero. Thus we obtain the non-existence of torsion in homology. 

Lemma 1.1. The homology of Hom（か，a)idoesn't have p-torsion in homology 

when p doesn't divide the order of W. 

On the other hand, there is few result about existence of torsion in the homology 
ofHom（か，a)i.Baird, Jeffrey and Selick [6] and Crabb [9] give the stable decom-
position of Hom(zm, SU(2)). By this result, we can obtain that Hom(zm, SU(2)) 
has 2-torsion. By combining the result of the computation of fundamental groups 
by Adem, Gomez and Grischacher [4] and the computation of secomd homotopy 
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groups by Gomez, Pettet and Souto [10], we obtain that Hom(Z叫Sp(n))has 2-
torsion for m 2: 3. These are all result about existence of torsion in homology of 

Hom（か，G).
The main theorem in [14] is the following. 

Theorem 1.2. The homology of Hom（か，SU(n))iform 2: 2 hasp-torsion if and 
only if p s; n. 

To prove this theorem, we give a new homotopy decomposition of Hom(zm, G) 1・
In this text, we overview the proof and observe some examples. 

2. TRIANGULATION OF A MAXIMAL TORUS 

In this section we briefly description a cell structure on T /W and a character-
ization of each cell. For more information on this section, please see Section 2 in 
[14]. 

Hereafter, let G denote a compact simply-connected simple Lie group with 
rankG = k. Let t be the Lie algebra of T, and let <I> be the set of roots of G. 
The Stiefel diagram is defined by 

uい (i)C t. 
aE1> 
iEZ 

For example, the Stiefel diagram of Sp(2) is given as follows. 

We call each connected component of the complement of the Stiefel diagram a 
Weyl alcove. Since G is a compact simply-connected simple Lie group, the closure of 
any Weyl alcove is homeomorphic to k-simplex. Moreover a Weyl alcove is identified 
with the following a k-simplex 

△ = ｛x Et I a1(x) 2". 0,...,ak(x) 2". 0, a(x)：：：：： 1 }, 

where a1,... ak are simple roots, and a is the highest root. Then the facets of△ 
is corresponding to the one of the simple roots or the highest root. On the other 

hand, T /W is identified with the closure of a Weyl alcove. By combining the upper 
discussion, we obtain the next proposition. 

Proposition 2.1. The quotient space T /W is naturally identified with△. 

3. HOMOTOPY COLIMIT 

In this section we recall the homotopy colimit. Let K be a simplicial complex 

and P(K) be the face poset of K. We regard P(K) as a category, and we take a 
functor F: P(K)→Top. Then the homotopy colimit of F, hocolimF, is defined 
by 

hocolimF竺 IIF(a) x a/~, 
aEK 
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where the equivalence relation is generated by (x,F(l)(y)) ~ (l(x),y) for x E(J"， 
y E F(T) and the inclusion l:(J"→T. Roughly, this is like a fiber space with 
different fibers on each cell. 

To compute the homology of the homotopy colimit, we use the variant of the 
Bousfield-Kan spectral sequence constructed in [11]. In [8], the original Bousfield-
Kan spectral sequence is explained. 

p roposition 3.1. Let F: P(K)→Top be a functor, where P(K) denotes the face 
poset of a simplicial complex K. Then there is a spectral sequence 

弘＝〶 Hq(F(O")) ⇒ Hp+q(hocolimF), 
uEPp(K) 

where Pp(K) denotes the set of p-simplices of K. 

We can construct this spectral sequence by the similar way to construct the Serre 
spectral sequence. 

4. HOMOTOPY DECOMPOSITION 

This section constructs a new homotopy decomposition of Hom（か，G)i.The 
quotient space of G by the adjoint action of G is isomorphic to T /W, and by 
Proposition 2.1 it is isomorphic to△.We define a map 71" as the composition of the 
following maps 

71": Hom（か，G）1→Hom(Z,G)竺 G→△,
where the first map is the m-th projection and the last map is the quotient map 
by the adjoint action of G. Then the following lemma hold. 

Lemma 4.1. If x, y E△ belong to the interior of a common face, then 

11"-l(x)竺 11"-l(y).

Sketch of proof. In [5] Baird induces the map 

¢: G/T x Tm→Hom（か，G)i (g,tl,・・.％）,-+ (g―1t1g,...,g―1tmg), 

for g E G/T, (t1,... tm) Erm and proves this map is a surjection. 
Suppose that x, y E ぷ arein the interior of a same face. Then for each 

(t1,..., tm-1) ET叫 theisotropy subgroups of (t1,..., tm-1, x) and (t1,..., tm-1, y) 
by the adjoint action of G are equal. And there are equivalences 

(¢07r）ー1(x)= G/T X rm-l X W ・X and (¢07r）ー1(y)=G/Txrm-lxW-y. 

Thus by the definition of the map ¢, we obtain 7r―1 (x)竺 T―1(y), as stated. ロ

Let O"o denote the barycenter of a face O" E P(K). Then we can obtain the 
following theorem. 

Theorem 4.2. Let G be a simple, simply connected, compact Lie group. Then 

there is a functor Fm: P（△） →Top with F叫O")= 戸(O"o)such that there is a 
homeomorphism 

Hom（か，G）1竺 hocolimFm.

We look at examples about this theorem. 

Example 4.3. We look at Fm（び） forsome(J"．When O" is the top cell, there is a 
homeomorphism 

Fm(O")竺 G/TX rm-l_ 

When(J"is the 0-cell of the center in G, there is a homeomorphism 

凡（(]")竺 Hom(zm-1,G).
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Example 4.4. We consider the homotopy desomposition of Hom（か，SU(2)).
Since rank of SU(2) is 1,△ is a 1-simplex. Let v0, v1 be vertices of△,and let 
e be an edge of△.Since v。andv1 correspond to the center, we have 

Fm（巧）竺 Hom(zm-1,SU(2)) 

for i = 0, 1. Then by Theorem 4.2 and Example 4.3, there is a homotopy pushout 

S2 X (Sりm-1----------, Hom(zm-1, SU(2)) 

』』
Hom(zm-1, SU(2))--------+ Hom（か，SU(2)),

where the map S2 x (Sりm-1→Hom(zm-1,SU(2)) is eq叫 tothe map ¢ in the 

proof of Lemma 4.1. Especially when m = 2, there is a homotopy pushout 

s2 x S 1)  S3 

l l s3 〉Hom（口8U(2)),

where the map 82 x 81→炉 isnot a simple quotient map but the composition of 
the quotient map and the map of degree 2. 

5. THE FUNCTOR F2 

Let d = dim(G). In the Bousfield-Kan spectral sequence of F2, we call E.,d the 
top line. In this section to focus on this top line, we define a functor F2 and a 
natural transformation p. 

At first we observe some examples. For top cell Utop E P（△） and the 0-cell 
びoE P（△） with corresponding to the center in G, the map恥（びtop)→的(uo)is 
identified with the map 

¢: G/T x T→G (g, t)→g―ltg, 

for g E G, t E T. It is well known that the induced map in top homology 
か：恥(G/TxT)→ 恥(G)is the map of degree IWI. By considering the Bousfield-
Kan spectral sequence of F2, it seems that there may be p-torsion in the top line 

for prime number p that divides IWI. Moreover whenびEP（△） isthe top cell or 
a 0-cell with corresponding to the center in G, by Example 4.3 there is a quotient 

map F:如） →炉 suchthat恥 (F如）） →恥(Sりisisomorphism. It seems that 
there may be the restriction to the top line. In fact we can construct such a natural 
transformation in general. 

ForびEP（△）， letW（u) C W be the stabilizer of the barycenter ofび． Inother 
words, W(u) is the group generated by the reflection corresponding to the root 

whose facet include u. We define a functor F2: P（△） →Top by F:如） ＝炉 such

that the map F:如 ＞ T）： F如） →恥(T)is a map of degree IW(T)I/IW(u)I-Then 
the following proposition holds. 

Proposition 5.1. There is a natural transformation p: F2→凡 suchthat the map 

匹：恥(F如）） → 恥(F如）） isan isomorphism for anyびEP（△）．

About the construction of p, please see the section 4 in [14]. 

Let (ET, dT) and (ET, dT) denote the spectral sequence of Proposition 3.1 for 

hocolim F2 and hocolim凡． Thenthe E2 term of the (ET，が） and(E八d")are 
illustrated below, where possibly non-trivial parts are shaded. 
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炉

d
 

゜゚ k
 Since the bottom lines of these spectral sequences correspond to the homology of 

△,the bottom lines are collard white except for (0, 0). The natural transformation 
p induces the map between these spectral sequences that is isomorphic to the top 
line. Therefore by an canonical discussion, we obtain the next proposition. 

Proposition 5.2. H.(hocolim凡） isa direct summand of H.(Hom（塁G)1).

By this proposition, if hocolimF2 has p-torsion in homology, then there ex-
ists p-torsion in H * (Hom（訊G)i). Moreover, since Hom（訊G)iis a retract of 

Hom（か，G)i,the p-torsion in hocolimらinducesthe p-torsion in Hom（か，G）lin 
homology. 

Proposition 5.3. If hocolim尻hasp-torsionin homology, then Hom（か，G)ihas 
p-torsion in homology. 

6. COMPUTATION OF TORSION IN HOMOLOGY 

This section computes some torsion in the homology of Hom(Z叫 SU(n))ifor 

some small n. By Proposition 5.3, if we obtain torsion in the homology of hocolim F2, 
we can obtain torsion in庄ehomology of Hom（か，SU(n))i.To obtain torsion in 

the homology of hocolim恥， wedefine a colored extended Dynkin diagram. A col-
ored extended Dynkin diagram of G is an extended Dynkin diagram of G whose 
vertices are colored by black and white. For a colored extended Dynkin diagram r, 
let Wr denote the subgroup of W generated by the reflections corresponding to the 
roots with colored black in r. Then the next lemma follows from the definition. 

Lemma 6.1. There is a bijection 

竺w: Pi（△） → ｛colored extended Dynkin diagrams with k -i black vertices} 
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which sends an i-faceび EPi(△)to a colored extended Dynkin diagram such that 
only n -i vertices that correspond to the facets including c, are black-colored. More-
over there is an equation 

W知） ＝W(c,). 

We consider the chain complex of hocolimF2. For a CW  complex X, let C,(X) 
denote the cellular chain complex over Z. The cell decomposition of Sd is given by 
炉＝ e0U ed, and let l be the generator of Cd (Sりcorrespondingto the top cell ed. 

Then C,(hocolim凡） isspanned by c,, c, x l for c, E P（△）． 
Let 1, 2,..., n be vertices of the extended Dynkin diagram of SU(n) as follows. 

ー

3
 

｀
 

I
 I
 I
 

ヽヽ

ヽ
ヽ

＇ ＇ ヽヽ

` -----

For 1 ~釘＜砂<..．＜ ik:::; n we denote {i1,.．九｝ an(k-1)-faceび Epk-1（△） 
such that the white vertices of the extended Dynkin diagram IY(O") are｛紅，．．．往｝．
For example, as for G = SU(3), {1, 3} corresponds the following colored extended 
Dynkin diagrarrt. 

102 
Now we compute the homology for hocolim F2 for G = SU(3), SU(4). First we 

consider the case G = SU(3). We compute the derivation, 8, in C.(hocolim P.砂
By the definition of F2, the derivation on the basis corresponding to u E P（△） is 
equal to the derivation in C*（△）． And the derivation on the other basis is defined 
as follows. 

8({1, 2, 3} X し） ＝2{2, 3} X l - 2{1, 3} Xし＋ 2{1,2} Xし

8({iぃ砂｝ xし） ＝ 3｛砂｝ xしー 3｛釘｝ xし

O(｛釘｝ xし） ＝0, 

for 1 :::;釘 <i2:::; 3. Therefore when G = SU(3) the homology of hocolim F2 is 
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(i = 0) 

(i = 8) 

(i = 9) 

(the others). 

Therefore we obtain that Hom(zm, SU(3))i hasp-torsion in homology for p = 2, 3. 



141

Next we consider the case G = SU(4). We compute the derivation, 8, in 

C.(hocolim凡） bya similar way. The derivation is defined as follows. 

8({1,2,3,4} X し） ＝2{2, 3, 4} X しー 2{1,2,4}xし＋ 2{1,3,4}X しー 2{2,3, 4} X し

a({1, 2, 3} X l) = 3{2, 3} X l - 2{1, 3} X l + 3{1, 2} X し

8({1,2,4} X し） ＝2{2, 4} X l - 3{1, 4} Xし十 3{1,2} X し

8({1,3,4} X l) = 3{3,4} X し― 3{1,4}X i+2{1,3} X し

8({2,3,4} X し） ＝3{3,4} X l-2{2,4} Xし十 3{2,3} X し

a({i,i+ 1} X し） ＝4{i + 1} X し— 4{i} X l 

a({j,j + 2} X し） ＝6{j + 2} X l - 6{j} X l 

8({k} xし） ＝0, 

for 1 :S i :S 3, 1 :S jさ2and 1さk:S 4. Therefore when G = SU(4) the homology 
of hocolim F2 is 

z 
ZEB Z/2 〶 Z/2 〶 Z/4

Hi(hocolim 凡）~ ~ Z/3 
Z/2 

゜

(i = 0) 

(i = 15) 
(i = 16) 

(i = 17) 
(the others). 

Therefore we obtain that Hom（か，SU(4))ihasp-torsion in homology for p = 2, 3. 
In this case Hom（か，SU(4))ihas higher 2-torsion Z/4, but we don't know when 
the torsion is higher torsion or not. 

In our paper [14], by using an another property and prove the following theorem. 

Theorem 6.2. The homology of Hom（か，SU(n+l))i form?'. 2 hasp-torsion in 
homology if and only if p :::; n + 1. 

By the upper calculation, we obtain this theorem for n = 2, 3. 

7. ANOTHER RESULTS 

In this section we see some results that we cannot write in the main part. By 
using the homotopy decomposition of Hom（か，G),we can compute the top term 
of the homology like the followings. 

Theorem 7.1. Let G be a compact simply-connected simple Lie group of rank n, 
and let 

d = {dimG+n(m -1) -l m ts even 

dimG + n(m -1) mis odd. 

Then the top homology of Hom（か，G)iis given by 

Hd(Hom（か，G)1)竺 {Z/2 m tS even 
Z mis odd. 

Corollary 7.2. Let G be a compact simply-connected simple Lie group. Then 

Hom（か，G)iform?'. 2 has 2-torsion in homology. 

By the computation similar to the case G = SU(n), we can obtain existence of 
p-torsion for some p. 

Theorem 7.3. Ifp:::; n andn = 0, 1 mod p, then form?'. 2, Hom（か，Spin(2n))i
has p-torsion in homology. 
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Theorem 7.4. Let G be an exceptional Lie group. Then Hom（か， G)iform:::. 2 
hasp-torsion in homology if and only if p divides IWI, except possibly for (G,p) = 
(E1, 5), (E1, 7), (Es, 7). 

But in the other cases we can't obtain existence of p-torsion. Moreover we have 

proved that hocolim恥 doesn'thave p-torsion in almost all of the cases. W e  write 

this precisely in Section 8 of [14]. 
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