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Abstract
Genome-scale constraint-based metabolic networks play an important role in the simulation of
growth-coupled production, which means that cell growth and target metabolite production are
simultaneously achieved. For growth-coupled production, a minimal reaction-network-based
design is known to be effective. However, the obtained reaction networks often fail to be realized
by gene deletions due to conflicts with gene-protein-reaction relations. Here, we developed
gDel minRN that determines gene deletion strategies using mixed-integer linear programming to
achieve growth-coupled production by repressing the maximum number of reactions via
gene-protein-reaction relations. The results of computational experiments showed that
gDel minRN could determine the core parts, which include only 30 to 55% of whole genes, for
stoichiometrically feasible growth-coupled production for many target metabolites, which include
useful vitamins such as biotin (vitamin B7), riboflavin (vitamin B2), and pantothenate
(vitaminB5). Since gDel minRN calculates a constraint-based model of the minimum number of
gene-associated reactions without conflict with gene-protein-reaction relations, it helps biological
analysis of the core parts essential for growth-coupled production for each target metabolite. The
source codes, implemented in MATLAB using CPLEX and COBRA Toolbox, are available on
{{https://github.com/MetNetComp/gDel-minRN}}



1 Introduction
Computational approaches are becoming increasingly important in the production of useful
metabolites using microorganisms [1–7]. One of the most popular mathematical models in
genome-scale metabolic engineering simulations is the constraint-based model. Constraint-based
models mainly consist of metabolic networks and gene-protein-reaction (GPR) networks.

Metabolic networks represent the relationship between chemical reactions and compounds in
cells. Many chemical reactions are catalyzed by enzymatic proteins encoded by genes. Therefore,
metabolic networks can be controlled by gene deletions through reaction deletions. The
relationships between reactions and genes are represented by GPR networks, in which the
relationships between genes, proteins, and reactions are represented by Boolean functions.

In the metabolic network part of the constraint-based model, steady states are assumed in which
each metabolic reaction speed (flux) is constant. Such an analysis is called flux balance analysis
(FBA) [8]. In FBA, (1) for each compound, the sum of the producing fluxes is equal to the sum of
the consuming fluxes; (2) in each reaction, the fluxes of substrates and products must satisfy the
ratio in the chemical reaction equation, and (3) the upper and lower bounds are given for each flux.

The constraint-based model includes a virtual reaction that represents cell growth. The cell
growth reaction of the constraint-based model was designed to match the results of the biological
experiments. In the most standard FBA with constraint-based models, cell growth is maximized in
the simulation because genotypes that result in higher cell growth are more likely to remain in the
culture after repeated passaging. The cell growth reaction speed and the target
metabolite-producing reaction speed are called the growth rate (GR) and production rate (PR),
respectively.

Therefore, in the simulation of useful metabolite production by FBA, we often evaluate PR
when GR is maximized. When cell growth and the target metabolite production co-occur, we say
that growth-coupled production is achieved. However, the number of metabolites for which
growth-coupled production is achieved under natural conditions is limited. Therefore, it is often
necessary to calculate the gene deletion strategy for the given constraint-based model and the
target metabolite [9]. (See also Fig.1(A).)

Among the many existing methods [10–17], one of the most efficient methods for calculating
reaction deletion strategies for growth-coupled production is the elementary flux vector-based
method [18]. The elementary flux vector-based method determines a non-decomposable flux
distribution that includes the cell growth reaction and the target metabolite production reaction
and deletes the reactions that are not used by the flux distribution. In other words, this method
selects a minimal number of reactions to be used in the flow where cell growth forces the
production of the target metabolite and deletes reactions that are not used. It is also possible to
combine such minimal reaction networks to obtain smaller reaction deletion strategies. It was
shown that the elementary flux vector-based method could compute the reaction deletion
strategies for growth-coupled production for most target metabolites for Escherichia coli and
Saccharomyces cerevisiae under aerobic conditions by the combination of such core flows [18].
However, fewer than 10% of the reaction deletion strategies were feasible as gene deletion
strategies because of the gene conflicts when the GPR network was considered [19, 20].

Therefore, it would be desirable if such a minimal reaction network detection-based method, in
other words, core flow detection, for reaction deletion strategies could also detect the minimal



reaction network realized by gene deletion strategies. Such minimal reaction networks and gene
deletion strategies help biological understanding of what is necessary for growth-coupled
production. However, it is not straightforward to directly extend the calculation of reaction
deletion strategies to the calculation of gene deletion strategies.

In this work, to achieve growth-coupled production by gene deletions, we have developed
mixed-integer linear programming (MILP)-based algorithm, gDel minRN, to calculate the gene
deletion strategies that inactivate as many reactions as possible that are not essential for
growth-coupled production. gDel minRN calculates gene deletion strategies that obtain the
minimum reaction network for growth-coupled production.

In the computational experiments, gDel minRN, GDLS [10] and optGene [21] were applied to
iML1515 [22], iMM904 [23], and e coli core [24]: GDSL and optGene are some of the most
widely used software to derive gene deletion strategies and are available in COBRA Toolbox [25];
iML1515 and iMM904 are genome-scale constraint-based models of E. coli and S. cerevisiae,
respectively; e coli core contains the only essential part of the metabolism of E. coli.

The success ratio of gDel minRN for iML1515, iMM904, and e coli core were 40.6%, 13.6%,
and 97.9%, which were substantially better than GDLS and optGene. The number of remaining
genes by gDel minRN was 35 to 38% for iML1515, 30 to 35% for iMM904, and 48 to 54% for
e coli core of whole genes. Each gene deletion strategy was considered as successful when the
minimum GR and PR were 0.001 or more at GR maximization.

The gene deletion strategies obtained by gDel minRN do not contradict the GPR network and
allow us to design metabolic networks that achieve growth-coupled production by repressing the
maximum number of reactions. Therefore, if we analyze the gene deletion strategies obtained by
gDel minRN, we may be able to clarify the biological significance of the core part required for
growth-coupled production for the target compounds without contradicting the
gene-protein-reaction relationships. We conducted a biological analysis of the obtained gene
deletion strategy for biotin growth-coupled production.

The remaining of this paper is organized as follows: Section 2.1 describes the main problem of
this study mathematically; Section 2.2 illustrates the main problem with small examples; Section
2.3 illustrates the developed algorithm gDel minRN with small examples and gives the
pseudo-code; Section 2.4 illustrates the MILP formalization of gDel minRN using small
examples; Section 3.1 describes the performance comparison of gDel minRN, GDLS, and
optGene for iML1515, iMM904, and e coli core; Section 3.2 illustrates case study for vitamin
production; Section 4 analyzes the results of the computational experiments and the case study;
Section 5 gives a conclusion.

2 Method

2.1 Definition
Let 𝐶 = (𝑀, 𝑅, 𝑆, 𝐿,𝑈, 𝐺, 𝐹, 𝑃) be a constraint-based model, where 𝑀 = {𝑚1, . . . , 𝑚𝑎},
𝑅 = {𝑟1, . . . , 𝑟𝑏}, 𝐺 = (𝑔1, . . . , 𝑔𝑐), 𝐹 = ( 𝑓1, . . . , 𝑓𝑏), and 𝑃 = (𝑝1, . . . , 𝑝𝑏) are sets of
metabolites, reactions, genes, Boolean functions, and the outputs of 𝐹, respectively. 𝑅 always
includes one special virtual reaction 𝑟𝑔𝑟𝑜𝑤𝑡ℎ that represents cell growth, and the cell growth flux is
represented by 𝑣𝑔𝑟𝑜𝑤𝑡ℎ. 𝑆 is a stoichiometry matrix, where 𝑆𝑖 𝑗 = 𝑘 means that 𝑟 𝑗 produces 𝑘 of 𝑚𝑖



per unit time. If 𝑘 is a negative number, then 𝑚𝑖 is consumed. Let 𝑉 = {𝑣1, . . . , 𝑣𝑏} be a set of
reaction speeds per unit time (flux) of 𝑅. Let 𝐿 = {𝑙1, . . . , 𝑙𝑏} and𝑈 = {𝑢1, . . . , 𝑢𝑏} be the sets of
the lower and upper bounds for 𝑉 , respectively.
𝐶1 = (𝑀, 𝑅, 𝑆, 𝐿,𝑈) is called the metabolic network part of 𝐶. 𝑣𝑔𝑟𝑜𝑤𝑡ℎ is called the growth

rate (GR). In FBA using 𝐶1, GR is maximized by the following linear programming (LP):

maximize
𝑣𝑔𝑟𝑜𝑤𝑡ℎ

such that
Σ 𝑗𝑆𝑖 𝑗𝑣 𝑗 = 0 for all 𝑖
𝑙 𝑗 ≤ 𝑣 𝑗 ≤ 𝑢 𝑗 for all 𝑗
𝑖 = {1, . . . , 𝑎}, 𝑗 = {1, . . . , 𝑏}

If the 𝑖-th column of 𝑆 has only one non-zero element; in other words, 𝑟𝑖 connects to only one
metabolite, then 𝑟𝑖 is called an external reaction (also called an exchange reaction), and is
considered to be connected to the external environment. Reactions that are not external reactions
are called internal reactions. The flux of the external reaction producing the target metabolite is
called the production rate (PR). In this study, we evaluate PR at GR maximization. When PR is
not uniquely determined at GR maximization, the minimum PR at GR maximization is evaluated.

In contrast, 𝐶2 = (𝐺, 𝐹, 𝑃) is called the GPR network part of 𝐶, and

𝑝 𝑗 = 𝑓𝑖 (𝐺), where 𝑝, 𝑔 ∈ {0, 1}.

If 𝑝 𝑗 = 0, then 𝑙 𝑗 and 𝑢 𝑗 are forced to be 0. In other words,{
𝑣 𝑗 = 0 when 𝑝 𝑗 = 0,
𝑙 𝑗 ≤ 𝑣 𝑗 ≤ 𝑢 𝑗 when 𝑝 𝑗 = 1

hold.
The main problem of this study is formalized as follows.

Given
𝐶, 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝐺𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Find
𝐷 ⊂ 𝐺 that results in 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 ≥ 𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≥ 𝐺𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
such that minimize
𝑣𝑡𝑎𝑟𝑔𝑒𝑡
such that maximize
𝑣𝑔𝑟𝑜𝑤𝑡ℎ
such that

Σ 𝑗𝑆𝑖 𝑗𝑣 𝑗 = 0 for all 𝑖{
v 𝑗 = 0 if 𝑝 𝑗 = 0
l 𝑗 ≤ 𝑣 𝑗 ≤ 𝑢 𝑗 , otherwise
𝑝 𝑗 = 𝑓 𝑗 (𝐺){
g = 0 if g ∈ 𝐷
g = 1, otherwise



𝑝, 𝑔 ∈ {0, 1}
𝑖 = {1, . . . , 𝑎}, 𝑗 = {1, . . . , 𝑏}

2.2 Example for problem setting
Fig. 2 shows a small toy example of the constraint-based model, where 𝑀 = {𝑚1, . . . , 𝑚4},

𝑅 = {𝑟1, . . . , 𝑟7}, and 𝑆 =

©«
1 −1 −1 0 −1 0 0
0 1 0 1 0 −1 0
0 0 1 −1 0 0 0
0 0 0 1 1 0 −1

ª®®®¬ .
Because [𝛼, 𝛽] attached to 𝑟 𝑗 means that 𝛼 ≤ 𝑣 𝑗 ≤ 𝛽, 𝐿 = {𝑙1, . . . , 𝑙7} and𝑈 = {𝑢1, . . . , 𝑢7} are
as follows; 𝑙1, . . . , 𝑙7 = 0, 𝑢1, . . . , 𝑢3 = 10, 𝑢4, 𝑢5 = 5, 𝑢6, 𝑢7 = 10. For 𝐶2, it is given that
𝐺 = {𝑔1, . . . , 𝑔5}, 𝐹 = { 𝑓1, . . . , 𝑓7} and

𝑝1 = 𝑓1 = 𝜙,

𝑝2 = 𝑓2 = 𝑔1 ∧ 𝑔2 ∧ 𝑔3,
𝑝3 = 𝑓3 = 𝑔1,
𝑝4 = 𝑓4 = 𝑔2 ∧ 𝑔5,
𝑝5 = 𝑓5 = (𝑔3 ∨ 𝑔4) ∧ 𝑔5,
𝑝6 = 𝑓6 = 𝜙,

𝑝7 = 𝑓7 = 𝜙.

Note that 𝑓 represents a Boolean function, whereas 𝑝 takes either 0 or 1. 𝑝 𝑗 = 𝑓 𝑗 = 𝜙 means that
𝑟 𝑗 cannot be repressed via gene deletions.

In the original state, when GR (𝑣6) is maximized, 𝑣6 = 10 is obtained. To achieve 𝑣6 = 10,
there are two options: using only 𝑟2 or using 𝑟3, 𝑟4 in addition to 𝑟2. The latter corresponds to the
optimistic case for PR (𝑣7): 𝑣7 = 5 is obtained by 𝑣2 = 𝑣3 = 𝑣4 = 5 as shown in ID 1 of Fig.2(B).
The former corresponds to the pessimistic case for PR: all fluxes from 𝑟1 flow through 𝑟2 to 𝑟6;
𝑣1 = 𝑣2 = 𝑣6 = 10 and 𝑣3 = 𝑣4 = 𝑣5 = 𝑣7 = 0 are obtained as shown in ID 2 of Fig.2(B).

If 𝑔1 is deleted, then 𝑝2 = 𝑔1 ∧ 𝑔2 ∧ 𝑔3 = 0 since 𝑔1 = 0. Therefore, 𝑟2 does not work and 𝑣2 is
forced to be zero. Similarly, 𝑟3 does not work and 𝑣3 is forced to be zero because 𝑝3 = 𝑔1 = 0
holds. Therefore, when GR is maximized, fluxes from 𝑟1 cannot reach 𝑟6, and GR becomes 0. In
the optimistic case for PR, 𝑣1 = 𝑣5 = 𝑣7 = 5 is obtained, but no flux flows in the pessimistic case,
as shown in IDs 3 and 4 of Fig.2(B), respectively. To ensure growth-coupled production, we need
to evaluate the pessimistic case for PR, and the maximized GR must exceed the minimum required
value. Therefore, we consider that growth-coupled production cannot be achieved by deleting 𝑔1.
When 𝑔2 is deleted, similar results are obtained because neither 𝑟2 nor 𝑟4 works as shown in IDs 5
and 6.

If 𝑔3 is deleted, 𝑟2 does not work, but the other reactions can work. Therefore, the maximum
GR is five because 0 ≤ 𝑣4 ≤ 5. In the optimistic case, the flux from 𝑟1 flows to 𝑟7 via 𝑟5 in
addition to via 𝑟3 and 𝑟4. In this case, GR=5 and PR=10 are obtained. However, in the pessimistic
case, GR=PR=5 is obtained as shown in IDs 7 and 8 of Fig.2(B), respectively.

If 𝑔4 is deleted, 𝑝 𝑗 = 1 for all 𝑗 : the situation is the same as the original state. If 𝑔5 is deleted,
neither 𝑟4 nor 𝑟5 works since 𝑝4 = 𝑝5 = 0: 𝑣1 = 𝑣2 = 𝑣6 = 10 and 𝑣3 = 𝑣4 = 𝑣5 = 𝑣7 are obtained



as shown in ID 11. If 𝑔1 and 𝑔2 are deleted, the situation is the same as when only 𝑔1 is deleted.
Suppose that GRLB=PRLB=1; that is, the minimum required GR and PR are 1. Then, deleting

𝑔3 achieves growth-coupled production because GR=PR=5 is obtained even for the pessimistic
case, and GR≥GRLB and PR≥PRLB are satisfied. Thus, in this example, growth-coupled
production can be achieved by deleting one gene 𝑔3. However, in practice, it may be necessary to
examine all genes on and off, which results in a combinatorial explosion.

2.3 Algorithm
The developed algorithm gDel minRN first searches, using MILP, the flux and corresponding
gene deletions that satisfy

(1) GR and PR are above the given thresholds, GRLB and PRLB, respectively.
(2) The number of reactions repressed by gene deletions is maximum.
(3) GR is maximized where (2) has a higher priority than (3).

It should be noted that the GR and PR obtained above are not always realized when GR is
maximized without PRLB. Therefore, gDel minRN tests whether the obtained gene deletion
strategy achieves growth-coupled production under the condition that GR is maximized without
PRLB. In particular, gDel minRN checks the lowest PR value when GR is maximized. If the
obtained gene deletion strategy does not achieve growth-coupled production in this pessimistic
case, then the gene deletion strategy is added to the prohibited list, and another gene deletion
strategy is searched in the same way by MILP.

For example, suppose that GRLB=PRLB=1 in Fig.2(A). When GR is maximized under the
conditions of GR≥1 and PR≥1, the flux distribution for each gene deletion strategy for the
pessimistic case of PR is summarized in Table 1(A). Because deleting 𝑔1, 𝑔2, or 𝑔5 cannot satisfy
GR≥GRLB or PR≥PRLB, the gene deletion strategy candidates that can satisfy (1) are limited to
{𝑔3}, {𝑔4} and {𝑔3, 𝑔4}. The number of repressed reactions by deleting {𝑔3}, {𝑔4} and {𝑔3, 𝑔4}
are 1, 0 and 2, respectively, as shown in Table 1(A).

Therefore, gene deletion strategies are applied in the order of {𝑔3, 𝑔4}, {𝑔3}, {𝑔4}. When
{𝑔3, 𝑔4} is deleted and GR is maximized without PRLB, GR=PR=5 is obtained and
growth-coupled production is achieved as as shown in Table 1(B). If the first candidate fails to
achieve growth-coupled production, the second candidate is applied. When the gene deletion
strategy is not uniquely determined under the condition that the number of repressed reactions is
maximized, gDel minRN selects the gene deletion strategy whose GR is maximum among them.
The flux distributions for {𝑔3} and {𝑔4} for the pessimistic case of PR at GR maximization are
also shown in Table 1(B).

The pseudo-code of gDel minRN is as follows.

Procedure gDel minRN(𝐶, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑚𝑎𝑥𝑙𝑜𝑜𝑝, 𝛼, 𝛽)
𝑇𝑀𝑃𝑅 =max 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 /*theoretical maximum PR*/

s.t. Σ 𝑗 𝑆𝑖, 𝑗 · 𝑣 𝑗 = 0 for all 1 ≤ 𝑖 ≤ 𝑎
𝐿𝐵 𝑗 ≤ 𝑣 𝑗 ≤ 𝑈𝐵 𝑗 for all 1 ≤ 𝑗 ≤ 𝑏

𝑃𝑅𝐿𝐵 = 𝛼 · 𝑇𝑀𝑃𝑅



𝑇𝑀𝐺𝑅 =max 𝑣𝑔𝑟𝑜𝑤𝑡ℎ /*thoeretical maximum GR*/
s.t. Σ 𝑗 𝑆𝑖, 𝑗 · 𝑣 𝑗 = 0 for all 1 ≤ 𝑖 ≤ 𝑎

𝐿𝐵 𝑗 ≤ 𝑣 𝑗 ≤ 𝑈𝐵 𝑗 for all 1 ≤ 𝑗 ≤ 𝑏

𝐺𝑅𝐿𝐵 = 𝛽 · 𝑇𝑀𝐺𝑅
* Finding a gene deletion strategy candidate.*/
𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 = 𝜙, 𝑙𝑜𝑜𝑝 = 1
while 𝑙𝑜𝑜𝑝 ≤ 𝑚𝑎𝑥𝑙𝑜𝑜𝑝

/*maximize #repressed reactions first and GR second.*/
max 𝑇𝑀𝐺𝑅 · 𝐾𝑂 + 𝑣𝑔𝑟𝑜𝑤𝑡ℎ
/*𝐾𝑂: the number of repressed reactions.*/
s.t. Σ 𝑗𝑆𝑖, 𝑗 · 𝑣 𝑗 = 0 for all 1 ≤ 𝑖 ≤ 𝑎{

v 𝑗 = 0 if 𝑝 𝑗 = 0
l 𝑗 ≤ 𝑣 𝑗 ≤ 𝑢 𝑗 , otherwise
𝑝 𝑗 = 𝑓 𝑗 (𝐺) /*by the methods of Table 4.*/{
g = 0 if g ∈ 𝐷 /*𝐷 is the set of deleted genes.*/
g =1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐷 ∉ 𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑙𝑖𝑠𝑡

GRLB ≤ 𝑣𝑔𝑟𝑜𝑤𝑡ℎ
PRLB ≤ 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝐷

/*Check whether growth-coupled production is achieved by 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.*/
min

𝑣𝑡𝑎𝑟𝑔𝑒𝑡
such that max

𝑣𝑔𝑟𝑜𝑤𝑡ℎ
such that
Σ 𝑗𝑆𝑖 𝑗𝑣 𝑗 = 0 for all 𝑖{

v 𝑗 = 0 if 𝑝 𝑗 = 0
l 𝑗 ≤ 𝑣 𝑗 ≤ 𝑢 𝑗 , otherwise
𝑝 𝑗 = 𝑓 𝑗 (𝐺){
g = 0 if g ∈ 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

g =1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
if 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 ≥PRLB and 𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≥GRLB then

return 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑣𝑔𝑟𝑜𝑤𝑡ℎ
else

𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 = 𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 ∪ 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑙𝑜𝑜𝑝 = 𝑙𝑜𝑜𝑝 + 1

2.4 Example of MILP formalization
In this section, the MILP formalization by which gDel minRN determines 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is illustrated
using the example of Fig.2(A).



Table 2 summarizes variables used in the MILP formalization. The real number variables 𝑥1 to
𝑥7 represent 𝑣1 to 𝑣7, which are reaction rates of 𝑟1 to 𝑟7. The binary variables 𝑥8 to 𝑥12 represent
𝑔1 to 𝑔5, which represent whether genes are deleted. The binary variable 𝑥13 represent (𝑔3 ∨ 𝑔4),
which is the internal term of the GPR rule for 𝑟5. The binary variables 𝑥14 to 𝑥17 represent
whether 𝑟2 to 𝑟5 is repressed.

Table 3 shows linear constraints derived from Boolean functions in GPR rules. 𝐾𝑂 are
variables that represent reactions are repressed: 𝑥14 to 𝑥17. For example, 𝐾𝑂3 represents whether
𝑟3 is repressed. Since the value of 𝑔1 and 𝐾𝑂3 is represented by 𝑥8 and 𝑥15, respectively,
−𝑥8 + 𝑥15 holds. AND and OR functions can be converted into linear constraints by the methods
represented by Table 4. Since 𝑔3 and 𝑔4 are represented by 𝑥10 and 𝑥11, the Boolean function
𝑥13 = 𝑔3 ∨ 𝑔4 can be converted into 𝑥10 + 𝑥11 − 2𝑥13 ≤ 0 and −𝑥10 − 𝑥11 + 𝑥13 ≤ 0.

Suppose that MILP is formalized by the following notations:
minimize

𝑓 𝑣

such that
𝐴𝑒𝑞𝑣 = 𝑏𝑒𝑞
𝐴𝑣 ≤ 𝑏

𝑙𝑏 ≤ 𝑣 ≤ 𝑢𝑏
𝑡𝑦𝑝𝑒 /*that describes which variables are integers.*/

Let 𝑛𝑟 , 𝑛𝑔, 𝑛𝑡, and 𝑛𝑘𝑜 be the number of reactions, genes, internal functions, and repressible
reactions, respectively. Suppose that the role of each variable for the general case of gDel minRN
is represented as Table 5.

Then, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝐴, and 𝑏 can be represented as Fig. 3 (A): 𝐵𝑒𝑞, 𝐵 and 𝐵𝑏, that are used in
𝐴𝑒𝑞, 𝐴 and 𝑏, can be represented as Fig. 3 (B).

3 Computational experiments
All procedures in the computational experiments were implemented on a CentOS 7 machine with
an AMD Ryzen Processor with 2.90 GHz 64 cores/128 threads, 128 GB memory, and 1TB SSD.
This workstation had CPLEX 12.10, COBRA Toolbox v3.0 [25], and MATLAB R2021a installed
and used for these analyses. When a target metabolite does not have an external (exchange)
reaction, an auxiliary exchange reaction was temporarily added to the model to simulate the
secretion. The unit of every reaction rate is mmol/gDW/h, which will be omitted hereafter for
simplicity of notation.

3.1 Performance comparison by comprehensive experiments
In the computational experiments, we applied gDel minRN to iML1515, iMM904, and e coli core
to compare the performance of existing methods, GDLS and optGene. The number of genes,
reactions, and metabolites for each model are summarized in Table 6. When a gene deletion
makes the maximum GR zero, we call it an essential gene.

As some metabolites were always produced in the original states or their production were
proved to be stoichiometrically impossible for any gene deletion strategies, they were excluded



from the target metabolites. Such metabolites were determined by flux variability analysis and
calculating the theoretical maximum production rate.

The number of target metabolites was 1085, 773, and 48 for iML1515, iMM904, and
e coli core, respectively: Seven, nine, and four metabolites were producible in the original state
for each model, even in the worse case; The theoretical maximum PR was zero for 785, 444, and
20 metabolites for each model.

Table 7(A) summarizes the performance of gDel minRN. The minimum PR and GR at GR
maximization were 0.001 or more by gDel minRN strategies for 441, 105, and 47 target
metabolites for iML1515, iMM904, and e coli core, respectively: The success ratios were 40.6%,
13.6%, and 97.9%; The average number of remaining genes was 555.2, 291.85, and 69.47; The
maximum number of remaining genes was 571, 314, and 73; The minimum number of remaining
genes was 539, 275, and 66. The number of remaining genes ranged from 35 to 38%, 30 to 35%,
and 48 to 54% of whole genes for iML1515, iMM904, and e coli core, respectively.

Table 7(B) summarizes the performance of GDLS. The minimum PR and GR were 0.001 or
more at GR maximization by GDLS strategies for 0, 0, and 5 target metabolites for iML1515,
iMM904, and e coli core, respectively: The success ratios were 0%, 0%, and 10.4%. In the GDLS
strategies, the maximum PR at GR maximization was 0.001 or more for many target metabolites:
1085, 128, 13 for iML1515, iMM904, and e coli core, respectively. However, GR or the minimum
PR at GR maximization was zero for 1085, 773, and 43 target metabolites. Therefore, only five
gene deletion strategies for e coli core resulted in growth-coupled production when the worst PR
was evaluated at GR maximization. The average, maximum and minimum number of remaining
genes for the successful strategies was 68.4, 71, and 66 for e coli core, respectively; The number
of remaining genes ranged from 48 to 52% of whole genes.

Table 7(C) summarizes the performance of optGene. The minimum PR and GR were 0.001 or
more at GR maximization by optGene strategies for 0, 30, and 22 target metabolites for iML1515,
iMM904, and e coli core, respectively: The success ratios were 0%, 3.9%, and 45.8%. For the
successful strategies, the average number of remaining genes was 897.4 and 130.3 for iMM904
and e coli core; The maximum number of remaining genes was 895 and 136; The minimum
number of remaining genes was 901 and 127. The number of remaining genes ranged 98 to 100%,
92 to 100% for iMM904 and e coli core, respectively.

3.2 Case study using vitamins
Table 8 represents a case study for gDel minRN strategies for three vitamins, pantothenate
(vitamin B5), biotin (vitamin B7), and riboflavin (vitamin B2). These three metabolites are highly
valuable, but no effective biosynthesis methods have been established except riboflavin. For
pantothenate, the number of remaining genes by gDel minRN was 555. PR and GR were 0.7444
and 0.2485, respectively. As TMPR and TMGR were 5.511 and 0.877, PR/TMPR and GR/TMGR
were 0.135 and 0.283. The elapsed time was 4m24s. For biotin, the number of remaining genes by
gDel minRN was 540. PR and GR were 0.1313 and 0.1493, respectively. As TMPR and TMGR
were 1.307 and 0.877, PR/TMPR and GR/TMGR were 0.100 and 0.170. The elapsed time was
5m8s. For riboflavin, the number of remaining genes by gDel minRN was 544. PR and GR were
0.1198 and 0.1212, respectively. As TMPR and TMGR were 2.739 and 0.877, PR/TMPR and
GR/TMGR were 0.044 and 0.138. The elapsed time was 3m34s.



The obtained biotin production pathway was analyzed biologically using Escher [26] and
KEGG Mapper [27] as follows. In the obtained pathway for biotin production by gDel minRN, it
was observed that the pathways from acetyl-CoA to acetate were removed from the map. The
acetyl-CoA obtained in glycolysis was consumed in the TCA circuit or converted to acetate and
was also used to generate malonyl-CoA. Since malonyl-CoA is located at the beginning of the
biotin-generating pathway, we hypothesized that by inhibiting the conversion of acetyl-CoA to
acetate, acetyl-CoA that was not fully consumed by the TCA cycle was used for biotin generation
via malonyl-CoA.

To test this hypothesis, we revived all eight deleted genes (b0871, b2296, b0968, b2297, b2458,
b4069, b3588, b1241) located on the pathways from acetyl-CoA to acetate. As a result, GR =
0.3341 and PR = 0 were obtained. This reinforces the hypothesis that by removing the pathways
from the acetyl-CoA to the acetate, the substrate used for cell growth was replaced by biotin
production via malonyl-CoA.

4 Discussion
Performance comparison of gDel minRN
As shown in Table 7, gDel minRN, optGene, and GDLS are in descending order of the success
ratio for every experiment: the success ratio by gDel minRN, GDLS, and optGene were 40.6%,
0%, and 0% for iML1515; 13.6%, 0%, and 3.9% for iMM904; 97.9%, 10.4%, and 45.8% for
e coli core.

The number of remaining genes by gDel minRN and GDLS were less than that by optGene: 35
to 54% for gDel minRN, 48 to 52% for GDLS, and 92 to 100% for optGene. As the success ratio
by GDLS was 0% for iML1515 and iMM904 and the success ratio by optGene was 0% for
iML1515, the three methods were directly comparable only for e coli core.

As shown in Table 8, gDel minRN successfully derived gene deletion strategies for
growth-coupled production of pantothenate, biotin, and riboflavin. The elapsed time was 3 to 6m,
which was acceptable for practical use.

In metabolite production using microorganisms, it has been necessary to minimize the number
of genes to be deleted in terms of cost and accuracy [20, 28]. However, gDel minRN maximizes
the number of reactions that are repressed to obtain the core part necessary for growth-coupled
production, so it would rather delete as many genes as possible. Therefore, the obtained gene
deletion strategies are quite different from those obtained using existing methods. Such a gene
deletion strategy is helpful for biological analysis of which part of the constraint-based model is
necessary for growth-coupled production but may not be practical for metabolite production with
current metabolic engineering technology. However, it could be useful if zero-based DNA
synthesis for metabolite production is possible in the future [29, 30].

The problem of finding gene deletion strategies for growth-coupled production is NP- hard
since even the reaction deletion problem is NP-hard [31, 32]. For genome-scale models, it is
practically impossible to consider the solution space consisting of all 2𝑛 gene deletions strategies,
where 𝑛 is the number of genes. Therefore, each method for genome-scale models needs to narrow
the search space to find gene deletion strategies within reasonable computation time. To this end,
many methods limit the size of gene deletions to a small constant 𝑘: the number of candidates for



gene deletion strategies is narrowed down to 𝑂 (𝑛𝑘 ). However, such methods cannot find large
deletion strategies for genome-scale models. If such 𝑘 is not applied, GDLS can find large gene
deletion strategies for small networks but cannot for genome-scale models as the search space is
too large.

Each constraint-based model has essential genes whose deletion results in non-growth. Gene
deletion strategies for growth-coupled production never include essential genes in the simulations
because GR is always maximized in this study. The core networks necessary for growth-coupled
production are induced by essential genes and non-essential genes that are determined by
gDel minRN. The reason why gDel minRN can effectively determine gene deletion strategies is
that the number of non-essential genes necessary for growth-coupled production is not significant:
the solution space is effectively narrowed.

On the other hand, for reaction deletions, the idea of finding a core network for growth-coupled
production has been studied using elementary flux vector-based methods [18]. However, because
the deletion strategies obtained by the existing methods often conflict with GPR networks, it was
difficult to extend their reaction deletion strategies to gene deletion strategies [20].

A number of mixed-integer linear programming (MILP)-based methods have been proposed for
calculating gene or reaction deletion strategies that result in growth-coupled
production [1, 2, 33, 34]. Solving MILP is an NP-complete problem and requires computation time
proportional to the exponential function of the number of reactions and genes. Methods for
reducing the size of the constraint-based models were also proposed [35]. Many methods that are
not limited to MILP have been proposed to speed up the computation time by avoiding the
optimization of PR [10–17]. However, to the best of our knowledge, there was no method for
calculating the gene deletion strategy that resulted in a minimal network for growth-coupled
production.

Case study using vitamins
Vitamins have been industrially produced by chemical synthesis and biosynthesis. Considering
sustainability, biosynthesis is more promising than chemical synthesis, which produces pollutants,
and improvement of vitamin biosynthesis is still needed because high productivity and cost
savings are important factors [36]. The reduction of metabolic pathways leads to efficient vitamin
production by reducing the amount of protein required. When gDel minRN was applied, gene
deletion strategies for growth-coupled production were successfully obtained for these three
vitamins.

One of the motivations for developing gDel minRN was to calculate the core parts required for
growth-coupled production and to biologically elucidate which features are necessary for
growth-coupled production and which are not. Among the three gene deletion strategies obtained
by gDel minRN, most genes were deleted in the case of biotin.

Since the existing basic strategy for improving biotin productivity using bacterial cells is the
overexpression of rate-limiting enzymes, removal of negative regulators and addition of
intermediates or precursors [37], complete optimization of the metabolic pathways by altering the
whole genomic network has not been extensively tested. The constructed pathway for biotin
synthesis from iML1515, a recent solid computational model for E. coli metabolism, with the
lowest number of reactions by gDel minRN in this study, showed new possibilities for the E. coli
metabolic pathway that can be changed from the original genome.



Although the constructed pathway is stoichiometrically reasonable because iML1515 has an
almost complete metabolic network [22], it is not clear whether it can be created in E. coli real
cells. Therefore, we considered this pathway from a biological point of view. The constructed
pathway from glucose to biotin can be separated into two phases, from glucose to malonyl
acyl-carrier-protein (ACP) and malonyl-ACP to biotin, respectively (Fig. 4A). For biotin
production, S-adenosylmethionine (SAM) and L-alanine are required to synthesize and adjust the
production ratio in the upper pathway to drive the lower pathway (Fig. 4A). The reactions in the
lower pathway were not so unique because almost one connected pathway from malonyl-ACP to
biotin in E. coli [36]. On the other hand, the biological consideration of the upper pathway,
glucose to malonyl-ACP, revealed notable characteristics.

One of the interesting characteristics of the constructed pathway is the requirement for aerobic
metabolism. In these reactions, a high amount of NADPH is produced from glucose to ribose
5-phosphate pathway, and oxidation is performed in dihydroxyacetone phosphate to glycerol
3-phosphate by glycerol-3-phosphate dehydrogenase, and NADP could then be produced (Fig.
4B). Countering, in the opposite direction from glycerol 3-phosphate to dihydroxyacetone
phosphate utilizing ubiquinone-8 (UQ8) as an electron acceptor to produce UQ8H2 (Fig. 4B). In
addition, the reactions for pyruvate to lactate and succinate to fumarate generate UQ8H2. These
reactions cause a high accumulation of UQ8H2; oxidation is required to proceed with the
metabolic reaction accomplished by using oxygen as an electron acceptor on the respiratory chain,
which also causes adenosine triphosphate (ATP) production in respiratory chains. High ATP
production also requires not only the lower pathway but also nucleotide and amino acid synthesis.
Therefore, this pathway requires oxygen or a respiratory oxidative substrate. We did not
investigate the effect of the presence of oxygen on the constructed pathway. Therefore, future
experiments should consider how substrate and culture conditions affect this pathway.

The second characteristic is that the intermediates of this pathway do not consider cytotoxicity.
The upper pathway utilizes methylglyoxal as the intermediate from dihydroxyacetone phosphate to
lactate (Fig. 4B). The methylglyoxal utilizing pathway is known in 1,2-propanediol-producing
bacteria, but it shows that high cytotoxicity [38]. This pathway is possible but has problems.
Several microorganisms for 1,2-propanediol production consider the pathway not to be exchanged
because of the reduction in growth or production by the pathway [39]. This suggests that if we try
to resolve more cell-suitable pathways, we need some tricks to avoid using the pathways from the
literature to produce more realistic computational minimum pathway predictions for production.

Finally, several problematic points for the construction or reproduction of this pathway in E.
coli were found, but the constructed pathway was almost biologically possible in our consideration.
Interestingly, when using a short and small number of reactions for some material production,
cells can reduce the protein amount, which finally guides more efficient material production by
the cell. The biological consideration of this pathway is only a knowledge base, and an
experimental demonstration of this pathway on a cell should be performed in the future.

5 Conclusion
In this study, we developed gDel minRN to calculate gene deletion strategies that repress as many
reactions as possible to achieve growth-coupled production. Computer experiments using two



genome-scale models and a core model showed that gDel minRN could find strategies that deleted
45 to 70% of all genes. Unlike existing biosynthetic methods, the strategy obtained by
gDel minRN is based on a fundamental modification of the metabolic pathway. Existing
computational methods aimed to delete a small number of genes or computed core networks by
deleting reactions, and their purpose was fundamentally different from that of gDel minRN, which
calculates core networks by gene deletion. Analyzing gene deletion strategies obtained by
gDel minRN is helpful for biological analysis of which parts are necessary for growth-coupled
production.
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Table 1. (A) The flux distribution for each gene deletion strategy when GR is maximized under
the condition with GR≥1 and PR≥1. (B) The priority of each gene deletion strategy candidate and
the resulting flux distribution for the pessimistic case of PR at GR maximization.

KO 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 reactions
𝑔1 - - - - - - - cannot satisfy GR≥1
𝑔2 - - - - - - - cannot satisfy GR≥1
𝑔3 5 0 0 0 0 5 5 r2
𝑔4 10 9 1 1 0 9 1 𝜙

𝑔5 - - - - - - - cannot satisfy PR≥1
𝑔3, 𝑔4 5 0 5 5 0 5 5 r2, 𝑟5

(A)

KO priority 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7
𝑔3, 𝑔4 1 5 0 5 5 0 5 5
𝑔3 2 5 0 5 5 0 5 5
𝑔4 3 10 10 0 0 0 10 0

(B)

Table 2. Variables used in the MILP formalization in gDel minRN for the example of Fig.2(A).
Variables Type Object
𝑥1 to 𝑥7 reactions 𝑟1 to 𝑟7
𝑥8 to 𝑥12 binary genes 𝑔1 to 𝑔5
𝑥13 binary internal term(s) (𝑔3 ∨ 𝑔4)
𝑥14 to 𝑥17 binary whether repressed or not for 𝑟2, 𝑟3, 𝑟4, 𝑟5



Table 3. The linear constraints for the GPR rules in Fig.2.
Boolean functions Linear constraints
𝐾𝑂3 = 𝑔1 −→ −𝑥8 + 𝑥15 = 0
𝑥13 = 𝑔3 ∨ 𝑔4 −→ 𝑥10 + 𝑥11 − 2𝑥13 ≤ 0

−𝑥10 − 𝑥11 + 𝑥13 ≤ 0
𝐾𝑂2 = 𝑔1 ∧ 𝑔2 ∧ 𝑔3 −→ −𝑥8 − 𝑥9 − 𝑥10 + 3𝑥14 ≤ 0

𝑥8 + 𝑥9 + 𝑥10 − 𝑥14 ≤ 2
𝐾𝑂4 = 𝑔2 ∧ 𝑔5 −→ −𝑥9 − 𝑥12 + 2𝑥16 ≤ 0

𝑥9 + 𝑥12 − 𝑥16 ≤ 1
𝐾𝑂5 = 𝑥13 ∧ 𝑔5 −→ −𝑥12 − 𝑥13 + 2𝑥17 ≤ 0

𝑥12 + 𝑥13 − 𝑥17 ≤ 1

Table 4. The methods for representing Boolean functions by linear constraints.
Boolean functions Linear constraints
𝑦 = 𝑥1 ∧ 𝑥2 ∧ · · · ∧ 𝑥𝑘 −→ −𝑥1 − . . . − 𝑥𝑘 + 𝑘𝑦 ≤ 0

𝑥1 + · · · + 𝑥𝑘 − 𝑦 ≤ 𝑘 − 1
𝑦 = 𝑥1 ∨ 𝑥2 ∨ · · · ∨ 𝑥𝑘 −→ 𝑥1 + · · · + 𝑥𝑘 − 𝑘𝑦 ≤ 0

−𝑥1 − · · · − 𝑥𝑘 + 𝑦 ≤ 0

Table 5. The purpose and type of variables used in MILP for the general case of gDel minRN.
Variables Type For
𝑥1 to 𝑥𝑛𝑟 real reaction fluxes
𝑥𝑛𝑟+1 to 𝑥𝑛𝑟+𝑛𝑔 binary genes
𝑥𝑛𝑟+𝑛𝑔+1 to 𝑥𝑛𝑟+𝑛𝑔+𝑛𝑡 binary internal terms
𝑥𝑛𝑟+𝑛𝑔+𝑛𝑡+1 to 𝑥𝑛𝑟+𝑛𝑔+𝑛𝑡+𝑛𝑘𝑜 binary reaction repressions

Table 6. The constraint-based models that were used in the computational experiments.
Model iML1515 iMM904 e coli core
#genes 1516 905 137
#reactions 2712 1577 95
#metabolites 1877 1226 72
#target metabolites 1085 773 48
#essential genes 196 110 7



Table 7. The performance comparison between gDel minRN, GDLS, and optGene. Each gene
deletion strategy was considered as successful when the minimum GR and PR were 0.001 or more
at GR maximization.

Model iML1515 iMM904 e coli core
#success 441 105 47
#success ratio 40.6% 13.6% 97.9%
Avg. #genes 555.2 291.85 69.47
Max #genes 571 314 73
Min #genes 539 275 66
Range 35-38% 30-35% 48-54%
Time 7m35s 49s 0.40s

(A) gDel minRN

Model iML1515 iMM904 e coli core
#success 0 0 5
#success ratio 0% 0% 10.4%
Avg. #genes - - 68.4
Max #genes - - 71
Min #genes - - 66
Range - - 48-52%
Time 39s 0.83s 0.812s

(B) GDLS

Model iML1515 iMM904 e coli core
#success 0 30 22
#success ratio 0% 3.9% 45.8%
Avg. #genes - 897.4 130.3
Max #genes - 895 136
Min #genes - 901 127
Range - 98-100% 92-100%
Avg. time 20m3s 20m20s 20m6s

(C) optGene

Table 8. Case study of gDel minRN performance for three vitamins.
Target #used genes PR GR time
Pantothenate 555 0.7444 0.2485 4m24s
Biotin 540 0.1313 0.1493 5m8s
Riboflavin 544 0.1198 0.1212 3m34s



(A)

(B)

Figure 1. (A) Problem setting of this study. The minimum PR of the target metabolite is evaluated
when the GR is maximized. (B) The idea of gDel minRN algorithm. The maximum number of
reactions are repressed via gene deletions for growth-coupled production.
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ID Gene KO 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7
1 none best 10 5 5 5 0 10 5
2 worst 10 10 0 0 0 10 0
3 g1 best 5 0 0 0 5 0 5
4 worst 0 0 0 0 0 0 0
5 g2 best 5 0 0 0 5 0 5
6 worst 0 0 0 0 0 0 0
7 g3 best 10 0 5 5 5 5 10
8 worst 5 0 5 5 0 5 5
9 g4 best 10 5 5 5 0 10 5

10 worst 10 10 0 0 0 10 0
11 g5 both 10 10 0 0 0 10 0
12 g1, g2 best 5 0 0 0 5 0 5
13 worst 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...

(B)

Figure 2. (A) A toy example of the constraint-based model. Circles and rectangles represent
metabolites and reactions, respectively. Black and white rectangles are external and internal
reactions. 𝑟1, 𝑟6, and 𝑟7 are the substrate uptake, cell growth, and target metabolite production
reactions. [𝛼, 𝛽] represents the lower and upper bounds of the reaction speeds. (B) The optimistic
and pessimistic flux distributions from the viewpoints of PR for each gene deletion strategy
when GR is maximized. Deleting 𝑔3 achieves growth-coupled production since PR≥PRLB and
GR≥GRLB are satisfied even for the pessimistic case of PR.
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x8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑥17
𝐵𝑒𝑞 =

(
−1 0 0 0 0 0 0 1 0 0

)
x8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑥17

𝐵 =
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0 0 1 1 0 −2 0 0 0 0
0 0 −1 −1 0 1 0 0 0 0
−1 −1 −1 0 0 0 3 0 0 0
1 1 1 0 0 0 −1 0 0 0
0 −1 0 0 −1 0 0 0 2 0
0 1 0 0 1 0 0 0 −1 0
0 0 0 0 −1 −1 0 0 0 2
0 0 0 0 1 1 0 0 0 −1

ª®®®®®®®®®®®¬
(𝐵𝑏)𝑇 = (0, 0, 0, 2, 0, 1, 0, 1)

(B)
Figure 3. (A) How to construct the components 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝐴, and 𝑏 for the MILP formalization
that gDel minRN searches a gene deletion strategy candidate. (B) 𝐵𝑒𝑞, 𝐵, 𝐵𝑏 for the example of
the network of Fig. 2(A).



Figure 4. The constructed pathway for biotin production. (A) Overview of the biotin synthesis
pathway from iML1515 classified into two pathways as upper and lower pathway. (B) Precise
flow of upper pathway, from glucose to malonyl-ACP. The number indicated with each arrows
shows the flux value of each reaction. The abbreviations are as follows; NADPH, Nicotinamide
adenine dinucleotide phosphate reduced form; UQ8, ubiquinone-8; ACP, acyl carrier protein; PEP,
phosphoenolpyruvate; OAA, oxaloacetate; PRPP, Phosphoribosyl diphosphate.
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