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Abstract 

This is based on tutorial lectures on second-order logic in SAML 2022. 

Among others, we here discuss monadic second-order logic (MSO) from 

a game-theoretical view-point. Although the validity of MSO in terms 

of standard structures is not decidable (not axiomatizable), the MSO 

theory of full binary tree is decidable and modal μ-calculus can be viewed 

as a decidable fragment of MSO. 

1 Game semantics 

We start with an example of real analysis to explain the game semantics of first-

order logic. 

Example 

"A real function f(x) is continuous at x = a" can be expressed by first-order 
logic as follows. 

咋＞〇ヨ6> O Vx(| X - a|＜ 6 → | f(x) -f(a) |＜ c)． 
‘v’`  v‘  

A B 

Consider a game where two players, Pro and Con, debate whether this formula is 

true or not. Pro asserts the truth of this formula, while Con tries to refute it. The 

game proceeds by evaluating the formula from left to right as follows: 
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• The formula starts with VE> 0. Then, Con chooses a value for E with which 

the remaining subformula would be false. 

• The remaining subformula starts withヨ8> 0, and so Pro determines a value 

of 8 so that the subformula afterヨ8> 0 holds with the chosen values of E 

andふ

• The rest subformula starts with Vx, and Con selects a value for x. 

• The left subformula is in the form A→B, which can be rewriten as (---,A)VB. 

Pro chooses either---,A or B. 

• Finally, if Pro's last choice holds with the selected values, she wins the game. 
Otherwise, she loses. 

If the last move should be carried out by Con and what he selects is true, Pro also 

wins. For the above formula in the example, if it is true, Pro will win as long as 

she plays correctly in each round, and vice versa. In other words, the truth of the 

logical formula can be determined by the existence of Pro's winning strategy. 

Generally speaking, Pro and Con decompose the logical formula and select 

some elements from the domain according to some rules, and eventually Pro wins 

when a true atomic formula is chosen finally. A true proposition cannot be refuted 

if it is asserted correctly. The concept of game semantics can be applied not only 

to first-order logic, but also to various logics, and it is also an effective tool for 

examining the complexity of decision problems. 

Next, we consider the game semantics of modal logic. The model we here 

deal with is a Kripke model M = (W, R, v), where (W, R) is a transition system 

(directed graph) and v(p) is the set of worlds (states, vertices) in W where an 

atomic proposition p holds. Two players, Pro and Con, proceed by moving a 

token on the game arena, consisting of the transition graph of a Kripke model 

and the subformulas of a given logical formula. For simplicity, we assume that the 

formulas are given in the negative normal form defined as follows. 

r.p : : = p I,p I r.p V r.p'I r.p八ゃ'|ロr.pI◊r.p. 

Each position of the game arena is a pair (s, cp), where s is a vertex of the 

graph and cp a subformula of the given formula. The two players move the token 

on the arena obeying rules described in Table 1 below. In each position, the player 

who takes charge of this position has the right to select the next position and also 

move the token to it. Then, if one reaches a final position (s,p) (or (s,,p)) and 



3

s E v(p) (ors rf. v(p) respectively) holds, player Pro wins. Otherwise, if one cannot 

choose a next lawful rnove at a non-final position, this player will lose the garne. 

This garne is called a model checking garne, and with a start position (s,ゃ）， itis 

denoted as £ (M, s，<p). 

Table 1: Model checking rules for modal logic 

Positions of Pro I possible choices for next position of Pro 

(s, cp V cp') I {(s, cp), (s，り｝

(s,◊cp) I {(t,cp)l(s,t)ER} 

Positions of Con I possible choices for next position of Con 

(s,'PI¥,p') 

(s,□'P) 

Then, we have the following theorem. 

{(s, cp), (s, cp')} 

{(t,cp) I (s,t) ER} 

Theorem 1. 1 (Adequacy Theorem of Modal Logic). The following are equivalent. 

• Pm has a winning strategy in the model checking game £(M, s,ゃ）．

• M,s巨や・

This can be easily proved by induction on the construction of cp. In fact, if 

cp is p, then Pro has a winning strategy in £(M, s, cp)⇔ s E v(p)⇔ M,s巨cp.

Similarly for,p. If cp isゆV心',then

Pro has a winning strategy in £(M, s, cp) 

⇔ Pro has a winning strategy in £(M, s，心） or£(M, s，心＇）

⇔ M,sp=心orM,s F心'

⇔ M,s F cp. 

If cp is砂， then

Pro has a winning strategy in £(M, s平）

⇔ Pro has a winning strategy in £(M, t，心） forsome t E sR 

⇔ M,tp=心forsome t E sR 

⇔ M,s F cp・

Similarly we can prove the cases心八心'and□姐
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2 Second-order logic 

In first-order logic (FO), V andヨquantifyover the elements of a model, while 

in second-order logic (SO), they quantify over the relations and functions on a 

model. For simplicity, from now on, we deal only with quantification over relations, 

not functions. 

Definition 2.1. Consider the first-order language£, and a n-ary relation symbol 

R (~ £). For a formula r.p(R) E £, U {R}, the truth ofVRr.p(R) andヨRr.p(R)in the 

structure A of£, is defined as follows. 

A巨VRr.p(R)⇔ for any RこA叫(A,R)巨r.p(R)holds. 

Ap==ヨRr.p(R)⇔ thereexists R ~ An such that (A, R)ヒゃ(R).

In the_ following, we do not strictly distinguish among the relation variable R, 

relation R, and relation constant R. For simplicity, we often restrict second-order 

variables to unary relations, namely subsets of the domain. Such a logic is called 

monadic second-order logic (MSO), formalized in the language with first-order 

variables x, y, z, • • • ranging over the domain of a target structure, and second-

order variables X, Y, Z, ・ ・ ・ ranging over the subsets of the first-order domain. 

Hov: to consider the domain of second-order variables? In the above definition, 

"any Rこが”meansthat "all" subsets of An should be considered. A structure 

with such an interpretation is called a standard structure of second-order logic. 

However, second-order logic with standard structures cannot be formalized in an 

axiomatic system. In other words, we have the following. 

Theorem 2.1 (Godel). The validity of (M)SO in terms of standard structures is 

not axiomatizable, hence not decidable. 

Proof. Assume MSO were axiomatized. We can define second-order Peano 

Arithmetic PA2 by adding arithmetic axioms to MSO. In any model of PA2, since 

all subsets of the first-order domain M are in the second-order domain, then the 

minimum set containing O and closed under + 1 exists in the second-order do-

main, which is isomorphic to N. However, since induction holds in M, the set 
containing O and closed under + 1 must agree with the whole M. That is, M is 
isomorphic to N. Therefore, the unique model for PA2 is NU P(N), which implies 

that there is no sentence independent from PA2. This condradicts with Godel's 

first incompleteness theorem. ロ
Henkin instead considered a general structure of second-order logic, whose 

second-order part varies similarly to a first-order logic domain. In other words, 
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such a logic can be regarded as two-sorted first-order logic. In particular, a general 

structure in MSO is defined as follows. 

Definition 2.2. A general structure of monadic second-order logic B = (A, S) 
consists of first-order logic structure A and set SC  P(A). The set quantifiers run 

over B as follows. 

B巨VXcp(X)⇔ forany SES, B p== cp(S) holds, 

Bp==ヨXcp(X)⇔ thereexists SES such that B p== cp(S). 

Henkin assumed that the general structure should satisfy certain amounts of 

comprehension axiom and axiom of choice. The comprehension axiom is an asser-

tion that for a formula <p(x) with no free occurrence of X,ヨX'ix(xEX豆 <p(x))'

that is, the set { x : <p(x)} exists in the second-order domain. 

Theorem 2.2 (Completeness theorem of MSO). An MSO formula is provable 

from appropriate comprehension and other axioms in two-so廿edfirst-order system 

if and only if it is true in any general structure that satisfies those axioms. 

This theorem can be proved in the same way as in first-order logic. It can also 

be generalized to higher-order logics. In fact, Henkin's proof for the completeness 

theorem of first-order logic was made with such a generalization scheme. 

Example: MSO is more expressive than FO 

• FO cannot distinguish ((Q, <) and（恥＜）． InMSO, it can express that "a 

bounded set X(# 0) has a least upper bound", and hence ((Q, <) and（恥＜）
are distinguishable. 

• MSO can express the sentence that determines the parity (even or odd) of 

the length of a finite linear order, which is not expressible by FO. 

Example: SO is more expressive than MSO 

The MSO theory of (N, x + 1, 0) is decidable due to Buchi. But SO theory of 

(N, x + 1, 0) is not, since addition m + n = k is defined by 

VR([R(O, m) /¥ ¥Ix, y(R(x, y)→R(x+1,y+1)）］→ R(n, k), 

and multiplication can be defined in a similar way, which means that first-order 

arithmetic is embedded into the theory. 



6

The relations between arithmetic theories are summarized as follows. 

FO(N, S(x)) c FO(N, S(x), +) c FO(N, S(x),＋，・）
伺＊何l

MSO(N, S(x)) c MSO(N, S(x), +) 
伺

SO(N, S(x)) 

Here, S(x) denotes x+ I, and FO(N, S(x)) is the FO theory of (N, S(x)). Similarly 

for MSO(N, S(x)), etc. A C  Bis the usual set inclusion, A E B a relation via a 

formula translation, A E* B a formula translation with coding. 

Finally, let us take a look at a brief history of MSO. 

Decidability results 

• S1S = MSO(N, S(x)) is decidable. 
Biichi (1960)'s proof relied on w-automata with a Biichi condition. That is, 

an infinite word is accepted if a final state appears infinitely many times when 

reading the input. 

• S2S = MS0(2<w,圧0,xnl) is decidable. 

The proof utilized tree-automata (Rabin 1969), and later improved with the 

help of infinite games (Gurevich-Harrington 1982). 

Definability results (Note that weak quantifiers range over finite sets only). 

• For (N, S(x)), weak monadic definability = monadic definablity. 

• For binary trees, weak monadic definability = Biichi n co-Biichi (Rabin 1970). 

• For infinitely branching trees, weak monadic definability s;; Biichi n co-Biichi, 
because WMSO, in which second-order quantifiers only range over finite sets, 

cannot distinguish an infinite path from infinitely many finite paths. 

3 Logics 

The essence of logic is the relation between sentences and models, "A p=s cp". Now, 

by a logic, we mean a set S of sentences together with a function Mods from S 

to the structures, satisfying certain conditions so that for each sentence cp E S, 

Mods（ゃ） intendsto represent { A : A p=s cp}. See [5] for details. 
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Logic S is said to be weaker than logic S'(S :=; S') iff for anyゃES, there 

exists some cp'ES'such that Mods(cp) = Mods,(cp'). Obviously, FO :=; MSO :=; SO. 

We say that the (countable) compactness theorem holds for logic S iff for 

any countable U c S, if n{Mods（cp) : cp E U} = 0, then there exists a finite 

V c U such that n{Mods(cp) : cp EV}= 0. 

We say that the (countable) downward Lowenheim-Skolem theorem (down-

ward LS theorem) holds for logic S iff for any countable U c S, if n{Mods（ゃ） ： 

cp E U} contains an infinite structure A, then it a countably infinite structure B. 

It is well-known that the compactness theorem and the downward LS theorem 

hold for FO, but they fail for MSO and SO. Surprisingly, Lindstrom has shown 

that FO is the strongest logic that satisfies both the compactness theorem and the 

downward LS theorem. We sketch the proof briefly in the following. 

First, we consider a language of finitely many relational symbols and constants, 

without functional symbols (other than constants). Let £, be {R。,．．．，凡i-1},

and consider its extensions by adding constants. The structure A in £, can be 

expressed: 

A=  (A,R糾…，R:ー 1)．

Then, for any B C A, we set 

A「B= (B,R訊nBk。,．．．,R九nBkn-1). 

Furthermore, for a= (a1, ・ ・ ・, ak) of A, naming them with constants c, we define 

a structure (A, a) in £ u｛叫．

Definition 3.1 (Quantifier Rank). For a formula cp, the quantifier rank of cp, 

denoted as qr（ゃ）， isdefined recursively as follow, 

qr(atomic formula) = 0, 

qr(--,cp) = qr(cp), qr（ゃ八心） ＝max{ qr(cp), qr（心）｝，

qr(Vxcp) = qr（ヨxcp)= qr(cp) + 1. 
Definition 3.2. A set of sentences that hold in the structure A切£,is called the 

theory of A, represented by Th(A). Two structures with the same theory are said 

to be elementary equivalent, denoted by A三 B.That is, 

A三 B ⇔ Th(A) = Th(B) ⇔ BF  Th(A). 

Definition 3.3. Let Thn(A) be the subset of Th(A) consisting of sentences with 

rank n or below. For structures A, B in the same language C, a relation三nbetween 

them is defined as follows. 

A三 nB⇔ Thn(A)= Thn(B). 
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Definition 3.4. Let A, B be structures in£. A partial function f : A→Bis a 

partial isomorphism if A「dom(f)and B 1range(f) are isomorphic via f. 

If dom(f) = a, then the above definition is equivalent to 

(A,a)三o(B, f(a)). 

It is obvious that "if A竺 B,then A=  B". Frai:sse showed a weak version of its 

reversal by using quantifier ranks. Ehrenfeucht reformulated Frai:sse's argument 

from a view of games. Now such a technique is referred to as Ehrenfeucht-Frai:sse 

game (EF game). 

Definition 3.5. Let A。,A1be structures of£ and n be a natural number. In 

an n-round EF game, EF n(A。,Aリ， playerI (Spoiler) and player II (Duplicator) 

alternately choose from Ai (i = 0, 1) following the rules described below, and the 
winner is determined according to the winning condition. 

• Rules: if I chooses Xi E Aj (j = 0, 1), II 

chooses Yi E A1-J-

• Winning conditions: If the correspon-

dence Xi⇔ Yi chosen by the players up to n 

rounds determines a partial isomorphism of 

A。andA1, then II wins. 

Example 

Consider EF3(A, B) where A=（乙 <),B=（恥 <).Inthe following, e E股→
2 E Z represents that player I selects e E罠 andthen player II chooses 2 E Z. 

For example, if e E股→ 2E Z, 0 E Z→0 E 賊 and1r E恥→ 5E Z are 

produced in the game, player II wins because {(0,0), (2,e), (5,1r)} is a partial 

isomorphism (order preserving). 

゜
2
 

5
 

I ¥/ 
゜

e Jr 

Figure: EF3((Z, <),（恥＜））．

z
 

唸
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Definition 3.6. A -=:::'.n B if player II has a winning strategy in EF n(A, B). 

Note that if A -=:::'.n B then B -=:::'.n A. We can easily show the following lemma. 

Lemma 3.1. 

(A, a) c:::'.0 (Bぶ） ⇔ d曰 bis partial isomorphism. 

⇔ (A,a)三o(Bふ．
(A, a) c:::'.n+l (Bぶ） ⇔ Va EAヨbE B(A, aa) -=:::'.n (Bぶb)and 

VbE BヨaE A(A, aa) -=:::'.n (B励）

Then, essentially by induction, we can prove the following main theorem. 

Theorem 3.2 (EF Theorem). For all n 2': 0, (A, a)'::::'.n (Bぶ） ⇔ （A,a)=n (Bぶ）．

There are some corollaries. 

Corollary 3.3. A三 B⇔ for any n, A'.:::'.n B. 

It is natural to extend the play of the EF game to infinity (w-round), denoted 

as EFw(A,B). We write A'.:::'.w B if player II has a winning strategy in EFw(A,B). 

Corollary 3.4. Suppose A, B are countable. Then, A'.:::'.w B ⇔ A'.:::'.B. 

Proof. ~ is obvious because the isomorphism is a winning strategy for player II. 

To show⇒,let A=  {ao,a1,... },B = {b。,b1,...}. Player II follows the winning 

strategy, and I alternately chooses the smallest element that have not been selected 

from A and B, thus a bijection between A and Bis produced, which is a desired 

isomorphism. ロ

Corollary 3.5. Let K be a set of structures of£. The following are equivalent. 

(I) For any n, there exist A E K and B (/_ K such that A声 B.

(2) K is not an elementary class (K cannot be defined by a first-order formula). 

Proof. (I)⇒(2). By way of contradiction, assume K is defined by a first-order 

sentence'P・ Let n be the rank of'P・ If A E K and B (/_ K then A声 B.

(2)⇒(I). Assume the contrary that for some n, if A 三 Bthen A EK⇔ 

BE K. Since the language consists of finitely many relational symbols, there is a 

first-order (Scott-Hintikka) sentence'PA of rank n such that A 三nC⇔ CF改
Thus, K is defined by戎ロ

Now, we are ready to show the following theorem. 
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Theorem 3.6 (Lindstrom's theorem). For logic S such that FOさS,the fol lowing 

are equivalent. 

(1) Compactness theorem and downward LS theorem holds for S. 

(2) S :S FO. 

Proof. (2)⇒(1) is obvious. 

To show (1)⇒(2), assume S :S FO does not hold. There exists some cp E S 

such that Mods(cp) is not defined by a first-order sentence. That is, for any n E w, 

there exist A E Mods（cp) and B E Mods(---,cp) such that A三 B,or equivalently 

A ~n B by the EF theorem. We express this condition as a logical expression 0n 

of S for each n (so that 0n+l→ 0砂． Namely,(A, B, a) ps仇 meansthat "A p==s炉

and B p==s---,cp and a is player II's winning strategy in EF n(A, B) ". 

Since this holds for all n E w, by the compactness theorem, (A, B, a)日
{ 0n : n E w} holds, and thusび isa winning strategy in EF w(A, B). Moreover, 

(A, B, a) can be selected countable by downward LS theorem. Therefore, A, B 
are isomorphic, which contradicts with A E Mods (cp) and B E Mods (---,cp). Thus 

SさFO. ロ
Examples of logic 

Infinite logic £,叫，w: allowing countable disjunctions and conjunctions, but 

quantifying only over a finite number of variables. 

FO(Qリ： addingthe quantifier Q1 to the first-order logic. Q立 cp(x)means 

"there are uncountably many x that satisfy cp(x)". 

WMSO: Second-order quantifiers range over finite sets only. 

Table 2: The compactness and downward LS property for various logic 

Logic Compactness Downward LS property 

FO 

゜ ゜WMSO X 

゜MSO, SO X X 

FO(Qリ

゜
X 

£W1,W X 

゜
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4 Modal logic: a bisimulation-invariant of FO 

Modal logic is an extension of propositional logic with modal operators such as 

・ロ pexpresses "¥;/ next move (world), p holds." 

• ◇p expresses“ヨnextmove (world), p holds." 

A Kripke model M = (W, R, v) consists of a directed graph (W, R) and a valuation 

V : {Pi : i < n}→P(W) such that v(pi) is the set of worlds (states) in which 

an atomic proposition Pi holds. Denoting P; := v(p』,Mcan be treated as a 

first-order relational structure M'= (W, R, Po, Pi,...). Then, a modal formula'P 

on M, s can be translated into a first-order formula ST,し） onM'as follows. 

Definition 4.1. For a modal formula'P, its standard translation ST,心） is

defined as follows: 

STx(Pi) := Pi(x), STx(,'P) :=ゴST心），

STx('P V心）：＝ STX位） VSTx(1/J)' STx(i.p八心）：＝ STX位） I¥STX（ゆ），

STx（ロ'P):= Vy(R(x, y)→ ST心））， STx（知） ：＝ヨy(R(x,y) I¥ ST,心））．

It is easy to show the following by induction on the formula: 

(1) M,s F l.f)⇔ M'F ST,心），

(2) MF'P⇔ M'ヒVxST心）．

Then, we can also translate many results on first-order logic to those on modal 

logic such as compactness theorem and downward Lowenheim-Skolem theorem. 

There are many variations of modal logic, which can be also translated into 

first-order logic. For instance, multi-modal logic can be translated into first-order 

logic with many relations凡(x,y) almost in the same way. Modal predicate logic 

(with constant domain) can be translated into two-sorted first-order logic. 

The directed graph F = (W, R) under a Kripke model (W, R, v) is often called 

its frame. The validity of a formula'P in a frame F is defined in monadic second-

order as follows: 

FF'P⇔ ¥Iv (F,v) F'P⇔ FF  VP¥/xSTx('P)-

Since this can not be defined in first-order logic, the class of frames for some modal 

logic (e.g. GL) does not satisfy the compactness. 

In first-order logic, Ehrenfeucht-Frai:sse game connects the concepts of elem en-

tary equivalence to isomorphism. In modal logic, this corresponds to the idea of 

"bisimulation". 
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Definition 4.2 (Bisimulation). Let M = (W, R, v), M'= (W', R', v') be Kripke 

models. Z CW  x W'is a bisi is a bisimulation between M and M'if the following holds. 

(0) Z-/-0. 

(1) sZs', then for any p E P, M, s F p⇔ M',s'FP・ 

(2) If sZs'and sRt, then there is t'such that s'R't'and tZt'(forth condition). 

(3) If sZs'ands'R't', then there is t such that sRt and tZt'(back condition). 

If there exists a bisimulation Z between M and M'such that sZ s', we write 

M,s竺 M',s'.

The following is an example of (maximum) bisimulation Z between Mand M'. 

'̀ 

Figure 1: Z = {(l, a), (2, b), (2, c), (3, d), (4, e), (5, e)} 

Definition 4.3 (Modally equivalence). Let M and M'be Kripke models. M, 

s and M', s'are modally equivalent, denoted M, s三 M',s', if for all modal 

formulas r.p, M, s p== r.p⇔ M',s'F cp. 

Theorem 4.1 (Bisimulation invariant theorem). If M, sュM',s', then M, s三

M',s'. 

Proof. We assume M, s⇔ M', s', and then want to show M, s三 M',s', i.e., for 

all formula (f), M, s p== (f)⇔ M',s'Fゃ． Weprove this by induction on the 

construction of modal formula'P・ The case (f) =口心 isonly essential to treat. 

Suppose M, s F口ゅ， andwe want to show M', s'p==ロ心． So,we will show that 

for any t'E s'R', M', s'ヒ心． M,s豆 M',s'gives sZs', so by the backward 

condition, there is t such that sRt and tZt'. By M, s F口ゅ andsRt, we have 

M,tp==心． SincetZt', M, t立 M',t', it follows that M', t'巨心 fromthe induction 

hypothesis. ロ

The converse of the above theorem does not hold in general. However, there 

are some special classes of Kripke models where the converse of the theorem also 

hold, which is called the Hennessy-Milner property. 
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Now, we say that M = (W, R, v) is a finite branching model if sR is a finite set 

for any s E W. 

Theorem 4.2. The class of finite branching models has the Hennessy-Milner 

property. 

Proof. Assume M, M'are finite branching and M, s三 M',s'. Let Z be the set of 

pairs (w,w') such that M,w = M',w'. It is obvious that Z-/-0. Condition (1) of 
Definition 4.2 can be obtained from M, s三 M',s'. To prove (2) of Definition 4.2, 

suppose sZs'and sRt. Since M, s F→□上 bysRt, we have M', s'F王］_l_and so 

there is t'such that s'R't'. Since there are only a finite number of such t'due to 

the finite branch property, and so we list them as t~, t;,..., t~. 

Suppose to the contrary that for all i Sn, not tZt~. Then for each i Sn, there is 

閏 suchthat M, t p==叫 andM',t~ Fゴ匁． SoM,t F八ふ andM',s’ ヒロvi疇．

Then, M,s F 口vi疇 bysZs'. So, M, t巨vi菫 bysRt, which contradicts 

M,t F八ぷ.Therefore, for some i S n, we have tZ(This complete the proof 

for (2). Similarly, we can prove for (3)．ロ

To generalize the above theorem, we introduce the concept of "modal satura-

tion" as follows. 

Definition 4.4 (Modal saturation). Let M = (W, R, v) be a Kripke model. We 

say that M is modally saturated if for any set ~ of modal formulas, any s E W 

and any finite subset ~, C ~ satisfying M, s p==◇I¥ ~,, then there exists some 
t E sR such that M, t p== ~ (i.e., M, t p== cp for all cp E ~)-

Lemma 4.3. Let M = (W, R, v) be a countable Kripke model. There exists a 

modally saturated elementary extension M*つM.

Proof. Consider M as countable model of first-order logic. Let M* be the ultra— 

power M1 /U by non-principle ultrafilter U on infinite set I. M* is an elementary 

extension of M and satisfies countable saturation. ロ

Lemma 4.4. The class of modal saturation models has the Hennessy-Milner prop-

erties. 

Proof. Suppose M, s三 M',s1 and M, M'are modally saturated. Let Z be the 

set of pairs (w, w') such that M, w 三 M',w'. From the assumption, Z -/= 0 is 

clear. Also, (1) of Definition 4.2 can be obtained immediately from the modal 
equivalence. To show (2), assume sZs'and sRt. Let ~ := { <p : M, t F <p }. Then, 

for any finite subset ~'C ~, M, s F◇八立 ByM,s三 M',s',M',s'p=◇八立
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Since M'is modally saturated, there exists some t'E s'R'such that M', t'ヒx.
Therefore, M, t = M', t', so (t, t') E Z, which completes the proof for (2). (3) of 

Definition 4.2 can be proved similarly. ロ

Theorem 4.5 (Modal invariant theorem). Over Kripke models, for a first-order 

formulaゃ(x),the following are equivalent. 

(1) It is equivalent to the standard translation of a modal formula. 

(2) It is invariant with respect to bisimulation. 

Proof. (1)⇒(2) can be proved by Theorem 4.1. 

To show (2)⇒(1), we assume that'P(x) is invariant with respect to bisimula— 

tion. For simplicity, let心(x)denote (the meta-variable of) a first-order formula 

which is the standard translation of a modal formula. Let MC ('P) denote the set 

of all心(x)such that ¥f M¥fs(M, s p=='P(x)⇒M,s巨心(x))(MC stands for Modal 

Consequence). 

Assuming M, s p== MC（ゃ）， weshow M, s p=='P・ By the compactness of first-

order logic, there exists a什nitesubset S of MC('P) such that /¥ S→'P holds and 

¢ → /¥S is clearer from the definition. 
By the compactness theorem of first-order logic, there exists N, t for a countable 

model of T(x)U{'fJ(x)}. Now, since N, t satisfies T(x), they are modally equivalent 

to M, s. By the Lemma 4.3, for M, s and N, t, we define elementary extensions 

M*, s and N*, t which are modally saturated, respectively. Since M, s and N, t are 

modally equivalent, so are M*, s and N*, t. By Lemma 4.4, there is a bisimulation 

between M*, s and N*, t. 

Now, N, t F'P(x), and N*, t is an elementary extension of N, t, so N*, t F'P(x). 

Then, by (2), M*,s F'P(x) and M*,s is an elementary extension of M,s, and 

thus M, s p=='P(x), which completes for the proof. ロ

Finally, we mention the following theorem with no explanation. To state the 

theorem properly, we need to define "abstract modal logic" extending the basic 

modal logic. For details, see [1] (Section 25.3) and [2] (Section 7.6). 

Theorem 4.6 (Modal Lindstrom theorem). Modal logic is the strongest logic in 

which the compactness theorem and the bisimulation invariant theorem hold. 

Now it is natural to consider what is the bisimulation-invariant MSO logic. The 

answer is modal μ-calculus, which we will discussed in the next section. 
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5 Modal μ-calculus 

In modal logic,“ゃholdsafter n steps" can be expressed as◇n'P by n copies of◇, 

but to express "at some point ({J holds" an infinite formula凶的V◇2({JV・ ・ ・ might 

be needed. In modal μ-calculus, we define this infinite-long expression as the least 

fixed point of x⇔ 'P V◇x, which is represented by μx.(f) V◇x. In addition, modal 

μ-calculus has the largest fixed point operator vx, too. 

In a Kripke model M = (W, R, v), v is a mapping from the atomic propositions 

to the power set of W. This function v can be extended as a mapping from 

the general modal proposition ({J to the power set of W such that V ('P) = { s E 

W : M, s p== ({J }. Now, consider V(μx.(f) V◇x). As if we regard x as an atomic 

proposition and v(x) is given, V('P V◇x) is obtained. For instance, if v(x) = 0, 
then V('P V◇x) = V('P)- Then, let v(x) = V('P) and we obtain V('P V◇x) = 
V（戸倅）． Moreover,if v(x) = V('P V的）， thenV（りパ〉x)= V（りパゅv似〉'P).

Hence, if v(x) is expanded as 

〇~ V(<p)~ V(<p V的）こ・・・，

then V(<p V◇x) is expanded as 

V（<p)こV(<pV◇¢)こ V(<pV◇<pV◇◇ゃ）こ・・・．

Since the limits of the two infinite sequences coincide, we obtain a fixed point of 

x +-+ (f) V◇x, which is defined as V(μx.cp V◇x). 

To guarantee that such a fixed point exists, we assume that the variable x as-

sociated with μx must appear positively within its scope. Therefore, the formulas 

of modal μ-calculus Lμ are defined as follows: 

'P ::= p I,p I X I'P V'P I'P八'PI □cp I◊cp I μx.cp I vx.cp, 

where p is an atomic proposition and x is a variable. The negation---,is only at-

tached to atomic propositions. But for convenience, we use the following negation 

rules to expand the Lμ formulas. 

---,---,¢三ゃ'---,□ゃ三◇--,'P,---,（ゃ八ゆ）三 (---,tpV---,ゆ),---,（tpV心）三 (---,¢A---,ゆ)，

---,μx．ゃ三 vx.---,'P[---,x／叫．

Notice that tp[---,x / x] is obtained by replacing all free occurrences of x inゃwith

---,x. For example,---,μx.(p V◇x)三 vx.---,（pV◇---,x)三 vx.(---,pA □x). A general Lμ 

formula'P should be identified as a strict Lμ formula which is equivalent toゃby

the negation rules. 
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The truth value function V（ゃ） ＝ ｛s :M,s Fゃ｝ foran Lμ formulaゃisdefined 

by induction on the construction of'P as us叫 Weonly treat the cases that'P is 

of the form μx.0(x) and vx.0(x). In the following, we also write ll'PIIM for V（'P). 

If we regard x as an atomic proposition and put V (x) = X (C W), then we 

obtain V(0(x)) as a monotonic increasing function w(X) of X. We also denote 

V(0(x)) as ll0(x)ll~=x· Since w(X) i x:=X・ is a monotonic increasing function of X, the 

least fixed point llμx.0(x)IIM := n{x : w(X) ~ X} and the largest fixed point 
llvx.0(x)IIM := LJ{X: w(X) ;;2 X} exist. 

An Lμ formula that holds in any state of any relational structure is said to be 

valid. The formal system of modal μ-calculus was introduced by D. Kosen in1983 

and the completeness theorem was proved by I. Walkiewicz in 1995 (the paper 

published in 2000). However, the proof is very difficult, and lots of attempts have 

been made to improve the understanding since then. In the following, we will 

briefly introduce a game-semantical view. 

A model checking game E(M, s，ゃ） formodal μ-calculus is a simple extension 

of game semantics for modal logic in Section 1. Here, we only treat the fixed point 

operators. For convenience, we distinguish different formuls TJX.(f) and TJX1.(f)1 with 

different bound variables x, x'(TJ = μ or v). In addition to the rules in Table 1, 

the following rules are also considered. 

Table 3: Extra model checking rules for modal μ-calculus in addition to Table 1 

Positions I possible choices for next position 

(s, μx.0) I (s, 0) 

(s,vx.0) I (s,0) 

(t, x) where xis aμ or v bounded variable I (t, μx.0) or (t', μx.0) 

A play p is a sequence of positions in the game. Then the winning conditions 

for model checking games of modal μ-calculus are given as follows. 

Table 4: Winning conditions 

Pro wins Con wins 

pis~ection l the same as modal logic in Section 1 

p is infinite I the outermost subformula visited infinite I the outermost subformula visited infinite 

many times is of the form vxゃ many times is of the form μxゃ
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Example 

The following statements are equivalent. 

(a) M,s F μx.pV◇x. 

(b) In the graph of M, if we start from s, we will eventually reach a state where 

p holds. 

(c) Pro has a winning strategy in the game f(M, s, μx.p V◇x). 

To show (a)⇔ (b). 
Since μx.p V◇x is the least fixed point of x +-+ p V◇x, V(μx.p V◇x) 

LJnV(◊＜np). Therefore, if s E V(μx.p V◇x), the state of p can be reached 

from s, and vice versa. 

Next, look at (b)⇒ (c). The initial position is (s,μx. (p v◇x)) 
(s, μx.pV◇x), then it automatically moves to (s,pV 

↓ 
伽）． Itis Pro's turn to choose: ifs E v(p), Pro wins (s, p v◇x) 
by choosing (s,p). Otherwise, Pro selects (s,◇x). Ifs E VZ2／ へ ＼ ＼

It is Pro's turn again to select t that is connected (s,p) (s, ◇x) 
↓ 

from s ((s,t) ER), and the next position is (t,x). Pro wins (t:x) 
↓ 

From (t, x), the game automatically goes to 

(t, μx.p V◇x) and (t,p V◇x). At this time, if 

t E v(p), Pro wins by choosing (t,p). Otherwise, 

she selects u such that (t, u) E R. Since it is Pro 

who chooses the successor oft, it is possible to reach 

some state where p holds by the assumption (b), 

and this is a Pro's winning strategy. 

(t,μx.(pV ◇x)) 

↓ 
(t,p V ◇x) 

lftEV(p~ 
(t,p) (t, ◇x) 

Pro wins ↓ 
(u;x) 

Finally, we show (c)⇒(b). Assume that Pro has a winning strategy and 

she plchoose each position following this strategy. If the game does not stop, 

μx.pV◇x appears infinitely many times, then Con wins, which conflicts the 

assumption that Pro follows his winning strategy. Therefore, the play reaches 

p in finite steps. 

In general, we have the adequacy theorem. 

Theorem 5.1 (Adequacy Theorem of modal μ-calculus). The following are equiv-

alent. 

• Pro has a winning strategy in the model checking game E (M, s,'P). 

• M, s F'P・
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To show the adequacy theorem, the following facts are usefull. 

(1) If M, s p== c.p then Pro has a memoryless winning strategy in the model 

checking game £(M, s, c.p). 

(2) If M, s柘c.pthen Con has a memoryless winning strategy in the model 

checking game £(M, s，砂

In a memoryless winning strategy, the player's next move only depends on the 

current position, regardless of the history of the game. The model checking game 

can be represented as a "parity game", so that (if Mis computable) it is decidable 

whether one of the two players has a winning strategy. Furthermore, since the 

determinacy of this game can be expressed by monadic second-order logic 525, we 

can derive the decidability of modal μ-calculus from Rabin's theorem. For a proof 

of Rabin's theorem and the role of parity games, see [10]. The modal μ-calculus 

has finite model property, which also gives decidability, but the usual filter method 

does not apply to prove it. See references [3], [4], [6] for overview of the research. 

Kashima [9] is a textbook containing a chapter on modal μ-calculus. 

The standard translation of modal μ-calculus (into M50) is obtained from that 

of modal logic (into FO) by adding 

ST8(μxゃ） ：＝ VX(Vy(（ST心） →yEX)→y EX)), 

then modal μ-calculus can be expressed by MSO. Then, we have 

Theorem 5.2. Modal μ-calculus is bisimulation-invariant MSO logic. 

The proof is similar to that for modal logic (Theorem 4.5) with induction on 

the number of μ/v-operations. For example, if M, s仁μx.cpV◇x, then for some 

n, M,s F◇咋． Then,from the induction hypothesis, we get M', s'F◇賢 and

M',s'巨μx.cpV◇x. Therefore, modal μ-calculus is bisimulation-invariant MSO 

logic. 

The converse is also true, but the proof of Theorem 4.5 cannot be applied. 

Because it strongly depends on the compactness theorem of FO, and the compact-

ness theorem fails in MSO (Table 2). Janin-Walukiewicz (1996) cleverly managed 

this by constructing automata. However, it is undecidable whether a given MSO 

formula is bisimulation-invariant, that is, whether it can be written by modal 

μ-calculus. 

Pacheco et al. [11] and subsequent papers [12, 13] investigate the collapse of the 

μ alternation hierarchy in modal μ-calculus for some class of restricted relational 

structures (for example, weakly transitive frames). 
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