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Abstract 

In this paper, we consider properties of a resolvent of equilibrium problems. 
We prove a△-convergence theorem with the proximal point algorithm using a 
resolvent of equilibrium problems in a CAT(-1) space having the convex hull 
finite property. 

1 I ntroduction 

Let K a nonempty set and f: K x K →良． Anequilibrium problem is defined as to 

find z0 EK  such that f(z0, y) 2: 0 for y EK. Equilibrium problems were first studied 
by Blum and Oettli [l]. Equilibrium problems include optimization problems, saddle 

point problems and fixed point problems, etc. In 2005, Combettes and Hirstoaga 
introduced the resolvent of equilibrium problems in Hilbert spaces [3]. 

Theorem 1.1 (Combettes and Hirstoaga [3]). Let H be a Hilbert space and K a 

nonempty closed convex subset of H. Let f: K x K →股 andSf the set of solutions 

to the equilibrium problem for f. Suppose the following conditions: 

• f(y,y) = 0 for ally EK; 
• f(y, z) + f(z, y):::;; 0 for all y, z E K; 
•f(y,•):K →民 is lower semicontinuous and convex for every y EH; 



21

•f(•,z):K →股 is upper hemicontinuous for every z E K. 

Then the resolvent operator J f defined by 

みx= { z EK  I j~i(f(z, y) +〈z-x,y-z〉)20} 
yEK 

has the following properties: 

(i) D(Jt)=X; 
(ii) JJ is single-valued and firmly nonexpansive; 
(iii) F（力） ＝ Sが
(iv) St is closed and convex. 

In 2018, Kimura and Kishi [7] introduced a resolvent of equilibrium problems in 

a complete CAT(O) space having the convex hull finite property. In 2021, Kimura 

[6] introduced a resolvent of equilibrium problems in an admissible complete CAT(l) 
space having the convex hull finite property. 

In this paper, we propose fundamental properties of a resolvent of equilibrium 

problems and prove a△-convergence theorem with the proximal point algorithm in a 

complete CAT(-1) space having the convex hull finite property. 

2 Prelimi reliminaries 

Let (X, d) a metric space, and T a mapping of X into itself. The set of all fixed 

points of Tis denoted by F(T). Let {xn} be a bounded sequence of X. The set of 

AC({ Xn}) of all asymptotic centers of { Xn} C X is defined by 

AC({xn}) = { Xo EX  I li巴悶pd(xn,xo)＝凰li已門pd(xn,x)}・ 

A sequence { Xn} C X is said to be△-convergent to xo EX  if AC({xnJ) = {xo} 
△ 

for all subsequence {xnJ of {xn}-It is denoted by Xn..::::l.. x0. Let f be a function of X 
into股． Then,ArgminxEX f (x) is the set of all minimizers of f. Let T be a mapping 

of X into itself. Then, a mapping Tis hyperbolically nonspreading if for x, y EX, the 
inequality 

2coshd(Tx, Ty) S coshd(Tx, y) + coshd(x, Ty) 

holds. A mapping T is quasinonexpansive if F(T) is nonempty and the inequality 

d(Tx, z)さd(x,z) holds for x E X and z E F(T). We know that if T is hyperbolically 
nonspreading and F(T) is nonempty, T is quasinonexpansive. In fact, for x E X and 

z E F(T), by hyperbolical nonspreadingness of T, we get 

2coshd(Tx,z) :S coshd(Tx,z) +coshd(x,z) 

and hence T・1s quasmonexpans1ve. 
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Let x, y E X and咋 ya mapping of [O, d(x, y)] into X. A mapping咋 yis called a 

geodesic with endpoints x and y if "'/xy(O) = x, "'/xy(d(x, y)) = y and d("'/xy(s), "'/xy(t)) = 
Is -ti for all s, t E [O, d(x, y)]. X is called a geodesic space if for all x, y E X, there 
exists geodesic with endpoints x and y. In what follows, we assume that for x, y EX, 

X has a unique geodesic with endpoints x and y. The image of geodesic with endpoints 
x and y is denoted by Im石y・ For x, y EX  and t E [O, 1], there exists z E Im咋 ysuch 
that d(x, z) = (l-t)d(x, y) and d(y, z) = td(x, y), which is denoted by z = tx④(l-t)y. 

Let X be a geodesic space, and lHI2 the 2-dimensional hyperbolic space. A geodesic 

triangle△(x, y, z) with vertices x, y, z E X is defined by Im石yU lm"'(yz U Im冨・

Further, a comparison triangle囚（元，y,z) to△(x, y, z) with vertices元，y,z E lHI2 is 

defined by Im "Y元,Ulm炉 UIm?＇Z元 withd(x, y) = dIHI2（元，y),d(y,z) = dIHI2(y,z) and 
d(z, x) = dIHI2（戸）， wheredIHI2 (・, •) is the hyperbolic metric on lHI乞Apoint j5 E Im冨
is called a comparison point for p E Im"'(xy if d(x,p)＝如（元，p).X is a CAT(-1) 

space if for p, q E△(x, y, z) C X and their comparison points p, ij Eパ（歪，0，芝） clHI叫
the inequality d(p, q)さ如(p,q) holds for all geodesic triangles in X. In general, a 
CAT(-1) space is a CAT(O) space [2]. In CAT(-1) spaces, the inequality 

coshd(tx① (1 -t)y, z) sinhd(x, y) 

:S cosh d(x, z) sinh td(x, y) + cosh d(y, z) sinh(l -t)d(x, y) 

always holds for x, y, z EX  and t E [O, l]. 
The following lemmas are important properties of a CAT(O) space. 

Lemma 2.1 (Kirk and Panyanak [9]). Let X be a complete CAT(O) space. Then 
every bounded sequence has a subsequence which is△-convergent to x。EX.

Lemma 2.2 (Dhompongsa, Kirk and Sims [4]). Let X be a complete CAT(O) space 
and { Xn} a bounded sequence of X. Then the asymptotic center of { Xn} consists of 
one point. 

Let X be a geodesic space and f a function of X into艮 Afunction f is said to 
be lower semicontinuous if the inequality 

f(x)さliminff(xn) 
n→OO 

holds, wherever {xn} C X converges to x E X. If f is continuous, then it is lower 
sernicontinuous. A function f is said to be convex if 

f(ax① (1 -a)y) <::: af(x) + (1 -a)f(y) 

holds for all x, y EX  and a E ]O, 1[. A function f is said to be upper hemicontinuous 
if the inequality 

f(x)ミlirnsupf((l-t)x① ty)
t→o+ 

holds for all x, y EX. 

We will consider the following conditions for a function used by an equilibrium 
problems. 
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Condition 2.1. Let X be a geodesic space and Ka  nonempty closed convex subset 

of X. We suppose that a bifunction f: K x K →股 satisfiesthe following conditions: 

• f (x, x) = 0 for all x E K; 

• f(x, y) + f(y, X)さ0for all x, y E K; 
• for every x EK, f(x, ・): K →股 islower semicontinuous and convex; 
• for every y EK, f(・, y): K →良 isupper hemicontinuous. 

The following theorem is important to show a△-convergence theorem with the 
proximal point algorithm. 

Theorem 2.1 (Kajimura and Kimura [5]). Let X be a complete CAT(-1) space, {Zn} 

a bounded sequence in X, {/3n} a sequence of positive real numbers with江:=1/3n= 00 

and 
1 

g(y) = limsup 
n→oo 冗~=1/3l

こ煤coshd(y，Zk)
k=l 

for y EX. Then, Argminxg consists of one point. 

The set of solutions to the equilibrium problem for f is denoted by Equil f, that is, 

Equil f = { z E K 凰f(z,y)2'. 0}. 
Let X be a CAT(-1) space and Ea nonempty subset of X. Then a convex hull of 

E is defined by 
00 

coE= LJぶ
n=O 

where X。=Eand Xn = {tun-1① (1 -t)vn-1 I Un-1, Vn-1 E Xn-1, t E [O, 1]}. X 
has the convex hull finite property if every continuous mapping T of clco E into itself 
has a fixed point for all finite subsets E of X, where clco E is the closure of co E; see 
[11]. 
In the following theorem shows the properties of a resolvent of equilibrium problems 

in a CAT(-1) space having the convex hull finite property. 

Theorem 2.2 (Kimura and Ogihara [8]). Let X be a complete CAT(-1) space having 

the convex hull finite property and K a nonempty closed convex subset of X. Suppose 
that f: KxK→股 satisfiesCondition 2.1. Define a set-valued mapping LJ: X→2K 
by 

Ltx = { z EK}加f(z,y) + coshd(x, y) -coshd(x, z)) ~ 0} 
for all x EX. Put Cz = coshd(z, Ltz) for z EX. Then the following hold: 

(i) D(Lt)=X; 
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(ii) L1 is single-valued and the inequality 

(Cx + Cy) coshd(L1x, L1Y)：：：：： coshd(L1x, y) + coshd(x, L1Y) 

holds for x, y E X, and thus L f is hyperbolically nonspreading; 
(iii) Equilf = F(L1), and thus it is closed and convex. 

3 Fundamental properties of resolvents 

In this section, we prove the lemmas which is necessary to prove a△-convergence 
theorem in a CAT(-1) space having the convex hull finite property. 

Lemma 3. 1. Let X be a complete CAT(-1) space having the convex hull finite 
property and K a nonempty closed convex subset of X. Suppose that f: K x K→良

satisfies Condition 2.1. Let L入fa resolvent of入ffor入＞ 0.Then the inequality 

d(L入JX,w)
。：：：：： f(L入1x,w)+ ~(coshd(x,w)- coshd(x,L入ix)coshd(w, L入fx)）

入sinhd(L入jX,w)

holds for x E X and w E K with wヂL入JX.

Proof. Let x E X and w E K with wヂL入JX・ Put 乃＝ tw 〶 (1 -t)L入JXEK  for 
t E ]O, l[. Then, we get 

0 ：：：：：入f(L入JX，乃） ＋coshd(x,Tt) -coshd(x,L入JX)

：：：：：入tf(L入JX,w) + coshd(x, Tt) -coshd(x, L入fx)

：：：：：入tf(L入jX,w)+ 
L(t) -coshd(x,L入ix)sinhd(L入jX,w)

sinhd(L入fx,W)

where 

L(t) = coshd(x,w)sinhtd(L入fX,w) + coshd(x, L入1x)sinh(l -t)d(L入fX,w).

Dividing by入tand letting t'¥i 0, we obtain 

0さf(L入fx,W)＋ lim 
1 "-L(t) -cosh d(x, L入ix)sinhd(L入fX,w)

入sinhd(L入fx,W)t¥O t 

1 
= f(L入fx,w)+ ~ ~tll! 4(L(t) -coshd(x,L入ix)sinhd(L入fX,w)) 

入sinhd(L入fX,w) i~o dt 

d(L入fX,w)
= f(lン入fx,w)+ ~(coshd(x,w) -coshd(x,L入1x)coshd(L入fX,w)) 

入sinhd(L入fX,w)

and hence we get the desired result. 口
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Corollary 3.1. Let X be a complete CAT(-1) space having the convex hull finite 
property and K a nonempty closed convex subset of X. Suppose that f: K x K →良

satisfies Condition 2.1. Let L入fa resolvent of入ffor入＞ 0. Then the following 
inequalities hold: 

(μC入，x+入Cμ,y)coshd(L入JX,LµJY)~ μ cosh d(x, LμJY)＋入coshd(L入fx,y)

and 

（入十μ)coshd(L入JX,LμJY) ~ μcoshd(x, LμJY)＋入coshd(L入JX,y)

for all x, y E X and入，μ > 0, where C'f/,z = coshd(z, L'f/1z) for z EX  and 7J > 0. 

Proof. Let x, y E X and入，μ > 0 with D = d(L入JX,LμJY) > 0 and put c'f/,Z = 

coshd(L'f/JZ, z) for z EX  and 7) > 0. By Lemma 3.1, we get 

D 
〇~ f(L入JX,LμJY)+ ~(coshd(x,LµJY)- C入，xcoshD). 

入sinhD

Similarly, it holds that 

D 
〇~ f(LμJY, L入1x)+ ~(coshd(L入jX,y)-Cµ,yCOShD).

μsinhD 

From Condition 2.1, adding these inequalities, we get 

D 
〇~ f(L入fX,LμJY) + f(LμJY, L入1x)+ ~(coshd(x,LµJY) -C入，xcoshD) 

入sinhD
D 

μsinhD 
+~(coshd(L入JX, y) -Cμ,y coshD) 

＜ 
D (coshd(x, LμJY) -C入，xcoshD,coshd(x,LμJY)-C入，xcoshD 

-sinhD （入十 IL)
Since t/(sinht) > 0 fort> 0, we get 

(μC入，x+入Cμ,y)coshD~ μcoshd(x,LμJY)＋入coshd(L入fx,y).

Since cosh t ?: 1 for t ?: 0, we get 

（入十μ)coshD：：：：：肛oshd(x,LμJY)＋入coshd(L入fx,y).

If D = 0, the inequalities obviously hold. It completes the proof. 口

Corollary 3.2. Let X be a complete CAT(-1) space having the convex hull finite 
prope廿yand K a nonempty closed convex subset of X. Suppose that f: K x K →良

satisfies Condition 2.1 and that Equil f is nonempty. Let L入fa resolvent of入ffor 
入＞ 0.Then the following inequality holds: 

coshd(x, L入JX)coshd(L入JX,z)::::;coshd(x,z) 

for all x EX  and z E Equilf. 
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Proof. Let x E X, z E Equil f and入＞ 0.By Corollary 3.1, we get 

(coshd(x, L入JX)＋入coshd(z,L1z)) coshd(L入fx,z）さ coshd(x,z)＋入coshd(L入jX,z) 

and hence 

(coshd(x, L入JX)＋入）coshd(L入JX,z) s; coshd(x, z)＋入coshd(L入JX,z). 

Therefore, we have 

coshd(x, L入1x)coshd(L入jX,z)：：：：： coshd(x, z) 

and get the desired result. 口

Lemma 3.2. Let X be a complete CAT(-1) space having the convex hull finite 
prope廿yand K a nonempty closed convex subset of X. Suppose that f: K x K →艮

satisfies Condition 2.1. Let｛心｝ C ]O, oo[ such that lim supn→00心＞ 0,L心fa 
△ 

resolvent of心f,and {xn} a bounded sequence of X such that Xn→ xo EX  and 
limn→00 d(xn, L心JXn)= 0. Then Xo E Equil f. 

Proof. Put入。＝ limsupn→00入n・ By Corollary 3.1, we get 

入n 1 
coshd(L心fXn,L戸o):::;~ cosh d (L心f”n,xo) + ~ coshd(xn, L戸 o)．

1十心 1 ＋入n

Take a subsequence {xn,} of {xn} arbitrarily. For y EK, then, we get 

d(L凡 fXn,Y)さd(L凡 f”巧 9尻） ＋d(x巧， y)さ2d(L凡 f”巧 9圧） ＋d(L凡 fXnj,y). 

Since d(x朽， L凡 fXn1)→0,letting j→oo, we get 

limsupd(L凡 f”朽， y)= limsupd(x巧， y).
j→oo j →(X) 

Suppose入。＝ oo.Then we take a subsequence｛入n;}of｛心｝ suchthat limi→OO位＝
oo. It implies that 

limsup (coshd(xn;, L1xo)) = limsup (coshd(L入nJXn;'LJXo)) 
i→00 i→OO 

さlimsup(cosh d(L,¥nJXn;, xo)) 
t→OO 

= limsup(coshd(xn;,xo)). 
t→OO 

Since xo is an asymptotic center of {xnJ, we get xo = L戸oand hence xo E Equil f. 
We next suppose入。＜ oo.Then we get 
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lim sup (cosh d(Xn;, L戸o))
t→CXJ 

= limsup (coshd(L心J叫勾xo))
i→(X) 

入。 1
さ limsup (cosh d(L,¥nJXni心o))+ ~ limsup (coshd(xn,, L戸o))

1十入。 t→OO 1十入。 i→OO

入。 1
= ~ limsup (coshd(xni心0))+ ~ limsup (coshd(xn,, L戸o))

1十入。 i→OO 1十入。 t→OO

and hence 

lim sup (cosh d(xni, L戸o)）:Slimsup (coshd(xni, xo)). 
i→CX) i→CX) 

Since x0 is an asymptotic center of {xnJ, we get x0 = L戸oand hence xo E Equil f. 
Consequently, we complete the proof. ロ

4 A△-convergence theorem 

In this section, we prove a△-convergence theorem with the proximal point algo-
rithm in a CAT(-1) space having the convex hull finite property. 

Theorem 4.1. Let X be a complete CAT(-1) space having the convex hull finite 
property, K a nonempty closed convex subset of X, f: K x K→尺 satisfyingCondi-

tion 2.1 and｛入n}C JO, oo[ such that L:=1入n= oo. For given X1 EX, define {xn} 
by 

Xn+l = L心 fXn= {z EK  I :rtU(z,y) +coshd(xn,Y)-coshd(xn,z))：：：：：o} 
yEK 

for all n E N. Then, the following hold: 

(i) Equil f is nonempty if and only if { Xn} is bounded; 
(ii) if Equil f is nonempty and lim infい OO入n> 0, {xn} is△-convergent to an 

element of Equil f. 

Proof. (i) We first suppose that Equilf is nonempty and show that {xn} is bounded. 
Let u E Equil f. Since L>.nf is quasinonexpansive, we get 

d(xn+l, u) = d(L心 f”か u):::; d(xn, u) 

and hence {d(xn,u)} is nonincreasing and {xn} is bounded for n E N. We next 
suppose { Xn} is bounded and show that Equil f is nonempty. For k E N with k :::; n, 
by Corollary 3.1 we get 

(1 +入k)coshd(L心f⑬ ,LfY）こ入kcoshd(L心f砂， y)+ coshd(xk, L1Y) 
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and hence 

入kcoshd(xk+1,LJY)~入k coshd(xk+1, y) + (coshd(xk, L1Y) -coshd(xk+1, L1y)) 

for all y E X. Adding both sides of the inequality above from k = l to k = n and 

dividing both sides by L~=l ふ， we get 

1 
n 

四＝1ふ
といoshd(xk+l, Lty) 
k=l 

1 
n 

く 1

ーロ＝1ふ
区心coshd(xk+l,y) + ~(coshd(x1, LtY) -coshd(xn+1, Lty)) 
k=1 江~=1 ふ

1 
n 

三区n 入といoshd(xk+1,P)+ ~ coshd(x1,p). 
l=1 l k=1 区~=1 ふ

By Theorem 2.1, we know that Argminxg consists of one point, where 

1 
n 

g(z) = limsup 
n→OO こに凸l

といoshd（咋＋1,z) 
k=l 

for all z E X. Let p E Argmin x g. Since江ご1入1= oo, letting n→oo, we get 

g(L1P) ~ g(p)~ g(L1P) 

and hence p = L JP・ This implies that p E Equil f. 
(ii) Suppose Equilf is nonempty and liminfn→OO心＞ 0.Let p E Equil f. Since 

L心fand Equil f is nonempty, L心fis quasinonexpansive. Then, we get 

0 ~ d(xn+1,P) = d(L心 JXn,P)~ d(xn,P) 

and hence { d(Xn, p)} is nonincreasing. Then, there exists limn→oo d(xn,p). By Coro-
lally 3.1, we have 

coshd(xn,P) 
1 ~ coshd(xn, L心f%）＜ 

__: coshd(xn+1,P) ・ 

Letting n→oo, we obtain d(xn, L心f%）→ 0. Put AC({xn}) = {xo} Take a 
subsequence { XnJ of { Xn} arbitrarily. Since { XnJ is bounded and by Lemma 2.2, 

AC({xnJ) = {y0}. Further, there exists a subsequece {xn;J of {xnJ such that 

Xn;j _:¥ zo EX. Then, AC({xn;j}) = {zo}. By Lemma 3.2, we get zo E Equilf. 

Then, we get 

li.rnsllp d(xn, zo) = lim sup d(xn;j'zo) 
n→(X) J→(X) 
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::::; limsupd(x叫 'Yo)
j→OO 

::::; lim sup d(xni, Yo) 
t→OO 

：：：：： lim sup d(xni, xo) 
9→OO 

：：：：： lim sup d(xn, xo)：：：：： lim sup d(xn, zo) 
n→OO n→(X) 

△ 
and hence Yo = xo = zo E Equil f. Therefore Xn→ xo E Equil f. Consequently, we 
get the desired result. ロ

Corollary 4.1. Let X be a complete CAT(-1) space having the convex hull finite 
property, K a nonempty closed convex subset of X, f: K x K→股 satisfyingCondi-
tion 2.1 and L f a resolvent off. Then the following hold: 

(i) Equil f is nonempty if and only if { L戸｝ isbounded for each x E X; 

(ii) If Equil f is nonempty, { L戸｝ is△-convergentto an element of Equil f for 
each x EX. 

Proof. Let｛入n}C ]O, oo[ such that入n= l for n EN. Using Theorem 4.1, we get (i) 
and (ii). Consequently, we complete the proof. ロ
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