The proximal point algorithm of a resolvent for equilibrium problems in geodesic spaces with negative curvature 曲率上限が負の測地距離空間における均衡問題の

リゾルベントと近接点法

東邦大学・理学部 木村泰紀 Yasunori Kimura Department of Information Science Toho University Email adress: yasunori@is.sci.toho-u.ac.jp

東邦大学・大学院理学研究科 荻原朋弥 Tomoya Ogihara Department of Information Science Toho University Email address: 6522005o@st.toho-u.jp

Abstract

In this paper, we consider properties of a resolvent of equilibrium problems. We prove a Δ -convergence theorem with the proximal point algorithm using a resolvent of equilibrium problems in a CAT(-1) space having the convex hull finite property.

1 Introduction

Let K a nonempty set and $f: K \times K \to \mathbb{R}$. An equilibrium problem is defined as to find $z_0 \in K$ such that $f(z_0, y) \geq 0$ for $y \in K$. Equilibrium problems were first studied by Blum and Oettli [1]. Equilibrium problems include optimization problems, saddle point problems and fixed point problems, etc. In 2005, Combettes and Hirstoaga introduced the resolvent of equilibrium problems in Hilbert spaces [3].

Theorem 1.1 (Combettes and Hirstoaga [3]). Let H be a Hilbert space and K a nonempty closed convex subset of H. Let $f: K \times K \to \mathbb{R}$ and S_f the set of solutions to the equilibrium problem for f. Suppose the following conditions:

- f(y, y) = 0 for all $y \in K$;
- $f(y,z) + f(z,y) \le 0$ for all $y, z \in K$;
- $f(y, \cdot) \colon K \to \mathbb{R}$ is lower semicontinuous and convex for every $y \in H$;

• $f(\cdot, z) \colon K \to \mathbb{R}$ is upper hemicontinuous for every $z \in K$.

Then the resolvent operator J_f defined by

$$J_f x = \left\{ z \in K \ \left| \ \inf_{y \in K} (f(z, y) + \langle z - x, y - z \rangle) \ge 0 \right\} \right\}$$

has the following properties:

- (i) $D(J_f) = X;$
- (ii) J_f is single-valued and firmly nonexpansive;
- (iii) $F(J_f) = S_f;$
- (iv) S_f is closed and convex.

In 2018, Kimura and Kishi [7] introduced a resolvent of equilibrium problems in a complete CAT(0) space having the convex hull finite property. In 2021, Kimura [6] introduced a resolvent of equilibrium problems in an admissible complete CAT(1) space having the convex hull finite property.

In this paper, we propose fundamental properties of a resolvent of equilibrium problems and prove a Δ -convergence theorem with the proximal point algorithm in a complete CAT(-1) space having the convex hull finite property.

2 Preliminaries

Let (X, d) a metric space, and T a mapping of X into itself. The set of all fixed points of T is denoted by $\mathcal{F}(T)$. Let $\{x_n\}$ be a bounded sequence of X. The set of $AC(\{x_n\})$ of all asymptotic centers of $\{x_n\} \subset X$ is defined by

$$\operatorname{AC}(\{x_n\}) = \left\{ x_0 \in X \ \left| \ \limsup_{n \to \infty} d(x_n, x_0) = \inf_{x \in X} \limsup_{n \to \infty} d(x_n, x) \right\} \right\}.$$

A sequence $\{x_n\} \subset X$ is said to be Δ -convergent to $x_0 \in X$ if $AC(\{x_{n_i}\}) = \{x_0\}$ for all subsequence $\{x_{n_i}\}$ of $\{x_n\}$. It is denoted by $x_n \stackrel{\Delta}{\to} x_0$. Let f be a function of Xinto \mathbb{R} . Then, $\operatorname{Argmin}_{x \in X} f(x)$ is the set of all minimizers of f. Let T be a mapping of X into itself. Then, a mapping T is hyperbolically nonspreading if for $x, y \in X$, the inequality

$$2\cosh d(Tx, Ty) \le \cosh d(Tx, y) + \cosh d(x, Ty)$$

holds. A mapping T is quasinonexpansive if $\mathcal{F}(T)$ is nonempty and the inequality $d(Tx, z) \leq d(x, z)$ holds for $x \in X$ and $z \in \mathcal{F}(T)$. We know that if T is hyperbolically nonspreading and $\mathcal{F}(T)$ is nonempty, T is quasinonexpansive. In fact, for $x \in X$ and $z \in \mathcal{F}(T)$, by hyperbolical nonspreadingness of T, we get

$$2\cosh d(Tx,z) \le \cosh d(Tx,z) + \cosh d(x,z)$$

and hence T is quasinonexpansive.

Let $x, y \in X$ and γ_{xy} a mapping of [0, d(x, y)] into X. A mapping γ_{xy} is called a geodesic with endpoints x and y if $\gamma_{xy}(0) = x$, $\gamma_{xy}(d(x, y)) = y$ and $d(\gamma_{xy}(s), \gamma_{xy}(t)) = |s - t|$ for all $s, t \in [0, d(x, y)]$. X is called a geodesic space if for all $x, y \in X$, there exists geodesic with endpoints x and y. In what follows, we assume that for $x, y \in X$, X has a unique geodesic with endpoints x and y. The image of geodesic with endpoints x and y is denoted by $\operatorname{Im} \gamma_{xy}$. For $x, y \in X$ and $t \in [0, 1]$, there exists $z \in \operatorname{Im} \gamma_{xy}$ such that d(x, z) = (1-t)d(x, y) and d(y, z) = td(x, y), which is denoted by $z = tx \oplus (1-t)y$.

Let X be a geodesic space, and \mathbb{H}^2 the 2-dimensional hyperbolic space. A geodesic triangle $\triangle(x, y, z)$ with vertices $x, y, z \in X$ is defined by $\operatorname{Im} \gamma_{xy} \cup \operatorname{Im} \gamma_{yz} \cup \operatorname{Im} \gamma_{zx}$. Further, a comparison triangle $\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})$ to $\triangle(x, y, z)$ with vertices $\bar{x}, \bar{y}, \bar{z} \in \mathbb{H}^2$ is defined by $\operatorname{Im} \gamma_{\bar{x}\bar{y}} \cup \operatorname{Im}_{\bar{y}\bar{z}} \cup \operatorname{Im} \gamma_{\bar{z}\bar{x}}$ with $d(x, y) = d_{\mathbb{H}^2}(\bar{x}, \bar{y}), d(y, z) = d_{\mathbb{H}^2}(\bar{y}, \bar{z})$ and $d(z, x) = d_{\mathbb{H}^2}(\bar{z}, \bar{x})$, where $d_{\mathbb{H}^2}(\cdot, \cdot)$ is the hyperbolic metric on \mathbb{H}^2 . A point $\bar{p} \in \operatorname{Im} \gamma_{\bar{x}\bar{y}}$ is called a comparison point for $p \in \operatorname{Im} \gamma_{xy}$ if $d(x, p) = d_{\mathbb{H}^2}(\bar{x}, \bar{p})$. X is a CAT(-1) space if for $p, q \in \triangle(x, y, z) \subset X$ and their comparison points $\bar{p}, \bar{q} \in \overline{\triangle}(\bar{x}, \bar{y}, \bar{z}) \subset \mathbb{H}^2$, the inequality $d(p, q) \leq d_{\mathbb{H}^2}(p, q)$ holds for all geodesic triangles in X. In general, a CAT(-1) space is a CAT(0) space [2]. In CAT(-1) spaces, the inequality

$$\cosh d(tx \oplus (1-t)y, z) \sinh d(x, y)$$

$$\leq \cosh d(x, z) \sinh t d(x, y) + \cosh d(y, z) \sinh(1-t) d(x, y)$$

always holds for $x, y, z \in X$ and $t \in [0, 1]$.

The following lemmas are important properties of a CAT(0) space.

Lemma 2.1 (Kirk and Panyanak [9]). Let X be a complete CAT(0) space. Then every bounded sequence has a subsequence which is Δ -convergent to $x_0 \in X$.

Lemma 2.2 (Dhompongsa, Kirk and Sims [4]). Let X be a complete CAT(0) space and $\{x_n\}$ a bounded sequence of X. Then the asymptotic center of $\{x_n\}$ consists of one point.

Let X be a geodesic space and f a function of X into \mathbb{R} . A function f is said to be *lower semicontinuous* if the inequality

$$f(x) \le \liminf_{n \to \infty} f(x_n)$$

holds, wherever $\{x_n\} \subset X$ converges to $x \in X$. If f is continuous, then it is lower semicontinuous. A function f is said to be *convex* if

$$f(\alpha x \oplus (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$$

holds for all $x, y \in X$ and $\alpha \in [0, 1[$. A function f is said to be *upper hemicontinuous* if the inequality

$$f(x) \ge \limsup_{t \to 0^+} f((1-t)x \oplus ty)$$

holds for all $x, y \in X$.

We will consider the following conditions for a function used by an equilibrium problems.

Condition 2.1. Let X be a geodesic space and K a nonempty closed convex subset of X. We suppose that a bifunction $f: K \times K \to \mathbb{R}$ satisfies the following conditions:

- f(x, x) = 0 for all $x \in K$;
- $f(x,y) + f(y,x) \le 0$ for all $x, y \in K$;
- for every $x \in K$, $f(x, \cdot) \colon K \to \mathbb{R}$ is lower semicontinuous and convex;
- for every $y \in K$, $f(\cdot, y) \colon K \to \mathbb{R}$ is upper hemicontinuous.

The following theorem is important to show a Δ -convergence theorem with the proximal point algorithm.

Theorem 2.1 (Kajimura and Kimura [5]). Let X be a complete CAT(-1) space, $\{z_n\}$ a bounded sequence in X, $\{\beta_n\}$ a sequence of positive real numbers with $\sum_{n=1}^{\infty} \beta_n = \infty$ and

$$g(y) = \limsup_{n \to \infty} \frac{1}{\sum_{l=1}^{n} \beta_l} \sum_{k=1}^{n} \beta_k \cosh d(y, z_k)$$

for $y \in X$. Then, $\operatorname{Argmin}_X g$ consists of one point.

The set of solutions to the equilibrium problem for f is denoted by Equil f, that is,

Equil
$$f = \left\{ z \in K \mid \inf_{y \in K} f(z, y) \ge 0 \right\}.$$

Let X be a CAT(-1) space and E a nonempty subset of X. Then a convex hull of E is defined by

$$\operatorname{co} E = \bigcup_{n=0}^{\infty} X_n,$$

where $X_0 = E$ and $X_n = \{tu_{n-1} \oplus (1-t)v_{n-1} \mid u_{n-1}, v_{n-1} \in X_{n-1}, t \in [0,1]\}$. X has the convex hull finite property if every continuous mapping T of clco E into itself has a fixed point for all finite subsets E of X, where clco E is the closure of co E; see [11].

In the following theorem shows the properties of a resolvent of equilibrium problems in a CAT(-1) space having the convex hull finite property.

Theorem 2.2 (Kimura and Ogihara [8]). Let X be a complete CAT(-1) space having the convex hull finite property and K a nonempty closed convex subset of X. Suppose that $f: K \times K \to \mathbb{R}$ satisfies Condition 2.1. Define a set-valued mapping $L_f: X \to 2^K$ by

$$L_f x = \left\{ z \in K \mid \inf_{y \in K} (f(z, y) + \cosh d(x, y) - \cosh d(x, z)) \ge 0 \right\}$$

for all $x \in X$. Put $C_z = \cosh d(z, L_f z)$ for $z \in X$. Then the following hold:

(i) $D(L_f) = X;$

(ii) L_f is single-valued and the inequality

 $(C_x + C_y)\cosh d(L_f x, L_f y) \le \cosh d(L_f x, y) + \cosh d(x, L_f y)$

holds for $x, y \in X$, and thus L_f is hyperbolically nonspreading; (iii) Equil $f = \mathcal{F}(L_f)$, and thus it is closed and convex.

3 Fundamental properties of resolvents

In this section, we prove the lemmas which is necessary to prove a Δ -convergence theorem in a CAT(-1) space having the convex hull finite property.

Lemma 3.1. Let X be a complete CAT(-1) space having the convex hull finite property and K a nonempty closed convex subset of X. Suppose that $f: K \times K \to \mathbb{R}$ satisfies Condition 2.1. Let $L_{\lambda f}$ a resolvent of λf for $\lambda > 0$. Then the inequality

$$0 \le f(L_{\lambda f}x, w) + \frac{d(L_{\lambda f}x, w)}{\lambda \sinh d(L_{\lambda f}x, w)} (\cosh d(x, w) - \cosh d(x, L_{\lambda f}x) \cosh d(w, L_{\lambda f}x))$$

holds for $x \in X$ and $w \in K$ with $w \neq L_{\lambda f} x$.

Proof. Let $x \in X$ and $w \in K$ with $w \neq L_{\lambda f} x$. Put $\tau_t = tw \oplus (1-t)L_{\lambda f} x \in K$ for $t \in]0, 1[$. Then, we get

$$0 \leq \lambda f(L_{\lambda f}x, \tau_t) + \cosh d(x, \tau_t) - \cosh d(x, L_{\lambda f}x)$$

$$\leq \lambda t f(L_{\lambda f}x, w) + \cosh d(x, \tau_t) - \cosh d(x, L_{\lambda f}x)$$

$$\leq \lambda t f(L_{\lambda f}x, w) + \frac{L(t) - \cosh d(x, L_{\lambda f}x) \sinh d(L_{\lambda f}x, w)}{\sinh d(L_{\lambda f}x, w)}$$

where

$$L(t) = \cosh d(x, w) \sinh t d(L_{\lambda f} x, w) + \cosh d(x, L_{\lambda f} x) \sinh(1 - t) d(L_{\lambda f} x, w)$$

Dividing by λt and letting $t \searrow 0$, we obtain

$$0 \leq f(L_{\lambda f}x, w) + \frac{1}{\lambda \sinh d(L_{\lambda f}x, w)} \lim_{t \searrow 0} \frac{L(t) - \cosh d(x, L_{\lambda f}x) \sinh d(L_{\lambda f}x, w)}{t}$$
$$= f(L_{\lambda f}x, w) + \frac{1}{\lambda \sinh d(L_{\lambda f}x, w)} \lim_{t \searrow 0} \frac{d}{dt} (L(t) - \cosh d(x, L_{\lambda f}x) \sinh d(L_{\lambda f}x, w))$$
$$= f(L_{\lambda f}x, w) + \frac{d(L_{\lambda f}x, w)}{\lambda \sinh d(L_{\lambda f}x, w)} (\cosh d(x, w) - \cosh d(x, L_{\lambda f}x) \cosh d(L_{\lambda f}x, w))$$

and hence we get the desired result.

Corollary 3.1. Let X be a complete CAT(-1) space having the convex hull finite property and K a nonempty closed convex subset of X. Suppose that $f: K \times K \to \mathbb{R}$ satisfies Condition 2.1. Let $L_{\lambda f}$ a resolvent of λf for $\lambda > 0$. Then the following inequalities hold:

$$(\mu C_{\lambda,x} + \lambda C_{\mu,y}) \cosh d(L_{\lambda f} x, L_{\mu f} y) \le \mu \cosh d(x, L_{\mu f} y) + \lambda \cosh d(L_{\lambda f} x, y)$$

and

$$(\lambda + \mu)\cosh d(L_{\lambda f}x, L_{\mu f}y) \le \mu \cosh d(x, L_{\mu f}y) + \lambda \cosh d(L_{\lambda f}x, y)$$

for all $x, y \in X$ and $\lambda, \mu > 0$, where $C_{\eta,z} = \cosh d(z, L_{\eta f}z)$ for $z \in X$ and $\eta > 0$.

Proof. Let $x, y \in X$ and $\lambda, \mu > 0$ with $D = d(L_{\lambda f}x, L_{\mu f}y) > 0$ and put $C_{\eta, z} = \cosh d(L_{\eta f}z, z)$ for $z \in X$ and $\eta > 0$. By Lemma 3.1, we get

$$0 \le f(L_{\lambda f}x, L_{\mu f}y) + \frac{D}{\lambda \sinh D} (\cosh d(x, L_{\mu f}y) - C_{\lambda, x} \cosh D).$$

Similarly, it holds that

$$0 \le f(L_{\mu f}y, L_{\lambda f}x) + \frac{D}{\mu \sinh D} (\cosh d(L_{\lambda f}x, y) - C_{\mu, y} \cosh D).$$

From Condition 2.1, adding these inequalities, we get

$$0 \leq f(L_{\lambda f}x, L_{\mu f}y) + f(L_{\mu f}y, L_{\lambda f}x) + \frac{D}{\lambda \sinh D}(\cosh d(x, L_{\mu f}y) - C_{\lambda, x} \cosh D) + \frac{D}{\mu \sinh D}(\cosh d(L_{\lambda f}x, y) - C_{\mu, y} \cosh D) \leq \frac{D}{\sinh D} \left(\frac{\cosh d(x, L_{\mu f}y) - C_{\lambda, x} \cosh D}{\lambda} + \frac{\cosh d(x, L_{\mu f}y) - C_{\lambda, x} \cosh D}{\mu}\right)$$

Since $t/(\sinh t) > 0$ for t > 0, we get

$$(\mu C_{\lambda,x} + \lambda C_{\mu,y}) \cosh D \le \mu \cosh d(x, L_{\mu f}y) + \lambda \cosh d(L_{\lambda f}x, y).$$

Since $\cosh t \ge 1$ for $t \ge 0$, we get

$$(\lambda + \mu) \cosh D \le \mu \cosh d(x, L_{\mu f} y) + \lambda \cosh d(L_{\lambda f} x, y).$$

If D = 0, the inequalities obviously hold. It completes the proof.

Corollary 3.2. Let X be a complete CAT(-1) space having the convex hull finite property and K a nonempty closed convex subset of X. Suppose that $f: K \times K \to \mathbb{R}$ satisfies Condition 2.1 and that Equil f is nonempty. Let $L_{\lambda f}$ a resolvent of λf for $\lambda > 0$. Then the following inequality holds:

$$\cosh d(x, L_{\lambda f}x) \cosh d(L_{\lambda f}x, z) \le \cosh d(x, z)$$

for all $x \in X$ and $z \in \text{Equil } f$.

 $(\cosh d(x, L_{\lambda f}x) + \lambda \cosh d(z, L_f z)) \cosh d(L_{\lambda f}x, z) \le \cosh d(x, z) + \lambda \cosh d(L_{\lambda f}x, z)$

and hence

$$(\cosh d(x, L_{\lambda f}x) + \lambda) \cosh d(L_{\lambda f}x, z) \le \cosh d(x, z) + \lambda \cosh d(L_{\lambda f}x, z).$$

Therefore, we have

$$\cosh d(x, L_{\lambda f}x) \cosh d(L_{\lambda f}x, z) \le \cosh d(x, z)$$

and get the desired result.

Lemma 3.2. Let X be a complete CAT(-1) space having the convex hull finite property and K a nonempty closed convex subset of X. Suppose that $f: K \times K \to \mathbb{R}$ satisfies Condition 2.1. Let $\{\lambda_n\} \subset [0,\infty[$ such that $\limsup_{n\to\infty} \lambda_n > 0$, $L_{\lambda_n f}$ a resolvent of $\lambda_n f$, and $\{x_n\}$ a bounded sequence of X such that $x_n \stackrel{\Delta}{\to} x_0 \in X$ and $\lim_{n\to\infty} d(x_n, L_{\lambda_n f} x_n) = 0$. Then $x_0 \in \text{Equil } f$.

Proof. Put $\lambda_0 = \limsup_{n \to \infty} \lambda_n$. By Corollary 3.1, we get

$$\cosh d(L_{\lambda_n f} x_n, L_f x_0) \le \frac{\lambda_n}{1 + \lambda_n} \cosh d(L_{\lambda_n f} x_n, x_0) + \frac{1}{1 + \lambda_n} \cosh d(x_n, L_f x_0).$$

Take a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ arbitrarily. For $y \in K$, then, we get

$$d(L_{\lambda_{n_j}f}x_n, y) \le d(L_{\lambda_{n_j}f}x_{n_j}, x_{n_j}) + d(x_{n_j}, y) \le 2d(L_{\lambda_{n_j}f}x_{n_j}, x_{n_j}) + d(L_{\lambda_{n_j}f}x_{n_j}, y) \le 2d(L_{\lambda_{n_j}f}x_{n_j}, y) \le 2d(L_{\lambda_{n_j}f}x_{n_j}$$

Since $d(x_{n_j}, L_{\lambda_{n_j}} f x_{n_j}) \to 0$, letting $j \to \infty$, we get

$$\limsup_{j \to \infty} d(L_{\lambda_{n_j} f} x_{n_j}, y) = \limsup_{j \to \infty} d(x_{n_j}, y).$$

Suppose $\lambda_0 = \infty$. Then we take a subsequence $\{\lambda_{n_i}\}$ of $\{\lambda_n\}$ such that $\lim_{i\to\infty} \lambda_{n_i} = \infty$. It implies that

$$\limsup_{i \to \infty} \left(\cosh d(x_{n_i}, L_f x_0) \right) = \limsup_{i \to \infty} \left(\cosh d(L_{\lambda_{n_i} f} x_{n_i}, L_f x_0) \right)$$
$$\leq \limsup_{i \to \infty} \left(\cosh d(L_{\lambda_{n_i} f} x_{n_i}, x_0) \right)$$
$$= \limsup_{i \to \infty} \left(\cosh d(x_{n_i}, x_0) \right).$$

Since x_0 is an asymptotic center of $\{x_{n_i}\}$, we get $x_0 = L_f x_0$ and hence $x_0 \in \text{Equil } f$. We next suppose $\lambda_0 < \infty$. Then we get

$$\begin{split} &\limsup_{i \to \infty} \left(\cosh d(x_{n_i}, L_f x_0)\right) \\ &= \limsup_{i \to \infty} \left(\cosh d(L_{\lambda_{n_i}f} x_{n_i}, L_f x_0)\right) \\ &\leq \frac{\lambda_0}{1 + \lambda_0} \limsup_{i \to \infty} \left(\cosh d(L_{\lambda_{n_i}f} x_{n_i}, x_0)\right) + \frac{1}{1 + \lambda_0} \limsup_{i \to \infty} \left(\cosh d(x_{n_i}, L_f x_0)\right) \\ &= \frac{\lambda_0}{1 + \lambda_0} \limsup_{i \to \infty} \left(\cosh d(x_{n_i}, x_0)\right) + \frac{1}{1 + \lambda_0} \limsup_{i \to \infty} \left(\cosh d(x_{n_i}, L_f x_0)\right) \end{split}$$

and hence

$$\limsup_{i \to \infty} \left(\cosh d(x_{n_i}, L_f x_0) \right) \le \limsup_{i \to \infty} \left(\cosh d(x_{n_i}, x_0) \right)$$

Since x_0 is an asymptotic center of $\{x_{n_i}\}$, we get $x_0 = L_f x_0$ and hence $x_0 \in \text{Equil } f$. Consequently, we complete the proof.

4 A Δ -convergence theorem

In this section, we prove a Δ -convergence theorem with the proximal point algorithm in a CAT(-1) space having the convex hull finite property.

Theorem 4.1. Let X be a complete CAT(-1) space having the convex hull finite property, K a nonempty closed convex subset of X, $f: K \times K \to \mathbb{R}$ satisfying Condition 2.1 and $\{\lambda_n\} \subset]0, \infty[$ such that $\sum_{n=1}^{\infty} \lambda_n = \infty$. For given $x_1 \in X$, define $\{x_n\}$ by

$$x_{n+1} = L_{\lambda_n f} x_n = \left\{ z \in K \mid \inf_{y \in K} (f(z, y) + \cosh d(x_n, y) - \cosh d(x_n, z)) \ge 0 \right\}$$

for all $n \in \mathbb{N}$. Then, the following hold:

- (i) Equil f is nonempty if and only if $\{x_n\}$ is bounded;
- (ii) if Equil f is nonempty and $\liminf_{n\to\infty} \lambda_n > 0$, $\{x_n\}$ is Δ -convergent to an element of Equil f.

Proof. (i) We first suppose that Equil f is nonempty and show that $\{x_n\}$ is bounded. Let $u \in \text{Equil } f$. Since $L_{\lambda_n f}$ is quasinonexpansive, we get

$$d(x_{n+1}, u) = d(L_{\lambda_n f} x_n, u) \le d(x_n, u)$$

and hence $\{d(x_n, u)\}$ is nonincreasing and $\{x_n\}$ is bounded for $n \in \mathbb{N}$. We next suppose $\{x_n\}$ is bounded and show that Equil f is nonempty. For $k \in \mathbb{N}$ with $k \leq n$, by Corollary 3.1 we get

$$(1+\lambda_k)\cosh d(L_{\lambda_k f}x_k, L_f y) \le \lambda_k \cosh d(L_{\lambda_k f}x_k, y) + \cosh d(x_k, L_f y)$$

and hence

$$\lambda_k \cosh d(x_{k+1}, L_f y) \le \lambda_k \cosh d(x_{k+1}, y) + (\cosh d(x_k, L_f y) - \cosh d(x_{k+1}, L_f y))$$

for all $y \in X$. Adding both sides of the inequality above from k = 1 to k = n and dividing both sides by $\sum_{l=1}^{n} \lambda_l$, we get

$$\frac{1}{\sum_{l=1}^{n} \lambda_l} \sum_{k=1}^{n} \lambda_k \cosh d(x_{k+1}, L_f y) \\
\leq \frac{1}{\sum_{l=1}^{n} \lambda_l} \sum_{k=1}^{n} \lambda_k \cosh d(x_{k+1}, y) + \frac{1}{\sum_{l=1}^{n} \lambda_l} (\cosh d(x_1, L_f y) - \cosh d(x_{n+1}, L_f y)) \\
\leq \frac{1}{\sum_{l=1}^{n} \lambda_l} \sum_{k=1}^{n} \lambda_k \cosh d(x_{k+1}, p) + \frac{1}{\sum_{l=1}^{n} \lambda_l} \cosh d(x_1, p).$$

By Theorem 2.1, we know that $\operatorname{Argmin}_X g$ consists of one point, where

$$g(z) = \limsup_{n \to \infty} \frac{1}{\sum_{l=1}^{n} \lambda_l} \sum_{k=1}^{n} \lambda_k \cosh d(x_{k+1}, z)$$

for all $z \in X$. Let $p \in \operatorname{Argmin}_X g$. Since $\sum_{l=1}^{\infty} \lambda_l = \infty$, letting $n \to \infty$, we get

$$g(L_f p) \le g(p) \le g(L_f p)$$

and hence $p = L_f p$. This implies that $p \in \text{Equil } f$.

(ii) Suppose Equil f is nonempty and $\liminf_{n\to\infty} \lambda_n > 0$. Let $p \in \text{Equil } f$. Since $L_{\lambda_n f}$ and Equil f is nonempty, $L_{\lambda_n f}$ is quasinonexpansive. Then, we get

$$0 \le d(x_{n+1}, p) = d(L_{\lambda_n f} x_n, p) \le d(x_n, p)$$

and hence $\{d(x_n, p)\}$ is nonincreasing. Then, there exists $\lim_{n\to\infty} d(x_n, p)$. By Corolally 3.1, we have

$$1 \le \cosh d(x_n, L_{\lambda_n f} x_n) \le \frac{\cosh d(x_n, p)}{\cosh d(x_{n+1}, p)}$$

Letting $n \to \infty$, we obtain $d(x_n, L_{\lambda_n f} x_n) \to 0$. Put AC($\{x_n\}$) = $\{x_0\}$ Take a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ arbitrarily. Since $\{x_{n_i}\}$ is bounded and by Lemma 2.2, AC($\{x_{n_i}\}$) = $\{y_0\}$. Further, there exists a subsequece $\{x_{n_{i_j}}\}$ of $\{x_{n_i}\}$ such that $x_{n_{i_j}} \stackrel{\Delta}{\to} z_0 \in X$. Then, AC($\{x_{n_{i_j}}\}$) = $\{z_0\}$. By Lemma 3.2, we get $z_0 \in$ Equil f. Then, we get

$$\limsup_{n \to \infty} d(x_n, z_0) = \limsup_{j \to \infty} d(x_{n_{i_j}}, z_0)$$

$$\leq \limsup_{j \to \infty} d(x_{n_{i_j}}, y_0)$$

$$\leq \limsup_{i \to \infty} d(x_{n_i}, y_0)$$

$$\leq \limsup_{i \to \infty} d(x_{n_i}, x_0)$$

$$\leq \limsup_{n \to \infty} d(x_n, x_0) \leq \limsup_{n \to \infty} d(x_n, z_0)$$

and hence $y_0 = x_0 = z_0 \in \text{Equil } f$. Therefore $x_n \stackrel{\Delta}{\rightharpoonup} x_0 \in \text{Equil } f$. Consequently, we get the desired result.

Corollary 4.1. Let X be a complete CAT(-1) space having the convex hull finite property, K a nonempty closed convex subset of X, $f: K \times K \to \mathbb{R}$ satisfying Condition 2.1 and L_f a resolvent of f. Then the following hold:

- (i) Equil f is nonempty if and only if $\{L_f^n x\}$ is bounded for each $x \in X$;
- (ii) If Equil f is nonempty, $\{L_f^n x\}$ is Δ -convergent to an element of Equil f for each $x \in X$.

Proof. Let $\{\lambda_n\} \subset [0, \infty)$ such that $\lambda_n = 1$ for $n \in \mathbb{N}$. Using Theorem 4.1, we get (i) and (ii). Consequently, we complete the proof.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant Number JP21K03316.

References

- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [2] M. R. Bridson and Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [3] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert space, J. nonlinear Convex Anal. 6 (2005), 117–136.
- [4] S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal. 65 (2006) 762–772.
- [5] T. Kajimura and Y. Kimura, The proximal point algorithm in complete geodesic spaces with negative curvature, Advances in the Theory of Nonlinear Analysis and its Applications 3 (2019), 5–18.
- [6] Y. Kimura, Resolvents of equilibrium problems on a complete geodesic space with curvature bounded above, Carpathian J. Math. 37 (2021), 463–476.
- [7] Y. Kimura and Y. Kishi, Equiblium problems and their resolvents in Hadamard spaces, J. Nonlienar Convex Anal. 19 (2018), 1503–1513.
- [8] Y. Kimura and T. Ogihara, *Resolvents of equilibrium problems in a complete geodesic space with negative curvature*, arXiv:2207.10903v1 [math.FA].

- [9] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic space, Nonlinear Anal. 68 (12) (2008) 3689–3696.
- [10] C. P. Niculescu and I. Rovenţa, Fan's inequality and in geodesic spaces, Appl. Math. Letters 22 (2009), 1526–1533.
- [11] S. Shabanian and S. M. Vaezpour, A minimax inequality and its applications to fixed point theorems in CAT(0) spaces, Fixed Point Theory Appl. (2011), 2011:61, 9.