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Generalized cone-continuity of set-valued maps 

with scalarization* 

Premyuda Dech boon t and Tamaki Tanaka:j: 

Graduate School of Science and Technology, Niigata University§ 

Dedicated to the memory of Professor Kazimierz Goebel 

1 Introduction 

A set-valued map is a map that associates with a set depending on each element. 

Considering a singleton set, a set-valued mapping can be launched as a single-

valued mapping. Because the concept of set-valued mappings includes single-
valued maps, set-valued optimization presents a significant generalization along 

with unification of scalar and vector optimization problems. 

On the other hand, transforming vectors or sets into real number, in other 
words scalarization, processes a quintessential methodology solving optimization 

problems with vector-valued or set-valued maps. One of challenging scalarizing 

functions ensues sublinear scalarization introduced by Tammer (see [2], [3], [4] 

and [5]) 
hc(v; d) := inf {t E脱 IVEtd-C} 

where C is a convex cone in a real topological vector space and d EC. 

In general, composition is an operator analyzed a function from the results 

of another function. Several mathematical properties of each nested function are 

usually preserved by a composite operation. A continuous map composition, for 

example, is continuous on topological spaces. Under certain assumptions, we 
may characterize solutions for multicriteria questions using scalarization based 

on this attribute. This prompts us to explore how composite functions involving 
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a set-valued map and a scalarization function convey continuity of primary set-
valued mappings via various scalarization for sets. 

Continuity notions of set-valued maps are significant in many branches of 
mathematics, including nonlinear functional analysis, optimization theory, and 
convex analysis. Cone-continuity is studied in several direction (see [16] and [9]). 

Recently, Ike, Liu, Ogata and Tanaka [6] show certain results on the inheri-
tance property of some kinds of continuity of set-valued maps via scalarization 
functions for sets: if a set-valued map has a kind of continuity (lower continu-
ity or upper continuity; see [4]) then the composition of its set-valued map and 
a certain scalarization function assures a similar semicontinuity to that of its 
scalarization function defined on the family of nonempty subsets of a real topo-

logical vector space. Their results are generalizations of results in earlier study 
by Kuwano, Tanaka and Yamada [15]. 

The aim of this paper is to propose some idea how to obtain and apply the 

generalization in [1] by Dechboon and Tanaka of the inheritance property which 
is introduced by [6]. 

2 Basic Notations 

Throughout the paper, let X be a topological space and Y a real topological 
vector space. Let仇 bethe zero vector in Y and P(Y) denote the set of all 
nonempty subsets of Y. The topological interior, topological closure, convex 
hull, and complement of a set A E P(Y) are denoted by int A, cl A, co A, and 

A尺respectively. Furthermore, we assume that C is a convex cone in Y with 
intCヂ0and 0y E C. Then, C + C = C holds, and int C and cl C are also 
convex cones. Accordingly, we can define a preoder :Sc on Y induced by C as 
follows: 

for y⑰ 2 E Y, Y1 :ScY2畠仰一 Y1EC. 

This preorder is compatible with the linear structure of Y: 

for all y1, y汀 3E Y, Y1 :ScY2⇒ Y1 +y3さ噂＋ y3; (1) 

for ally立 2E Y and t > 0, Y1さcY2⇒ ty1:SciY2- (2) 

When C is pointed (i.e., C n (-C) ｛仇｝）＝，さcis antisymmetric and then a 
partial order. 

．． 
Proposition 1. Let C C'be convex cones in Y and d E Y. Assume that 

C + (0, +oo)d CC'. Then, for any v1, v2 E Y and t, t'E股 witht > t', 

釘＋tdさc巧＝⇒釘＋t'd:Sc1 v2. 
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As generalizations of partial orderings for vectors, we give a definition of 
certain binary relations between sets in Y, called set relations. This is a modified 
version of the original one proposed in [12]. 

Definition 2 (set relations, [12]). For A, B E P(Y), we define the following 
eight types of binary relations on P(Y). 

(i) A ~g) B 芋ぶ ¥:/aEA, ¥:/bEB, a~cb •=? AcnbEB(b-C) 

⇔ B C  naEA(a + C); 

(ii) Aさ笠 B 辛しョaEA s.t. ¥:/b EB, a ~c b←* An (nbEB(b -C)) # 0; 

(iii) A羞四 B 辛しヨbE B s.t. ¥:/a E A, a念 b-¢::::=} (naEA (a + C)) n Bヂ0;

(iv) A翠 B &A~聾 BandAさ炉 B ~⇒ An (nbEB(b-C)）ヂ0
and (naEA(a + C)) n B # 0; 

(v) Aさ詈 B 辛呈 VbEB,ヨaEA s.t. aさcb-{=⇒Bc A+C; 

(vi) A羞巴 B 辛b,.¥:/a E A,ヨbE B s.t. a ~c b -{=⇒AcB-C; 

(vii) A羞り B 芸と A羞詈 BandA羞四 B -{=⇒B c A+C and Ac  B-C; 

(viii) A羞り B 辛呈コaE A, ::lb E B s.t. a ~c b -{=⇒ An (B-C) #〇
⇔ (A+ C) n B # 0. 

In the above definition, the letters L and U stand for "lower" and "upper," 
(j) respectively. Each relation ::;c:? is transitive for j = 1, 2£, 2U, 3£, 3U and not 

transitive for j = 4. Since 0y E C, ::; 
(j) ． 

, -C  is reflexive for j = 3L, 3U, 4 and 
hence a preorder for j = 3L, 3U. Besides, for each j = 1, 2£, 2U, 3£, 3U, 4, the 
relation ::;げ satisfiescertain similar properties to conditions (1) and (2) for all 
A,B E P(Y), 

(i) A羞げB ====} A+y羞げB+ y for y E Y; 

(ii) A翌B ⇒ tA羞げtBfor t > 0. 

Also, we easily obtain the following implications: 
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for A, BE P(Y). 
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Proposition 3 ([6]). Let C'and C be two nonempty convex cones in Y and 

d E Y. Assume that C'+ (0, +oo)d c C. Then, for each j = 1, 2L, 3L, 2U, 3U, 4, 
any A, BE P(Y), s, s'E股 withs'< s and t, t'E良 witht < t', 

Aさげ B+ s'd ====} A翌） B+sd,

and A+ t'd :S製B ====} A+ td羞pB. 

3 Unification of Scalarizing Functions 

Now, we recall the scalarization scheme [13] for sets in a real vector space related 
to the set relations, which are certain generalizations as unification of several 
nonlinear scalarizations proposed in [5]. 

Definition 4 ([7, 13]). For each j = 1, 2L, 3L, 2U, 3U, 4, we define 

虐(A;V, d) := inf { t E股 A::::;げ(V+td)}, (4) 

潔(A;V, d) := sup { t E叫(V+td)誓 A}, (5) 

for any A, V E P(Y) and d E Y. 

The idea of these scalarization functions is introduced in [13], which originates 
from the idea of Gerstewitz's (Tammer's) sublinear scalarizing functional in [2]; 

see [4, 7]. This type of scalarization measures how far a given reference set needs 
to be moved toward a specific direction to fulfill each set relation between a 
target set and its moved reference set. Note that V and d in (4) and (5) are 
index parameters for scalarization which play key roles as a reference set and a 
reference direction, respectively. 

p roposition 5 ([7]). Let C be a convex cone in V. The fallowing inequalities 
hold between each scalarizing function for sets: 

摩 (A;W, d)さI馴(A;W,d)さI聾 (A;W,d)::::;磨 (A;W,d);

摩 (A;W, d)::::; I,已(A;W, d)::::; I,冑 (A;W, d)::::; 1gl (A; W, d); 

摩 (A;W,d)::::;虐 (A;W, d) ::::; 1gl (A; W, d) ::::;虐 (A;W,d);

澤 (A;W, d)::::; S聾 (A;W,d)::::;S詈 (A;W,d)::::;Sり(A;W,d); 

嬬 (A;W,d)::::;S冑 (A;W,d)::::;S屈 (A;W,d)::::;stl (A; W, d) ; 

露 (A;w, d)::::; sg) (A; w, d)::::; sg) (A; w, d)::::; st) (A; w, d) 

for A, WE  P(V) ¥ {0} and d EC. 

p roposition 6 ([7]). Let C be a convex cone in V. There are certain relations 

among the scalarizations of types (2L), (2U), (2) as well as (3L), (3U), (3): 
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(i) 1gl (A; W, d) = max { ~笠 (A;W,d),~冑 (A;W,d)};

(ii) I位(A;W, d) = max ｛屈（A;W,d),~冑 (A;W,d)};

(iii)類 (A;W, d) = min { $詈 (A;W,d), S虹(A;W, d)}; 

(iv)潔 (A;W, d) = min { $詈 (A;W,d), S尺 (A;W,d)} 

for A, WE  P(V) ¥ {0} and d EC. 

Proposition 7 ([6]). Let A, VE P(Y) and d E Y. Then the following statements 
hold 

—摩(-A; -V, d) 

-I戸(-A;-V, d) 

-I詈(-A;-V, d) 

-I尺(-A;-V, d) 

-I冑(-A;-V, d) 

—靡(-A; -V, d) 

製 (A;V, d), 

s戸(A;V,d),

S冑(A;V, d), 

S笠(A;V, d), 

s詈(A;V, d), 

潔(A;V, d). 

For each j without j = 4, scalarizing functions靡(・;W,d) and頗 (・;W,d)
with a nonempty referenc~., set W and a direction d have the following mono-

（） tonicity with respect to名gJ,which is referred to as "j-monotonicity" in [10]: 

4 G 

｛星B ⇒ 靡 (A;W,d)<Ig)（B;W,d)； 

A鉗B ＝嘲（A;W,d)さ潔 (B;W, d). 

eneralized cone-continuity 

(6) 

Let N(x) and~ be a neighborhood system of a point x E X  and a binary relation 

on P(Y), respectively. 

Definition 8 (Definition 12 in [1]). Let F : X →P(Y), x0 E X, ~ a binary 
relation on P(Y) and C C Ya convex cone. We say that Fis (~'C)-continuous 
at X。if

VW CY, W open, W ~ F(x0), :3V Eふ (x0)s.t. W + C ~ F(x), Vx EV. 

As special cases, for A, B E P(Y), we consider binary relations int An B-:/ 0 
and B C int A by A ~1 B and A ~2 B, respectively. Accordingly, (~1, C)-
continuity and（玄，C)-continuitycoincide with "C-lower continuity" and "C-
upper continuity" for set-valued maps, respectively. Indeed, F : X→P(Y) is 
(~ 1, C)-continuous at x。ifand only if 

VW c Y, W open, WnF(xo) -:/ 0 ，ヨV€ふ(x0) s.t. (W + C)nF(x)-:/ 0, Vx EV, 
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that is, F is C-lower continuous at x。.Similarly,F is（冠C)-continuousat x。
if and only if 

¥:/W C Y, W open, F(x0) C W，ヨVEふ (x0)s.t. F(x) C W + C, ¥:/x EV, 

that is, Fis C-upper continuous at x0; see Definition 2.5.16 of [4]. 

Remark 9. If C = {O} then (~'C)-continuity for set-valued maps becomes ~
continuity in Definition 3.2 in [6]. Moreover，齊continuityand ~2—continuity 
coincide with the classical notions of lower continuity and upper continuity for 
set-valued maps, respectively. 

Definition 10 (Definition 14 in [1]). Let cp : P(Y)→応｛士oo},A。EP(Y), 
~ a binary relation on P(Y), and Ca convex cone in Y with C # Y. Then, we 
say that cp is 

(i) (~, C)-lower semicontinuous at A。ifVr < cp (Ao), 3W E P(Y), W open, 
s.t. W ~ A。andr < cp (A), ¥:/A E U(W + C，尋

(ii) (~, C)-upper semicontinuous at A。if¥:/r> cp(Ao)，ヨWEP(Y), W open, 
s.t. W ~ A。andr > cp (A), ¥:/A E U(W + C,~), 

where U(V, ~):={A E P(Y) IV~ A}. 

Remark 11. When C = {O}, (~, C)-lower and（苓C)-uppersemicontinuities 
are coincident with ~-lower and五 ppersemicontinuities, respectively, which are 

introduced in Definition 3.3 of [6]. In Definition 10, we adopt that if cp (Ao) = -oo 
(resp. +oo) then cp is (~'C)-lower (resp. upper) semicontinuous at A。•

Therefore, we can easily show the following results as generalizations of The-
orems 3.1 and 3.2 in [6]. 

Theorem 12 (Theorem 16 in [1]). Let F: X→P(Y), cp : P(Y)→応U｛土oo},
xo E X, ~ a bin a内/relation on P(Y), and C C  Y a convex cone. If Fis（弐C)-
continuous at x。andcp is (~, C)-lower semicontinuous at F(x0), then cp o F is 
lower semicontinuous at x。.

Theorem 13 (Theorem 17 in [1]). Let F: X→P(Y), <p: P(Y)→瓢｛土oo},
x0 EX,~ a binary relation on P(Y), and C c  Ya convex cone. If Fis(~, C)-
continuous at x。and<p is（苓C)-uppersemicontinuous at F(x0), then <po F is 
upper semicontinuous at x。•

5 Continuity of Scalarization and Consequences 

p roposition 14. Let A。,VE P(Y), C'and C two nonempty convex cones in 

Y such that C'C C -/c Y, d E int C. Then, the following statements hold: 
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(i) I叫•;V, d) is (,;<1, C')-l c 冠 -owersemicontinuous at A。forj = 1, 3U. 

『)sg¥;V,d)is (,;<1,C') ii) Sifl(・; V, d) is 冠—upper semicontinuous at A0 for j = 1, 3L. 

(iii) I飢•;V, d) is(畜 -C')-upper semicontinuous at A。forj = 2L,4. 

(iv) sg¥,; V, d) is(冠 -C')-lowersemiconti ower semicontinuous at A。forj = 2U,4. 

(v)虐(・;V, d) is(成 -C')-uppersemicontinuous at A。forj = 1, 3U. 

(vi) Sげ(・;V, d) is(翠 -C')-lower semicontinuous at A。forj = l,3L. 

(vii)靡(・;V, d) is（寇C')-lowersemicontinuous at A。forj = 2L,4. 

(…） S叫•;V,d) i（茨，C')viii) s~n-; V, d) is (,;<2, C')-upper semicontinuous at A0 for j = 2U, 4. 

The following examples determine that靡(・;V, d) and嘲(・;V, d) do not 
satisfy continuity for some j. 

Example 15. Let Y =ズ， C=記， A。＝｛(x, y) : x + y = 12 and 2 ::; xさ10},
V = { (x, y) : x + y = 6 and 1 ::; xさ5}and d = (l, 1). 

Then I 
(3L) 
6,.,J (・; V, d) is not（,;<1, C')-lower semicontinuous at A。.Additionally,

this example can illustrate that I,詈(・;V,d) i （,;<1, -C')-1 is not (,;<1, -C.:')-lower semicontinu-

ous at An. Besides. S 
(3U) 

0. Besides, Sdu!(・;-V,d) is neither (,;<1,C')-upper semicontinuous nor 

(,;<1, -C') -C')-upper semicontinuous at -A。•

Moreover. we have 
(3L) 

, we have Id'-'!(・; V, d) is not（冠C')-uppersemicontinuous at A。•

Additionally, this example can illustrate that I,詈(・;V, d) is not (,;< 1, -C')-upper 

semicontinuous at A。.Besides,S 
(3U) du J (・; -V, d) is neither (,;< 1, C')-1 -10wer sem1con-

tinuous nor (,;<1, -C')-lower semicontinuous at -A。・

Example 16. Let Y =配， C=記， A。＝ ｛（x,y): x+y = 12 and 4::; x::; 8}, 
V = { (x, y) : x + y = 6 and 1さx::;5} and d = (l, 1). 

Therefore I 
(2U) 
du J (・; V, d) is not (,;< 1, C')-lower semicontinuous at A。.Addition-

ally, this example can illustrate that I,阿(・;V, d) is not（,;<1, -C')-1 -10wer sem1con-

tinuous at A 
(2L) 

0. Besides, Sii'-'J(•;-V,d) is neither（冠C')-uppersemicontinuous 
nor (,;<1, -C')-upper semicontinuous at -A。•

Example 17. Let Y =配， C=記， A。＝ ｛(x,y): x+y = 12 and 2::; x::; 5}, 

V = {(x,y): x + y = 6 and 1::; x::; 5} and d = (l, 1). Therefore I,戸(-;V, d) 
is not (,;<1, C')-upper semicontinuous at A。.Additionally,this example can il-

lustrate that I~v 1 (-: (2U) duJ(,;V,d) is not (,;<1,-C') -C')-upper semicontinuous at A。.Besides,
s (2L) 
d,.,J (・; -V, d) is neither (,;<1, C')-1 ,;<1, C')-lower semicontinuous nor(玉 -C')-lowersemi-

continuous at -A。•
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For I戸(・;V, d), S聾(・;V, d), I,詈(・;V, d) and Sげ叫•;V, d), the continuity 
properties are shown using the compactness assumptions. 

Proposition 18. Let A。,VEP(Y), C'and C two nonempty convex cones such 
that C'c C -/= Y and d E int C. Assume that A。andV are compact. Then, the 
following statements hold: 

I (2U) 6u J (・; V, d) is（寇 C')-C')-upper semicontinuous at A。•

s (2L) d,,) (・; V, d) is（忍， C')-l-C')-lower semicontinuous at A。・

I 
(3L) 
6,.,}(・; V, d) is（吟，C')-lowersemicontinuous at A。•

s;;u¥・; V, d) is (<2, C') C is (<2, —upper semicontinuous at A。.

By Theorems 12 and 13, the following results are obtained. 

Theorem 19. Let F: X→P(Y), x0 EX, VE P(Y), C'and C two nonempty 
convex cones in Y such that C'C C -/= Y and d E int C. The following statements 
hold: 

(a) If Fis (,;<1,C')-continuous at x0, then 

り虐(F(・);V, d) isl i) IX,1(F(・); V, d) is lower semicontinuous at x0, for all j = 1, 3U, 

(ii)潔(F(・);V, d) i ・); V, d) is upper semicontinuous at x。,forall j = 1, 3£. 

(b) If F is(冠 -C')-continuousat x。,then
(i) I図(F(・);V, d) i ・); V, d) is upper semicontinuous at x0, for all j = 2£, 4, 

(ii) sげ(F(・);V, d) is lower semicontinuous at x0, for all j = 2U, 4. 

(c) If F is（忍， C')-C')-continuous at x0, then 

りI;!l(F(・);V, d) i i) I~?(F(·); V, d) is upper semicontinuous at x。,forall j = 1, 3U, 

(ii) sげ(F(・);V, d) is lower semicontinuous at x0, for all j = 1, 3£. 

(d) If F is（,;<2, C')-continuous at x0, then 

(i)靡(F(・);V, d) is lower semicontinuous at x。,forall j = 2L, 4, 

(ii) sげ(F(・);V, d) i ・); V, d) is upper semicontinuous at x。,forall j = 2U, 4. 

Moreover, by Proposition 18, the consequent result can be implied by assum-
ing compactness. 

Theorem 20. Let F : X→P(Y), x0 EX, VE P(Y), C'and C two nonempty 
convex cones such that C'C C -/= Y and d E int C. Assume that F(x0) and V 
are compact. 

(a) If F is(吟,-C')-continuous at x0, then 
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(i) I尺(F(・);V, d) is upper semicontinuous at x0, 

(ii) s (2L) 
d,.,J(F(・); V, d) is lower semicontinuous at x0, 

(b) If F is（蘊C')-continuousat x0, then 

(i) I詈(F(・);V, d) is lower semicontinuous at x0, 

(ii) s冑(F(・);V, d) i ・); V, d) is upper semicontinuous at x0. 

Finally, from the Theorems 19 and 20 together with Remark 11, we can 
summarize the previous results as follows. 

Table 1: Continuity properties of the composite functions. 

F 
(~1, C') (~2, C') (=;<1, -C') (~2, -C') Le. u.c. 
-conti. -conti. -conti. -conti. (C'= {O}) (C'= {O}) 

靡 oF 1.s.c. u.s.c. 1.s.c. u.s.c. 
IC (2L) oF l.s.c. u.s.c. u.s.c. l.s.c. 
I C (3L) oF l.s.c. (*) l.s.c. (*) 
I C (2U) oF u.s.c. (*) u.s.c. (*) 
I c (3U) oF 1.s.c. u.s.c. 1.s.c. u.s.c. 

靡 oF l.s.c. u.s.c. u.s.c. l.s.c. 

嬬 oF u.s.c. l.s.c. u.s.c. l.s.c. 
s C (2£) oF 1.s.c. (*) 1.s.c. (*) 
sC (3L) oF u.s.c. l.s.c. u.s.c. l.s.c. 
s C (2U) oF u.s.c. 1.s.c. 1.s.c. u.s.c. 

s晨 oF u.s.c. (*) u.s.c. (*) 

潔 oF u.s.c. 1.s.c. 1.s.c. u.s.c. 

where (*) means the compactness assumptions are required and "Le." and "u.c." 
denote lower continuity and upper continuity of F, respectively. 
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