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Abstract 

In this paper, we consider another type of convex combinations associated 
with the curvature, and investigate their natures. 

1 Introduction 

A convex combination is one of the basic notion for the convex analysis, and its 
definition is very simple. In a real vector space V, a convex combination of two points 

x and y with a ratio a E [O, 1], which is usually denoted by ax+(l-a)y, is a weighted 
average of x and y for weights CY and 1 -CY. The concept of convex combination is 

defined not only for real vector spaces but also for geodesic spaces. A geodesic space 

X is a metric space that any two points on X have the shortest path joining these 

points. In a geodesic space X, a convex combination of two points x and y with a 

ratio CY E [O, 1] is generally defined as a point z satisfying d(x, z) = (1-CY)d(x, y) and 
d(y, z) = CYd(x, y). We usually write that point z as CYX① (1 -CY)y. 

In 2020, we defined a new breed of convex combination① and showed the following 
theorem in the context of fixed point approximation on a complete CAT(l) space: 

Theorem 1.1 ([3]). Let X be an admissible complete CAT(l) space such that 

SUPs,s'Exd(s,s') < 1r/2. Let S,T:X →X be strongly quasinonexpansive and 
△-demiclosed mappings such that S and T have a common fixed point. Let 

｛叫，｛叫 C]O, 1[ and suppose叫→ 0,~~=l 叶＝ oo, and'Yn→1 E ]O, 1[. Take 

v,w心 1E X and generate a iterative sequence { Xn} C X by Sn = CYn v① (1-CYn)Bxn, 
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tn = lYnW 〶 (1 -an)Txn, and Xn+l = "fnSn EB (1 -"fn)tn for n E N. Then {xn} 
converges to a common fixed point of S and T. Moreover, its limit is a maximizer 

of the function g: F→ ]0, 1] defined by g(x) = rycosd(v,x) + (1 -ry) cosd(w,x) for 

x E F, where F is the set of all common fixed points of S and T. 

In Theorem 1.1, we need to use a new convex combination① instead of the tradi-

tional convex combination① for the limit of the sequence { Xn} to be the maximizer 

of the function g. Indeed, if we only use 〶 instead of 〶,then we can verify that the 

limit of { Xn} may differ from the maximizer of g. This result suggests that the tradi-

tional convex combination is somewhat incompatible with CAT(l) spaces, and that 〶

may be better adapted to CAT(l) spaces; note that the function g is well compatible 

with CAT(l) spaces. Particularly, since the model space of CAT(l) spaces is the unit 

sphere §2, it is expected that the new convex combination 〶 is adapted to a geodesic 

space with the constant curvature 1. In this paper, we consider the natures of the 

new convex combination 〶 and investigate its behavior on the unit sphere on Hilbert 

spaces, and its generalization直

2 Prelimi reliminaries 

Let A be a set and f : A→賊． Iff has the unique minimizer to, then we write to by 

argmintEA J(t). Similarly, argmaxtEA J(t) denotes the unique m訟 imizeroff. 
Let X be a metric space. For x, y E X, a mapping 1: [O, 1]→X is called a geodesic 

joining x and y if 1(0) = y, 1(1) = x, and d(r(s), 1(t)) = Is -tld(x, y) hold for any 
s, t E [O, 1]. For D E ]O, oo], X is called a uniquely D-geodesic space if a geodesic 
joining x and y exists uniquely for any two points x, y E X with d(x, y) < D. In 
particular, a uniquely oo-geodesic space is simply called a uniquely geodesic space. 

Let X be a uniquely D-geodesic space and let x, y E X such that d(x, y) < D. 
Then a point tx 〶 (1-t)y := 1(t) is called a convex combination of x and y, where 1 
is the unique geodesic joining x and y. The set of all convex combinations of x and 

y is denoted by [x, y], that is, [x, y] = { tx① (1-t)y I x,y EX, t E [O, 1]}. Then we 
get [x, y] = [y, x] obviously. We call [x, y] a geodesic segment (on X) joining x and y. 

Furthermore, a subset CCX  is said to be convex if [x, y] C C for any x, y EC. 

Let M" be the complete simply connected 2-dimensional Riemannian manifold with 

constant sectional curvature r;, E艮anda metric p. It is equal to±§叫配， 1 配 if
匹ご

r;, > 0, r;, = 0, r;, < 0, respectively, where §2 is the 2-dimensional unit sphere, and配 is

the 2-dimensional hyperbolic space. We define D氏 E]O, oo] by D" = oo if r;,さ0,and 

D氏＝ 7r/~ if r;, > 0, which means a diameter of M氏． M"is a uniquely D"―geodesic 
space. In what follows, [u, v]M≪ denotes a geodesic segment joining u, v EM応

For r;, E恥 letX be a uniquely D"―geodesic space. For each x, y, z E X with 

d(x,y) + d(y,z) + d(z,x) < 2D", we define a geodesic triangle with vertices x,y,z 

by [x, y] U [y, z] U [z, x], and write it by△(x, y, z). For each△(x, y, z), there exists 

three points歪，o,乏EM氏 suchthat d(x, y) = p（歪，y),d(y, z) = p（戸）， andd(z,x) = 
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p（戸）． Forthese points歪，y，乏， wedefine a comparison triangle 囚（歪， y，芝） by ［歪， 'fJ]M~LJ
['fl，乏凶ご［乏，歪属． Forany△(x, y, z) and a point p E△(x, y, z), there exists a point 

pE△（瓦y，乏） suchthat the distances from two adjacent vertices are identical. That 
point p is called a comparison point of p. 

Let ;;, E股． Auniquely D臼―geodesicspace X is called a CAT（氏） spaceif for any 

△ :＝△(x, y, z) and its comparison triangle囚：＝囚（歪，y，乏）， andfor any two points 

p,q E△ and these comparison points p, q E穴， theineq叫 ityd(p, q) ~ p(p, q) holds. 
A CAT(;;,) space X is said to be admissible if d(x, y) < Dん／2for every x, y E X. If 
;;, ~ 0, then every CAT(;;,) space is admissible. 
By the definition of CAT（;;,) spaces, the unit sphere §2 embedded in a Euclidean 

space配， aHilbert space H, the hyperbolic space lHI2 are a CAT(l) space, a CAT(O) 
space, a CAT(-1) space, respectively. For more details, see [1]. 

3 K,ーconvexcombination 

In this section, we introduce the definition of new convex combination which is called 
the r;,-convex combination, and we investigate its nature. 

For each r;, E恥 definecK,:股→尺 by

1 
~ (cosh（ごd)-1) (ifr;,<0), 
一代

似 (d)= 
1 -d2 
2 
1 
~(1 -cos（西d))
k 

(if /'i, = 0), 

(if /'i, > 0) 

ford E賊 Inparticular, c_ 1 (d) = cosh d -1 and c1 (d) = 1 -cos d. Note that c,. is 
strictly convex and increasing on [O, D,.] for any氏 E艮

The first definition of K,-convex combinations① for K, = -1 and K, = 1 were given 

by [2] and [3], respectively. Later, properties of the K,—convex combination for general 
K, E艮 wasshown in [4]. 
Let X be a uniquely D氏―geodesicspace. In [2], [3] and [4], the K,-convex combination 

of x and y is defined under the condition d(x, y) < D,./2. Actually, we can weaken 
the assumption to d(x, y) < D,. when define the K,-convex combination. In this paper, 
we use the condition d(x, y) < D,. to define the伶 convexcombination. 

Theorem 3.1. Let K, E尺 andX a uniquely D氏-geodesicspace. Take x, y EX  with 

d(x,y) < D,. and a E [O, l]. Define g氏： X →股 by

島 (z)= ac,.(d(x, z)) + (1 -a)保 (d(y,z)) 

for z E X. Then the restriction g叫x,y]has the unique minimizer, where [x, y] is the 
geodesic segment joining x and y. 

Proof. If d(x, y) < D氏／2,then we obtain the conclusion, see [2], [3] and [4]. Fur-
thermore, if K, ::=:; 0, then we also have the conclusion, since D氏＝ oo=D氏／2.Thus 
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we only show the case where Ii > 0. It is sufficient to prove the case where Ii = 1, 
henceforth we will assume Ii = 1. 

Let x, y EX, a E [O, 1] and put D = d(x, y). If D = 0, then we obtain the desired 
result obviously. Suppose that O < D < 1r. Then we have 

釦 (tx① (1-t)y) = 1-(a cos ((1-t)D) + (1-a) costD) 

for any t E [O, 1]. Define f: [O, 1]→股 byf(t) = a cos ((1 -t)D) + (1 -a) cos tD for 

t E [O, l]. Then f'(t)/ D = a sin ((1 -t)D) -(1 -a) sin tD holds for each t E [O, l]. 
Let tan―1 ：尺→ ［0，吋＼ ｛1r /2} be the inverse of the trigonometric tangent function. 
Then putting 

1 -1asinD 
to= — tan 

D 1 -a+acosD' 

we get to E [O, 1] and f'(to) = 0. Take t E [O, 1] arbitrarily. If t < to, then we obtain 

f'(t)/ D = a sin ((1 -t)D) -(1 -a) sin tD > a sin ((1 -t0)D) -(1 -a) sin t。D=O.

Similarly, if t > to, then f'(t)/D < 0. It concludes t。isthe unique maximizer of f, 

and hence t。X① (1-to)Y = argminzE[x,y] 91(z)．ロ

Let "'E股 andX a uniquely Dr;,-geodesic space. Let a E [O, 1] and x, y E X 

such that d(x, y) < D氏． Supposethat d(x, y) < D氏． Thenth ・e unique minimizer of 

叫 x,y]in Theorem 3.1 is called a K,-convex combination of x and y, and we write it by 

ax合(1-a)y. That is, ax合(1-a)y = argminzE[x,y]島 (z).Note that ax合(1-a)y 

can be expressed by using a traditional convex combination tx E8 (1 -t)y. In fact, 
define t E [O, 1] by 

1 .  
tanh 

_1 asinh（←石d(x,y)) 

ご d(x,y) 1 -a + acosh （ごd(x,y)) 
(if "'< 0 and xキy);

t = < a (if"'= 0 or x = y); 

1 
tan 

a sin (ft d(x, y)) 

ftd(x,y) ---- 1-a+acos(ftd(x,y)) 
(if "'> 0 and xキy).

Then we get 

tanh― 
1..__ __ L-l (1 -a) sinh（ごd(x,y)) 

ご d(x,y) a + （1 -a)cosh （ごd(x,y)) 
(if "'< 0 and xキy);

1-t= < 1-a (if,,,,=Oorx=y); 

1 tan―1 (1 -a)sin（匹d（x,y)）
《 d(x,y) a+ （1 -a)cos(-JKd(x,y)) 

(if,,,, > 0 and xキy)

氏

and ax① (1 -a)y = tx① (1 -t)y, where tanh―1: [O, 1[→ ［0, oo[ is the inverse of 

the hyperbolic tangent function, and tan―1:股→ [O,1r[ ¥ { 7r /2} is the inverse of the 
trigonometric tangent function. 
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For"'E恥 letX be a uniquely D"'―geodesic space. Then, the following properties 
hold for any "'E尺， aE [O, 1], and x,y EX  with d(x,y) < D応

(a) lx 〶 Oy = x and Ox 〶 ly = y. 

(b) ax 〶 (1-a)x=x.

(c) 炉合抄＝炉④ ½Y·
These properties (a), (b) and (c) are obtained directly from the definition of Ii-convex 
combination. 

゜Theorem 3.2. The 0-convex combination④ is identical with the traditional convex 
combination①. 

Proof. For DE  ]O, oo], let X be a uniquely D-geodesic space and take x, y EX  with 

゜d(x, y) < D. Then we show ax 〶 (1 -a)y = ax EB (1 -a)y for any a E [O, l]. Since 

゜ax① (1 -a)y E [x, y], we get 

where 

゜ax① (1-a)y = argmin (ad(x, z)2 + (1 -a)d(y, z)2) = a'x① (1-a')y, 
zE[x,y] 

a'= argmin (a((l -t)d(x, y))2 + (1-a)(td(x, y))2) = a. 
t E [0,1] 

Thus we get the conclusion. 口

Lemma 3.3. Let K E股 andX a uniquely D氏―geodesicspace. Take x, y E X with 
d(x, y) < D,.. and a E [O, l]. Define g,..: X →JR by g,..(z)＝叫(d(x,z)) + (1 -
a)c,.(d(y, z)) for z E X. Let C be a subset of X such that d(u, v) < D,.. for any 

k、

u,v EC and ax① (1-a)y EC. Then ax① (1 -a)y = argminzEC島 (z).

k 

Proof. Put v = ax① (1 -a) y = argminzE[x,y]島（z)E C. If x = y, then we obtain 

v = x = argminzEC c,;,(d(x, z)) = argminzEC島 (z),which is the conclusion. Suppose 
that xキyand take w E C ¥ { v} arbitrarily. Putt= d(y, w)/(d(x, w) + d(y, w)) and 
v'= tx① (1-t)y. Then d(x,v'): d(y,v') = d(x,w): d(y,w). Moreover, we obtain 
叫 V)さ島(v'),notably we get g氏(v)< g,;,(v') if vキv'.

Suppose that v = v'. Then we get wキ v'andhence w恣[x,y]. Thus we have 
d(x, v') + d(y, v') = d(x, y) < d(x, w) + d(y, w). It implies that d(x, v') < d(x, w) and 
d(y, v') < d(y, w). Therefore we get g,;,(v') < g,;,(w) and it follows that g,;,(v) < g,;,(w). 
Next we assume vキv'.Then we have d(x, v'）:S d(x,w) and d(y,v') :S d(y,w), and 

hence g,;, (v') :S島 (w).It implies g,;, (v) < g,;, (w) and thus we get the conclusion. ロ

Corollary 3.4. Let /'i, E股 andX a uniquely geodesic space such that d(u, v) < D氏

for any u,v EX. Take x,y E X, a E [O, 1] and define g氏： X →良 byg,;,(z) = 

ac,;,(d(x, z)) + (1 -a)公 (d(y,z)) for z EX. Then ax CD (1 -a)y = argminzEX島 (z).
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4 1 -convex combination 

The"'—convex combination is not defined only in geodesic manifolds with a curvature 
"'・ For instance, we can define 1>,-convex combinations on an Euclidean space町

for any "'E股． However,not all of "'—convex combinations have good properties 
on町． Infact, it is obvious that the most useful 1>,-convex combination on町 is
the 0-convex combination. We consider that the 1>,-convex combination defined on 
a geodesic manifold with a curvature exactly氏 shouldplay a beneficial role, that is 
implied by previous studies [2, 3, 4]. 

In this section, we investigate properties of the I-convex combination on geodesic 
spaces. Additionally, we confirm that the I-convex combination has good behavior 
on the unit sphere in an Hilbert space, especially the 2-dimensional unit sphere §乞

4.1 1-convex combination on geodesic spaces 

For DE  ]O, 1r], let X be a uniquely D-geodesic space. Then the I-convex combination 
of x, y EX  is defined by 

ax① (1-a)y = argmin (ac1(d(x, z)) + (1 -a)釘 (d(y,z))) 
zEX 

= argmax (a cos d(x, z) + (1 -a) cos d(y, z)) 
zE[x,y] 

for each a E [O, 1], where d(x, y) < D. 

Lemma 4.1. For D E ]O, 1r], let X be a uniquely D-geodesic space. Let x, y E X 

such that O < d(x, y) < D, and put do= d(x, y). Then for any a E [O, 1], 

ax 〶 (1 -a)y 

= （土tan―1 a s i nd1  1 -a) sind。
1 -a + o osd。)x ① (盃tan-1~。)y

Proof. The proof of Theorem 3.1 exactly implies the conclusion. ロ

Let X be a CAT(l) space, and take△(x, y, z) C X and a E [O, 1] arbitrarily. Then 

cosd(ax① (1 -a)y, z) sin D ~ sin(aD) cos d(x, z) + sin((l -a)D) cos d(y, z) (i) 

holds, where D = d(x, y). This inequality is often called the parallelogram law on 
CAT(l) spaces. In an admissible subspace S of the unit sphere§汽theineq叫 ity(i) 
holds as the equation. On the other hand, for any△(x,y,z) C X and a E [O, 1], 

cosd(ax① (1 -a)y, z) 2: 
l acosd(x,z) ＋ （1 -a) cosd(y, z) 

V心＋ 2a(1-a)cosD+（1 -a)2 
(ii) 

holds. Incidentally, we know that two inequalities are equivalent, which can be proved 
from Lemma 4.1, see [3]. Therefore, in S, the inequality (ii) also holds as the equation. 
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Lemma 4.2. Let d E ]0,1r/2[ and define f: ]O, 1[→良 byf (t) = (sin td) / t for 
t E ]O, l[. Then f is strictly decreasing. 

Lemma 4.3. Let d E ]0,1r/2[, a E ]O, 1[ and put 

1 asind 
a = -tan 

d 1 -a+ d 
E ]O, l[. 

a cos 

Then the fallowing hold: 

• If a< 1/2, then a> cr; 
• if a= 1/2, then a= cr; 
• if a> 1/2, then a< cr. 

Proof. The case where a= 1/2 is obviously true. It is enough to prove only the case 
where a< 1/2 by the symmetric property. 

Suppose that a < 1/2, and define a strictly concave function g: [O, 1]→股 by
g(t) = o:cos((l -t)d) + (1-a)costd fort E [O, l]. Then cr i . Thenび isa unique maximizer of 
g. In addition, we obtain 

g'(a) = ad sin ((1-a)d) -(1-a)dsinad 

= a(l -a)d • (~州＿―~-¥)<0
from Lemma 4.2. It implies a > a and thus we get the conclusion. 口

Corollary 4.4. For D E ]O, 1r], let X be a uniquely D-geodesic space, and take 

x, y EX  such that O < d(x, y) < R. Let a E ]O, 1[. Then ax国1-a)y= axffi(l-a)y 

holds if and only if a = 1/2. 

Proof. Lemma 4.3 implies the conclusion. ロ

Corollary 4.5. For D E ]O, 1r], let X be a uniquely D-geodesic space, and take x, y E 

X such that O < d(x, y) < R. Let a E ]O, 1[¥ {1/2}. Then a point u1 = ax① (1-a)y 

is farther from the midpoint ½x ( ½Y than u0 = ax① (1 -a)y. 

Proof. Put ax① (1-a)y := u1. If a< 1/2, then we have 1/2 > a>び byLemma 4.3. 
Otherwise, we get 1/2 < a < a. Therefore附 isfarther from the midpoint ½x ① }y 
than u。inboth cases. ロ

Lemma 4.6. Let d E ]O, 1r /2[, and define a function f: [O, 1]→[O, 1] by 

f(a) 
1. _, asind 
tan a = -

d 1-a+acosd 

for a E [O, l]. Then f is continuous, strictly increasing, and bijective. 

Proof. By basic calculations, we get『(a)> 0 for any a E [O, 1]. Since f(O) = 0 and 
f(l) = 1, we get the conclusion. ロ
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Corollary 4.7. For D E ]O,n:], let X be a uniquely D-geodesic space, and take 

x,y EX  such that O < d(x,y) < D. Then [x,y] = {tx EB (1-t)y It E [O, 1]}. 

Proof. Define a function f: [O, 1]→[O, 1] by 

1 
f(a) =— tan— 

asinD 
D ---- 1 -a + a cos D 

for a E [O, l]. Then we have {tx①(1-t)y It E [O, 1]} = {f(t)xEB(l-J(t))y It E [O, 1]} 
by Lemma 4.1, thus we get the conclusion by bijectivity off. ロ

Corollary 4.8. For D E ]O, n:], let X be a uniquely D-geodesic space, and take 
x, y EX  such that O < d(x, y) < D. Put d0 = d(x, y). Then for any a E [O, 1], 

sin (ado) sin ((1 
ax④ (1 -a)y = ~ x EB 

((1 -a)do) 

sin(ado) +sin((l -a)do) -= sin(ado) +sin((l -a)do) 
y. 

1 
Proof. Takeび E [O, l]. Then there exists a E [O, 1] such that ax EB (1 -a)y = 
ax① (1 -び)yby Corollary 4.7. Thus, using Lemma 4.1, we obtain 

1 _1 asind。
び＝一tan

d。 1-a+ acosd。'
which is equivalent to 

sin (ado) 
a= 

sin (ad。)＋sin ((1 -a)d0) ・ 

Consequently we obtain the conclusion. 

Lemma 4.9. For a, b, c, d E良，

sin ((a + b) (c -d)) sin ((a -b) (c + d)) -sin ((a + b) (c + d)) sin ((a -b) (c -d)) 

= -sin 2ac sin 2bd + sin 2ad sin 2bc. 

ロ

Lemma 4.10. Let k E ]O, 1[ and define f: ]0,7r[→瞑 byf(x) = (sinkx)/sinx for 
x E ]O, 7r[. Then f is strictly increasing. 

Theorem 4.11. Let a E ]O, 1[, and define a function f: ]O, 7r /2[→ ］0, 1[ by 

1 
J(d) =~tan—1 

asind 

d 1 -a + acosd 

for d E ]O, 7r /2[. Then the following hold: 

• limd→of(d)=a; 
• if a < 1/2, then f is strictly decreasing; 
• if a > 1/2, then f is strictly increasing. 
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Proof. The equation limd→o f(d) = a can be verified easily, thus we prove the other 
properties. It suffices to show the case where a < 1/2. Let a E ]O, 1/2[, d1, d2 E 

JO, 1r/2[ and suppose d1 < d2. Put a1 = J(d1) and四＝ J(d2)- Then we obtain 
び1< 1/2 andび2< 1/2 by Lemma 4.3. Moreover, using the equationび2= f(d砂， we
get 

sin（び2必）
a=  

sin (a2必）＋sin((1 —叫ん）．
(iii) 

Define a strictly concave function g: [O, 1]→股 by

g(t) = a cos ((1 -t)dリ＋ （1 -a) costd1 

fort E [O, l]. Thenび1is a unique maximizer of g. By the formula (iii), we obtain 

g(t) = 
sin（び2必）cos((1 -t)d1) + sin ((1一び2)d2)cos td1 

sin（び2d2)十 sin((1 —叫必）

for any t E [O, 1] and hence 

g'(t) = 
d1 (sin（び2d2)sin ((1 -t)d1) -sin ((1一び2)d叫sintdリ

sin（び2d叫＋sin((1 —叫必）

for any t E [O, 1]. Put 

C= 
d1 

sin（び2必）＋sin((1一び2)d2)"

Then we get C > 0 and 

1 
-g'（び2)= sin（び2d2)sin ((1一び2)d1)-sin ((1一び2)d2)sin（び2d1).
C 

Put p = (d1 +必）／2,q = (d2 -di)/2, and k = 1 -2び2.Th en using Lemma 4.9, we 
have 

缶＇（叫＝ sin((p + q)（合ー｝り）sin((p -q) (½ +炉））
1 1 

-sin ((p + q) (½ + ½ k))・（（ 1 1 ~ + ½ k)) sin ((p -q)（う―戸））
= -sinkpsinq + sin kqsinp 

= sinpsinq (~り kq _ sinkp)． 
sinq sinp 

Since O < q < p < 1r /2 and O < k < 1, we get g'（び2)> 0 from Lemma 4.10. Therefore 
we obtain釘＞び2and it implies f(d1) > f(d叫．ロ

Theorem 4.11 implies that the greater the distance between two points x and y, 

the further the point ax① (1 -a)y is from the midpoint of x and y as a ratio than 
the point ax① (1 -a)y. 
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4.2 I-convex combination on unit spheres 

Next, we observe the nature of the 1-convex combination on a unit sphere of a Hilbert 

space to know a relation between① and①.Hereafter, we consider SH the unit sphere 

embedded in a Hilbert space H, that is, SH = {x EH  I llxll = 1}. Suppose that a 
metric d: SH→[O，叫 isdefined by d(x, y) = cos―1〈x,y〉foreach x,y ESH, where 
COS―1: [-1, 1]→ ［0, 1r] is the inverse of the trigonometric cosine function. Then SH is 
a complete CAT(l) space. If H =配， thenSH becomes a model of the unit sphere 
訊 whichhas a constant curvature 1. 

In what follows, [x,y] denotes a geodesic segment on SH joining x,y ESH, and 
[x，珈 denotesa geodesic segment on H joining x, y EH. Furthermore, we write OH 

for the origin of H. 

Theorem 4.12. Let x, y ESH such that O < d(x, y) < 1r. Then a convex combination 
tx⑤ (1 -t)y E SH is expressed by 

sin(td(x, y)) __, sin((l -t)d(x, y)) 
tx ① (1-t)y=~x+ 

sind(x,y) sind(x,y) y 

for any t E [O, l]. 

Theorem 4.13. Let x, y ESH such that d(x, y) < 1r. Then a 1-convex combination 

tx EB (1 -t)y E SH is expressed by 

tx EB (1 -t)y = 
tx + (1 -t)y 

lltx + (1 -t)yll 

for any t E [O, l]. 

Proof. By the definition of 1-convex combination, we have 

1 
tx① (1 -t)y = argmax (t cos d(x, z) + (1 -t) cos d(y, z)) 

zESH 

= argmax〈tx+ (1 -t)y, z〉.
zESH 

Put p = tx + (1 -t)y and w = p/llPII-Then for any z ESH, we obtain 

〈tx+ (1-t)y,w〉-〈tx+ (1 -t)y, z〉=||PII-(p，z〉=||Pllllzll-〈p,z〉2:0. 

1 
Thus we get tx① (1 -t)y = w, which is the desired result. 口

Corollary 4.14. Take x,y ESH with d(x,y) < n. For a E [0,1], take u = ax+ 

(1 -a)y E H and put v = ax 〶 (1- a)y E [x, y]. Then three points u, v, and OH are 
on a straight line. 
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Proof. Since v = u/llull, we get the conclusion. ロ

Theorem 4.13 implies that ax EB (1-0:)y ESH is a projection of ax+ (1-0:)y EH  
into the unit sphere SH. 

Lemma 4.15. Take x,y ESH with d(x,y) < 1r. Let k,l E ]O, 1] and put x'= kx, 
y'= ly. Then the geodesic segment [x, y] c SH is expressed by 

[x,y]={~] □ 公~ I t E [O, 1]} = { lif Ip E [x', y']H} 

Proof. Take u E [x, y] arbitrarily. Then there exists t E [O, 1] such that u = tx〶 (l-t)y

by Corollary 4.7. Thus, putting t'= tl/(tl + (l -t)k), we get 

tx + (l -t)y t'x'+ (1 -t')y' 
U = ＝ 

lltx + (1 -t)yll llt'x'+ (1 -t')y'II. 

On the other hand, takes E [O, 1] and put u'= (sx'+ (1 -s)y')/llsx'+ (1 -s)y'II-
Then putting s'= sk/(sk + (1 -s)l), we obtain 

, sx'+ (1-s)y's'x + (1-s')y _, __ l 
u = 

llsx'+ (1 -s)y'II 11s'x + (1 -s')YII 
= ~ = s'x EB (1 -s')y E [x, y], 

which implies the conclusion. 口

Lemma 4.15 yields the following two corollaries. 

Corollary 4.16. Take x, y E SH arbitrarily. Let k, l E ]O, 1] and put x'= kx, 
y'= ly. Then v/llvll E [x,y] holds for any v E [x',y']H・

Corollary 4.17. Take x, y E SH arbitrarily. Let k, l E ]O, 1] and put x'= kx, 
y'= ly. Then for any u E [x,y], there exists v E [x',y']H such that u = v/llvll-

Fact 4.18 (Ceva's theorem in plane geometry). Let V be a real vector space and 
x, y, z E V. For a, fJ, "(E ]O, 1[, take p = (I -a)x + ay, q = (I -fJ)y + fJz and 
r = (l-1)z+1x. Put [u,v]v = {tu+ (l-t)v It E [O, 1]} for each u,v EV. Suppose 
that [x, y]v n [y, z]v n [z, x]v = 0. Then [x, q]v n [y, r]v n [z,p]vキ0if and only if 

~. ~. ~ = 1 
1-a l-fJ l-1 

Using the I-convex combination and the fact above, we get the following theorem 
which can be said to be Ceva's theorem on the unit sphere. 

Theorem 4.19. Let S be a nonempty convex subspace of SH such that d(u, v) < 1r for 
any u,v ES, and△(x, y, z) a geodesic triangle on S such that [x, y]n[y, z]n[z, x] = 0. 

For a, fJ,'YE ]O, 1[, take p = (l -a)x 〶 ay, q = (l -fJ)y E9 fJz and r = (I -1)z E9 "(X. 
Then [x, q] n [y, r] n [z,p]キ0 if and only if 

~. ___§_. _J__ 
1 -a 1 -0. 1 -1 

= 1. 
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Proof. Let△H(x, y, z) = [x, Y]H U [y, z切U[z,x伍 bea geodesic triangle on H. Put 
p = (l -a)x + ay, q = (l -f3)y + {3z, andア＝ （1 -1)z + "'(X. Then we have 

P = fi/llfill, q = <i/ll<ill, r =ア／llrll,and fi, <i，ア E△瓜x,y, z). By Fact 4.18, we obtain 
[x,<i]H n [y,r]H n [z,fi]Hキ 0 holds if and only if a/31/((l -a)(l -/3)(1 -1)) = 1. 
Furthermore, Corollaries 4.16 and 4.17 imply that [x, q伍n[y，ア］Hn [z,fi]Hキ 0 if 
and only if [x, q] n [y, r] n [z,p]キ 0. ロ

5 Balanced 1-convex combination 

In a Hilbert space H, let x1,x2,...,Xm EH  and a1,a2,...,am E [0,1] such that 

区:1ai = 1. Then 
m m 

こa凸 ＝ argminど叫I叫一 zll2
zEH i=l i=l 

holds. Based on this fact, we generalize the I-convex combination to be defined for 
a finite number of points. Let S be a nonempty convex subspace of SH such that 

d(u,v) < 1r for any u,v ES. For x1丘砂，．．．，XmE S and a1, a2,..., °'m、E[O, 1] with 
~:1 ai = 1, we define B({x1,..., Xm}, { a1,..., am}) ES by 

B({x1,...,xm}, {a1,...,am})= argrn~ax f。icosd(xi,z).
zES i=l 

We often write this point simply as B(｛凸｝，｛叫）． Wecall the point B(｛叩｝，｛叩｝） a 
balanced l-convex combination of x1心2,...,Xm on S. The 1-convex combination is 
the case where m = 2 for the balanced 1-convex combination. 

Theorem 5.1. Let S be a nonempty convex subspace of SH such that d(u,v) < 1r 
for any u, v E S, and take x1, x2,..., Xm E S arbitrarily. Then a balanced l-convex 
combination B(｛叩｝，｛ai})E S is well-defined, and it is expressed by 

m 111 m 

B(｛叩｝，｛m}）＝苔<YiXi/苔柘Xi

for any a1, a2,・・・,Ocm E [O, 1] such that 区~1 年＝ 1.

Proof. By the definition of B(｛叩｝，｛叫）， wehave 

m 

B(｛叩｝，｛叫） ＝ar悶ax苫aicosd(xi,z)= ar累ax〈言CTiXi,Z). 
Putp= E：：1 aixi and w = p/llPII ES. Then for any z ES¥ {p}, we obtain 

信O!iXi,W)-〈言Cl!i叫， z)= IIPII -〈p,z〉=||Pllllzll-〈p,z〉>O 
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and hence we get the conclusion. 

Theorem 5.1 is a generalization of Theorem 4.13. 

Theorem 5.2. Let S be a nonempty convex subspace of SH such that d(u, v) < 1r for 
any u, v E S, and let△(x, y, z) be a geodesic triangle on S. Take a1, a2, a3 E ]O, 1[ 
with a1 +叩＋の＝ landlet u = B({x,y,z},{a1,a2,叩｝）． Put(3＝a2/（⑫ ＋叩）

and let w =(3y④ (1 -(3）z. Then u E [x,w]. 

口

Proof. Put p = fJy + (1 -fJ)z and q = a1x + a2y + a3z. Then, from Theorem 4.13 
and Theorem 5.1, we obtain w = p/llPII and u = q/llqll-Since 1 -a1 = a2 + a3, we 
also have q = a1x + (1 -a1)p. Thus, putting"(= aif(a1 + (1 -a1)IIPII), we get 
q = (a1 + (1 -a1)IIPll)('Yx + (1 -'Y)w). It implies 

q 四X+（1 -7)w 1 
U = ＝ ＝戸X 〶 (1 -'Y)w E [x, w] 

llqll lbx + (1-'Y)wll 

from Corollary 4.7. 口

We consider that Theorem 5.2 is a crucial result that shows the suitability of the 
1-convex combination on the unit sphere. Indeed, if we only use the traditional convex 
combination① on a unit sphere, then we do not obtain simple results like Theorem 
5.2. 
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