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Approximation of a solution to equilibrium problems
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1 Introduction

We use an operator called resolvent defined for an equilibrium problem, which is one
of the most common nonlinear problems. The resolvent of an equilibrium problem
is a fundamental concept since the solution to the problem coincides with the set of
fixed points of the resolvent. In this study, we prove an approximation theorem for
the solution to the equilibrium problem in CAT(1) space using the resolvent with the

CQ projection method.

Kimura and Kishi proposed the notion of resolvent for equilibrium problems in

Hadamard spaces as follows:

Theorem 1 (Kimura and Kishi [3]). Let X be a Hadamard space with the convex
hull finite property, and let K be a nonempty closed convex subset of X. Suppose that

f: K x K — R satisfies the following.

(E1) f(x,z) =0 for every x € K;

(E2) f(x,y)+ f(y,x) <0 for every z,y € K;

(E3) for every x € K, f(x,-): K — R is lower semicontinuous and convezx;
(E4) for everyy € K, f(-,y): K — R is upper hemicontinuous.



105

Define Jp: X — X by

Jfl‘Z{ZEK

: 1 2 1 2
inf (f(z,y) b rd(@,y) - pd(z.2) ) > o}

for x € X. Then,

(1) D(Jy) = X;

(i1) Jy is single-valued and firmly nonexpansive;
(iir) F(Jy) = S(f);
(iv) S(f) is closed and convez.

Motivated by this result, the second author introduced a resolvent on CAT(1)
spaces.

Theorem 2 (Kimura [1]). Let X be an admissible complete CAT(1) space with the
convex hull finite property, and let K be a nonempty closed conver subset of X.
Suppose that f: KxK — R satisfies (E1)-(E4) in the theorem above. Define Trx C K
by

fo —{ZGK

in[f((f(z,y) —logcosd(x,y) + logcosd(x,z)) > 0}
ye

for x € X. Then,
(1) Ty is single-valued;
(i) Ty: X — K satisfies

cosd(z,Try) = cosd(y, Tsx)
cosd(z,Trx)  cosd(y,Try)

<2cosd(Tyx,Try)

forx,y € X;
(iii) F(Ty) = S(f);
(iv) S(f) is closed and convez.

The CQ projection method for a nonexpansive mapping was firstly proposed by
Nakajo and Takahashi.

Theorem 3 (Nakajo and Takahashi [4]). Let H be a Hilbert space. Let T: H — H
be a nonexpansive mapping with F(T) # (. For given x =z, € H, C1y = Q1 = H,
define {x,} by

Cnt1={2 € H | |Txp — 2|| < [Jwn — 2|},

Qni1={z€ H|{xy —z,0 —x,) >0},

Tn+l1 = PCn+1ﬁQn+1x'

Then x,, — Pp(1yx, where Pk : H — K is the metric projection of H onto a nonempty
closed convex subset K of H.



106

In this article, we apply the resolvent of the equilibrium problem in CAT(1) space
to the CQ projection method, which is a scheme for generating a sequence that
converges to a fixed point. We prove an approximation theorem of the solution to the
equilibrium problem.

2 Preliminaries

Let X be a metric space and T': X — X. Then, the set of all fixed points of T is
denoted by F(T), that is,

FT)={z€e X |z=Tz}.

T is said to be quasinonexpansive, if F(T') # 0 and d(T'z, z) < d(z, z) for z € X and
z € F(T).

Let X be a metric space. For x,y € X, a mapping c¢: [0,d(z,y)] — X is called
a geodesic if ¢ satisfies ¢(0) = z,c(d(z,y)) = y, and d(c(s),c(t)) = |s — t| for every
s,t € [0,d(z,y)]. If for any x,y € X, there exists a unique geodesic with endpoints z
and y, then X is called a uniquely geodesic space. For a uniquely geodesic space X,
the image of the geodesic with endpoints x,y € X is denoted by [z,y]. In this case,
there exists a unique z € [z,y] such that

d(z,z) = (1 = t)d(z,y) and d(z,y) = td(x,y).

We denote it by z = tx @ (1 — ¢)y and we call it a convex combination of x and y.

Let (X, d) be a uniquely geodesic space. The triangle A(x,y, z) formed by z,y, z €
X satisfying d(z,y) +d(y, z) + d(z,x) < 27 is called a geodesic triangle. Consider the
two-dimensional unit sphere S? as a model space of X. Then for a point z,y,z € X
satisfying d(z,y)+d(y, ) +d(z,x) < 27, a comparison triangle A(Z, 7, Z) of A(z,y, 2)
is defined as a triangle on S? such that d(x,y) = ds2(Z,7),d(y, 2) = ds2(y,%),d(z,x) =
ds2(Z,T). A comparison point of p = tz®(1—t)y € [z, y] is defined by p = tTB(1—t)y €
[Z,7]. If X satisfies that

d(pv Q) < dSz (]37 6)

for any A(z,y,2), p,q € Ax,y,2) and p,q € AT, 7, Z), then it is called a CAT(1)
space and this inequality is called the CAT(1) inequality.

Theorem 2.1. Let X be a CAT(1) space. Then
cosd(tx ® (1 —t)y, z)sind(z,y) > cosd(x, z) sintd(x, y) + cosd(y, z) sin(1 — t)d(x, y)
for x,y,z € X such that d(xz,y) + d(y, z) + d(z,x) < 2w, and t € [0, 1].

Corollary 2.1. Let X be a CAT(1) space. Suppose d(z,y) + d(y, z) + d(z,x) < 2w
for x,y,z € X. Then

cosd(tx @ (1 —t)y,z) > tcosd(z,z) + (1 —t)cosd(y, z)
fort €[0,1].



Let X be a CAT(1) space. X is said to be admissible if d(u,v) < w/2 for any
u,v € X.

Let X be an admissible complete CAT(1) space. Let C' C X be a nonempty closed
convex set. Then, there exists a unique y, € C satisfying

d(w,y:) = inf d(zy)

for x € X. We define Po: X — C by Pox = y, for x € X. We call it the metric
projection onto C.

Let X be a CAT(1) space. The set AC({x,,}) of all asymptotic conters of a bounded
sequence {x, } is defined by

AC({zn}) = {z e X

inf limsup d(z, z,,) = limsup d(z, xn)}
z€X np—oco n—o00

Let X be a CAT(1) space and {z,,} C X. If AC({z,, }) = {x0} for all subsequence

{zp, } of {x,}, then we say {x,} is A-convergent to x(, and we denote it by x,, A xo.
The point zg is called a A-limit of {z;,}.
Let X be a CAT(1) space. A sequence {z,} C X is said to be spherically bounded
if
inf limsup d(z, z,) <

z€X nooo

ol 3

holds.

3 Approximation of a solution to a equilibrium problem

Let X be an admissible complete CAT(1) space. Let K C X be a nonempty set. An
equilibrium problem for f: K x K — R is the problem of finding zy € K such that
f(z0,y) > 0 for all y € K. The solution set S(f) is defined by

S(f):{zGK

yig’(f(z,y) 20}.

We suppose the four conditions for f as follows:

(E1) f(z,z)=0for all z € K;

(E2) f(z,y)+ f(y,xz) < 0forall z,y € K;

(E3) f(z,-): K — R is lower semicontinuous and convex for every z € K;
(E4) f(-,y): K — R is upper hemicontinuous for every y € K.

Theorem 3.1 (Kimura [2]). Let X be an admissible complete CAT(1) space with the
convez hull finite property and let K C X be a nonempty closed convexr set. Suppose
that f: K x K — R satisfies (E1)-(E4). Define Thy: X — K by

Thjx = {z e K (Mf(z,y) —log cosd(y, x) + logcos d(z,x)) > 0}

inf
yeK
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for x € X. Then

cosd(T)5v,u) cosd(Tyfu,v)

A d(T T >\
A+ p)cosd(Drsu, Tpv) 2 cosd(Thru,u) Mcosd(T,quv)

for X\, p >0 and u,v € X.

Theorem 3.2. Let X be an admissible complete CAT(1) space with the convex hull
finite property. Suppose that X satisfies the following:

e {z€ X |du,z) <d(v,z)} is convex for u,v € X;
e {z € X |cosd(u,v)cosd(v,z) > cosd(u, z)} is convez for u,v € X.

Let K C X be a nonempty cloded convex set. Suppose that f: K x K — R satisfies
(E1)-(E4) and S(f) # 0. Define Ty: X — K by

Tfl‘:{ZEK

inlf((f(z, y) — logcosd(z,y) + logcosd(x, 2)) > O}
ye

for every x € X. Let {\,} C [a,00] and 0 < a < 0o0. Generate {x,} by z1 € X,Ch =
Q1 =X, and

Cry1 ={z€ X |d(Tx, fzn,2) < d(xn,2)},
Qn+1 ={z € X | cosd(x,xy,) cosd(xy, z) > cosd(z,z)},
Tn4+1 = Pcn+1an+1x

forn € N. Then x, — Pspyz € K.

Proof. First, we prove {x,} is well-defined by induction. C; = @1 = X is a closed
convex set and S(f) C C1 NQ;. For k € N, assume that Cy, Q are closed convex
sets and they satisfy S(f) C Cr N Qk. Since {z € X | d(Tfzk,2) < d(xy,2)} is
convex by assumption, we know that Cjy; is closed and convex. Similarly, since
{z € X | cosd(z,zy)cosd(xy,z) > cosd(x,z)} is convex by assumption, we also
know that Q41 is closed and convex. Next, we prove S(f) C Cri1 N Qr+1. Let
z € S(f) = F(T}). Since T} is quasinonexpansive, d(Tyxy, z) < d(z, z) holds, and
we obtain z € Cgy1. This implies S(f) C Cky1. Moreover, we can show S(f) C Qp+1.
Since S(f) C Cr N Qk from the assumption of induction, it is sufficient to show
CrNQk C Qrs1- Fix z € C N Qy, arbitrarily. Then,

tzed (1 — t)%k =tz (1 - t)Pckakx € CrNQy
for t € ]0,1[. Therefore,

2 cos d(z, z5) cos ((1 - %) d(mk,z)> sin (%d(mk,z)>

= cosd(x,xk)(sind(zy, z) — sin((1 — t)d(xg, 2)))
= cosd(z, Pc,ng, ) sind(zy, z) — cosd(x, x) sin((1 — t)d(z, 2))



> cosd(x,tz © (1 — t)xy) sind(xy, z) — cosd(x, x) sin((1 — t)d(xg, 2))
= cosd(x, z) sin(td(zk, 2))

t t
= 2cosd(x, z) cos <§d(xk, z)) sin <§d(xk, z)) .
When z # zy, dividing by 2sin(td(xy, z)/2) and letting ¢ — 0, we have

cosd(x,xy) cosd(xy, z) > cosd(x, 2).

From the definition of Qt1, we have z € Qi41. If 2 = xy, then obviously z € Q1.
Therefore, we get Ci N Qr C Qi+1. Hence we have Ciy1 and Q41 are closed convex
sets and S(f) C Cry1 N Qp41. Since the intersection of closed convex sets is a closed
convex set, there exists the metric projection to Cy41NQry1 and xx41 = Po, . 0@, @
can be defined. Therefore {x,} is well-defined. It is also shown that Pgpyz € S(f) C
C,NQyand C, NQ, C Qpn+1, for arbitrary n € N.

Next, we prove d(Tx, fon,2,) — 0. For arbitrary n € N, since Pgp)yz € S(f) C
C, N Q,, from the definition of the metric projection, we get

d(z,r,) = d(z, Pc,nq,r) < d(z, Ps(pz) < g

Therefore, sup,,cy d(z,z,) < d(z, Ps(pz) < 7/2. Fix z € Q, arbitrarily. From the
definition of @Q,,, we have

cosd(z,xy,) cosd(zy, z) > cosd(z, 2)

and then,
cosd(z,x,) > cosd(zx, z).
It follows that
inf d(z,y) <d(z,z,) < d(z,z).
yeQ'n
It implies that d(z,z,) = inf,cq, d(z,y). Therefore, we have Py oz = z, =
Pc,ng,r € Cp,NQp C Qpt1. Thus, we obtain
d(z,zy,) = d(z, Pc,nq, ) = d(z, Py, )
> d(:L‘, PQn+1x) = d(SC, Pcn+lan+1x) = d(xvxn-‘rl)v
for n € N. This implies that {d(z, z,)} is a decreasing sequence. Thus, {cosd(z,z,)}

is increasing and bounded above, so we get

. T
¢ = lim cosd(z,z,) > cos = = 0.
n—00 2

Also, since 41 € Crp1 N Qpi1 C Qni1, we have

cosd(x, xy,) cosd(xy, Tni1) > cosd(x, Tpi1)
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for n € N. Letting n — oo, we have

climinf cosd(zy,, xni1) > ¢
n— 00

Thus, dividing by ¢ > 0, we get

lim inf cos d(2y, Tpy1) > 1,
n— 00

and since
1 < liminf cos d(zy, Tpt1) < limsupcosd(x,, Tpy1) < 1,
n— 00 n—oo

we get limy, oo c08d(xy, 2pr1) = 1. This implies lim,— o0 d(Zp, Zpt1) = 0. Further-
more, since Zp41 € Cpip1 NQpy1 C Crq, we have d(Th, f 2, Try1) < d(@p, Tpqq) for
n € N. Thus we get,

0 < d(T, fxn,xn) < d(Tx, fZn, Tni1) + d(Zpt1,2n) < 2d(Ty, Tpg1) — 0.

Finally, we show x, — Pg(s)x. Since sup,,cy d(x, z,) < 7/2, {x,} is a spherically
bounded sequence. Fix {zn,} C {n} arbitrarily. There are {An, } C {An,} and

{zn, } C{xn,} such that Ay, — Ao € [a,00] and A wy. Suppose An,, — 00. For
any y € X, we have
d(T)\"ij fln;; s y) < d(T)\nij ;s T, )+ d(xn” ,Y)
<2d(Tx,, ni;,n; ) + AT, fn,Y)-
15 J J v J

Then,
limsupd(T, fZn, ,y) = limsupd(z,, ,y).
ij j J

j—o0 Jj—o0
We also have

(An,, +1)cos d(TA% Fn,; Trwo)

cosd(Tywo, xn, ) cos d(T,\ni_fﬂfmj;wo)
J J

An;
~ cosd(T), FTni; Tn,,) + Ang, cos d(T'pwo, wo)
i
Thus,
COS d(T)\"ij fwnij s wao)
1 cos d(T'rwo, T, ) >\mj cos d(T,\nij FEZOP wo)

> +
/\nij + 1 cos d(T,\nij fn, s a:n]) /\nij +1  cosd(Tfw,,wo)

)‘mj cos d(T,\nij fn, s wo)

>
" An, +1 cos d(Trwo, wo)




It follows that

cosd(T, fng s wo)
y _

lim inf cos d(T),, FTng Tywp) > lim inf
ij

00 j—oo  cosd(Trwo,wo)
and
. coslimsup;_, d(TAni T wo)
cos llﬁsip d(TA"ij FEna;s Tyuo) = cos d(T'swo, fijvo)
Therefore

coslimsup;_, . d(xy, ,wo)
J

coslimsupd(x,, ,Trwy) >
j;)oop ( nigr o 0) 2 cos d(Tpwo, wo)

On the other hand since wq € AC({mnij }), we have
coslimsup d(x,, ,wo) > coslimsup d(z,, ,Trwo).
j—o0 J j—oo ’

Thus,
coslimsup; _, ., d(xnij , W)

coslimsup d(x,, ,wy) >
j~>oop ( i O> o COSd(Tf’wo,’UJO)

which implies
cos d(Tywo, wp) > 1

Therefore, we get wy € F(Ty) = S(f).
Next, suppose /\nij — A\g- We also have

()‘mj +>‘0) cos d(T)\nij fPni;s TAOfxnij )

cosd(ThefTn,, , Tn,, ) cos d(T,\,,Ll.j FTng > Tn; )

> An,. + Ao
"ij cos d(T,\nij Fni; Tn,,) cos(Tagfn,,, Tn,, )

2 21 / >\7Lij >\0

Thus,

2' )\mj)\o — 2\/% =1.

)\nij + Ao 20

1> cosd(Ty,, fn,,, Trgtn,,) >
i

Then we have,
d(T)‘ni]- fxmj s T,\Ofxm.j ) — 0.

Since d(TAfomj,TAnijfxmj) — 0 and d(:vmj,T)\nijfxmj) — 0, we have

d(T,\Ofxmj ,xmj) — 0. Also, since Tn,, A'wo, d(xmj,T,\Ofa:mj) — 0, and T),
is A-demiclosed, we get wg € F(Txs) = S(f).
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Then we have

d(z, Ps(ryr) < d(z,wo) < liminfd(z,z,, )
i i

o0

<limsupd(z,z,, )
Jj—o0 J
< supd(z,,)
neN
< d(z, Pg(f)a:).

Thus, d(x, Ps(syz) = d(z,wo), and hence wy = Pgs(y)x. We also have lim;_, o, d(x, xmj) =
d(x, Ps(fyr), and then Tn,, = Ps(p). Consequently, we have

Ty — PS(f)*Ta

which is the desired result. O
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