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We use an operator called resolvent defined for an equilibrium problem, which is one 
of the most common nonlinear problems. The resolvent of an equilibrium problem 

is a fundamental concept since the solution to the problem coincides with the set of 

fixed points of the resolvent. In this study, we prove an approximation theorem for 

the solution to the equilibrium problem in CAT(l) space using the resolvent with the 

CQ projection method. 
Kimura and Kishi proposed the notion of resolvent for equilibrium problems in 

Hadamard spaces as follows: 

Theorem 1 (Kimura and Kishi [3]). Let X be a Hadamard space with the convex 

hull finite property, and let K be a nonempty closed convex subset of X. Suppose that 

f: KxK→股 satisfiesthe following. 

(E1) f(x,x) = 0 for every x EK; 
(E2) f(x, y) + f(y, x) ::; 0 for every x, y EK; 
(E3) for every x EK, f(x, ・): K →良 'lis lower semicontinuous and convex: 
(E4) for every y EK, f(・, y): K→良'is upper hemicontinuous. 
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Define JJ: X→X by 

Jfx = { z EK  I j~k (!(z, y) + ~d(x, y)2 -~d(x, z)2) 2: O} 

for x EX. Then, 

(i) D（み） ＝X; 
(ii) JJ is single-valued and firmly nonexpansive; 
(iii) F(JJ) = S(f); 
(iv) S(f) is closed and convex. 

Motivated by this result, the second author introduced a resolvent on CAT(l) 
spaces. 

Theorem 2 (Kimura [1]). Let X be an admissible complete CAT(1) space with the 
convex hull finite prope仕y,and let K be a nonempty closed convex subset of X. 
Suppose that f: K x K→股satisfies(E1)-(E4) in the theorem above. Define TJX CK  

by 乃x~{zEK}加J(z,y) -log cos d(x, y) + log cos d(x, z)) :, Cl} 
for x EX. Then, 

(i) Tt is single-valued; 
(ii) Tt: X→K satisfies 

for x,y EX; 

cosd(x,TJY), cosd(y,T_戸）

cosd(x,TJx)'cosd(y,TJy) 
+ ~ ::::; 2 cos d(TJX, Tty) 

(iii) F(TJ) = S(f); 
(iv) S(f) is closed and convex. 

The CQ projection method for a nonexpansive mapping was firstly proposed by 
Nakajo and Takahashi. 

Theorem 3 (Nakajo and Takahashi [4]). Let H be a Hilbert space. Let T: H→ H 
be a nonexpansive mapping with F(T) -:/ 0. For given x = x1 E H, C1 = Q1 = H, 
define { Xn} by 

Cn+l = {z EH  I IITxn -zll ::::; llxn -zll}, 

Qn+l = {z EH  I〈%-z,x-%〉2:O}, 

Xn+l = Pcn+1nQn+1 X. 

Thenxn→PF(T)x, where PK: H→K is the metric projection of H onto a nonempty 
closed convex subset K of H. 
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In this article, we apply the resolvent of the equilibrium problem in CAT(l) space 
to the CQ projection method, which is a scheme for generating a sequence that 
converges to a fixed point. We prove an approximation theorem of the solution to the 
equilibrium problem. 

2 Preliminaries 

Let X be a metric space and T: X→X. Then, the set of all fixed points of T is 
denoted by F(T), that is, 

F(T) = {z EX  I z = Tz}. 

Tis said to be quasinonexpansive, if F(T) -# 0 and d(Tx, z) :::; d(x, z) for x EX  and 
z E F(T). 
Let X be a metric space. For x, y E X, a mapping c: [O, d(x, y)］→ X is called 
a geodesic if c satisfies c(O) = x, c(d(x, y)) = y, and d(c(s), c(t)) = Is -ti for every 
s, t E [O, d(x, y)]. If for any x, y EX, there exists a unique geodesic with endpoints x 
and y, then X is called a uniquely geodesic space. For a uniquely geodesic space X, 
the image of the geodesic with endpoints x, y E X is denoted by [x, y]. In this case, 
there exists a unique z E [x, y] such that 

d(x, z) = (1 -t)d(x, y) and d(z, y) = td(x, y). 

We denote it by z = tx EB (1 -t)y and we call it a convex combination of x and y. 
Let (X, d) be a uniquely geodesic space. The triangle△(x, y, z) formed by x, y, z E 
X satisfying d(x, y) + d(y, z) + d(z, x) < 21r is called a geodesic triangle. Consider the 
two-dimensional unit sphere §2 as a model space of X. Then for a point x, y, z EX  

satisfying d(x, y) +d(y, z) +d(z, x) < 21r, a comparison triangle E（瓦戸） of△(x,y,z)
is defined as a triangle on §2 such that d(x, y) = ds2（歪，y),d(y, z) = ds2 (y，乏），d(z,x) = 
如（乏,x). A comparison point of p = txEB(l-t)y E [x, y] is defined by p = t歪EB(l-t)yE 
［瓦y].If X satisfies that 

d(p, q)さ如(p,q) 

for any△(x,y,z), p,q E△(x,y,z) and p,q E△（歪，0，芝）， thenit is called a CAT(l) 
space and this inequality is called the CAT(l) inequality. 

Theorem 2.1. Let X be a CAT(1) space. Then 

cos d(tx① (1 -t)y, z) sind(x, y)2: cosd(x,z)sintd(x,y) +cosd(y,z)sin(l-t)d(x,y) 

for x, y, z EX  such that d(x, y) + d(y, z) + d(z, x) < 21r, and t E [O, l]. 

Corollary 2.1. Let X be a CAT(1) space. Suppose d(x, y) + d(y, z) + d(z, x) < 21r 
for x, y, z EX. Then 

cosd(tx 8 (1-t)y, z) 2: tcosd(x, z) + (1-t) cosd(y, z) 

fort E [O, l]. 
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Let X be a CAT(l) space. X is said to be admissible if d(u, v) < 1r /2 for any 
u,v EX. 
Let X be an admissible complete CAT(l) space. Let CCX  be a nonempty closed 
convex set. Then, there exists a unique Yx E C satisfying 

d(x,yx) = inf_d(x,y) 
yEC 

for x E X. We define Pc: X→C by Pcx = Yx for x E X. We call it the metric 
projection onto C. 

Let X be a CAT(l) space. The set AC({xn}) of all asymptotic conters of a bounded 
sequence { Xn} is defined by 

AC({ xn}) = { z E X 凰linm--+悶pd(x, Xn) = li巴門pd(z,xn)}.

Let X be a CAT(l) space and {xn} C X. If AC({xnk}) = {xo} for all subsequence 
△ 

{ Xnk} of { Xn}, then we say { Xn} is△-convergent to xo, and we denote it by Xn→ Xo. 
The point x0 is called a△-limit of {xn}-
Let X be a CAT(l) space. A sequence {xn} C Xis said to be spherically bounded 
if 

holds. 

7f 
inf.limsupd(x,xn) < i-
咋 X n→00 2 

3 Approximation of a solution to a equilibrium problem 

Let X be an admissible complete CAT(l) space. Let KC  X be a nonempty set. An 
equilibrium problem for f: K x K →尺 isthe problem of finding z0 E K such that 

f(zo, y) 2 0 for ally EK. The solution set S(f) is defined by 

S(f) = { z EK凰J(z,y) 2 0}. 
We suppose the four conditions for f as follows: 

(El) f(x, x) = 0 for all x EK; 
(E2) f(x, y) + f(y, x) ::::; 0 for all x, y EK; 
(E3) f(x, ・): K→JR is lower semicontinuous and convex for every x E K; 
(E4) f(・, y): K→股 isupper hemicontinuous for every y EK. 

Theorem 3.1 (Kimura [2]). Let X be an admissible complete CAT(1) space with the 
convex hull finite property and let K C X be a nonempty closed convex set. Suppose 

that f: K x K→艮 satisfies(E1)-(E4). Define T,入f:X →K by 

T入fm= {Z E Kinf （入f(z, y) -log cos d(y, x) + log cos d(z, x)）2 0} 
yEK 
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for x EX. Then 

（いμ)cos d(T,入JU,TμJV)>入＋μ
cos d(TμJV'u)'.. cos d(TμJU, V) 
-・ ・cosd(T,入1u,u)・'cosd(Tμfv,v) 

for入，/L> 0 and u, v E X. 

Theorem 3.2. Let X be an admissible complete CAT(1} space with the convex hull 
finite property. Suppose that X satisfies the following: 

• {z EX  I d(u, z)~ d(v,z)} is convexforu,v EX; 
• {z EX  I cosd(u,v)cosd(v,z) 2 cosd(u,z)} is convexforu,v EX. 

Let K c X be a nonempty cloded convex set. Suppose that f: K x K →股 satisfies
(E1}-(E4} and S(f) # 0. Define Tt: X→K by 

T戸＝｛z EK  I j~1-(f(z, y) -log cos d(x, y) + log cos d(x, z)）ミo}
yEK 

for eve内 xEX. Let｛心｝ C[a, oo[ and O <a< oo. Generate {xn} by x1 EX, C1 = 
Q1=X, and 

Cn+l = {z EX  I d(T,心f凸，z)~ d(xn, z)}, 

Qn+l = {z EX  I cosd(x,xn)cosd(xn,z) 2 cosd(x,z)}, 

Xn+l = Pcn+1nQn+1 X 

for n EN. Then凸→ Ps(f)xEK. 

Proof. First, we prove {xn} is well-defined by induction. C1 = Q1 = X is a closed 
convex set and S(f) c C1 n Q1. For k E N, assume that Ck, Qk are closed convex 
sets and they satisfy S(f) c Ck n Qk- Since {z E X I d(T_戸k,Z)~ d(xk, z)} is 
convex by assumption, we know that Ck+l is closed and convex. Similarly, since 
{z E X I cosd(x心）cosd(xk,z)2 cosd(x,z)} is convex by assumption, we also 
know that Qk+1 is closed and convex. Next, we prove S(f) c Ck+1 n Qk+l・ Let 
z E S(f) = F(Tt). Since Tt is quasinonexpansive, d(TJXk, z) ~ d(xk, z) holds, and 
we obtain z E Ck+l・ This implies S(f) C Ck+l・ Moreover, we can show S(f) C Qk+l・
Since S(f) C Ck n Qk from the assumption of induction, it is sufficient to show 
Ck n Qk C Qk+l・ Fix z E Ck n Qk arbitrarily. Then, 

tz① (1 -t)狐＝ tz① (1-t)PcknQkX E ck n Qk 

fort E ]O, l[. Therefore, 

2cosd(x,咋）cos((1 -;) d（砂，z))sin (;d（砂，z))

= cos d(x, xk)(sin d(xk, z) -sin((l -t)d(xk, z))) 

= cosd(x,PcknQkx)sind(xゎz)-cosd(x，⑬）sin((l -t)d(xk, z)) 
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2". cosd(x, tz① (1 -t)咋）sind(xk, z) -cos d(x，祉）sin((l-t)d（砂，z))

= cosd(x, z) sin(td（砂，z))

= 2cosd(x,z)cos (;d(xk,z)) sin (;d（咋，z)).

WhenzヂXk,dividing by 2 sin(td(xk, z)/2) and letting t→0, we have 

cosd(x,狐）cosd（咋，z)2".cosd(x,z).

From the definition of Qk+l, we have z E Qk+l・ If z =咋， thenobviously z E Qk+l・
Therefore, we get Ck n Qk c Qk+l・ Hence we have Ck+l and Qk+l are closed convex 
sets and S(f) CCい1nQい1.Since the intersection of closed convex sets is a closed 
convex set, there exists the metric projection to Ck+1nQい1and xk+l = Pck+inQk+i x 
can be defined. Therefore {xn} is well-defined. It is also shown that Ps(f)X E S(f) C 
Cn n Qn and Cn n Qn C Qn+l, for arbitrary n EN. 
Next, we prove d(T.心f丘％） →0. For arbitrary n E N, since Ps(f)X E S(f) C 
Cn n Qn, from the definition of the metric projection, we get 

n 
d(x, Xn) = d(x, Piら nQnX)こd(x,PS(f)x)＜ -． 

2 

Therefore, supnENd(x,xn)::; d(x,Psu)x) < 1r/2. Fix z E Qn arbitrarily. From the 
definition of Qn, we have 

cos d(x, Xn) cos d(xn, z)2 cos d(x, z) 

and then, 

It follows that 

cosd(x,%）2 cosd(x,z). 

inJ d(x, y)さd(x,Xn)さd(x,z). 
yEQn 

It implies that d(x, Xn) = infyEQn d(x, y). Therefore, we have Pqnx = Xn 

PcnnQ訊;E Cn n Qn C Qn+l・ Thus, we obtain 

d(x, Xn) = d(x, P,ら nQnX)= d(x, Pqnx) 

2: d(x, P,叫 1x) = d(x, Pcn+1nQn+1 x) = d(x, Xn+1), 

for n E N. This implies that { d(x, Xn)} is a decreasing sequence. Thus, { cos d(x, Xn)} 
is increasing and bounded above, so we get 

7 
c = lim cos d(x, Xn) > cos i-= 0. 
n→oo 2 

Also, since Xn+l E Cn+l n Qn+l C Qn+l, we have 

cos d(x, Xn) cos d(xn心n+l)2:cos d(x, Xn+1) 
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for n E N. Letting n→oo, we have 

c lim inf cos d(％ふ＋1);::: c. 
n→OO 

Thus, dividing by c > 0, we get 

liminf cosd(％心＋1)：：：：： 1,
n→OO 

and since 

1 :S liminfcosd(xn心n+l)さlimsup cos d(xn心n+l)さ1,
n→OO n→OO 

we get limn→00 cos d(xn, Xn+1) = l. This implies limn→oo d(％心＋1)= 0. Further-
more, since Xn+l E Cn+l n Qn+i C Cn+l, we have d(T.心f”れ,Xn+l):S:d(xn, Xn+1) for 
n E N. Thus we get, 

0 5 d(T心f％ふ）さ d(T心f％ふ＋1)+ d(xn+l,%）:s; 2d(％心＋1）→ 0.

Fi叫 ly,we show Xn→Pscnx. Since supnENd(x,xn) < 1r/2, {xn} is a spherically 
bounded sequence. Fix {xnJ C {xn} arbitrarily. There are｛入n，3} c {%｝ and 

{ Xn;1} C { XnJ such that入n;j→入。 E[a, oo] and x叫ふwa.Suppose入n;j→ oo.For 
any y EX, we have 

d(T心ijf”凡 'y)さd(T口f”叫 'Xn;1)+ d(x叫 'y)
三2d(T入n,3f”凡 'Xn;1)+ d(T>-n;j JX叫 'y).

Then, 

limsup d(T.心 JXn;,,y) = limsup d(xn;,, y). ，． 
j→oo 3 

3 
） 

J ● → OO 3 

We also have 

（入nii+ 1) cosd(T入n勺戸nii'Ttwo)

cos d(T1wo, Xn;,) 
> 3 十入
-cos d(T入叫戸nり'Xn33)

n, 
J 

cosd(T心戸n;j'wa)
J 

cos d(T1wo, wo) 

Thus, 

cos d(T.心ijf”叫’乃wo)

1 cos d(T1wo, Xnij) 入nij cosd(T.入nijfXnij'Wo) 
> ＋ 
ー入nij+ 1 cos d(T.入nijf”叫 'Xnij) 入nij+ 1 cos d(TJwo, Wo) 

ni. 入 cosd(T.入n,-fXni,'Wo) > J’j  J 
ー入ni, + 1 cosd(T1wo,wo) 

J 
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It follows that 

.. cosd(T.凡ifXnii'wo) 
liminfcosd(T入 f”叫’乃Wo)2 hmlnf 
J→oo 叫 j→;;;・ cos d(T1wo, wo)' 

and 
. coshmsup・伊ni.，Wo)
d(T 

J→(X) d(T入門・ J 
cos lim sup d(TAn;, f”凡，T1wo)2'.'. 

J 

j→(X)j  J -"ii'~ J ~u, - cos d(T1wo, fwo) 

Therefore 
. coshmsupj→00 d(xn,,, wo) 
cos lim sup d(Xn,,, TJWo)：：：： 3.  

j→OO 3 cosd(TfWo, Wo) 

On the other hand since wo E AC({ Xn;j}), we have 

Thus, 

cos lim sup d(xn;,, wo) 2 cos lim sup d(xn;,, Ttwo)-
j→OO j →OO 

J →00 d(xn,1, wo) cos limsup1--+00 d(xn.,, Wo 
coslimsupd(xn,,,wo) 2 ni. ＿ 
j→OO 3 cosd(TfWo,Wo)' 

which implies 

cos d(Ttwo, wo) ~ 1. 

Therefore, we get wo E F(TJ) = S(f). 
Next, suppose心→入。． Wealso have 

3 

(>-ni1+入o)cos d(T,口f”n,J,T入ofXn;j)

＞入
cos d(T,入of”叫 ’Xn;j),,COS d(T-'n;j f”叫 'Xn;j)

十入。
::._ "nij cos d(T,心ijf”叫 'Xn,3) cos(T入of”叫 'Xn,3)

:;:> 2び

Thus, 

2po 
1 2". cos d(T.入 f”凡，T入。Xnり）ミ→

2諷
叫 j

= 1. 
入n,J十入。 2入。

Then we have, 

d(T心iijXn;j, T_入ofXn;j)→0.

Since d(T,入ofXn;j,T,心 jXn;，． )→ 0 and d(xn;j, T,心 jXn;）→ 0, we have j. "J..  "J..,j. "J 

d(T入of”叫 'Xn;j)→0. Also, si △ 
since Xn;,→ wo, d(x 

J 

is△-demiclosed, we get w。EF(T,入t)= S(J). 
叫，T入。戸n;j)→0,and T,入。
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Then we have 

d(x, Psu)x) ::::; d(x, w0)こliminfd(x,Xn,3)
J ● → OO 

::::; limsupd(x,xn,J 
j →OO 

::::; sup d(x, Xn) 
n€N 

::::; d(x, Pscnx). 

Thus, d(x, Pscnx) = d(x, w0), and hence w0 = Pscnx. We also have limj→00 d(x, Xn,j) = 
d(x, Pscnx), and then Xn,j→Pscnx. Consequently, we have 

凸→ PS(f)X, 

which is the desired result. 口
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