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Abstract 

This paper focuses on the feasibility of multi-valued optimization problems under 
perturbations. By using set relations and their scalarization, a modified version of 
theorems of the alternative can characterize the robustness of the feasibility. Espe-
dally under some assumptions, we show algorithms for evaluating the robustness which 
computers could deal with. 

1 Introduction 

We usually solve optimization problems to make decisions for planning, scheduling, or match-

ing. However, mathematical optimization models can't reflect every part of issues which has 
many errors and perturbations. Perturbation theory deals with problems called "robust 

optimization problems" that contain parameters giving them small deviation. If a solution 

remains itself under such deviation, it is said to be "robust." In general, the difficulty of solv-
ing a robust optimization problem is strongly dependent on the way giving perturbations. 
This paper investigates criteria for the robustness of multi-valued optimization problems via 

set-valued analysis. 

Set relations, originally given in [8], are kinds of binary relations between two sets and 
used to determine which one is prefer to the other. To ease set-to-set comparisons, We us叫 ly

quantify set relations with scalarization commonly done in two ways: scalarizaion functions 

or oriented distance functions. The relationship between the relations and the functions have 

been studied as dual expressions or theorems of the alternative (e.g., see [3, 9-11, 14] for 
scalarization functions, [5-7] for oriented distance functions). Recently, Hui et. al. studied 

calculability of scalarization functions and they proved the value of the functions can be 

computed by solving linear programming problems when given sets are polyhedra ([4]). 
Their results enable computers to find out which a preferred set is. 

We sould like ~o sh~w more r~l邸ed scalarization theorems ofthe alternative in a topolog-
ical vector space based on ones in [11]. For proving this kind of theorems, some topological 
assumptions are required such as compactness, boundedness, closedness. As opposed to for-

mer researches, we use convex cone properties inspired by [l]. And as an application, we 
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introduce criteria for robustness of feasibility of a multi-valued optimization problems and 

their calculation algorithms by using set comparisons. 

2 Basic notations 

Unless otherwise specified, we let X be a topological vector space, C C X a convex cone 

satisfying intC -/c 0 throughout the thesis. For two vectors x, y E X, x ::;c y is defined to be 

x E y -C. For two sets A, B C X ¥ {0} and a E良

• A+ B :={a+ b I a EA, b EB}; 

• aA := {aa I a EA}. 

We use convex cone properties with respect to C: A is C-closed if A+  C is closed, A 

is C-bounded if it holds that A C U + C for any open neighborhood U of the zero, A is 

C-compact if any cover of S being like｛い＋ Cl仏 isopen} admits a finite subcover. We 
clearly see C-compactness leads to C-closedness and C-boundedness. 

At first, we introduce the six types of set relations originally proposed in [8]: for nonempty 

sets A, B C X¥ {0} and i = 1,..., 6, the relations岱 aredefined by 

• A弐g)B {==} Ac  nbEB(b -c); 

• A塁）B {==} An nbEB(b -C)ヂ0;

• A玉閃B {==} B c A+  C; 

• AさげB {==} An naEA(a + C)ヂ〇；

• A尋）B {==} A c B -C; 

• Aさ仰B {==} B n (A+ C)バ・

Note that』g)impliesさ閃 andさ訊 whichlead toさ閃 andさ誓 respectively.The last 
(6) （i) 

relation今 isimplied by the others. Moreover, these relations今 fori = 1,..., 6 coincide 
with ::;0 when two compared set A, B are both singleton. 

3 Scalarization functions 

In the thesis, we use the following Minkovski-type Garstewitz functional cpc,d : X→ 塁{oo}
given in [2] defined by 

如，d(x):= infb E股 Ix~c 孤｝．

for a given vector x EX  and a fixed direction d EX. This function coincides with the linear 

functional f EX* where C := {x EX  I f(x)~ O} is a half space. This functional is utilized 
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in set scalarization.some set inequality. Nishizawa et.al. proposed theorems of the alternative 

for set-valued maps with the function in [10]. Moreover, [3, 9] generalized the functional and 

introduced a set scalarization functional<I>~B,d: 2X→股U{ oo} defined by 

螺B,iA):= inf{r E良 |A誓B+1d}. 

for a given set A, a fixed reference set B, and a fixed direction d. All the functions coincide 
(i) （i) 

with'-Pc,d when A=  {x}, B = {Ox}-Also, it holds that A辛 Bimplies<I>e,B,d(A) s o. 
Speaking of set scalarization, set relation-based characterization theorems have been pro-

posed ([11, 14]) under the compactness of given sets. 

Proposition 3.1 ([11]). Let A, BE 2八{0}.Then the following assertions hold. 

• If A is compact, then A ::s (2) （3) （2) 
-clC B and A ゴclCB follow from <I>clC,B,d(A) s o and 

<I> 
(3) 
clC,B,d(A）さ 0for some d E X , respectively. 

• If B is compact, then A ::s (4) （4) （5) 
-clC B and A さclCB follow from <I>~tb,B,d(A) S O and 

<I> (~hRd(A) SO for some d EX  ~~c,B,iA) S O for some d EX, respectively. 

• If both A, Bare compact, then Aさ塁Bfollows from<I>ば麟，d(A)S O for some d E X. 

Proposition 3.2 ([14]). Let A, B E 2八{0}.

• If both A, B are compact, then A弐贔Bfollows from叫贔，B,d(A)：：：：： 0for some d E X. 

• If B is compact, then A ::s (2) （3) （2) 
-lntCBand A ゴintCB follow from <I>intC,B,d(A) ：：：：： 0 and 

<I>位ふ，B,iA)：：：：： 0for some d E X, respectively. 

• If A is compact, then A ::s (4) （4) （5) 
-lntC B and A さlntCB follow from <I>lntC,B,d(A) ：：：：： 0 and 

<I> 
(5) 
intC,B,d(A) ：：：：： 0 for some d E X, respectively. 

One can see the case i = 1 for Proposition 3.1, and the case i = 6 for Proposition 3.2 hold 
without any compactness. 

Theorem 3.1 ([12, 13]). Let A, B E 2八{0}.Then, 

A さ似B~ ヨk E intC s.t.<I>悶(A,B)：：：：： O 

where 

• A is C-compact for case i = 2; 

• A is C-closed for case i = 3; 

• B is (-C)-compact for case i = 4; 

• Bis (-C)-closed for case i = 5; 

• A is C-closed and Bis (-C)-compact, 
or A is C-compact and B is (-C)-closed for case i = 6. 
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4 Application 

Let S be a nonempty set and consider the following optimization problem: 

(P) Minimize J(x) subject to g(x) :Sc r 

where f: S→町， g:S→町， rE記

We assume that g and r are perturbed in the sets G and R, respectively. Moreover, we 

let G(x) := {g(x) I g E G}. 

Proposition 4.1 ([13]). We assume (P) is feasible. Then, the following statements hold on 
G and R: 

• (P) is still feasible for all g E G and r E R if and only if <I>g,)k（G(x),R):S O for some 

k E intC; 

• there exists g E G such that (P) is feasible for all r E R if and only if <I>図(G(x),R) :S 0 

for some k E intC; 

• for all r E R, we can find g E G to make (P) remain feasible if and only if <I>図(G(x),R):S 
0 for some k E intC; 

• there exists r E R such that (P) is feasible for all g E G if and only if叫立(G(x),R) :S 0 

for some k E intC; 

• for all g E G, we can find r E R to make (P) remain feasible if and only if叫匁(G(x),R) :S 
0 for some k E intC; 

• (P) is feasible for some g E G and some r E R if and only if <I>図(G(x),R) :S O for 
some k E intC. 

The above proposition implies the values of scalarization functional indicate the robust-

ness of feasibility for a multi-valued optimization problem. Moreover, each value is calculated 

by solving linear programming problems. 

Proposition 4.2 ([4]). Let G(x), R, C be polyhedral for all x ES, that is, 

G(x) = {z E正 I凡(x)z:S如｝，

R=  {z E股mlP炉 :Sq叫，

C=  {z E町 I仇，z〉20 for all j = 1,..., J} 

where P0(x) is an ax n matrix for all x ES, PR is a /3 x n matrix, q0 E即， qRE配， and

Pj E民m for all j = 1,..., J. Then, the following statements hold for x E S: 

• <I>g,)k（G(x), R) =,~ax,{Val(Pl(x)j)} for (Pl(x)j) defined by 
j=l,...,J 

(Pl(x);) Maximize 
.〈Pj, 知— z沿

ゅj,k〉
subject to P,瓜x)zGこqGand P炉 R:=; qR; 
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• <I>g,)k（G(x), R) = Val(P2(x)) for (P2(x)) and (P2i) defined by 

〈Pj,Z〉
(P2(x)) Minimize t E 艮 subjectto ~ + Val(P21）::::; t for all j = l,..., J and 

〈Pi,k〉
P瓜x)z::::;qか

(P2j) Maximize 
..〈Pj,-Z〉

切，K〉
subject to P屈::::;qR; 

• <I>悶)k（G(x),R)= 1:1~Val(P3(x,z)) for (P3(x,z)) defined by 
zER 

(P3(x, z)) Minimi x,z)) Minimize t E罠 subjectto 
〈P戸 c-Z〉

〈Pj,k〉
s; t for all j = 1,..., J and 

P瓜x)zcs; qc 

• <I>g)k（G(x), R) = Val(P4(x)) for (P4(x)) and (P4(x)j) defined by 

切—z〉
(P4(x)) Minimize t E股subjectto Val(P4(x)j) + ~ :::; t for all j = 1,..., J and 

〈Pj,k〉
松zs; q凡

〈Pj,Z〉
(P4(x)j) Maximize -P-S subject to P,瓜x)zs; qが

〈Pj,k〉

• <I>g)k（G(x), R) = rp~, Val(P5(z)) for (P5(z)) defined by 
zEG(x) 

(P5(z)) Minimize t E股subjectto 
〈Pj,Z —叫

〈Pj,k〉
S t for all j = 1,..., J and P炉 RSq応

• <I>⑫9)k(G(x), R) = Val(P6(x)) for (P6(x)) defined by 

(P6(x)) Minimize t E賊 subjectto 
〈Pj,釘ー砂〉

仇，K〉
St for all j = 1,..., J, Pc(x)z1 S qc, 

and p炉 2さqR・
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