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Spectral discriminants for a variant graphene 

with bumpy boundaries 
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Maebashi Institute of Technology, 

1 Introduction 

We discussed the spectral structure for a quantum graph corresponding to a variant 
graphene with bumpy boundaries in the RIMS Workshop "Spectral and Scattering 
Theory and Related Topics" on 1st December, 2021. The topic is based on the paper 
[4]. In this note, we report the statements which we shared in the workshop. We note 
that the proof of theorems in this note is described in [3, 4]. The spectral analysis for 
materials with boundaries draws our attentions from the point of view of topological 
insulators. Topological Insulators behave as insulators in their interior (Bulk), but 
their surface (Edge) contains conducting states. This properties can be found in the 
spectral analysis of a Bulk Hamiltonian and Edge Hamiltonian as an energy located 
in the spectral gaps of a periodic media, but in the absolutely continuous spectrum 
of the periodic media with boundaries. Thus, it is important to compare the spectral 
structure of Schrodinger operators in the whole space without boundaries and the half 
space with boundaries. 

For example, Graf and Porta [2] considered 

• the k-parametrized bulk Hamiltonian 

(Hep砂＝ A(k)t/Jn-1+ A(k)池n+l+ Vn(k)砂 nEZ

for tp = (t/Jn)na E l2(Z; C州，kE 51 :=［一冗，冗） and

• the k-parametrized edge Hamiltonian 

(H~pt/J)n = A(k)t/Jn-1 + A(k)＊如n+l+ Vれ(k)t/Jn, n E lN 

for tp =（加）nENE f2(JN; (:州withtpo = 0. 

i Here, A(k), Vn(k), V~(k) are suitable N x N matrices. They constructed 2 indices (Bulk 
Index and Edge Index) and their correspondence (Bulk-Edge Correspondence). Putting 

N=2, 卯＝ (~~), n = n1, A(k) = -(~ ~) and V(k) = -(1 ~ eik 1 ¥e―ik) 1 
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their model corresponds to fiber operators for Bulk and Edge Hamiltonians on graphene: 

炉 ＋ （l+e―ik)峠
（恥(k)t/J)n:= A(k)炉＋A(k)＊的＋ vn(K)加＝―(悶―1叱1十1+(1＋砂）吟:1)・ 

The operator恥 (k)is a fiber operator of the standard Laplacian on Graphene: 

{(H叫）ら：＝―（いに＋ぃ:1西—1 十じ〗l-1,n2)，
(H』)悶，n2:=-（拉，四＋1+吟:+l,n2+拉，n2),

In this study, we consider Schrodinger operators on variant graphenes with bumpy 
boundaries (Fig. 1) from the point of view of quantum graphs [1] and discuss their 
spectra. This note is organized as follows: 

Section 1. From the point of view of the quantum graph, we define our Schrodinger 
operator and introduce its fiber operators. 

Section 2. We state main results. 
1) Introduce spectral discriminants Ds(μ, A) and De(μ, A). 
2) State main theorems. 
3) Draw a picture of Dispersion Relations numerically. 
4) Compare the graphene with zigzag boundaries with the variant graphene with 
bumpy boundaries. 

Section 3. We state an outline of the proofs. Especially, we note that Cramer's Rule 
works to determine the spectrum. 

We state the definition of our quantum graph corresponding to the variant graphene 
with bumpy boundaries seen in Fig. 1. Let fb = (E朽vりbethe metric graph appearing 
in Fig. 1. Here, Eb and Vb are the set of edges and vertexes of fb. Each vertex in Vb 
is uniquely identified by the labels A(n, k), B(n, k), C(n, k) and D(n, k) as seen in Fig. 1. 
Furthermore, we assume the followings: 

2) 

Figure 1: variant graphenes with bumpy boundaries 
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Figure 2: The definition of index (n, j, k) of each edge e E E見

(1) The length of each edge e E Eb is equal to 1. 
(2) The potential q Eび(0,1) is real-valued and bounded from the below. 

Due to the assumption (1), we identify each edge e E Eb with the interval (0, 1). Under 
these assumption, we define the variant edge Hamiltonian Hb in L2(rりasfollows: For 
any e E Eb, the variant edge Hamiltonian Hb acts as 

(H0y),(x) = -y;'(x) + q(x)y,(x), x E (0, 1)："'e, 

where y E Dom(Hりsatisfies

(a) the Kirchhoff vertex condition at each v E V0 ¥ ar0 and 

(b）the Dirichlet boundary condition y = 0 on ar見

(1.1) 

To explain the Kirchhoff vertex condition, we give an address (n, j, k) as seen in Fig. 2 

uniquely to each edge e E P and put yl,n,i,k =Yn,j,k for a function y on fD. Then, the 
Kirchhoff vertex condition at B(n, k) is given as 

Yn,1,k(l) = Yn,2,k(O) = Yn,6,k-l (1), -y~,l,k(l) + Y~,2,k(O) -Y~,6,k-l (1) = 0. 

） 

Since Hb is periodic with respect to the vector a2 := B(O, O)B(O, 1), we construct a 
direct integral decomposition (see [51) 

Hb =rげ(μ)血
sl 2冗

whereμ E 51 :=［一冗贋）isa quasi-momentum and Hb(μ) is a fiber operator of庄 defined
as follows. At first, we pick the fundamental domain as in Fig. 3. In Fig. 3, we consider 
the part of k = 0 of rb. In the case of k = 0, we dropped the index from each edge. We 
describe the definition of fiber operators Hb(μ) for Hb. For y = (Yn,j) E dom(Hb(μ)), the 

fiber operatorザ(μ)in L2間）actsas 

(Hb(μ)y),(x) = -y;'(x) + q(x)y,(x), x E (0, 1) ""e EEぶ，

where y E dom(Hb(μ)) satisfies 
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-1,3 

Figure 3: A fundamental domain r心＝ （Eい，vぶ）

(a) the Kirchhoff vertex condition at Vv E intV:ふ

(b) the Dirichlet boundary condition y = 0 on ;)fb and 

(c) the quasi-periodic boundary conditions: 

Yn,1(1) = Yn,2(0) = e―iμYn,6(1), -y~,1 (1) + Y~,iO) -e—iµY~,6(1) = 0. 

Then, we have the unitarily equivalence (1.1). Let m be the Lebesgue measure on 
sl := ［一冗贋）． According to [Reed-Simon IV, Section XIII], we have the following 
spectral correspondence. 

(1) A E a(Hりifand only if m({μ E S11 a(Hb(μ)) n (A-e, A+ e) -::f:-0}) > 0 forany e > 0. 

(2) A E叩(Hりifand only if m({μ E Sり AE叩(Hb(μ))})> 0. 

Due to these correspondence, we notice that it suffices to study a(H"(μ)) in order to 
study a(Hり．

2 Main Results 

In this section, we introduce the main results from [4]. At first, we prepare notations to 
describe them. Expand q to the I -periodic function. Let(JD be the set of eigenvalues of 
the spectral problem 

-y" + qy = 11,y on (0, 1) and y(O) = y(l) = 0. 

Note that(Jv = {n2n21 n E N}ifq三 0.Moreover, let 8(x, 11,) and cp(x, 11,) be the solutions 
to -y" + qy＝入yinJR satisfying 

(8(0, 11,), 8'(0，入）） ＝ （1,0) and (cp(0,11,),cp'(0,11,)) = (O, 1), 

respectively. Furthermore, we put 

8(1, 11,) + cp'(1，入） 8(1,11,)一cp'(l,A-) 
A(A) ＝ 

2 
and /'1_(11,) = 

2 



13

If q = 0, then 

sinx点
8(x,A) = cosx点， cp(x,A)= ~, /'1(A) = cos点 and /'1_(t¥) = 0. 

点

Under these notations, we introduce spectral discriminants forザ(μ).For each(μ, A) E 

S1 x JR, we define 

Ds(μ, A)＝d;(μ,A) -16sin2 
μ 

4 

and 

μ 
Dc(μ,A) = a:(μ,A) -16cos2 S:, 

4 

where ds(μ, A) = 9/'12(A)-/'1~(A)-1-4sin2 ~ and de(μ, A) = 9/'12(A)-/'1~(A)-1-4 cos2 ~
We define 

D1 := {il f/.⑰ |Ds(μ, il) < 0, De(μ, A) < O}, 

D2 := {A f/.⑰ |Ds(μ,A) < 0, Dc(μ,il) > O}, 

D3 :=｛入¢ ⑰|  Ds(μ，入） ＞〇， Dc(/1, il) < O}, 

D4 := {i¥, f/.⑰ |Ds(μ, i¥,) > 0, De(μ, A) > O}. 

Putting 

D; ：＝ ｛A ¢叫ん(µ,A.)>4cos~, d8(µ,A.)>41sin~I} 

and 

切：＝｛A ¢叫 dc(μ,A.)<-4cos~, ds(μ,A.) <-41sin~I}, 

we have the decomposition D4 = D! U D4. Then, we have the followings on the spectra 

of the fiber operator Hb(μ): 

Theorem 2.1. ([4, Theorem 1.11) 
(0) For anyμ E 51,⑰ C叩(Hb(μ)).

(1) Ifμ E 51 ¥ {O}, then D1 c cr(Hb(μ)). 
(2) Ifμ E 51 ¥ {O}, then D2 C cr(Hb(μ)). 
(3) Ifμ E 51 ¥ {0，士和｝， thenD3 c cr(Hb(μ)). 

(4) Ifμ E 51 ¥ {O，土n},then o; c p(Hb(μ)). 

This theorem does not deal with D4. The statements on the area D4 are more 
complicated. To state the corresponding statements, we use the abbreviations 

(O1, 0;,((J1バp~) = (0(1, A.), 0'(1, A.), cp(l, A.), cp'(l, A.)). 

Then, we have the followings: 
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Figure 4: The dispersion relation for q = 0. 

Theorem 2.2. ([4, Theorem 1.21) Assume thatμ E 51 ¥ {O,士iTl，士n}and ii E D4. 

(A) Assume that B1 + 2cp~ -:f:. 0 and 3b.. + /",._ = 0. 

(1) If知<|μI < n, then ii E叫ザ(μ)).

(2) If O < 1μ1 < ~n, then ii E p(H0(μ)). 

(B) Assume that B1 + 2cp~ -:f:. 0 and 3b.. + b.._ -:f:. 0. 

(1) If ds —直＋ de —霊＋ 8 * 0, then ii E p(H0(μ)). 

(2) If ds —諏＋ de- 諏＋ 8 = 0, then ii E叩(Ho(μ)).

(C) Assume that B1 + 2糾＝ 0and q is even. If和<|μI < n, then ii E op(H0(μ)). Otherwise, 

ii E p(H0(μ)). 

(D) If B1 + 2叫＝ 0and q is not even, then ii E p(H0(μ)). 

In the case of q = 0, we see that B1 + 2叫＝ 0and 3b.. + /",._ = 0 is equivalent. So, we 
derive only the results (B) and (C) for q = 0. In order to understand the meaning of 
Theorems 2.1 and 2.2, we give the dispersion relation in the case of q = 0. Let M1 and 

M心e

M1={(il,μ)I ilEf1(μ), µES1\{0，土 ~Tl，土冗｝｝，

凡＝ ｛（ii, μ)I ii E f2(μ), ~TI < lμI < TI}, 
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/ B o u・ n d a r i e s 

Figure 5: graphenes with zigzag boundary (without bumps) 

where 

£1 (μ) = {il E D4I ds -⑯+de -諏＋8= O} 
and 

も(μ)= {il E D4I 3Ll + LL = O}. 

Then, we derive a picture of the dispersion relation as seen in Fig. 4. 
In order to compare the results for our quantum graph with the ones corresponding 

to graphene with standard zigzag boundaries discussed in [3]. Let戸＝ （E＃,vりbethe 
metric graph appearing in Fig. 5, where£# and V# are the set of edges and vertexes 
of[#, respectively. The difference between[# and fb is whether or not the bumps are 
present. In a similar way to H朽weassume that the length of each edge e E £# is equal 
to 1. For any e E £#, the edge Hamiltonian庄 actsas 

(H"y),(x) = -y;'(x) + q(x)y,(x), x E (0, 1) ""e, 

where the potential q E L2(0, 1) is the same one as H見Letthe function y E Dom(Hりbe
characterized the following two boundary conditions: 

(a) the Kirchhoff vertex condition at any v Ev"¥ ar". 
(b）the Dirichlet boundary condition y = 0 on ar". 

Utilizing the periodicity of rい， weobtain the fiber operator H知）toattain the unitarily 
equivalence 

Then, the function 

Hi ]rげ(μ)生
s1 2冗

D(μ,入)=d2(μ,ii.) -16 cos2 ~ 
2μ 
2 

for A ¢叩andμ E 51 ¥｛士冗｝playsthe role of spectral discriminant for H~, where 

μ 
d(μ,i¥.) = 911%入)-A?（入）ー 1-4co忌—.

2 
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Spectral bandsl(no eigenvalues) 

3
 

3| μ 

Figure 6: The dispersion relation for q = 0. 

Theorem 2.3. ([3, Thm 2.7.]) Assume that μ E S1 ¥｛土冗｝．
(0)叩 ca(Hけ(μ)).
(1) Assume that入¢叩 andD(μ，入）:::;0. 

①入 Ea(HH(μ)). 

② If D(μ, il) < 0, then il ff. ap(HH(μ)). 

③ IfD(μ，入）＝ Oandμ -::f:.土和， then入ff.ap(HH(μ)). 

(2) Assume that il ff.叩 andD(μ，入） ＞0. 

① If 81 + 2<p; ＃0,then入Ep（庄（μ)).

② If 81 + 2叫＝ 0andμ -::f:.士仇thenconditions 

(i)和<|μI＜冗，（ii)il E ap佃(μ)),(iii)入Ea（ザ（μ))
are equivalent. 

Based on Theorem 2.3, we derive a picture of the dispersion relation for H". Com-
pared Fig. 4 with Fig. 6, we find the eigenvalue line M1 in Fig. 4, which appears due 
to bumpy boundaries. 

3 Outline of the proofs 

The complete proofs of Theorems 2.1 and 2.2 are given in the original paper [4]. Thus, 
we give only an outline of the proof of Theorem 2.1 (2) here. Especially, we stress that 
a Key Tool to prove it is the Cramer's Rule in Linear Algebra: 
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Theorem 3.1. Let a1,a2,..,,an,b,x = (x1ぶ2,•..,Xn)T E ]Rn and A=  (a1 a2,,, an), 

For a linear equation Ax= b, we put 

A;= (a1 a;-1 b a;+1 ・ ・ ・ an)-

If detA -::f:-0, then we have 
detA, 

ふ＝ detA. 

We utilize this theorem in the final phase of the proof of Theorem 2.1 (2). At first, 

we explain where the discriminants Ds(μ, A) and De(μ, A) are from. For a solution 

Y = (Yn,j) E dom(Hb(μ)) toザ(μ)y=Ayon the fundamental domain rぶ(seeFig. 3), we 

define the 4 X 4 transfer matrix M(A) = (m;j(A)) as 

［巨旦豆廷苔茸 l=M(A)［巨戸！菩iil (n E N) 

By straightforward calculations, we derive the components of M(A) and notice it 

has a block form: 

Lemma 3.2. Let μ E 51 ¥ {O} =［一冗，0)u (0，冗） andA f/. a0. Then, we have m11 = 
叩 1+21'01 

1-e-iμ 

andm12 = 
仰叫＋2△印1

1-e叩 . Furthermore, we obtain the block form 

M(it) = (1 e―:B), (3.1) 

where 
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With the help of the block form (3.1), we directly derive eigenvalues of the transfer 

matrix: 

Lemma 3.3. Assume thatμ, E 51 ¥ {O} and;\,~ 叩． Then, the eigenvalues of M(A) are given by 

丙＝
ds(f-1, A)士{万]口万

4ie― 
巴．
4 Sln -

and 

Pt= 
de(μ, i¥)士 {D]元万

4パ cos~
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Put S = {pt, p;-} n {pt, p;}. For the most part, each eigenvalue p = pt, pz are simple: 

Lemma3.4. 

(1) Ifμ E 51 ¥ {O}, we have S = 0 for almost every A E D1・

(2) Ifμ E 51 ¥ {O}, we have S = 0 for every A E D2. 

(3) Ifμ E 51 ¥ {O，土和｝，wehave S = 0 for every A E D3. 

(4) Ifμ E 51 ¥ {O}, we have S = 0 for every A E D4. 

Moreover, the eigenspace V(pz) and V(pt) can be explicitly written. 

Lemma 3.5. Assume thatμ E 51 ¥ {O},,,¥ ~(JD and S = 0. Then, there exists some x戸and
x: E C2 such that V(pz) =〈wz〉andV(p:) =〈w:〉,where

wt=（ぷ）， w:= (ぷ：） EC4 

Moreover, xz and x: E C2 are explicitly given1. 

These are spectral properties of the transfer matrix M(il). Next, we discuss the 
fundamental solutions to Hバμ)＝ AyforA¢ 叩． Takingthe Kirchhoff vertex condition 
and the Dirichlet boundary condition into account, we have the following: 

Lemma 3.6. Let i¥, f/.(JD and μ E S1. Then, any solution y toザ(μ)y= ily on rぶsatisfies

Y~,2(0, il) = -y~,3(1, il). Moreover, we have Y~,1 (0, il) = 21':-,.ci and yぃ(0,il) = c1 cp1 if y satisfies 
恥(0,il)= C1 EC. 

Thus, we construct the fundamental solutions P = (Pn,j) and Q = (qn,j) E dom(H0(μ)) 

toザ(μ)y= ily with the initial conditions 

［臣］巨含!l=•,=[!], [；::［巨苔ll = e2 = ［きl
respectively. For the purpose, we prepare notations. Let P信andだbethe projections 
to the eigenspace V(pz) and V(p:), respectively. Moreover, we hereafter assume that 
入¢ (JD, μ E S1 ¥ {O} and dim V(pz) = dim V(pり＝ 1.Namely, we only consider (μ, il) 

satisfying S = 0 (see Lemma 3.4). Putting ef_c = Pze1, eし＝ Pie1,ef,c = P因吐＝ P因
we consider the spectral decompositions 

e1 =叱＋e;:-,c+ eし＋e1,s and e2 =吐＋ez,c+ e;,s + ez,s・ 

For j = l, 4, e = 1, 2 and • = s, c, we define af,t,• and f3九．by

e;，● ＝ （叩． 的． 叫． 応．）丁・

1 However, I avoid showing the explicit form here. See [4] for the explicit expression to xz and x:. 
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We furthermore introduce M+(A) and M_(A) defined as follows: 
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的．）T =M心）e:,.,

応．）T = M_(tl)e:,.. 

(3.2) 

(3.3) 

We note that the values aft,• and f3五． aredefined for all j = 1,2,3,4,5,6, e = l,2 and 

● =s, c. Under these notations, we have he following: 

Lemma 3.7. Let y =（恥）（n,j)EZ。bea solution toザ(μ)y= Ay with 

（如(O,A) 恥(0,A) Y1,4(0, A) 恥(O,A)f =喰1+喰 2・

Then, for n E N and j = l, 2, 3, 4, 5, 6, we have 

Yn,J(x, A) ＝ （p:)n-1(cln;1,c + c2n]：2,c) ＋ （p;)n-1(C1り］：l,c+ Czf/1,2,c) 

+ （p:）n-1(clrlh,s + c2n;2,s)＋ （p;）n-1(cln;1,s + c2n/:2,s)， 

where叩．＝叩．（x,A)=叫．B(x,A)+的，•cp(x,A)fort = 1,2 and•= s,c. 

For (c1心） ＝ （1, 0), we have Yn,j(x, A) = Pn,j(x, A). On the other hand, we have 
Yn,j(x,A) = qn,j(x,A) for (c1,!泣） ＝ （0, 1). Since the eigenvalues Pi and p戸areexplicitly 
written, we make sure the following directly. 

Lemma 3.8. Assume that A E D2 andμ E 51 ¥ {O}. Then, lptl = 1, lp~I > 1 and lptl < 1 hold 
true. 

Under these preparations, we give the proof of Theorem 2.2 (2). 

Proof of Theorem 2.2 (2). Pick A E D2, arbitrarily. We claim the following. 

Claim: There exists some (c吟） ＃ （0, 0) satisfying c叩，s+ C如，c= 0 for all j = 

1,2,3,4,5,6. 

If this claim holds true, then IIYn,jllL2(o,iJ is uniformly bounded on n E N and j. Since 

there exists a generalized eigenfunction to Hb(μ)y = Ay, we have A E a(Hb(μ)). 
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To show the above claim, we want to find (c1心） ＃ （0, 0) such that 

C1 (a:j,l,ce(x, A) + f3五，ccp(x,A))+ c2(a:J,2,c8(x, A) + f3J,2,ccp(x, A)) = 0, 

namely, c1a:f,l,c + C2屯戸＝ 0and C1/3f,l,c + C2/3戸，c= 0 for any j = l, 2, 3, 4, 5, 6. Due to 
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C1e戸＋Cze2,c= 0 

at first. Prepare another form of spectral decompositions 

e1 = eし＋e心＋eし＋e;:,s＝ y：叫＋加w~+ 万w; +y;w;, 

e2 =吐＋e乙＋吐＋e;-,s=釘w：+ 6;w； ＋釘w;+釘w;.

Then, we want to find (c1心） ＃ （0, 0) such that 

C1% ＋ c2釘＝ 0.

If y;; -:f:. 0, then (c1, c2) = (6乙—y;;) is the desired one. 
To prove y;; -:f:. 0, we utilize the Cramer's rule. The Cramer's rule yields 

y―= 
det(w7 e1町 w;)

det(wt w;; w;:-w;) 

It follows by Lemma 3.4 that det(x7 et) -:f:. 0. Putting 

et= (fl), 
we have 

＋）  
x+ ex+  

det(w: e1 w: w;) = 
x; 

e恐ぶ 。＿互x; —仕xs_ | 
x; er x; x; 

＝ 
2etx; etet o o 

= 2eiμ I x; x; I x I x; er I -:f:-0. 

Therefore, we derive y;; -:f:- 0. Taking (3.2) and (3.3) into account, we also derive 

如和，c+ (-y;;)a:1,z,c = 0 and釘恥，C+ (-y;)応，C= 0 for j = 2,3,5,6, ロ
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