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Abstract 

In this article, we review the results in [9] on the Agmon estimate for dis-
crete Schrodinger operators. We first discuss the semiclassical analysis for discrete 
Schrodinger operators with emphasis on the microlocal analysis on the torus. We 
discretize a semiclassical continuous Schrodinger operator with mesh size propor-
tional to the semiclassical parameter. Under this setting, we show the Agmon 
estimate for eigenfunctions. The natural Agmon metric for the discrete Schrodinger 
operator is a Finsler metric rather than a Riemannian metric. It turned out that 
Klein-Rosenberger (2008) already discussed the semiclassical Agmon estimate in 
terms of the same Finsler metric by a different argument in the special case of a 
potential minimum. We also show the Agmon estimate and the optimal anisotropic 
exponential decay of eigenfunctions for discrete Schrodinger operators in the non-
semiclassical standard setting. 

1 Introduction 

1.1 Discrete Schrodinger operators 

In this article, we review the results in [9]. We recall the discrete Schrodinger operator 

Hu(x)＝ー L(u(y) -u(x)) + V(x)u(x), 
lx-yl=l 

where u E C2(Zり．
If the potential V : zd→股 isbounded, we see that H is a bounded self-adjoint 

operator. Of course, there are many works on discrete Schrodinger operators. We study 

a semiclassical setting for discrete Schrodinger operators. We discuss the exponentially 

small semiclassical estimate of the eigenfunctions in terms of a Finsler metric. We also 

prove the optimal anisotropic exponential decay of the eigenfunctions for non-semiclassical 

discrete Schrodinger operators. 

1.2 Finsler metric 

Finsler metric is a generalization of Riemannian metric. Roughly speaking, a Finsler 

metric measures the length of tangent vectors by norms, while a Riemannian metric does 

by inner products. The relation is similar to that between Banach space and Hilbert 
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space in functional analysis. The precise definition of Finsler metric is as follows ([2, 
Section 1.1]). Suppose that a nonnegative number L(x, v) is given for any point x on a 
given smooth manifold and any tangent vector v at x. We say that L is a Finsler metric 
if the following hold. 

1. L(x,v) is smooth near any (x,v) with vヂ0.

2. L(x,入v)=入L(x,v)for any (x,v) and入＞ 0.

3. 8;L(x,v)2 is positive definite for any (x,v) with vヂ0.

In general, it may not be true that L(x, v) = L(x, -v). The Finsler metric in this article 
satisfies L(x, v) = L(x, -v). 

We discuss a relation between discrete Schrodinger operators and Finsler metric. This 
relation appears if we study discrete Schrodinger operators from the viewpoint of semi-

classical analysis. 

2 Semiclassical analysis for discrete Schrodinger op-

erators 

2.1 Semiclassical analysis 

We recall semiclassical analysis for the continuous Schrodinger operator 

Hcont(h) = -h公＋ V(x) onザ（酎）．

Semi classical analysis studies its semiclassical (h→0) behavior with emphasis on 

pcont(x,~) =ぐ＋ V(x) on T＊酎．

See for instance [16] for semiclassical analysis. We would like to consider a discrete 
analogue. Since the discrete Laplacian is a bounded operator, the straightforward gener-
alization does not seem to be so interesting. 

2.2 Discretization 

If we discretize Hcont(h) with mesh size T > 0, we obtain a discrete Schrodinger operator 

HT(h) on £2（か definedby 

2 

HT(h)u(x)＝ーい） 0 _ (u(y) -u(x)) + V(x)u(x), 
T 

lx-yl=T 

where x,y ETび c配 andu Eだ(TZり．
There are several works on "limT→Oげ (h)= Hcont(h)" for fixed h > 0. This is the 

problem of the continuum limit. See [7], [13]. In this叩 icle,we set T = h and consider 
the limit h→0. It will be interesting to study T =炉 for1 < a < oo. The continuum 
limit formally corresponds to a = oo. 
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2.3 Semiclassical discrete Schrodinger operators 

We then study 

H(h)u(x) =一 L (u(y) -u(x)) + V(x)u(x) 
lx-yl=h 

on汽犀）， whereV：配→良． Thisis unitarily equivalent to the discrete Schrodinger 
operator onだ(Zりwiththe potential V(hx). 

When d = 1, this was studied by Helffer-Sjostrand [6] in the context of the Harper 
operator 

1 
H。,hu(n)= i(u(n + 1) + u(n -1)) + cos(hn + 0)u(n) 

2 

on炉(Z).This operator is related to the problem of the 2d-electron in a periodic electric 
potential and a periodic magnetic field. For general d, see the discussions in Subsection 3.5. 

2.4 Microlocal analysis on the torus 

We set l'd＝配／2心． Thecoordinate of l'd is denoted by ~ and the dual variable is 
denoted by x. We identify functions on守 orT*1'd with those on配 orT守 whichare 
2迄 d-periodicwith respect to ( 

We define a(~, hD,) : C呵デ） → C可巧 by

a(~, hD,)u (~) = (2社）―dff 工 ）e啜ー'f/,X〉/hu(rJ)drydx
即 Rd

for a E C『(T＊で） andu E C呵で）． Althoughthis definition is based on the special 
structure of the torus, we can employ the general theory of pseudodifferential operators 
on manifolds. 

2.5 Quantum-classical correspondence 

The semiclassical discrete Fourier transform瓦：佐(hZり→び(11'りisdefined by 

瓦u(~) = (21r)-d/2 ~叫）ei〈x,€)/h.
xEhZd 

We then have 

d 

恥）堕瓦H(h)左＝ L(2-2cos ら）＋ V(hD€)
J=l 

= p((,hD孔

where p（ふx)= Lい(2-2cosら）十 V(x)E C00(T*'ll'り． Thusour semiclassical setting 
is natural from the viewpoint of semiclassical analysis and we expect "limh→oH(h) = 
p（ふx)".
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2.6 The Weyl law 

As an illustration of "limh→0 H(h) = p([, x)", we present the following Weyl law. Assume 
that VE C『国；恥），血且→00V (x) :;::, 0 and there exists O < 0 S:: 1 such that 

佃V(x)I::;広(1+ lxl)-0lal (1) 

for any a E冥。． Thenfor any fixed a < b < 0, the number N[a,b](h) of eigenvalues of 
H (h) in [ a, b] satisfies 

N[a,b](h) = (21rh)-dVol({((, x) E T*11'dl a≪:: p((, x) ≪:: b}) + o(h、-d)

when h→0. 

The condition (1) comes from a technical reason. The proof follows the standard 
strategy. 

3 The semiclassical Agmon estimate for discrete 

Schrodinger operators 

3.1 Usual Ag 
． 

mon estimate 

The Agmon estimate ([1]) describes the exponential decay of eigenfunctions. We recall 
the semiclassical Agmon estimate for Hcont(h) = -h△ +V(x). For EE賊， theAgmon 

metric is defined by 

ds戸＝凶V(x)-E)+ds, 

where ds is the length of the standard metric on配． Notethat this vanishes on the 

classically allowed region YE = { x E馴 V(x)さE}.This induces the (pseudo-)distance 

d戸(x,y). Set d戸(x)= infyEQE d戸(x,y).
Then the semi classical Agmon estimate roughly states that if (Hcont (h) -E)u = 0 and 

llullL知） ＝1, then lu(x)I :":: Ce―((1-c)d戸 (x)-£)/hfor small h > 0. 

3.2 Strategy of the proof 

We recall the strategy of the proof of the semiclassical Agmon estimate (see [12], [16, 
Chapter 7] for details). We set H戸(h)= ep(x)fhHcont(h)e―p(x)/h_ Then 

H戸(h)= (hDx + iop(x))2 + V(x). 

Its semiclassical principal symbol is 

((+ i8p(x)げ十V(x)=ぐ＋V(x)-l8p(x) ド＋ 2i(• 8p(x). 

If 1ap(x)l2さV(x)-Eoutside QE, the elliptic estimate for II,戸(h)-E proves the Agmon 
estimate. We can take p(x) as a smooth apEroximation of (1 -c)d戸(x).

We employ an analogous argument for H(h) though we work on the Fourier space. 
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3.3 Exponentially conjugated operator 

We compute凡(h)= eP(hD,)/屯 (h)e-p(hD,)/h_ We have eP(hD,)/hV(hDE)e―p(hD,)/h = 

V(hDE)-We set Po (~) =四い(2-2cosら） ＝ 4竺;=1sin2号．

Lemma 3.1. For p E C:炉（配晨），

eP(hD,)/hPo（砂）e―p(hD,)/h= ap(~, hDE; h), 

where ap ~ Lこ。 h加，k(~,x) with ap,k E C,:'(T*11'd) and 

ap,o(~, x) = Po(~ -iap(x), x). 

If moreover 
閲p(x)I::::;広〈x〉l-lalfor any a E唸，

then ap E s0 and ap,k E s-k. 

Here 
S”'= {a(•; h) E C00(T*11'd)l l8f8夕a（ふx;h)IさCa,/3〈x〉m-1/31},

(2) 

where a and(3range over認。 and〈x〉=（1 ＋丑）1/2.The second part of this lemma is 
used in the proof of the theorem presented in Section 4. 

3.4 The Agmon-Finsler metric 

We recall QE = {x E訊 V(x)：：：： E}.We want to find a nontrivial p such that p = 0 on 
QE and 

Re (Po([ -iap(x)) + V(x) -E)：：：：： O 

outside QE, We note that 

We set 

d 
切p(x)

Rep0([-iap(x)) :::::—4 Lsinh2 
j = 1 2’ 

Kx = {~ E酎 |4L sinh2 ら一::;(V(x) -E)+ }. 
j=1 2 

Thus we want to find p(x) such that 8p(x) E Kx CT,：記
We define the Agmon-Finsler metric as the supporting functions of convex sets K必

L(x, v) = sup <~,v> for VE  Tx配＝記
EEKx 

which gives the length of v E Tx配＝配 inthis metric. This induces a (pseudo-)distance 

d凪x,y). We set d瓜x)＝在(x,伍）． Weeasily see that|〈v，国（x）〉|::;L(x,v) by the 
triangle inequality. Recall that the compact convex set Kx is determined by its supporting 
function as 

Kx = {~ E 間〈~,v〉::; L(x, v) for any v E酎｝

([4, Section 4.3]). Thus 8心(x)E Kx, Then we can take p(x) as a smooth approximation 
of (1 -c)心(x).
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3.5 Discrete Ag 
． 

mon estimate 

Assume V E Ci:°（配；賊） andinfxE咋，.V(x) > E for any 8 > 0, where如 istheふ

neighborhood of QE in the Euclidean distance. 

Theorem 1 ([9]). For any C,。>0,8。>0and s > 0, there exist C > 0, h。>0,
0<8<8。,X,文EC炉（記 [O,1]) with 

supp(l -x) c QE,b, supp文C如＼g恥／2

and p E C00圏；恥o)with 1(1 -s)心(x)-p(x)I :S s such that for O < h < h。,

llxep(x)fhullc2さC||和||［2+ Cllxep(x)fh(H(h) -z)u||炉

for any u E £2(hか） andz E [E-C,。,E+C。h]+i[-C,。,C。]． Inpa廿icular,if (H(h)-E)u = 
o, llu||炉(h邸） ＝1, then lu(x)I :S Ce―((1-,:)吐 (x)-,:)/hfor small h > 0. 

After preparing the manuscript [9], we learned that Klein-Rosenberger [10] already 
introduced the same Finsler metric and proved the Agmon estimate in the case of a 
potential minimum. The strategy of their proof is similar to that in Dimassi-Sjostrand [3, 
Section 6] while our proof is similar to that in Nakamura [12] and is more microlocal. 

Rabinovich [14] also studied the same semiclassical setting for general d and proved the 
Agmon estimate though he did not discuss the relation with Finsler metric. 

3.6 WKB solutions near a potential minimum 

We next discuss WKB solutions for the eigenfunction problem near a potential minimum. 
Assume the potential V E C呵配；恥） satisfies

V(O) = 0, 8V(O) = 0 andがV(O)> 0. 

TakeE。>0such that there exists a unique a E認。 withE。＝こいふ(a戸 1/2),where 

入1,...，心 arepositive square roots of eigenvalues of ½がV(O). Let d(x) = d0(x, 0) be the 
Agmon-Finsler distance to O E配 atenergy O for this potential. Then there exist Ej E恥

jミ1,and aj(x) E C00（配）， J・2':0, such that if E(h) ~ L_;。がEjand a~ L_;。がaj
then 

(H(h) -hE(h))(a(x)e―d(x)/h) = r(x)e―d(x)lh, r(x) =（う(hco)

near OE配．

This suggests that the Agmon-Finsler metric is the natural notion for estimating the 
tunneling effect for semiclassical discrete Schrodinger operators. The continuous case of 
this was proved by Helffer-Sjostrand [5]. The proof for the discrete case follows the argu-
ments in [3, Section 3] with modifications for treating a Finsler metric. After preparing 
the manuscript [9], we learned that this was already done by Klein-Rosenberger [11]. 
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4 The non-semiclassical Agmon estimate for discrete 

Schrodinger operators 

4.1 Exponential decay of discrete eigenfunctions 

Set Hu(x) =ーと (u(y)-u(x)) + V(x)u(x), 

lx-yl=l 

where x,y E四 Namely,we set H = H(l). We also take E < 0. Assume that the 

potential V : _zd→艮 extendsto V :配→股 suchthat 

18叩(x)|三広(1+ lxl)-01al, 0 < 0 s; 1, 

and血馴→00V(x)~ 0. We set KE= {[ E記 4区;=1sinh責 s;IEI} and 

四 (x)= sup〈x,[〉．
€EKE 

(3) 

Theorem 2 ([9]). Under the above setting, for any G。>0and f > 0 there exist C > 0 
and 1-X,又E唸mpば） suchthat 

11xeCl-E)PE(xlulle2さCllxulle2+ Cllxe(l-e)PE(x)(H -z)u||炉

for any u E £誓） andany z E [E -C。,E]+i[-G。,C。]．
In pa廿icular,if (H -E)u = 0 and u E炉(Zり， thenfor any f > 0 there exists C0 > 0 

such that 
lu(x)IさCee―(1-e)PE(x)

for any XE  zd_ 

The proof is similar to that of Theorem 1. Rabinovich-Roch [15] proved the exponential 

decay of eigenfunctions for the discrete Schrodinger operator with a slowly oscillating 
potential. In our notation, their exponential decay corresponds to lu(x) I :::; C匹―(l-e)p(x)

with a condition on supi l8xjp(x)I- Our condition 8p(x) E KE is more precise and is 
optimal as seen in the next subsection. 

4.2 Optimality of the exponential decay 

Fix any E < 0 and define uE Eだ麿） by

d 

咋 (x)= (21r)―d 1d (4 t sin2 ¥+IE|）―le―t〈x,C〉d(.
Td 

j=l 

Then we have H旺 (x)= Eu瓜x)if we set V(x) =—匝(o)-150(x). Take a bounded 

domain OE n C配 andset 

Assume that 

pn(x) = sup〈x,（〉．
尽E9

匹(x)I::::;Ce―m(x) 
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for some C > 0 and any x Eか． ThenDCK尻whichshows the optimality of Theorem 2. 

This is easily seen in view of the relation between the exponential decay of a function and 

the analytic continuation of its Fourier transform. 

We note that Ito-Jensen [7] discussed explicit forms of uE(x) in terms of generalized 

hypergeometric functions. 
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