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Abstract 

We construct fundamental solutions to Schrodinger equations on com-
pact Riemannian manifolds. We employ a time-slicing approximation, 
which is a mathematically rigorous method of defining the Feynman path 
integral. Our time-slicing approximation converges to a fundamental so-
lution to the Schrodinger equation modified by the scalar curvature. The 
coefficient of the scalar curvature in the modified Schrodinger equation 
depends on the choice of the amplitude which appears in the definition of 
the time-slicing approximation. 

1 Introduction 

1.1 Feynman path integrals on curved spaces 

We consider the Schrodinger equation 

囁u(t)＝叫(t), u(O) = uo, (1.1) 

on an oriented compact Riemannian manifold (M, g) with the Hamiltonian 

1 
H入：＝――△ +V十入R,2 g 

where 

• △,is the Laplacian associated with the metric g, 

• Email: shot a. fukushima. math≪lgmail. com 
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•VE C00(M遺） isthe potential, 

• R E 000 (M) is the scalar curvature of (M, g), and 

●入(=0, 1/6, 1/12) E股 isa real parameter. 

Since H入 isessentially self-adjoint onび(M,g) (we also denote its closure by 
H刈， theSchrodinger propagator e―itH入 exists. The aim of this paper is to 
represent e→tH入 bythe Feynman path integral [3]. In the paper [3], Feynman 
states that the time-development of the quantum system is represented as the 
"integral" 

k(t,s,x,y) ：＝J e'S('Y）応，
Qt,S,X,y 

(1.2) 

where 

• flt,s,x,y is a space of all paths I which satisfy 1(s) = y and 1(t) = x, 

• S('Y) is an action of 1. 

Concerning the formal expression (1.2), the following two problems arise. 

(1) What is the mathematical definition of the "integral" (1.2)? 

(2) Does K(t, x, y) := K(t, 0, x, y) correspond to the fundamental solution 
e―9血 ofthe Schrodinger equation (1.1)? 

Here we briefly describe our approach to the above questions in this paper. 
On the question (1), it is already known that one cannot realize the "integral" 
(1.2) as the Lebesgue integration by constructing a suitable measure on the space 
flt,s,x,y [1]. An alternative method of the definition of (1.2) is the time-slicing 
approximation. In the time-slicing approximation, we regard (1.2) as a limit of 
oscillatory integrals on finite dimensional spaces, and we do not try to construct 

any measure on the space flt,s,x,y・ This method is introduced in Feynman's 
original paper [3]. In this paper, we employ the time-slicing approximation for 
the definition of (1.2). 

On the question (2), the amplitude function which appears in the defini-
tion of the time-slicing approximation affects the form of the Schrodinger equa-

tion (1.1). In the formal expression (1.2), the information of amplitudes is 
included in the "measure"巧． Inthis paper, the Schrodinger equations with 
入＝ 0,1/6, 1/12 are derived by the time-slicing approximation with the natu-
ral choices of the amplitudes. We remark that this change of the Schrodinger 
equations does not occur on the flat space (R = 0) such as the Euclidean spaces. 

1.2 Mathematical setting 

In this Subsection, we describe our mathematical formulation of the problem 
in the previous Subsection. Let (M, g) is an n-dimensional oriented compact 
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Riemannian manifold. For a sufficiently small T > 0, we consider a short-time 

approximate solution E (T) of the form 

1 
E(T)u(x) := (2が）~JM x(x, y)a(T, x, y)eiS(r,x,y)u(y) vol9(y). 

Here vol9 is the volume form associated with the metric g and the other functions 

S(T,x,y), x(x,y) and a(T,x,y) are defined as follows. 

S(r,x, y): action along the lowest energy classical path. Taking local 

coordinates (x1,..., Xn), we define g* : r; M X r; M →股 by

n 

g*（い，n）：＝区戸(x)も靡
j,k=l 

where (g内x))1J,k=lis the inverse matrix of (g州x))1J,k=ldefined by g = 
江，k=l約k(x)dxjdXkand~ ＝江＝1 らdxj and'f/ =四＝1加 lxj. We also de-

fine l~I~• := g*（試）． Asthe corresponding classical mechanics, we consider the 
Hamiltonian 

H（パ） ：＝i鳴＋V(x)

for（以） ET* M. Let 1r : T* M →M be the natural projection. We call 
x(t): [0,T]→M a  classical path from y toxin time T if x(t) = 1r(x(t), ~(t)) for 
some (x(t) ,~(t)): [0,T]→T* M which satisfies the Hamilton equation 

dxJ. 8H dら 8H
-（t) ＝ -(x(t) ,~(t)), — 
dt 況 dt

(t) = -~(x(t),~(t)). (1.3) 
枷 j

If x(t) = 1r(x(t) ,~(t)) is the classical path, then the energy E = H(x(t) ,~(t)) 
is a constant. We call x(t) a classical path with the lowest energy from y to 

x in time T if x(t) has the smallest E among all classical paths satisfying the 

boundary condition x(O) = y, x(T) = x. 

For the definition of the action function S(T, x, y), we employ the following 
theorem. 

Theorem 1.1. There exist a small J > 0 and a small neighborhood N of the 
diagonal 

diagM := {(x,x) EM  x MI x EM} 

such that for any (T, x, y) E (0, o) x N, there exists a unique classical path 

ぢ（x,y) E M with the lowest energy from y to x in time T. 

Then we define the function S(T, x, y) as follows. 

Definition 1.2. Fix a small o > 0 and a small neighborhood N as in Theorem 
1.1. For (T,x,y) E (0,o) xぷ wetake the unique classical path叶(x,y) as in 
Theorem 1.1 and define 

S(T,x,y) := laT (~ l~(x,y{ -V（x;(x,y))) ds 
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x(x, y): cutoff function. In order to restrict (x, y) to N, we introduce a 
cutoff function x(x, y) E C00(M x M) supported in N. For technical reasons, 
we require the properties x = 1 near diag M and O ::; x :=; 1 everywhere. 

a(r, x, y): amplitude. In this paper, we consider three amplitude functions. 
The first one is 

a(T, X, y) := T -n/2 

which is same as in the case of Euclidean spaces. 
The second choice is the square root of the Morette-Van Vleck determinant: 

a(T,x,y) := D(T,x,y)112. 

The Morette-Van Vleck determinant D(T, x, y) is defined as 

D(T,x,y) := g,(x)―1/2肌 (y)―1/2det(-8泣芦(T,X, y)) 

by local coordinates with the positive orientation, where g,(x) and g,,(t) are 
positive functions defined by the relation vol9(x) = g,(x)112dx1 I\••• I¥ dxn and 
vol9(y) = g,,(y)112dy1 I¥・・・ I¥ d珈． D(T,x, y) is independent of the choice of the 
local coordinates with the positive orientation around x and y. 

The third choice is the square root of Morette-Van Vleck determinant with 
an auxiliary term: 

a(T,x,y) := D(T,x,y)112(1-ia1(T,x,y)). 

Here a1 (T, x, y) is the solution to the transport equation 

8m 1 + g(gradxS, grad訊 1)＝ --D― 1/2△』)112, a1(0,x,y)=0. (1.4) 
at 2 

Fix a fixed time t > 0. We call a multiple△ :＝ （町，．．．，TN)with乃＞ 0and 
冗＋・・・十 TN= t a partition of t. The size of the partition△ = （T1,..., TN) is 
defined as|△| ：=max区j:S:N乃． Fora partition△=  （乃，．．．，び） oft>0, we 
define the time-slicing approximation £（△） as an iteration of the operators 

£（△）：＝ E(TN) ・ ・・E（巧）．

Our main theorem states that the time-slicing approximation converges to the 
fundamental solution to the Schrodinger equation (1.1). 

Theorem 1.3. Let a(T,x,y) = T―n/2, n1/2, D叫 1-ia1). In the case of a= 

T―n/2, we further assume that the Ricci curvature of (M, g) is positive definite. 
For each amplitude, we set入E賊 inthe modified Schrodinger equation (1.1) as 

1/6 if a= T―n/2, 

入＝｛1／12tfa= D1/29 

Q if a= D1/2(1 -ia1)-
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Then, for any T > 0 and c E (0, 1/2], there exists a constant C > 0 such that 
the estimate 

11£（△）ー e―itH入IIHi+e→L2< C|△|e (1.5) 

holds for all t E (0, T] and partition△ oft. 
Here Hl+c: = Hl+"'(M) is the Sobolev space on the compact manifold M of 

order l + c. 

The case of a= D112 is proved in [6] and the other cases are in preparation. 

In this paper, we describe an outline of the proof of Theorem 1.3 from Section 
2. We can refer to [6] for the detail of the proof. 

Remark. In the case of a= T―n/2, the positive Ricci curvature condition is just 
a sufficient condition and not a necessary condition. For example, the inequality 
(1.5) holds on the flat tori. In general, Theorem 1.3 with a= T―n/2 is applicable 

if the inequality 
戸 D(T,x,y)~ 1-CT 

holds for all (T,x,y) E (0,8) x N. Since D(T,x,y) is expanded as 

n 
1 

戸 D(T,x,y)= 1 + i L尻 (y)xi巧＋ O(lxド＋ T) (1.6) 
i,j=l 

in normal coordinates centered at y where Rij (y) is the Ricci curvature tensor 
at y, the inequality (1.6) holds if (M, g) has the positive Ricci curvature. 

Here we refer to the previous studies of the time-slicing approximations. On 
the Euclidean spaces, for example, Fujiwara [5] and Kumano-go [9] studied the 
time-slicing approximation in the case of at most quadratically increasing poten-
tial and proved that the time-slicing approximation converges to the fundamen-
tal solution to the Schrodinger equation. Ichinose [7] dealt with polynomially 
growing potentials and proved the convergence to the fundamental solution in 
the strong operator topology on the L2 space. 

On the other hand, there are only a few mathematical studies of the time-
slicing approximation on manifolds. Miyanishi [10, 11] studied the case of free 
particles on compact manifolds with a suitable symmetry. There are some stud-
ies of the imaginary-time path integrals, that is, roughly speaking, construction 
of the heat kernel. Inoue and Maeda [8] constructed the imaginary-time path 
integral for the free particle and the derived the heat equation modified by 
the scalar curvature. Fine and Sawin [4] constructed the imaginary-time path 
integrals for the supersymmetric quantum mechanics. 

2 Reduction to stability and consistency 

We reduce the proof of the main theorem (Theorem 1.3) to the analysis of the 
asymptotic behavior of the short-time approximate solution E(T) as T→ +0. 
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Lemma 2.1. Under the same assumption in Theorem 1.3, the following state-
ments hold. 

(i) (Stability) There exists a constant C > 0 such that the inequality 

IIE(T)||い→L2S eCT 

holds for sufficiently small T > 0. 

(ii) (Consistency) For any E: E (0, 1/2] and入E 股 asin Theorem 1. 3, there 
exists a constant C > 0 such that the inequality 

.a 
i~E(T)u-H辺(T)ull S CT6llullH1+e 
街 L2 

holds for sufficiently small T > 0 and u E C00 (M). 

We prove Theorem 1.3 by the above Lemma 2.1. 

Proof of Theorem 1.3. Take an arbitrary u E C00(M) and set 

G(T)u :=｛砥E(T)u-H入E(T)u ifo < T<  1, 

゜
if T = 0. 

(2.1) 

Then T→G(T)u is continuous in the L2 topology at T = 0 by the consistency. 
Thus we can apply the Duhamel principle and obtain 

E(T)u -e―iTH泣＝ if e―i(Tー c,)H加）uda-.

゜Hence we have the inequality 

IIE(T)u -e―iTH入U||L2<JT ||G（介）憂 do-S CTl+cllullH1+e. 

゜We introduce an operator P := (i +几）ー(l+c)/2. Since P and e―iTH入

commute, we obtain 

11£（△）P-e―itH入PII口→L2

<心||E(TN)・ ・ ・ E(Tj+1) (E(T1) -e―iTjH入）Pこ竺竺二竺~IIL2➔L2
J=O stability consistency 

N 

<どeC(T叶・・十乃＋1）訳＋eこC|△|c
J 

J=O 

for any partition△ = （Tい•.．， TN) oft E (O,T]. 

unitarity 

口

Theorem 1.3 and the stability in Lemma 2.1 implies the convergence in strong 
topology: 

Corollary 2.2. For each u Eび(M),we have 

in the L2 topology. 

lim8（△）u=e―itH渾
凶→0



82

3 Classical mechanics 

First we briefly describe the proof of Theorem 1.1, which states the unique 
existence of the classical path with the lowest energy. 

Proof of Theorem 1.1. We introduce a scaling 

eT: T*M→T*M, 87(x,~) := (x,T―1<）． 

Then (x(t) ,~(t)) satisfies the Hamilton equation (1.3) if and only if 
（x(s), {(s)) := 87(x(TS) ,~ (Ts)) satisfies the Hamilton equation 

d拓 8HT dら
-（s) ＝一(x(s),{(s)），一(s)=-―  

8HT 

ds 況 ds 釦・
（元(s),{(s)),

(3.1) 

元(0)= Y, 元（1)= x. 

where Hr(x, ~) := l~l~/2 ＋召V(x). Note that the problem (3.1) is extended nat-g 

urally in the case of T::::; 0. If T = 0, then there exists a unique solution to (3.1) 
with the lowest energy for sufficiently close x and y by the existence of geodesi-
cally convex neighborhoods. For small ITI ≪ 1, we consider the Hamiltonian 
flow（尻（Y,7/)，冗(y,TJ)) with respect to the Hamiltonian Hが

叩，J8HT-T-T 叩，i(_¥ 8HT 
ー (s)＝一() -— -T-T 

ds 況
qS,pS 9 -（s) ＝ ds,-I axj (qs,pJ, 

7/6(Y,TJ) = Y, 尻（Y,TJ) = 7/・ 

We can apply the inverse function theorem at each point on 

{O} x {(y,0) E T*M I y EM} 

to the function 

(T,Y,TJ)←→ （T祈 (Y,TJ),y).

(3.2) 

Thus, we denote the inverse function of the above function by (T,TJ(T,x,y),y) 
and set 

（心(x,y),p;(x,y)):=（叩(Y,TJ(T,x,y)），冗(Y,TJ(T,x,y))),

and we obtain the solution (q;(x,y),p;(x,y)) to the Hamilton equation (3.1). 

ロ

The action S(T,x,y) defined in Definition 1.2 has following asymptotic be-

havior as T→ +0. 
Theorem3.1. Weset<I>(T,x,y) :=TS(T,x,y)for(T,x,y) E (0,8)xN. Then<I> 
is extended to a smooth function in (-8, 8) x N. Moreover, as T→0, 4>(T,x,y) 
has the following asymptotic behavior 

1 
<I>(T, x, y) = ~d(x, y)2 + 0（召）

2 

where d stands for the distance function associated with the Riemannian metric 
g. 

Remark．<l>(T, x, y) is equal to the action along the lowest energy classical path 
with respect to the scaled Hamiltonian H7 from y to x in time 1. 
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4 Proof of stability and consistency 

4.1 Proof of stability 

Proof of Lemma 2.1 (i). We consider the operator E(T)* E(T). Regarding T > 0 

as the semiclassical parameter, we can prove that E (T) * E (T) is a semi classical 
T-pseudodifferential operator with the principal symbol 

び(E(T)*E(T)) = 
lb(T所 (y,TJ), y)l2 

ID1>(T，引(Y,TJ),y)I"
(4.1) 

Here可(y,7J) is the projection of the Hamiltonian flow with respect to the scaled 
Hamiltonian HT to the configuration space, which is defined in (3.2). b(T,x,y) 
is defined as 

b(T,x,y) := Tnl2a(T,x,y)x(x,y) (= 0(1) as T→ +0) 

and D叫T,x, y) is defined as 

D<I>(T,x,y)：＝戸D(T,x,y).

Then we have 

||a-(E(T)* E(T))IILoo(T*M)::::; 1 + CT 

for all cases a = T―n/2 (with the positive Ricci curvature condition) and a = 
Dl/2, D叫 1-iaリ． Thusthe £2-boundedness theorem (see [2, Proposition 

E.24] for example) of pseudodifferential operators implies 

IIE(T)* E(T)ll1ン2→£2::::;lla-(E(T)* E(T))ll£oo(T•M) + O(T)::::; 1 + CT. 

We roughly describe the derivation of the principal symbol (4.1). In local 
coordinates, the integral kernel K(T,x,y) of E(T)*E(T) in the sense that 

is 

E(T)*E(T)u(x) = 1n K(T,x,y)u(y)dy1・・・dyn 
Rn 

K(T,x,y) 

g(y) 1/2 = ~ 1n ~b(T,z,y)ei(-i!>(-r,z,x)+il>(-r,z,y))/-r 
(2訂）n }JRれ

g(z)112dz1 ・・・dzか

where g(y) is the volume density: 

vol9(y) = g(y)112dy1 ・・・I¥ dy加

and <I>(T,x,y) is defined in Theorem 3.1. We approximate the phase function 
-<I>(T,z,x) + <I>(T,z,y) as 

8<I> 
-<I>(T,z,x) + <I>(T,z,y) ='f} ・ (x -y),'f} = -~(T,z,y) + O(lx -yl)-ay 
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We change the variables z→'T/・ Since <I>(T, x, y) generates the Hamiltonian flow 

（可(y,'f/)，尻(y,'f/))in the sense that 

8<I> 8<I> 
尻(y,n)＝戸這(y,n)，y)，n=--

8y 
(T祈 (y,TJ), y), 

we observe that the inverse function of z→ -8y<I>(T, z, y) is approximately equal 
to'f/ c-+ qI(y, ry). Thus we have 

where 

1 
K(T,x,y) = ~ 1n p(T,X,TJ,Y)ei11・(x-y)/Tdry 

(2合）”配

p(T,X,TJ,Y) 

-1 

:= b(T, qI(y, TJ), X)b(T, qI(y, TJ), y) 

a2<1> 
x I det ~ (Tバ'iHY,TJ), y) + O(lx -YI) I g(qI(y, TJ))112g(y)112 • 

釦 8y

Hence the principal symbol is 

-1 

i7(E(T)* E(T))(T, Y, ri) = p(T, Y, T/, y) 

82① 
= lb(T祈 (y,TJ), y)l2 ldet ~ (T所 (y,ry),Y)I g（祈（Y,ry))lf2g(y)lf2 

釦 8y

lb(T所 (y,ri),y)l2

ID叫T，可（y，n)，y)|．

4.2 Proof of consistency 

口

Proof of Lemma 2.1 (ii}. We only consider the case of a = D112 in this paper. 
The proof in the case of a = D112 (1 -ia1) is similar to that of a = D112. On 

the other hand, more detailed analysis is needed in the case of a = T―n/2. 

Let G(T) be the operator defined by (2.1). We can decompose G(T) into the 
sum of two operators 

G(T) = G由） ＋T―1伍 (T)

where G由） andG2 (T) locally satisfy 

如）＊化(T)u(x)＝心J股2np1 (T, ~, T'f)) eirJ・(x-y)u(y) d砂 l

with symbols p1(T,x,l) such that 

• P1(0,y,O) = 0 for ally EM  and 

•四 (T,Y,TJ) = 0 near {O} x {(y,0) E T*M I y EM}. 

(4.2) 
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The family of symbols { T―2e:p1(T,Y,TrJ)}o<-r<l and {T―2-2加 (T,y, TrJ)}o<-r<l 
are bounded in the class S晶(T凜門 andS5戸(T＊股門 respectivelywhere 

濡o（茫）：＝｛a ECCX)誓）
〈<〉 -m8讚a(x,~)EL噂2n)

for all multiindices a, f3 }． 
with the seminorms 

lala/3 := II〈O―m的競a(x,＜）||LOO（正）・

Thus, by the continuity of pseudodifferential operators on the Sobolev spaces, 
we have 

閲（T)*G1(T)IIHe→H-eさCT2c:

and 
IIG2(T)＊伍(T)||か +C→H-l-eさC召＋2e

for some C > 0 independent of T > 0. Thus we obtain 

IIG1(T)llt,→£2 ::::; CIIG1(T)*G1(T)IIHe→H-e::::; CT2c 

and 

IIG2(T)llti+e→£2 ::::; CIIG2(T)*G2(T)IIH1丘→H-1-e::::; C召＋2c:.

Substituting them to (4.2), we obtain the desired estimate 

IIG(T)IIHi+e→L2さCT.
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