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1 Introduction 

This article is concerned with the following reaction-diffusion equation arising in 

a population model: 

に＝＝竺；二り[x)。口。
u(•,O)=uo(~ 〇）

in D x (0, oo), 

on叩 x(0,oo), 

in D, 

(1.1) 

where O is a bounded domain in町 withsmooth boundary叩； △ :＝こJn=1的州
is the usual Laplace operator; 8v denotes the directional derivative in the direction 
of the outward unit normal vector v on 80; d > 0 and O :S 0'.S 1 are given 

constants; m(x) is a nonnegative measurable function. In the research field of 

reaction-diffusion equations in biological models, (1. 1) is referred as the diザusive

logistic equation in which the unknown function u(x, t) represents the population 

density of a species at location x in the bounded habitat O and time t > 0. The 

diffusion coefficient d > 0 represents the degree of random movement of each 

individual of the species. The nonnegative function m(x) can be interpreted as 

the amount of resources (feed) for the species at location x E 0. In the boundary 

condition, the homogeneous Dirichlet type is corresponding to 0 = 0, where the 
habitat O is assumed to be surrounded by a hostile environment for the species; 

the homogeneous Neumann type is corresponding to 0 = l, where the flux of u 

across the boundary is assumed to be zero; the Robin type is corresponding to 

0 < 0 < l, where the flux of u across the boundary is assumed to be proportional 

*This article is a summary of works [3, 4] by Jumpei Inoue (Waseda University) and a joint 
work with him [5]. 
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to u. Throughout this article, we assume that the resource function m(x) belongs 

to the following functional class: 

L~(D) := { m E L00(D) : m 2:: 0 a.c. in D,|佃||00> 0 }, 

where II ・ IIP denotes the us叫 V(D)norm for p E [1, oo]. Concerning (1.1), the 
global well-posedness and the long-time behavior of solutions are known as follows 

(e.g., [2, Sections 1.6.5-1.6.7], [7, Chapter 5] and [10, Theorem 3.6]): 

Lemma 1.1. Ifu。ELf (D) n C(D) satisfies知＝ 0on 8D, then (1.1) admits 

a unique solution u(x, t) in the class u E ci+,号汀0x (0, oo)) n C(TI x [O, oo)) 
with any I E (0, 1). Furthermore, as t→oo, u(x, t) converges to the maximal 
nonnegative steady-state u * (x) uniformly in豆

Therefore, the profile of the maximal solution to the following nonlinear elliptic 
equation can approximate the spatial configuration of the species after a long time. 

『凶＋u（m(x)-U) ＝ 0, Uこ0in Q, 

も。u= 0 on an. (1.2) 

It is easily checked that all nontrivial nonnegative solutions are positive solutions 
by the strong maximum principle and all weak solutions can be in class W2,P(D) 
for any p 2': 1. By the Sobolev embedding theorem, such solutions are in class 
cl+T(0) for any'Y E (0, 1). Furthermore, the global bifurcation structure of 
positive solutions of (1.2) is known. For the sake of the expression of the structure, 
we introduce the following eigenvalue problem with weight: 

—△¢=入m(x)¢ in 0, おゆ＝ 0on an. (1.3) 

It is well-known that all eigenvalues of (1.3) consist of a monotone increasing 

sequence｛ふ（m,0）犀 c[O, oo) withふ(m,0)→ooas j→oo, and moreover, 
the least eigenvalueふ(m,0) can be characterized by the following variational 
formula (e.g., [2, Theorem 2.4]): 

ふ(m,0)＝｛咋H界翫＃〇 1|▽ロニ[80¢2 

min 
II▽疇

</>EH如），呼of0 m(x)紛

if 0 E (0, l], 

if 0 = 0. 

It is possible to verify that, for each fixed m E L竺(D)，入1(m, 0) is a monotone 
decreasing continuous function with respect to 0 E (0, 1) with入1(m,1) = 0. Here 
we define d1(m, 0) := 1／入1(m, 0), and hence, d1 (m, 0) is monotone increasing with 

respect to 0 E (0, 1) with d1(m, 1) = oo. It is known that d1(m, 0) gives the 

threshold for the existence/nonexistence of positive solutions of (1.2) (e.g., [2, 
Corollary 3.14]): 
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11ud,m,elloo 11ud,m,1llcx:, 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
↑ 

) d ゜↑1 l l↑ 
d 

゜
d1(m,0) 

(a) 0 S 0 < 1 (b) 0 = l 

Figure 1: Bifurcation diagram 

Lemma 1.2. For each m E L~(O), the set of all positive solutions of (1.2) forms 
a simple curve parameterized by d E (O,d1(m,0)) as follows 

I'(m, 0) := { (d墨d,m,e)E (0, d1(m, 0)) X c1+1(D) }, 

where the map (0, d1(m, 0))ぅd→四，m，oE Cl+1（TI) is continuous and satisfies 

lim八 0四，m,e(x)= m(x) for each (x, 0) E O x [O, 1] and limd)'di(m,0)四，m,0= 0 
uniformly in TI for each 0 E [O, 1). 

Hence, Lemma 1.2 asserts that, if 0 E [O, 1) (except for the Neumann type), 
the set I'(m, 0) of all positive solutions to (1.2) forms a bifurcation curve, which 
bifurcates from the trivial solution at d = d1 (m, 0) and extends in the direction 
d < d1 (m, 0). Then, the necessary and sufficient range of d for the existence of 

positive solutions is O < d < d1(m, 0), and moreover, for each d E (0, d1(m, 0)), 
the positive solution is uniquely determined by ud,m，生）． CombiningLemmas 1.1 
and 1.2, one can see that, for any u0 E L~(O) n C(O) with SB。u= 0 on 80, the 
solution u(x, t) of (1.1) satisfies 

尼 u(x,t) ~ { ~d,m,,(x) uniformly for x E O if d E (0, d1(m, 0)), 

uniformly for x E TI if d E [d1 (m, 0), oo), 

where it is noted that the latter case is empty if 0 = l (see Figure 1). Therefore, 
it can be said that ud,m,0 gives important information on the population density 
of the species after a long time. In this sense, many mathematicians have studied 

qualitative properties of ud,m,。fromvarious viewpoints. 
Among other things, this article focuses on the following optimal problem. 
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||ud,m,o||1 
Problem. Evaluate S(O, 0) := sup 

dE(O,d1 (m~0)),mEL罰 (rii llmll1 

This problem was proposed by Ni (e.g., [1, Abstract], [6, (8.36)]) especially for the 
Neumann problem (0 = 1). From a viewpoint of the biological model, this problem 

asks for the maximum (or supremum) of the total population of the species relative 

to the total amount of feed. From another viewpoint of the nonlinear PD Es, this 

problem asks whether there exists a constant C such that 

llud,m,0||い（rl)さC||m||い(n) for any d E (0, d1(m, 0)) and m E L~(O), (1.4) 

and moreover, if such a C exists, the best possible constant, denoted by S(O, 0), 

is naturally required. For the one-dimensional Neumann case where O = (a, b) 

with 0 = l, Bai, He and Li [1] gave the following answer: 

Theorem 1.3 ([1]). It holds that S((a, b), 1) = 3 for any -oo < a < b < oo. 

Furthermore, this supremum is not achieved by any solution of (1.2) with O = 

(a,b) and0=l. 

Subsequently, in papers by Inoue [3, 4], Inoue and the author [5], it was shown 

that, in the one-dimensional case, the supremum is still equal to 3 for any other 

boundary condition, whereas, in the multi-dimensional case, there is no constant 

C that satisfies (1.4). Precisely stated, the following result was obtained: 

Theorem 1.4 ([3, 4, 5]). The following properties hold true: 

(i) S((a, b), 0) = 3 for any -oo <a< b < oo and 0 E [O, 1). Furthermore, this 

supremum is not achieved by any solution of (1.2) with O = (a, b); 

(ii) S(O, 0) = oo for any bounded domain O c罠n with n 2: 2 and 0 E [O, 1]. 

The purpose of this article is to express a mathematical motivation of the 

studies on Problem and introduce some ideas in the proof of Theorem 1.4. 

2 Neumann boundary condition 

2.1 Effect of heterogeneity of resources on the biomass 

This section concerns with (1.2) in the Neumann boundary condition case where 

0 = l. We should begin with a mathematical observation by Lou [8], which led to 

the global consideration of (1.2) with 0 = l. His observation gave the following 

fine proof the fact that heterogeneity of resources can increase the total population 

of the species when the homogeneous Neumann boundary condition is imposed: 
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Let u be any positive solution of (1.2) with 0 = l. Dividing the elliptic 

equation of (1.2) with 0 = l by u and integrating the resulting expression over D, 

one can get 

df邸心＋ 1|叫11-llull1 = o. 
Q u 

Applying the integration by parts to the first term, one can see 

J知 1 ▽u 2 ▽u 2 

二山＝［Q;加 dS十了 2＝了 2こ0

due to the Neumann boundary condition. Therefore, we know that 

|| || ＜ || || 1, or equivalently, 
||u||l 

m111'.:::: IIU 
||m||1 

2: 1 

(2.1) 

and the equality holds if and only if m(x) is a positive constant over 0. That is 
to say, the heterogeneity of m(x) can increase the total population of the species. 

2.2 Th e one-dimensional case 

In this subsection, we introduce the outline of the proof of Theorem 1.3 by Bai, 
He and Li [1]. 

Proof of Theorem 1.3. Owing to a suitable scaling, we may choose O = (a, b) 
arbitrarily for the study of S((a, b), 1). Then we consider the following Neumann 
problem of a nonlinear ODE: 

｛馴＋u（m(x)-u)＝ 0, U > O 

u'(O)＝が(1)= 0, 

(0 < x < l), 
(2.2) 

where the prime symbol represents the derivative by x. As mentioned in Lemma 

1.2, there exists a unique solution ud,m,1(x) to (2.2) for any (d,m) E (O,oo) x 
応 (0,1). For simplicity, we restrict ourselves to the case where m(x) is a non-

increasing and non-constant function over (0, 1). It is easily checked that the 

corresponding solution u(x) := ud,m,1(x) is monotone decreasing for x E (0, 1). 
Following the usual energy procedure, one multiplies (2.2) by u'and integrates 
the resulting expression over (x, 1) to get 

du'(x)2 = 
2u（が 2u(1)3'" fl 

3 3 
+ 21• m(y) u(y) u'(y) dy. 

X 

(2.3) 

At the same time, we recall (2.1) to note 

Jl du'（x)2 
。u(x)2

dx + llmlli -llulli = 0. (2.4) 
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Then, by substituting (2.3) into the first term of (2.4), one can see 

加111-~-}u(l) 11 (i) 2 dx + 211 ~ 11 m(y)u(y)u'(y)dy = 0 

<O (2.5) 

Then it follows that llmll1 -llulli/3 > 0, thereby, llulli/llmll1 < 3. It was shown 
in [1] that this estimate holds true even unless m(x) is non-increasing, that is, 

llud,m,1 II 1 

llmll1 
く 3 for any (d,m) E (O,oo) xに(0,1). (2.6) 

The core idea of the proof of Theorem 1.3 by [1] is to find that the bracket 
term in (2.5) tends to zero as E→ +0 in the setting 

d= ¢, m(x) ＝ ｝山o,e)：＝ ｛；に (0:Sx<c), 

(eさxさ1).
(2.7) 

Actually, the first term of the bracket vanishes as c→ +0 since the solution囮 (x)
to (2.2) with (2. 7) satisfies lim0→+0糾→ 0uniformly in any compact subset of 
(0, 1]. Furthermore, the second term of the bracket in (2.5) 

J := 11 ~ 11 m(y) u(y) u'(y) dy 。u(x)2Jx 

also vanishes as follows: Since u0(y)＜匹(x)for any y E (x, s), hence one use the 
Schwarz inequality to get 

|J| ＝ ［二）2［知(y)［的(y)|dy< e[  ｝ 1:>~dy :S嘉（［（ご）2dx)½ 

Substituting (2.4) into the integrand, one can find 

IJI＜..fe(11 (~) 2dx) ½＜占(~[（叫x) -E―111 [O,e)) dx)ふ

3-1 ¥ 2 く ..fe(~) → 0 as c→+0, 

where the last inequality is due to (2.6). The proof of Theorem 1.3 is complete. ロ

For the solutions｛囮｝00found by [1] we see that||妬 ||1/'3ass→+0 
because llm小＝ 1for any s E (0, 1). 

Concerning more detailed information on｛妬｝， Inoue[3] obtained the following 
asymptotic profiles as c→ +0: 
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Theorem 2.1 ([3]). Let叩 (x)be the solution of (2.2) with (2.7). Then, for any 

fixed k > 0,馬（x)satisfies the following properties: 

3 
(i) lim占叫0)= lim甚囮(e)＝ -・ 

e→+0 e→+0 2' 

叫1)
2 

(ii),杷。嘉＝疇（［ロニ□）； 

6 
(iii) lim嘉糾(E+k嘉y)= ~ for each y 2: O; 

C→+0 (ky + 2)2 

e+K嘉

(iv) lim J 匹 (x)dx= ~ 
e→+0 1 + 2k-1. 

From the maximum principle, we know the fundamental property of any non-

constant solution u of (1.2) that O < u(x) < llmll00 for all x E 0. In Theorem 2.1, 
the assertion (i) says that the maximum value of 11か糾(0),is shown to remain 
about 3/(2嘉） beingmuch less than the maximum value 1/E of m. Furthermore, 
it can be seen that the height of u remains approximately the same in the presence 
range [O, c] of resources. The assertion (ii) says that the minimum value匹 (1)of 
叫x)is shown to be about C嘉， whereC is the constant expressed in the right-
hand side. As mentioned above, the fundamental property implies that u0 decays 

to zero in any compact subset of (0, 1] as E→ +0. The assertion (iii) shows that, 
if the solution u0 is scaled down in height by a factor of嘉 andsimultaneously 
extended by a factor of k／嘉 startingfrom x = E, then the scaling function 

叫 y)：＝咋叫E+k咋y)converges to the function 6 / (ky + 2) 2 as E→ +0. The 
assertion (iv) says that most of the total population 3 of四 isoccupied in the 

interval (c, E + kJ匂ifE > 0 is small and k > 0 is large. 

2.3 Th e multi-dimensional case 

Next we consider (1.2) for the case where 0 = 1 and D = B1 := { x E瞑n:lxl < 
1 } with n 2: 2. This subsection introduces our idea in [5] concerning the proof of 

S(Bf, 1) = oo if n 2: 2. (2.8) 

For the verification of (2.8). it suffices to show the following proposition with 

1 1/cn 
匹（x)：＝三B?= {。 (lxl < c), 

(cごlxlさ1).
(2.9) 
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Proposition 2.2. If n ~ 2, there exist positive constants c1 and c2 depending 
only on n such that the solution妬 (x)of 

{t邸＋u （me(x) -U) ＝ 0, U > O in Br, （2.10) 

8vu = 0 on 8B1 

satisfies 

||妬||い~2:c2(1 ー}+閂 logcl). 
||me||L1(Bf) e e )  

(2.11) 

By the fact that right-hand side of (2.11) tends to infinity as c→ +0, (2.8) 
immediately follows. The idea of the proof of Proposition 2.2 is to construct an 
L1 unbounded sequence of sub-solutions. 

Before stating the proof, we review the sub-super solution method. By the 
uniqueness of solutions of (1.2), it suffices to consider the radial solution repre-
sented as v(r) := u(x) with r = lxl. Hence v(r) satisfies the following boundary 
value problem of the following nonlinear ODE: 

｛州”(r)＋ n : 1v'（r)） ＋v(r)（元(r)-V(r)） ＝ 0(O < r < 1)， (2.12) 

v'(O) = 0 = 0v'(l) + (1 -0)v(l), 

where the prime symbol denotes the derivative by r and m(r) := m(x) with 
r = lxl. Although this section is devoted to the case where 0 = 1, we summarize 
the sub-super solution method in the general 0 case for the sake of the discussion 
after this subsection, see also e.g., [9, Section 2]. 

Definition 2.1. Let v : 2 : [O, 1]→恥 becontinuous in [O, 1] and of class C'2 in 

(a。,aリU(a1, a2) U ・ ・ ・ U (aN, aN+1) with a。=0,aN+l = 1. Then Q is called a 
sub-solution of (2.12) if Q satisfies the following conditions (i)-(iii): 

(i) d（旦”（r)+ ~1!.'(r)) ＋且(r) （m(r) 一旦（r)) 2:: 0 in (ai, ai+1) for O ~ i ~ N; 

(ii) lim旦'(r)三lim旦'(r)for each 1 ~ i ~ N; 
r)'a; - ' '-r¥,,a; 

(iii)旦'(0)2::O 2:: 0ピ(1)+(1-0)旦(1).

If万belongsto to the same class as旦andsatisfies (i)-(iii) with reverse inequalities, 
then万iscalled a super-solution of (2.12). 

Lemma 2.3 (the sub-super solution method). If there exist a super-solution万(r)
and a sub-solution Q(r) of (2.12) such that Q(r)さ万(r)for all 0さrさ1,then there 
exists a solution v(r) of (2.12) such that旦（r)::; v(r)三万(r)for all O ::; r ::; 1. 
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Proof of Proposition 2.2. It is easy to check that万(r)= 1／伊 isa super-solution 
of (2.12) with 0 = l. Our crucial task is to construct an £1 unbounded sequence 
of sub-solutions of (2.2) with 0 = l. For any c E (0, 1), we define Q(r)：＝島(r)by 

n
 

）
 

r-e 
（
 

-
n
 

e
 

g
-
E
n
g
e
r
 

｛
 

＝
 

．．
 、1

,r
 

（
 

＞＿ 

(0 :Sr< c), 

(cさrさ1).
(2.13) 

Then by a straightforward calculation, one can verify that 

れ、‘,'’r-e 
（
 e

 

ーn

三
ふ
〔

―
―
 

r

く

、-＿
 ．．

 
ヽ
｀
~

r
 

（
 

ー

＞一

(0 :s; r < c:), 

(c: :s; rさ1)

and 

g”(r) ：＝ ｛：2en2(nen:：＋-21)(n -1 -ner: ）€―(f)”(O 三 r < e)， 

ern+2 (s :Sr :S 1), 

and moreover,旦EC門[O,s)U(s, l])nC1([0, l]). To find a sufficient region of (c1, c2) 
such that y_(r) becomes a sub-solution, we derive the following lower estimate of 
the left-hand side of the ODE corresponding to (2.9): 

凸(12."(r)+ ~12.'(r)) + 12.(r)( >• (r))

={—~(n-1ーロ）—叩2n(n3n-2 1)rn-2 十三—旦e―げ）n }e―げ）n

2::{ — 2c印2n(：こ1)rn-2 十 ~(1-c四―(：門｝e―げ）n
e 

＞羞{-2n(n -l)c1一伶＋ 1}e―げ）n for any r E [O, c:), 

(2.14) 

and 

~(l'(r) + ~'.!d.'(r)) —旦(r)2
＝ ◎ cm(n + 1) ＿ cm(n -1) ＿ c2 

ern+2 { en-2cn-2ern-2 } (2.15) 

2:~(2nc1-~) for any r E [c:, 1]. 
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C2 

ー
C2=2nec1 

C1 

C2= 1-2n(n-1) C1 

Figure 2: Triangle T 

Together with'.!!.'(O) = 0 and旦'(1)= -c2n/e < 0, we deduce that, if 

〇＜ 0 ：：：：： min{ 1, 1 -2n(n -l)c1, 2enc1 }, (2.16) 

then 1!_(r) is a sub-solution of (2.12) with 0 = 1 and satisfies 1!_(r)＜万(r)for 
any r E (0, 1). Here it is noted that the region of (c1, c2) satisfying (2.16) is 
corresponding to the interior of the triangle T whose vertexes are 

(0,0) 
1 ¥ / 1 e , (~,o), (~,~) 

(see Figure 2). Therefore, if (c1, c2) E int (T), then Lemma 2.3 gives a solution 
v(r) of (2.12) with 0 = l satisfying 

1J.(r) :S v(r)さv(r) for any r E [O, 1]. (2.17) 

Hence u(x) = v(r) with r = lxl is a positive solution of (3.9). By a straightforward 

computation, one can verify that叫x)：＝叫r)with r = lxl satisfies 

~=c2(1 ー：十 ;I log El) (2.18) 

Together with (2.17), we obtain (2.11). The proof of Proposition 2.2 is complete. 

ロ
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3 Dirichlet boundary condition 

3.1 Th e one-dimensional case 

Concerning the one-dimensional Dirichlet problem, this subsection introduces the 
proof by Inoue [4] for the assertion (i) of Theorem 1.4 in the case 0 = 0: 

Proposition 3.1 ([4]). It holds that S((a, b), 0) = 3 for any -ooく a<b < oo. 
Furthermore, this supremum is not achieved by any solution of (1.2) with n = 
(a,b) and0=0. 

Proof. By the usual scaling argument, it suffices to show S((-1,1),0) = 3. Let 
u :＝四，m,0be the positive solution of (1.2) with (D, 0) = ((-1, 1), 0) in case 
d E (O,d1(m,O)). Furthermore, let U:＝四，m,1be the positive solution of (1.2) 
with (D,0) = ((-1,1),1). Then, th e usual comparison argument using Lemma 
2.3. enables us to verify that u(x) < U(x) for any x E [-1, 1] and d E (0, d1(m, 0)). 
Together with (2.6), one can see that 

llull1 _ IIUll1 
llmlli ~ llmll1 

く く 3 for any (d, m) E (0山 (m,0))x L汽ー1,1). 

We consider (1.2) with 

0 = (-1, 1), 0 = 0, d=嘉， m(x)= }:o.(-c,c)・

It is easy to check that any solution u(x) to this Dirichlet problem satisfies 
u(x) = u(-x) for any x E [-1, 1]. Then it is convenient to consider the following 
Neumann-Dirichlet problem over (0, 1): 

｛占＂＋ u（元(x)-U) ＝0, U > O 

u'(O) = u(l) = 0, 

(Q < X < 1), 
(3.1) 

where mc(x) = C―1]1［o,c)・ Obviously, for the completion of the proof, it is sufficient 
to show that (3.1) has positive solutions U0 for small c > 0 and they satisfy 

||妬||1/'3 asc:→ +0. (3.2) 

Let v0(x) be the positive solution of (3.1) with the boundary conditions replaced 
by v~(O) = v~(l) = 0. It is clear that v0(x) is a super-solution of (3.1). In view of 
the proof of Theorem 1.3, we recall that 

llvc:ll1 / 3 as E→ +0. (3.3) 
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We construct a sub-solution ~(x) by shifting v0(x) downward to satisfy the Dirich-
let boundary condition and multiplying the shifted function by an undetermined 

factor as follows: 

叫x):= k0仇(x)-v0(l)), 

where kc will be determined later such that kc / 1 as c→ +0, and四 (x)becomes 
a sub-solution. Then it follows that 

Fc(x) ：＝嘉姜'(x) ＋叫x)団(x) —叫x))

=kc［嘉砂＇＋ （叫）―叫1)）｛印x)-kc(vc(x) -vc(l)) }]. 

Substituting咋v;(x)= -vc(x)(mc(x) -vc(x)) into the right-hand side, we have 

Fc(x) = kc［叫1){ kc(2vc(x) -vc(l)）ー匹(x)}+ (1 -kc)叫ゲ］． （3.4) 

Since m心） ＝1/ c and叫） ＞叫） forany x E [O, c:), then (3.4) implies 

1 
叫＞Ke［牝（1){ kc(2叫）―叫1))-1 } + (1 -kc)叫）2] (3.5) 

for any x E [O, c:). By (i) of Theorem 2.1, we see that 

叫） ＝ （：＋o(l)) ~ and 叫l)=(C+o(l)）咋 asc:→ +o, 

where C is the positive constant in the right-hand side of (ii) of Theorem 2.1. 
Then we know from (3.5) that 

加）＞ Ke{ —¥+(}+0(1))~} asc:→ +0 

for any x E [O, c:). Then, if we determine kc as 

1 -kc= c 1/4 , namely, kc= 1 -c 1/4 

for sufficiently small c > 0, then kc/ 1 as c→ +0, and 

Fc(x) > 0 for any x E [O, c:). (3.6) 

Since mc(x) = 0 and廷 (x)＞叫1)for any x E [c:, 1), then (3.4) implies 

Fc(x) > kc(l -kc)以1戸＞ 0 for any x E [c:, 1). (3.7) 

It follows from (3.6) and (3. 7) that旦c(x)= (1 -c:114)(vc(x) -vc(l)) is a sub-
solution of (3.1) if c > 0 is sufficiently small. Therefore, Lemma 2.3 ensures a 

solution uc of (3.1) such that叫x)さ妬(x):S牝 (x)for any x E [O, 1] if c: > 0 is 
sufficiently small. With (3.3) and the definition of y,_c, we obtain (3.2). The proof 
of Proposition 3.1 is complete. ロ
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3.2 Th e multi-dimensional case 

For the function 12.(r) by (2.13), we define w(r) by shifting旦(r)downward to 
satisfy the Dirichlet boundary condition at r = 1: 

w(r) := 12.(r) -~ for r E [O, 1]. 
e 

(3.8) 

Proposition 3.2 ([4]). There exist positive constants c1 and c2 depending only 

on n such that, if E > 0 is sufficiently small, then臥x)= w(r) with r = lxl is a 
sub-solution to 

｛翌？2凶＋u（me(x)-U) ＝ 0, U > O 

u=O 

where mc:(x) is the function defined by (2.9). 

m Br, 

on 8B1, 
(3.9) 

Proof. We set疇） ＝ C―nll[o,c:)・ For any r E [O, s), we know from (2.14) that 

Cl n -1 
Gc:(r)：＝戸 (w"(r)+ ~w'(r)) + w(r)（元(r)-w(r)) 

＝土(12."(r)+ ~12.'(r)) + 12.(r)（三ー12.(r))+?（迦(r)-~ -~) 

＞皇{-2n(n -l)c1 -c2 + 1 }e―(f)n -?(: ＋ 9). 

We note e―（訂＞戸 forany r E [O, s). Hence, if 0＜位く 1-2n(n -l)c1 and 

s > 0 is sufficiently small, then 

2n 叫＞三{-2n(n-l)c1 -(1 + ~)c2 + 1-En} for r E [O,c). (3.10) 

On the other hand, for any r E [c, 1], we know form (2.15) that 

Cl n-1 
如 ）＝戸(w"(r)+ ~w'(r)) -w(r)2 

2 

=~(l'(r)+~旦'(r)）—旦（州＋戸旦(r)-(~) (3.11) 

ミ ~(2nc1 -~) + (~)2且— 1)
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Consequently, (3.10) and (3.11) enable us to deduce that, for any small tJ > 0, if 
E is sufficiently small and 

0 < c2 < min{ 1 -tJ -2n(n -l)c1, 2nec1 }, 

then G0(r)?:: 0 for any r E [O, 1]. Hence, in such a situation, Y:,(x) = w(r) 
with r = lxl becomes a sub-solution of (3.9). The proof of Proposition 3.2 is 
accomplished. ロ

Corollary 3.3 ([4]). If n ?:'. 2, then S(Br, 0) = oo. 

Proof. Obviously,豆0(x)= 1／ぎ isa super-solution of (3.9), and moreover, it 
satisfies Y:,0(x)＜可0(x)for any x E B『,whereY:,0 is the sub-solution obtained in 
Proposition 3.2. Thanks to Lemma 2.3, there exists a solution u0 to (3.9) such 

that'!h:(x) :S匹 (x)三五c(x)for any X E Br. Since'!h: =集一幻／e,then (2.18) 
gives||馴|i/llmcll1→oo.Therefore we obtain S(Br, 0) = oo. ロ

4 General domains and boundary conditions 

In this section, we prove (ii) of Theorem 1.4. In the study of S(O, 0) with general 
domains and 0 E [O, 1], the following well-known parabolic version of the sub-super 
solution method will play an important role: 

Definition 4.1. If u E Cl+'Y,-42ー(0 x (0, oo)) n C(O x [O, oo)) (=: X) satisfies 

｛如：：：：：：向＋叩(m(x)-μ) 

叫μ:＝ 00嘩＋（1-0)y,_：：：：：： O 

in Ox (O,oo), 

on 80 x (0, oo), 
(4.1) 

then旦iscalled a sub-solution of (1.1). If可 EX satisfies (4.1) with reverse 
inequalities, then五iscalled a super-solution of (1.1). 

Lemma 4.1 (the sub-super solution method). Suppose that y,_ E X and可 EX
are a sub-solution and a super-solution of (1.1), respectively. Then, if y,_(x, 0) :S 
（土）u(x,0) for all x E TI, then y,_(x, t)＜可(x,t) for all (x, t) E TI x (0, oo). 

Proof of (ii) of Theorem 1.4. We may assume O E O without loss of generality. 
For any small E > 0, we consider the time-depending solution to a diffusive logistic 
equation in a general bounded domain 0: 

ヽ`＇ー，u
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(4.2) 
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where m土） ＝ C―nllsi. We take any p > 0 such that B; := { x E町： lxl< p} 
-n、

satisfies B; := { x E町： lxl:S p} C D. Next we set a nonnegative initial data 

u0 E C(O) such that supp u。＝冗． Then,Lemma 1.1 implies that the solution 
妬 (x,t)＝Uc;(X, t; f2, 0) satisfies 

lim叫x,t)＝叫x) uniformly for x E豆
t→OO 

(4.3) 

where u;(x) = u;(x; 0, 0) is the maximal nonnegative stationary solution of (4.2). 
On the other hand, we consider solutions to the same parabolic equation with 

the homogeneous Dirichlet boundary condition on aB; x (0, oo): 
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in B; x (0, oo), 

on 8B; x (0, oo), 

in Bn 
p' 

(4.4) 

where the initial data u。istaken same as that in (4.2). Similarly, Lemma 1.1 
ensures the solution vs(x, t)＝牝(x,t; B;, 0) satisfies 

lim叫x,t) = v;(x) uniformly for x E官
t→00 

P' 
(4.5) 

where v;(x)＝帽(x;B;, 0) is the maximal stationary solution of (4.4). In spite of 
p # 1, one can verify 

11v;111;BP := 1可(x;B;, 0) dx→ oo as e → +0 (4.6) 
B9 

in the same manner as in the argument in the previous subsection. 
Here we note that the solution妬 (x,t; n, 0) of (4.2) satisfies糾 (x,t) > 0 for 

any (x, t) ED x (0, oo) by th e strong maximum principle. Hence匹 (x,t) > 0 for 

any (x, t) E 8B~ x (0, oo) 
—n 

p 0, oo), and there by，匹（x,t) (restricted in B p X (0,(X)）） is a 

super-solution of (4.4). Then Lemma 4.1 implies that 

叫x,t)＜叫x,t) for any (x, t) E冗X (0, oo). 

Setting t→oo in the above inequality, we know from (4.3) and (4.5) that 

如）こ叫x) for any x E冗．

Together with (4.6), we set E→ +0 in the above inequality to get 

||妬||m:＝J如；D,0) dx→ CX) as e → +0. 
Q 

This fact obviously completes the proof for (ii) of Theorem 1.4. 口
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