
Enhanced chondrogenic
differentiation of iPS cell-derived
mesenchymal stem/stromal cells
via neural crest cell induction for
hyaline cartilage repair

Denise Zujur1, Ziadoon Al-Akashi1, Anna Nakamura2,
Chengzhu Zhao1,3, Kazuma Takahashi4, Shizuka Aritomi4,
William Theoputra1, Daisuke Kamiya1,5, Koichi Nakayama2 and
Makoto Ikeya1,5*
1Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan, 2Center for
Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan, 3Laboratory of
Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University,
Chongqing, China, 4Research Institute for Bioscience Product and Fine Chemicals, Ajinomoto Co., Inc,
Kawasaki, Japan, 5Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan

Background: To date, there is no effective long-lasting treatment for cartilage
tissue repair. Primary chondrocytes and mesenchymal stem/stromal cells are the
most commonly used cell sources in regenerative medicine. However, both cell
types have limitations, such as dedifferentiation, donor morbidity, and limited
expansion. Here, we report a stepwise differentiation method to generate matrix-
rich cartilage spheroids from induced pluripotent stem cell-derived mesenchymal
stem/stromal cells (iMSCs) via the induction of neural crest cells under xeno-free
conditions.

Methods: The genes and signaling pathways regulating the chondrogenic
susceptibility of iMSCs generated under different conditions were studied.
Enhanced chondrogenic differentiation was achieved using a combination of
growth factors and small-molecule inducers.

Results:Wedemonstrated that the use of a thienoindazole derivative, TD-198946,
synergistically improves chondrogenesis in iMSCs. The proposed strategy
produced controlled-size spheroids and increased cartilage extracellular matrix
production with no signs of dedifferentiation, fibrotic cartilage formation, or
hypertrophy in vivo.

Conclusion: These findings provide a novel cell source for stem cell-based
cartilage repair. Furthermore, since chondrogenic spheroids have the potential
to fuse within a few days, they can be used as building blocks for biofabrication of
larger cartilage tissues using technologies such as the Kenzan Bioprintingmethod.
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1 Introduction

Cartilage tissue has limited self-healing capacity owing to the
lack of blood vessels and insufficient blood supply necessary to
promote cell proliferation and differentiation in situ (Ulrich-Vinther
et al., 2003; Sophia Fox et al., 2009). Therefore, damaged cartilage is
difficult to repair, and sound long-term therapeutic effects have not
yet been obtained. Cell-based therapies have been explored as
alternative approaches for treating cartilage defects. Primary
chondrocytes and mesenchymal stromal/stem cells (MSCs)
isolated from adult tissues are the most common cell sources
used in regenerative medicine (Mardones et al., 2015). However,
both cell types have limitations such as dedifferentiation, donor
morbidity, and limited expansion, resulting in heterogeneous and
inconsistent cell products and poor clinical outcomes.

Induced pluripotent stem cells (iPSCs) are promising
alternatives to generate a large number of chondrogenic
precursors for cell therapy (Boreström et al., 2014). The
advantages of using iPSC-derived mesenchymal stromal/stem-like
cells (iMSCs) over adult tissue-derived MSCs include extensive cell
expansion ex vivo and the elimination of invasive biopsies. In
addition, iMSCs can be genetically modified to increase their
differentiation potential, reduce their immunogenicity, and
introduce patient-specific mutations for research purposes and
disease modelling (Zhao and Ikeya, 2018).

Chondrogenesis is a sequential process that occurs mainly
during the embryonic stages. Chondrocytes are derived from
mesenchymal precursors originating from the paraxial mesoderm,
lateral plate mesoderm, and neural crest. The embryonic nature of
iPSCs provides the opportunity to recapitulate the developmental
path of chondrocyte differentiation. Several protocols have been
established to generate chondrocytes and cartilage-like tissues from
iMSCs (Umeda et al., 2012; Koyama et al., 2013; Rodríguez Ruiz
et al., 2021; Rodríguez Ruiz et al., 2021).

Our team as well as others have successfully established
strategies to generate iPSC-derived neural crest-like cells (iNCC)
as an intermediate source of iMSCs (Lee et al., 2010; Menendez et al.,
2011; Fukuta et al., 2014; Umeda et al., 2015; Umeda et al., 2015;
Kamiya et al., 2022; Kamiya et al., 2022). We have previously shown
that the resulting iMSCs are highly expandable, cryogenically
preservable, and can differentiate into osteoblasts, chondrocytes,
and adipocytes (Fukuta et al., 2014; Zhao and Ikeya, 2018). We have
extensively explored the use of iMSCs in drug discovery and disease
modeling (Zhao and Ikeya, 2018; Nakajima and Ikeya, 2019). Our
efforts to generate cells for regenerative medicine prompted us to
translate our protocol into a xeno-free system for generating
functional iMSCs (Kamiya et al., 2022). We have demonstrated
the in vivo therapeutic effect of iMSCs on musculoskeletal tissues,
including muscle, bone (Kamiya et al., 2022), and laryngeal cartilage
(Yoshimatsu et al., 2021).

Here, we attempted to extend the applications of iMSCs to
regenerative medicine and tissue engineering by generating high-
quality cartilage spheroids in vitro. Because successful neocartilage

formation may depend on both the susceptibility of the precursor
cells to chondrogenesis and the proper manipulation of the signaling
pathways involved in chondrocyte commitment, our approach
included screening the chondrogenic potential of two types of
iMSCs and optimizing the chondrocyte differentiation strategy.
Particularly, we propose the use of TD-198946 (TD), a small
molecule used to enhance chondrogenic differentiation of various
human progenitor cells, including BM-MSCs (Yano et al., 2013b),
synovium-derived stem cells (Chijimatsu et al., 2019; Kobayashi
et al., 2020), and nucleus pulposus cells (Kushioka et al., 2020).

2 Results

2.1 iMSCs display different differentiation
potential towards chondrogenesis

To establish an efficient differentiation strategy for generating
cartilage-like tissue from iMSCs, we first studied the characteristics
and differentiation potential of iMSCs generated from the iNCC
lineage under different conditions. Cryopreserved iNCCs were
differentiated and expanded using our previously established
protocol (Kamiya et al., 2022) and were further differentiated
into iMSCs using two types of xeno-free culture media, XSF and
T1 media (Figure 1A). After three passages, iMSCs differentiated
with T1 (T1-iMSCs) or XSF (XSF-iMSCs) were analyzed. The NCC
markers SOX10 and NGFR were downregulated, while the typical
MSCmarkers (CD44, CD73, CD90, and CD105) were upregulated in
both types of iMSCs compared to the iNCCs, and no significant
differences were found between T1-iMSCs and XSF-iMSCs for any
of the markers analyzed (Figure 1B). Flow cytometry analysis also
confirmed that nearly all of the T1-and XSF-iMSCs expressed MSC
marker proteins (CD44, CD73, CD90, and CD105) at comparable
levels (Figure 1C). Next, we examined the three-lineage
differentiation potential of the iMSCs. Human bone marrow-
derived MSCs (BM-MSCs) were also differentiated as a reference.
T1-and XSF-iMSCs were able to differentiate into chondrocytes,
osteoblasts, and adipocytes (Figures 1D–F). However, T1-iMSCs
showed superior chondrogenic potential compared to XSF-iMSCs
and BM-MSCs, as indicated by increased deposition of sulfated
proteoglycans (as assessed by Alcian blue staining) and significant
upregulation of the chondrogenic markers COL2A1, and ACAN
with reduced expression of COL1A1 (Figure 1D). Conversely, T1-
iMSCs displayed decreased extracellular matrix (ECM) calcification
and expression of the osteoblast master transcription factor RUNX2
compared with XSF-iMSCs during osteogenic induction (Figure 1E).
The osteogenic culture of BM-MSCs showed high expression of the
osteoblast marker SP7 but decreased expression of BGLAP, a bona
fide marker for mature osteoblasts. This observation could
potentially account for the extensive alizarin red staining, but
fewer dark calcified areas when comparing to iMSC osteogenic
cultures. When subjected to adipogenic differentiation, T1-iMSCs
synthesized fewer lipid vacuoles and showed decreased mRNA
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FIGURE 1
Characterization of iMSCs generated from expanded iNCCs with two culture media under xeno-free conditions (A) Schematic diagram of the
induction protocol for iMSC differentiation from iNCCs. (B) mRNA expression of NCC and MSC markers determined by RT-qPCR in iMSCs generated
using T1 and XSF media. Data is presented as folds relative to iPSCs, and are the means ± SD from four independent experiments. *p < 0.05, **p < 0.005,
***p < 0.001, ****p < 0.001 in NCC vs. all others. No significant difference was found in T1 vs. XSF for any marker. (C) Flow cytometry analysis of the
distinctive MSC markers in the iMSCs generated using T1 and XSF media. (D) Characterization of BM-MSCs, T1-iMSCs and XSF-iMSCs differentiated to
chondrogenic cells in micromass culture. mRNA expression levels of chondrocyte markers (left) and representative pictures of alcian blue staining (right)

(Continued )
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expression of the adipogenic markers CEBPA and FABP4 compared
with XSF-iMSCs (Figure 1F). In contrast, the early adipogenic
marker CEBPB was significantly upregulated in T1-iMSCs. BM-
MSCs showed remarkable adipogenic potential compared to iMSCs
as evidenced by greater lipid production and the upregulation of the
major adipogenic markers. These data suggest that although the
iMSCs were derived from common progenitor cells and showed
indistinguishable characteristics by conventional characterization
methods, the differentiation potential was differently modulated by
the medium composition during iMSCs differentiation. Notably,
T1-iMSCs selectively gained a greater chondrogenic potential during
expansion.

2.2 Transforming growth factor-β (TGF-β)
signaling pathway positively correlates with
iMSC susceptibility to chondrogenesis

To elucidate the differences between iMSCs leading to improved
chondrogenesis, we performed a comparative global gene expression
analysis of parental iPSCs, iNCCs, T1-iMSCs, and XSF-iMSCs using
next-generation RNA sequencing (RNAseq). Figure 2A shows a
heatmap of the normalized counts, highlighting the transcriptomic
differences between the samples. Five clusters were identified by
k-means clustering. Cluster 1 included genes that were specifically
upregulated in iPSCs, while cluster 2 comprised genes upregulated
only in iNCCs. Cluster 3 showed genes that were upregulated in both
iMSCs but not in iNCCs or iPSCs. Importantly, cluster 4 & cluster
5 revealed a different set of upregulated genes in XSF-iMSC and T1-
iMSC, respectively. To further investigate these differences, we
performed a differential gene expression analysis. Figure 2B
shows volcano plots of the significantly differentially expressed
genes (DEGs) in T1-iMSCs vs. iPSCs (left panel), XSF-iMSCs vs.
iPSCs (middle panel), and T1-iMSCs vs. XSF-iMSCs (right panel)
with p-value ≤0.05. To further narrow down our analysis, we
restricted the threshold to log2 fold-change greater than 1.5 with
p-value ≤0.05 (red dots in Figure 2B). We then extracted the list of
DEGs upregulated in T1-iMSCs vs. iPSCs (log2 fold-change ≥1.5)
and performed a pathway analysis using EnrichR (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021), a gene set search engine. The
same procedure was followed for the XSF-iMSC versus iPSCs
dataset. Figure 2C shows a plot of the top five enriched pathways
by the combined score obtained from two gene set libraries,
BioPlanet (Huang et al., 2019) and Panther (Thomas et al.,
2022). Results from both libraries showed enrichment of TGFβ-
related pathways known to play a key role in chondrogenic
differentiation of MSCs. Notably, T1-iMSCs showed greater
enrichment scores for these terms compared to XSF-iMSCs.
Enrichment of integrin-related signaling pathways, recently

proposed to regulate various chondrocyte functions such as
differentiation and matrix production (Knudson and Loeser,
2002), was also found to be superior in T1-iMSCs.

Therefore, we performed a pathway enrichment analysis of
DEGs upregulated in T1-iMSCs versus XSF-iMSCs. Consistently,
the TGF-β and integrin signaling pathways were among the
top 10 enriched terms by the combined score (Supplementary
Table S1). Given the relevance of TGF-β in chondrogenesis, we
decided to confirm the results by extracting the overlapping
genes with the TGF-β pathway and evaluating mRNA expression in
T1-iMSCs and XSF-iMSCs. Figure 2D shows that out of the ten
identified genes, eight were upregulated in T1-iMSCs. Overall,
these data suggest that the susceptibility of T1-iMSCs to
chondrogenesis may be mediated, at least partially, through
the TGF-β signaling pathway. The integrin signaling pathway
may also contribute to these findings.

2.3 The small molecule TD-198946 and a
stepwise differentiation strategy widely
enhances the chondrogenic phenotype in
T1-iMSCs

To generate an efficient chondrogenic differentiation method,
we first examined whether the thienoindazole derivative TD-198946
(TD) could enhance chondrogenesis and synthesis of cartilage ECM.
T1-iMSCs were treated with different concentrations of TD (1, 10,
and 100 nM) in micromass cultures. Figure 3A shows that T1-
iMSCs treated with TD at 100 nM showed increased expression of
SOX9, ACAN, and COL2A1 compared to all other concentrations
tested, with no significant effect on COL1A1 expression. Alcian blue
staining also showed increased sulfated ECM deposition following
TD treatment in a concentration-dependent manner. Given the
positive effect of TD on chondrogenesis, we investigated whether the
addition of TD (100 nM) during chondrogenic differentiation may
alter the observed differences between T1-iMSCs and XSF-iMSCs.
The chondrogenic potential of T1-iMSCs remained higher even in
the presence of TD (Supplementary Figure S1).

Next, we examined whether TD added to chondrogenic medium
could enhance differentiation of T1-iMSCs in 3D spheroid cultures
in the presence BMP4 known for its potent chondrogenic effect
(Miljkovic et al., 2008). Spheroids treated with 100 nM showed
enhanced production of sulfated proteoglycans and
glycosaminoglycans (GAGs) compared to untreated ones, as
indicated by a quantitative dye-binding assay and Alcian blue
staining (Figure 3B).

Chondrogenic differentiation of MSCs is traditionally
performed by sustained stimulation with factors such as TGF-β
and bone morphogenetic proteins (BMPs). Recently, stepwise

FIGURE 1 (Continued)
are shown, scale bar: 100 μm. (E) Characterization of BM-MSCs, T1-iMSCs and XSF-iMSCs differentiated to osteogenic cells at 3 weeks. mRNA
expression levels of osteoblast markers (left) and representative pictures of alizarin red staining (right) are shown, scale bar: 100 μm. (F) Characterization
of BM-MSCs, T1-iMSCs and XSF-iMSCs differentiated to adipogenic cells at 3 weeks. mRNA expression levels of adipocyte markers (left) and
representative pictures of Oil RedO staining (right) are shown, scale bar: 100 μm. RT-qPCR data (D), (E) and (F) is presented as folds relative to iPSCs,
and are themeans ± SD of three independent experiments (n = 3) for iMSCs and one experiment for BM-MSCs (n = 6). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.005,
and ****p ≤ 0.0001 as indicated.
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FIGURE 2
Global gene expression profile of iMSCs and parental iPSCs (A)Heatmap illustrating the count data of the RNAseq results and k-means clustering of
the parental iPSCs (n = 3), iNCCs (n = 3), T1-iMSCs (n = 3) and XSF-iMSCs (n = 4). (B) Volcano plots of the differentially expressed genes as indicated. Red
color dots show DEGs (p ≤ 0.05) that are transcriptionally up- or down-regulated (log2Fold change ≥1.5 or ≤ −1.5, respectively) (C) Top five enriched
pathways in T1-iMSCs versus iPSCs (T1), and XSF-iMSCs versus iPSCs (XSF) (left) as well as graphic representation of the overlapped genes in selected
pathways. (D) The mRNA expression of identified genes from the TGF-β pathway in T1-iMSCs (T1) and XSF-iMSCs (XSF) determined by RT-qPCR. Data
represent the means ± SD of three independent experiments (n = 3). **p < 0.01, ***p < 0.005 as indicated.
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FIGURE 3
Optimization of the chondrogenic differentiation strategy (A) mRNA expression levels of chondrogenic markers in T1-iMSCs subjected to
chondrogenic differentiation using different concentrations of TD determined by RT-qPCR and representative images of Alcian blue staining. (B)
Quantification of GAG content (n = 4) and representative images of T1-iMSC chondrogenic spheroids stained with Alcian blue on day 21, differentiated in
the presence or absence of TD (100 nM). (C) Schematic diagram of the differentiation strategies for the induction of chondrogenesis. (D)Histological
analysis of chondrogenic spheroids on day 21 generated from T1-iMSCs using different strategies. H&E staining (upper panel) and Alcian blue staining
(lower panel) is shown. Scale bar: 50 μm. (E) mRNA expression levels of chondrogenic markers determined by RT-qPCR in T1-iMSCs subjected to
chondrogenic differentiation using different strategies. (F) Immunostaining of chondrogenic spheroids for COL1, COL2, and COL10 on day
21 differentiated using the stepwise strategy from T1-iMSCs. Scale bar: 100 μm. (G) Representative images of the fusion process of two chondrogenic
spheroids. mRNA data represent the means ± SD of three independent experiments (n = 3). **p < 0.01, ***p < 0.005, ****p < 0.001 as indicated.
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FIGURE 4
Subcutaneous transplantation of chondrogenic spheroids (A) Schematic diagram of the experimental procedure. (B) Histological analysis of the
retrieved spheroids after four (upper panel) and eight (lower panel) weeks. Representative pictures of Alcian blue staining (top), H&E staining (middle), and
von Kossa staining (bottom). Stars represents potential cell infiltration of the host cells and arrows indicate calcified areas. (C) Immunostaining of
COL1 and COL2 in the retrieved BM-MSC and T1-iMSC chondrogenic spheroids at 8 weeks. Scale bar: 100 μm.
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differentiation strategies have emerged (Nakayama et al., 2003;
Umeda et al., 2012). Therefore, we aimed to compare the
chondrogenic phenotype of T1-iMSCs cultured using the
conventional protocol versus a stepwise differentiation strategy in
the presence of 100 nM TD, as depicted in Figure 3C. The small
molecule TD was added during the BMP4 stimulation period, as
previous reports have shown that TD acts in a BMP-dependent
manner (Supplementary Figure S2).

Histological analysis revealed that the stepwise differentiated
spheroids showed richer sulfated proteoglycans ECM than those
differentiated using the conventional method (Figure 3D). Increased
cell size, a characteristic commonly observed in hypertrophic
chondrocytes, was detected in spheroids produced via the
conventional method. SOX9, ACAN, COL2A1, and COL1A1 were
expressed at similar levels under both culture conditions. However,
PRG4, amarker expressed exclusively in the superficial zone of articular
cartilage, was upregulated in the differentiated spheroids using the
stepwise strategy, whereas COL10A1, a marker for hypertrophic
chondrocytes, was upregulated by the conventional differentiation
method (Figure 3E). Furthermore, immunohistochemistry in the
spheroids differentiated in a stepwise manner consisted of a
COL2A1-rich inner matrix surrounded by a COL1A1-rich layer,
while COL10A1 was not detected (Figure 3F). In contrast, spheroids
from iMSCs or BM-MSCs differentiated with the conventional
method showed limited COL2A1. The expression of COL1A1 was
restricted to the outer layer and COL10A1 was detected only in
spheroids derived from BM-MSCs (Supplementary Figure S3).
Finally, the iMSC chondrogenic spheroids generated with the
optimized stepwise strategy also had the potential to fuse
completely within 7 days (Figure 3G, Supplementary Video S1).

2.4 Chondrogenic spheroids maintain the
phenotype and do not undergo
endochondral ossification in vivo

Given the potential of T1-iMSCs to form cartilage-like tissues
in vitro, we determined their ability to maintain chondrogenic
phenotype in vivo. Following in vitro differentiation, the cell
spheroids were subcutaneously transplanted into immunodeficient
mice (Figure 4A). Chondrogenic spheroids derived from BM-
MSCs were used as positive controls to study endochondral
ossification. The spheroids were harvested after four and 8 weeks
for further analysis. Figure 4B shows that vascular penetration was
detected within the cartilage matrix in the retrieved BM-MSCs
spheroids after 4 weeks. In contrast, chondrogenic spheroids
from T1-iMSCs did not show cell infiltration in the host, and
Alcian blue staining revealed a homogeneous cartilage-like
matrix. After 8 weeks, developing bone-like tissue was clearly
identified in BM-MSCs spheroids by a well-defined edge between
the remaining cartilage-like tissue and the calcified tissue that was
positive for von Kossa staining. The iMSC spheroids remained as
cartilage, although the size decreased, and the lacunae appeared
enlarged compared to those maintained in vitro. Unlike BM-MSC
derived spheroids retrieved at 8 weeks, the spheroids from iMSCs
still showed a COL2A1-rich inner matrix surrounded by a
COL1A1 layer, suggesting the maintenance of stable cartilage-like
tissue in vivo (Figure 4C).

3 Discussion

The repair of articular cartilage defects using regenerative
medicine requires suitable cell sources and the establishment
of effective expansion and differentiation methods. In this study,
we established a stepwise differentiation strategy to generate
stable matrix-rich chondrogenic spheroids from iMSCs via
induction of neural crest cells under defined conditions. Our
approach included the generation and selection of iMSCs with a
greater potential for chondrogenesis and optimization of the
differentiation strategy.

The generation and cryopreservation of cells that cannot be
isolated from adult tissues constitute the unique advantage of using
iPSCs for cell-based therapy and in vitro studies of various skeletal
tissues. We demonstrated that cryopreserved iNCCs could be
differentiated into functional iMSCs and expanded with
selectively enhanced chondrogenic potential using a commercially
available xeno-free culture medium. It is known that cell culture
media and expansion conditions influence the properties of tissue-
derived MSCs and can prime the cells to a specific cell type by
promoting or suppressing important factors regulating lineage-
specific gene expression (Baer et al., 2010; Hudson et al., 2011;
Gharibi and Hughes, 2012; Liu et al., 2017; Noronha et al., 2019).
Under our culture conditions, enrichment of TGF-β and integrin-
related signaling are hallmarks of pro-chondrogenic T1-iMSCs.

In vitro and in vivo studies have shown that TGF-β plays
essential roles at all stages of chondrogenesis (Li et al., 2005;
Wang et al., 2014). Initially, MSC condensation, which is
required for chondrogenesis, was promoted by TGFβ-induced
upregulation of N-cadherin and fibronectin expression (Tuli
et al., 2003; Song et al., 2007). TGF-β has been shown to support
chondrogenic differentiation of MSCs, partially through stimulatory
activities onMAP kinases and modulation ofWnt signaling (Fischer
et al., 2002; Tuli et al., 2003). In particular, p38 MAPK signaling was
found to regulate chondrocyte-specific genes by mediating the
interaction between TGF-β1 and Smad1/4 molecules in BM-
MSCs (Ma et al., 2019). RNAseq analysis of the DEGs in T1-
iMSCs vs. XSF-iMSCs identified the p38 MAPK pathway
(P05918) and the cadherin signaling pathway (P00012) within
the top ten enriched terms (Supplementary Table S1). Following
chondrogenesis, TGF-β signaling is also positively correlated with
chondrocyte proliferation and ECM deposition, while it inhibits
terminal differentiation into hypertrophic chondrocytes (Yang et al.,
2001; Li et al., 2005; Wang et al., 2014). TGF-β is the only known
effective inducer of chondrogenic activity in cultured MSCs
(Somoza et al., 2018). For instance, a brief pretreatment with
TGF-β increased the precartilaginous condensing capacity of
ectomesenchymal cells generated from iNCCs expanded under
conditions similar to ours (Umeda et al., 2015). Integrins are
transmembrane cell surface receptors that interact with the ECM
and regulate cell functions including adhesion, migration, and
differentiation. Integrin-mediated mechanisms can stimulate
intracellular signal transduction in MSCs. The transition from
collagen type I to type II is correlated with a switch from
α1 integrin to α3 integrin during MSC chondrogenic differentiation
(Shakibaei et al., 1995). Likewise, deregulation of integrin signaling is
associated with osteoarthritis (Knudson and Loeser, 2002).
Transcriptome-wide analyses of high-quality articular-like cartilage
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pellets derived from human neonatal articular cartilage cells showed
strong enrichment of integrin pathways compared to chondrogenic
MSC-derived pellets with limited chondrogenic potential (Somoza
et al., 2018). Furthermore, growing evidence demonstrates crosstalk
between the integrin and TGF-β pathways in cartilage (Munger and
Sheppard, 2011).

According to our analysis, it is likely that soluble factors present
in T1 medium can stimulate both TGF-β and integrin signaling. It is
possible that TGF-β signaling is activated indirectly by an integrin-
mediated pathway. It is known that TGF-βmust be released from its
latent complex to interact with its cell surface receptors, and
integrins are central to this process in at least two of the three
TGF-β isoforms. We also observed significant upregulation of
TGFβRII in T1-iMSCs compared to that in XSF-iMSCs,
suggesting that TGF-β induces rapid translocation of its own
receptors to the cell surface, thus amplifying its own response as
shown in previous report (Duan and Derynck, 2019). Expression of
GDF15 and GDF6 but not GDF5 was higher in T1-iMSCs compared
to XSF-iMSCs. The effect of GDFs, and their functions on
chondrogenesis are still largely unknown compared with other
members of TGF-beta super family. Functional differences
among GDFs should be also further studied. For instants,
GDF6 stimulation of MSCs resulted in a significant increase in a
higher aggrecan and collagen type II gene expression, and higher
GAG production compared with TGF-β or GDF5 stimulation
(Clarke et al., 2014). Therefore, several aspects of the nature of
T1 medium stimulation remain unclear and will be the subject of
future investigation in our laboratory.

One limitation of this study is that the composition of T1 and
XSF media is largely unknown; it was disclosed that T1 medium
contains dexamethasone (Dex) at 90 nM concentration along with
0.2 μg/ml recombinant human Laminin-511 E8 fragment (iMatrix).
Although Dex is a common chemical factor used for the
differentiation of MSCs, lineage specification is highly dependent
on the concentration used and other specific culture conditions. For
example, Dex can promote adipocyte differentiation by upregulating
C/EBPα expression but inhibits adipogenesis via RUNX2 (Zhou
et al., 2019). Dex used at concentrations below 10 nM promotes
chondrogenesis in human synovial MSCs but attenuates
chondrogenesis at concentrations higher than 100 nM
(Chijimatsu et al., 2018). Moreover, low-dose Dex treatment
(10–8 M) preserves the stemness of expanded human MSCs (Xiao
et al., 2010). In contrast, laminins promote adhesion and expansion
of various cells, including embryonic stem cells, iPSCs, and MSCs
(Miyazaki et al., 2012). Further studies have shown that laminins
participate in chondrogenic differentiation by upregulating COL2A1
expression in human chondrogenic progenitor cells and GAG
content in human MSCs (Schminke et al., 2016; Sun et al., 2017).
Although the exact mechanisms by which laminins influence stem
cells are complex, they involve interactions with integrins, which can
bind with broad specificity and high affinities. In particular, laminin-
511 exhibited the highest affinity for α6 integrins (ITGA6). Notably,
ITGA6 was upregulated among the DEGs in T1-iMSCs versus XSF-
iMSCs.

Protocols to induce chondrogenesis in MSCs in vitro coincide in
two aspects: high cell density (pellets or micromasses) and
stimulation with TGF-β1 or TGF-β3. We hypothesized that T1-
iMSCs with greater susceptibility to integrin and TGF-β signaling

account for their increased chondrogenic potential when subjected
to further differentiation. Moreover, our results suggest that the
expansion and generation of iMSCs in the presence of Dex and
iMatrix may be a powerful approach for generating an MSC
population with enhanced chondrogenic potential.

TD has been shown to be a chondrogenic factor as potent as
insulin, BMP2, and TGF-β1 (Saito et al., 2013). Administration of
TD also induces cartilage regeneration in murine models of
osteoarthritis (Yano et al., 2013a) and intervertebral disc
degeneration (Chijimatsu et al., 2019) in vivo. Here, we show for
the first time the chondrogenic potential of TD on iPSC-derived
MSCs. Although the exact mechanism by which TD supports
chondrogenesis is unclear, TD has been reported to upregulate
Runx1, Sox9, and Col2a1 (Yano et al., 2013a; Hamamoto et al.,
2020). T1-iMSCs treated with 100 nM TD showed upregulation of
SOX9, ACAN, and COL2A1 as well as increased GAG production
without a noticeable effect on hypertrophy. Consistent with previous
reports, TD and BMP stimulation had a positive synergistic effect on
chondrogenesis. These findings could potentially contribute to the
use of TD in regenerative medicine using iPSC-derived
chondrogenic progenitors. Finally, we demonstrated that more
relevant protocols are required to efficiently induce
chondrogenesis in 3D aggregates. In particular, the traditional
method of continuously stimulating cells with chondrogenic
factors such as TGF-βs and BMPs often produces hypertrophic
phenotypes and a less rich cartilage matrix. In contrast, the stepwise
differentiation approach with a sequential transition from platelet-
derived growth factor to TGF-β3 and BMP4 (Umeda et al., 2012) in
combination with TD molecules, formed spheroids with stable
cartilage-like tissue that was resistant to vascular invasion and
calcification in vivo. Given the potential of the generated
spheroids to fuse within a few days, our method is compatible
with modern tools for tissue engineering such as bioprinting using
the Kenzan method (Nakayama, 2013; Nakamura et al., 2021).

Overall, this study presents a novel method for producing and
expanding clinically relevant pro-chondrogenic iMSCs as well as an
improved chondrogenic differentiation strategy for the stable
generation of cartilage-like tissue. The insights provided here will
help identify and select stem cell progenitors with superior
chondrogenic potential for regenerative medicine and cartilage
tissue engineering.

4 Methods

4.1 Generation, expansion, and
cryopreservation of iNCCs from iPSCs under
xeno-free conditions

Human iPSCs 1231A3 reprogrammed with episomal vectors
(kindly provided by Yamanaka Laboratory) were maintained as
described previously (Nakagawa et al., 2014). For NCC induction,
3 × 104 cells/well were seeded in 6-well plates coated with iMatrix-
511 (Nippi, Tokyo, Japan) in StemFit AK03N medium (Ajinomoto,
Tokyo, Japan). After 4 days, the medium was replaced with NCC
induction medium containing 10 μM SB431542 (FUJIFILM Wako
Pure Chemical Corporation, Japan) and 1 μM CHIR99021 (Axon
Medchem, Reston, VA, United States), as described previously
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(Kamiya et al., 2022). On day 10, CD271high positive cells were
sorted and replated on fibronectin-coated plates at a density of
1 × 104 cells/cm2 in NCC expansion medium: Basic03 medium
supplemented with 10 μM SB431542, 20 ng/ml EGF (FUJIFILM
Wako Pure Chemical Corp.), and 20 ng/ml FGF2 (FUJIFILM
Wako Pure Chemical Corp.). The medium was changed every
2–3 days. For cell passage, the cells were dissociated with
Accutase (Innovative Cell Technologies, San Diego, CA,
United States). iNCC stocks were prepared using STEM-
CELLBANKER GMP grade (Takara Bio Inc., Kusatsu, Japan).

4.2 Differentiation of cryopreserved iNCCs
into iMSCs under xeno-free conditions

iNCCs from frozen stocks at passage number (PN2) were
cultured and expanded to PN5 in fibronectin-coated plates. Then,
the medium was replaced with either PRIME-XV MSC Expansion
XSFM (FUJIFILM Irvine Scientific, Tokyo, Japan) to generate XSF-
iMSCs or T1 medium composed of StemFit For MSC (Ajinomoto,
Tokyo, Japan) supplemented with 90 nM Dex and 0.2 µg/mL
iMatrix-511 to generate T1-iMSCs. Cells were transferred to
fibronectin-coated plates at a density of 1 × 104 cells/cm2 up to
seven times before further differentiation. iMSCs stocks in
PN2 were prepared using the STEM-CELLBANKER GMP grade.

4.3 Real-time quantitative PCR analysis

Total RNA was purified using the RNeasy Micro Kit (Qiagen,
Hilden, Germany) and reverse-transcribed to cDNA. Real-time
quantitative PCR (RT-qPCR) was performed using
THUNDERBIRD™ Next SYBR® qPCR mix (QPX-201; Toyobo
Co., Ltd.), QuantStudio™ 3 Real-Time PCR System, and
QuantStudio™ 7 Flex Real-Time PCR System (Applied
Biosystems, Waltham, MA, United States). Primer sequences are
summarized in Supplementary Table S2. Data from at least three
biological replicates were analyzed to calculate the relative fold-
change (2−ΔΔCT). All data were plotted as fold change relative to
iPSCs using GraphPad Prism 9 software.

4.4 Flow cytometry analysis

T1-iMSCs and XSF-iMSCs (PN3–PN4) were stained on ice for
30 min with the following antibodies (1:50 dilution in FACS buffer):
CD105-APC (eBioscience, 17-1057-42), CD90-PE (eBioscience,
555596), CD73-PE (eBioscience, 550257), CD44-PE (eBioscience,
550989), CD105APC (eBioscience, 17-1057-42), PE-isotype (BD
Bioscience, 551438), and APC isotype (BD Bioscience, 565381).
After washing, BD FACSAria™ III Cell Sorter was used to detect the
fluorescence. The results were plotted using FlowJo_v10.8.1.

4.5 Three lineage differentiation of iMSCs

The same procedure was followed for the differentiation of T1-
iMSCs and XSF-iMSCs (collectively called iMSCs), and all

experiments were carried out in parallel with cells at the same
passage number (PN4–PN7). As a reference, human BM-MSCs (PT-
2501, (Batch 20TL262529; Lonza, Durham, NC, United States) at
PN5 were also differentiated under the same conditions.
Chondrogenic differentiation was performed using micromass
culture onto fibronectin-coated 24-well plates. Briefly, 1.5 × 105

iMSCs were resuspended in 5 µL of chondrogenic medium
consisting of DMEM/F12 (Thermo Fisher Scientific, Waltham,
MA, United States), 1% (v/v) ITS + premix (Corning, Corning,
NY, United States), 0.17 mM AA2P (Sigma-Aldrich, St. Louis, MO,
United States), 0.35 mM Proline (Sigma-Aldrich), 0.1 mM Dex
(Sigma-Aldrich), 0.15% (v/v) glucose (Sigma-Aldrich), 1 mM
sodium-pyruvate (Thermo Fisher Scientific), and 2 mM
GlutaMAX (Thermo Fisher Scientific) supplemented with 10 ng/
ml TGF-β3 (R&D Systems, Minneapolis, MN, United States).
BMP7, commonly used for 2D chondrogenic cultures (Caron
et al., 2013), was also added to the differentiation medium at
50 ng/ml (R&D Systems). After 1 h incubation, 1 ml of
chondrogenic medium was added to each well and the cells were
cultured for 7 days. Chondrogenesis was assessed by Alcian blue
staining. Briefly, induced cells were fixed for 30 min with 4%
paraformaldehyde (PFA) (FUJIFILM Wako Pure Chemicals
Corp.) and rinsed with phosphate buffered saline. The cells were
then incubated with 1% Alcian Blue solution (Muto Pure Chemicals
Co., Ltd., Tokyo, Japan) for 1 h at room temperature and washed five
times with phosphate buffered saline before imaging. For osteogenic
differentiation, 5×104 iMSCs were seeded onto gelatin-coated wells,
maintained until they reached full confluence, and then cultured in
osteogenic induction medium containing MEM-Alpha GlutaMAX
(Gibco, 32571-036), 10% fetal bovine serum (Thermo Fisher
Scientific), 0.5% penicillin/streptomycin, β-glycerophosphate
disodium salt hydrate (Sigma-Aldrich, G9422), and 100 nM Dex.
The medium was changed every 2–3 days. After 3 weeks, the PFA-
fixed cells were stained with Alizarin Red S solution (Muto Pure
Chemicals Co., Ltd., 17971). For adipogenic differentiation, 5×104

iMSCs were seeded on fibronectin-coated 12-well plates, and
adipogenic induction was initiated when they reached full confluence
by replacing the MSC medium with adipogenic induction medium
containing DMEM (08459-64, High Glucose; Nacalai Tesque, Japan),
10% fetal bovine serum (Nichirei, 171012), 0.5% penicillin/streptomycin
(Gibco, 15140122), 10 μg/ml insulin (Wako Pure Chemicals Corp., 097-
06474), 1 µM Dex (Wako Pure Chemicals Corp., 047-18863), 200 µM
indomethacin (Wako Pure Chemicals Corp., 093-02473), and 500 µM
IBMX (Wako Pure Chemicals Corp., 095-03413). PFA-fixed cells were
washed with water, incubated with 60% isopropanol for 5 min, and
stained with Oil Red O (Nacalai Tesque, 25633-92) dissolved in 60%
isopropanol. Non-specific staining was removed by washing several
times with water.

4.6 RNAseq data analysis

Total RNA was purified using an RNeasy Micro Kit (Qiagen)
and treated with a DNase I kit (Qiagen) to remove genomic DNA.
We reverse-transcribed 10 ng of total RNA to obtain single-stranded
cDNA using the SuperScript VILO cDNA Synthesis Kit (Thermo
Fisher Scientific). We synthesized cDNA libraries for the Ion
Ampliseq transcriptome analysis using the Ion AmpliSeq
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Transcriptome Human Gene Expression Core Panel (Thermo
Fisher Scientific) and Ion Ampliseq Library Kit Plus (Thermo
Fisher Scientific), according to the manufacturer’s protocol.
Briefly, cDNA was amplified for 12 cycles with an Ion
AmpliSeqTM Transcriptome Human Gene Expression Core
Panel using a thermal cycler. Primer sequences were partially
digested with the FuPa reagent by sequentially performing
10 min at 50°C, 10 min at 55°C, and 20 min at 60°C. Barcode
ligation was performed using an Ion Xpress Barcode for 30 min
at 22°C. Barcode-labeled cDNA libraries were purified using DNA
Clean & Concentrator™-5 (Zymo Research, CA, United States) and
analyzed using the Ion S5 XL System (Thermo Fisher Scientific) and
Ion 540 Chip Kit (Thermo Fisher Scientific). Count data analyses
were performed using R studio with the “DESeq2” package
normalization method for the detection of significantly (p ≤ 0.05)
differentially expressed genes (Love et al., 2014).

4.7 Optimization of chondrogenic
differentiation strategy

Themicromass culture described in the previous section was used to
evaluate the small-molecule TD-198946 (TD) (MedChemExpress, HY-
15642/CS-6860) in T1-iMSCs. Different concentrations were tested, and
the results are shown in Figure 3A. Subsequently, 3D culture was used to
produce chondrogenic spheroids. Briefly, 2 × 104 T1-iMSCs/well were
plated onto ultra-low attachment 96 U-well plates (Sumitomo Bakelite
Co., Ltd., Tokyo, Japan) in hMSC Chondrogenic Basal Medium (PT-
3925) and hMSC Chondrogenic SingleQuots™ Kit Supplement (PT-
4121). Chondrogenic inducers were added at specific time points, as
indicated in Figure 3C, including 40 ng/ml platelet-derived growth
factor-BB (PDGF-BB; R&D Systems), 10 ng/ml TGF-β3 (Peprotech
Inc., Rocky Hill, NJ, United States), 50 ng/ml BMP4, and 100 nM
TD. Cells were cultured for 21 days and the medium was changed
every 3–4 days. At day 21, spheroids were isolated formRNA expression,
quantification of sulfated proteoglycans and GAGs, immunostaining,
and histological analysis.

4.8 Production of sulfated proteoglycans &
GAGs

Chondrogenic spheroids were collected on day 21 and digested
for 6 h in 50 µg/ml papain solution (Sigma-Aldrich) at 65°C. The
obtained extracts were used to quantify the GAG content using a
Blyscan™—sulfated glycosaminoglycan (sGAG) assay kit, following
themanufacturer’s instructions. DNA content was determined using
Quant-iT™ PicoGreen ® dsDNA Assay Kits and dsDNA Reagents
(Invitrogen, Waltham, MA, United States).

4.9 Fusion experiment

A set of two chondrogenic spheroids (day 21) per well was
placed in 96 U-well plates and cultured in chondrogenic medium for
an additional week. Themediumwas replaced on day 4. Images were
obtained on days 0, 1, 4, and 7. To enable accurate monitoring of the
fusion process while maintaining stable environmental conditions,

we used an automated system for capturing images every 30 min
during the first 4 days (BioStation CT, Nikon). The images were
combined to produce a video (Supplementary Video S1).

4.10 Immunocytochemistry

Prior to immunostaining, paraffin sections or cryosections of PFA-
fixed spheroids were prepared. Staining was performed as previously
reported (Zujur et al., 2017) and DAPI (1:1000; Thermo Fisher
Scientific) was used to counterstain nuclei. The primary antibodies
used in this study are listed in Supplementary Table S3. Observations
and assessments of the samples were performed using a BZ-X700
Fluorescence Microscope (Keyence, Osaka, Japan) or Olympus
FV3000 confocal laser scanning microscope.

4.11 Subcutaneous transplantation of
chondrogenic spheroids

Chondrogenic spheroids (day 21) of approximately 500 μm
generated from iMSCs or human BM-MSCs (PT-2501, (Batch
20TL262529; Lonza, Durham, NC, United States) were
subcutaneously transplanted into a small incision on the back of
eight-week-old female CB17/IcrJcl-Prkdcscid mice purchased from
CLEA Japan, Inc. (Tokyo, Japan) (n = 6 per group). For this
procedure, the mice were anesthetized with 3% forane inhalant
liquid (AbbVie, North Chicago, IL, United States). Ethical approval
was obtained from the Animal Care Committee of Kyoto University
(16-73-13). The mice were sacrificed after four or 8 weeks, and the
spheroids were retrieved for further analysis. The calcium stain kit of
modified von Kossa (ScyTek Laboratories, UT, United States) was
used following the manufacturer’s instructions for the visualization
of calcium deposits in paraffin sections.

4.12 Statistical analysis

The means of groups were compared by analysis of variance
using GraphPad Prism 9 software. Significance of differences was
determined by Dunnett’s test in the case of multiple group
comparisons to a single control.
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