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Abstract

Conglomerate mergers are de�ned as mergers that are neither horizontal nor vertical. This

dissertation theoretically investigates conglomerate e�ects on competition that are usually

neglected by competition authorities like the European Commission. The dissertation

consists of three essays about conglomerate mergers.

First, Conglomerate Mergers and Competition: A Game Theoretic Approach With

Research and Development Investments, studies conglomerate mergers' e�ects on compe-

tition with a theoretical model where oligopolistic �rms in technologically related markets

choose to merge in conglomerates to shift research and development capabilities. It fully

characterizes the equilibrium market outcomes and the underlying merger decisions. It

�nds that policy implications regarding conglomerate mergers are intricate.

Second, Agency Problems in a Competitive Conglomerate with Production Constraints,

develops an adverse selection model of a competing conglomerate with production con-

straints. It fully characterizes the optimal contracts. It �nds the instances where a

contract improves the welfare in comparison to a symmetric information benchmark.

Third, Conglomerate Merger and Divestment Dynamics, constructs a discrete-time,

in�nite horizon theoretical model to analyze the diversifying and divesting behavior of a

monopolist. It �nds an approximate solution using numerical methods. It �nds that the

conglomerate acquires a �rm and stays merged in periods where the value of the demand

of the new market remains high. In periods where the value of the demand of the new

market is low, the conglomerate will merge and divest intermittently.
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Chapter 1

Introduction

Conglomerate mergers are de�ned as mergers that are neither horizontal nor vertical.

The E.U competition law and the U.S antitrust law have jurisdiction over conglomerate

mergers only when these have the potential to lessen the competition (Markovits, 2014).

Under the current policies, conglomerates can expand inde�nitely to other markets as long

as competition concerns are not raised. For instance, The Walt Disney Company has been

able to increase its participation in the media industry through acquisitions that have

been approved by the competition authorities in the U.S. As a particular example, the

Federal Trade Commission approved the Disney's acquisition of MLB Media Holdings

in 2017. The acquisition allowed Disney to enter the market of video streaming with

Disney+ and ESPN+. This dissertation theoretically investigates conglomerate e�ects

on markets that are usually neglected by competition authorities such as the European

Commission.

Chapter 2 employs a theoretical model where oligopolistic �rms in technologically

related markets choose to engage in conglomerate mergers to shift research and devel-

opment (R&D) capabilities. The two markets involved are not related horizontally or

vertically but technologically. Each market has a duopoly structure where the �rms en-
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gage in Cournot competition. The �rms cannot merge with a �rm in the same market

but can merge with a �rm in a di�erent market. Assumedly, each �rm in only one of

the markets owns an R&D lab that can be used to reduce the cost of production; it can

be used by a �rm in the other market but only through a conglomerate merger. We

fully characterize the equilibrium market outcomes and the underlying merger decisions.

When the markets have similar sizes, any equilibrium has an asymmetric outcome, where

only one �rm invests in each market. The total pro�ts are always maximized in the

asymmetric outcome because the �rms avoid R&D competition. However, the asymmet-

ric outcome sometimes is the best scenario for the consumers as they bene�t from the

R&D investments. Policy implications regarding conglomerate mergers are, therefore,

intricate, given that they may be outside the jurisdiction of competition authorities.

Chapter 3 explores the reciprocal e�ects between agency problems and market compe-

tition. We develop an adverse selection model of a competing conglomerate with produc-

tion constraints. The conglomerate participates as the leader in two di�erent duopolistic

markets with a Stackelberg-Cournot framework and heterogeneous goods. The conglom-

erate is run by its headquarters and two division managers. The agency problem arises

because the market demand size is a manager's private information, which the headquar-

ters try to elicit by a contract mechanism. We fully characterize a �rst and a second-best

contract. When the production constraints make the �rst best outcome unattainable,

the second-best contract is either separating or pooling, depending on the severity of the

constraints. The separating second-best contract sometimes improves the ex-ante welfare

in comparison to a symmetric information benchmark. The pooling second-best contract

never improves the ex-ante welfare. We also �nd that at an intermediate level of substi-

tutability, the second-best contract is most likely to coincide with the �rst-best one, and
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any departure from that level toward either substitutability or complementarity makes

the attainment of the �rst-best outcome less likely.

Chapter 4 employs a discrete-time, in�nite horizon theoretical model to analyze the

diversifying and divesting behavior of a monopolist. The monopolist participates in

its core market and can merge by acquiring another monopolist �rm in a new market.

Thereafter, the �rm in the core market can separate from the new �rm by selling it for

a one-period reward. The monopolist has a stock of capital which is used to reduce the

cost of production. Capital is obtained through two channels: the external capital market

or with a merger. The capital stock is reduced in two ways: by depreciation or with a

separation. We �nd an approximate solution using numerical methods. We found that

the conglomerate acquires a �rm and stays merged in periods where the value of the

demand of the new market remains high. In periods where the value of the demand of

the new market is low, the conglomerate will merge and divest intermittently.
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Chapter 2

Conglomerate Mergers and Competition: A Game

Theoretic Approach with Research and Development

Investments

2.1 Introduction

Conglomerate mergers are mergers that are neither horizontal nor vertical (i.e., the merg-

ing �rms' products do not compete in the same market or do not have an input-output

relationship) (Narver, 1967, p. 2-3). The E.U. competition law and the U.S antitrust law

have jurisdiction over conglomerate mergers only when they have the potential to lessen

competition (Markovits, 2014). Thus, this chapter examines a mechanism by which con-

glomerate mergers might harm competition and further analyzes their e�ects on consumer

and social welfare.

In the E.U., there is a section dedicated to conglomerate mergers in the �Guidelines

on the assessment of non-horizontal mergers under the Council Regulation on the control

of concentrations between undertakings� (2008), where the conglomerate's e�ects are cat-

egorized into coordinated and non-coordinated. Coordinated e�ects might occur when a
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conglomerate merger reduces the number of competitors in a market or creates multimar-

ket contact. Non-coordinated e�ects are more speci�c: only foreclosure (mainly through

tying and bundling) is mentioned in the guidelines. However, the competition authorities

in the U.S do not have guidelines for conglomerates mergers, as they consider that the

e�ects of conglomerates recognized in the E.U. can be understood in the U.S within the

context of horizontal or vertical mergers (Antitrust Division of the U.S. Department of

Justice & U.S. Federal Trade Commission, 2020).

Conglomerate merger theory remains lacking. Thus, competition authorities usually

neglect less straightforward conglomerate mergers' e�ects. One such non-coordinated

e�ect is the conglomerate's ability to shift resources between its markets. Competition

could be a�ected by the resources a conglomerate has at its disposal, such as research and

development (R&D), computer facilities, legal services, and access to capital markets, but

standalone �rms do not (Goldberg, 1973). Using this pool of resources to, for example,

improve the quality of the products, a conglomerate �rm might have a more advantageous

position in the market than its standalone competitors.

Nevertheless, competition authorities might allow mergers with potential anticompet-

itive e�ects if they have positive e�ects on the consumers, which also applies to conglom-

erates mergers, as in the E.U. non-horizontal merger guidelines. This situation might be

one reason to underestimate sharing resources as a harmful e�ect, as it does not have a

clear connection with competition but expands the capabilities of the �rms, increasing the

chances of bene�ting consumers through, for example, innovation. This chapter develops

a theoretical model where oligopolistic �rms in technologically related markets choose

to engage in conglomerate mergers to shift R&D capabilities. It �nds an equilibrium

outcome where competition is harmed, but more consumers enjoy the positive e�ects of

9



R&D. This chapter performs welfare analysis and �nds that when the market sizes are

uneven, this equilibrium outcome negatively a�ects the overall consumer surplus. Thus,

even with the positive e�ects of R&D, regulation might be required in such cases.

The acquisition of DeepMind by Google in 2014 (Gannes, 2014) illustrates a case of

technology transfer through a conglomerate merger. Currently, Google and DeepMind are

part of the conglomerate Alphabet Inc. Google provides internet-related services, while

DeepMind's business is arti�cial intelligence (AI). After the acquisition, DeepMind's AI

research has been used in favor of Google and others businesses of Alphabet Inc. For

example, with the help of DeepMind, machine learning techniques were implemented

in Google Play (a digital store for mobile applications) to improve its recommendation

system (DeepMind, n.d.).

There are various instances where conglomerate mergers of technologically related

markets raised competitive concerns. For example, in 2010 the European Commission

had concerns about the proposed acquisition of McAfee by Intel for possible conglomerate

e�ects. Intel might have used its strong market position in the market of computer

chips and chipsets to preclude competitors from the market of computer security. Given

that Intel might have embedded McAfee's security into its chips, the interoperability

of Intel's chips with other security software might have not been guaranteed (European

Commission, 2011).

Another example is the proposed acquisition of LinkedIn by Microsoft in 2016. Mi-

crosoft, having a strong market position in operating systems (Windows) and productivity

software (O�ce), might have given a competitive advantage to LinkedIn in the market of

professional social networks, which might have been achieved by pre-installing LinkedIn

in Windows or including it in the O�ce package (European Commission, 2016). Eventu-
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ally, the Intel/McAfee and Microsoft/LinkedIn mergers were approved by the European

Commission.

The products in both mergers had a strong complementarity; thus, potentially harmful

practices like tying or bundling were foreseeable. However, even if the Google/DeepMind

merger might have exhibited conglomerate e�ects like transferring technology, such e�ect

is generally not of interest to competition authorities; thus, no competitive concerns

were raised. Even so, this chapter's model suggests that such e�ects might depress

competition considerably. The decisions and opinions on the three merger cases might

have been di�erent if the competition authorities had considered the e�ect of the transfer

of technology.

The model presents two markets that are not related horizontally or vertically but

share similarities in their production processes. Each market has a duopoly structure

where �rms engage in Cournot competition. The �rms cannot merge with a �rm in the

same market but can merge with a �rm in a di�erent market. Only �rms in one of the

markets own an R&D lab that can be used to reduce the cost of production, though

investing in R&D is costly. A �rm in the other market can access and use one of these

R&D labs only through a conglomerate merger. Assumedly, the technology of the R&D

lab is not fully compatible with the �rms that initially do not have access to the R&D

lab. When a �rm operates in two markets, there is an opportunity cost to use the R&D

lab capabilities across markets. Thus, the �rm must choose strategically how much to

invest in each market in anticipation of its rival's R&D e�ort.

This chapter considers a three-stage game. In the �rst stage, the �rms take merger

decisions. In this stage, this chapter establishes two players: two teams each, one com-

prising two �rms from di�erent markets. A team decides whether to merge depending
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on both �rms' total pro�ts. If a team merges, in the subsequent stages, it plays the role

of a conglomerate and maximizes the joint pro�t of its two �rms. Otherwise, the team

plays as two standalone �rms, where each �rm maximizes its pro�t. In the second stage,

the �rms with access to an R&D lab set their R&D e�ort. In the third stage, in each

market, the �rms engage Cournot competition.

Assumedly, the cost of R&D is quadratic. With this simple form, the model predicts

that the �rms invest in R&D in only one market. This chapter �rst develops a monopoly

benchmark. It demonstrates that if the market with initial access to the R&D lab is the

most pro�table, no merger occurs. Otherwise, a conglomerate is formed, and the R&D

lab is used only in the market without initial access to it.

In the duopoly case, this chapter �nds two patterns of R&D investment behavior:

symmetric and asymmetric patterns. In symmetric equilibria, all �rms invest only in

one market. Relative to the monopoly benchmark, this kind of equilibrium exists only if

one market is much more pro�table than the other. If the market with initial access to

the R&D labs is relatively pro�table, none of the �rms merge and, hence, the �rms only

invest in that market. Conversely, if the market without the initial access to the R&D

labs is relatively pro�table, all the �rms merge and the two conglomerates invest only in

that market.

When the market sizes are similar, there exist asymmetric equilibria where only one

conglomerate is formed. The standalone �rm that owns an R&D lab invests in its market,

while the conglomerate focuses its investments on the market without the initial access

to the R&D lab. Both R&D labs focus on di�erent markets; thus, the �rms e�ectively

avoid competition. However, unlike the symmetric equilibria, consumers in all the mar-

kets bene�t from the R&D. Thus, competition authorities might allow such asymmetric

12



equilibria even though competition is reduced.

The one-merger scenario maximizes the total producer surplus in that if all �rms

were to make their merger decisions to maximize the total pro�ts, they would form one

conglomerate. This result is expected as competition is reduced. While the R&D has pos-

itive e�ects, in equilibrium, a one-merger scenario does not maximize the total consumer

surplus when the market sizes are quite di�erent. In those cases, the anticompetitive

e�ects o�set the positive R&D e�ects; thus, the competition authority should prevent

the conglomerate merger.

Accordingly, a situation resembling the merger paradox emerges: if the market with

the initial access to the R&D labs is adequately large but not so large relative to the other

market, in equilibrium, there is one merger such that the conglomerate earns a smaller

total pro�t than the non-merged �rms. Furthermore, the results o�er one explanation

for the conglomerate discount: if the market without the initial access to the R&D labs

is adequately large, two conglomerates are formed in equilibrium, but the pro�t of the

conglomerate is smaller than the sum of the pro�ts of its individual �rms in the non-

merger scenario. The cause of the conglomerate discount in our model is the excess R&D

competition.

The rest of this chapter is organized as follows. Section 2.2 reviews the related liter-

ature. Section 2.3 introduces the model. Section 2.4 presents the model results. Section

2.5 derives social welfare and discusses policy implications. Section 2.6 concludes.

2.2 Literature review

This chapter relates to several strands of literature, such as the merger literature. A no-

table study is Salant, Switzer, and Reynolds (1983). Their model predicts that horizontal
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mergers are not usually pro�table for the merging parties but can be bene�cial for �rms

excluded from the merger. This theory is known as the merger paradox. In this chapter's

model, a similar phenomenon occurs as a conglomerate merger might be more pro�table

to outside parties than to the conglomerate itself. This phenomenon is observed when

one conglomerate is formed to avoid R&D competition but the market the conglomerate

invests in is the least pro�table.

The theoretical literature on conglomerate mergers is scarce. They mainly focus on

conglomerates participating in industries with complementary goods, thus they contribute

to the body of knowledge of the non-coordinated foreclosure e�ect. Granier and Podesta

(2010) propose a theoretical model where an electrical and a gas supplier merge endoge-

nously. The merger allows the conglomerate to engage in price discrimination by selling

both products in a bundle. Tan and Yuan (2003) study divestitures by assuming two

competing conglomerates, each one supplying a group of goods. Within the conglomer-

ate, the goods are complements; across, they are substitutes. Evidently, no theoretical

study on conglomerate mergers examines the non-coordinated e�ect of shifting resources.

The resource-based view of the corporate diversi�cation literature is also relevant to

this chapter. One of the main hypotheses therein is that the diversi�cation of the �rm

can be explained by its assets. Relevant to this chapter's model, there is a strand in the

resource-based view that focuses on the diversi�cation of �rms in related industries. Such

relatedness can take the form of technological capabilities. Jovanovic and Gilbert (1993)

theoretically predict that �rms diversify in related-technology industries to seek pro�ts

from cross-products spillovers; they provide empirical evidence to back their hypothesis.

Silverman (1999) shows that �rms diversify in markets where their current technological

resources can be exploited. In this chapter's model, shifting R&D capabilities across

14



markets is possible for technologically related �rms. However, the e�ect of the R&D

e�ort varies across markets because their production processes are similar but not equal.

Thus, there is a degree of technological relatedness, which this chapter measures with a

parameter of technological compatibility.

The resource-based view literature has also focused on the allocation of resources.

Matsusaka (2001) proposes a theoretical model where �rms try di�erent industries search-

ing for a good match for their capabilities. The model predicts that a �rm with a bad

match will exit the original industry and �nd a new activity; with a very good match, the

�rm will specialize. In intermediate cases, the �rm will diversify, entering new markets

without leaving the old ones. In this chapter's model, �rms diversify to a new market

with a conglomerate merger to change their R&D focus from the old market to the new

market. In a duopoly, asymmetric diversi�cation reduces competition as the �rms focus

their R&D on di�erent markets.

In the theoretical study of Levinthal and Wu (2010), pro�t-maximizing �rms take

diversi�cation decisions based on the opportunity cost of sharing a �nite resource across

industries. The competition and resource allocation stages of this chapter's model are

similar to Levinthal and Wu (2010).1 They �nd equilibria where a market is e�ectively

monopolized. However, they do not highlight the policy implications of this result as

the topic of their study was neither competition policy nor mergers. A major factor is

that the �rm can only produce in a market if the resources allocated to that market are

positive. If no resources are allocated to that market, the �rm will abandon the market,

1The authors assume two multimarket �rms engaging in Cournot competition in two markets. These
�rms can relocate a �xed amount of resources across markets. The resource is not perfectly fungible,
an assumption that is analogous to the imperfect technological compatibility in this chapter's model.
The sequence of events is as follows. First, the �rms decide how to allocate the resource. Second, they
produce the output. Allocating the resource to one market reduces the marginal cost of that market.
Given that the resource is �nite, there is an opportunity cost in transferring the resource from one market
to the other one.
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and its rival will become a monopolist.

The greatest departure of this chapter's model from Levinthal and Wu (2010) is in

the approach to resource allocation. This chapter assumes that a conglomerate decides

how to use a single R&D lab to reduce the marginal cost in the two markets in which it

potentially participates. The R&D elements of this chapter's model are based on Zhao

(2015). There is an additional cost to invest in R&D e�ort; this cost is assumed to be

quadratic, re�ecting the decreasing returns in R&D investments and capturing the idea of

opportunity cost by Levinthal and Wu. With this change, a conglomerate can participate

in a market even if no R&D is invested in that market. Thus, the strategy of the rival

�rm takes a larger role in explaining the equilibrium with depressed competition.

Innovation is usually positively associated with economic growth and consumer wel-

fare. Regulating mergers that might reduce innovation is in the interest of competition

authorities (Federico, Langus, & Valletti, 2018). The models of Federico, Langus, and

Valletti (2017); Federico et al. (2018) analyze the e�ects of the horizontal merger on inno-

vation incentives.2 Following Federico et al. (2017), this chapter assumes that the R&D

capabilities are not intrinsically modi�ed by a merger, and, hence, the results of the R&D

e�orts are explained by changes in the market structure caused by mergers. The models

of horizontal mergers are not directly comparable with this chapter's model as conglom-

erate mergers do not always reduce competition. Furthermore, horizontal mergers do

not exhibit the idea of opportunity cost across markets. In this chapter's model, even

2The result from Federico et al. (2017, 2018) is that the overall merger e�ect reduces innovation.
Mergers a�ect innovation through two channels. The �rst channel is the competitive (price or produc-
tion) channel, which relates to the reduction of competition after a merger. Less competition increases
pro�ts with and without innovation; thus, the e�ect of the merger on innovation through this channel
is ambiguous and depends on the assumptions of the model. Second, the innovation externality channel
relates to the negative e�ect of the �rm's innovation on the pro�ts of its rivals. The innovation ex-
ternality is internalized with a merger; thus, innovation is reduced with a merger through this channel.
Denicolò and Polo (2018) contends Federico et al. (2017) and asserts that in some cases, mergers increase
innovation.
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if a conglomerate merger reduces the R&D e�ort in one market, the R&D e�ort of the

other market will increase given the opportunity cost. Thus, the e�ect of a conglomerate

merger on the overall R&D e�ort of the economy is ambiguous and depends on the value

of the parameters.

This chapter is also related to the literature on capital allocation e�ciency, which

asserts that the �rm allocates �nancial resources by prioritizing more pro�table endeavors

over lesser ones (see, e.g., Stein (1997), Maksimovic and Phillips (2002), Brusco and

Panunzi (2005)). Several other studies oppose this idea and a�rm that the allocation

of capital is ine�cient. A usual explanation is that this ine�ciency is caused by agency

problems (see, e.g., Rajan, Servaes, and Zingales (2000), Stein and Scharfstein (2000),

Wulf (2009), Arrfelt, Wiseman, and Hult (2013)). The literature on both perspectives of

capital allocation concentrates on the internal dynamics of the �rms, such that they do

not consider competition or merger decisions as in this chapter. The results reconcile the

opposing views regarding the e�ciency of capital allocation. The symmetric equilibria are

consistent with the e�ciency literature because all �rms invest only in the best market.

The asymmetric equilibria are relevant to the ine�ciency literature, as there is always a

�rm investing in the worst market. This result is not �ine�cient� in the usual sense as

the �rm is still maximizing pro�ts. That �rm chooses to invest in the worst market, as

it is the best it can do given its rival strategy.

Capital allocation ine�ciency has been proposed as the explanation of the conglom-

erate discount (Busenbark, Wiseman, Arrfelt, & Woo, 2017). Broadly speaking, the

conglomerate discount theory claims that the conglomerate is less than the sum of the

values of its individual parts (Berger & Ofek, 1995). Matsusaka (2001) connects the con-

glomerate discount with mismatching organizational capabilities in a particular industry.
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Levinthal and Wu (2010) propose that spreading imperfectly fungible resources across

various divisions is an alternative way to explain the conglomerate discount, which man-

ifests in this chapter's model as a consequence of excess R&D competition. Interestingly,

such excess competition only occurs in a symmetric outcome, which this chapter labels

as �e�cient� from the perspective of capital allocation.

2.3 Model

This chapter presents two markets that are not related horizontally or vertically, denoted

by k ∈ {A,B}. In each market, two �rms sell a homogeneous good, denoted by i ∈ {1, 2}.

A representative consumer in market k has a quasi-linear utility function with the form

Uk(q0, qk1, qk2) = qk0 + vk(qk1, qk2), where qk0 is the quantity of the numeraire good, qki is

the output of �rm i, and vk(qk1, qk2) is given by

vk(qk1, qk2) = Dk · (qk1 + qk2)−
1

2
(qk1 + qk2)

2 ,

where Dk is a positive constant. The utility function generates the following inverse

demand function faced by �rm i in market k:

pki (qki , qkj ) = Dk − qki − qkj ,

where j ∈ {1, 2} for j 6= i.

This chapter assumes that mergers between �rms in the same market are forbidden

by law. However, a �rm in A can merge with a �rm in B; that is, conglomerate mergers

are allowed. To avoid coordination problems, this chapter assumes that �rm A1 (A2) can
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potentially merge only with �rm B1 (B2). This chapter constructs the model such that

the results do not depend on the identity of the �rms; thus, another combination of �rms

would not change the results. These pairs of �rms are teams.

Initially, all the �rms face the same constant marginal cost c, normalized to zero for

simplicity. Each �rm in market B owns an R&D lab that can be used to reduce its

marginal cost. Assumedly, �rm Bi's e�ective marginal cost is −xBi, where xBi is the

R&D e�ort.

Although the markets are not related horizontally or vertically, this chapter assumes

that markets A and B share some similarities in their production processes. This situation

is the case, for example, in consumer electronics markets or pharmaceutical markets.

Thus, the R&D lab can somewhat be used to reduce the marginal cost of the �rms in A.

Still, market A and B are not the same industry; there must be a process to adapt the

R&D lab to market A to use it at its full potential.3 Thus, in this single period model,

this chapter assumes that market A is not perfectly compatible with the technology of

the R&D lab. The cost reduction in market A is βxAi with β ∈ (0, 1), where β is the

technological compatibility.

Assumedly, the �rms in A can only access an R&D lab in B with a conglomerate

merger. In practice, cost reduction technology might be acquired externally without the

need for a merger. However, with imperfect compatibility, the technology cannot be

simply bought and applied to the production process. Long-term cooperation among

�rms A and B might be necessary to initially integrate the R&D lab's operations to

market A and eventually make the technology completely compatible. A merger might

greatly facilitate this cooperation.4

3The adoption of new technology is not instantaneous (Hoppe, 2002). Moreover, accelerating the
development of new technologies increases the associated costs (Pacheco de Almeida & Zemsky, 2007).

4This situation might be the case with the Google/DeepMind merger. AI technology cannot be easily
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The cost of investment in R&D is quadratic and given by 1
2
xBi

2 in the case without a

merger and 1
2

(xAi + xBi)
2 in the conglomerate case, thus re�ecting the decreasing returns

in R&D investments and in the conglomerate case embodying the opportunity cost of

investing in one market or the other. These cost functions imply that there are no

spillovers across markets. There is imperfect compatibility with market A; thus, the

R&D e�ort cannot be freely copied from market B. It is necessary to invest again to

reduce the marginal cost in market A. Furthermore, it is also implied that the R&D lab

does not expand with the merger.

The R&D cost of conglomerate i is equal to x2Ai+2xAixBi+x
2
Bi. The cross term 2xAixBi

is an extra cost required when the R&D lab operates in both markets simultaneously.

Knudsen, Levinthal, and Winter (2014) assert that there is a rate at which the �rms

reliably adjust their scale of operations. A fast adjustment might disrupt some operating

practices of the �rm. A conglomerate merger increases the scale of operations of a �rm,

as it now participates in multiple markets. This expansion does not match the original

single-industry capabilities of the R&D lab in the model.

This chapters then considers a three-stage game. In the �rst stage, each team simul-

taneously and independently decides whether to merge. In the second stage, the �rms

that are capable of investing in R&D set their R&D e�orts simultaneously and indepen-

dently. Here, this chapter assumes that the R&D e�ort is perfectly observable. In the

third stage, in each market, the �rms engage in Cournot competition by simultaneously

and independently setting their output. The solution concept utilized is subgame-perfect

Nash equilibrium in pure strategies. This chapter employs backward induction to solve

the game.

assembled into existing products. It is reasonable to claim that a deeply coordinated e�ort between
DeepMind and other subsidiaries of Alphabet Inc. was required to integrate the AI technology into
other products.
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In the �rst stage, each team maximizes its total pro�ts. Thus, a team of �rms chooses

to merge when the joint pro�t of the merged �rm is larger than the sum of the separated

�rms' pro�ts. The set of actions is to merge (M) or not (DM). Multiple equilibria might

appear when a player is indi�erent between (M) and (DM). In such cases this chapter

considers only the equilibria where such player chooses (DM). Mergers have additional

costs (e.g. establishing contracts) that are not considered in the model. Thus, if the total

operating pro�t of a team is the same regardless of the merger decision, the reasonable

choice is not to merge. This equilibrium re�nement is formally stated as follows.

Equilibrium Re�nement 1 ER1. Given a rival's strategy, a player will choose DM if

(M) and (DM) yield the same payo�.

The interpretation of ER1 is that there is an in�nitesimal cost of the merger that is

not explicitly stated in the calculations.

The objective functions in the subsequent stages depend on the decisions of the �rst

stage. If a team chooses to merge, in the second and third stages, it assumes the role of

a single conglomerate, and, thus, maximizes its joint pro�t. Otherwise, it plays the role

of two standalone �rms, and each �rm independently maximizes its standalone pro�t.

With two �rms in each market, at most two conglomerates can be formed. Accordingly,

there are three kinds of possible subgames starting from the second stage: 1) Zero-merger

subgame, where none of the �rms merge, and, thus, four standalone �rms participate in

the subgame; 2) Two-merger subgame, where all �rms merge and two conglomerates are

created; and 3) One-merger subgame, where only one conglomerate is formed, and two

standalone �rms remain.

In the second stage, this chapter considers only equilibria where both R&D labs are

operative, and, hence, the overall R&D e�ort of each team is strictly positive. The teams
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are always symmetric in at least one market in any subgame. In the two and zero-merger

subgames, the teams are symmetric. Thus, it seems reasonable that both teams can

use their R&D lab in equilibrium. In the one-merger subgame, the conglomerate has an

advantage only in market A, as it is the only team that can invest in that market. Hence,

it is reasonable that the conglomerate can use its R&D lab. Furthermore, as there is no

advantage in market B, it is also reasonable that the standalone �rm in market B can

use its R&D lab. This equilibrium re�nement is formally stated as follows.

Equilibrium Re�nement 2 ER2. For any i, xAi + xBi > 0 holds in equilibrium.

In the third stage, when �rms Ai and Bi are not merged, their pro�t functions are as

displayed in (2.1) and (2.2), respectively.

(DA − qAi − qAj ) qAi , (2.1)

(DB − qBi − qBj + xBi) qBi −
1

2
x2Bi. (2.2)

When �rms Ai and Bi are merged, the joint pro�t of the conglomerate i is as given in

(2.3).

(DA − qAi − qAj + βxAi) qAi + (DB − qBi − qBj + xBi) qBi −
1

2
(xAi + xBi)

2 . (2.3)

2.4 Results

This section presents the equilibrium results of the model. It begins with the results of a

monopoly benchmark. Assumedly, each market is a monopoly. Figure 2.1 illustrates the

solution of the monopoly benchmark in Proposition 1. Appendix 2.1 presents the proof.
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Proposition 1. De�ne a threshold θM =

√
2−β2

β
. The solution of the monopoly bench-

mark is characterized as follows:

a) De�ne the MA outcome as the set of R&D e�orts and outputs xMA
A = βDA

2−β2 ,

xMA
B = 0, qMA

A = DA

2−β2 , and q
MA
B = DB

2
, where the team invests only in market A. The

team merges and obtains the MA outcome if and only if DA

DB
> θM .

b) De�ne the MB outcome as the set of R&D e�orts and outputs xMA
A = 0, xMB

B =

DB, q
MB
A = DA

2
, and qMB

B = DB, where the team invests only in market B. With ER1,

the team does not merge and obtains the MB outcome if and only if DA

DB
≤ θM .

Figure 2.1: Monopoly benchmark's solution

The solution depends on DA

DB
. This chapter refers to this quotient between the inter-

cepts of the demand functions of the markets A and B as the market ratio. Thus, if the

market ratio is adequately high, the two monopoly �rms merge and choose to invest only

in the more pro�table market A. Otherwise, the monopoly �rms do not merge and the

standalone �rm in B invests only in market B. Hence, the incentive to merge is to use
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the R&D lab in market A.

The form of the solution where the conglomerate invests only in one market is a

consequence of the R&D cost assumptions. The conglomerate would incur extra costs

if it invests in both markets given that the R&D lab is not fully prepared to operate in

them. Thus, it is more pro�table to invest in only one market.

Notice that if β = 1, the condition to form a conglomerate and invest only in A would

simply be DA > DB. Hence, if there is full technological compatibility in both markets,

the decision of which market to invest in is simply based on its relative size. As in Figure

2.1, the market ratio must be higher as β decreases for the team to form a conglomerate

to invest in market A. Its size must be much greater than market B to compensate for

the lack of full compatibility in market A.

This chapter presents the equilibrium results of the duopoly model in Proposition 2,

illustrated in Figure 2.2. Appendix 2.2 presents the proof.

Proposition 2. De�ne the thresholds θA = (9−4β2)
√
7

4β
√

9−8β2
and

θ̂B =


3
√

9−8β2

10
√
2β

if β <
√
3
2

3
√
2β

5
√

16β2−9
if β ≥

√
3
2

.

For β ∈ (0,
√

3/2), de�ne also “θA =
√
7(9−8β2)3/2

12β(3−4β2)
. The thresholds satisfy θ̂B < θA and

θA < “θA for any β ∈
(

0,
√
3
2

)
. With ER2, all the equilibria in duopoly are characterized

as follows:

(a) De�ne the A-outcome as the set of R&D e�orts and outputs xAAi = 4βDA

9−4β2 , x
A
Bi = 0,

qAAi = 3DA

9−4β2 , and q
A
Bi = DB

3
, where both teams invest only in market A.

The A-outcome is an equilibrium outcome if and only if DA

DB
≥ θA and the A-outcome is

set as a continuation equilibrium in the two-merger subgame. Under the same conditions,
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both teams merge in equilibrium.

(b) De�ne the B-outcome as the set of R&D e�orts and outputs xBAi = 0, xBBi = 4DB

5
,

qBAi = DA

3
, and qBBi = 3DB

5
, both teams invest only in market B.

The B-outcome is an equilibrium outcome if and only if DA

DB
≤ θ̂B. Under the same

conditions and with ER1, none of the teams merge in equilibrium.

(c) De�ne the asymmetric outcome as the set of R&D e�orts and outputs

(x♦AA , x♦BA , x♦AB , x♦BB ) =


(

4βDA

9−8β2 , 0, 0, DB

)
if β <

√
3
2(

DA

β
, 0, 0, DB

)
if β ≥

√
3
2

,

(q♦AA , q♦BA , q♦AB , q♦BB ) =


(

3DA

9−8β2 ,
(3−4β2)DA

9−8β2 , 0, DB

)
if β <

√
3
2

(DA, 0, 0, DB) if β ≥
√
3
2

,

where a team (denominated ♦A) invests only in market A, and the other team (denomi-

nated ♦B) invests only in market B.

The asymmetric outcome is an equilibrium outcome if and only if an asymmetric

outcome is set as a continuation equilibrium in the two-merger subgame, β ∈
(

0,
√
3
2

)
,

and “θA ≥ DA

DB
≥ θ̂B, or β ∈

[√
3
2
, 1
)

and DA

DB
≥ θ̂B. Under the same conditions for

DA

DB
6= θ̂B with ER1, only team ♦A merges in equilibrium.

The duopoly model has three types of equilibrium outcomes. This chapter denomi-

nates this group of equilibrium outcomes as market outcomes. In every market outcome,

each team invests only in one market, a result of R&D cost assumptions. Any team

that becomes a conglomerate in equilibrium invests only in market A. As the monopoly

benchmark, the incentive to merge is to use the R&D lab in market A.

The symmetric A- and B-outcomes are equivalent to the outcomes in the monopoly
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Figure 2.2: Duopoly's equilibria.

benchmark in that all the R&D labs are used only in the best and most pro�table market.

If market B is more pro�table, none of the �rms merge and both standalone �rms in B

invest in R&D only in their market. If market A is more pro�table, two conglomerates

are formed and both invest only in market A. Given that θ̂B < θM < θA, for the B-

and A-outcome to be an equilibrium outcome, the market ratio must be lower (higher)

relative to the monopoly benchmark.

While both teams bene�t from investing in the best market, they are hurt by the

increased competition. There are two types of competition in the symmetric outcomes:

the usual quantity competition and R&D competition. Both types increase the overall

R&D e�ort and production in the symmetric outcome relative to the monopoly bench-

mark (2xkki > xMk
k , 2qAki > qMA

k and 2qBki > qMB
k ). Furthermore, quantity competition is

more intensi�ed in a market with R&D investments than in the same market without
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them (qAAi > qBAi and q
B
Bi > qABi).

The asymmetric outcome, which does not have an equivalent solution in the monopoly

benchmark, exists in the duopoly model for intermediate values of the market ratio.5

Here, only one team merges, becomes a conglomerate, and invests only in market A;

the standalone �rm in market B of the other team invests only in its market. As the

pro�tability of the markets is not too di�erent, the size of the markets is not the main

motivation for investments. In the asymmetric outcome, there is always a team that

invests in the worst market. Instead, the main incentive in the asymmetric outcome is

to avoid competition. Indeed, when the asymmetric outcome is the equilibrium outcome

the original framework of the duopoly is radically changed, as explained in Corollary 1,

which follows directly from Proposition 2.

Corollary 1. When the asymmetric outcome is an equilibrium outcome, the conglomerate

produces nothing in market B; thus, the standalone �rm is a monopoly in market B. If

β ≥
√
3
2
, the conglomerate is a monopoly in market A.

In the asymmetric outcome equilibrium, the R&D e�ort and output of the standalone

�rm in market B are equivalent to the ones in the monopoly's MB outcome. Whether

the conglomerate is a monopoly in market A depends on technological compatibility.

When β <
√
3
2
, R&D investments are overly expensive such that the conglomerate cannot

a�ord the necessary R&D e�ort to seize all the demand. When β ≥
√
3
2
, the conglomerate

can invest in the necessary amount of R&D to capture all the demand, preventing the

5The asymmetric outcome also exists simultaneously with the A-outcome for high values of the market
ratio, as in Figure 2.2. This region coincides with the one where both outcomes are in equilibrium in the
two-merger subgame. The multiplicity originates in the two-merger subgame in the second stage. The
equilibrium outcome is then determined by which continuation equilibrium is played in the two-merger

subgame. When β ≥
√
3
2 , the asymmetric outcome always exists as an equilibrium in the two-merger

subgame no matter how pro�table market A is relative to B because team ♦A captures all the demand
in market A when the technological compatibility is high; hence, it is not optimal for team ♦B to deviate
to A.
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standalone �rm from participating in the market A.

If the technological compatibility is larger than one half, the conglomerate invests

more in R&D than in the monopoly's MA outcome (x♦AA ≥ xMA
A if and only if β ≥ 1

2
).

Even if the conglomerate is a monopolist, it must invest more because of the existing

threat of a competitor. If β < 1
2
, R&D is overly expensive; hence, its e�ectiveness to

gain a competitive advantage is severely reduced. Thus, in the asymmetric outcome, the

conglomerate prefers not to invest as much as in the monopoly benchmark, where R&D

does not have a role in competition and its only use is to reduce costs. In comparison

to the A-outcome, the overall R&D in market A is (weakly) smaller in the asymmetric

outcome (x♦AA ≤ 2xAAi), being equal only when β =
√
3
2
.

There exists a threshold θ̄ ∈ (θ̂B, θA), de�ned in Appendix 2.2, such that when the

asymmetric outcome is the equilibrium outcome and the market ratio is below θ̄, the

conglomerate is the team that invests in the least pro�table market A, while the team

of standalone �rms invests in the most pro�table market B. Hence, the team pro�ts

of the standalone �rms are greater than the pro�ts of the conglomerate. The merger is

more bene�cial to the non-merging �rms than to the conglomerate. This phenomenon

resembles the merger paradox of Salant et al. (1983).

The results explain the conglomerate discount, as stated in Proposition 3. Appendix

2.3 presents the proof.

Proposition 3. When DA

DB
≥ 9−4β2

5β2 , the pro�t of a conglomerate in the two-merger equi-

librium is less than the sum of the pro�ts of its standalone counterparts in the non-merger

outcome.

The conglomerate discount appears as a kind of prisoner dilemma in the model.6

6It follows that 9−4β2

5β2 ≥ θA if β ∈
(

0, 4
√

3
101

]
. Hence, the conglomerate discount does not always
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R&D competition hurts the pro�ts; thus, when the market ratio is adequately large, the

teams would be better in the non-merger outcome as the R&D e�orts are concentrated

in the worst market B. However, given the rival's strategy, any team prefers to invest

in the best market A, creating two conglomerates in equilibrium and increasing the level

of competition in market A. Thus, excess R&D competition causes the conglomerate

discount in the model.

2.5 Welfare and policy implications

The asymmetric outcome reduces the competition when it is an equilibrium outcome.

However, unlike the symmetric outcomes, in the asymmetric outcome R&D is invested

in both markets. Thus, the consumers are hurt by the decreased competition, but the

consumers of one market bene�t from the increased R&D. The overall e�ect is not clear;

hence, the policy implications are not straightforward. Appendix 2.4 presents the welfare

analysis for a better understanding. This chapter presents the results on the producer

surplus, consumer surplus, and social welfare regarding the asymmetric outcome in Propo-

sition 4. Further, Figure 2.3 contrasts the asymmetric equilibrium with the results on

consumer surplus and social welfare.

Proposition 4. De�ne the total producer surplus as TPS, total consumer surplus as

TCS, and total social welfare as TW . Denote the A-, B-, and asymmetric outcome with

the superscript A, B, and ♦, respectively. De�ne the thresholds γ̄ =
(9−8β2)

√
5(9−4β2)

6β
√

2(9−23β2+12β4)
,

occur when two conglomerates are formed in equilibrium. The R&D cost function induces outcomes
where �rms focus on only one market. However, it is not enough to explain the conglomerate discount
as it further depends on the market ratio and technological compatibility.
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β̄ =

√
23−
√
97

2
√
6

,

γA =


√
5(9−8β2)(9−4β2)

12β
√

81−189β2+120β4−16β6
if β <

√
3
2

√
5(9−4β2)

3
√

(4β2−3)(15−4β2)
if β >

√
3
2

, γB =


3
√
11(9−8β2)

20β
√

9−7β2
if β <

√
3
2

3
√
11

5
√
5

if β ≥
√
3
2

.

The thresholds satisfy θ̂B < γB, γB < γA for β 6=
√
3
2
, γA < “θA for any β <

√
3
2
, β̄ <

√
3
2
,

and γ̄ > “θA for any β ∈
(
0, β̄
)
.

(a) TPS♦ > max{TPSA, TPSB}.

(b) TCS♦ ≥ TCSA if DA

DB
≤ γA and β 6=

√
3
2
, and TCS♦ > TCSA if β =

√
3
2
.

TCS♦ ≥ TCSB if DA

DB
≥ γB.

Thus, TCS♦ > max{TCSA, TCSB} if γA ≥ DA

DB
≥ γB and β 6=

√
3
2
, or DA

DB
≥ γB and

β =
√
3
2
. Under the same conditions, the asymmetric outcome is an equilibrium outcome.

(c) TW ♦ > max{TWA, TWB} if β < β̄ and DA

DB
≤ γ̄, or β ≥ β̄. Thus, whenever

the asymmetric outcome is an equilibrium outcome, it is the social welfare dominating

outcome.

The statement in part (a) of Proposition 4 is not surprising because, in the asymmetric

outcome, the �rms gain from their R&D investments and there is no competition; in the

symmetric outcome, the product and R&D competitions harm the �rms. Thus, why can

the symmetric outcomes be supported in equilibrium? By the nature of the asymmetric

outcome, there is always a team investing in the worst market. For extreme values of the

market ratio, such a team has incentives to change its merger decision to deviate to a

more pro�table symmetric outcome.

Under the conditions of part (b) of Proposition 4, the reduction of competition in

the asymmetric outcome is compensated by the increase in the overall R&D e�ort. This

situation mainly occurs when the quantities produced in the markets end up being similar.
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Figure 2.3: Asymmetric outcome: equilibrium, consumer surplus and social welfare.

For example, as in Figure 2.3, the asymmetric outcome is the best for the consumers when

DA = DB and β is adequately large (i.e., when the technological compatibility is close to

being perfect). This same intuition applies to the dominance area of consumer surplus

that extends to the lower right region of Figure 2.3. An increase in the market ratio must

be compensated by a decrease in technological compatibility to maintain the similarity in

produced quantities. The dominant area of consumer surplus also converges to β =
√
3
2
.

At β =
√
3
2
, the R&D e�orts in market A in the A-outcome and asymmetric outcome are

equal. Thus, at β =
√
3
2
, the asymmetric outcome dominates the A-outcome, as, in the

former outcome, R&D is invested in market B and, thus, has more overall R&D e�ort.

If the conditions of part (b) do not hold but the asymmetric outcome is the equi-

librium outcome, then the consumers are better-o� in some symmetric outcome. If the

size of market B is considerably greater than A, then an equilibrium where only one
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conglomerate merger occurs is harmful to the consumers and, thus, the competition au-

thority should prevent that merger. When market A is considerably greater than B and

β 6=
√
3
2
, the policy is more intricate. Here, the consumers would be better-o� in the A-

outcome; hence, the policy implication is that the authorities should encourage a second

conglomerate merger to reach the two-merger outcome. However, such a policy is outside

the jurisdiction of competition authorities like the European Commission.

Part (c) of Proposition 4 states that the asymmetric outcome in equilibrium always

achieves the greatest total welfare. Thus, implementing any kind of policy would go

against the interest of the overall society. Nevertheless, this welfare result is attributed

mainly to the producer surplus. Competition authorities generally prioritize consumers.

Therefore, regulation of the asymmetric outcome remains valuable.

If the conditions in part (c) of Proposition 4 are not satis�ed, the A-outcome is the so-

cial welfare dominant outcome.7 Further, the A-outcome is also an equilibrium outcome.

The high market ratio signi�es that market A contributes the most to the total consumer

surplus. Though the conglomerate discount might be observed, low technological com-

patibility implies that the competition in market A in the A-outcome is not exceedingly

intense. Thus, the consumers in market A bene�t from the competition without greatly

hurting the pro�ts of the �rms.

2.6 Conclusion

This chapter examined how shifting R&D capabilities through a conglomerate merger

a�ects competition in a Cournot duopoly framework with technologically related �rms.

Whether a conglomerate merger depresses competition depends on the R&D investment

7The B-outcome is never the social welfare dominating outcome. In this market outcome, the com-
petition greatly reduces the pro�ts, as there is perfect technological compatibility.
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behavior. In symmetric equilibria, all �rms invest only in the most pro�table market. If

market B is the most pro�table, none of the �rms merge, as there are no incentives to

use the R&D lab in market A. If market A is the most pro�table, two conglomerates are

created in equilibrium, as there are incentives to use the R&D lab in market A. These

kinds of equilibria preserve the original framework of the duopoly, because two �rms

produce in each market.

In asymmetric equilibria, one conglomerate is formed to invest in market A, while

one standalone �rm invests in market B. With this strategy, the �rms avoid product

and R&D competition, and at least one market is monopolized. Further, the consumers

of all markets bene�t from the R&D unlike in the symmetric outcomes. The positive

e�ect of the R&D is o�set by the e�ect of decreased competition when the market sizes

are uneven. A conglomerate merger to allocate resources from a pro�table market to

a less pro�table market is harmful to consumers; thus, competition authorities should

prevent it. In the inverse scenario, a conglomerate merger to allocate resources from

an unpro�table market to a more pro�table market is not harmful to consumers, but a

higher number of conglomerate mergers would be better. Hence, the policy implication is

to enforce more mergers; however, competition authorities like the European Commission

do not have the power to implement such a policy.

The welfare results might be overturned under a di�erent R&D framework. The scope

of the chapter was limited to shifting R&D capabilities in one direction by the assumption

that only the �rms in market B own an R&D lab. Given such asymmetry, the identity

of the markets is an important factor on whether the policy implication is outside the

jurisdiction of competition authorities. A path for future research is to consider that

resources can be shifted in both directions. This extension of the model might be useful
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to understand which characteristics of the markets determine the type of policy.

This chapter constructs the model assuming a static setting with imperfect technology

incompatibility. In the long term, the incompatibility may disappear, and R&D e�cien-

cies or spillovers may arise. Under such conditions, it might be possible to achieve a

more preferable outcome from the perspective of the consumer or social welfare, such as

an outcome with a product and R&D competition in all markets. An avenue for future

research is to extend the model with more general R&D and cost assumptions. Beyond

more general or complex functional forms, a dynamic setting might be necessary to factor

in the process of adoption of new technology. This line of research is worth pursuing,

as formulating more appropriate policies might require a better understanding of the

conglomerate e�ects of mergers on welfare beyond competitive issues.
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Chapter 3

Agency Problems in a Competitive Conglomerate with

Production Constraints

3.1 Introduction

Agency frameworks have been used extensively to explain the inner mechanism of con-

glomerates, �rms that participate in several industries. The hypothesis that the conglom-

erate discount is caused by agency problems is of particular importance (Maksimovic &

Phillips, 2007). Broadly speaking, the conglomerate discount theory claims that the

conglomerate is less than the sum of the values of its individual parts (Berger & Ofek,

1995). One argument is that con�icts of interest inside the conglomerate creates inef-

�ciencies in capital allocation (Busenbark et al., 2017), thus causing the conglomerate

discount. While the capital allocation e�ciency literature is substantial, it usually ne-

glects the conglomerate's strategic interaction with the market. Indeed, the interactions

of conglomerates, such as Amazon, are not limited to those that happen within the �rm,

Amazon also has to deal with competitors, such as E-bay in the online retail market or

Net�ix in the video streaming market.

If agency problems have an e�ect in a conglomerate, it is reasonable to assume that
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the same agency problems also have an e�ect on the markets where the conglomerate

participates, and by extension, on social welfare. Despite this, explicit policies regarding

conglomerate e�ects related to agency problems are lacking. Indeed, only some conglom-

erate e�ects are monitored and regulated. For instance, competition authorities' concern

for conglomerates e�ects when these have the potential to lessen competition (Markovits,

2014). In the EU �Guidelines on the assessment of non-horizontal mergers under the

Council Regulation on the control of concentrations between undertakings� (2008) , the

only non-coordinated conglomerate e�ect listed is foreclosure. Speci�cally, bundling and

tying practices.

This chapter explores the reciprocal e�ects between agency problems and market

competition. We develop a tractable theoretical model with three de�ning characteristics.

First, there is a conglomerate (or multi-market �rm) facing oligopolistic competition. We

assume that the conglomerate competes as the leader in two duopoly markets with a

Stackelberg-Cournot framework with heterogeneous goods. The two demand functions

are independent of each other.

Second, the conglomerate has production constraints. The conglomerate has a com-

mon pool of resources that functions as the input for both products. If the resources are

low, there is an opportunity cost of producing in one market or the other.

Third, there is an agency problem inside the conglomerate. We consider an adverse

selection model. We assume that a conglomerate consists of its headquarters and two

division managers. The headquarters' pro�t depends on both divisions, while the man-

agers' utility depends only on the performance of their own division. The headquarters

decide how to allocate the resources across the divisions. The managers, using these

resources, take production decisions in their respective divisions.
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The headquarters do not know the value of the intercept of the demand in one of

the markets, but the manager running that division does. That intercept of demand is

a random variable that can take two values: high or low. Through a contract mecha-

nism headquarters might obtain that information from the manager to allocate resources

contingent on the manager's report.

The payo�s of the headquarters and the manager are di�erent, so the manager might

have incentives to lie. Depending on the state, there exist an ideal level of resources that

maximizes the pro�t of a division. However, that ideal value might not be achieved if

the resources are low enough. In this case, the motivation behind the manager's report

is to obtain a level of resources as close as possible to the ideal value. Thus, the contract

mechanism must o�er allocations contingent on the state such that the manager receives

the amount closest to the ideal value only if the truth is reported.

We �rst solve a benchmark with symmetric information. We �nd two equilibria.

First, the unrestricted equilibrium, where the resources are plenty and the production

constraint is not binding. Second, the restricted equilibrium, where the resources are not

plenty, the production constraint is binding, and thus, there is an opportunity cost of

production.

We �nd that the solutions of the model under asymmetric information and the bench-

mark are equivalent if the resources of the conglomerate are large enough, that is, the

�rst-best contract can be achieved. Conversely, if the resources are low, the conglomerate

can only induce truth-telling with the second-best contract. Depending on the level of

resources, the second-best contract is separated or pooled.

A separating second-best contract is achieved if the resources are not too low. The

mechanism enables headquarters to distinguish the true value of the demand and to
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allocate resources accordingly. With this contract, in comparison to the benchmark in

any state, the conglomerate produces more in the market with asymmetric information

and less in the market with the certain demand. The benchmark's high state allocation in

the market with uncertain demand is too close to the low state's ideal value. Hence, the

headquarters allocate more resources in the high state so that the resources are further

away from the low state's ideal value. Simultaneously , more resources are also allocated

in the low state to approach them to the low state's ideal value. Conversely, less resources

are allocated in the market with certain demand in both states as there is an opportunity

cost of producing in one market or the other.

If the resources are very low, a separating contract is too costly, and thus, the head-

quarters is content with a pooling contract. The headquarters know the value of the

demand with the mechanism, but the resource allocation plan remains the same regard-

less of the information revealed. With this contract, the production is equivalent to the

outcome of a model where none of the players inside the conglomerate knows the true

value of the demand, so the information is useless with this scheme.

Furthermore, we analyze the ex-ante and post social welfare. We show that under

certain conditions the social welfare improves in the model under asymmetric information

in comparison to the symmetric information benchmark. Because there is an opportunity

cost of production, the allocation distortion caused by the second-best contracts transfers

surplus from one market to the other. Welfare might improve if surplus is transferred

from the worst market to the best market. Welfare is more likely to increase if the goods

are complements, as the surplus of the follower �rms and consumers change in the same

direction as the variations in the conglomerate's production.

Particular to the ex-ante welfare, we �nd that the separating contract sometimes
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improves it if the market with uncertain demand is large on average in comparison to

the market with certain demand. In contrast, we �nd that the pooling contract never

improves the ex-ante welfare.

Finally, we analyze how the degree of di�erentiation delimits the type of equilibrium.

Under symmetric information, at higher levels of substitutability or complementarity the

restricted equilibrium is more likely to occur. Under asymmetric information and when

the resources are low but not too low, at higher levels of substitutability or complemen-

tarity the second-best contract is more likely to be implemented. Under asymmetric

information, and when the resources are very low, at higher levels of substitutability or

complementarity the pooling equilibrium is more likely to occur.

This chapter is organized as follows: Section 3.2 reviews the related literature. Section

3.3 speci�es the model structure. Section 3.4 presents the symmetric information bench-

mark. Section 3.5 solves and analyzes the model. Section 3.6 analyzes social welfare.

Section 3.7 analyzes the e�ect of the degree of di�erentiation on the delimitation of the

type of equilibrium. Section 3.8 concludes.

3.2 Literature review

This chapter is relevant to the literature related to resource allocation and agency prob-

lems. Especially pertinent is the literature where production constraints are explicitly

considered. The theoretical model of Harris, Kriebel, and Raviv (1982) shows that using

a transfer pricing scheme as an allocation mechanism is cost minimizing and induces the

divisions of a �rm to tell the truth. A transfer pricing scheme is feasible even if the

resource constraint is binding. Cachon and Lariviere (1999) consider a model where a

supplier allocates a limited capacity to multiple downstream retailers. One of their main
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results is that the mechanism that maximizes the total pro�ts of the retailers cannot

induce truth-telling if the capacity is binding. In our model, the �rst-best contract can

be achieved even when the production constraint is binding, if the resources are not too

low. This implies that the managers tell the truth while maximizing the pro�t of their

own divisions.

Another strand of literature about resource allocation focuses on �nancial resources

within a conglomerate. Particularly, the corporate �nance's capital allocation e�ciency

literature investigates whether the distribution of �nancial resources across divisions

in a multi-market �rm matches with their respective performance, that is, whether a

high-prospects division receives more than a low-prospects division (Busenbark et al.,

2017). Studies on e�cient allocation ascertain that the �rm prioritizes the most prof-

itable endeavors over the less pro�table ones (see for example Stein (1997) ,Maksimovic

and Phillips (2002), Brusco and Panunzi (2005))

Opposing the theory of e�cient allocation, there is literature proposing that agency

problems cause ine�ciency in capital allocation. In theoretical research, Rajan et al.

(2000) predict that as the diversity increases, the transfers from better-opportunities di-

visions to worse-opportunities divisions increases. The reason is that allocating resources

to the weak division improves the contribution of this division to the joint pro�t, increas-

ing the strong division's incentives to invest e�ciently. In Stein and Scharfstein (2000),

the division managers of weak divisions engage in rent-seeking behavior, which is costly

for the �rm. To mitigate this behavior, the CEO can allocate capital ine�ciently to the

weak divisions. In Wulf (2009), the core division manager sends distorted information

to the headquarters to in�uence the division of capital in favor of the core division and

against the small division. In empirical contributions, Rajan et al. (2000) provide evi-
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dence supporting their theoretical hypothesis. In Arrfelt et al. (2013), a backward-looking

logic leads to over-investment (under-investment) in low (high) expectations divisions.

We include agency problems in a conglomerate in the form of an adverse selection

problem between headquarters and managers. However, the adverse selection not always

cause ine�cient resource allocation. Both the �rst and second-best contract can be

achieved. The former can be interpreted as e�cient and the second as ine�cient. Thus,

our model reconciles the theories of the e�cient and ine�cient allocation literature.

Literature focusing on the allocation of resources in competitive conglomerates is

scarce. One of them is the study by Levinthal and Wu (2010). In their model, the

authors assume two multi-market �rms competing in two markets. These �rms have the

ability to relocate a �xed amount of resource across markets. Because the resource is

�nite, there is an opportunity cost in transferring the resource from one market to the

other one. In equilibrium, there are more incentives to allocate resources to one market

as the size of that market increases. Similarly, in our model, the headquarters allocate

more resources to the greatest market under the �rst-best contract. However, under the

second-contract, the headquarters might prioritize the worst market.

There are some other theoretical studies about competitive conglomerates, but they

mainly incorporate foreclosure as the conglomerate e�ect. In Granier and Podesta (2010),

a gas and electrical �rms can price discriminate only after a merger, by selling their

products in a bundle. In Tan and Yuan (2003), they study divestitures by assuming two

competing conglomerates, each one supplying a group of goods. Within the conglomerate,

the goods are complements, while across the conglomerates the goods are substitutes.
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3.3 The model

A conglomerate �rm participates in two markets that are not related horizontally or

vertically, denoted by k ∈ {C,N}. The division in market N is a newly acquired division,

while the division market C is the core business (or original business) of the �rm. The

conglomerate is run by a risk-neutral headquarters, which we assume is the owner of the

�rm, and two managers, each one in charge of one division.

We assume that the conglomerate is competing with one standalone �rm in each

one of the markets. The �rms are denoted by i ∈ {1, 2}, where the conglomerate is 1

and the standalone �rm is 2. We consider a sequential quantity competition (Stackelberg-

Cournot) with heterogeneous goods, where the conglomerate is the leader in both markets

and standalone �rms are the followers.

We assume that a representative consumer in market k has a quasi-linear utility

function with the form Uk(qk0, qk1, qk2) = qk0 + vk(qk1, qk2), where qk0 is the quantity of

the numeraire good, qki is the output of �rm i, and vk(qk1, qk2) is given by:

vk(qk1, qk2) = Dk(qk1 + qk2)−
1

2

(
q2k1 + 2αqk1qk2 + q2k2

)

where α ∈ [−1, 1] is a constant measuring the degree of di�erentiation of the good and

Dk is the intercept of the demand in market k. It stands that the goods are substitutes

when α > 0 and are complements when α < 0. We assume a common α in both markets

so that the only variable di�erentiating the markets is the intercept of the demand.

The utility function generates the following inverse demand function faced by �rm i

in market k:

Pki (qki, qkj) = Dk − qki − αqkj
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where j ∈ {1, 2} for j 6= i and Pki is the price of �rm i in market k. In the core market, all

the players know the value of the intercept, DC , which is a positive constant. In the new

market, the standalone �rm and the division manager know the value of the intercept

but the conglomerate's headquarters do not. However, the headquarters know that the

intercept is a random variable that can take two values: high value DH
N with probability

pH ≡ p and low value DL
N with probability pL ≡ 1 − p, where p ∈ (0, 1) is a constant.

These priors are common knowledge. We assume that DH
N > DL

N > 0 and DC > 0.

Although the demand functions are independent of each other, we assume that the

products of both markets use a common input in their production process. For sim-

plicity, we assume that the products are produced only with this common input. The

conglomerate is endowed with a positive exogenous amount of input X, which is allo-

cated between the divisions for them to produce their respective products. We refer to

this endowment as the resources of the conglomerate. The production function for the

conglomerate's product k is qk1 = xk, where xk is the amount of input. The total amount

of input assigned to both divisions must satisfy that xN + xC ≤ X. We can write this

restriction in terms of quantities as qN1 + qC1 ≤ X. We refer to the last inequality as the

production�possibility constraint of the conglomerate. As for the standalone �rms, we

assume that in any scenario they have enough resources to operate without constraints

in each one of their markets. Therefore, we ignore the production-possibility constraints

of the standalone �rms.

A corner solution for the conglomerate would entail producing nothing in one of the

markets. As we are interested in the scenario where the conglomerate participates in

both markets, we make two assumptions to guarantee interior solutions. First, for any s
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with s ∈ {H,L}:

X ≥ (2− α)

2(2− α2)
|DC −Ds

N | (3.1)

This implies that the �rm has enough resources to operate in both markets in any state.

Second:

DH
N −DL

N <
2DC

3
(3.2)

This assumes that the di�erence between the intercepts of the demand of the new market

in both states is small relative to the intercept of the core market.

The headquarters are in charge of the allocation of resources across the divisions.

Each manager is in charge of producing and supplying the good to the market in their

respective division. The headquarters' payo� is the sum of the pro�ts of both divisions

minus an exogenous �xed compensation for both managers. Each manager's utility come

from the �xed compensation and the pro�t of their own division. The latter component

is explained by a preference in empire building, which in this case is interpreted as the

desire to manage a pro�table division.1 Without loss of generality, we normalize the �xed

compensation of both managers to zero, so the headquarters' payo� is simply the pro�t

of the overall �rm, while each manager's utility is equivalent to the pro�t of their own

division. The reservation utility of both managers is set to be zero. If a manager does

not receive at least their reservation utility, they quit.

It is possible for the headquarters to ask the manager in division N for the value

of DN . However, the maximization of the overall pro�t does not necessarily imply the

maximization of the pro�t of division N , so the manager might have incentives to not

1Empire building is mentioned in Stein and Scharfstein (2000) as an explanation of why managers
pro�t from their own divisions while the principal pro�ts from all divisions, thus creating the agency
problem. In Wulf (2009) and Bernardo, Cai, and Luo (2001) managers gain utility as their allocation of
capital increases. Empire building is given as a reason for this in Bernardo et al. (2001). In our model,
managers desire to maximize the pro�ts of their own division, but they do not necessarily desire a larger
allocation of resources, as the pro�ts are decreasing for a large enough production.
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report truthfully. To induce truth-telling, the headquarters establish a contract obliging

the manager to produce a speci�c amount of output contingent on the announced value

of the demand in market N .2

We assume that the headquarters commit to allocate enough resources to the manager

to produce the agreed quantities. Headquarters do not have incentive to give to the

manager in division N extra resources as they would be wasted. Headquarters might

have incentives to allocate less than the necessary resources, but this strategy would

preclude the manager to ful�ll the contract.

The sequence of events is as follows:

1. The headquarters o�er a contract to the manager of division N . The contract

establishes that the manager has to produce qN (Ds
N) if the reported state is s.

2. The manager of division N reports the value of the demand in N .

3. The headquarters allocate resources simultaneously to both divisions depending on

the report of the manager.

4. Both managers set the output in their respective markets.

5. The standalone �rms set their output in both markets after observing the quantities

produced by the conglomerate.

We solve the game in the following sections. Furthermore, we concentrate on pure

strategies.

2Managerial compensation contracts might also include an endogenous �xed payment and a pro�t
share rule (see for example Bernardo et al. (2001)). Here, we are not interested in optimal contracts but
rather in the e�ect of agency problems in the markets. Thus, we simplify the problem by considering
output as the only the component of the contract, as its allocation is what generates the agency problem.
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3.4 Symmetric information benchmark

Here, it is assumed that the headquarters know the true value of the demand in market

N . Given that that conglomerate has already selected q̌k1, the standalone �rm in market

C solves the following problem:

max
qC2≥0

(DC − qC2 − αq̌C1) qC2

While the standalone �rm in market N and state s solves the following problem:

max
qsN2≥0

(Ds
N − qsN2 − αq̌N1) q

s
N2

The best response functions of the standalone �rms in market C and N in state s are

respectively as follows:

qBC2 (q̌C1) =
DC − αq̌C1

2
and qsBN2 (q̌N1) =

Ds
N − αq̌N1

2
(3.3)

The headquarters' maximization problem in state s is:

max
∀k,qsk1≥0

(
DC − qsC1 − αqBC2 (qsC1)

)
qsC1 +

(
Ds
N − qsN1 − αqsBN2 (qsN1)

)
qsN1 =

max
∀k,qsk1≥0

1

2

((
(2− α)DC − (2− α2)qsC1

)
qsC1 +

(
(2− α)Ds

N − (2− α2)qsN1

)
qsN1

)
s.t. qsN1 + qsC1 ≤ X

(3.4)

where after the equal sign we substitute (3.3) into the headquarters' objective function.

Whether the restriction is binding depends on the parameters of the problem. First, we

assume that the resources are plenty, and hence that the restriction is not binding. We
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denote this solution with U . The optimal outputs of the conglomerate in market C and

N in state s are as follows:

qUC1 =
2− α

2(2− α2)
DC and qsUN1 =

2− α
2(2− α2)

Ds
N

and the optimal outputs of the standalone �rms in market C and N in state s are as

follows:

qUC2 =
4− α2 − 2α

4(2− α2)
DC and qsUN2 =

4− α2 − 2α

4(2− α2)
Ds
N

U is an equilibrium in state s if the resources are plenty, speci�cally:

X ≥ 2− α
2(2− α2)

(DC +Ds
N) = Ωs

Second, we assume that the resources are not plenty in state s, that is X < Ωs. The

restriction in (3.4) is binding and the problem in state s can be rewritten as follows in

terms of qsN1:

max
qsN1≥0

2− α2

2

((
(2− α)DC

2− α2
−X + qsN1

)
(X − qsN1) +

(
(2− α)Ds

N

2− α2
− qsN1

)
qsN1

)

We denote this solution with R. From the �rst order condition (FOC) the optimal outputs

of the conglomerate in state s are:

qsRC1 = qUC1 −
θsR

2
and qsRN1 = qsUN1 −

θsR

2
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and the optimal outputs of the standalone �rms in state s are:

qsRC2 = qUC2 + α
θsR

4
and qsRN2 = qsUN2 + α

θsR

4

where θsR = qsUN1+qUC1−X is the conglomerate's de�cit in the resources needed to achieve

U in state s. Thus, in R each one of the conglomerate's divisions faces a reduction in

production equal to half the production de�cit. Consequently, an increase in the resources

increments the production in both divisions in half the increase of X (
∂qsRk1
∂X

= 1
2
). Given

(3.1), it follows that qsRk1 ≥ 0 and qsRk2 ≥ 0 for all s. We summarize the results of this

section in Proposition 5.

Proposition 5. The equilibria in the symmetric information benchmark are characterized

as follows:

a) When X ≥ ΩH , U is an equilibrium in both states.

b) When ΩH > X ≥ ΩL, R is an equilibrium in the high state and U is an equilibrium

in the low state.

b) When X < ΩL, R is an equilibrium in both states.

When the equilibrium is U , the conglomerate has plenty of resources, and thus, there

is not an opportunity cost to produce in one market or the other. Each division of

the conglomerate functions as a standalone �rm, without considering the other market

when taking decisions. As expected, in market N the conglomerate and standalone �rm

produce more in the high state than in the low state (qHUNi > qLUNi ). Contrastingly, the

outputs of both �rms in market C are independent of the state.

When the equilibrium is R, the conglomerate faces an opportunity cost to produce in

one market or the other as the resources are not enough to produce the optimal output in
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both markets. In comparison to U , with the production restriction in R, the conglomerate

produces less in both markets in any state (qUC1 > qsRC1 and qsUN1 > qsRN1). Similar to U ,

in R the conglomerate produces more in market N if the state is high (qHRN1 > qLRN1).

In this case, the output in market C depends of the state. Hence, given the trade-o�

between market C and N , the conglomerate produces less in market C if the state is high

(qLRC1 > qHRC1 ).

The e�ect of the conglomerate's production constraint on standalone �rms depends

on whether the goods are substitutes or complements. If the goods are substitutes, in

any state both standalone �rms are better o� in R than in U because their production

increases (qUC2 < qsRC2 and qsUN2 < qsRN2). Conversely, if the goods are complements, in any

state both standalone �rms are worse o� because their production decreases (qUC2 > qsRC2

and qsUN2 > qsRN2). Similar to the conglomerate, the standalone �rm in market N produces

more in the high state (qHRN2 > qLRN2). This same comparison in market C depends on α.

If the goods are substitutes, the standalone �rm in C produces more in the high state

(qHRC2 > qLRC2 ). Conversely, if the goods are complements, it produces more in the low

state (qHRC2 < qLRC2 ). This is consistent with the observed behavior of the conglomerate in

market C (qLRC1 > qHRC1 ).

3.5 Information revelation

By the revelation principle, we can restrict our attention to only the truth-telling situa-

tions. The problem of the headquarters is:
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max
∀k,∀s,qsk1≥0

∑
s∈{H,L}

ps
(
PC1

(
qsC1, q

B
C2 (qsC1)

)
qsC1 + P s

N1

(
qsN1, q

sB
N2 (qsN1)

)
qsN1

)
(3.5)

s.t. ∀s, qsN1 + qsC1 ≤ X

PH
N1

(
qHN1, q

HB
N2

(
qHN1

))
qHN1 ≥ PH

N1

(
qLN1, q

HB
N2

(
qLN1

))
qLN1 (3.6)

PL
N1

(
qLN1, q

LB
N2

(
qLN1

))
qLN1 ≥ PL

N1

(
qHN1, q

LB
N2

(
qHN1

))
qHN1 (3.7)

∀s, PC1

(
qsC1, q

B
C2 (qsC1)

)
qsC1 ≥ 0 (3.8)

∀s, P s
N1

(
qsN1, q

sB
N2 (qsN1)

)
qsN1 ≥ 0 (3.9)

Where the restrictions (3.6) and (3.7) are the high and low incentive compatibility

constraints (IC), respectively. The restrictions (3.8) and (3.9) are the individual rational-

ity constraints (IR) of the manager of division C and N , respectively. The IC constraints

ensure that a truthful report is optimal for the manager. The IR constraints impose that

the managers receive at least their reservation utility.3

The problem is simpli�ed by substituting (3.3) into (3.5)-(3.9). To further simplify,

we substitute qUC1 and qsUN1 into (3.5), qHUN1 into (3.6), qLUN1 into (3.7), qUC1 into (3.8), and

qsUN1 (3.9). The simpli�ed problem is as follows:

3We assumed that any manager quits if their gain is not at least their reservation utility. Thus, we
include the IR constraint of the manager of the division C even though there is no adverse-selection
between the headquarters and that manager.
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max
∀k,∀s,qsk1≥0

2− α2

2

∑
s∈{H,L}

ps
((

2qUC1 − qsC1

)
qsC1 +

(
2qsUN1 − qsN1

)
qsN1

)
(3.10)

s.t. ∀s, qsN1 + qsC1 ≤ X (3.11)(
qHN1 − qLN1

) (
2qHUN1 − qHN1 − qLN1

)
≥ 0 (3.12)(

qHN1 − qLN1

) (
qHN1 + qLN1 − 2qLUN1

)
≥ 0 (3.13)

∀s, 2qUC1 ≥ qsC1 (3.14)

∀s, 2qsUN1 ≥ qsN1 (3.15)

3.5.1 First-best contract

Here, we derive the conditions on the parameters that allow to achieve the solution in the

symmetric information benchmark with the contract mechanism. First, when X ≥ ΩH ,

the allocation of resources is such that the divisionN in state s can produce qsUN1, achieving

the maximum unconstrained pro�t, and thus, the ideal level of output for the manager

in division N and the headquarters. Hence, the manager does not have incentives to lie,

the IC constraints are satis�ed and the �rst-best is achievable.

Second, when ΩH > X ≥ ΩL, the allocation of resources is ideal in the low state

but not in the high state. In this case the resources are not plenty enough in the high

state, so the maximum unconstrained level of pro�t is not achieved in neither of the

divisions. Because the pro�t of any division is quadratic and concave in the output, if

the ideal output is not achievable, the preferred alternative is a level of output as close as

possible to the ideal output. In this scenario, it follows that qHUN1 > qHRN1 > qLUN1 . Here, the

resources are not too low, so the de�cit caused by the production constraint is not too
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severe to distort the high state output below the unrestricted low state output. Thus,

the high state manager of division N prefers the output of the high state, so there are

no incentives to lie. If the state is low, the ideal output is achieved in division N , so the

manager of division N does not have incentives to lie in this state either. Therefore, the

�rst-best is achievable in this case.

Third, when X < ΩL, the allocation of resources in any state does not allow to reach

the ideal level of output in neither of the divisions. The high state manager of division

N does not have incentives to lie as qHUN1 > qHRN1 > qLRN1 . However, if the state is low,

there might be incentives to lie. If qHRN1 is closer to qLUN1 than qLRN1 , it is pro�table for the

manager to lie. In the converse case, qHRN1 is so high that qLRN1 is preferred. Intuitively, the

manager might not lie if that results in an unpro�table overproduction.

The low state IC constraint (3.13) holds if qHRN1 + qLRN1 ≥ 2qLUN1 . Thus, the �rst-best

contract is achieved if and only if:

X ≥ 2− α
4(2− α2)

(
2DC + 3DL

N −DH
N

)
= Ω̂ (3.16)

With (3.2), it follows that Ω̂ > 0. Moreover, given that Ω̂ < ΩL, (3.16) is not guaran-

teed to hold. Without (3.2), if the right side of the inequality in (3.16) is non-positive,

(3.16) will hold as X > 0. Intuitively, without the assumption, the di�erence DH
N −DL

N

might be so large that lying when the state is low always results in overproduction. We

state the main result of the �rst-best contract in Proposition 6.

Proposition 6. A contract achieves the �rst-best outcome if and only if X ≥ Ω̂. The

equilibria in the �rst-best outcome are characterized as follows:

a) When X ≥ ΩH , U is an equilibrium in both states.
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b) When ΩH > X ≥ ΩL, R is an equilibrium in the high state and U is an equilibrium

in the low state.

b) When ΩL > X ≥ Ω̂, R is an equilibrium in both states.

3.5.2 Second-best contract

Suppose that X < Ω̂ so that the �rst-best contract is not achieved. Here, (3.13) is

binding, so it follows that either qHN1 = qLN1 or q
H
N1 + qLN1 = 2qLUN1 .

4 With qHN1 = qLN1, we

obtain a pooling equilibrium candidate. With qHN1 + qLN1 = 2qLUN1 , we get a separating

equilibrium candidate. We compute the headquarters' ex-ante expected pro�t for each

candidate and compare them to establish the existence of equilibria. We state formally

these equilibria in Proposition 7.

Proposition 7. (a) A separating equilibrium S, exists if and only if Ω̂ > X ≥ Ω̌, where:

Ω̌ =
(2− α)

2(2− α2)

(
DC + 2DL

N −DH
N

)

In this equilibrium, the outputs of the conglomerate are:

qHSN1 = qHRN1 + (1− p)θS, qLSN1 = qLRN1 + pθS,

qHSC1 = qHRC1 − (1− p)θS, qLSC1 = qLRC1 − pθS

where qHSN1 > qLSN1 always holds. The outputs of the standalone �rms are:

qHSN2 = qHRN2 −
α(1− p)θS

2
, qLSN2 = qLRN2 −

αpθS

2
,

qHSC2 = qHRC2 +
α(1− p)θS

2
, qLSC2 = qHRC2 +

αpθS

2

4For all the proofs related to the second-best contract, see Appendix 3.
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where5:

θS =
2− α

4(2− α2)
(2DC + 3DL

N −DH
N )−X

(b) A pooling equilibrium P , exists if and only if X ≤ Ω̌. In this equilibrium, the output

of the conglomerate for any k is:

qPk1 = pqHRk1 + (1− p)qLRk1

Furthermore, the outputs of the standalone �rms are:

qHPN2 = qHRN2 +
α(1− p)θP

2
, qLPN2 = qLRN2 −

αpθP

2
, qPC2 = pqHRC2 + (1− p)qLRC2

where:

θP =
(2− α)

4(2− α2)
(DH

N −DL
N)

We illustrate all the equilibria found in the symmetric and asymmetric information

cases for each state in Figure 3.1.

0 Ω̌ Ω̂ ΩL ΩH

X

High

Low

Low

High

information

Asymmetric

information

Symmetric

Pooling Separating

Restricted

Unrestricted

Figure 3.1: Existence of Equilibria.

In equilibrium Ê, for Ê = {P, S}, the restricted output of the conglomerate in state

s is distorted in θÊ, weighted by the probability of state s not occurring. The distortion

5Notice that θS > 0 as X < Ω̂.
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θS is the de�cit in resources needed to achieve the �rst-best contract, while θP is the

gap in the conglomerate's restricted �rst-best production in market N between states

(θP = qHRN1 − qLRN1). The conglomerate maximizes its expected payo� in the equilibrium

with the smallest distortion. Thus, the equilibrium P 's condition of existence X ≤ Ω̌ is

equivalent to θP ≤ θS.

At X = Ω̌, the headquarters are indi�erent between the separating and pooling equi-

libria. Here, it holds qLUN1 = qHRN1 . Furthermore, to satisfy (3.13), qHSN1 and qLSN1 must be

equally distanced from qLUN1 . Thus, the low state output in S coincides with the output in

P (qLSN1 = qPN1). The low state manager produces the same in either S or P . However, the

headquarters are indi�erent with the high state manager producing either qHSN1 or qPN1,

because at this point both options distorts qHRN1 in the same magnitude, but in di�erent

directions.

The mechanism in equilibrium S is such that the conglomerate produces more in

market N in the high state than in the low state (qHSN1 > qLSN1). This is desirable for the

conglomerate in the sense that market N produces more (less) when the state is high

(low).

In market N in any state, the conglomerate produces more in equilibrium S than in

R but less than in U (qsUN1 > qsSN1 > qsRN1). Due to the restricted production, the increased

production in market N results in a decreased production in market C (qsSC1 < qsRC1). The

headquarters prefer the outcome R, so the output in the second-best contract is as close

as possible to the ones in R. In state s, the headquarters transfer θS weighted by the

probability of state s not occurring from market C to N . The mechanism incentivizes

the low state manager to tell the truth in two ways. First, it increases the manager's

utility in comparison to outcome R. Second, lying when the true state is low results in
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overproduction, hurting the pro�t in market N .

Regarding the standalone �rms, if the goods are substitutes, in state s the �rm in

market N is worse o� in S in comparison to R (qsSN2 < qsRN2) and the �rm in market C is

better o� (qsSC2 > qsRC2). If the goods are complements, in state s the �rm in market N is

better o� (qsSN2 > qsRN2) and the �rm in market C is worse o� (qsSC2 < qsRC2).

When the equilibrium is P , the resources are so low that headquarters cannot imple-

ment an e�ective mechanism to di�erentiate the states in market N . Even though the

mechanism induces truth-telling, P is equivalent to the outcome of a model where none

of the players inside the conglomerate knows the true value of the demand, and hence,

the conglomerate operates under uncertainty. Indeed, a solution where the same output

qN1 is produced in any state can also be obtained by setting the intercept of the demand

in market N equal to its expected value pDH
N + (1− p)DL

N .

In comparison to the outcome R, in equilibrium P the conglomerate produces less in

market N if the state is high and produces more if the state is low (qHRN1 > qPN1 > qLRN1),

while in market C it produces more if the state is high and produces less if the state is

low (qHRC1 < qPC1 < qLRC1 ).

Comparing the standalone �rms' production outputs between the outcome R and

equilibrium P , it follows that if the goods are substitutes, the production in P in market

N is higher if the state is high and lower if the state is low (qHPN2 > qHRN2 > qLRN2 > qLPN2 ),

while in market C the production is lower if the state is high and higher if the state is

low (qHRC2 > qPC2 > qLRC2 ). If the goods are complements, the production in P in market

N is lower if the state is high and higher if the state is low (qHRN2 > qHPN2 > qLPN2 > qLRN2),

while in market C the production is higher if the state is high and lower if the state is

low (qHRC2 < qPC2 < qLRC2 ).
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Whether the equilibrium is separating or pooling, a reduction of p approaches qLSk1 or

qPk1 to q
LR
k1 , while an increase of p approaches qHSk1 or qPk1 to q

HR
k1 . This trade-o� between

the low and high states occurs because (3.13) is binding. As the probability of state s

increases, the second-best quantities of state s become closer to the �rst-best quantities.

Conversely, as the probability of state s decreases, the gap between the second and �rst-

best quantities increases. Thus, as the probability of state s increases, the ex-post pro�t of

the conglomerate improves in state s, while the ex-post pro�t in the other state decreases.

A change in p a�ects the equilibrium output of the standalone �rms in the same direction

as the ones of the conglomerate. This is simply because of the role as followers of the

standalone �rms.

The resource allocation in the second-best contract can be interpreted as ine�cient

as the allocation in the �rst-best contract can improve the expected pro�t of the con-

glomerate. This meaning of ine�ciency di�ers from the de�nition generally used in the

literature of ine�cient allocation. In those studies, allocating extra resources to weaker

divisions is seen as ine�cient. However, in our model the interpretation of ine�cient does

not depend on the relative pro�tability of the markets. For example, DH
N > DL

N > DC ,

so that market N is undoubtedly better than market C. In equilibrium S, even though

the headquarters assign more resources to the best market and less to the worst market,

it is still considered ine�cient in our model.

3.6 Social welfare

We compare the ex-ante and post total social welfare between the second-best contracts

and their counterpart in symmetric information benchmark: equilibrium R. We �rst

discuss the ex-post total social welfare. This is of interest when the policy maker knows
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the true value of the demand in market N . The ex-post social welfare is the sum of the

ex-post producer and consumer surplus, which we de�ne hereunder.

The ex-post total producer surplus in state s and equilibrium E for E = {R,P, S} is

the sum of the pro�ts of both standalone �rms, and the ex-post pro�t of the conglomerate

In equilibrium E, market k and state s the standalone �rm's pro�t is πsEk2 = (qsEk2 )2,

while the conglomerate's pro�t is πsEk1 = P s
k1

(
qsEk1 , q

sE
k2

)
qsEk1 . Hence, the ex-post total

producer surplus in state s and equilibrium E is ΠsE = πsEC1 + πsEN1 + πsEC2 + πsEN2.

The ex-post consumer surplus in market k, state s, and equilibrium E can be com-

puted by:

CSsEk = vsk(q
sE
k1 , q

sE
k2 )− P s

k1

(
qsEk1 , q

sE
k2

)
qsEk1 − P s

k2

(
qsEk1 , q

sE
k2

)
qsEk2

Therefore, the ex-post total social welfare in state s and equilibrium E is:

W sE = CSsEN + CSsEC + ΠsE = vsN(qsEN1, q
sE
N2) + vsC(qsEC1, q

sE
C2)

The results of the ex-post total social welfare are in Proposition 8.

Proposition 8. a) W sP ≥ W sR for any s if and only if 6:

1− ps ≤
2((1− α)(7− α− 3α2) + 1)θ̂s

(2− α)(4− 3α2)(DH
N −DL

N)
(3.17)

where θ̂L = DL
N −DC and θ̂H = DC −DH

N .

6Condition (3.17) is non-empty. Consider DC = 2, DH
N = 4, DL

N = 3, p = 0.9, α = 0.2 and X = 1.
This satis�es (3.1), (3.2), X < Ω̌, and the low state (3.17). Consider DC = 8, DH

N = 6, DL
N = 3, p = 0.1,

α = 0.2, and X = 3. This satis�es (3.1), (3.2), X < Ω̌, and the high state (3.17).
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b) W sS ≥ W sR for any s if and only if 7:

1− ps ≤
((1− α)(7− α− 3α2) + 1)(Ds

N −DC)

2(4− 3α2)(2− α2)θS
(3.18)

The contract reallocates surplus from one market to the other. The losses caused

by the contract to the agents in one market is pro�table for their counterparts in the

other market. Thus, the asymmetry of information will improve the social welfare if the

earnings in one market exceed the losses of the other.

For the consumers, they will be better-o� in a speci�c market in the second-best

contract than in R if the conglomerate overproduces in that market. Conversely, the

consumers of the other market will be worse-o� due to the reduction of the conglomerate's

production in that market. That is, there is a group of winning consumers and a group

of losing consumers.

As for the standalone �rms, in any state there is always one �rm that is better-o� and

one that is worse-o� in the second-best contract equilibria in comparison to R. Thus,

just like the consumers, there is one winning standalone �rm and one losing �rm. The

winning (losing) �rm will operate in the same market as the winning (losing) consumers

only if the goods are complements.

Finally, while the total pro�t of the conglomerate in state s (πsEC1 +πsEN1) is better in R

than in the second-best contract equilibria, at the individual market level the conglomer-

ate is always worse o� in the market with underproduction but is better-o� in the market

with overproduction.

The overall loss of pro�t of the conglomerate is concordant with the conglomerate

7Condition (3.18) is non-empty. Consider DC = 2, DH
N = 4, DL

N = 3, p = 0.9, α = 0.2, X = 2. This

satis�es (3.1), (3.2), Ω̂ > X ≥ Ω̌, and the low state (3.18). Consider DC = 4.51, DH
N = 6, DL

N = 3,

p = 0.1, α = 0.2, and X = 2.7. This satis�es (3.1), (3.2), Ω̂ > X ≥ Ω̌, and the high state (3.18).
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discount theory. The ex-post conglomerate discount in state s and in equilibrium Ê, that

is, the conglomerate's loss caused by the asymmetric information is (2−α2)(1−ps)2(θÊ)2.

The conglomerate discount increments exponentially at increments of the distortion in

production and in the probability of state s not occurring.

The denominators of the right side of (3.17) and (3.18) are positive, but depending on

the parameters, the numerators can be negative, positive or zero. Any inequalities cannot

hold if its respective numerator is non-positive, hence there are necessary conditions. The

necessary condition for (3.17) in the low state is DL
N > DC , for (3.17) in the high state

is DC > DH
N , and for (3.18) is Ds

N > DC . The logic of the conditions is that the best

market has to be the one where the conglomerate overproduces due to the information

revelation scheme.

If the necessary condition holds and the right side of (3.17) or (3.18) is less than 1,

then there exists a p that achieves W sÊ ≥ W sR. The role of the probability here is

to avoid a bad scenario for the conglomerate in the second-best contract equilibria. As

discussed earlier, the conglomerate is better-o� as the probability approaches 0 or 1.

Now, we proceed to analyze the ex-ante total social welfare. This is relevant when

the policy maker does not know the true value of the demand. We compute the ex-ante

total social welfare as follows:

EWE = pWHE + (1− p)WLE

The results of the ex-post total social welfare are in Proposition 9.

Proposition 9. a) EW P < EWR always holds.

b) EW S ≥ EWR if and only if:
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X ≥ Ω̂ +
(1− α)(7− α− 3α2) + 1

4(2− α2)(4− 3α2)

(
2DC −DL

N −DH
N

)
= ΩW (3.19)

Part (a) of Proposition 9 states that the ex-ante total welfare is always worse with

asymmetric information in the pooling equilibrium. The pooling contract transfers sur-

plus from market N to market C in the high state. Conversely, it transfers surplus from

C to N in the low state. The overall e�ect of the transfers is a reduction in the expected

welfare. Intuitively, the cause of the loss of surplus is that headquarters do not use the

information gained with the pooling contract.

Part (b) of Proposition 9 states that the separating second-best contract sometimes

improves the ex-ante welfare. The separating equilibrium exists only if Ω̂ > X ≥ Ω̌.

Thus, an X exists such that (3.19) is satis�ed and S is an equilibrium if Ω̂ > ΩW . This

last inequality holds if and only if DL
N + DH

N > 2DC . In essence, if the mean of the

demand of market N is greater than the demand of market C, there exists a high enough

X such that the ex-ante total welfare is better in equilibrium S than in R.

A high X is required as it implies higher total production. The intuition behind

DL
N + DH

N > 2DC is similar to the one in the ex-post analysis. In equilibrium S in any

state the conglomerate overproduces in market N and underproduces in market C. Thus,

the market size condition implies that the market where the conglomerate overproduces

must be the best (in average).

Further, equilibrium S always welfare dominates R if Ω̌ ≥ ΩW . That condition holds

if and only if the goods are complements (α < 0) and if DL
N +DH

N > θWDC , where:

θW =
(1− α)(7− α− 3α2) + 1

2α(α− 1)
(3.20)
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When the goods are complements, it follows θW > 2. Thus, (3.20) implies that market

N must be better than C in more than the average. The complementary condition

is required so that the overproduction in market N bene�ts both the consumers and

standalone �rms in that market.

In the ex-ante case, the conglomerate is worse o� with asymmetric information. The

ex-ante conglomerate discount in equilibrium Ê is (2− α2)(1− p)p(θÊ)2. As the ex-post

case, the conglomerate discount increments exponentially at increments of the distortion

in production. The conglomerate discount disappears as the probability goes towards 0

or 1 because the value of DN becomes more certain. Contrastingly, the conglomerate

discount is at its highest at p = 1/2, when each state is equally probable.

3.7 E�ects of the degree of di�erentiation on the de-

limitation of equilibrium

Now, we analyze the e�ect of the degree of di�erentiation on the thresholds that delimit

the type of equilibrium. These thresholds are ΩL, ΩH , Ω̂, and Ω̌ (as shown in Figure 3.1).

All these thresholds can be written and hence be interpreted in terms of qUC1, q
LU
N1 and q

HU
N1 .

Thus, α a�ects these thresholds and the unrestricted outputs in a similar manner. As

the analysis of all these variables is similar, we only explicitly check qUC1. The derivative

of qUC1 with respect to α is:

∂qUC1

∂α
=

(4α− α2 − 2)DC

2(2− α2)2
(3.21)

As DC and the denominator of (3.21) are always positive, (3.21) has the same sign as

(4α−α2− 2). It follows that (4α−α2− 2) is equal to zero when ᾱ = 2−
√

2. Thus, the
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factor (4α− α2 − 2) is positive when α > ᾱ and negative when α < ᾱ.

The derivatives of all ΩL, ΩH , Ω̂, Ω̌, qLUN1 , and qHUN1 with respect to α also have the

same sign as (4α− α2 − 2). We state this result in Proposition 10.

Proposition 10. a) On the range [−1, ᾱ], all qUC1, q
LU
N1 , q

HU
N1 , ΩL, ΩH , Ω̂, and Ω̂ are

decreasing in α.

b) On the range [ᾱ, 1], all qUC1, q
LU
N1 , q

HU
N1 , ΩL, ΩH , Ω̂, and Ω̂ are increasing in α.

Proposition 10 implies that the type of equilibrium under symmetric information

depends on α. Fix all the parameters other than X and α. There is X such that the

unrestricted outcome is an equilibrium in both states for values of α close to 2 −
√

2.

The unrestricted outcome is an equilibrium in the low state and the restricted outcome

is in the high state for values of α not too close but not too far from 2 −
√

2. The

restricted outcome is an equilibrium in both states for values of α quite far from 2−
√

2.

Thus, higher levels of complementarity and substitutability increase the likelihood of the

production-possibility constraint being binding.

Under asymmetric information, there is X such that the �rst best contract is achieved

for values of α close to 2−
√

2. The second-best contract is most likely to coincide with

the �rst-best one at an intermediate level of substitutability, and any departure from that

level toward either substitutability or complementarity makes the attainment of the �rst-

best outcome less likely. Further, the type of the second-best contract depends on α. The

pooling equilibrium is more likely at higher levels of complementarity or substitutability.
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3.8 Conclusion

We developed an adverse selection model of a conglomerate with restricted production

participating as the leader in two duopoly markets with a Stackelberg-Cournot frame-

work with heterogeneous goods. We derive two equilibria in the symmetric information

benchmark. If the resources of the conglomerate are plenty, the production-possibility

constraint is not binding and the resulting equilibrium is U . If the resources are scarce,

the equilibrium is R.

The �rst-best contract is achievable if the resources are high enough when the in-

formation is asymmetric. Thus, U and R also exist as equilibria in this case. If the

resources are low enough, only the second-best contract is possible. Here, we derive two

more equilibria. If the resources are not too low, a separating equilibrium S exists. If the

resources are too low, a pooling equilibrium P exists. In the S equilibrium, headquarters

can allocate the resources accordingly to the manager's report. Speci�cally, headquarters

allocate more resources to market N in the high state than in the low state. In P the

production plan of the conglomerate is the same regardless of the state.

We proved that the social welfare might improve with asymmetric information de-

pending on the parameters. The implementation of the contract mechanism leads to

a reallocation of the production plan of the conglomerate, transferring surplus from one

market to another. If the increase of surplus in one market exceeds the decrease of surplus

in the other market, the social welfare will be better in the second-best contract. One

requirement for this is that the best market must be the one with the increased surplus.

Furthermore, welfare is more likely to improve if the goods are complements, because

the surplus of the standalone �rms and consumers will move in the same direction as the

variations in the conglomerate's production.
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We �nd that the separating contract sometimes improves the ex-ante welfare. The

separating contract transfers surplus from market C to market N in any state, thus a

requirement to improve the welfare is that the market N must be better in average than

market C. If market N is larger than C in more than the average and the goods are

complements, the separating contract always improves the ex-ante welfare. In contrast,

the pooling contract never improves welfare. This contract also transfers surplus across

markets, but because the information acquired is not used in a meaningful way, the overall

e�ect is a reduction in the expected welfare.

Ideally, the policy authority should interfere when the asymmetric information hurts

the social welfare. Measuring asymmetric information might be di�cult in practice.

However, our model predicts e�ects of the asymmetric information might be problematic

in terms of the resources and the sizes of the markets, which are variables more easily

measurable. First, agency problems are more likely to be problematic when the resources

of the conglomerate are low. Second, in most cases the welfare is likely to fall if the

conglomerate diversi�es in markets that are smaller than its core business.

While it is unlikely that the policy authority will be able to directly regulate agency

problems, it can restrict the expansion of the conglomerate to new markets, preventing the

creation of scenarios with agency problems. Thus, researching this kind of conglomerate

e�ect and its policy implications is worth it even though the nature of such e�ect is

abstract in practice. Thus, a possible extension of the model is to study a di�erent

agency framework, such as moral hazard. We leave this for future research.

We analyzed how changes in the degree of di�erentiation α determines the type of

equilibrium. We �nd that the adverse selection is more likely to cause a distortion with

higher levels of substitutability or complementarity. This result suggest that variables
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related to competition are relevant to understand phenomena within conglomerates, such

as the conglomerate discount. We only examined a Stackelberg-Cournot framework, so

a possible line of research is to study the inner dynamics of a conglomerate in other

competitive scenarios, assuming simultaneous competition or price competition.
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Chapter 4

Conglomerate Merger and Divestment Dynamics

4.1 Introduction

Empirical evidence suggests that in the �rm's life cycle the corporate structure might

change through diversi�cation and divestitures (Matsusaka (2001), Fluck and Lynch

(1999)). We de�ne diversi�cation as the business operation that expands a �rm, which is

done with mergers or acquisitions. Contrastingly, we refer to divestitures as the business

operation that shrinks a �rm, for example, by selling a division of the �rm. In this chap-

ter, we develop a discrete-time, in�nite horizon theoretical model where a monopolist can

take diversifying and divesting decisions. Speci�cally, the monopolist can buy and sell a

�rm from another market. We utilize numerical methods to obtain approximate results.

We consider mergers of the conglomerate-type. Namely, mergers where the merged

parties come from markets that are not related horizontally or vertically. In our model,

we assume that a monopolist can buy or sell another monopolist �rm from a not related

horizontally or vertically market. In the literature, the �rm's incentives to diversify/divest

are generally associated with conglomerate mergers. We concentrate in two types of

incentives.
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First, the �rms might diversify/divest to search for pro�table markets. We assume

that the demand of one of the markets follows a Markov process. Thus, the most pro�table

market might change through time, and hence, the monopolist might prioritize a di�erent

market in each period. This is consistent with Matsusaka (2001). In their model, a �rm

enters and exits di�erent industries searching for markets that are a good match for its

organizational capabilities.

Second, in the model of Fluck and Lynch (1999), the incentive to form a conglomerate

is to get �nancing in periods of distress, and once the �nancing requirements have been

satis�ed, the conglomerate divests as the merger is no longer needed. In a similar manner,

in our model we assume that the �rm can obtain a cost reducing variable through a

merger. In this chapter we refer to that variable as �capital�, however it can also be

considered as �resources�. Additionally, we assume that capital is lost when a divestiture

occurs.

The technical aspects of our model are based on the horizontal merger dynamic models

with capacity constraint of Gowrisankaran (1999) and Chen (2009). In these models, �rms

must invest to obtain production capacity in each period as such capacity depreciates

through time. Capacity is a relevant variable to de�ne the mergers. Assumedly, the

capacity of a new merged �rm equals the sum of the capacities of the original �rms

members of the merger. In that regard, the �capital� in our model ful�lls the same

function as �capacity�, as it can be obtained (lost) with an acquisition (divestiture).

The main di�erence with our model and the models of Gowrisankaran (1999) and

Chen (2009) is the type of merger. Unlike horizontal mergers, conglomerates mergers do

not change the number of �rms competing in a particular market. Hence, it is easier

to characterize a divestment with a conglomerate framework than with a horizontal one.
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After a horizontal merger, the identity of the original �rms is lost as they become a

homogeneous entity. In the case of conglomerate mergers, the original �rms become

divisions of the conglomerate. Thus, after a divestment the divisions simply return to be

standalone �rms.

Similar to Gowrisankaran (1999) and Chen (2009), we add an external capital market

as an alternative way to obtain capital in the model. In a conglomerate framework, this

dual way of obtaining capital within the �rm or from an external source is a relevant topic

in the internal capital market e�ciency literature. This literature analyses the e�ciency

of the internal capital markets relative to the external ones (Busenbark et al., 2017).

This chapter is organized as follows: Section 4.2 describes the model structure. Section

4.3 speci�es the details of the computation of the model. Section 4.4 presents the results.

4.2 The model

A monopolist in an in�nite-horizon discrete-time industry takes production and capital

related decisions to maximize its long term pro�t given its discount factor δ ∈ (0, 1). We

denote time with t, however we use it only when there is a need to di�erentiate between

periods. The monopolist's capital stock K can be use to reduce the cost of production.

New capital can be acquired through two channels: by buying it in the external capital

market or by acquiring a di�erent �rm with its own capital stock. The capital stock

diminishes in two ways. First, it depreciates at a constant rate φ ∈ (0, 1) in each period.

Second, if the monopolist has acquired a di�erent �rm, it can be sold to get a one-period

reward. The �rm can be sold together with some capital to increase the one-period

reward.

There are two markets that are not related horizontally or vertically, denoted by
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f ∈ {C,N}. We assume that those markets share some similarities in their production

process, and thus, they can share capital. Market C is the core or original market of a

monopolist that can expand its business by acquiring another monopolistic �rm in the

new market N . We refer to the �rm in market C as the core �rm, the �rm in market N

as the new �rm, and the �rm born from the merger of the core �rm and the new �rm

as the conglomerate. When in a conglomerate, we assume that only the new �rm can

be sold. The only decision maker in our model is the core �rm. Thus, when the core

�rm is not merged, it only takes decisions in market C; and when it is merged, it takes

decisions in both markets C and N . Conversely, when the new �rm is not merged, its

actions are assumed to be exogenous. In market f , the �rm faces the following inverse

demand function:

Pf (qf ) = Df − qf

where Pf and qf are the price and the output in market f , respectively. In the core

market, DC is a positive constant. However, in the new market, DN is an exogenous

continuous-valued Markov process. The marginal cost in market f is given by:

MCf (θf ) =
βf1

βf2 + θf

where βf1 and βf2 are positive constants, and θf is the capital allocated to market f .

Because we assumed only two markets, there are only two merging-separating states:

the �rms are merged or they are not. The core �rm can acquire the new �rm only if the

current state is �separated�, and can sell the new �rm only if the current state is �merged�.

When the �rms are separated, the new �rm can be acquired at a take-or-leave-it positive

constant price AP = α0 + τIκ, where α0 is the base acquisition price, κ is the current
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capital stock of the new �rm, and τI is the price per unit of capital exchanged through

merging/separating. When the �rms are merged, the new �rm can be sold at a price

SP = α1 + τIγ(1 − φ)K, where α1 is the base selling price and γ is the proportion of

capital after depreciation that is sold together with the new �rm.

Now we describe the state space. There is one discrete state variable, M ∈ {0, 1},

which equals 1 if the �rm is merged and equals 0 otherwise. There are two continuous

state variables: the capital stock K ∈ [0, K̄] and the value of the intercept of the demand

of the new market DN ∈ [
¯
DN , D̄N ]. We assume that K̄,

¯
DN and D̄N are nonnegative

constants.

Each period of the model has three stages. In the �rst stage, there are three discrete

action variables. First, the merging-separating decision m ∈ {0, 1}, which equals 1 if

the core �rm chooses to merge and equals 0 otherwise. Second, the amount of capital

bought in the capital market k ∈ {0, 1, 2, ..., k̄}, which we assume can be acquired only

in integer values at a constant price per unit τE. We assume that k̄ is a positive integer.

Third, the proportion of capital after depreciation that is sold together with the new �rm

γ ∈ {0, 0.1, 0.2, ..., 0.9, 1}, which is selected each time the core �rm chooses to separate.

In the second stage the core �rm chooses how much capital to allocate to the �rms

it owns, selecting θf ∈ [0, K] in market f . In the third stage the core �rm chooses the

output on the �rms it owns, producing qf ∈ [0,∞] in market f . We assume that the

actions θf and qf are continuous variables.

Now we formalize the state transition functions. For clarity, we utilize the subscript
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t. The new demand state transition function is given by1:

DNt+1 = min{max{DNt + εt+1,
¯
DN}, D̄N}

where εt is an i.i.d normal N (µ, σ2) shock. The merging-separating state updates ac-

cording to the merging-separating decision, thus Mt+1 = mt. The capital stock state

transition function is given by2:

Kt+1 = Mtmt(1−φ)Kt+(1−Mt)(1−φ)Kt+kt+(1−Mt)mtκ+Mt(1−mt)(1−γ)(1−φ)Kt

where the �rst term is the stock of capital left from the previous period after depreciation

when both the state and action are �merged'. The second term is the stock of capital left

from the previous period after depreciation when the state is �separated�. The third term

is the capital bought in the capital market. The fourth term is the capital gained through

a merger. The �fth term is the capital left from the previous period after depreciation

and for selling the new �rm.

In the second and third stages, θf and qf do not a�ect any of the states; that is, the

behavior in the second and the third stages in each period does not a�ect future actions.

Hence, each stage can be analyzed separately. Further, the second and third stages can

be solved as a single-period problem. We solve the model in a backward manner. We

explain the problem and our solution method of each one of the stages hereunder.

1The numerical method requires boundaries in the state space. The optimal state path must be inside
those boundaries to obtain an accurate approximation of the solution. Considering this, a large enough
state space interval must be set. However, the new demand does not depend on any action and hence its
path is exogenous. Thus, the boundaries of the new demand are included explicitly in its state transition
function, otherwise its path would go beyond the boundaries regardless of the size of the interval.

2With this type of state transition function, Kt is always nonnegative given any nonnegative initial
value K0.
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4.2.1 Third stage: Production

In any period t, for any DN ∈ [
¯
DN , D̄N ] and given that m and θf have been already

chosen, the pro�t from market f is given by:

π3f (qf ) =

(
Df − qf −

βf1
βf2 + θf

)
qf (4.1)

If m = 0, the problem is to select qC ≥ 0 to maximize π3C(qC). If m = 1, the problem

is to select qC ≥ 0 and qN ≥ 0 to maximize π3C(qC) + π3N(qN). In either case, we can

compute an analytical solution, which for any f is the usual monopoly solution:

q∗f =
Df

2
− βf1

2(βf2 + θf )
(4.2)

To guarantee an interior solution independent of θf , we require that Df >
βf1
βf2

.

4.2.2 Second stage: Capital allocation

In any period t, for any (DN , K) ∈ [
¯
DN , D̄N ]× [0, K̄] and given that m has been already

chosen, by substituting (4.2) into (4.1) it follows that:

π2f (θf ) =

(
Df

2
− βf1

2(βf2 + θf )

)2

If m = 0, the problem is to select θC ∈ [0, K] to maximize π2C(θC). The solution here is

simply θ∗∗C = K. If m = 1, the problem is to select (θC , θN) ∈ [0, K]× [0, K] to maximize

π2C(θC) + π2N(θN) subject to θC + θN ≤ K. Given that the restriction is binding, the
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problem of this stage when m = 1 can be simpli�ed as follows:

max
θC∈[0,K]

π2CN(θC) =

(
DC

2
− βC1

2(βC2 + θC)

)2

+

(
DN

2
− βN1

2(βN2 +K − θC)

)2

(4.3)

Because (4.3) is a continuous function on a close interval, a solution is guaranteed to

exist. However, computing an analytical interior solution is quite di�cult as is requires

to solve a polynomial of degree 4. Thus, we solve (4.3) numerically. We utilize the

fmincon solver provided in MATLAB's Optimization Toolbox to solve (4.3) in every

state3 (DN , K) ∈ [
¯
DN , D̄N ]× [0, K̄] to obtain the solution θ∗C(DN , K).

4.2.3 First stage: Decisions on the stock of capital

In the �rst stage, in a single period the reward function is given by:

R(M,K,DN ,m, k, γ) =

(1−m)π2C(K)+mπ2CN(θ∗C(DN , K))−τEk−(1−M)m(α0+τIκ)+M(1−m)(α1+τIγ(1−φ)K)

where the �rst term is the pro�t for market operations when the �rms are separated, the

second term is the pro�t for market operations when the �rms are merged, the third term

is the cost for buying in the capital market, the fourth term is the merger's cost, and the

�fth term is the income for selling a �rm. The Bellman's equation associated with this

problem is (we use the subscript t):

V (Mt, Kt, DNt) = max
mt,kt,γt

[R(Mt, Kt, DNt,mt, kt, γt) + δEεV (Mt+1, Kt+1, DNt+1)]

3Even though DN and K were assumed to be continuous, the numerical method requires to fully
discretize the state space.
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where Eε is the expected value operator. We utilize dpsolver from the CompEcon Tool-

box to solve this dynamic optimization problem. The solver computes an approximate

solution of the Bellman equation utilizing the collocation method. A thorough explana-

tion of how to use this solver can be found in Miranda and Fackler (2004).

4.3 Computation on the model

For comparison, we run di�erent con�gurations of the model in section 3. Such con�gu-

rations are benchmark versions of the model and versions of the full model with di�erent

parameters. For every con�guration of the model we set the following parameters, unless

otherwise stated: DC = 20, βC1 = 10, βC2 = 1, βN1 = 10, βN2 = 1, K̄ = 200, φ = 0.3,

¯
DN = 10, D̄N = 30, κ = 55, α0 = 200, α1 = 300, δ = 0.9, µ = 0, σ2 = 0.25, k̄ = 30,

τI = 3 and τE = 4.

The parameters were set considering some factors. Given that DN is a Markov pro-

cess, there is a dynamic where the most pro�table market might change through time

depending on the value of DC . Thus, we set DC in the middle of the state space of DN

to facilitate this dynamic. For our result in the production stage to be valid, Df needs to

be greater than the marginal cost in market f . Thus, we set DC >
βC1

βC2
and

¯
DN > βN1

βN2
.

We set k̄ < κ, so that higher volumes of capital are transacted through mergers than

through the external capital market. Nevertheless, in none of the results k̄ or close values

are an optimal action, implying that our selection of k̄ does not restrict the action of the

core �rm. We also set a large K̄ relative to k̄ and κ to avoid restricting the optimal path.

Given the boundaries of DN , we choose a low value for the variance of ε so that DN

takes di�erent values inside its state space interval. A very high value of the variance

might result in DN taking frequently the value of the upper or lower bound. Moreover,
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we set the mean of ε to zero to obtain a fair number of negative and positive shocks.

Furthermore, it is reasonable to assume that the base price of a �rm is quite expensive,

thus we choose a high value for α0 and α1.

Because the full model is stochastic, we present the optimal path with a Monte Carlo

simulation. To compute the simulations we use dpsimul from the CompEcon Toolbox.

The usual method to analyze the optimal path is to run several simulations and thereafter

to compute the average of the simulated paths in each period. However, such method

might result insubstantial in our case as the merging-separating decision only takes two

values. Thus, we graph the path of the relevant state and action variables in a 3-D

surface plot. We set in the horizontal axis the time period, while the vertical axis points

out each one of the performed simulations. Speci�cally, each integer in the vertical axis

corresponds with one simulation. For every con�guration of the model, we perform 10

simulations and set the time to 100 periods. The initial states are K0 = 50, DN0 = 20

and M0 = 0. For comparison, we set the same exogenous path of the new demand in

every con�guration of the model.

For the �rst set of benchmarks, we assume that the core �rm cannot take merging-

separating decisions. Thus, there are two scenarios. In the �rst benchmark, termed as B1,

the core �rm is a standalone �rm. In the second benchmark, termed as B2, the core �rm

is a conglomerate. In both benchmarks, the only action variable is the capital bought in

the external market. Further, the state variable of the capital stock is present. However,

only B2 has the state variable of the new market demand. Thus, B1 is deterministic

while B2 is stochastic.

In the third benchmark, termed as B3, we eliminate the action of the proportion of

capital sold in a separation, and assume that γ is an exogenous constant, chosen by the
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core �rm before the beginning of the industry dynamics. Here we set γ = 0.5.

We run two con�gurations of the full model. In the �rst con�guration, termed as F1,

the parameters are as assumed initially. In the second con�guration, termed as F2, we

assume τI > τE; speci�cally, τI = 4 and τE = 3. In F1, the price per unit of capital

when buying/selling a �rm is lower than the price in the external capital market. Thus,

we are implying that there is a discount for acquiring a large volume of capital through a

merger. In F2, the capital bought in the external capital market is cheaper even though

this channel deals with a lower volume of capital. We set k̄ in F1 and F2 equal to 15

and 20, respectively. We reduce the value of k̄ in comparison to the benchmarks for

computational e�ciency. We set this value higher in F2 given that the external capital

market is more appealing there and a lower value might restrict the actions of the core

�rm.

The technical aspects of the implementation of the collocation method for each con-

�guration of the model are in Appendix 4.1. The MATLAB code for F2 is in Appendix

4.2.

4.4 Results

We show the common new demand path for every con�guration of the model in Figure

4.1. For the following analysis we use the demand of the new market as the point of

reference.

We present the optimal merging-separating decision for B3, F1 and F2 in Figures 4.2,

4.3 and 4.4, respectively. Because the merging-separating state updates according to the

merging-separating decision, the results on that state are redundant, and thus we omit

them. We observe two merging-separating patterns in B3, F1 and F2. Each pattern is
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seemingly associated with particulars values of the demand of the new market. We state

formally the dynamic of these patterns in the following observation.

Observation 1. a) In intervals of time when DN is high, the core �rm's decision is to

merge and to stay merged.

b) In intervals of time when DN is low, the core �rm merges and separates intermit-

tently.

The intuition for Proposition 1 is the same for any con�guration of the model. In

part a) the core �rm has incentives to remain in a conglomerate form because the new

market is quite pro�table. As long as DN remains high through time, there are incentives

to be a conglomerate in the long run. In part b) the new market is not so pro�table, thus

the core �rm in a conglomerate prefers to sell the new �rm and obtain a high one-period

payment. However, in the following period after the separation, the standalone core �rm

will decide to merge again. Here the incentive is mainly to obtain a high amount of

capital with the new �rm. Therefore, in this case there are not incentives to remain in

the merged or separated state in the long run.

The di�erence among B3, F1 and F2 is the frequency of occurrence of the patterns.

Thus, how low or high the new demand must be to lead to one pattern or another depends

on the con�guration of the model. In F2 the decision to separate is taken with the least

frequency, followed by B3. In F2 the most expensive channel is a merger, thus this

channel is used less in comparison to B3 and F1. In B3 the frequency of separations is

lower than in F1 because in the latter the core �rm has more control on the separation

conditions, and thus there are more incentives to separate.

We present the optimal capital bought in the external market capital market for B1,

B2, B3, F1 and F2 in Figures 4.5, 4.6, 4.7, 4.8 and 4.9, respectively. In B1, because
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Figure 4.1: Demand of the new
market-Path

Figure 4.2:
Merging/separating-Optimal

decision-B3

Figure 4.3:
Merging/separating-Optimal

decision-F1

Figure 4.4:
Merging/separating-Optimal

decision-F2

its deterministic nature, the capital bought externally converges to an steady state. In

every simulation, in every period 2 units of capital are bought once the initial capital is

depleted. In B2 usually 4 units of capital are bought per period, twice as B1 because

the monopolist participates in two markets in B2. In B2 the demand of the new market

a�ects the capital bought externally. If DN is very high, the monopolist in rare occasions

might buy 5 units of capital in one period. If DN is low, the monopolist intermittently

buys between 3 and 4 units of capital each period.

In B3 we observe two predominant patterns. First, in intervals of time where the

core �rm remains merged, usually 4 units of capital are bought. In conglomerate form
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the only mean to obtain new capital is through the capital market, thus we observe a

behavior similar to B1 and B2. Second, in intervals of time where the core �rm sepa-

rates intermittently, usually no capital is bought. As capital can be obtained constantly

through mergers, the external capital market is ignored, as is the worst way to obtain

capital. In both patterns there are some disturbances where the monopolist might buy

up to 7 units of capital in one period. F1 is similar to B3, but now the disturbances

are much less frequent in periods where no capital is bought. Because capital is obtained

more frequently through a merger in F1, the core �rm relies less in the external capital

market.

In F2 we observe a similar pattern as B3 and F1 except for the periods of separation.

Here the core �rm buys a large volume of capital (around 13 units) in each period. By the

di�erential in the capital's prices, the core �rm gains a pro�t by buying cheaper capital

in the external market to sell it at a higher price with a separation.

Figure 4.5: Capital bought
externally-Optimal decision-B1

Figure 4.6: Capital bought
externally-Optimal decision-B2

We present the optimal proportion of capital sold in a separation for F1 and F2 in

Figures 4.10 and 4.11, respectively. When the core �rm separates in F1, the proportion

of capital sold after depreciation is quite high, ranging between 70% and 80%. In F2 as

selling capital through a separation is quite pro�table, the core �rm sells all its capital.
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Figure 4.7: Capital bought
externally-Optimal decision-B3

Figure 4.8: Capital bought
externally-Optimal decision-F1

Figure 4.9: Capital bought
externally-Optimal decision-F2

Figure 4.10: Capital sold-Optimal
decision-F1

We display the optimal path of the capital stock in Figures for B1, B2, B3, F1 and

F2 in Figures 4.12, 4.13, 4.14, 4.15 and 4.16, respectively. In B1 and B2, the capital

stock follows the same logic as the capital bought externally because the external capital

market is the only channel available to acquire capital in those benchmarks.

In B3, F1 and F2, in periods where the core �rm remains merged, at the beginning

the capital stock is high, but it diminishes rapidly after some periods. After that the level

of capital stock remains low, as the only new capital acquired in these periods is through

the external capital market. In periods where the core �rm separates intermittently,

the �rm gains capital with a merger but loses it with a separation and thus the capital

stock path behaves intermittently as the merging-separating decision. The level of the
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capital stock in periods of separation is di�erent among the three con�gurations as the

proportion of capital sold in separation also di�ers.

Figure 4.11: Capital sold-Optimal
decision-F2

Figure 4.12: Capital stock-Path-B1

Figure 4.13: Capital stock-Path-B2 Figure 4.14: Capital stock-Path-B3

Figure 4.15: Capital stock-Path-F1 Figure 4.16: Capital stock-Path-F2
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Appendices

Appendix 2.1: Monopoly benchmark

Assume that each market is a monopoly. In the �rst stage, the single team decides

whether to merge. In the second stage, if the team chose to merge, the conglomerate sets

its R&D e�ort. If the team chose not to merge, only the standalone �rm in market B

sets it R&D e�ort. In the third stage, the output is set in each market.

Assume that the team of monopoly �rms merges in the �rst stage. The joint-pro�t

maximization problem in the third stage is

max
qA,qB≥0

(DA − qA + βxA) qA + (DB − qB + xB) qB −
1

2
(xA + xB)2 . (A.1)

The optimal output as a function of the R&D e�ort is

qA(xA) =
DA + β xA

2
, qB(xB) =

DB + xB
2

. (A.2)

In the second stage, by substituting (A.2) into (A.1), the conglomerate's problem is

max
xA,xB≥0

(
DA + β xA

2

)2

+

(
DB + xB

2

)2

− 1

2
(xA + xB)2 . (A.3)

When the value of either xA or xB is adequately high, the objective function in (A.3)

is decreasing in that variable for any non-negative value of the other variable. Hence,

the objective function must be bounded above in the non-negative region. Given that

the problem is constrained by xA ≥ 0 and xB ≥ 0, a solution is guaranteed to exist.
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The determinant of the associated Hessian matrix is given by D = 1
4
(−β2 − 2) < 0;

thus, the objective function is not concave. Then, this problem does not yield an interior

solution. Nevertheless, because a solution exists, the optimal R&D e�ort must be a

corner solution. There are two candidates for the optimal solution: the �rm invests only

in market A (xB = 0), or the �rm invests only in market B (xA = 0). Those outcomes

are denoted as MA and MB, respectively.

First, in the MA outcome, from the �rst order condition (FOC), the R&D e�ort, the

output, and the team pro�t are given by

xMA
A =

βDA

2− β2
, xMA

B = 0, qMA
A =

DA

2− β2
, qMA

B =
DB

2
, πMA

AB =
DA

2

2(2− β2)
+
DB

2

4
.

Second, in the MB outcome, the objective function in (A.3) is concave with respect

to xB when xA = 0. From the FOC, the R&D e�ort, the output, and the team pro�t π

are given by

xMB
A = 0, xMB

B = DB, qMB
A =

DA

2
, qMB

B = DB, πMB
AB =

DA
2

4
+
DB

2

2
.

The solution in the second stage depends on which pro�t is greater. It holds that

πMA
AB ≥ πMB

AB if and only if DA

DB
≥ θM =

√
2−β2

β
. Thus, MA is the solution when DA

DB
≥ θM ,

and MB is the solution when DA

DB
≤ θM .

Now assume that the monopoly �rms do not merge in the �rst stage. In the solution,

the R&D e�ort, the output, and the team pro�t are the same as MB for any value of

DA

DB
.

In the �rst stage, when DA

DB
> θM , the team of monopoly �rms merge to achieve the

outcome MA. When DA

DB
≤ θM , the team of monopoly �rms is indi�erent on whether to
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merge. Thus, by ER1, the team chooses not to merge and achieve the outcome MB.

Appendix 2.2: Duopoly

Second and third stages

Two-merger subgame

Each one of the �rms in market A merges with one of the �rms in B. In the third stage,

the merged �rm chooses non-negative quantities qAi and qBi , given that xAi and xBi have

already been selected in the second stage. The payo� function in the third stage of the

conglomerate is

(DA − qAi − qAj + βxAi) qAi + (DB − qBi − qBj + xBi) qBi −
1

2
(xAi + xBi)

2 . (A.4)

The equilibrium output as a function of the R&D e�ort is

qAi(xAi , xAj ) =



DA+2β xAi−β xAj

3
if

DA

β
+ 2xAi ≥ xAj

and DA

β
+ 2xAj ≥ xAi

0 if DA

β
+ 2xAi < xAj

DA+β xAi

2
if DA

β
+ 2xAj < xAi

, (A.5)

qBi(xBi , xBj ) =



DB+2xBi−xBj

3
if

DB + 2xBi ≥ xBj

and DB + 2xBj ≥ xBi

0 if DB + 2xBi < xBj

DB+xBi

2
if DB + 2xBj < xBi

. (A.6)
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In the second stage, conglomerate i chooses non-negative xAi and xBi . By substituting

(A.5) and (A.6) into (A.4), the payo� function in the second stage is given by

πAi(xAi , xAj ) + πBi(xBi , xBj )−
1

2
(xAi + xBi)

2 , (A.7)

where

πAi(xAi , xAj ) =



(DA+2βxAi−βxAj)
2

9
if

DA

β
+ 2xAi ≥ xAj

and DA

β
+ 2xAj ≥ xAi

0 if DA

β
+ 2xAi < xAj

(DA+βxAi)
2

4
if DA

β
+ 2xAj < xAi

,

πBi(xBi , xBj ) =



(DB+2xBi−xBj)
2

9
if

DB + 2xBi ≥ xBj

and DB + 2xBj ≥ xBi

0 if DB + 2xBi < xBj

(DB+xBi)
2

4
if DB + 2xBj < xBi

.

At xAi >
DA

β
+ 2xAj the derivative with respect to xAi of the payo� function (A.7) is

β(DA + βxAi)

2
− xAi − xBi,

which is always negative. At xBi > DB + 2 xBj , the derivative with respect to xBi of the

payo� function (A.7) is

DB + xBi
2

− xAi − xBi,

which is always negative. It is then suboptimal for conglomerate i to play any xAi >

DA

β
+ 2xAj or xBi > DB + 2 xBj . By symmetry, it is also suboptimal for conglomerate j
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to play any xAj >
DA

β
+ 2xAi or xBj > DB + 2xBi . Thus, per (A.7), all the equilibria

of the two-merger subgame can be found by considering the following payo� function for

conglomerate i

(DA + 2βxAi − βxAj)2

9
+

(DB + 2xBi − xBj)2

9
− 1

2
(xAi + xBi)

2 (A.8)

on the region
[
0, DA

β
+ 2xAj

]
×[0, DB + 2xBj ]. The determinant of the associated Hessian

matrix of (A.8) is D = 8
9
(−1

9
β2 − 1) < 0, which implies that the function is not concave

on
[
0, DA

β
+ 2xAj

]
× [0, DB + 2xBj ]. Thus, no interior solution exists. However, given

that (A.8) is a continuous function on a compact rectangle, a maximum is guaranteed to

exist. Therefore, the equilibrium must be a corner solution.

With ER2, there are only three equilibrium candidates: a symmetric candidate where

both invest only in A (x∗Ai = x∗Aj > 0 and x∗Bi = x∗Bj = 0), termed as the A-outcome;

a symmetric candidate where both teams invest only in market B (xAi = xAj = 0 and

xBi = x∗Bj > 0), termed as the B-outcome; and an asymmetric candidate with the form

x∗Aj = x∗Bi = 0, x∗Ai > 0 and x∗Bj > 0, termed as the asymmetric outcome.

A-outcome Let xBi = xBj = 0. The function in (A.8) when xBi = 0 is concave with

respect to xAi . From the FOC, the R&D e�ort, output, and team pro�t are given by

xAAi =
4βDA

9− 4 β2
, xABi = 0, qAAi =

3DA

9− 4 β2
, qABi =

DB

3
, (A.9)

πAi =
(9− 8β2)DA

2

(9− 4β2)2
+
DB

2

9
.

This appendix now examines when the A-outcome is an equilibrium. Suppose the rival

plays xAj = xAAi and xBj = 0; thus, the objective function of conglomerate i is given by
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1

9

(
(9− 8β2)DA

9− 4β2
+ 2βxAi

)2

+
(DB + 2xBi)

2

9
− 1

2
(xAi + xBi)

2 (A.10)

on the region
[
0, (9+4β2)DA

(9−4β2)β

]
× [0, DB].

Suppose conglomerate i plays the upper bound of xAi ; that is, xAi = (9+4β2)DA

(9−4β2)β
. The

derivative of (A.10) with respect to xAi evaluated at xAi = (9+4β2)DA

(9−4β2)β
is (8β2−9)DA

(9−4β2)β
− xBi,

which is always negative. Therefore, any
(

(9+4β2)DA

(9−4β2)β
, xBi

)
is not a solution to (A.10).

The remainder solution candidates to (A.10) are (0, xBi) and (xAi , DB), where the

�rst candidate xBi is an interior solution given by the FOC. This appendix starts with

the �rst candidate. The function in (A.10) when xAi = 0 is concave with respect to xBi .

Thus, the solution given by the FOC is xBi = 4DB, which is outside the feasible region.

Therefore, this strategy is not a solution of (A.10). For the second solution candidate,

there are two cases to consider. First, assume the strategy where xBi = DB and xAi is

an interior solution given by the FOC. From the FOC of (A.10), with respect to xAi at

xBi = DB, it follows that

xAi =
4βDA

9− 4β2
− 9DB

9− 8β2
.

Further, to satisfy the assumption of xAi > 0, DA

DB
> 9(9−4β2)

4β(9−8β2)
must hold. The pro�t in

this case, denoted by πD4
i , is

πD4
i =

(9− 8β2)DA
2

(9− 4β2)2
+

(9− 4β2)DB
2

9− 8β2
− 4βDADB

9− 4β2
.

Given DA

DB
> 9(9−4β2)

4β(9−8β2)
, πAi > πD4

i always holds. Thus, conglomerate i does not deviate in

this case.

Second, assume that conglomerate i plays xBi = DB and xAi = 0. The pro�t in this

93



case, denoted by πD5
i , is

πD5
i =

(9− 8β2)2DA
2

9(9− 4β2)2
+
DB

2

2
.

When DA

DB
< (9−4β2)

√
7

4β
√

9−8β2
, it follows that πAi < πD5

i . Thus, conglomerate i deviates

unilaterally in this case. Therefore, the A-outcome can be sustained as an equilibrium if

and only if DA

DB
≥ θA = (9−4β2)

√
7

4β
√

9−8β2
.

B-outcome Let xAi = xAj = 0. The function in (A.8) when xAi = 0 is concave with

respect to xBi . From the FOC, the R&D e�ort, output, and team pro�t are given by

xBAi = 0, xBBi =
4DB

5
, qBAi =

DA

3
, qBBi =

3DB

5
, (A.11)

πBi =
DA

2

9
+
DB

2

25
.

This appendix now examines when the B-outcome is an equilibrium. Suppose the rival

plays xAj = 0 and xBj = xBBi ; thus, the objective function of conglomerate i is given by

(DA + 2βxAi)
2

9
+

(DB

5
+ 2xBi)

2

9
− 1

2
(xAi + xBi)

2 (A.12)

on the region
[
0, DA

β

]
×
[
0, 13DB

5

]
.

Suppose conglomerate i plays the upper bound of xBi ; that is, xBi = 13DB

5
. The

derivative of (A.12) with respect to xBi evaluated at xBi = 13DB

5
is −DB

5
− xAi, which is

always negative. Therefore, any
(
xAi,

13DB

5

)
is not a solution to (A.12).

The remainder solution candidates to (A.12) are (xAi , 0) and
(
DA

β
, xBi

)
, where the

�rst candidate xAi is an interior solution given by the FOC. This appendix starts with

the �rst candidate. The function in (A.12) when xBi = 0 is concave with respect to xAi .

94



Thus, the solution given by the FOC is

xAi =
4βDA

9− 8 β2
. (A.13)

For (A.13) to be an interior solution, 4βDA

9−8β2 <
DA

β
must be satis�ed. This expression

holds if and only if β <
√
3
2
. Therefore, a necessary condition for (A.13) to be a solution

is β <
√
3
2
. The pro�t of conglomerate i in this case, denoted by πD1

i , is

πD1
i =

DA
2

9− 8β2
+
DB

2

225
.

When DA

DB
>

√
9−8β2

5β
, it follows that πBi < πD1

i ; therefore, conglomerate i deviates unilat-

erally in this case.

For the second candidate, there are two cases to consider. First, assume the strategy

where xAi = DA

β
, and xBi is an interior solution given by the FOC. From the FOC of

(A.12), with respect to xBi at xAi = DA

β
, it follows that

xBi =
4DB

5
− 9DA

β
.

Further, to satisfy the assumption of xBi > 0, DA

DB
< 4β

45
must hold. The pro�t in this

case, denoted by πD2
i , is

πD2
i = DA

2 +
DB

2

25
− 4DADB

5β
+

4DA
2

β2
.

Given DA

DB
< 4β

45
, πBi > πD2

i always holds. Thus, conglomerate i does not deviate in this

case.

Second, assume that conglomerate i plays xAi = DA

β
and xBi = 0. The pro�t in this

95



case, denoted by πD3
i , is

πD3
i =

(2β2 − 1)DA
2

2β2
+
DB

2

225
.

When DA

DB
> 4β

5
√

16β2−9
and β > 3/4, it follows that πBi < πD3

i . Conglomerate i then

deviates unilaterally in this case.

Notice that when β ∈
(

3
4
,
√
3
2

)
, depending on the market ratio, conglomerate i can

deviate to πD1
i or πD3

i . Given that

√
9−8β2

5β
< 4β

5
√

16β2−9
for any β ∈

(
3
4
,
√
3
2

)
, to sustain

the B-outcome as an equilibrium the market ratio must only satisfy DA

DB
≤
√

9−8β2

5β
.4

In conclusion, the B-outcome can be sustained as an equilibrium if and only if DA

DB
≤

θB, where

θB =


√

9−8β2

5β
if β <

√
3
2

4β

5
√

16β2−9
if β ≥

√
3
2

.

Asymmetric outcome Let xAj = 0 and xBi = 0. First, suppose an equilibrium

candidate where xBj is given by the FOC. From the FOC of (A.8) with respect to xBj at

xAj = xBi = 0, it follows that xBj = 4DB, which is outside the feasible region. Hence,

this candidate is not a solution. Second, suppose xBj is equal to the upper bound; that

is, xBj = DB. Thus, the objective function of conglomerate i is given by

(DA + 2βxAi)
2

9
− xBi

2

18
− xAi

2

2
− xBixAi (A.14)

on the region
[
0, DA

β

]
× [0, 3DB].

It is easy to see that (A.14) is strictly decreasing in xBi ≥ 0. Thus, (A.14) must be

maximized at xBi = 0. Given that (A.14) is concave in xAi at xBi = 0, the optimal xAi

4If DA

DB
∈
(√

9−8β2

5β , 4β

5
√

16β2−9

]
, conglomerate i will deviate to πD1

i . When DA

DB
> 4β

5
√

16β2−9
, conglom-

erate i can deviate to πD1
i or πD3

i .
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must be an interior solution if it is inside the feasible region. From the FOC, xAi = 4βDA

9−8β2 .

The result is inside the feasible region if and only if 4βDA

9−8β2 <
DA

β
. This inequality holds if

and only if β <
√
3
2
.

This appendix denotes the conglomerate that invests only in market A (B) as ♦A

(♦B). When (A.14) is maximized, the R&D e�ort, the output, and the team pro�t are

given by

(x♦AA , x♦BA , x♦AB , x♦BB ) =


(

4βDA

9−8β2 , 0, 0, DB

)
if β <

√
3
2(

DA

β
, 0, 0, DB

)
if β ≥

√
3
2

, (A.15)

(q♦AA , q♦BA , q♦AB , q♦BB ) =


(

3DA

9−8β2 ,
(3−4β2)DA

9−8β2 , 0, DB

)
if β <

√
3
2

(DA, 0, 0, DB) if β ≥
√
3
2

,

(π♦A, π♦B) =


(

DA
2

9−8β2 ,
(3−4β2)2DA

2

(9−8β2)2
+ DB

2

2

)
if β <

√
3
2(

(2β2−1)DA
2

2β2 , DB
2

2

)
if β ≥

√
3
2

.

This appendix considers two cases that depend on β.

Case 1: Let β <
√
3
2
. It su�ces to verify the strategy of conglomerate j to examine

when the asymmetric outcome is an equilibrium. When conglomerate i plays xAi = x♦AA

and xBi = 0, the objective function of conglomerate j is given by

1

9

(
3(3− 4β2)DA

9− 8β2
+ 2βxAj

)2

+
(DB + 2xBj)

2

9
− 1

2
(xAj + xBj)

2 (A.16)

on the region
[
0, 9DA

(9−8β2)β

]
× [0, DB].

Suppose conglomerate j plays the upper bound of xAj ; that is, xAj = 9DA

(9−8β2)β
. The

derivative of (A.16) with respect to xAj evaluated at 9DA

(9−8β2)β
is

[4β2(9−4β2)−27]DA

3(9−8β2)β
− xBj,
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which is always negative. Therefore, any
(

9DA

(9−8β2)β
, xBj

)
is not a solution to (A.16).

Moreover, ABj playing xAj = 0 and xBj being given by the FOC is not a solution to

(A.16), given that xBj = 4DB, which is outside the feasible region.

The remainder solution candidates to (A.16) are (xAj , 0) and (xAj , DB), where xAj is

an interior solution given by the FOC in both cases. For the �rst candidate, from the

FOC of (A.16) with respect to xAj at xBj = 0, it follows that

xAj =
12β(3− 4 β2)DA

(9− 8 β2)2
.

Conglomerate j gains a pro�t of

πD6
ABj =

9(3− 4 β2)2DA
2

(9− 8 β2)3
+
DB

2

9
.

When DA

DB
>
√
7(9−8β2)3/2

12β(3−4β2)
and β <

√
3
2
, it follows that π♦B < πD6

ABj ; therefore, conglomerate

j deviates unilaterally in this case.

For the second candidate, from the FOC of (A.16) with respect to xAj at xBj = DB,

it follows that

xAj =
12β(3− 4 β2)DA − 9(9− 8 β2)DB

(9− 8 β2)2
.

Further, to satisfy the assumption of xAj > 0, DA

DB
> 9(9−8β2)

12β(3−4β2)
must hold. Given that

9(9−8β2)
12β(3−4β2)

>
√
7(9−8β2)3/2

12β(3−4β2)
, and the asymmetric outcome is not an equilibrium when DA

DB
>

√
7(9−8β2)3/2

12β(3−4β2)
, this case does not provide new information.

Thus, when β <
√
3
2
, the asymmetric outcome can be sustained as an equilibrium if

and only if DA

DB
≤ “θA =

√
7(9−8β2)3/2

12β(3−4β2)
.

Case 2: Let β ≥
√
3
2
. Again, it su�ces to verify the strategy of conglomerate j. When
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conglomerate i plays xAi = x♦AA and xBi = 0, the problem of conglomerate j is given by

(DB + 2xBj)
2

9
− (9− 8β2)xAj

2

18
− xBj

2

2
− xBjxAj (A.17)

on the region
[
0, 3DA

β

]
× [0, DB].

The function in (A.17) is strictly decreasing in xAj ≥ 0. Thus, (A.17) must be

maximized at xAj = 0. Moreover, conglomerate j playing xAj = 0 and xBj being given by

the FOC is not a solution to (A.17), given that xBj = 4DB, which is outside the feasible

region. Hence, the only solution of (A.17) is xAj = 0 and xBj = DB. Therefore, when

β ≥
√
3
2
, the asymmetric outcome always exists as an equilibrium.

Summary of the two-merger subgame The thresholds satisfy θB < θA and θA < “θA

for any β ∈
(

0,
√
3
2

)
. Thus, an equilibrium always exists in the two-merger subgame. This

appendix summarizes the equilibrium results of the two-merged subgame in Proposition

A.1, illustrated in Figure A.1.

Proposition A. 1. An equilibrium always exists in the two-merged subgame. With ER2,

all the equilibria are characterized as follows:

(a) The A-outcome is an equilibrium if and only if DA

DB
≥ θA.

(b) The B-outcome is an equilibrium if and only if DA

DB
≤ θB,

(c) The asymmetric outcome is an equilibrium if and only if β <
√
3
2

and DA

DB
≤ “θA,

or β ≥
√
3
2
.

Asymmetric equilibria are two-fold depending on the roles of the teams. Figure A.1

displays four regions. First, the B-outcome and two asymmetric outcomes are equilibria

in the lower left region. Second, the unique equilibrium in the center-right region is the

A-outcome. Third, the A and two asymmetric outcomes are equilibria in the upper right
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Figure A.1: Existence of equilibria in the two-merger subgame.

region. Fourth, two asymmetric outcomes are equilibria in the middle region.

One-merger subgame

Only one �rm in A merges with one �rm in B. The non-merged team can only invest

in market B; the conglomerate can invest in any market. With ER2, the only equilibria

are the B-outcome, as described by (A.11), and the asymmetric outcome, as described

by (A.15).

The B-outcome is an equilibrium in the one-merger subgame under the same condition

as the two-merger subgame. However, the asymmetric outcome is always an equilibrium

in the one-merged subgame. Team ♦B is always the non-merged team when the asym-

metric outcome is the equilibrium of the one-merge subgame. A condition involving the

market size is not necessary, as team ♦B cannot deviate to market A.

This appendix summarizes the equilibrium results of the one-merged subgame in

Proposition A.2, illustrates in Figure A.2.
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Proposition A. 2. With ER2, all the equilibria in the one-merger subgame are charac-

terized as follows:

(a) The B-outcome is an equilibrium if and only if DA

DB
≤ θB.

(b) The asymmetric outcome is always an equilibrium.

Figure A.2: Existence of equilibria in the one-merger subgame.

Figure A.2 displays two regions. First, the B-outcome and one asymmetric outcome

are equilibria in the lower left region. In the second region, one asymmetric outcome is

an equilibrium.

Zero-merger subgame

In the zero-merger subgame, none of the teams are merged. With ER2, the only equi-

librium is the B-outcome as described by (A.11). The B-outcome always exists as an

equilibrium, as none of the teams can deviate to market A. This appendix summarizes

the equilibrium results of the zero-merger subgame in Proposition A.3.
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Proposition A. 3. With ER2, the B-outcome always exists as the unique equilibrium of

the zero-merger subgame.

First stage

The team payo�s in the �rst stage are the pro�ts in (A.9), (A.11), and (A.15). This

appendix de�nes four main scenarios for the �rst stage, each scenario corresponding to one

region in Figure A.1. There are multiple equilibria in the second stage for each scenario;

thus, this appendix considers every possible combination of equilibria and establishes

sub-scenarios. Table A.3 presents the normal form of the game.

Table A.3: Normal form of the �rst stage

A1,B1

A2,B2
Do not merge Merge

Do not merge πB,πB πDM,M

1 ,πDM,M

2

Merge πM,DM

1 ,πM,DM

2 πM,M

1 ,πM,M

2

Where �contingent on the parameters�
(
πM,M

1 , πM,M

2

)
∈

{ (
π♦B, π♦A

)
,
(
π♦A, π♦B

)
,(

πA, πA
)
,
(
πB, πB

) }
,
(
πM,DM

1 , πM,DM

2

)
∈
{ (
π♦A, π♦B

)
,
(
πB, πB

) }
and

(
πDM,M

1 , πDM,M

2

)
∈{ (

π♦B, π♦A
)
,
(
πB, πB

) }
.

The asymmetric equilibria are two-fold in the two-merger subgame but are not in the

one-merger subgame. Thus, there are two possible ways to allocate the payo�s from the

asymmetric outcome in the pro�le (M,M); however, there is only one way in the pro�les

(DM,M) and (M,DM): the team that chooses to merge always invests only in market

A.

This appendix restates a set of thresholds from the second and third stages and

de�nes new ones to de�ne the scenarios and sub-scenarios. First, for the previously

de�ned thresholds, the appendix sets θ1 ≡ “θA, θ2 ≡ θA, and θ6 ≡ θB. The new thresholds

come from comparing the payo�s of the �rst stage. It follows that πB ≤ π♦A if and only

if DA

DB
≥ θ5, π

♦B ≤ πA if and only if DA

DB
≥ θ3, π

♦A ≥ π♦B if and only if DA

DB
≥ θ4, and
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πB ≥ π♦B if and only if DA

DB
≥ θ7, where:

θ3 =


√
7(9−8β2)(9−4β2)

12β
√

81−180β2+128β4−32β6
if β <

√
3
2

√
7(9−4β2)

3
√

2(9−8β2)
if β ≥

√
3
2

, θ4 ≡ θ̄ =


(9−8β2)

4
√
2β
√

1−β2
if β <

√
3
2

β√
2β2−1

if β ≥
√
3
2

θ5 ≡ θ̂B =


3
√

9−8β2

10
√
2β

if β <
√
3
2

3
√
2β

5
√

16β2−9
if β ≥

√
3
2

, θ7 =


3
√
23(9−8β2)

20β
√

9−10β2
if β <

√
3
2

3
√
23

5
√
2

if β ≥
√
3
2

.

It follows that θ1 > θ2 for any β ∈
(

0,
√
3
2

)
, θ2 > θ3 > θ4 > θ5 > θ6 for any β and

θ7 > θ5 for any β.

Scenario 1: DA

DB
> θ1 and β ∈

(
0,
√
3
2

)
. The equilibrium in the two-merger subgame is

the A-outcome; in the one-merger subgame, it is the asymmetric outcome. Here, it holds

that πB < π♦A and π♦B < πA. If player 2 plays (DM), the best strategy for player 1 is

to play (M). If player 2 plays (M), the best strategy for player 1 is to play (M). The

dominant strategy for player 1 is then (M). Given that the payo�s are symmetric, the

dominant strategy for player 2 is also (M). Thus, the equilibrium in the �rst stage is the

pro�le (M,M).

Therefore, when DA

DB
> “θA and β ∈

(
0,
√
3
2

)
, the equilibrium of the �rst stage corre-

sponds to the A-outcome. Moreover, in that equilibrium, two conglomerates are formed.

Scenario 2: θ1 ≥ DA

DB
≥ θ2 and β ∈

(
0,
√
3
2

)
or DA

DB
≥ θ2 and β ∈

[√
3
2
, 1
)
. For the

two-merger subgame, the A-outcome and asymmetric outcome exist as an equilibrium.

For the one-merger subgame, the asymmetric outcome is the equilibrium. It holds that

πB < π♦A, π♦B < πA, and π♦B < π♦A.
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Scenario 2.1: The A-outcome is set in the pro�le (M,M). This scenario is analo-

gous to Scenario 1. Hence, the equilibrium in the �rst stage is the pro�le (M,M).

Scenario 2.2: The asymmetric outcome is set in the pro�le (M,M), and player 1's

payo� in the pro�le (M,M) is π♦A. If any player plays (DM), the best strategy for the

other player is to play (M). If player 2 plays (M), the best strategy for player 1 is to

play (M). When player 1 plays (M), player 2 is indi�erent to playing either (DM) or

(M). Thus, the equilibria in the �rst stage are the pro�les (M,DM) and (M,M). With

ER1, only the pro�le (M,DM) is an equilibrium.

Scenario 2.3: The asymmetric outcome is set in the pro�le (M,M), and player 1's

payo� in the pro�le (M,M) is π♦B. By symmetry with Scenario 2.2, the equilibria in the

�rst stage are the pro�les (DM,M) and (M,M). With ER1, only the pro�le (DM,M)

is an equilibrium.

Therefore, when “θA ≥ DA

DB
≥ θA and β ∈

(
0,
√
3
2

)
, or DA

DB
≥ θA and β ∈

[√
3
2
, 1
)
, if

the equilibrium played in the two-merger subgame is the A-outcome, the equilibrium

of the �rst stage corresponds to the A-outcome. Moreover, in that equilibrium two

conglomerates are formed.

If the equilibrium played in the two-merger subgame is the asymmetric outcome, then

any equilibrium of the �rst stage corresponds to the asymmetric outcome. Adding ER1,

in any equilibrium of the �rst stage, the outcome with one conglomerate always occurs.

Scenario 3: θ2 >
DA

DB
> θ6. The asymmetric outcome is the equilibrium in the two-

and one-merger subgames.
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Scenario 3.1: θ2 >
DA

DB
> θ5; thus, it holds that πB < π♦A. Hence, (DM,DM) is

never an equilibrium, as both players have incentives to deviate. Accordingly, at least

one of the other pro�les is an equilibrium, hence the asymmetric outcome is always an

equilibrium.

Scenario 3.1.1: θ2 >
DA

DB
> θ4; thus, it holds that π

♦B < π♦A. Player 1's payo�

in the pro�le (M,M) is π♦A. This scenario is analogous to Scenario 2.2. Hence, the

equilibria in the �rst stage are the pro�les (M,DM) and (M,M). With ER1, only the

pro�le (M,DM) is an equilibrium.

Scenario 3.1.2: θ2 >
DA

DB
> θ4; thus, it holds that π

♦B < π♦A. Player 1's payo�

in the pro�le (M,M) is π♦B. This scenario is analogous to Scenario 2.3. Hence, the

equilibria in the �rst stage are the pro�les (DM,M) and (M,M). With ER1, only the

pro�le (DM,M) is an equilibrium.

Scenario 3.1.3: DA

DB
= θ4; thus, it holds that π

♦B = π♦A. Hence, the payo�s in the

pro�le (M,M) are symmetric. If any player plays (DM), the best strategy for the other

player is to play (M). The pro�les (M,M), (M,DM), and (DM,M) have the same

symmetric payo�s. Therefore, (M,M), (M,DM), and (DM,M) are the equilibria of the

�rst stage. With ER1, only the pro�les (M,DM) and (DM,M) are equilibria.

Scenario 3.1.4: θ4 >
DA

DB
> θ5; thus, it holds that π

♦B > π♦A. Player 1's payo�

in the pro�le (M,M) is π♦A. If any player plays (DM), the best strategy for the other

player is to play (M). If player 2 plays (M), the best strategy for player 1 is to play

(DM). When player 1 plays (M), player 2 is indi�erent to playing either (DM) or (M).

Therefore, there are two equilibria in the �rst stage: the pro�les (M,DM) and (DM,M).
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Scenario 3.1.5: θ4 >
DA

DB
> θ5; thus, it holds that π

♦B > π♦A. Player 1's payo� in

the pro�le (M,M) is π♦B. By symmetry with Scenario 3.1.4, the equilibria in the �rst

stage are the pro�les (M,DM) and (DM,M).

Therefore, when θA >
DA

DB
> θ̂B, any equilibrium of the �rst stage corresponds to the

asymmetric outcome. Adding ER1, in any equilibrium, one team merges.

Scenario 3.2: DA

DB
= θ5; thus, it holds that π

♦B > π♦A = πB.

Scenario 3.2.1: Player 1's payo� in the pro�le (M,M) is π♦A. If player 2 plays

(M), the best strategy for player 1 is to play (DM). If player 1 plays (M), player 2 is

indi�erent to playing either (DM) or (M). If any player plays (DM), the other player is

indi�erent to playing either (DM) or (M). Thus, the equilibria of the �rst stage are the

pro�les (DM,DM), (M,DM), and (DM,M). With ER1, the only equilibrium is the

pro�le (DM,DM).

Scenario 3.2.2: Player 1's payo� in the pro�le (M,M) is π♦B. By symmetry with

Scenario 3.2.1, the equilibria of the �rst stage are the pro�les (DM,DM), (M,DM), and

(DM,M). With ER1, only the pro�le (DM,DM) is an equilibrium.

Therefore, when DA

DB
= θ̂B, one of the equilibria is the pro�le (DM,DM), which corre-

sponds to the B-outcome. Any other equilibrium corresponds to the asymmetric outcome.

Adding ER1, none of the teams merge in equilibrium.

Scenario 3.3: θ5 >
DA

DB
> θ6; thus, it holds that π

♦B > πB > π♦A.
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Scenario 3.3.1: Player 1's payo� in the pro�le (M,M) is π♦A. If player 2 plays

(M), the best strategy for player 1 is to play (DM). If any player plays (DM), the best

strategy for the other player is to play (DM). Therefore, the equilibrium in the �rst

stage is the pro�le (DM,DM).

Scenario 3.3.2: Player 1's payo� in the pro�le (M,M) is π♦B. By symmetry with

Scenario 3.3.1, the equilibrium of the �rst stage is the pro�le (DM,DM).

Scenario 4: DA

DB
≤ θ6. The B and asymmetric outcomes are equilibria in the two- and

one-merger subgames. It holds that π♦B > πB > π♦A. Thus, the pro�le (DM,DM) is

always an equilibrium. Furthermore, the asymmetric outcome is never an equilibrium as

the player with the payo� of π♦A has incentives to deviate to obtain either πB or π♦B.

Scenario 4.1: The asymmetric outcome is set in the pro�les (DM,M), (M,DM),

and (M,M). Player 1's payo� in the pro�le (M,M) is π♦A. This scenario is analogous

to Scenario 3.3.1. Hence, the equilibrium of the �rst stage is the pro�le (DM,DM).

Scenario 4.2: The asymmetric outcome is set in the pro�les (DM,M), (M,DM),

and (M,M). Player 1's payo� in the pro�le (M,M) is π♦B. This scenario is analogous

to Scenario 3.3.2. Hence, the equilibrium of the �rst stage is the pro�le (DM,DM).

Scenario 4.3: The B-outcome is set in the pro�les (DM,M), (M,DM), and (M,M).

Both players are indi�erent to playing either (DM) and (M) regardless of the other

player's strategy. Thus, all the pro�les are equilibria. With ER1, only the pro�le

(DM,DM) is an equilibrium.

107



Scenario 4.4: The asymmetric outcome is set in the pro�les (DM,M) and (M,DM).

The B-outcome is set in the pro�le (M,M). If player 2 plays (DM), the best strategy

for player 1 is to play (DM). If player 2 plays (M), the best strategy for player 1 is to

play (DM). The dominant strategy for player 1 is then (DM). Given that the payo�s

are symmetric, the dominant strategy for player 2 is also (DM). Thus, the equilibrium

in the �rst stage is the pro�le (DM,DM).

Scenario 4.5: The asymmetric outcome is set in the pro�le (M,M). The B-outcome

is set in the pro�les (DM,M) and (M,DM). Player 1's payo� in the pro�le (M,M) is

π♦A. If player 2 plays (M), the best strategy for player 1 is to play (DM). If player 1

plays (M), the best strategy for player 2 is to play (M). If any player plays (DM), the

other player is indi�erent to playing either (DM) or (M). Hence, the pro�les (DM,M)

and (DM,DM) are equilibria of the �rst stage. With ER1, only the pro�le (DM,DM)

is an equilibrium.

Scenario 4.6: The asymmetric outcome is set in the pro�le (M,M). The B-outcome

is set in the pro�les (DM,M) and (M,DM). Player 1's payo� in the pro�le (M,M) is

π♦B. By symmetry with Scenario 4.5, the pro�les (M,DM) and (DM,DM) are equilibria

of the �rst stage. With ER1, only the pro�le (DM,DM) is an equilibrium.

Scenario 4.7: The asymmetric outcome is set in the pro�le (M,DM). The B-

outcome is set in the pro�les (DM,M) and (M,M). If player 1 plays (M), the best

strategy for player 2 is to play (DM). If player 2 plays (DM), the best strategy for

player 1 is to play (DM). Finally, given that the pro�les (DM,DM), (DM,M), and

(M,M) have the same symmetric payo�s, the equilibria of the �rst stage are the pro�les

(DM,M) and (DM,DM). With ER1, only the pro�le (DM,DM) is an equilibrium.
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Scenario 4.8: The asymmetric outcome is set in the pro�le (DM,M). The B-

outcome is set in the pro�les (M,DM) and (M,M). By symmetry with Scenario 4.7, the

pro�les (M,DM) and (DM,DM) are equilibria of the �rst stage. With ER1, only the

pro�le (DM,DM) is an equilibrium.

Scenario 4.9: The asymmetric outcome is set in the pro�les (M,DM) and (M,M).

The B-outcome is set in the pro�le (DM,M). Player 1's payo� in the pro�le (M,M)

is π♦A. If player 1 plays (DM), player 2 is indi�erent to playing either (DM) or (M).

The dominant strategy for player 1 is (DM). Thus, the equilibria of the �rst stage are

the pro�les (DM,M) and (DM,DM). With ER1, only the pro�le (DM,DM) is an

equilibrium.

Scenario 4.10: The asymmetric outcome is set in the pro�les (DM,M) and (M,M).

The B-outcome is set in the pro�le (M,DM). Player 1's payo� in the pro�le (M,M) is

π♦B. By symmetry with Scenario 4.9, the pro�les (M,DM) and (DM,DM) are equilibria

of the �rst stage. With ER1, only the pro�le (DM,DM) is an equilibrium.

Scenario 4.11: The asymmetric outcome is set in the pro�les (DM,M) and (M,M).

The B-outcome is set in the pro�le (M,DM). Player 1's payo� in the pro�le (M,M) is

π♦A. If player 1 plays (DM), the best strategy for player 2 is to play (DM). If player 1

plays (M), the best strategy for player 2 is to play (M). If player 2 plays (M), the best

strategy for player 1 is to play (DM). Finally, when player 2 plays (DM), player 1 is

indi�erent to playing either (DM) or (M). Thus, the only equilibrium of the �rst stage

is the pro�le (DM,DM).
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Scenario 4.12: The asymmetric outcome is set in the pro�les (M,DM) and (M,M).

The B-outcome is set in the pro�le (DM,M). Player 1's payo� in the pro�le (M,M)

is π♦B. By symmetry with Scenario 4.11, the only equilibrium of the �rst stage is the

pro�le (DM,DM).

Therefore, when DA

DB
≤ θ̂B, any equilibrium of the �rst stage corresponds to the B-

outcome. Adding ER1, neither team merges in equilibrium.

Appendix 2.3: Conglomerate discount

It follows that πA ≤ πB if and only if DA

DB
≥ 9−4β2

5β2 .

Appendix 2.4: Social welfare

This appendix de�nes the total producer surplus in the A-outcome, B-outcome, and asym-

metric outcome as TPSA = 2πA, TPSB = 2πB, and TPS♦ = π♦A + π♦B, respectively.

Comparing the total producer surplus of the asymmetric outcomes with the symmetric

ones, it follows that TPS♦ > TPSB and TPS♦ > TPSA.

The consumer surplus in market k can be computed by

CSk = vk(q
∗
k1, q

∗
k2)− pk1(q∗k1, q∗k2) · q∗k1 − pk2(q∗k1, q∗k2) · q∗k2 =

1

2
(q∗k1 + q∗k2)

2,

where q∗ki is the equilibrium quantity of �rm i in market k. The second equality follows

from the fact that, in equilibrium, pk1(q
∗
k1, q

∗
k2) = pk2(q

∗
k1, q

∗
k2) holds.

This appendix de�nes the total consumer surplus in the A-outcome, B-outcome, and

asymmetric outcome as TCSA = 2(qAAi)
2 + 2(qABi)

2, TCSB = 2(qBAi)
2 + 2(qBBi)

2, and
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TCS♦ = 1
2
(q♦AA + q♦BA )2 + 1

2
(q♦AB + q♦BB )2, respectively. It follows that TCS♦ ≥ TCSB if

DA

DB
≥ γB, TCS

♦ ≥ TCSA if DA

DB
≤ γA and β 6=

√
3
2
, and TCS♦ > TCSA if β =

√
3
2
, where

γA =


√
5(9−8β2)(9−4β2)

12β
√

81−189β2+120β4−16β6
if β <

√
3
2

√
5(9−4β2)

3
√

(4β2−3)(15−4β2)
if β >

√
3
2

, γB =


3
√
11(9−8β2)

20β
√

9−7β2
if β <

√
3
2

3
√
11

5
√
5

if β ≥
√
3
2

.

The thresholds satisfy γB < γA for β 6=
√
3
2
. Thus, for any β, there exists a DA

DB
such

that the asymmetric outcome is the market outcome with the greatest total consumer

surplus. Moreover, it follows that θ̂B < γB and γA < “θA for any β <
√
3
2
. Hence, when the

asymmetric outcome is the market outcome with the greatest total consumer surplus, it

is also an equilibrium outcome.

Finally, this appendix de�nes the total social welfare in the A-outcome, B-outcome,

and asymmetric outcome as TWA = TPSA + TCSA, TWB = TPSB + TCSB and

TW♦ = TPS♦ + TCS♦. It follows that TW♦ > TWB. Further, TW♦ ≥ TWA if β < β̄

and DA

DB
≤ γ̄ or β ≥ β̄, where

γ̄ =
(9− 8β2)

√
5(9− 4β2)

6β
√

2(9− 23β2 + 12β4)
, β̄ =

√
23−

√
97

2
√

6
.

The thresholds satisfy γ̄ > “θA for any β ∈
(
0, β̄
)
. Thus, whenever the asymmetric

outcome is an equilibrium outcome, it is the social welfare dominating outcome.

Appendix 3: Second-best contract

Taking the sum of (3.12) and (3.13) yields 2
(
qHN1 − qLN1

) (
qHUN1 − qLUN1

)
≥ 0. Because

qHUN1 > qLUN1 , satisfying both (3.12) and (3.13) requires qHN1 > qLN1.
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In the second-best contract at least one IC constraint is binding. When qHN1 = qLN1

both (3.12) and (3.13) are binding. From this we get a pooling equilibrium candidate.

When qHN1 > qLN1, we prove that the optimal contract only binds (3.13) (qHN1 + qLN1 =

2qLUN1 ). Suppose otherwise, so that optimally qHN1 + qLN1 > 2qLUN1 . Under X < Ω̂ it holds

qHRN1 + qLRN1 < 2qLUN1 . Then, qsN1 > qsRN1 for some s. Hence, (3.11) in state s is binding,

so it holds qsC1 < qsRC1. Reducing q
s
N1 and increasing qsC1 increases the pro�t in state s, a

contradiction. Thus, there is a separating equilibrium candidate where qHN1 > qLN1 and

qHN1+qLN1 = 2qLUN1 . We explore the pooling and separating equilibria candidates hereunder.

Pooling equilibrium candidate P

Assume qHN1 = qLN1 = qN . Clearly, this implies that qHC1 = qLC1 = qC . Hence, (3.11) is

the same in any state. Suppose that (3.11) is not binding. Solving the problem yields

qC = qUC1 and qN = pqHUN1 + (1− p)qLUN1 > qLUN1 , so (3.11) does not hold, and thus, it must

be binding.

By substituting qHN1 = qLN1 = qN and (3.11) into (3.10), the simpli�ed problem in

terms of qN is as follows:

max
qN≥0

2− α2

2

∑
s∈{H,L}

ps
((

2qUC1 −X + qN
)

(X − qN) +
(
2qsUN1 − qN

)
qN
)

(A.18)

From the FOC of (A.18), the solution candidate for market k is qPk1. The outputs of

the standalone �rms in state s are qsPN2 and qPC2. The non-negativity conditions of qsPN2

and qPC2 will hold if (3.14) and (3.15) are satis�ed.

Now, we verify if qPN1 and q
P
C1 satisfy the remaining restrictions of the problem. First,

given (3.1), it holds that qPN1 ≥ 0 and qPC1 ≥ 0. Second, because qUC1 > qLRC1 > qHRC1 ,

112



(3.14) is satis�ed as 2qUC1 ≥ pqHRC1 + (1 − p)qLRC1 holds. Third, when X ≤ Ω̌, it holds

qLUN1 ≥ qHRN1 > qLRN1 . Thus, (3.15) in the low state is satis�ed as 2qLUN1 ≥ pqHRN1 + (1− p)qLRN1

holds. Fourth, (3.15) in the high state also holds as qHUN1 > qLUN1 .

Separating equilibrium candidate S

Assume qHN1 > qLN1 and qHN1 + qLN1 = 2qLUN1 . Suppose that (3.11) in the high state is

not binding, thus qHC1 = qUC1. Moreover, qHN1 > qLN1 and qHN1 + qLN1 = 2qLUN1 imply that

qHN1 > qLUN1 . Therefore, (3.11) in the high state does not hold, and hence, it must be

binding.

Suppose that (3.11) in the low state is not binding. We substitute qHN1 + qLN1 = 2qLUN1

and (3.11) in the high state into (3.10) to obtain a problem only in terms of qLN1 and q
L
C1.

The simpli�ed problem yields the following:

qLN1 =
(2− α)(p

(
DC + 3DL

N −DH
N

)
+DL

N)− 2p(2− α2)X

2(2− α2)(p+ 1)
, qLC1 = qUC1

If (3.11) in the low state is not binding, qLN1 + qLC1 ≤ X must hold. That condition is

equivalent to:

X ≥ (2− α)((2p+ 1)DC + (3p+ 1)DL
N − pDH

N )

2(2− α2)(2p+ 1)

which never holds when X < Ω̂. Therefore, (3.11) in the low state must be binding.

Substituting (3.11) in both states and qHN1 + qLN1 = 2qLUN1 into (3.10), the simpli�ed

problem in terms of qHN1 is as follows:
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max
qHN1≥0

2− α2

2

[
p
((

2qUC1 −X + qHN1

)
(X − qHN1) +

(
2qHUN1 − qHN1

)
qHN1

)
...

+ (1− p)
((

2qUC1 −X + 2qLUN1 − qHN1

)
(X − 2qLUN1 + qHN1) +

(
2qLUN1 − qHN1

)
qHN1

) ]
(A.19)

From the FOC of (A.19), it follows that the solution candidate in market k and state

s is qsSk1 . The output of the standalone �rms in market k and state s is qsSk2 . Again, q
sS
k2 ≥ 0

will hold if (3.14) and (3.15) are satis�ed.

Now, we verify if this candidate for the solution satis�es the remaining restrictions

of the problem. We start verifying (3.12), which is equivalent to verify qHSN1 > qLSN1. The

previous inequality holds if and only if:

p <
(2− α)(DL

N +DC)− 2(2− α2)X

4(2− α2)θS
(A.20)

When X ≥ Ω̌, the right side of (A.20) is greater or equal than 1, so it always holds.

Now we verify the non-negativity constraints. Given that qHSN1 > qLSN1, then qHSC1 < qLSC1

because (3.11) is binding in any state. Thus, proving that qLSN1 ≥ 0 and qHSC1 ≥ 0 su�ces to

verify the non-negativity constraints. Given (3.1), it follows that qLSN1 ≥ 0. Furthermore,

qHSC1 ≥ 0 holds if and only if:

p ≥ (2− α)(3DL
N +DC)− 6(2− α2)X

4(2− α2)θS
(A.21)

When X ≥ Ω̌ and with (3.2), the right side of (A.21) is lower or equal than 0, so it always

holds. Now, we verify (3.15). Because qHSN1 > qLSN1 > 0 and qHSN1 + qLSN1 = 2qLUN1 , it follows

2qLUN1 > qHSN1 > qLSN1. Thus, (3.15) is satis�ed in any state. Finally, we verify (3.14). In the
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low state, (3.14) holds if, and only if:

p ≥ 2(2− α2)X − (2− α)(DL
N + 3DC)

4(2− α2)θS
(A.22)

As X < Ω̂, the right side of (A.22) is negative, so it always holds. Given that (3.14)

in the low state is satis�ed, (3.14) in the high state also holds as qLSC1 > qHSC1 .

The solution

The ex-ante expected pro�t of the conglomerate in equilibrium P is:

EπP =
2− α2

2

∑
s∈{H,L}

ps
((

2qUC1 − qPC1

)
qPC1 +

(
2qsUN1 − qPN1

)
qPN1

)
The ex-ante expected pro�t of the conglomerate in equilibrium S is:

EπS =
2− α2

2

∑
s∈{H,L}

ps
((

2qUC1 − qsSC1

)
qsSC1 +

(
2qsUN1 − qsSN1

)
qsSN1

)
It follows that EπS ≥ EπP if and only if:

X ≥ (2− α)

2(2− α2)

(
DC + 2DL

N −DH
N

)
= Ω̌

Given (3.2), it follows Ω̌ > 0. Moreover, because Ω̌ < Ω̂, then there exists an X

such that EπS ≥ EπP . Thus, in the second-best contract the equilibrium is S when

Ω̂ > X ≥ Ω̌, and it is P when X ≤ Ω̌.
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Appendix 4.1: Implementation of the collocation method

We utilize a cubic spline approximation for every con�guration of the model. Spline

approximations are usually preferred to polynomial approximations when the function is

non-smooth. In our model, the value function is non-smooth due to our discrete-action

scheme. In particular, the discrete nature of merging-separating dynamic creates two

regions in the state space where the value function behaves di�erently. We present the

number of univariate basis functions and collocation nodes for each con�guration of the

model in Table A.4.

``````````````̀State
Con�guration

B1 B2 B3 F1 F2

Capital stock 90 90 90 90 90
Demand of the new market - 45 45 45 35

Table A.4: Number of basis functions and collocation nodes

To verify whether our approximation is accurate to an acceptable level we check the

graph of the Bellman residuals. The residual is a function of the states variables. The

residual functions of B1 and B2 are univariate and bivariate, respectively, thus they can

be plotted normally. The residual functions of B3, F1 and F2 are trivariate. We present

those residuals using two graphs, one for the merger state and other for the separate

state.

We show the residuals of B1 and B2 in Figures A.5 and A.6, respectively. We display

the residuals for the separate state of B3, F1 and F2 in Figures A.7, A.9 and A.11,

respectively. We present the residuals for the merger state of B3, F1 and F2 in Figures

A.8, A.10 and A.12, respectively.

For every con�guration of the model, the residuals are very close to zero in the in-

terior region. However, there are disturbances in the boundaries of the state transition
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Figure A.5: Approximation
Residual-B1

Figure A.6: Approximation
Residual-B2

Figure A.7: Approximation
Residual-Separate-B3

Figure A.8: Approximation
Residual-Merger-B3

Figure A.9: Approximation
Residual-Separate-F1

Figure A.10: Approximation
Residual-Merger-F1
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Figure A.11: Approximation
Residual-Separate-F2

Figure A.12: Approximation
Residual-Merger-F2

functions: the lower bound of the capital stock, and the upper and lower bound of the

demand of the new market. Those disturbances do not surpass 5 in absolute value. The

residuals might be lowered if the number of basis functions and collocation nodes is in-

creased. Unfortunately, doing that would greatly increase the computational e�ort to run

the model.

Appendix 4.2: MATLAB code (Con�guration F2)

Main code (Model.m):

1 % PARAMETERS

2

3 dc=20; %Demand core market

4 buc=10; %Upper co s t core market

5 bdc=1; %Down cos t core market

6 bun=10; %Upper co s t new market

7 bdn=1; %Down cos t new market

8 Kmin=0; %Minimum cap i t a l s tock

9 Kmax=200; %Maximum cap i t a l s tock

10 Ko=55; %Capita l s tock standalone ex t e rna l f i rm

11 Pm=4; %Pr ice per un i t o f c a p i t a l (Merger )

12 Ps=4; %Pr ice per un i t o f c a p i t a l ( Separat ion )

13 Pk=3; %Pr ice por uni t o f c a p i t a l ( Capita l market )

14 KSmin=0; %Minimum Proport ion c ap i t a l so ld ( s epa ra t i on )

15 KSmax=10; %Maximum Proport ion c ap i t a l so ld ( s epara t i on )

16 KBmin=0; %Minimum cap i t a l bought ( Capita l market )

17 KBmax=20; %Maximum cap i t a l bought ( Capita l market )

18 p s i= 0 . 3 ; %Deprec ia t ion ra t e

19 de l t a= 0 . 9 ; %Discount f a c t o r

20 Dmin= 10 ; %Minimum demand ex t e rna l market
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21 Dmax=30 ; %Maximum demand ex t e rna l market

22 FB=200; %Constant merging

23 FS=300; %Constant s epa ra t ing

24

25

26 % DEFINE APPROXIMATION SPACE

27

28 n = [90 3 5 ] ; % Degree o f approximation

29 smin = [Kmin Dmin ] ; % Minimum s ta t e

30 smax = [Kmax Dmax ] ; % Maximum s ta t e

31 f space = fundefn ( ' s p l i ' ,n , smin , smax , [ ] , [ 0 ; 1 ] ) ; % Approximation space

32 scoord = funnode ( f space ) ; % State c o l l o c a t i o n gr id coo rd ina t e s

33 snodes = gridmake ( scoord ) ; % Grid s t a t e

34

35 % CONSTRUCT ACTION SPACE

36

37 x = { [ 0 ; 1 ] [KBmin :KBmax] ' 0 . 1 * [ KSmin :KSmax ] ' } ; % Action space

38 xgr id= gridmake (x ) ; % Grid ac t i on

39

40 % COMPUTE SHOCK DISTRIBUTION

41

42 sigma= 0 . 2 5 ; % Covariance matrix

43 mn= 0 ; % Mean

44 sh = 4 ; % Number o f shocks

45 [ e ,w] = qnwnorm( sh ,mn, sigma ) ; % Normal nodes and p r o b a b i l i t i e s

46

47 % PACK MODEL STRUCTURE

48

49 c l e a r model

50 model . func = ' Function ' ; % Model f unc t i on s

51 model . d i scount = de l t a ; % Discount f a c t o r

52 model . e = e ; % Shocks

53 model .w = w; % P r o b ab i l i t i e s

54 model . a c t i on s = xgr id ; % Model a c t i on s

55 model . d i s c r e t e s t a t e s = 3 ; % Index o f d i s c r e t e s t a t e

56 model . params = {dc , buc , bdc , bun , bdn ,Pk , ps i ,Pm, Ps ,Kmax,Dmax,FB,FS ,Ko ,Dmin} ; % Other parameters

57

58 % CALL SOLVER

59 [ c , s , v , x , r e s i d ] = dpsolve (model , f space , snodes ) ; % Solve Bellman equat ion

60

61 % OPTIMAL ACTIONS

62

63 x1=x ( : , : , : , 1 ) ; % Merging=s epa ra t ing d e c i s i o n

64 x2=x ( : , : , : , 2 ) ; % Capita l bought d e c i s i o n

65 x3=x ( : , : , : , 3 ) ; % Capita l so ld d e c i s i o n

66

67 % RESIDUALS

68

69 r e s i d 1=r e s i d ( : , : , 1 ) ; % Res idua l s ( Separate s t a t e )

70 r e s i d 2=r e s i d ( : , : , 2 ) ; % Res idua l s (Merger s t a t e )
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71

72 % SIMULATION (ONE)

73

74 nyrs = 100 ; % Number o f pe r i ods

75 s s =[50 20 0 ] ; % I n i t i a l s t a t e s

76 [ ssim , xsim ] = dpsimul (model , ss , nyrs , s , x ) ; % Simulat ion

77 s1path = squeeze ( ssim ( : , 1 , : ) ) ; % Simulated c ap i t a l s tock s t a t e

78 s2path = squeeze ( ssim ( : , 2 , : ) ) ; % Simulated demand ex t e rna l market s t a t e

79 s3path = squeeze ( ssim ( : , 3 , : ) ) ; % Simulated merging=s epa ra t ing s t a t e

80 x1path = squeeze ( xsim ( : , 1 , : ) ) ; % Simulated optimal merging=s epa ra t ing d e c i s i o n

81 x2path = squeeze ( xsim ( : , 2 , : ) ) ; % Simulated optimal c a p i t a l bought d e c i s i o n

82 x3path = squeeze ( xsim ( : , 3 , : ) ) ; % Simulated optimal c a p i t a l so ld d e c i s i o n

83

84 % PLOT SIMULATION

85

86 f i g u r e (1 ) ;

87 p lo t ( 0 : nyrs , s1path ) ;

88 t i t l e ( ' Capita l Stock ' ) ;

89 x l ab e l ( ' Period ' ) ;

90 y l ab e l ( ' Capi ta l Stock ' ) ;

91 f i g u r e (2 ) ;

92 p lo t ( 0 : nyrs , s2path ) ;

93 t i t l e ( 'Demand o f the ex t e rna l market ' ) ;

94 x l ab e l ( ' Period ' ) ;

95 y l ab e l ( 'Demand o f the ex t e rna l market ' ) ;

96 f i g u r e (3 ) ;

97 p lo t ( 0 : nyrs , s3path ) ;

98 t i t l e ( 'Merging=Separat ing s t a t e ' ) ;

99 x l ab e l ( ' Period ' ) ;

100 y l ab e l ( 'Merging=Separat ing s t a t e ' ) ;

101 f i g u r e (4 ) ;

102 p lo t ( 0 : nyrs , x1path ) ;

103 t i t l e ( 'Merging=Separat ing d e c i s i o n ' ) ;

104 x l ab e l ( ' Period ' ) ;

105 y l ab e l ( 'Merging=Separat ing d e c i s i o n ' ) ;

106 f i g u r e (5 ) ;

107 p lo t ( 0 : nyrs , x2path ) ;

108 t i t l e ( ' Capita l bought e x t e r n a l l y ' ) ;

109 x l ab e l ( ' Period ' ) ;

110 y l ab e l ( ' Capi ta l bought e x t e r n a l l y ' ) ;

111

112 % SIMULATION (TEN)

113

114 rept =10; % Number o f s imu la t i on s

115 ssm=ss .* ones ( rept , 3 ) ; % I n i t i a l s t a t e s

116 rng ( ' d e f au l t ' )

117 god = rng

118 [ ssimm , xsimm ] = dpsimul (model , ssm , nyrs , s , x ) ; % Simulat ion

119 s1pathm = squeeze ( ssimm ( : , 1 , : ) ) ; % Simulated c ap i t a l s tock s t a t e

120 s2pathm = squeeze ( ssimm ( : , 2 , : ) ) ; % Simulated demand ex t e rna l market s t a t e
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121 s3pathm = squeeze ( ssimm ( : , 3 , : ) ) ; % Simulated merging=s epa ra t ing s t a t e

122 x1pathm = squeeze (xsimm ( : , 1 , : ) ) ; % Simulated optimal merging=s epa ra t ing d e c i s i o n

123 x2pathm = squeeze (xsimm ( : , 2 , : ) ) ; % Simulated optimal c a p i t a l bought d e c i s i o n

124 x3pathm = squeeze (xsimm ( : , 3 , : ) ) ; % Simulated optimal c a p i t a l so ld d e c i s i o n

125

126 % PLOT EXPECTED STATE PATH

127

128 f i g u r e (6 ) ;

129 su r f a c e ( 0 : nyrs , 1 : rept , s1pathm ) ;

130 %t i t l e ( ' Capita l Stock ' ) ;

131 x l ab e l ( ' Period ' ) ;

132 y l ab e l ( ' S imulat ion No . ' ) ;

133 h = co l o rba r ;

134 f1 = gc f ;

135 expor tg raph i c s ( f1 , ' Capita l StockGA . png ' , ' Reso lut ion ' ,600)

136 f i g u r e (7 ) ;

137 su r f a c e ( 0 : nyrs , 1 : rept , s2pathm ) ;

138 %t i t l e ( 'Demand o f the ex t e rna l market ' ) ;

139 x l ab e l ( ' Period ' ) ;

140 y l ab e l ( ' S imulat ion No . ' ) ;

141 h = co l o rba r ;

142 f2 = gc f ;

143 expor tg raph i c s ( f2 , 'Demand o f the ex t e rna l marketGA . png ' , ' Reso lut ion ' ,600)

144 f i g u r e (8 ) ;

145 su r f a c e ( 0 : nyrs , 1 : rept , s3pathm ) ;

146 %t i t l e ( ' Merging=Separat ing state ' ) ;

147 x l ab e l ( ' Period ' ) ;

148 y l ab e l ( ' S imulat ion No . ' ) ;

149 h = co l o rba r ;

150 f3 = gc f ;

151 expor tg raph i c s ( f3 , 'Merging=Separat ing stateGA . png ' , ' Reso lut ion ' ,600)

152 f i g u r e (9 ) ;

153 su r f a c e ( 0 : nyrs , 1 : rept , x1pathm) ;

154 x l ab e l ( ' Period ' )

155 y l ab e l ( ' S imulat ion No . ' )

156 %t i t l e ( ' Merging=Separat ing dec i s i on ' )

157 h = co l o rba r ;

158 h . Limits = [0 1 ] ;

159 f4 = gc f ;

160 expor tg raph i c s ( f4 , 'Merging=Separat ing decisionGA . png ' , ' Reso lut ion ' ,600)

161 f i g u r e (10) ;

162 su r f a c e ( 0 : nyrs , 1 : rept , x2pathm) ;

163 %t i t l e ( ' Capita l bought ex t e rna l l y ' ) ;

164 x l ab e l ( ' Period ' ) ;

165 y l ab e l ( ' S imulat ion No . ' ) ;

166 h = co l o rba r ;

167 f5 = gc f ;

168 expor tg raph i c s ( f5 , ' Capita l bought external lyGA . png ' , ' Reso lut ion ' ,600)

169 f i g u r e (11) ;

170 su r f a c e ( 0 : nyrs , 1 : rept , x3pathm) ;
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171 % t i t l e ( ' Capi ta l so ld ' ) ;

172 x l ab e l ( ' Period ' ) ;

173 y l ab e l ( ' S imulat ion No . ' ) ;

174 h = co l o rba r ;

175 f6 = gc f ;

176 expor tg raph i c s ( f6 , ' Capita l soldGA . png ' , ' Reso lut ion ' ,600)

177 % PLOT RESIDUAL

178 f i g u r e (12)

179 hh=su r f ( s {1} , s {2} , r e s i d 1 ( : , : , 1 ) ' ) ;

180 % t i t l e ( ' Approximation Res idual : No merger ' ) ;

181 x l ab e l ( ' Capi ta l Stock ' ) ; y l ab e l ( 'Demand o f the new market ' ) ;

182 z l a b e l ( ' Res idual ' ) ;

183 s e t (hh , ' FaceColor ' , ' i n t e rp ' , ' EdgeColor ' , ' i n t e rp ' )

184 f7 = gc f ;

185 expor tg raph i c s ( f7 , ' Approximation Res idual No mergerGA . png ' , ' Reso lut ion ' ,600)

186 f i g u r e (13)

187 hh=su r f ( s {1} , s {2} , r e s i d 2 ( : , : , 1 ) ' ) ;

188 % t i t l e ( ' Approximation Res idual : Merger ' ) ;

189 x l ab e l ( ' Capi ta l Stock ' ) ; y l ab e l ( 'Demand o f the new market ' ) ;

190 z l a b e l ( ' Res idual ' ) ;

191 s e t (hh , ' FaceColor ' , ' i n t e rp ' , ' EdgeColor ' , ' i n t e rp ' )

192 f8 = gc f ;

193 expor tg raph i c s ( f8 , ' Approximation Res idual MergerGA . png ' , ' Reso lut ion ' ,600)

Auxiliary code (Function.m):

1 func t i on out = Function ( f l ag , s , x , e , dc , buc , bdc , bun , bdn ,Pk , ps i ,Pm, Ps ,Kmax,Dmax,FB,FS ,Ko ,Dmin)

2 switch f l a g

3 case ' f ' ; % REWARD FUNCTION

4 %Second stage

5 F=f ind ( s ( : , 1 )== max( s ( : , 1 ) ) & s ( : , 2 )==max( s ( : , 2 ) ) ) ;

6 f o r i = 1 : 1 :F(1 ,1 )

7 fun = @(y ) =(dc ./2=buc . / ( 2 . * ( bdc+y) ) ) .^2 = ( s ( i , 2 ) ./2=bun . / ( 2 . * ( bdn+s ( i , 1 )=y ) ) ) .^2 ;

8 opts = optimoptions (@fmincon , ' Algorithm ' , ' sqp ' ) ;

9 problem = createOptimProblem ( ' fmincon ' , ' o b j e c t i v e ' , fun , ' x0 ' ,0 , ' lb ' ,0 , ' ub ' , s ( i , 1 ) , ' opt ions ' , opts ) ;

10 gs = GlobalSearch ( ' Display ' , ' o f f ' ) ;

11 y = run ( gs , problem ) ;

12 I ( i , 1 )=y ;

13 end

14 F1=s i z e ( s , 1 ) /F(1 ,1 ) =1;

15 A=I ;

16 f o r i = 1 :F1

17 I=[ I ;A ] ;

18 end

19 out =(1=x ( : , 1 ) ) . * ( ( dc ./2=buc . / ( 2 . * ( bdc+s ( : , 1 ) ) ) ) .^2) . . . %

No merger

20 +x ( : , 1 ) . * ( ( dc ./2=buc . / ( 2 . * ( bdc+I ) ) ) .^2 + ( s ( : , 2 ) ./2=bun . / ( 2 . * ( bdn+s ( : , 1 )=I ) ) ) .^2) . . . %

Merger market

21 =Pk*x ( : , 2 ) . . . %

Cost o f buying c ap i t a l
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22 =(1=s ( : , 3 ) ) .* x ( : , 1 ) . * (FB+Ko.*Pm) . . . %

Cost when merging with market

23 +s ( : , 3 ) .*(1=x ( : , 1 ) ) . * ( FS+x ( : , 3 ) .*(1= ps i ) .* s ( : , 1 ) .*Ps ) ; %

Income f o r s e l l i n g market

24 case ' g ' ; % STATE TRANSITION FUNCTION

25 out ( : , 1 ) = s ( : , 3 ) .* x ( : , 1 ) .*(1= ps i ) .* s ( : , 1 )+(1=s ( : , 3 ) ) .*(1= ps i ) .* s ( : , 1 ) . . .

26 +x ( : , 2 )+(1=s ( : , 3 ) ) .* x ( : , 1 ) .*Ko+s ( : , 3 ) .*(1=x ( : , 1 ) ) .*(1=x ( : , 3 ) ) .*(1= ps i ) .* s ( : , 1 ) ; %

Capita l s tock

27 out ( : , 2 ) =[ min ( [ [ max ( [ s ( : , 2 )+e Dmin* ones ( s i z e ( s ( : , 2 ) ) ) ] ' ) ] ' Dmax* ones ( s i z e ( s ( : , 2 ) ) ) ] ' ) ] ' ; %

Demand new market s t a t e

28 out ( : , 3 ) = x ( : , 1 ) ; %

Merging=s epa ra t ing s t a t e

29 end
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