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Abstract. In the context of Strominger-Yau-Zaslow mirror symmetry
(after [SYZ96]), SYZ fibrations are often studied. It is known that an SYZ
fibration from a polarized Calabi-Yau manifold gives two affine structures
and one metric to its base space. The base space endowed with the triple
is expected to play an important role to obtain a mirror pair of the Calabi-
Yau manifold. This approach makes extensive use of complex differential
geometrical tools such as SYZ fibrations.

On the other hand, Kontsevich and Soibelman proposed a construction
of affine manifolds for maximal degenerations of Calabi-Yau manifolds
using a non-Archimedean analog of the SYZ fibration. Nowadays, such
an analog of the SYZ fibration is called a non-Archimedean SYZ fibra-
tion. Furthermore, they predicted that two affine manifolds, one coming
from SYZ fibrations and the other from a non-Archimedean SYZ fibra-
tion, are equivalent. Actually, to be precise, they adopted a somewhat
different construction (called Collapse picture) for the SYZ-side than the
one described as above.

Main theme of this thesis is to prove the above Kontsevich-Soibelman
conjecture in an enhanced form for maximal degenerations of K-trivial
finite quotients of polarized abelian varieties. This thesis is based on
three papers ([Got20], [Got22] and [GO22]) written by the author, Keita
Goto. The last paper is a joint work with the author’s advisor, Yuji Odaka.
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1. Introduction

1.1. At the end of the 20th century, in order to formulate what is called mirror
symmetry, several approaches have been proposed. One of them is due to
Strominger, Yau and Zaslow [SYZ96]. In op.cit., they gave a geometric
interpretation for mirror symmetry and proposed a conjecture called the SYZ
conjecture. Gross and Siebert provided an algebro-geometric interpretation
of the SYZ conjecture [GS06]. It is known as the Gross-Siebert program.
In this program, it is important to associate an integral affine manifold with
singularities (IAMS, for short) with a degeneration of polarized Calabi-Yau
manifolds, and vice versa. For a (toric) degeneration of polarized Calabi-Yau
manifolds, they extracted the polyhedral decomposition and the fan structure
for each vertex and gave an IAMS structure to the dual intersection complex
based on them, and vice versa.

Kontsevich and Soibelman associated an IAMS structure of the dual inter-
section complex in a non-Archimedean way [KS06]. The precise definition
will be given later (§5), but for now, we call it NA SYZ picture. In [op.cit.,
§4.2], they mentioned the specific IAMS structure for the degeneration of
K3 surfaces defined by

{x0x1x2x3 + tP4(x) = 0} ⊂ P3 ×∆,

where x = [x0 : x1 : x2 : x3] are homogeneous coordinates on P3, ∆ is a
(formal) disk with a (formal) parameter t and P4 is a generic homogeneous
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polynomial of degree 4. For general degenerations of K3 surfaces, however,
the specific affine structures associated in this way are not well known.

1.2. In the context of Strominger-Yau-Zaslow mirror symmetry, it is well
known that SYZ fibrations associate IAMS’s with maximal degenerations
of polarized Calabi-Yau varieties. We discuss the following three kinds of
‘SYZ fibrations’ from §4.

(i) Special Lagrangian fibrations from complex Calabi-Yau manifolds
(often called ‘SYZ fibrations’) as defined in Definition 4.2.

(ii) Non-Archimedean SYZ fibrations as defined in Definition 3.86.
(iii) Hybrid SYZ fibrations as defined in Theorem 6.7.

Their historic origins are quite different. The fibration (i) dates back at
least to Harvey-Lawson [HL82, III] in the context of calibrated geometry,
and after Strominger-Yau-Zaslow [SYZ96], often studied in the context of
the mirror symmetry. On the other hand, the fibration (ii) first appeared
in the basic general theory of non-archimedean geometry [Ber99]. Note
that in both situations, affine manifolds with singularities underly the fibra-
tions. Such a heuristic similarity of these two fibrations is first pointed out
in Kontsevich-Soibelman [KS06], which in particular lead to [KS06, Con-
jecture 3] roughly predicting the interesting coincidence of two affine struc-
tures. Both fibrations are also regarded roughly as “tropicalization".

[Got22, §5] proves the conjecture [KS06, Conjecture 3] for abelian vari-
eties and Kummer surfaces in an explicit manner, with a particular emphasis
on the non-archimedean SYZ fibration side.

The fibration (i) i.e., special Lagrangian fibrations, on which we place
more emphasis in this thesis, are expected to exist for any maximal degener-
ations in the context of the mirror symmetry. This fairly nontrivial prediction
is occasionally referred to as (a part of) “SYZ conjecture", after [SYZ96].

1.3. In this thesis, we calculate two IAMS structures, one from a family of
SYZ fibrations (i) and the other from a non-Archimedean SYZ fibration (ii),
for degenerations of K-trivial finite quotients of polarized abelian varieties.
In addition, we unify these two types of SYZ fibrations by introducing what
we call a hybrid SYZ fibration (iii). In other words, we partially prove the fol-
lowing Conjecture 1.4 and Conjecture 1.6 motivated by [KS06, Conjecture
1 and Conjecture 3] for maximal degenerations of K-trivial finite quotients
of polarized abelian varieties.

Conjecture 1.4 (Existence of special Lagrangian fibrations). Take any flat
proper family f : X ∗ → ∆∗ = {t ∈ C | 0 < |t| < 1} which is a maximal
degeneration, that is, with the maximal unipotency index of the monodromy.
Also, take any relatively ample line bundle L∗ and consider the famliy of
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Ricci-flat Kähler metrics gKE(Xt) on f−1(t) = Xt for t ̸= 0, whose Käh-
ler classes are c1(Lt := L|Xt). Then for any |t| ≪ 1, there is a special
Lagrangian fibration on Xt (with respect to a certain meromorphic relative
section of KX ∗/∆∗).

1.5. In §4.2, we prove the above Conjecture 1.4 for K-trivial surfaces, abelian
varieties of any dimension and their finite quotients. Recall that already
in [OO21], Conjecture 1.4 was proven for the case of K3 surfaces (op.cit.
Chapter 4) and higher dimensional irreducible holomorphic symplectic va-
rieties of K3[n]-type and generalized Kummer varieties (op.cit. Chapter 8).

Conjecture 1.6 (Equivalence between SYZ picture and NA SYZ picture
(cf.[KS06, Conjecture 3])). Consider the maximal degenerating polarized
algebraic Calabi-Yau varieties X ∗ over a sufficiently small punctured disc
∆∗ := {t ∈ C | 0 < |t| < ϵ} such that there exists a special Lagrangian
fibration for each fiber Xt as Conjecture 1.4. Then these fibrations for any
fiber Xt extend by continuity to a non-Archimedean SYZ fibration as we see
later (Definition 3.86). Further, the IAMS structure induced by the family
of SYZ fibrations coincides with the IAMS structure induced by the non-
Archimedean SYZ fibration.

That is, we prove the following theorems in this thesis.

Theorem 1.7 (= Theorem 4.20 and Corollary 4.24, An affirmative answer
to Conjecture 1.4 for K-trivial finite quotients of polarized abelian varieties,
cf. [GO22, Theorem 2.8]). For maximal degenerations of K-trivial finite
quotients of polarized abelian varieties, there is a special Lagrangian fibra-
tion on each fiber. Furthermore, IAMS induced by the family of these special
Lagrangian fibrations can be described explicitly.

Remark 1.8. The last assertion of Theorem 1.7 gives an affirmative answer
to [KS06, Conjecture 1] for K-trivial finite quotients of polarized abelian
varieties although it is already proved in [OO21] partially.

Theorem 1.9 (= Theorem 5.32, cf. [Got22, Theorem 5.31]). For maximal
degenerations of K-trivial finite quotients of polarized abelian varieties, an
IAMS structure induced by a family of SYZ fibrations coincides with an IAMS
structure induced by a non-Archimedean SYZ fibration up to scaling.

1.10. In the process of proving this, we prove that the IAMS induced by the
non-Archimedean SYZ fibration for K-trivial finite quotients of polarized
abelian varieties is explicitly described by the degeneration data as in [FC90]
(= Theorem 5.27).

Theorem 1.11 (=Theorem 6.7 and Theorem 6.23, An affirmative answer to
Conjecture 1.6 for K-trivial finite quotients of abelian varieties, cf. [GO22,
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Theorem 3.2 and Theorem 4.9]). Consider the maximally degenerating K-
trivial finite quotients of polarized abelian varieties X ∗ over a sufficiently
small punctured disc ∆∗ := {t ∈ C | 0 < |t| < ϵ}. Then there exists a
special Lagrangian fibration for each fiber Xt as Conjecture 1.4, and these
fibrations for any fiberXt extends to a hybrid SYZ fibration fhyb : X hyb → B
as we will see in Theorem 6.7. Here, the fibration fhyb satisfies the following:

(i) for t ∈ ∆∗, fhyb|Xt = ft that is, coincides with the special La-
grangian fibrations.

(ii) fhyb|t=0 = fhyb|Xan is a non-Archimedean SYZ fibration.

In particular, the fibration fhyb implies that the IAMS structure induced by
the family of SYZ fibrations coincides with the IAMS structure induced by
the non-Archimedean SYZ fibration. Further, the finite group action on the
maximal degeneration of polarized abelian varieties, that we consider when
taking its quotient, can be described explicitly.

1.12. Here is a brief description of the structure of this thesis:

§2 In this section, we recall classical theory of abelian varieties. In
particular, the period theory, Faltings-Chai theory (cf. [FC90]) and
Künnemann theory (cf. [Kün98]) are quite improtant for this the-
sis. Künnemann theory states the way to construct an SNC model
of a polarized abelian variety over a complete discrete valuation
field. It is a modification of Mumford’s construction by which we
can construct a semiabelian degeneration from degeneration data.
In Künnemann’s construction, it is important to construct a cone
decomposition associated with the degeneration. Further, the cone
decomposition is also important for NA SYZ picture as we will see
in §2.3. In applying Künnemann’s construction to the proofs of our
main theorems, we will modify his method due to technical prob-
lems ([Got22, Lemma 3.17]= Lemma 2.55).

§3 This section is intended to recall the classical theory of Berkovich
analytic spaces. In this context, we also introduce the results of
[Got20, Theorem 3.5, Theorem 6.11]. In latter half of this section,
we recall non-Archimedean SYZ fibrations originally introduced in
[KS06], following [NXY19].

So far, we have basically shared the assumed knowledge. From §4, we get
to the main problem.

§4 The main theme of §4 is to prove Theorem 4.20, following [GO22,
§2]. In this section, we consider SYZ picture for K-trivial finite quo-
tients of polarized abelian varieties, and compare it with Gromov-
Hausdorff limit picture.
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§5 In [Got22], we treated non-Archimedean SYZ fibrations only for
Kummer surfaces or abelian varieties. However, in this section, we
study non-Archimedean SYZ fibrations for K-trivial finite quotients
of polarized abelian varieties, beyond op.cit..

§6 The main theme of this section is to show how to “merge" two fibra-
tions (i) and (ii) as in (1.2) with different origins, to construct what
we call a hybrid SYZ fibration (the fibration (iii) as in (1.2)), follow-
ing [GO22]. This provides some enhanced answer to [KS06, Con-
jecture 3], not only at the level of integral affine structures. Our con-
struction is inspired by the recent technology of hybrid norms that
originated in [Ber10] and re-explored in [BJ17]. We prove [KS06,
Conjecture 3] for K-trivial finite quotients of abelian varieties in ar-
bitrary dimension, generalizing [Got22, §5]. In §6.3, we explicitly
explore the possible symmetry of maximally degenerating abelian
varieties and its inducing symmetry on the limit object given by
SYZ fibrations, which fits well to the previous sections.
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productive discussions. I learned radiance obstructions and integral affine
structures from Dr. Yuto Yamamoto and Mr. Yuki Tsutsui. Mr. Masafumi
Hattori suggested a way to make a proof of mine simple. I would like to
express my gratitude to them. This work is supported by JSPS KAKENHI
Grant Number JP20J23401.

2. Classical Theory of Abelian Varieties

In this chapter, we give a brief introduction to the classical theory with
respect to abelian varieties that play important roles in this thesis.

2.1. Definitions and basic properties.
This section is mainly based on [Mum70].

Definition 2.1. An abelian variety X is a complete algebraic variety over a
field k with a group law m : X ×X → X such that m and the inverse map
are both morphisms of varieties.

2.2. In particular, an abelian variety is connected algebraic group. Further,
it is well known that any algebraic group scheme over k is quasi-projective
over k. It implies that any abelian variety over k is projective over k. (cf.
Corollary 2.19) If k = C, then the underlying complex analytic space of an
abelian variety is actually a complex torus. Now review this.

Let X be a compact connected complex Lie group of dimension g and
V the tangent space to X at the identity point 0 ∈ X . Then V (∼= Cg) is a
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complex vector space and the exponential map exp : V → X is uniquely
defined. Moreover, the map exp : V → X is a surjective homomorphism
of complex Lie groups with kernel a lattice Λ(∼= Z2g), where a lattice in V
means a subgroup generated by a real basis of V , and induces an isomor-
phism V/Λ ∼= X . Therefore, X is a complex torus.

However, complex tori are not necessarily projective, that is, abelian va-
rieties. To summarize, an abelian variety over C is equivalent to a complex
torus with some polarization.

Unless otherwise noted, an abelian variety shall mean a complex abelian
variety as above until the end of this section.

2.3. Let X be a complex torus of the form V/Λ as (2.2). The lattice Λ is an
important invariant. In fact, there are canonical isomorphisms

Hr(X,Z) ∼=
r∧
Hom(Λ,Z).

Furthermore, it is also important when considering the moduli of principally
polarized abelian varieties, as we see later (2.28).

The cohomology groups Hq(X,Ωp) are also significant invariants. By
transition with respect to the group law on X , we can see that

OX ⊗C

p∧
V ∗ ∼= Ωp,

where V ∗ = HomC(V,C) is the cotangent vector space to X at 0. Further,
it is well-known that

Hq(X,OX) ∼=
q∧
V ∗,

where V ∗ is the complex conjugate of V ∗. It implies that

Hq(X,Ωp) ∼= Hq(X,OX⊗C

p∧
V ∗) ∼= Hq(X,OX)⊗ΛpV ∗ ∼=

q∧
V ∗⊗

p∧
V ∗.

Note that Hr(X,C) ∼= Hr(X,Z) ⊗Z C ∼=
∧r Hom(Λ,C) holds. Since

Hom(Λ,C) ∼= HomR(V,C) ∼= V ∗ ⊕ V ∗, it holds that

Hr(X,C) ∼=
r∧
(V ∗ ⊕ V ∗) ∼=

⊕
p+q=r

(

q∧
V ∗ ⊗

p∧
V ∗) ∼=

⊕
p+q=r

Hq(X,Ωp).

It means Hodge decomposition.

2.4. LetX be a complex torus of the form V/Λ as (2.2),L a line bundle onX
and π(= exp) : V → X an universal covering of X . Since H1(V,O∗

V )
∼=

Pic(V ) = 0, the pull back π∗(L) is trivial on V . It gives a trivialization
χ : π∗(L) ∼= C × V . Furthermore, the canonical action of Λ on π∗(L)
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induces an action of C×V through χ. The induced action of λ ∈ Λ is given
by

C× V ∋ (u, z) 7→ ϕλ(u, z) := (eλ(z) · u, z + λ) ∈ C× V,
where eλ ∈ H∗ := H0(V,O∗

V ). Then it holds that

eλ+λ′(z) = eλ(z + λ′) · eλ′(z).

It means that the map λ 7→ eλ is a 1-cocycle for Λ with coefficients in H∗.
Such a function e− : Λ → H∗ is called a factor of automorphy. Further, if
the trivialization χ is altered, {eλ} is replaced by a cohomologous cocycle.
Therefore, we obtain the map Pic(X) → H1(Λ, H∗). In fact, this map is
an isomorphism. It means that any line bundle on X is isomorphic to the
quotient of C× V for the action of Λ corresponding to {eλ} ∈ H1(Λ, H∗).

Let H be a hermitian form on V such that ImH(Λ×Λ) ⊂ Z. Then there
is a map α : Λ→ U(1) ∈ C× such that

α(λ1 + λ2) = e
√
−1πImH(λ1,λ2) · α(λ1)α(λ2).

Such a map α is called a semi-character with respect to H . If we put

eλ(z) = α(λ) · eπH(z,λ)+ 1
2
πH(λ,λ),

then {eλ} ∈ H1(Λ, H∗).Denote the associated line bundle by L(H,α). Fur-
thermore, the first Chern class of the line bundle L(H,α) is

ImH ∈
2∧
Hom(Λ,Z) ∼= H2(X,Z).

Note that if we take L(H1, α1) and L(H2, α2) as above, then it holds that

L(H1, α1)⊗ L(H2, α2) ∼= L(H1 +H2, α1α2).

More precisely, the following theorem is well known.

Theorem 2.5 (Appel-Humbert’s Theorem). Let X be a complex torus of
the form V/Λ as (2.2), {H} the group of hermitian H : V × V → C with
ImH(Λ × Λ) ⊂ Z and {(H,α)} the group of data (H,α) consisting of
the above H and semi-character α with respect to H . Then the following
diagram commutes.

0 // Hom(Λ, U(1)) //

∼ =

��

{(H,α)} //

f∼ =

��

{H}
g∼ =

��

// 0

0 // Pic0(X) // PicX // H1,1(X,Z) // 0

where f(H,α) := L(H,α) and g(H) = ImH .

2.6. Let L = L(H,α) be the associated line bundle on X as Theorem 2.5.
Then it is well-known that the following are equivalent.
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• L is ample.
• H is positive definite.

2.7. Now consider morphisms between abelian varieties. Before that, we
recall the following important lemma.
Lemma 2.8 (Rigidity lemma). Let X be a complete variety, Y and Z any
varieties, and f : X × Y → Z a morphism such that for some y0 ∈ Y,
the image f(X × {y0}) is a single point z0 ∈ Z. Then there is a morphism
g : Y → Z such that f = g ◦ p2, where p2 : X × Y → Y is the second
projection.
Corollary 2.9. If X and Y are abelian varieties and f : X → Y is any
morphism, then f(x) = g(x) + a, where g is a homomorphism of X into Y
and a ∈ Y .
Proof of Corollary 2.9. Replacing f by f−f(0), we may assume f(0) = 0.
It suffices to show that f is a homomorphism. Then the assertion holds
by applying Lemma 2.8 to the morphism ϕ : X × X → Y defined by
ϕ(x1, x2) := f(x1 + x2)− f(x1)− f(x2). □

2.10. Let X be an abelian variety of the form V/Λ as (2.2), π : V → X the
universal covering and Aut(X) the automorphism group of X . We denote
by tx : X → X the translation morphism defined by tx(y) = x + y. Any
homomorphism ofX into itself comes from some linear map of V into itself.
By Corollary 2.9, if f ∈ Aut(X), then f(π(x)) = tv(π(Mx)), where M ∈
GL(V,C) and v ∈ V . In particular, Aut(X) ↪→ GL(V,C)⋉ V holds.

The following theorems are important.
Theorem 2.11 (Seesaw Theorem). Let X be a complete variety, B any va-
riety and L a line bundle on X ×B. Then the set

B1 = {b ∈ B | L|X×{b} is trivial on X × {b}}
is closed inB, and if onX×B1, p2 : X×B1 → B1 is the second projection,
then L|X×B1

∼= p∗2M for some line bundle M on B1.
Theorem 2.12 (The theorem of the cube). Let X and Y be complete vari-
eties, Z a connected scheme, and L a line bundle on X × Y × Z whose
restrictions to {x0} × Y ×Z, X × {y0} ×Z and X × Y × {z0} are trivial
for some x0 ∈ X , y0 ∈ Y and z0 ∈ Z. Then L is trivial.
Corollary 2.13. LetX1, X2 andX3 be complete varieties and L a line bun-
dle on X1 ×X2 ×X3. Then

L ∼= p∗12(L12)⊗ p∗23(L23)⊗ p∗13(L13),

where pij : X1×X2×X3 → Xi×Xj is the projection and Lij is some line
bundle on Xi ×Xj .



10 Keita Goto

Proof of Corollary 2.13. Take a point xi ∈ Xi for each i. Let s12 : X1 ×
X2 → X1×X2×X3 be the inclusion such that Im(s12) = X1×X2×{x3}.
Likewise, we can define sij if i ̸= j. Further, let s1 : X1 → X1×X2×X3 be
the inclusion such that Im(s1) = X1×{x2}×{x3}. Likewise, we can define
si for each i. Then si is a section of the projection pi : X1×X2×X3 → Xi.
Now consider

L⊗p∗12s∗12(L−1)⊗p∗23s∗23(L−1)⊗p∗13s∗13(L−1)⊗p∗1s∗1(L)⊗p∗2s∗2(L)⊗p∗3s∗3(L).

The restriction of this line bundle to each Xi × Xj is trivial. By Theorem
2.12, this line bundle is trivial onX1×X2×X3. Note that pi factors through
pij (or pji, which is the same thing). In other words, it holds that p1 = q1◦p12,
p2 = q2 ◦ p23 and p3 = q3 ◦ p13, where qi is the appropriate projection.
Now we set L12 = s∗12(L) ⊗ q∗1s∗1(L), L23 = s∗23(L) ⊗ q∗2s∗2(L) and L13 =
s∗13(L)⊗ q∗3s∗3(L). Then we obtain desired isomorphism. □

Corollary 2.14. Let X be any variety, Y an abelian variety, and f, g, h :
X → Y morphisms. Then for all L ∈ Pic(Y ), we have

(f+g+h)∗L ∼= (f+g)∗L⊗(g+h)∗L⊗(h+f)∗L⊗f ∗L−1⊗g∗L−1⊗h∗L−1.

Proof of Corollary 2.14. Let pi : Y × Y × Y → Y be the projection onto
the ith factor. Setm := p1+ p2+ p3 : Y ×Y ×Y → Y . By considering ith
factor of Y × Y × Y as Xi and 0 ∈ Y as xi ∈ Xi, we can apply Corollary
2.13 to this case. Then it holds that

m∗L ∼= (p1+p2)
∗L⊗ (p2+p3)

∗L⊗ (p3+p1)
∗L⊗p∗1L−1⊗p∗2L−1⊗p∗3L−1

by the argument in the proof of Corollary 2.13. Therefore, the assertion
holds by considering the pull back of m∗L by the map (f, g, h) : X →
Y × Y × Y . □

Corollary 2.15 (The theorem of the square). Let X be an abelian variety.
For all line bundles L on X and x, y ∈ X,

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL.

In particular, the map ϕL : X → PicX defined by

x 7→ ϕL(x) := [t∗xL⊗ L−1] ∈ PicX

is a homomorphism.

Proof of Corollary 2.15. By considering Y asX , f, g as constant maps with
images x, y ∈ X respectively, and h as the identity map, the former assertion
directly follows from Corollary 2.14.

The desired isomorphism implies ϕL(x + y) = ϕL(x) + ϕL(y) in PicX .
Hence, the latter assertion also holds. □
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2.16. In the rest of this thesis, we will always keep the notation ϕL as ap-
peared in Corollary 2.15. We can easily see that ϕL1⊗L2 = ϕL1 + ϕL2 and
ϕt∗xL = ϕL. In addition, the followings hold.

Proposition 2.17. ker(ϕL) is a Zariski-closed subgroup of X .

Proof. Let m : X ×X → X be the addition morphism, p2 : X ×X → X
the second porjection. Apply Theorem 2.11 to the line bundlem∗L⊗p∗2L−1.
Then the set consisting of points x ∈ X such that m∗L ⊗ p∗2L

−1|{x}×X is
Zariski closed. Since m∗L ⊗ p∗2L

−1|{x}×X
∼= t∗xL ⊗ L−1, the assertion

holds. □

Proposition 2.18. Let X be an abelian variety, L a line bundle on X with
h0(X,L) > 0 and D an associated effective divisor. The following are
equivalent.

(i) L is ample on X .
(ii) kerϕL is finite.
(iii) H = {x ∈ X | t∗x(D) = D} is finite.

Proof. First, we show (1) ⇒ (2). If kerϕL is not finite, there is a positive
dimensional abelian variety Y such that Y ↪→ kerϕL ↪→ X . Consider
the line bundle M := m∗(L|Y )−1 ⊗ p∗1(L|Y ) ⊗ p∗2(L|Y ) on Y × Y , where
m : Y × Y → Y is the addition and pi : Y × Y → Y is the proojection
onto ith factor. Since Y ⊂ kerϕL, t∗y(L|Y ) ∼= L|Y holds for each y ∈ Y .
It implies that M is trivial by Theorem 2.11. Now consider the morphism
f : Y → Y ×Y defined by y 7→ (y,−y). Then f ∗M ∼= L|Y ⊗(−1)∗(L|Y ) is
trivial on Y . However, if L is ample onX , the restriction L|Y is also ample.
It means that L|Y ⊗ (−1)∗(L|Y ) is ample on Y . This is a contradiction since
dimY > 0. In other words, L is not ample.

It follows from H ⊂ kerϕL that (2)⇒ (3).
We now show (3)⇒ (1). By Corollary 2.15, the complete linear system
|2L| contains the divisors t∗x(D) + t∗−x(D). For any u ∈ X , we can find an
x ∈ X such that u ± x /∈ SuppD. It also means that u /∈ Supp(t∗x(D) +
t∗−x(D)). Hence, |2L| has no base points and we obtain the associated mor-
phism φ|2L| : X → |2L| = P(H0(X, 2L)). If L is not ample, then φ|2L| is
not finite [Gro61, Proposition (2.6.1)]. Then we can find an irreducible curve
C such that φ|2L|(C) = {1pt}. It means that C is disjoint from E ∈ |2L| if
C is not contained in E. In particular, t∗x(D) + t∗−x(D) is disjoint from C
for almost all x ∈ X . Now we take such a point x ∈ X . Since t∗x(D) and
t∗−x(D) are effective divisors, it holds that

Supp(t∗x(D) + t∗−x(D)) = Supp(t∗x(D)) ∪ Supp(t∗−x(D)).

It implies that t∗x(D) are disjoint from C. Now we use the following claim.
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Claim. If C is a curve on an abelian variety X and E is a prime divisor on
X such that C ∩ E = ∅, then E is invariant under translation by x1 − x2
for any x1, x2 ∈ C.

If D =
∑
niDi, where Di is a prime divisor, then t∗x(D) =

∑
nit

∗
x(Di).

By the above claim, each t∗x(Di) is invariant under translation by all points
x1 − x2 for any x1, x2 ∈ C. It means t∗x1−x2+x(D) = t∗x(D). It implies that
t∗x1−x2

(D) = D. Hence, H is at least 1-dimensional. In other words, H is
not finite.

To finish the proof, we show the above claim. If L = L(E), then L is
trivial onC sinceE is disjoint fromC. Considerm∗L,wherem : X×X →
X is the addition. Here we can find an irreducible nonsingular curve Cx in
X connecting any x and 0 ∈ X . Then m∗L|Cx×X is flat on Cx. Since
m∗L|{0}×X

∼= L and m∗L|{x}×X
∼= t∗xL, t∗xL is algebraically equivalent

to L. It implies that (t∗xL)|C has degree 0 for all x ∈ X . If E and t∗xC
intersected non-trivially, (t∗xL)|C would have positive degree. That is, t∗xC ⊂
E if t∗xC ∩ E ̸= ∅ for all x ∈ X . Take x1, x2 ∈ C and y ∈ E. Then
y ∈ t∗y−x2

(C) ∩ E. It implies t∗y−x2
(C) ⊂ E. Hence, x1 − x2 + y ∈ E. It

concludes the claim. □

Corollary 2.19. An abelian variety X is projective.

Proof. Let U be any affine open subscheme of X such that 0 ∈ U , and
D1, . . . , Dr the irreducible components of X \U . Set D :=

∑
Di. Then U

is stable under tx for any x ∈ H . It follows from 0 ∈ U and x = t∗x(0) ∈ U
for any x ∈ H that H ⊂ U . That is, H is affine. In addition, H is proper
sinceH is closed inX . Therefore,H is finite. By Proposition 2.18, it means
that L = L(D) is ample. Hence X is projective. □

2.20. By definition, Pic0X means the subgroup of PicX consisting of all
line bundles algebraically equivalent to the trivial line bundle. Let X be an
abelian variety of the form V/Λ, and p : V → X the universal cover. If
L = L(H,α) ∈ Pic(X) as in Theorem 2.5, then we obtain

t∗p(v)(L)
∼= L(H,α · γv),

where γv(λ) := e2π
√
−1ImH(v,λ) by definition of L(H,α). In particular, it

implies ϕL(H,α)(p(v)) = L(0, γv) ∈ Pic0X . Further, if L = L(H,α) ∈
Pic0X (that is, H = 0), then γv ≡ 1. Therefore, Pic0X can be rephrased as
follows:

Pic0X = {L ∈ PicX | ϕL = 0 ∈ Hom(X,PicX)}.
In other words, we obtain an exact seqence

0 // Pic0X // PicX
ϕ− // Hom(X,Pic0X).
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Set Λ⊥ := {v ∈ V | ImH(v, λ) ∈ Z, for all λ ∈ λ}. Then we can easily
see that kerϕL(H,α) = Λ⊥/Λ. Hence, the following are equivalent.

• kerϕL(H,α) is finite.
• Λ⊥/Λ is finite.
• Λ⊥ is a lattice.
• ImH is non-degenerated.
• H is non-degenerated.

Note that it is slightly different from Proposition 2.18. The above does not
need any global section of L = L(H,α).

The following is important to define the dual abelian variety.

Theorem 2.21. Let L be ample on an abelian variety X . Then ϕL : X →
Pic0X is surjective.

2.22. By Theorem 2.21, the group Pic0X can be viewed as a group coming
from an abelian variety X/ kerϕL.

Conversely, we can consider an abelian variety X̂ isomorphic to Pic0X
as an abstract group. Such an abelian variety X̂ is not unique, however, can
be uniquely characterized by considering some line bundle P on X × X̂
that we now describe, up to canonical isomorphisms.

In other words, there exists an unique pair (X̂,P) consisting of an abelian
variety X̂ with a group isomorphism X̂ ∼= Pic0X , and a line bundle P on
X × X̂ up to canonical isomorphisms satisfying the following properties.

• P|{0}×X̂ is trivial.
• For any α ∈ X̂ , the restriction Pα := P|X×{α} of P represents

the element ofPic0X given byα ∈ X̂ under the group isomorphism
X̂ ∼= Pic0X . In particular, the map α 7→ Pα is to be the group
isomorphism X̂ → Pic0X .
• (Universality.) For every normal variety S, and every line bundle
K on X × S such that
(i) Ks := K|X×{s} is in Pic0X for one (and hence all) s ∈ S,
(ii) K|{0}×S is trivial,
the unique set-theoretic map f : S → X̂ such that Ks

∼= Pf(s), is
to be a morphism, and K is to be isomorphic to (1X × f)∗P .

Such an X̂ is called a dual abelian variety of X , and such a P is called
a Poincaré bundle. The above properties mean that X̂ is the moduli space
parametrizing Pic0X . In particular, an ample line bundle L on X gives the
morphism ϕL : X ↠ X̂ as abelian varieties.

2.2. Periods of Abelian Varieties.
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This section is mainly based on [Kob05]. The aim of this section is to
describe the moduli of principally polarized abelian varieties explicitly.

2.23. According to (2.2) and (2.18), for any complex torus X of the form
V/Λ as in (2.2), the following are equivalent:

• X is an abelian variety.
• There exists a positive definite hermitian form H on V such that
ImH(Λ,Λ) ⊂ Z.

2.24. We now re-describe the above criterion in terms of some matrix. Take
an isomorphism V ∼= Cn. Let {λ1, . . . , λ2n} be a basis of Λ. Then

λj = (c1j , . . . , c
n
j ) ∈ Cn

via Λ ↪→ V ∼= Cn. Now consider the n× 2n-matrix

C =

c11 · · · c12n
... cij

...
cn1 · · · cn2n


and the 2n× 2n-matrix

C̃ =

(
C
C

)
.

Such a C is called a period matrix. Now we can easily see that det C̃ ̸= 0.
Set B̃ := C̃−1 = (B,B′), where B and B′ are 2n × n-matrices. It is easy
to see that B′ = B. Note that B̃ is described as follows:

For given X = V/Λ and the basis {λi} of Λ, we take a basis {ωi} of
Λ∗ ∼= H1(X,Z) so that real 1-from ωi is invariant under translations and∫

λi

ωj = δij

for each i, j = 1, . . . , 2n. Then, in H1(X,C), the following holds. ω1
...
ω2n

 = B̃ · t(dz1, . . . , dzn, dz1, . . . , dzn).

Let Q = (qjk) be the 2n× 2n skew symmetric matrix with

qjk := ImH(λj, λk) =

√
−1
2

(H(λk, λj)−H(λj, λk)) ∈ Z,

where H is a hermitian form on V . Now we obtain

Q =

√
−1
2

(tCHC − tCHC) =

√
−1
2

tC̃

(
H 0
0 −tH

)
C̃.
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Hence, tB̃QB̃ =
√
−1
2

(
H 0
0 −tH

)
. It implies that tBQB = 0 and

−
√
−1tBQB =

1

2
H.

If X is an abelian variety, we can find a Q such that −
√
−1tBQB > 0

by (2.23). Conversely, if there exists a Q with −
√
−1tBQB > 0, we can

see thatX is an abelian variety by consideringH := −2
√
−1tBQB. Then,

note that

H−1 =
−
√
−1
2

C · tQ−1 · tC

also holds. Hence, the following holds.

Theorem 2.25. For a complex torusX = V/Λ, we setB andC as in (2.24).
Then the following are equivalent.

• X is an abelian variety.
• (Riemann conditions) There exists a skew symmetric matrix Q ∈
Mat(2n,Z) such that tBQB = 0 and −

√
−1tBQB > 0.

• (Riemann conditions) There exists a skew symmetric matrix Q ∈
Mat(2n,Z) such that Q is non-degenerated, C ·Q−1 · tC = 0 and
−
√
−1 · C · tQ−1 · tC > 0.

2.26. In the argument in (2.24), the form of Q depends on the choice of the
basis {λi} of Λ and the basis {zj} of V . Actually, if Q is non-degenerated,
we can obtain Q of the form

Q =

(
0 ∆
−∆ 0

)
, where ∆ =

δ1 0
. . .

0 δn


with δi ∈ Z>0 such that δi|δi+1 for each i, by taking appropriate basis {λi}
of Λ. Such a choice of the basis {λi} of Λ is not unique. Such bases are
shifted by matrices M ∈ Sp(Q,Z), where

Sp(Q,Z) := {M ∈ SL(2n,Z) | tMQM = Q}.
Then the basis {λi} of Λ such that Q is of the above form is unique up to
actions by Sp(Q,Z).

In addition, we obtain the form (∆ Ω) of the period matrix C, where
Ω ∈ Mat(n,C), by taking the basis {zj} of V defined by zj := λj/δj for
each j = 1, . . . , n. Note that the choice of such a basis {zj} of V is unique
up to Sp(Q,Z). In other words, the form (∆ Ω) of a period matrix C is
unique once we take a basis {λi} of Λ such that Q is of the above form.
Such a form (∆ Ω) of a period matrix C is called the normalized period
matrix of C.
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Then the Riemann conditions as in Theorem 2.25 are rephrased as

Ω ∈ Hn := {Ω ∈ Mat(n,C) | Ω = tΩ, ImΩ > 0}.

Here, Hn is called the Siegel upper half-space. Actually, replacing the basis
{λi} of Λ by the actions of Sp(Q,Z) induces the actions on Hn. It implies
that Q = ImH and Λ determine a point of Sp(Q,Z)\Hn. Conversely, a
point of Sp(Q,Z)\Hn uniquely determines Q and Λ, or more simply, the
abelian variety of the form Cn/Λ with Q ∼ ImH ∈ H1,1(X,Z) such that
H > 0, where Q ∼ ImH means that Q and ImH are shifted together by
the appropriate coordinate transformation as (2.24). In particular, such a
pair (Cn/Λ, Q) determines a flat metric on Cn/Λ defined by the Hermitian
matrixH = (ImΩ)−1 with respect to the basis {zj(= λj/δj)} ofCn. Indeed,

it is enough to substitute C = (∆ Ω) and Q =

(
0 ∆
−∆ 0

)
for the equation

H−1 =
−
√
−1
2

C · tQ−1 · tC.

As a result, we obtain the following:

H−1 =
−
√
−1
2

(∆ Ω)

(
0 ∆−1

−∆−1 0

)(
∆
tΩ

)
= ImΩ.

In particular, for the basis {λj} of Cn which we often use later (cf. §4.3,
§6.3), the above period matrix C (resp., the above Hermitian matrix H) is
represented by C = (I ∆−1Ω) (resp., H = ∆(ImΩ)−1∆).

Definition 2.27. Let X be an abelian variety. A polarization of X is a ho-
momorphism ϕL : X → X̂ for some ample line bundle L on X .

2.28. Note that a polarization of X (or ϕL(H,α)) is determined by the first
Chern class c1(L(H,α)) = ImH ∈ H1,1(X,Z) rather than L(H,α) as we
saw in (2.20). More precisely, there exists a one-to-one correspondence be-
tween polarizations of X and first Chern classes H1,1(X,Z) coming from
ample line bundles on X . The type of the polarization ϕ = ϕL(H,α) (or
L(H,α)) is the vector (δ1, . . . , δn) ∈ Zn defined by Q = ImH of the form

Q =

(
0 ∆
−∆ 0

)
as in (2.26), where ∆ = diag(δ1, . . . , δn). If a polarization ϕ : X → X̂
is an isomorphism, the polarization ϕ is called a principal polarization. In
particular, ϕL(H,α) is principally polarized if and only if

Q = ImH =

(
0 I
−I 0

)
.
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Indeed, it follows from | kerϕL(H,α)| = |Λ⊥/Λ| = det∆. A pair (X,L)
is called a (resp., principally) polarized abelian variety if X is an abelian
variety and ϕL is (resp., principal) polarization.

Set
Q0 :=

(
0 I
−I 0

)
, Sp(2g,Z) := Sp(Q0,Z).

Note that Sp(2g,Z) is the usual symplectic group with Z-coefficients. Then
it follows from the argument in (2.26) that

Ag := Sp(2g,Z)\Hg

is the moduli space of principally polarized abelian varieties of dimension
g. Ag is not just a complex analytic space, but also has functorial properties,
which will not be introduced here.

2.3. Degenerations of Abelian Varieties.
This section is mainly based on [Got22, §2 and §3].

2.29. The aim of this section is to introduce some important results from
[Kün98] with respect to degenerations of abelian varieties.

2.30. Unless otherwise noted, we fix the notation as follows: Let R be a
complete discrete valuation ring (cDVR, for short) with uniformizing pa-
rameter t and algebraically closed residue field k (cf. (3.7)). We note that
we start with the residue field k of an arbitrary characteristic, but later we
make the condition stronger. Let S = SpecR, and let η be the generic point
of S. We denote byK = OS,η the fraction field ofR. Let |·| be the valuation
on K uniquely determined by |t| = e−1.

Definition 2.31. Let X be a locally Noetherian scheme and let D be an ef-
fective Cartier divisor on X . Let D1, ..., Dr be the irreducible components
of D endowed with the reduced induced closed subscheme structure. For
each subset J ⊆ {1, ..., r}, we denote by DJ the scheme-theoretic intersec-
tion ∩j∈JDj . If J = ∅, we note D∅ := X.
An effective divisor D on X is said to be with strict normal crossings if it
satisfies the following.

(i) D is reduced.
(ii) For each point x of D, the stalk OX,x is regular.
(iii) For each nonempty set J ⊆ {1, ..., r}, the schemeDJ is regular and

of codimension |J | in X .

2.32. LetX be a smoothK-variety. A model ofX is a flatR-algebraic space
X endowed with an isomorphism XK(= X ×S SpecK) → X . (We do
not assume properness and quasi-compactness.) An snc-model of X (or, a
semistable model ofX) is a regular model X ofX such that X is a scheme
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and the central fiber Xk(= X ×S Speck) is a divisor with strict normal
crossings. By the semistable reduction theorem [KKMS73, Chapter 4 §3],
there exists a finite extension K ′ of K such that X ×K K

′ has an snc-model
over the integral closure of R in K ′. Further, if X is projective, then we can
obtain a projective snc-model.
Definition 2.33 (Kulikov Model). LetX be a geometrically integral smooth
projective variety over K with ωX

∼= OX . A Kulikov model of X is a reg-
ular algebraic space X that is proper and flat over S with the following
properties:

• The algebraic space X is a model of X .
• The special fiber Xk of X is a reduced scheme.
• The special fiber Xk has strict normal crossings on X .
• ωX /S is trivial.

2.34. If a Kulikov model X of X is a scheme, then X is an snc-model.
Definition 2.35. A stratification of a schemeX is a not necessarily finite set
{Xα}α∈I of locally closed subsets, called the strata, such that every point of
X is in exactly one stratum, and such that the closure of a stratum is a finite
union of strata. We note that a stratification in the sense of [Kün98, (1.3)]
(or [KKMS73, p.56]) had to be a finite set.
2.36. For an snc-model X , the special fiber Xk induces a stratification of
Xk naturally. We denote by ∆(X ) the dual intersection complex of the
special fiber Xk with respect to this stratification.
2.37. For an R-scheme X , we denote by Xfor the formal completion of X
along the special fiber Xk. If X is covered by open affine subschemes of the
form SpecAα, the formal completion Xfor is obtained by gluing open formal
subschemes of the form SpfÂα together, where Âα is the t-adic completion
of Aα. In particular, for flat R-scheme X locally of finite type, the formal
completion Xfor is a flat formalR-scheme locally of finite type. Here, a flat
formal R-scheme locally of finite type (resp., admissible formal R-scheme)
means that it is covered by not necessarily finitely many (resp., finitely many)
open formal subschemes of the form SpfAα, where Aα is an admissible R-
algebra (cf. (3.52)).

It is time to introduce some important results from [Kün98] (cf. [FC90]).
2.38. Let G be a semiabelian scheme over R. That is, G is a smooth sepa-
rated group scheme of finite type over S whose geometric fibers are exten-
sions of Abelian varieties by algebraic tori. We assume that Gη is Abelian
variety. Let L be a line bundle on G such that Lη is ample on Gη. Then
we obtain the Raynaud extension

0→ T → G̃
π−→ A→ 0
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associated with G and L , where T is an algebraic torus, A an Abelian
scheme, and G̃ a semiabelian scheme over S. If the abelian part A is trivial,
G is called maximally degenerated. We note that we need to choose such
a line bundle L to obtain this Raynaud extension. However, this extension
is independent of the choice of L . The line bundle L induces a line bun-
dle L̃ on G̃. We assume that all line bundles have cubical structures as
well as [Kün98, (1.7)]. In this thesis, we shall use the categories DEGsplit

ample

and DDsplit
ample introduced by [Kün98]. Each category is a subcategory of

DEGample and DDample as constructed in [FC90], respectively. In particu-
lar, there is an equivalence of categories Mample : DDample → DEGample

(See [FC90, Chapter III, Corollary 7.2]). We denote Fample by the inverse of
this functor. Originally, Fample is a more naturally determined functor, and
its inverse, Mample, is the non-trivial functor.

Objects of the categoryDEGsplit
ample of split ample degenerations are triples

(G,L ,M ), where G is a semiabelian scheme over S such that T is a split
torus over S, L a cubical invertible sheaf on G such that Lη is ample on
Gη, and M a cubical ample invertible sheaf on A such that L̃ = π∗M . In
particular, M is trivial when G is maximally degenerated. By definition of
the algebraic torus, every ample degeneration (G,L ) becomes split after a
finite extension of the base scheme S.

On the other hand, objects of the category DDsplit
ample of split ample degen-

eration data are tuples

(A,M,L, ϕ, c, ct, G̃, ι, τ, L̃ ,M , λA, ψ, a, b).

Here, M and L are free Abelian groups of the same finite rank r, and ϕ :
L → M is an injective homomorphism. Functions a : L → Z and b : L ×
M → Z are determined byψ and τ , respectively. We note thatM reflects the
information of the Raynaud extension (or more precisely, its split torus part),
ϕ reflects the information of polarization, a and b reflect the information
of Gη-action. In particular, (G,L ) is called principally polarized if the
morphism ϕ induced by Mample is an isomorphism. This convention is the
same as in (2.28). Since we will not use the rest in this thesis, the rest is
omitted. Please refer to [Kün98] for more details.

We note that there is an equivalence of categories F : DEGsplit
ample →

DDsplit
ample (cf. [Kün98, (2.8)]). This functor is defined by the restriction of

Fample = M−1
ample : DEGample → DDample to DEGsplit

ample.

2.39. The key idea of [Kün98] is to construct rational polyhedral cone de-
compositions that give us the relatively complete model as in [Mum72]. To
construct them, we shall use the category C introduced by [Kün98, §3] (cf.
[Ove21]).
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Objects of the category C are tuples (M,L, ϕ, a, b), where M and L are
free Abelian groups of the same finite rank, ϕ : L → M is an injective
homomorphism, a : L→ Z is a function with a(0) = 0, and b : L×M → Z
is a bilinear pairing such that b(−, ϕ(−)) is symmetric, positive definite, and
satisfies

a(l + l′)− a(l)− a(l′) = b(l, ϕ(l′)).

Here, we set B(li, lj) := b(li, ϕ(lj)), where {li} is a basis of L. By defini-
tion, B : L× L→ Z is a symmetric positive definite quadric form.

There is a natural forgetful functor For : DDsplit
ample → C. This function

extracts the information necessary to construct rational polyhedral cone de-
compositions from the degeneration data DDsplit

ample.

2.40. We set S ′ = SpecR′, where R′ is another cDVR and η′ is its generic
point. Let f : S ′ → S be a finite flat morphism, let ν be the ramification
index of f ∗ : K = OS,η ↪→ K ′ = OS′,η′ .

In fact, the two categories DEGsplit
ample and DDsplit

ample depend on the base
field K. That is, DEGsplit

ample (resp., DDsplit
ample) should have been written

as DEGsplit
ample,K (resp., DDsplit

ample,K). In particular, these categories are not
closed under base change along f : S ′ → S. However, since we are dealing
with degenerations after sufficient finite extension, these abbreviations do
not cause any problems.

On the other hand, C does not depend on the base fieldK. Let us see what
happens when we take the base change along f : S ′ → S.

Given (G,L ,M ) ∈ DEGsplit
ample,K , let (G′,L ′,M ′) ∈ DEGsplit

ample,K′ be
the base change of (G,L ,M ) along f : S ′ → S. If For(F (G,L ,M )) =
(M,L, ϕ, a, b) ∈ C, then For(F (G′,L ′,M ′)) ∼= (M,L, ϕ, ν · a, ν · b) (cf.
[Kün98, (2.9)]).

2.41. Let H be a finite group acting on (G,L ,M ) ∈ DEGsplit
ample. It means

that we can regard each h ∈ H as the S-automorphism

h : (G,L ,M )→ (G,L ,M )

and these morphisms are compatible in a natural way. We note that we can
define the action of H on (G,L ,M ) over its action on S, as in [Kün98,
(2.10)], more generally, although we will not use it this time. In that defini-
tion, the condition thatH acts trivially on S is not imposed. Conversely, we
assume thatH acts trivially onS in this thesis. Further, we also define the ac-
tion ofH onF ((G,L ,M )) ∈ DDsplit

ample (resp., For(F ((G,L ,M ))) ∈ C).

2.42. Given an object For(F (G,L ,M )) = (M,L, ϕ, a, b) ∈ C on which
the finite group H acts as 2.41, we obtain an action (from the left) of H on
L, and an action (from the right) of H on M . We set Γ := L ⋊ H and
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M̃ := M ⊕ Z. Then we denote by N (resp., Ñ ) the dual of M (resp., M̃ ).
Let ⟨−,−⟩ : M̃ × Ñ → Z be the canonical pairing.

Now we define the action of Γ on Ñ = N ⊕ Z via

S(l,h)((n, s)) := (n ◦ h+ sb(l,−), s),

as in [Kün98, p.181]. As we will now explain, this action reflects the natural
action of Γ on Tη = SpecK[M ], where T is a split torus part of G̃. At first,
we identify m̃ = (m, k) ∈ M̃ with tkXm ∈ K[M ]. In the proof of [Kün98,
Lemma 3.7], the action of L on Tη = SpecK[M ] induced by the natural
action of Tη is defined as follows:

l : M̃ → M̃, (m, s) 7→ (m, b(l,m) + s).

We can easily verify that this action is dual to the action S(l,Id) in the sense
of ⟨l · m̃, ñ⟩ = ⟨m̃, S(l,Id)(ñ)⟩. In the same way, we can easily check that
the action of h ∈ H on T is dual to S(0,h). Hence, the action of γ ∈ Γ on T
corresponds to Sγ on Ñ .

In addition, we consider the function χ : Γ× ÑR → R defined by

χ((l, h), (n, s)) = sa(l) + n ◦ ϕ ◦ h−1(l)

as in [Kün98, p.181].
In ÑR = NR ⊕ R, we have the cone C := (NR ⊕ R>0) ∪ {0}. The cone

C is stable under the action of Γ. We shall consider a smooth Γ-admissible
rational polyhedral cone decomposition Σ := {σα}α∈I which admits a Γ-
admissible κ-twisted polarization function φ : C =

⋃
α∈I σα → R for some

κ ∈ N. Let us take a moment to recall these definitions.

Definition 2.43. A rational polyhedral cone decomposition Σ := {σα}α∈I
of C is called Γ-admissible if the action of Γ causes the bijections from I to
itself (that is, the decomposition Σ invariant under the action of Γ) and we
can take a system of finitely many representatives {σα} for the action of Γ
(that is, there are at most finitely many orbits).

A function φ : C =
⋃

α∈I σα → R is called polarization function associ-
ated with Σ if it satisfies the following properties:

• φ is continuous function that satisfies φ(Ñ ∩ C ) ⊂ Z
• φ(rx) = rφ(x), for any r ∈ R≥0

• The restriction φ|σα to each cone σα is a linear function
• φ is strictly convex function for Σ. That is, for any σ ∈ Σ, there

exists r ∈ N and m̃ ∈ M̃ such that ⟨m̃, ñ⟩ ≥ rφ(ñ) for all ñ ∈ C
and σ = {ñ ∈ C | ⟨m̃, ñ⟩ = rφ(ñ)}

A polarization function φ : C → R is called κ-twisted Γ-admissible for
some κ ∈ N if it satisfies φ(x)−φ◦Sγ(x) = κχ(γ, x) for all γ ∈ Γ, x ∈ C .
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When κ is not important, it is often referred to as Γ-admissible polarization
for short.

We denote by Id ⊂ I the set of the indices corresponding to the d-
dimensional cones of Σ. We set I+ :=

⋃
d>0 I

d. Since Σ is Γ-admissible,
the group Γ acts on each Id. Overkamp combines various Theorems and
Propositions in [Kün98] into the following result [Ove21, Theorem 2.2]:

Theorem 2.44 ([Kün98], [Ove21, Theorem 2.2]). We set a semiabelian de-
generation (G,L ,M ) ∈ DEGsplit

ample and assume thatH acts on this object
as (2.41). We denote by A the Néron model of the Abelian varietyA := Gη.
Let (M,L, ϕ, a, b) := For(F ((G,L ,M ))) and suppose we have a smooth
Γ-admissible rational polyhedral cone decomposition Σ := {σα}α∈I of
C ⊂ ÑR. Furthermore, we assume that this decomposition Σ has the fol-
lowing properties:
(a) There exists a κ-twisted Γ-admissible polarization function φ for the

decomposition Σ.
(b) The decomposition Σ is semistable. That is, the primitive element of any

one-dimensional cone of the decomposition Σ is of the form (n, 1) for
some n ∈ N.

(c) The cone σT = {0} ×R≥0 is contained in the decomposition Σ.
(d) For all l ∈ L\{0} and α ∈ I , it holds that

σα ∩ S(l,Id)(σα) = {0}.

Then there exists a projective snc model P of A over S associated to Σ
and a line bundle LP such that the following holds:

(i) The canonical morphism Psm → A is an isomorphism.
(ii) The action of H on G = A 0 extends uniquely to P , and the restric-

tion of LP to G is isomorphic to L ⊗κ, where A 0 means the identity
component of A .

(iii) Let I+L be the set of orbits I+L := I+/L. Then the reduced special fiber
of P has a stratification indexed by I+L . This stratification is preserved
by the action of H , and the induced action of H on the set of strata is
determined by the action of H on I+L .

(iv) The strata corresponding to one-dimensional cones are smooth over k.

2.45. Let us discuss P , which appears in Theorem 2.44. For each cone
σ ∈ Σ, we define the affine scheme Uσ := SpecR[σ∨ ∩ M̃ ], where σ∨ :=
Hommonoid(σ,R≥0) and we identify m̃ = (m, k) ∈ M̃ with tkXm ∈ K[M ].
Then we can define P̃ by gluing these Uσ together as in [Kün98, 1.13]. In
particular, we obtain the toroidal embedding Tη = Speck[M ] ↪→ P̃ as in
loc.cit. This P̃ is called the toroidal compactification of Tη = SpecK[M ]
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overR associated withΣ. Further, the cone σT induces the embeddingTη ↪→
T = UσT

= SpecR[M ]. It implies that the toroidal embedding Tη ↪→ P̃

extends to a T -equivariant embedding T ↪→ P̃ . The special fiber of P̃ is
a reduced divisor with strict normal crossings on P̃ and has a stratification
indexed by I+.

If (G,L ,M ) ∈ DEGsplit
ample is maximally dagenerated, then the above

P of Theorem 2.44 satisfies Pfor
∼= P̃for/L. Then, this P̃ is also called

a relatively complete model as in [Mum72]. In general, the above P is
constructed by taking a contraction product G̃×T P̃ , which we do not use
in this thesis. See [Kün98, §3.6] for the details.

2.46. In [HN17, Theorem 5.1.6], they proved this P is a Kulikov model of
A (cf. [Ove21, Corollary 2.8]).

2.47. For the tuple (M,L, ϕ, a, b) := For(F ((G,L ,M ))), b gives the in-
jective homomorphism b̃ : L → N = M∨ defined by b̃(l) = b(l,−). We
identify L with b̃(L). That is, we regard L as the sublattice of N . As we see
before, Γ act on Ñ as follows:

S(l,h)((n, s)) = (n ◦ h+ sb̃(l), s).

In particular,
S(l,h)((n, 1)) = (n ◦ h+ b̃(l), 1).

2.48. Künnemann proved the existence of the cone decomposition Σ which
satisfies the assumption of Theorem 2.44 as follows:

Proposition 2.49 ([Kün98, Proposition 3.3 and Theorem 4.7]). We set the
tuple (G,L ,M ) ∈ DEGsplit

ample , and assume that the finite group H acts
on this object. Let (M,L, ϕ, a, b) := For(F ((G,L ,M ))). After taking
a base change along f : S ′ → S as in (2.40) if necessary, there exists a
smooth rational polyhedral cone decomposition Σ := {σα}α∈I which has
the properties (a)-(d) listed in Theorem 2.44.

2.50. Now we recall Künnemann’s proof of the above Proposition 2.49.
Please refer to loc.cit. for more details. We consider the functionφ : C → R
defined by

ñ 7→ min
l∈L

χ(l, ñ),

where χ(l, ñ) means χ((l, Id), ñ). This φ gives the decomposition Σ =
{σα} defined by

σα = {ñ ∈ C | φ(ñ) = χ(αi, ñ)
∀αi ∈ α},

where α = {αi} is a finite set of L. Then φ is a 1-twisted polarization
function associated with this Σ as in [Kün98, Proposition 3.2]. In particular,
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it holds that S(l,h)(σα) = σh(α)−l. Now we consider the cone
σ{0} = {ñ ∈ C | φ(ñ) = χ(0, ñ) = 0}.

It is clear that C =
⋃
Sl(σ{0}). We will now show that the desired subdivi-

sion can be obtained in three steps as follows:
First step : For this cone σ{0}, we can subdivide it and obtain an H-

invariant finite cone decomposition {τβ} of σ{0} such that each cone τβ is
a simplex and the stabilizer of τβ in H acts trivially on τβ . Further we can
subdivide the whole Σ by transporting the above subdivision on σ{0} via L-
action on C and obtain an H-invariant cone decomposition {τα} of C . In
addition, we can modify the polarization function φ and obtain a 1-twisted
polarization function for this subdivision {τα} after replacing K by a finite
extension.

Second step : We choose a system {τ1, ..., τn} of representatives for the
action of Γ on the decomposition {τα}. According to [KKMS73, I.2, proof
of Theorem 11], for any subdivision Σi of each τi, there is a subdivision of
the subdivision Σi such that it has a κ-twisted polarization function on τi
for sufficiently large κ ∈ N. In the same way as above, we can extend these
subdivisions to the whole via L-action. Further, we can modify the polar-
ization function on C and obtain a κ-twisted polarization function for this
subdivision Σ′ after replacing K by a finite extension. Hence, we consider
a subdivision that satisfies (c), (d) to obtain a subdivision that satisfies (a),
(c), (d).

Third step : We choose a system {τ1, ..., τn} of representatives for the
action of Γ on the decomposition Σ′. By using the semistable reduction
theorem [KKMS73, II.2, proof of Theorem11], we can subdivide each τi so
that the resulting decomposition Σ′′ is smooth. In addition, we can obtain
a κ′-twisted polarization function for this subdivision Σ′′ after replacing K
by a finite extension. Hence, the desired decomposition is constructed. □

2.51. LetB be a topological space endowed with a simplicial complex struc-
ture. We denote by Σ := {σα}α∈I the set of all faces of B. Let σ◦ be the
relative open set of σ ∈ Σ. We define the open star Star(σα) of σα ∈ Σ as
follows:

Star(σα) :=
⋃
β≻α

σ◦
β,

where β ≻ α means that σα is a face of σβ . Then Star(σ) is an open set of
B. In particular, {Star(σα)}α∈I is a open cover of B.

2.52. The decomposition Σ := {σα}α∈I of C as Theorem 2.44 gives the
smooth rational polyhedral decomposition Σ in NR obtained by intersec-
tiong the cones in Σ with NR × {1}. Let σα ∈ Σ be the intersection of σα
with NR × {1}. Then this decomposition Σ = {σα}α∈I gives a simplicial
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complex structure toNR. Moreover the dual intersection complex ∆(P̃) of
P̃k coincides with Σ as we see in (2.45). Theorem 2.44 implies that the dual
intersection complex ∆(P) of Pk has the simplicial complex structure of
Σ/L := {σα}α∈I+L .

2.53. To make it easier to see the covering map, which is the key to Theorem
5.22 as we will look at later, we refine Proposition 2.49.

Lemma 2.54. Let F be the fixed locus of H-action on NR/L. Then NR/L
has a simplicial complex structure such that any 0-vertex of NR/L is in-
cluded in NQ/L and F is a compact sub simplicial complex.

Proof. It follows from Proposition 2.49 thatNR/L has a simplicial complex
structure such that the canonical projection NR ↠ NR/L is a simplicial
map and any 0-simplex in NR/L is included in NQ/L. We show that F
is compact and has a simplicial complex structure such that any 0-simplex
of F is included in NQ/L. Note that F might not be connected. Then the
assertion follows from [RS82, 2.12 Addendum].

From now on, we prove the claim. By definition, F is denoted as follows:

F =
⋃

h∈H\{0}

Fh,

where Fh := {x ∈ NR/L | x = h(x)}. Under the setting as we considered
in (2.42), H acts on NR/L via H → (GL(L)⋉ L) ∩ (GL(N)⋉N). In
other words, h is determined by h̃ ∈ (GL(L)⋉ L)∩ (GL(N)⋉N) via the
canonical projectionNR → NR/L. Here, we identify hwith h̃. In particular,
denote h : NR → NR by h(y) = Ay + b, where A ∈ GL(L) ∩GL(N) and
b ∈ L(⊂ N). Set g : NR → NR as g(y) := h(y)− y. For any y1, y2 ∈ NR,
g(y1 + y2) = g(y1) +Ay2− y2 holds. It implies that g(y) ∈ L is equivalent
to g(y + a) ∈ L for some a ∈ L. Taka a basis {li} of L in NR and set a
fundamental domain D of NR/L as follows:

D :=
dimN∑
i=1

[0, 1] · li ⊂ NR.

Then it holds that

F ′
h := {y ∈ D | g(y) ∈ L}↠ Fh

by the canonical projection NR → NR/L. Since L is discrete in NR and
g(D) is compact, V := g(D) ∩ L is a finite set. Here, we can denote F ′

h by

F ′
h =

⋃
v∈V

F ′
h,v,
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where F ′
h,v := {y ∈ D | g(y) = v}. Since g is an integral affine map (or

g ∈ Hom(N,N)⋉N ), F ′
h,v is a closed set of a subaffine space in NR with

rational slopes for the coordinates of NR containing some point in NQ. It
implies that F ′

h,v has a simplicial structure such that each vertex of F ′
h,v is in

NQ. In particular, the inclusion F ′
h,v → NR is a piecewise linear map. Since

the canonical projection NR ↠ NR/L is a simplicial map, the composition
F ′
h,v → NR ↠ NR/L is also a piecewise linear map. By [RS82, 2.14 Theo-

rem], there are subdivisions of NR/L and F ′
h,v such that F ′

h,v → NR/L is a
simplicial map and any 0-simplex of the subdivision ofNR/L is included in
NQ/L. Hence, the image Fh,v of F ′

h,v has a simplicial structure induced by
the simplicial map F ′

h,v → NR/L. Here, any intersection (as a cell complex)
between two cell complexes is also a cell complex. Since F ′

h,v is an intersec-
tion of D and some subaffine space in NR with rational slopes intersecting
NQ, for any Fh,v and Fh′,v′ , it holds that any 0-cell of the cell complex of
the intersection is included in NQ/L. Hence, the union of Fh,v and Fh′,v′

is a cell complex such that all 0-cells are in NQ/L by gluing together along
the intersection cell complex. It is well-known that any cell complex can be
subdivided to a simplicial complex without introducing any new vertices.
That is, the union of Fh,v and Fh′,v′ has a simplicial complex structure such
that all 0-simplexes are in NQ/L. Since F is a finite union of simplicial
complexes, more precisely

F =
⋃

h∈H\{e}

⋃
v∈V

Fh,v,

then it follows inductively that F has a simplicial structure such that any
vertex of F is included in NQ/L. Besides, since Fh,v is compact, so is F .
Hence, the claim follows. □

Lemma 2.55. Let F be the fixed locus of H-action on NR/L. Let F̃ be the
inverse image of the fixed locus F by the quotient map NR → NR/L. After
taking a base change along f : S ′ → S as in (2.40) if necessary, there exists
a smooth rational polyhedral cone decomposition Σ = {σα}α∈I which has
not only the properties (a)-(d) listed in Theorem 2.44 but also the following
(e)-(g).

(e) For all l ∈ L\{0} and α ∈ I+, we have
Star(σα) ∩ S(l,Id)(Star(σα)) = ∅.

(f) F has a simplicial structure F such that F is a subcomplex of the
complex Σ/L as appeared in (2.52). In particular, for any simplex
τ of the induced simplicial structure F̃ on F̃ , a cone generated by
(τ, 1) ⊂ ÑR := NR×R corresponds to some index in I . We denote
by Ising ⊂ I+ the set of indices corresponding to F̃ .
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(g) For all γ ∈ Γ\{0} and α ∈ I+ \ Ising, we have

Star(σα) ∩ Sγ(Star(σα)) = ∅.

Proof. It follows from Proposition 2.49 that there is a smooth rational poly-
hedral cone decomposition Σ which satisfies the conditions (a)-(d) after re-
placingK by a finite extension. Then we refine Σ to obtain a desired decom-
position as follows: In the second step of (2.50), we consider a subdivision
that satisfies (e), (f), (g). Note that each stabilizer of H on each τ ∈ Σ acts
trivially on the cone τ and L acts on τ by transporting via b̃(L). Then it
is easily verified that such subdivisions exist by Lemma 2.54. Afterward,
we apply the third step of (2.50) to this decomposition. Then the resulting
decomposition is a desired one. □

Example 2.56. If H = {±1}, then F̃ = 1
2
L and F = 1

2
L/L. In particular,

it holds that |F | = 2dimN . Further, |F/H| = 2dimN follows.

2.57. For the rest of this section, we assume that the residue field k of R is
of characteristic p ̸= 2, We set that H = {±1} and the action of H on M
is determined by −1 : m 7→ −m. In particular, H = {±1} also acts on
N =M∨ by −1 : n 7→ −n.

2.58. Let P be the projective model of A and A be the Néron model of A
as Theorem 2.44. For an abelian variety Z, we denote by Z[2] the 2-torsion
of Z, that is the kernel of the morphism [2] : Z → Z defined by x 7→ 2x.
After replacing K by finite extension, we may assume that A[2] is constant
over K without loss of generality. Overkamp proved this A [2] coincides
with the fixed locus of the action of H on P when A is of 2-dimensional
[Ove21, Theorem 3.7]. Then the action of H = {±1} on P extends to
the blow-up X̃ := BlA [2]P along the closed subscheme A [2]. Hence we
obtain X := X̃ /H . Let X be the Kummer surface associated with A.
Overkamp proves this X is a Kulikov model of X [Ove21, Theorem 3.12].

2.59. We fix the same notation as (2.52) and (2.58). The dual intersection
complex ∆(X̃ ) of X̃k has the same stratification as the dual intersection
complex ∆(P) of Pk. Indeed, Overkamp proved that the special fiber X̃
is BlAk[2]Pk [Ove21, Lemma 3.10] and Ak[2] is a finite set lying on top
dimensional strata of Pk [Ove21, Lemma 3.6]. We can also check the latter
by using Lemma 2.55. Hence, the blow-up along Ak[2] does not change the
dual intersection complex. It implies that ∆(P) ∼= ∆(X̃ ) as simplicial
complexes.

We denote by I+Γ the set of orbits I+Γ := I+/Γ. Theorem 2.44 says thatH
acts on ∆(P) ∼= ∆(X̃ ) preserving the simplicial complex structure. It im-
plies that the map ∆(X̃ ) ↠ ∆(X ) is double branched cover as simplicial
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complexes. The dual intersection complex ∆(X ) of Xk has a stratification
indexed by I+Γ . In particular, ∆(X ) has the simplicial complex structure of
Σ/Γ := {σα}α∈I+Γ .

3. Basic Theory of Berkovich Analytic Spaces

3.1. Definitions and basic properties.
This section is essentially based on [Ber90, §1, §2, §3], and its structure

is based on [Got20, §2 and §3]. In particular, a part of our original results
proved in [Got20] is discussed in the latter half of this section.

Definition 3.1. Let A be a commutative ring with identity 1. A seminorm
on A is a function | · | : A→ R≥0 possessing the following properties:

(i) |0| = 0,
(ii) |1| ≤ 1,
(iii) |f − g| ≤ |f |+ |g|,
(iv) |fg| ≤ |f ||g|,

for all f, g ∈ A. Furthermorea seminorm | · | on A is called
• a norm if the equality |f | = 0 implies f = 0.
• non-Archimedean if |f − g| ≤ max{|f |, |g|} for all f, g ∈ A.
• multiplicative if |1| = 1 and |fg| = |f ||g| for all f, g ∈ A.

3.2. For each seminorm | · | on A, the following are equivalent:
• | · | is a norm on A.
• The induced topology on A is Hausdorff.

Definition 3.3. A Banach ring A = (A , || · ||) is a normed ring A that is
complete with respect to its norm || · ||.

3.4. We can consider any ring A as a Banach ring by the trivial norm | · |0
defined as below.

For each f ∈ A,

|f |0 :=

{
1 (if f ̸= 0),

0 (if f = 0).

The trivial norm is a non-Archimedean norm. Moreover, it is clear that the
normed ring (A, | · |0) is complete. In other words, (A, | · |0) is a Banach
ring. Further, when A is a domain, the norm is multiplicative.

3.5. A norm | · | is called a valuation if it is multiplicative. By the argument
in (3.4), for any field K, the trivial norm | · |0 is a valuation. Then (K, | · |0)
is called a trivially valued field.



On Affine Structures Which Come from Berkovich Geometry for fqav 29

3.6. Let | · |∞ be the usual absolute value on C. Then the hybrid norm | · |hyb
on C is defined by

z 7→ |z|hyb := max{|z|∞, |z|0}.
As the name implies, the map | · |hyb is a norm on C. However, | · |hyb is
neither multiplicative nor non-Archimedean.

3.7. We recall the definition of DVR. R is called a DVR if R is a noetherian
local domain of dimension 1 with the principally maximal ideal m = (t).
Then we obtain the map | · | : R→ R defined by

|f | := inf{e−n | f ∈ mn}.
It is obvious that the map | · | is a non-Archimedean valuation on R. The
pair (R, | · |) is called a complete DVR if (R, | · |) is a Banach ring, that is,
the induced topology on R is complete.

Definition 3.8. Let K be a field.
• (K, || · ||) is called a Banach field if (K, || · ||) is a Banach ring.
• (K, ||·||) is called a complete valuation field if (K, ||·||) is a Banach

field whose norm is a valuation.
• (K, ||·||) is called a non-Archimedean field if (K, ||·||) is a complete

valuation field whose norm is non-Archimedean.

Example 3.9. Any trivially valued field is a non-Archimedean field. IfR is a
complete DVR, then the fractional fieldK = Frac(R) is a non-Archimedean
field. Such a K is called a complete DVF.

3.10. For any complete valuation field K = (K, | · |), the value group of K
is defined by

|K×| := {|f | ∈ R | f ∈ K×(= K \ {0})}.
Further, we set√

|K×| := {a ∈ R≥0 | an ∈ |K×| for some n ∈ Z>0}.
Here, |K×| can be considered as a Z-module by taking the logarithm. In the
same way,

√
|K×| can be considered as a Q-vector space. In addition, we

can easily see that
√
|K×| ∼= |K×| ⊗Z Q.

Definition 3.11. Let (A , || · ||) be a Banach ring. A seminorm | · | on A is
bounded if there exists C > 0 such that |f | ≤ C||f || for all f ∈ A .

3.12. Let (A , || · ||) be a Banach ring and I be an ideal of A . Then the
residue seminorm | · | : A /I → R on A /I is defined as follows: For any
f ∈ A /I,

|f | := inf{||g|| ∈ R≥0 | g ∈ A , f = g + I ∈ A /I}.
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We can easily see that the map is a seminorm. However, in general, it is not
a norm. I is called closed if the residue seminorm is norm. If I is closed,
the quotient A /I again becomes a Banach ring by the residue seminorm.

Definition 3.13. Let (A , || · ||A ) and (B, || · ||B) be Banach rings. A ring
homomorphism φ : A → B is bounded if there exists C > 0 such that

||φ(f)||B ≤ C||f ||A

for each f ∈ A . Further, a ring homomorphism φ : A → B is admissible
if the residue seminorm of A / kerφ is equivalent to the restriction of the
norm || · ||B to Imφ through A / kerφ ∼= Imφ ⊂ B.

3.14. A bounded homomorphism is the most fundamental morphism be-
tween two Banach rings. An admissible homomorphism is a bounded ho-
momorphism that holds the fundamental theorem on homomorphisms as
Banach rings.

Definition 3.15. Let A be a commutative Banach ring with identity. The
spectrum M (A ) is the set of all bounded multiplicative seminorms on A
provided with the weakest topology with respect to which all real valued
functions on M (A ) of the form | · | 7→ |f |, f ∈ A , are continuous.

Theorem 3.16 ([Ber90, Theorem 1.2.1]). Let A be a non-zero commutative
Banach ring with identity. The spectrum M (A ) is a nonempty, compact
Hausdorff space.

3.17. It is well-known that, if k is a complete valuation field, then M (k) =
{1pt}. Let | · |x be the multiplicative seminorm on A corresponding to
x ∈ M (A ). In the rest of this thesis, we will keep the notation | · |x. For
any bounded homomorphism φ : A → B, it induces the continuous map
φ♯ : M (B) → M (A ) defined by |f |φ♯(x) := |φ(f)|x for all f ∈ A for
each x ∈M (B).

3.18. For each x ∈ M (A ), we denote by px the kernel of | · |x. This is a
prime ideal of A . Then the multiplicative seminorm | · |x on A induces a
valuation | · |x on A /px defined by

|f |x := |f |x

for each f ∈ A . By abuse of language, we denote by x the induced valuation
x. The completion of the fraction field of A /px with respect to this valuation
x is denoted by H (x). In this thesis, we call H (x) the Berkovich residue
field of x although this is not a common way to call it. Further, we call
dimQ

√
|H (x)×| the rational rank of x.
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3.19. For each x ∈M (A ), we obtain the Berkovich residue field H (x) as
in (3.18). Now consider the valuation ring with respect to the valuation | · |x
on H (x) as follows:

H (x)◦ := {f ∈H (x) | |f |x ≤ 1}.

Then we obtain the residue field of H (x)◦ as follows:

H̃ (x) := H (x)◦/H (x)◦◦,

where H (x)◦◦ is the maximal ideal of H (x)◦. Such a H̃ (x) is called the
double residue field of x ∈M (A ).

From now on, we review the construction of Berkovich analytification
Xan for any scheme X of locally finite type over a non-Archimedean field
K. At first, we recall the Banach ring corresponding to a closed disc.

Definition 3.20. Let (K, | · |) be a non-Archimedean field.
For any r1, . . . , rn ∈ R>0, we set:

K{r−1
1 T1, . . . , r

−1
n Tn} := {f =

∑
I∈Zn

≥0

aIT
I | aI ∈ K, lim sup

|I|→∞
|aI |rI = 0},

where |I| = i1 + · · · + in, T I = T i1
1 · · ·T in

n and rI = ri11 · · · rinn for each
I = (i1, . . . , in) ∈ Zn

≥0. For brevity, this algebra will also be denoted by
K{r−1T}.

3.21. K{r−1T} is a commutative Banach ring with respect to the valuation

||f || = max
I
|aI |rI .

If ri = 1 for all i, then the valuation is called the Gauss norm. Further,K{T}
is called the Tate algebra overK. Now considerE(0, r) := M (K{r−1T}).
The spectrum E(0, r) can be considered as an analog of the complex closed
disc at the origin with radii r = (r1, . . . , rn).

Example 3.22. Let us assume that the valuation on K is trivial. If ri ≥
1 for all 1 ≤ i ≤ n, then K{r−1T} coincides with the polynomial ring
K[T1, . . . , Tn]. On the other hands, if ri < 1 for all 1 ≤ i ≤ n, then
K{r−1T} coincides with the ring of formal power series K[[T1, . . . , Tn]].

Definition 3.23. Let A be a Banach ring. A is a BanachK-algebra if there
is a K ↪→ A is admissible injective.

Example 3.24. Now consider K{r−1T}. By the definition of K{r−1T},
it is obvious that there is the natural admissible injection K ↪→ K{r−1T}.
That is, K{r−1T} is a Banach K-algebra.
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Definition 3.25. Let A be a Banach K-algebra. A is called a K-affinoid
algebra (resp., strictly K-affinoid algebra) if there exists an admissible sur-
jective K-homomorphism K{r−1T} ↠ A (resp., K{T} ↠ A ). Further,
X is called a (resp., strictly) K-affinoid space if X = M (A ) for some
(resp., strictly) K-affinoid algebra A .

Example 3.26. By definition, K{r−1T} is a K-affinoid algebra. It implies
that E(0, r) = M (K{r−1T}) is a K-affinoid space.

The following is important.

Fact 3.27 ([Ber90, Proposition 2.1.3]). Any K-affinoid algebra is noether-
ian and all of its ideals are closed.

Definition 3.28. Let (A , | · |) be aK-affinoid algebra. For any r1, . . . , rn ∈
R>0, we set:

A {r−1
1 T1, . . . , r

−1
n Tn} := {f =

∑
I∈Zn

≥0

aIT
I | aI ∈ A , lim sup

|I|→∞
|aI |rI = 0},

where|I| = i1 + · · · + in, T I = T i1
1 · · ·T in

n and rI = ri11 · · · rinn for each
I = (i1, . . . , in) ∈ Zn

≥0. This is a commutative Banach ring with respect
to the valuation ||f || = maxI |aI |rI . For brevity, this algebra will also be
denoted by A {r−1T}.

3.29. By the definition, there is the natural inclusion A → A {r−1T}. It is
obvious that A {r−1T} is K-affinoid algebra.

Definition 3.30. Let A be aK-affinoid algebra. Take f = (f1, . . . , fn) and
g = (g1, . . . , gm) for some fi, gj ∈ A . Further, take p = (p1, . . . , pn) and
q = (q1, . . . , qm) for some pi, qj ∈ R>0. Then A {p−1f, qg−1} is defined to
be a K-affinoid algebra of the form

A {p−1T, qS}/(T1 − f1, . . . , Tn − fn, g1S1 − 1, . . . , gmSm − 1).

3.31. It follows from Fact 3.27 that any quotient of a K-affinoid algebra is
also aK-affinoid algebra with the residue seminorm. In particular, it implies
that A {p−1f, qg−1} is K-affinoid.

The natural morphism A → A {p−1f, qg−1} induces the closed immer-
sion M (A {p−1f, qg−1}) ↪→ M (A ). If we set X = M (A ), then the
image of the closed immersion M (A {p−1f, qg−1}) ↪→ M (A ) coincides
with the closed set

X{p−1f, qg−1} = {x ∈ X | |fi|x ≤ pi, |gj|x ≥ qj, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

In particular, it holds that X{p−1f, qg−1} ∼= M (A {p−1f, qg−1}). Such an
affinoid space of the form X{p−1f, qg−1} is called a Laurent domain in X .
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Fact 3.32 ([Ber90, § 2.2]). LetX be aK-affinoid space. The Laurent neigh-
borhoods of a point x ∈ X form a basis of closed neighborhoods of x.

Definition 3.33. A closed set V ⊂ M (A ) is said to be a K-affinoid do-
main in X if there exists a bounded homomorphism of K-affinoid algebras
φ : A → AV satisfying the following universal mapping property: Given a
bounded homomorphism of affinoid K-algebras A → B such that the im-
age of M (B) inX lies in V , there exists a unique bounded homomorphism
AV → B making the following diagram commutative.

A
φ //

  

AV

∃1}}
B

⟳

In particular, AV is a K-affinoid flat A -algebra. A K-affinoid domain V is
called a strictly K-affinoid domain if the corresponding Banach K-algebra
AV is a strictly K-affinoid algebra.

Example 3.34. Any Laurent domain X{p−1f, qg−1} in X = M (A ) is an
affinoid domain in X . In particular, it holds that

AX{p−1f,qg−1} ∼= A {p−1f, qg−1}.

3.35. A finite union of affinoid domains is called a special subset in X . For
a special subset V =

⋃
Vi, where Vi is an affinoid domain in X , we set

AV := ker
(∏

AVi
→
∏

AVi∩Vj

)
.

Then the Banach K-algebra AV does not depend on the covering of V . By
[Ber90, Corollary 2.2.6], V is an affinoid domain in X if and only if AV is
a K-affinoid algebra.

3.36. We considered K-affinoid space X = M (A ) just as a topological
space so far. However, X is also a locally ringed space. Actually, X has the
structure sheaf OX defined as follows: For an open set U ⊂ X , we set

Γ(U,OX) := lim←−AV ,

where the limit is taken over all special subsets V ⊂ U . In particular, OX,x

is a local ring with the maximal ideal mx = {f ∈ OX,x | |f(x)| = 0}.
Any open set U ⊂ X = M (A ) is also a locally ringed space by the

restriction of the structure sheaf OX . Such a (U,OX |U) is called a K-
quasiaffinoid space.

A locally ringed space (X,OX) is called aK-analytic space if there exists
a covering {Ui} of X such that each Ui is a K-quasiaffinoid space. More
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precisely, we have to care about morphisms betweenK-quasiaffinoid spaces.
Please refer to [Ber90, §3.1] for more details.

3.37. A non-archimedean fieldK ′ is called a non-Archimedean field overK
if K ′ is also a Banach K-algebra. For any K-affinoid algebra A , the given
norm on A can be extended to a norm on the tensor product A ⊗KK

′. Then
the complete tensor product AK′ := A ⊗̂KK

′ is defined by the completion
of A ⊗KK

′ with respect to the induced norm. In particular, there is a natural
morphism A → A ⊗̂KK

′. In other words, we obtain a natural morphism
M (AK′)→M (A ). Actually, it follows from [Ber90, Corollary 2.1.8] that
AK′ is a K ′-affinoid algebra. For any K-quasiaffinoid space U ↪→M (A ),
we consider the fiber product

U⊗̂KK
′ := U ×M (A ) M (AK′).

SinceU⊗̂KK
′ ↪→M (AK′) is an open immersion, the fiber productU⊗̂KK

′

is aK ′-quasiaffinoid space. Hence, for anyK-analytic spaceX , we obtain a
K ′-analytic spaceX⊗̂KK

′ as follows: For eachK-quasiaffinoid space U ⊂
X , we obtain the K ′-quasiaffinoid space U⊗̂KK

′. Then the desired K ′-
analytic spaceX⊗̂KK

′ is obtained by gluing together theseK ′-quasiaffinoid
spaces U⊗̂KK

′.

Definition 3.38. Let X be a K-analytic space.
• X is called separated if X is Hausdorff.
• X is called projective if there is a closed immersion X ↪→ (Pn

K)
an

for some n ∈ N.
• X is called smooth if, for any non-Archimedean field K ′ over K

and any point x′ ∈ X ′ := X⊗̂KK
′, the local ring OX′,x′ is regular.

• X is called a strictly K-analytic space if any compact subset of X
lies in a finite union of strictly K-affinoid domains.

3.39. It is time to construct the Berkovich analytification concretely. We
now construct it in three steps.

At first, when X = An
K , the Berkovich analytification of X is defined by

Xan :=
⋃

r∈Rn
>0

E(0, r) =
⋃

r∈Rn
>0

D(0, r),

where D(0, r) = {x ∈ E(0, r) | |Ti|x < ri, 1 ≤ i ≤ n}. D(0, r) is a
K-quasiaffinoid space as a open set in E(0, r). The structure of Xan as
K-analytic spaces is defined as follows: There is a natural open immersion
D(0, r) ↪→ Xan for each r ∈ Rn

>0. It means that
OX |D(0,r) := OE(0,r)|D(0,r).

Further, if r1 ≥ r2 (that is, r1− r2 ∈ Rn
≥0), then these two open immersions

D(0, ri) ↪→ Xan (i = 1, 2) are compatible with the natural open immersion
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D(0, r2) ↪→ D(0, r1). That is, the following diagram is commutative.

D(0, r2) //

$$

D(0, r1)

zz
Xan

⟳

It means that OX is well-defined.
Next, letA be a finitely generatedK-algebra. That is, A can be rephrased

asK[T1, . . . , Tn]/I for some ideal I ⊂ A. WhenX = SpecA, the Berkovich
analytification of X is defined by

Xan :=
⋃

r∈Rn
>0

M (K{r−1T}/I ·K{r−1T}).

The structure sheaf of Xan is defined similarly.
Finally, let X be a locally algebraic scheme over K. Then the Berkovich

analytificationXan is obtained by gluing together theK-analytic spacesUan

for each affine open set U ⊂ X .

Remark 3.40. LetA be a finitely generatedK-algebra. From a set-theoretic
point of view, the Berkovich analytification (SpecA)an of SpecA can be
identified with the set of all multiplicative seminorms on A whose restric-
tions to K coincide with the given valuation on K.

Proposition 3.41. LetX be a locally algebraic scheme overK as in (3.39).
Then, for any x ∈ Xan, there is a K-affinoid domain V ⊂ Xan such that
x ∈ V .

Proof. It follows from the construction of Xan. □

Remark 3.42. Of course, for any point x of a K-analytic space X , we
can take some K-quasiaffinoid neighborhood of x ∈ X . However, it does
not mean that we can take some K-affinoid neighborhood of x. Indeed,
we sometimes cannot take any K-affinoid neighborhood at a point of a K-
analytic space.

3.43. We can obtain the canonical continuous map πX : Xan → X defined
as follows: For each affine open set U ⊂ X , where U = SpecA, the re-
striction πX |Uan is defined by sending a multiplicative seminorm on A to its
kernel that becomes a prime ideal of A.

The Berkovich analytificationX 7→ Xan satisfies many properties includ-
ing GAGA type theorems. We list some properties below.

Fact 3.44 ([Ber90, § 3]). Let X be a locally algebraic scheme over K. The
following hold.
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• X is connected if and only if Xan is arcwise connected.
• X is separated if and only if so is Xan.
• X is proper if and only if Xan is Hausdorff and compact.
• X is projective if and only if so is Xan.
• X is smooth if and only if so is Xan.

Fact 3.45 ([Ber90, Proposition 3.3.23]). If K is not a trivially valued field,
any projective K-analytic space is given by the analytification of some K-
variety.
Fact 3.46 ([Ber90, § 3]). Let K be a non-Archimedean field. For any mor-
phism φ : X → Y between two locally algebraic schemes over K, there
exists the morphism φan : Xan → Y an as K-analytic spaces such that the
following diagram is commutative.

Xan φan

//

πX

��

Y an

πY

��
X

φ // Y

Fact 3.47 ([Ber90, § 3]). Let φ and φan be morphisms as in Fact 3.46. The
following hold.

• If φ is open immersion, then so is φan.
• If φ is closed immersion, then so is φan.
• If φ is surjective, then so is φan.

From now on, we see general properties of the Berkovich residue field
H (x) and the double residue field H̃ (x) for each point x of a K-analytic
space.
Proposition 3.48. Let A be a K-affinoid algebra. Then H (x) for x ∈
M (A ) does not depend on the choice of Laurent neighborhood of x.
Proof. Let V = M (B) ⊂ M (A ) =: X be a Laurent neiborhood of x.
Here, we may assume B = A {p−1f, qg−1}. That is, x ∈ X{p−1f, qg−1}.
Define φ : A → B as the corresponding morphism to V ↪→ X . Then we
define y ∈M (B) by φ♯(y) = x. Note that

∣∣gJ ∣∣
y
̸= 0 for all J ∈ Zm

≥0.
It is enough to show that the completion of A /px coincides with the com-

pletion of B/py, where px (resp., py ) is the kernel of | · |x : A → R (resp.,
| · |y : B → R). Since φ♯(y) = x, the bounded homomorphism φ : A → B
induces the injection φ : A /px ↪→ B/py. Hence, it holds that

ι : Frac(A /px) ⊂ Frac(B/py).

By Fact 3.27, the residue seminorm on a quotient ring ofK-affinoid algebra
is a norm. Therefore, the residue norm on a quotient ring of K-affinoid
algebra extends to the unique norm on the fraction field of this quotient ring.
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Sinceφ : A → B is admissible, so isφ : A /px ↪→ B/py with respect to
their residue norms. For each h ∈ B/py, we set h ∈ B = A {p−1f, qg−1}
as

h =
∑
I,J

aIJf
Ig−J .

Then we set hn ∈ Frac(A /px) as

hn =
∑

|I|+|J |≤n

aIJf
I
(g)−J .

Here, |gJ |y ̸= 0 implies (g)J ̸= 0. Hence, hn is well-defined. Now let us
assume B := B/py. Then it is clear that y induces a bounded multiplicative
norm on B naturally. It is also denoted by y. Therefore,

∣∣h− ι(hn)∣∣y =
∣∣∣∣∣∣
∑

|I|+|J |>n

aIJf
I
(g)−J

∣∣∣∣∣∣
y

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

|I|+|J |>n

aIJf
I
(g)−J

∣∣∣∣∣∣
∣∣∣∣∣∣
B

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

|I|+|J |>n

aIJf
Ig−J

∣∣∣∣∣∣
∣∣∣∣∣∣
B

→ 0

asn→∞. This convergence follows from the definition of A {p−1f, qg−1}.
Since x is non-Archimedean,

{
hn
}
n

is a Cauchy sequence. Indeed, it fol-
lows from ∣∣hn − hm∣∣x ≤ max

{∣∣ι (hn)− h∣∣y , ∣∣h− ι (hm)∣∣y} .
It implies that

B ⊂ ̂Frac(A /px),

where the right-hand side is the completion of Frac(A /px) with respect to
the norm induced by x. This follows from ι♯(y) = x.

Hence, it holds that
̂Frac(A /px) = ̂Frac(B/py),

where the left-hand side is the completion ofFrac(A /px)with respect to the
norm induced by x and the right-hand side is the completion of Frac(B/py)
with respect to the norm induced by y. Therefore, the assertion follows. □

3.49. By Fact 3.32, this means H (x) is a local object which depends only
on a point x of (good) K-analytic space. In particular, Proposition 3.41 and
3.48 imply that H (x) is a local object of Xan.

Next, we consider the Berkovich analytification X of some K-variety.
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Lemma 3.50. Let K be a non-Archimedean field, and let A be K-algebra
of finite type. For each point x ∈ (SpecA)an =: X , we set ker | · |x = px.
Then it holds that

H (x) = ̂Frac(A/px),

where the right-hand side is the completion of Frac(A/px) with respect to
the norm induced by | · |x.

Proof. We may assume that A = K[T1, . . . , Tn]. Now we can take some
E(0, r) = M (K{r−1T}) such that x ∈ E(0, r). Set A := K{r−1T}.
Here, A ↪→ A induces ι : A/px ↪→ A /(pxA ). For brevity, A /(pxA ) is
denoted by A /px. Note that the quotient ring A /px coincides with what is
appeared in (3.18). For f ∈ A /px, we set f ∈ A = K{r−1T} as

f =
∑
I

aIT
I .

Then we set fn ∈ A as
fn =

∑
|I|≤n

aIT
I .

Now x induces a bounded multiplicative norm on A /px naturally. It is also
denoted by x. Then it holds that

∣∣f − fn∣∣x =

∣∣∣∣∣∣
∑
|I|>n

aIT
I

∣∣∣∣∣∣
x

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|I|>n

aIT
I

∣∣∣∣∣∣
∣∣∣∣∣∣
A /px

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|I|>n

aIT
I

∣∣∣∣∣∣
∣∣∣∣∣∣
A

→ 0

as n → ∞. This convergence follows from the definition of K{r−1T}.
Similarly to the discussion of Proposition 3.48, it implies that {fn} is the
Cauchy sequence whose limit is f . Hence, the assertion follows. □

Proposition 3.51. Let X be a variety over a non-Archimedean field K. We
set πX : Xan → X as in (3.43). Then, for any x ∈ Xan, it holds that

H (x) = ̂κ(πX(x)),

where the right-hand side is the completion of the residue field κ(πX(x)) at
the point πX(x) ∈ X with respect to x.

Proof. It directly follows from Lemma 3.50. □

3.2. Raynaud generic fiber.
This section is mainly based on [Got20, §3] and [Got22, §2]. Recall the

notation in (2.30). For R-algebra A , we write AK (resp., Ak) instead of
A ⊗R K (resp., A ⊗R k).
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3.52. Let K{T} be the Tate algebra as in (3.21). Then we set
R{T} := {f ∈ K{T} | ||f || ≤ 1},

where ||·|| is the Gauss norm onK{T}. It is obvious thatR{T} isR-algebra
and has a norm induced from the Gauss norm. Actually, the induced norm
is complete. An R-algebra A is called an admissible R-algebra if A is a
flat R- algebra isomorphic to R{T}/I for some ideal I ⊂ R{T}. Then A
has a norm induced from the norm on R{T}. Further, the norm on A is
complete. That is, A is a Banach ring.
3.53. Recall the functor called the Raynaud generic fiber
−rig : {flat formalR-schemes locally of finite type}→ {rigidK-spaces}.

The functor is constructed by sending an affine admissible formalR-scheme
SpfA to the K-affinoid space SpAK , where the underlying space of SpAK

is the set MaxAK of all maximal ideals of AK equipped with the weak
topology with respect to AK and theG-topology (cf. [BGR84, 9.1.4]). This
functor first appeared in [Ray74]. It is known that this functor preserves fiber
products. Let f : X→ Y be a morphism between formalR-schemes locally
of finite type. If f : X → Y is a finite morphism (resp., closed immersion,
open immersion, immersion, separated morphism), then frig : Xrig → Yrig

is a finite morphism (resp., closed immersion, open immersion, immersion,
separated morphism).
3.54. Berkovich gave the fully faithful functor
−0 : {separated strictly K-analytic spaces }→ {rigid K-spaces}

in the process of basing his analytic spaces (cf. [Ber90, §3.3]). This functor
preserves fiber products. In addition, the following also holds.
Proposition 3.55 ([Ber90, Proposition 3.3.2]). Let f : X → Y be a mor-
phism between separated strictly K-analytic spaces, f : X → Y is a finite
morphism (resp., closed immersion, open immersion, immersion, separated
morphism) if and only if f0 : X0 → Y0 is a finite morphism (resp., closed
immersion, open immersion, immersion, separated morphism).

For a flat formal R-scheme X locally of finite type, there is a unique
strictlyK-analytic spaceX such that Xrig

∼= X0. For simplicity of notation,
we use the letterXber for thisX . In particular, aK-affinoid space SpAK cor-
responds to the Berkovich Spectrum M (AK), where M (AK) is the set of
all bounded multiplicative seminorm on AK equipped with the weak topol-
ogy with respect to AK and the G-topology (cf. [Ber90, §2, §3]). We note
that M (AK) ⊂ X is closed but not necessarily open, although SpAK ⊂ X0

is a closed and open set. That is, we regard the Raynaud generic fiber as the
functor from the category of flat formal R-schemes locally of finite type to
the category of separated strictly K-analytic spaces. By abuse of notation,
we write Xber for (Xfor)ber for a flat R-scheme X locally of finite type.
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Definition 3.56. Let X be a flat formal R-scheme locally of finite type.
Then we can consider the reduction map redX : Xber → X. Locally this
map redX|M (AK) : M (AK) → SpfA = SpecAk is defined as follows: A
point x ∈M (AK) can be seen as a multiplicative seminorm on AK that is
bounded by the equipped norm on AK . Since A is an admissibleR-algebra,
the restriction of the equipped norm on AK to A is bounded by 1. Hence,
the restriction of x to A is also bounded by 1. Then,

px := {f ∈ A | |f(x)| < 1} ⊂ A

is a prime ideal of A . It is clear that px ∈ SpecAk = SpfA . Then we denote
by redX(x) the point corresponding to this prime ideal px. If X = Xfor for
some flatR-scheme X locally of finite type, we write redX instead of redX.
We sometimes call the image of x ∈ X via the reduction map redX the
center of x.

From now on, we consider some properties of the reduction map.

3.57. Let X be a flat formalR-scheme locally of finite type. Then the reduc-
tion map redX : Xber → X is anti-continuous and surjective. Please refer to
[Ber90, §2.4] for details.

3.58. Recall the notation in (2.30) and (2.32). LetX be a smoothK-variety,
and X a model of X . Then the reduction map redX : Xber → Xfor is
characterized as follows: Consider the canonical map πX : Xan → X as in
(3.43). For any x ∈ Xan, the canonical homomorphism

κ(πX(x)) ↪→H (x)

induces a morphism SpecH (x)→ X . Then, we obtain the morphism

χx : SpecH (x)→ X →X .

This morphism gives the following diagram.

SpecH (x)
χx //

��

X

��
SpecH (x)◦ //

φx,X

88

SpecR

Here, this dotted arrow φx,X does not always exist. By the valuative crite-
rion of separatedness (cf. [Har77, Theorem 4.3]), the dotted arrow φx,X is
uniquely determined if it exists. Then we can easily see that x ∈ Xber if
and only if φx,X exists. Further, if it holds, then redX (x) coincides with
the image of the closed point of SpecH (x)◦ via the dotted arrow φx,X . It
implies that there is a canonical inclusion

κ(redX (x)) ⊂ H̃ (x)
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induced by φx,X for each x ∈ Xber. We also see that, if X is proper over
R, then Xber = Xan. Indeed, it follows from the valuative criterion of
properness (cf. [Har77, Theorem 4.7]).

3.59. Keep the notation in (3.58). For each point x ∈ Xber, the image
redX (x) of x via the reduction map is more closely related to the double
residue field H̃ (x) than seen in (3.58). Let us show you that now.

Set Xval := π−1
X (ξX), where πX : Xan → X is the canonical map as

in (3.43) and ξX is the generic point of X . Let X and Y be models of
X , and f : Y → X a proper birational morphism. For each x ∈ Xval,
the morphism χx : SpecH (x) → X factors through f . In addition, for
each x ∈ Xber, there is an unique morphism φx,X : SpecH (x)◦ → X
as in (3.58). Hence, for each x ∈ Xval ∩Xber, we can apply the valuative
criterion of properness to the following diagram.

SpecH (x) //

��

Y

f

��
SpecH (x)◦ φx,X

//

φ

99

X

Then we obtain the unique morphism φ : SpecH (x)◦ → Y It is obvious
that the morphism φ coincides with the dotted arrow φx,Y as appeared in
(3.58) for Y , instead of X . It implies that

Xval ∩Xber ⊂ Xval ∩ Yber

and f(redY (x)) = redX (x). In particular, there exists an inclusion
κ(redX (x)) ↪→ κ(redY (x)).

It means that the lifting of the center induces the extension of the residue
field of the center. As we saw in (3.58), it holds that

κ(redX (x)) ⊂ H̃ (x)

for each x ∈Xber. Then, it holds that

κ(redX (x)) ⊂ κ(redY (x)) ⊂ H̃ (x)

for each x ∈ Xval∩Xber. Note that κ(redX (x)) and H̃ (x) are not expected
to coincide in general.

Here, we now describe H̃ (x) in terms of X or models of X .

Lemma 3.60. LetX be a smoothK-variety, and πX : Xan → X the canon-
ical map as in (3.43). Then, for each x ∈ Xan, it holds that

H̃ (x) = ˜κ(πX(x)),
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where the right-hand side is the residue field of κ(πX(x)) with respect to the
induced valuation | · |x on κ(πX(x)).

Proof. By Proposition 3.51, for any f ∈ H (x)◦ \H (x)◦◦ and any ε > 0,
there exists g ∈ κ(πX(x)) such that |f − g| < ε. Now we take ε < 1. Then,
we find that |g| = |f | = 1 and f = g ∈ ˜κ(πX(x)). In conclusion, we obtain
H̃ (x) = ˜κ(πX(x)). □

Theorem 3.61 (cf. [Got20, §3]). Let X be a proper smooth K-variety. For
x ∈ Xval, it holds that

H̃ (x) = lim−→
X

κ(redX (x)) =
⋃
X

κ(redX (x)),

where X runs over all proper models of X .

Remark 3.62. Note that there is a proper models of X . Indeed, given an
embedding X into a suitable projective space Pm

K , we can take a model X
of X as the normalization of the closure of X in Pm

S , where S = SpecR. In
[Got20, §3], we considered Theorem 3.61 in the case where K is a general
non-Archimedean field, and in the case with fewer assumptions about X .

Proof of Theorem 3.61. First, we show that

H̃ (x) =
⋃
X

κ(redX (x)).

Here, the right-hand side just means the set-theoretic union of the images
of canonical inclusions κ(redX (x)) ↪→ H̃ (x). As we saw in Remark 3.62,
we may assume that there is a proper model X ofX . Now we take an affine
open subset U = SpecA of X so that redX (x) ∈ U . We want to show that
for this model X , the following holds.

H̃ (x) =
⋃

π:X ′→X

κ(redX ′(x)),

where π ranges over all vertical blow-ups. By Lemma 3.60, we obtain

H̃ (x) = K̃(X),

where K(X) is the function field of X . For any element

f = g/h ∈ H̃ (x) \ κ (redX (x)) ,

where g, h ∈ A, we may assume that |g|x = |h|x > 0. Now we can take
l ∈ Z>0 so that |tl|x ≤ |g|x = |h|x, where t is an uniformizing parameter of
R. For the ideal I = (g, h, tl) ⊂ A, we can extend the corresponding ideal
sheaf Ĩ on U to an ideal sheaf I on X . See [Har77, II, Exercises 5.15].
Further, we may assume that the defining ideal sheaf I contains the defining
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ideal sheaf of lXk on X . Now we consider the blow-up π : X ′ → X
along the closed subscheme V (I ). Then X ′ is a model of X . Moreover,
the proper model X ′ has an open affine scheme U ′ = SpecA[g/h, tl/h].
Since |tl/h|x ≤ 1, we obtain a canonical morphism

A[g/h, tl/h]→H (x)◦.

It means that redX ′(x) ∈ SpecA[g/h, tl/h]. Therefore, it holds that

H̃ (x) =
⋃
X

κ(redX (x)).

On the other hand, we can easily see that the set of all proper models X of
X is a directed set with respect to an opposite category of the category con-
sisting of vertical blow-ups. In addition, for any vertical blow-up X ′ →X ,
we obtain a canonical inclusion κ(redX (x)) ↪→ κ(redX ′(x)). Therefore, it
holds that

H̃ (x) = lim−→
X

κ(redX (x)) =
⋃
X

κ(redX (x)).

□

3.3. Berkovich retractions and the Essential skelton.
This section is mainly based on [Got20, §6] and [Got22, §4].

3.63. Keep the notation in (2.30). In addition, we assume that the charac-
teristic of the residue field k is 0. Then, Cohen’s structure theorem implies
an isomorphism R ∼= k[[t]]. In particular, we obtain an injection k ↪→ R.

Recall that S = SpecR.

Definition 3.64. LetX be an S-variety. An ideal sheaf I onX is vertical if
it is co-supported on the central fiberXk. A vertical blow-upX ′ → X means
the normalized blow-up along a vertical ideal sheaf. The group Div0(X ) is
defined as the group consisting of vertical Cartier divisors on X .

3.65. When an S-variety X is normal, we can see that Div0(X ) is a free
Z-module of finite rank.

Definition 3.66. An S-variety X is called to be SNC if the central fiber Xk

is a divisor with strict normal crossings and every intersection of the form
DJ as in Definition 2.31 is connected.

Remark 3.67. An snc model ofX as in (2.32) is not always SNC. However,
we can obtain an SNC S-variety from an snc model of X by further blow-
up along components of the possibly non-connectedDJ ’s. In particular, the
resulting SNC S-variety is also a model of X .

In general, the following is known.
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Fact 3.68 (cf. [Tem08, Theorem 1.1]). For any S-variety X with smooth
generic fiber, there exists a vertical blow-up X ′ → X such that X ′ is SNC.

3.69. Let X be a smooth connected projective K-analytic space. In other
words, we can identifyX with Y an for some smooth projectiveK-variety Y .
S-varietyX is called a model ofX ifX is a normal and projective S-variety
together with the datum of an isomorphism X an

K
∼= X . Here, note that X

is a model of XK in the sense of Definition 2.32. We denote by MX the
set of all models of X . It follows from the same argument in Remark 3.62
thatMX is nonempty. Note thatMX becomes a directed set by declaring
X ′ ≥ X if there exists a vertical blow-up X ′ → X .

3.70. Let X be an SNC model of X . We can write the central fiber as

Xk =
∑
i∈I

miEi,

where (Ei)i∈I are irreducible components. Then, it follows that

Div0(X ) =
⊕
i∈I

ZEi.

Set Div0(X )∗R := Hom(Div0(X ),Z)⊗Z R. Here, we denote by E∗
i the dual

element of Ei and we set

ei :=
1

mi

E∗
i ∈ Div0(X )∗R.

For each J ⊂ I such that EJ := ∩j∈JEj ̸= ∅, let σ̂J ⊂ Div0(X )∗R be the
simplicial cone defined by

σ̂J :=
∑
j∈J

R≥0ej.

By definition, the pair {ei} is a basis of Div0(X )∗R. Hence, these cones
naturally defines a fan ∆̂(X ) in Div0(X )∗R. We define the dual complex of
X by

∆(X ) := ∆̂(X ) ∩ {⟨Xk, ·⟩ = 1},
where ⟨·, ·⟩ is the natural bilinear form on Div0(X )∗R. Each J ⊂ I such that
EJ ̸= ∅ corresponds to a simplicial face

σJ := σ̂J ∩ {⟨X0, ·⟩ = 1} = Conv{ej | j ∈ J}

of dimension |J |−1 in∆(X ), whereConv denotes convex hull. This endows
∆(X ) with the structure of a simplicial complex, such that σJ is a face of
σL if and only if J ⊃ L.
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3.71. Under the same situation in (3.69), we denote byMSNC
X the set of all

SNC models ofX . By Fact 3.68,MX ̸= ∅ impliesMSNC
X ̸= ∅. We can eas-

ily see thatMSNC
X ⊂MX andMSNC

X is also a directed set by vertical blow-
ups. If X ′ ≥ X , where X ′,X ∈ MSNC

X , then we obtain the natural map
Div0(X ′)∗R → Div0(X )∗R induced by the pull back Div0(X ) → Div0(X ′)
via the vertical blow-up. Further, it implies the natural map ∆(X ′) →
∆(X ). Hence, the following projective limit is well-defined.

lim←−
X∈MSNC

X

∆(X ).

The following, which is a highly suggestive result, is first stated by [KS06].
After that, the proof is written by [BFJ16].

Fact 3.72 (Corollary 3.2 of [BFJ16]). Under the situation in (3.69), we
obtain a canonical immersion ∆(X ) ↪→ X (cf. Fact 3.78). In addition,
for the canonical immersion ∆(X ) ↪→ X , there is a canonical retraction
X → ∆(X ). Further, these retractions induce a canonical homeomorphism

X ∼= lim←−
X∈MSNC

X

∆(X ).

Remark 3.73. To see a simplicial complex structure of ∆(X ), we have con-
sidered the case when X is SNC. Actually, the dual intersection complex
∆(X ) can also be defined as a topological space when X is an snc-model of
X , as we stated in (2.36). In addition, for any snc-model X , we also obtain
a canonical immersion ∆(X ) ↪→ X and a canonical retraction X → ∆(X )
as we will see in Definition 3.85. In Definition 3.85, the canonical retrac-
tion X → ∆(X ) is called a Berkovioch retraction. Note, however, that
the dual intersection complex ∆(X ) for an snc-model X does not always
have a simplicial complex structure unlike the case as we stated in (3.70).
Here, we denote byMsnc

X the set of all snc models of X . It is obvious that
MSNC

X ⊂ Msnc
X ⊂ MX andMsnc

X is also a directed set. SinceMSNC
X is

cofinal inMX , Fact 3.72 can be rephrased as

X ∼= lim←−
X∈Msnc

X

∆(X ).

3.74. Now consider the image of the canonical immersion ∆(X ) ↪→ X
as appeared in Fact 3.72. Use the same notation in (3.70). Recall that the
central fiber of an SNC-modelX is of the formXk =

∑
i∈I miEi as a divisor.

Here, for each J ⊂ I , the intersection EJ := ∩j∈JEj is either empty or a
smooth irreducible k-variety. Let ξJ be a generic point of EJ if EJ ̸= ∅.
For each j ∈ J , we can choose a local equation fj ∈ OX ,ξJ of the prime
divisor Ej , so that (fj)j∈J is a regular system of parameters of the local
ring OX ,ξJ because of the SNC condition. For this X and any (nonsingular)
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point p ∈ X , we obtain the sequence k ↪→ R→ OX ,p. It implies k ↪→ OX ,p.
Hence, by Cohen’s structure theorem, after taking a field of representatives
of κ(ξJ), we obtain an isomorphism

ι : ÔX ,ξJ
∼= κ(ξJ)[[tj, j ∈ J ]]

defined by ι(fj) = tj . That is, any element f ∈ OX ,p has a power series
expansion of the form f =

∑
α∈Z|J|

≥0

cαf
α ∈ ÔX ,ξJ via the isomorphism

ι : ÔX ,ξJ
∼= κ(ξJ)[[tj]], where ι(cα) ∈ κ(ξJ) and fα :=

∏
f
αj

j .
Definition 3.75. LetX be a smooth connected projectiveK-analytic space.
x ∈ X is called a quasi monomial valuation if there exists an SNC model
X of X and s =

∑
sjej ∈ σJ ⊂ ∆(X ) such that x is a valuation on OX ,ξJ

defined by the restriction of the following valuation on ÔX ,ξJ .

f =
∑

α∈Z|J|
≥0

cαf
α ∈ ÔX ,ξJ 7→ |f | = max

cα ̸=0
rα,

where rj := exp(−sj) < 1, and the above expansion of f is given by the
isomorphism ι : ÔX ,ξJ

∼= κ(ξJ)[[tj]] as in (3.74). Such a valuation on OX ,ξJ

is called a monomial valuation on X .
Remark 3.76. It follows from the proof of [JM13, Proposition 3.1] that the
construction in Definition 3.75 does not depend on the choice of the isomor-
phism ι : ÔX ,ξJ

∼= κ(ξJ)[[tj, j ∈ J ]]. Definition 3.75 is slightly a priori
different from the original one in [BFJ16] (See Remark 3.79) though it is
still equivalent. We denote byXqm the set of all quasi monomial valuations
of X .
We now list a few properties of quasi monomial valuations.
Fact 3.77 (Corollary 3.9 of [BFJ16]). Xqm is dense in X .
Fact 3.78 (cf. Definition 3.7 and §3.3 of [BFJ16]). We denote by ∆′(X ) the
image of the canonical immersion ∆(X ) → X as appeared in Fact 3.72.
Then, it holds that

Xqm =
⋃

X∈MSNC
X

∆′(X ).

Remark 3.79. In [BFJ16], quasi monomial valuations are defined by the
right-hand side of the equation in Fact 3.78.
Theorem 3.80 (cf. [Got20, Theorem 6.11]). Let X be a smooth connected
projective K-analytic space. If x ∈ Xqm, then there exists an SNC model
X of X such that

H̃ (x) = κ(redX (x)).
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Proof. By the assumption, we can take an SNC model X such that x gives
a monomial valuation on ÔX ,redX (x) as Definition 3.75. Now we construct
desirable vertical blow-up π : X ′ → X so that H̃ (x) = κ(redX ′(x)).

By [Got20, Theorem 4.6], we see

H̃ (x) = κ(cX (x))(f1, . . . , fn) for some f1, . . . , fn ∈ H̃ (x).

For each fi = gi/hi, we can obtain a vertical blow-up Xi → X so that fi ∈
κ(redXi

(x)) in the same way as the discussion of Theorem 3.61. Theorem
3.61 implies that there exists a vertical blow-up X ′ → X of X such that

H̃ (x) = κ(redX ′(x)).

Then we obtain an SNC modelX ′′ after taking further blow-upX ′′ → X ′ by
[Tem08]. Such a vertical blow-up X ′′ → X ′ → X is the desired one. □

Remark 3.81. In [Got20], we defined what is called a quasi monomial val-
uation for several cases, and proved that variants of Theorem 3.80 also hold
for these variants of quasi monomial valuations (cf. [Got20, Theorem 3.5,
Theorem 4.6, Theorem 5.7]).

Next, we consider the canonical retraction X → ∆(X ) for an snc-model
X of X in Fact 3.72 concretely.

3.82. A Calabi-Yau variety X over a field F is a smooth, proper, geomet-
rically connected scheme X over F such that the canonical bundle KX is
trivial. In particular, abelian varieties are also Calabi-Yau varieties. A vol-
ume form ω is a non-zero global section of KX . In the same way, a (com-
plex) Calabi-Yau manifold X is a compact complex manifold X such that
the canonical bundle KX is trivial. Further, a volume form ω is a non-zero
global section of KX . In particular, the volume form ω on X is often called
a holomorphic volume form.

Definition 3.83. Let X be a Calabi-Yau variety over K and ω be a volume
form on X . Then we can define the weight function

wtω : Xan → R ∪ {∞}.
Please refer to [MN12, §4.5] for details. The essential skelton Sk(X) of
X is the subset of Xan consisting of points where wtω reaches its minimal
value. SinceX is Calabi-Yau, ω is uniquely determined up to a scalar multi-
ple. Multiplying ω with a scalar changes the weight function by a constant.
Therefore, Sk(X) depends only on X not on ω.

3.84. Let X be a smooth connected K-variety and let X be an snc-model
of X over S. Fact 3.72 states that the dual intersection complex ∆(X ) of
Xk is canonically embedded into Xan. We denote by Sk(X ) its image of
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∆(X ). Sk(X ) is called the Berkovich skelton of X and has the simpli-
cial structure induced by ∆(X ) if X is SNC. If X is a Calabi-Yau variety
overK, then the essential skelton Sk(X) as in Definition 3.83 is canonically
homeomorphic to the subcomplex of Sk(X ). If the snc-model X is good
minimal dlt-model with a technical assumption as in [NXY19, (1.11)], then
it follows from [NX16, 3.3.3] that the image of this embedding is exactly the
essential skeleton Sk(X). In particular, we give a simplicial complex struc-
ture to Sk(X) by the one of Sk(X ) if X is SNC. Note that the technical
assumption is satisfied when X is an snc-model. Please refer to [NXY19,
(2.3)] for details.

Definition 3.85. Let X be a smooth connected K-variety and let X be an
snc-model of X over S. We assume that Xan = Xber. In particular, if
X is projective over S, then X is projective over K and this assumption
holds. Here, we now construct the Berkovich retraction associated with an
snc-model X of X in accordance with [NXY19, (2.4)] (or [BFJ16, §3]).

Let x be a point inXan and let redX (x) be its reduction on Xk as we saw
in Definition 3.56. We denote by Z the closure of redX (x) = ξ. Then Z is
a non-empty stratum of Xk. Thus, it determines a unique face σ of the dual
intersection complex ∆(X ). Let D1, ..., Dr be the irreducible components
of Xk that contain Z, and let N1, ..., Nr be their multiplicities in Xk. Then
D1, ..., Dr correspond to the vertices v1, ..., vr of σ. Note that, for any snc-
model X , each irreducible component of Xk is Cartier since X is regular.
We choose a local equation fi = 0 for each Di at redX (x). Then ρX (x) is
defined as the point of the simplex σ with barycentric coordinates

α = (−N1 log |f1(x)|, . . . ,−Nr log |fr(x)|)
with respect to the vertices (v1, ..., vr). The image ρX (x) of x corresponds
to the monomial point represented by (X , (D1, ..., Dr), ξ) and the tuple

(− log |f1(x)|, . . . ,− log |fr(x)|),
in the terminology of [MN12, 2.4.5] via the embedding of ∆(X ) intoXan.
We can easily verify that this definition does not depend on the local equa-
tions fi and check that ρX is continuous, and that it is a retraction onto the
skelton Sk(X ) = ∆(X ). Refer to [NXY19, (2.4)] for good minimal dlt-
models with the technical assumption as introduced in loc.cit..

Definition 3.86. LetX be a Calabi-Yau variety overK. If an snc-model X
of X is a good minimal dlt-model of X with a technical assumption as in
[NXY19, (1.11)]. Then we call the map ρX : Xan → Sk(X) constructed in
Definition 3.85 the non-Archimedean SYZ fibration associated with X .

3.87. We note that, even though the subspace Sk(X) of Xan only depends
onX , the simplicial complex structure on Sk(X) and the non-Archimedean
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SYZ fibration ρX : Xan → Sk(X) depend on the choice of the good min-
imal dlt-model X . In [MN12, §3.2], the authors discussed the canonical
piecewise integral affine structure of Sk(X) and revealed that this piecewise
integral affine structure coincides with the one induced by ∆(X ). In other
words, the piecewise integral affine structure induced by ∆(X ) does not
depend on the choice of the good minimal dlt-model X . However, this is
closer to the topological structure than to the integral affine structure. In
this thesis, we focus on the integral affine structure (more precisely, IAMS
structure).

4. SYZ fibration

In this chapter, we discuss SYZ fibrations for each maximally degenerat-
ing family of abelian varieties and their quotients. This chapter is mainly
based on [GO22, §2].

4.1. Preliminaries.

Definition 4.1 (Special Lagrangian submanifold). Let X be a Calabi-Yau
manifold of dimension n over C, ω a Kähler form of Ricci flat metric on
X , and Ω a holomorphic volume form as in (3.82). Then a submanifold M
in X is called special Lagrangian submanifold if M is a real manifold of
dimension n such that ω|M = 0 and ImΩ|M = 0.

Definition 4.2 (SYZ fibration). A fibration f : X → B from a complex
Calabi-Yau manifold to a topological spaceB is called a special Lagrangian
fibration (or SYZ fibration) if each fiberXb := f−1(b) is a special Lagrangian
submanifold in X .

To state our main theorems, we introduce the following.

Definition 4.3. Let B be an real n-dimensional manifold. An affine struc-
ture (resp., tropical affine structure, integral affine structure) onB is an atlas
{(Ui, ψi)} ofB consisting of coordinate charts ψi : Ui → Rn, whose transi-
tion functions ψi ◦ ψ−1

j lie in Aff(Rn) := Rn ⋊GL(Rn) (resp., Aff(Zn) :=
Zn ⋊ GL(Zn)). A pair of B and an affine structure (resp., tropical affine
structure, integral affine structure) on B is called an affine manifold (resp.,
a tropical affine manifold, an integral affine manifold). Further, B is called
an integral (resp., tropical) affine manifold with singularities if B is a C0-
manifold with an open set Bsm ⊂ B that has an integral (resp., tropical)
affine structure, and such that Z := B \ Bsm is a locally finite union of
locally closed submanifolds of codimension ≥ 2. Here, an integral affine
manifold with singularities is often called an IAMS for short. In addition,
we call this integral affine manifold Bsm IAMS structure of B.
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Remark 4.4. The convention of Definition 4.3 follows that of e.g. [KS06,
Gro13].

4.5. Let f : X → B be an SYZ fibration such that each fiber is a torus.
Then the fibration gives two affine structures ∇A,∇B and one metric g on
the baseB. Use the same notation as Definition 4.1. The affine structure∇A

(resp., ∇B) comes from the Kähler form ω (resp., the imaginary part of the
holomorphic volume form ImΩ). The metric g is called the Mclean metric.
It is known that two of the triple (∇A,∇B, g) determine the rest. Refer to
[Gro13, §1] for details.

4.6. We recall the Gromov-Hausdorff limit (cf. [BBI01]). We can define
the Gromov-Hausdorff distance dGH(X, Y ) between two metric spaces X
and Y . Further, it is known that this distance dGH is a metric function on
the set M consisting of the isometry classes of compact metric spaces. In
Gromov’s celebrated paper [Gro81], he proved that the subsetM of M con-
sisting of the isometry classes of compact Riemannian manifolds with Ricci
curvature bounded below and diameter bounded above is relatively compact
with respect to the Gromov-Hausdorff distance. It is known as Gromov’s
compactness theorem. That is, the closure MGH of M in M is compact.
Hence we can define a notion of convergence for sequences in M, called
Gromov-Hausdorff convergence. In particular, for any sequence of Ricci
flat manifolds, we can take a convergent subsequence by rescaling the diam-
eters to be 1. A compact metric space to which such a sequence converges
is called the Gromov-Hausdorff limit of the sequence.

4.7. From now on, we use the following notation.
• ∆ denotes the open disk {t ∈ C | |t| < 1}.
• ∆∗ denotes the punctured disk {t ∈ C | 0 < |t| < 1}.
• C((t))mero denotes the field of the germs of meromorphic functions

with possible pole only at the origin.
• The t-adic discrete valuation of C((t))mero is denoted as

valt : (C((t))mero \ {0})→ Z.

• (X ,L)→ ∆ (resp., (X ∗,L∗)→ ∆∗) denotes a proper holomorphic
map from a complex analytic space X (resp., X ∗) together with an
ample line bundleL (resp.,L∗). We also denote as (X ,L)/∆ (resp.,
(X ∗,L∗)/∆∗).
• Each fiber of X over t ∈ ∆ is denoted as Xt. The restriction of L

to Xt is denoted as Lt.
• For the above pair (X ∗,L∗), we associate the smooth projective va-

riety X over C((t))mero with ample line bundle L.
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• When Xts are abelian varieties of dimension g, the type of polar-
ization Lt (cf. (2.28)) is

(e1, · · · , eg) ∈ Zg
>0

such that ei | ei+1 for any (0 <)i(< g). We associate a g × g
diagonal matrix E := diag(e1, · · · , eg).

4.2. Abelian surfaces case.

4.8. This section explains one method for partially proving Conjecture 1.4
by using hyperKähler rotation, following [OO21, §4]. The point is that,
although loc.cit focused on the case of K3 surfaces, the same method applies
to the case of abelian surfaces. In the next section, we generalize to higher
dimensional abelian varieties by a more explicit different method.

Theorem 4.9 ([GO22, Theorem 2.1]). Take any maximally degenerating
family of polarized abelian surfaces (resp., polarized K3 surfaces possibly
with ADE singularities) (X|∆∗ ,L|∆∗) over ∆∗ with a fiber-preserving sym-
plectic action of a finite group H on X|∆∗ together with linearization on
L|∆∗ (e.g., H can be even trivial or simple {±1}-multiplication in the case
of abelian varieties). We denote the quotient by H as (X ′|∆∗ ,L′|∆∗)→ ∆∗.
Then, the following hold:

(i) For any t ∈ ∆∗ with |t| ≪ 1, there is a special Lagrangian fi-
bration ft : Xt → Bt with respect to the Kähler form ωt of the
flat Kähler metric gKE(Xt) with [ωt] = c1(Lt) and the imaginary
part Im(Ωt) of a certain holomorphic volume form (0 ̸=)Ωt ∈
H0(Xt, ωXt). Here, Bt is a 2-torus (resp., S2) and so are all fibers
of ft. As in (4.5), we denote by∇A(t) and∇B(t) the induced trop-
ical affine structures on Bt by ωt and Im(Ωt) respectively, as well
as its McLean metric gt. Below, we continue to assume |t| ≪ 1. In
the next section §6, we discuss how these ft glue to a family.

(ii) Consider the obtained base associated with a tropical affine struc-
ture and a flat metric (Bt,∇A(t),∇B(t), gt) for t ̸= 0. They con-
verge to another a 2-torus (resp., S2) with the same additional struc-
tures (B0,∇A(0),∇B(0), g0) in the natural sense, when t → 0. In
this terminology, the Gromov-Hausdorff limit of

(Xt, gKE(Xt)/diam(gKE(Xt))
2)

for t → 0 coincides with (B0, g0). Here, diam(gKE(Xt)) refers to
the diameter which is used to rescale the metric to that of diameter
1 (as in [KS06]).
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(iii) The H-action on Xt preserves the fibers of ft. Thus, there is a nat-
ural induced action of H on B0, which preserves the three struc-
tures ∇A(0),∇B(0) and g0. The natural quotient of ft by H de-
noted as f ′

t : X ′
t → B′

t is again a special Lagrangian fibration
with respect to the descents of ωt the holomorphic volume form and
(0 ̸=)Ωt ∈ H0(Xt, ωXt) we chose above.

(iv) If (X|∆∗ ,L|∆∗) is a family of principally polarized abelian surfaces
andH is trivial, the tropical affine structure∇A(0) onB0 is integral
(cf. Definition 4.3) and its integral points consist of only 1 point,
which automatically determines ∇A(0). The corresponding Gram
matrix of g0 is the same (cB(li, lj)) as appeared in (2.39). Also the
transition function of the integral basis of ∇A(0) to that of ∇B(0)
is given by the same matrix (cB(li, lj)).

Proof. Our assertions above (i) and (ii) for K3 surfaces case are proven in
[OO21, Chapter 4 (and 5,6 partially)].

The proof of (i), (ii) for the case for polarized abelian surfaces and essen-
tially easier and here we follow the method of loc.cit. (In the next section,
we give another proof.) Hence, we below only sketch (review) the proof as
a review and explain the differences with the original K3 surfaces case in
[OO21, §4]. More precisely speaking, we use the arguments of the proofs
of [OO21, Theorems 4.11, 4.20] and other claims on which they depend.

The (almost verbatim) change of basic setup is as follows. For an abelian
surface X ≃ C2/Λ with a lattice Λ(≃ Z4), set ΛCT :=

∧2
Z Λ. (Here, the

subscript CT stands for complex torus.) By the orientation onG induced by
the complex structure, we identify

∧4
Z Λ ≃ Z which induces a lattice struc-

ture on ΛCT as isomorphic to II3,3 = U⊕3. Take a marking α of H2(Xt,Z)
for some t, and put λ := α(c1(Lt)), and replace Λ2d of [OO21, Chapter 4]
by Λpas := λ⊥ ⊂ ΛCT which has signature (2, 3). The period domain for
(Xt,Lt) with weight 2 is

Ω(Λpas) := {[w] ∈ P(Λpas ⊗ C) | (w,w) = 0, (w, w̄) > 0},

which replaces Ω(ΛK3) of [OO21, §4.1]. By the accidental isomorphism
Sp(4,R)/{±1} ≃ SO0(2, 3), we can also identify the connected component
of Ω(Λpas) as the Siegel upper half space S2 of degree 2. Similarly, we
also define and use the union of Kähler cones KΩ (resp., KΩ0, KΩe≥0) as
[OO21, p.45-46]. Since the Kähler cones of complex tori are just connected
components of positive cones, the definition of loc.cit works verbatim if we
put ∆(ΛCT ) := ∅, where ∆(ΛCT ) is the set of simple roots.

Now we are ready to prove the above theorem. The desired special La-
grangian fibration (i) for polarized K3 surfaces case is obtained at the bottom
of [OO21, p.47] (if we see πi as a map fromXi) during the proof of [OO21,
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4.20]. The proof uses (loc.cit Claim 6.12 which in turn follows from) Fact
4.14 and Claim 4.18 of loc.cit. It applies a hyperKähler rotation, which also
works for flat complex tori because their holonomy groups are even trivial.

Proof of Claim 4.18 becomes much simpler for 2-dimensional complex
torus case because we do not need to deal with the roots as “∆(X)+".

The only nontrivial difference exists for Fact 4.14 of [OO21]. Indeed, it
does not literally holds for complex tori just because the morphism from
complex 2-tori to elliptic curves are not obtained as pencils.

Fact 4.10. Let X be a complex 2-torus and let e ∈ H2(X,Z) a (primitive)
isotropic. If e belongs to the closure of its Kähler cone, there exists a holo-
morphic fibration to an elliptic curve B as X ↠ B whose fiber class is
e.

proof of Fact 4.10. We take a line bundle L with c1(L) = e. From [BL04,
§3.3], L is effective and represented by an elliptic curveE by the isotropicity
and primitivity condition. If we replace E by a translation of E which con-
tains the origin of X , then X ↠ B := X/E is the desired morphism. □

Note that the fibers are only homologically identified as e, rather than
linear equivalence classes (as in [OO21, 4.14] for K3 surfaces).

The proof of (ii) is similar to the construction of X → B of [OO21,
bottom of p.34-p.35]. The only difference again is that we use above Fact
4.10 instead of Fact 4.14 of loc.cit. Then the proof is reduced to that of
4.22 of loc.cit, hence that of Chapter 5. The arguments there work verbatim
and is even greatly simplifiable. Indeed, the main analytic difficulties in K3
surfaces case come from the presence of (varying) ADE singularities, which
destroy the simplest uniform C2-estimates. (In our case, it is even possible
to confirm 4.22 of loc.cit explicitly. )

From here, we give the proofs of (iii), (iv). To show (iii), we proceed to
analyze the effect of the action ofH . Since theH-action onXt is assumed to
be symplectic i.e., the induced action onH0(Xt,Ω

2
Xt
) is trivial, in particular

Im(Ωt) is preserved by the action of H . Therefore, the complex structure
of the hyperKähler rotation of Xt as constructed in [OO21, p.47] is also
preserved by the action. The action also preserves the isotropic cohomology
class e. Hence, from the construction of ft, the action preserves its fibers
and the claims of (iii) are proved.

For the proof of (iv), note that under an appropriate symplectic basis v1,
w1, v2, w2 ofH1(Xt,Z) for the principal polarization ⟨−,−⟩ i.e., ⟨vi, wj⟩ =
δi,j and ⟨vi, vj⟩ = ⟨wi, wj⟩ = 0, e is written as v1∧w1,H2(Bt,Z) is written
as Z(v2 ∧ w2), λ = v1 ∧ w1 + v2 ∧ w2. Then the direct computation shows
that the integral affine structure ∇A(0) on B0 ≃ R2/Z2 is the desired one.
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The last claim then follows from the definition of Legendre transform (cf.,
[Hit97, §3], [Gro13, §1]). □

Remark 4.11. To construct the tuple (B0,∇A(0),∇B(0), g0) as Theorem
4.9 is called SYZ picture. Similarly, to construct the Gromov-Hausdorff limit
of (Xt, gKE(Xt)/diam(gKE(Xt))

2) for t → 0 is called Gromov-Hausdorff
limit picture. In [KS06], SYZ picture under the assumption that Gromov-
Hausdorff limit picture holds is called Collapse picture. Note that SYZ
picture gives two affine structures and one metric on the base, however,
Gromov-Hausdorff limit picture gives only a metric space. Theorem 4.9
(ii) implies that SYZ picture and Gromov-Hausdorff picture for any maxi-
mally degenerating family of polarized abelian surfaces (resp., polarized K3
surfaces possibly with ADE singularities) give the same metric space.

Remark 4.12. The choice of Ωt for each t is a priori up to constant multipli-
cation but in [OO21, §4, especially (4.11)] and the above proof, we implicitly
chose it carefully.

Remark 4.13 (Effect of monodromy on the hyperKahler rotation). Both the
constructions of ft : Xt → Bt in [OO21, §4] and above theorem 4.9, are
as holomorphic Lagrangian fibrations of the hyperKähler rotation X ∨

t . Let
us consider the effect of monodromy T ∈ GL(H2(Xt,Z)) i.e., when t goes
around the origin. Since T preserves the isotropic fiber class e of ft, which is
associated to the maximal degeneration X → ∆∗, T only changes the mark-
ing and hence preserves ft by the theory of harmonic integrals. However,
note that the induced change of marking does change the hyperKähler rota-
tion X ∨

t , hence X ∨
t does not form a family. Indeed, as t goes around 0, then

X ∨
t will be twisted i.e., have different complex structures, while preserving

their Jacobian fibrations.

Remark 4.14. In the context of Theorem 4.9, note that each family
(X ′|∆∗ ,L′|∆∗)→ ∆∗

may have several description as a quotient of K-trivial surfaces by finite
group H , as (X|∆∗ ,L|∆∗) → (X ′|∆∗ ,L′|∆∗). Indeed, for some polarized
family (X ′|∆∗ ,L′|∆∗), one of covering family (X|∆∗ ,L|∆∗) is a family of
polarized abelian surfaces while another is a family of polarized K3 sur-
faces.

Also note that if the fibers Xt are K3 surfaces, so are X ′
t . However, if

the fibers Xt are abelian surfaces, X ′
t becomes abelian surfaces if H only

consists of translations, while X ′
t becomes K3 surfaces otherwise.

Corollary 4.15 ([Got22, Corollary 5.28]). Use the same notation as in The-
orem 4.9. We assume that (X|∆∗ ,L|∆∗) is principally polarized. Then the
Gromov-Hausdorff limit of (X ′

t , g
′
KE(X ′

t )) for t → 0 coincides with the
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Gromov-Hausdorff limit (B′
0, g

′
0) of (B′

t, g
′
t) for t → 0, where the metric

g′KE(X ′
t ) (resp., g′t) on X ′

t (resp., B′) is induced by gKE(Xt) (resp., gt). Fur-
thermore, the affine manifold (B′

0,∇′
B(0)) with singularities coincides with

the quotient of the affine manifold (B0,∇B(0)) by the group H , where the
affine structure ∇′

B(0) with singularities is induced by ∇B(0). In particu-
lar, we can regard the affine structure∇′

B(0) with singularities as an IAMS
structure by rescaling.

Proof. It follows from Theorem 4.9 (iii). In addition, the affine structure
∇B(0) of B0 is detemined by the matrix B(li, lj) up to scaling, by Theorem
4.9 (iv). Hence, the last assertion holds. □

4.3. Higher dimensional abelian varieties case.

4.16. In this section, we prove Conjecture 1.4 for maximally degenerating
abelian varieties in any dimension. The main tool is the following explicit
description of the degenerations, which itself may be of interest. It is a com-
plex analytic version of the well-known non-archimedean uniformization of
abelian variety over a non-archimedean valued field by Mumford [Mum72]
and Faltings-Chai [FC90]. Although [Oda19] included the statement with
a rough sketchy proof, since we could not find a precise discussion in the
literature, we include it here of the somewhat more global statement, with a
more topological or analytic proof.

Lemma 4.17 ( [GO22, Lemma 2.6], General description of maximal de-
generating abelian varieties). Take any maximally degenerating family of
polarized abelian varieties of any dimension g, which we denote again as
(X|∆∗ ,L|∆∗) over ∆∗. Suppose that the polarization is of type (e1, · · · , eg)
where ei(1 ≤ i ≤ g) are all positive integers which satisfy ei | ei+1 for any
i. (For instance, ei are all 1 for principal polarization.) Then, these families
are characterized explicitly as

((C∗)g ×∆∗)/Zg → ∆∗,(1)

where Zg ∋ t(m1, · · · ,mg) acts on (C∗)g ×∆∗ ∋ (z1, · · · , zg, t) by

(z1, · · · , zg, t) 7→

(z1, · · · , zg) · t
( ∏

1≤j≤g

pi,j(t)
mj

)
1≤i≤g

, t


for some meromorphic functions pi,j(t) ∈ C((t)). Here, meromorphic func-
tions qi,j(t) := pi,j(t)

ei ∈ C((t)) satisfies the following:
(i) possible pole only at t = 0.
(ii) each qi,j(t) converges at t ∈ ∆∗.
(iii) (qi,j(t))1≤i,j≤g is a symmetric matrix.
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From here, we often describe such family (1) simply as either⊔
t

(C∗)g/⟨pi,j(t)⟩ or ((C∗)g ×∆∗) /⟨pi,j(t)⟩.

Proof. Note the polarized family is induced from a map φ̃ : H→ Hg where
H(= H1) is the upper half plane,Hg is the (higher dimensional) Siegel upper
half space of dimension g(g+1)

2
, which descends to φ : ∆∗ → Sp(E,Z)\Hg.

Here, we set

E :=


e1 0 · · · 0
0 e2 · · · 0

0 0
. . . 0

0 0 · · · eg

 , Ẽ :=

(
0 E
−E 0

)
,

and

Sp(E,Z) := {h ∈ GL(2g,Z) | hẼth = Ẽ}.

We denote Sp(E,Z) also as Γ. Consider the (rational) 0-cusp F of Hg in
the Satake-Baily-Borel compactification (before dividing by Γ). Then the
monodromy lies in the unipotent radical (cf., [ADMY75, Chapter III])

U(F )Z =

{(
Ig B
0 Ig

)
| B ∈ GL(g,R)

}
∩ Γ

=

{(
Ig B
0 Ig

)
| B ∈ GL(g,Z), BE = t(BE)

}
.

Therefore, if we denote the fiber Xt(t ∈ H or ∆∗) as Cg/

(
E
Λ

)
Z2g with

Λ ∈ Hg, for each i ∈ {1, · · · , g}, Λ(0, · · · , 0,
i−th︷︸︸︷
1 , 0, · · · , 0) is invariant

modulo EZg. Hence, we can write X ∗(= X|∆∗) as ⊔t((C∗)g)/⟨pi,j(t)⟩ for
some holomorphic functions pi,js over ∆∗. Note that the natural quotient
of X ∗ by µe1 × · · · × µeg is a family of principally polarized abelian va-
rieties over ∆∗, which can be also written as ⊔t((C∗)g)/⟨qi,j(t)⟩ for some
holomorphic functions qi,js over ∆∗. Here, since ( Im(log qi,j(t))

2π
√
−1

)1≤i,j≤g lie in-
side Hg for any t ∈ ∆∗, qi,j = qj,i and pi,j(t)ei = qi,j(t). Again, since
(
Im(log qi,j(t))

2π
√
−1

)1≤i,j≤g lie inside Hg for any t ∈ ∆∗, it follows that all qi,j(t)
and pi,j(t) are meromorphic. □

Below we give an additive description as well and fix notation.
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4.18. If we describe the above abelian varieties in Lemma 4.17 in additive
manner,

Xt = Cg/



e1 0 0 · · · 0
0 e2 0 · · · 0

0 0 e3 · · · 0
ei log pi,j(t)

2π
√
−1

. . .
0 0 0 · · · eg

Z2g(2)

= (C∗)g/⟨pi,j(t)⟩i,j(3)

where the first identification is through the exponential map

zi 7→ e
2π

√
−1zi
ei =: Zi(i = 1, · · · , g).

If we set

E := diag(e1, · · · , eg)(4)

=


e1 0 0 · · · 0
0 e2 0 · · · 0
0 0 e3 · · · 0

. . .
0 0 0 · · · eg

 ,(5)

Ω(t) :=

(
1

2π
√
−1

log pi,j(t)

)
i,j

,(6)

and

Ω′(t) :=

(
ei

2π
√
−1

log pi,j(t)

)
i,j

,(7)

then the dividing lattice of the above (2) splits as EZg ⊕ Ω′(t)Zg i.e.,

Λt :=



e1 0 0 · · · 0
0 e2 0 · · · 0

0 0 e3 · · · 0
ei log pi,j(t)

2π
√
−1

. . .
0 0 0 · · · eg

Z2g(8)

= EZg ⊕ Ω′(t)Zg.(9)

Note that,Ω′(t) = EΩ(t) is symmetric, andΩ(t) (resp.,Ω′(t)) is determined
up to Zg (resp., EZg).
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We continue to use this notation for the coordinates zis and Zis, and set
xi := Re(zi), yi := Im(zi). We write

log pi,j(t)

2π
√
−1

= αi,j(t) +
√
−1βi,j(t),(10)

with an ambiguity of αi,j(t) modulo Z. Indeed, if t goes around the ori-
gin 0, the monodromy effect is nontrivial only on αi,j but trivial on βi,j(t).
Similarly, for qi,j(t) = pi,j(t)

ei , we write

log qi,j(t)

2π
√
−1

= α′
i,j(t) +

√
−1β′

i,j(t).(11)

In particular, (β′
i,j(t)) = ImΩ′(t).

Below, we prepare a basic lemma on the symmetry of maximally degener-
ating family, for the next theorem 4.20 (iv) which discusses finite quotients
of abelian varieties. We explore more details in later section 6.3.

Lemma 4.19 ([GO22, Lemma 2.7]). For the family of above Lemma 4.17,
i.e.,

X ∗ = ⊔t∈∆∗((C∗)g/⟨pi,j(t)⟩i,j)t → ∆∗
t ,

we continue to use the notation in (4.18).
Suppose there is an action of a group H holomorphically on X ∗ preserv-

ing the fibers Xt and c1(Lt). We do not assume it preserves the 0-section.
For each t ∈ ∆∗, recall that

Λt = EZg ⊕ Ω′(t)Zg(12)

as a sublattice of Cg. Then, for any h ∈ H , the induced h∗ : H1(Xt,Z) →
H1(Xt,Z) preserves the first direct summand Zg of the above (12). Restric-
tion of h∗ to it is denoted as lh ∈ GL(g,Z). Further,

l : H −→ GL(g,Z)

∈ ∈

h 7−→ lh

,

is a group homomorphism.

Proof. The H-action on Xt induces a complex linear transformation fh ∈
GL(g,C), i.e., at the level of universal covers of Xts, and what we want to
show is that the image lies inside GL(g,Z). If we take only real t ∈ R>0,
we can take a (continuous) branch of βi,j(t) to avoid possible ambiguity due
to the monodromy. Then, each Λt for t ∈ R>0 can be canonically identified
with Z2g. Take e1, · · · , eg, f1, · · · , fg as the standard basis of Λt = Z2g, i.e.,
set

ei := (0, · · · , 0,
i−th︷︸︸︷
1 , 0, · · · , 0)
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and

fi := (0, · · · , 0,
(i+g)−th︷︸︸︷

1 , 0, · · · , 0)
for each i ∈ {1, · · · , g}.

Now we prove the assertion by contradiction. Assume the contrary i.e.,
there is some h ∈ H and 1 ≤ i ≤ g such that lh(ei) does not sit inside∑

1≤i≤g Rei. Since GL(Λt) = GL(2g,Z) is a discrete group, the lh is in-
duced by a particular isomorphism gh : Λt → Λt for any t. That is, for any
h and t ∈ ∆∗, lh(Λt) = Λt so that gh is obtained as a restriction of lh. From
the assumption that the imaginary part of gh(ei) = lh(ei) is not the zero
vector, if we write

gh(ei) =
∑

1≤j≤g

ajej +
∑

1≤j≤g

bjfj.

where all aj, bjs are integers, one can assume bj ̸= 0 for some j. Note

(β′
i,j(t))1≤i,j≤g ∼

− log |t|
2π

(B′
i,j)1≤i,j≤g,

with positive definite symmetric matrix (B′
i,j), a part of Faltings-Chai de-

generation data. That is, B′
i,j = b(li, ϕ(lj)) under the notation of (2.39).

Here, ∼ means the ratio converges to 1 when t→ 0. Also, the flat metric’s
Gram matrix is, if we set X(t) = (α′

i,j(t))i,j , Y (t) = (β′
i,j(t))i,j , then(

E 0
X(t) Y (t)

)(
Y (t)−1 0

0 Y (t)−1

)(
E X(t)
0 Y (t)

)
(13)

=

(
EY (t)−1E EY (t)−1X(t)
X(t)Y (t)−1E X(t)Y (t)−1X(t) + Y (t)

)
(14)

(cf., e.g. [Oda19, (3) during the proof of Theorem 2.1]) so that in particular
|ei| → 0 while |fh(ei)| → ∞ for t → 0. Here, | · | denotes the length with
respect to the canonical flat Kähler metric gKE on Xt. This contradicts the
fact that H-action on Xt is an isometry for all t ̸= 0. Hence the assertion is
proven by contradiction. □

Now, we are ready to show the existence and description of special La-
grangian fibrations for maximally degenerating abelian varieties.

Theorem 4.20 ([GO22, Theorem 2.8]). For any maximally degenerating
family (X|∆∗ ,L|∆∗)/∆∗ of polarized abelian varieties of dimension g, we
again denote by ωt the Kähler form of the flat metric gKE(Xt) with [ωt] =
c1(Lt). We also take a certain non-zero element (0 ̸=)Ωt ∈ H0(Xt, ωXt =
∧gΩXt). (See the proof for the actual choice of Ωt.) Recall that Xt can be
described as Cg/Λt for the lattice Λt of the form (8) of Lemma 4.19.

Then, the following holds:
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(i) For each t ∈ ∆∗, special Lagrangian fibration ft : Xt → Bt with
respect to ωt and Ωt exists (g = 2 case is proven in Theorem 4.9).
Bt is a g-dimensional real torus described as

Rg/(βi,j(t))1≤i,j≤gZg

under the notation (10). Furthermore, they fit into a family i.e., there
is a continuous map f : X|∆∗ → ∪t̸=0Bt for a certain extended
topology on ∪t̸=0Bt, which restricts to ft for each t ̸= 0.

(ii) The tropical affine structure ∇A(t) on Bt = Rg/(βi,j(t))1≤i,j≤gZg

is descended from the integral affine structure on Rg whose integral
points are (γi,j(t))1≤i,j≤gZg, where

(γi,j(t))i,j := E−1 · (β′
i,j(t))i,j · E−1

under the notation (11).
(iii) The tropical affine structure ∇B(t) on Bt = Rg/(βi,j(t))1≤i,j≤gZg

is descended from the integral affine structure on Rg whose integral
points are − log |t|

2π
Zg.

(iv) Suppose there is a fiber-preserving holomorphic action of a group
H on (X , c1(L)) (as in Lemma 4.19). Then for each t ̸= 0, the
H-action on Xt descends to that on Bt which is unified into a con-
tinuous H-action on ∪t̸=0Bt with respect to which X ∗ := X|∆∗ →
∪t̸=0Bt is H-equivariant.

Further, if the group H also fixes the isomorphic class of Lt for
each t ̸= 0 (not only their c1), thenH must be a finite group. In that
case, we can take the quotient of the map f by H . We denote the
obtained map as f/H : X ∗/H → ∪t̸=0(Bt/H).

(v) Under the situation above (iv), suppose further that the H-action
on X ∗ preserves relative holomorphic n-forms i.e., acts trivially on
ωX ∗/∆∗ = O(KX ∗/∆∗). Then, for each t ̸= 0, f/H is restricted
to a special Lagrangian fibration with respect to the descent of ωt

and Ωt. Further, they are of the form gt : Xt/H → Bt/H , where
the additional structures on Bt/H is those descended from the ones
described above (ii), (iii).

Remark 4.21. A weaker version of the above statements (i) i.e., existence
of special Lagrangian fibrations in large open subset of Xt are essentially
proven also as the simple combination of [Li20, Theorem 1.3] and [Liu11].
(i) of the above result refines it, even in an explicit way.

Proof. We set B′
i,j := valt(qi,j(t)). Recall that [Oda19, OO21, Got22] re-

peatedly proved that the Gromov-Hausdorff limit of Xt is identified with the
g-dimensional torus with the Gram matrix (B′

i,j)1≤i,j≤g. Indeed, as we saw
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in (2.26), the standard description of Riemann forms tells us that

ωt =

√
−1
2

∑
1≤i,j≤g

γi,j(t)dzi ∧ dzj,(15)

where (γi,j(t))i,j = E · (β′
i,j(t))

−1
i,j · E for the the basis {zi} of Cg such that

the period matrix is of the form (I Ω(t)) under the notation (6).

Remark 4.22. In particular, the conjectural asymptotic formula of Ricci-flat
Kähler forms by [Li20, (11) also cf., §4.2, §4.5] holds even globally in this
abelian varieties case.

From below, we use

Ωt =
−2π
log |t|

dz1 ∧ · · · ∧ dzg ∈ H0(Xt, KXt).

This choice is carefully made as multiplication by constant does change the
associated special Lagrangian fibrations.

Now we prove (i). We use Lemma 4.17 to set Xt = ((C∗)g/⟨pi,j(t)⟩i,j),
and use the description and the notations (3), (10) and (15) above. Then, for
each fiber Xt, maps defined by

f̃t : Cg −→ Rg

∈ ∈

(z1, · · · , zg) 7−→ (y1, · · · , yg),

where yi = Imzi, descend to

ft : Xt → Rg/(βi,j)1≤i,j≤gZg = Rg/ImΩ(t)Zg

under the notations (6) and (10).
We denotes an arbitrary fiber of ft as F (∼= Rg/Zg) whose coordinates are

defined by xi = Rezi. From (15), ωt|F = 0. Also, it is easy to see that

Im

(
Ωt =

−2π
log |t|

dz1 ∧ · · · ∧ dzg
)∣∣∣∣∣

F

= 0.

Hence (i) follows. Next, (ii) and (iii) follows from the definition in [Hit97,
Gro13] and standard calculation below. Since the fibers of ft are the integral
manifolds along the “real" directions xis, the affine coordinates along∇A(t)
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(resp., ∇B(t)) of ∂
∂yi

is determined as(∫
0≤x1≤1

ι

(
∂

∂yi

) ∑
1≤i,j≤g

√
−1
2

γi,j(dxi +
√
−1dyi) ∧ (dxj −

√
−1dyj),

· · · · · · ,∫
0≤xg≤1

ι

(
∂

∂yi

) ∑
1≤i,j≤g

√
−1
2

γi,j(dxi +
√
−1dyi) ∧ (dxj −

√
−1dyj)

)
= (γ1,i, · · · , γg,i)

(resp.,(∫
Γ1

ι

(
∂

∂yi

)
Im

(
−2π
log |t|

(dx1 +
√
−1dy1) ∧ · · · ∧ (dxg +

√
−1dyg)

)
,

· · · · · · ,∫
Γg

ι

(
∂

∂yi

)
Im

(
−2π
log |t|

(dx1 +
√
−1dy1) ∧ · · · ∧ (dxg +

√
−1dyg)

))

=
−2π
log |t|

(0, · · · , 0,
i-th︷︸︸︷
1 , 0, · · · , 0),

where Γi is the g − 1-cycle on f−1
t (y) = Fy of the form

[0, 1]× · · · × {xi} × · · · × [0, 1] ⊂ Rg/Zg ∼= Fy).

Set {wi} (resp., {w̌i}) as the integral affine coordinates induced by ∇A(t)
(resp.,∇B(t)). The above forms are rephrased as

t(w1, . . . , wg) =
(
E (ImΩ′(t))

−1
E
)

t(y1, . . . , yg)

and
t(w̌1, . . . , w̌g) =

(
−2π
log |t|

)
t(y1, . . . , yg).

Hence, by taking the inverse matrices, we can see that∇A(t) and∇B(t) give
the integral affine structures onRg/ImΩ(t)Zg defined byE−1ImΩ′(t)E−1Zg

and − log |t|
2π

Zg, respectively. Note that E−1ImΩ′(t)E−1 = ImΩ(t)E−1. In
particular, the Mclean metric gt with respect to {yi} is of the form

−2π
log |t|

E(ImΩ(t))−1.

Indeed, by definition, the Mclean metric gt is defined as follows:

w̌i = gt

(
∂

∂wi

,
∂

∂wj

)
wj.
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See also [Gro13, Definition 1.1]. Hence,(
gt

(
∂

∂wi

,
∂

∂wj

))
i,j

=
−2π
log |t|

(ImΩ(t))E−1.

Since E (ImΩ(t))−1 = t
(
E (ImΩ(t))−1), we obtain the following:(

gt

(
∂

∂yi
,
∂

∂yj

))
i,j

=
−2π
log |t|

· t
(
E (ImΩ(t))−1) ImΩ(t)E−1E (ImΩ(t))−1

=
−2π
log |t|

E (ImΩ(t))−1 .

Next, we show (iv). For the former statement, i.e., to descend the H-
action to B|∆∗ , it is enough to show that each h ∈ H sends any fiber of ft
for t ̸= 0 to one of its fibers. Note that they are written in the form

Rg +
√
−1(c1, · · · , cg) ⊂ C/(EZg ⊕ Ω(t)Zg).

Therefore the claim follows Lemma 4.19 as the coefficients of the linear part
of h-action are real numbers (actually integers).

When the H-action preserves the isomorphic class of Lt for each t ̸= 0,
H is regarded as a subgroup of the automorphism group of polarized abelian
variety of (Xt,Lt) for a fixed t ̸= 0, which is well-known to be finite. Hence,
H itself is finite. Thus, combined with the former statements of (iv), f/H
exists.

The remained proof of (v) is immediate from the definition of special
Lagrangian fibrations. □

Remark 4.23. Here we confirm that the special Lagrangian fibrations we
constructed in Theorem 4.9 and Theorem 4.20 are compatible. That is, for
the case of principally polarized abelian surfaces which are common to both
setup, the maps ft in Theorem 4.20 are examples of that of Theorem 4.9
although the latter are not completely unique (due to the small ambiguity of
applying Siegel reduction as in [OO21, §4, (4.11)]), to be precise.

Indeed, if we put (y′1, y′2) := (βi,j)1≤i,j≤2 ·t (y1, y2), we have

Re(Ωt) = dx1 ∧ dx2 − (det(βi,j))
−1dy′1 ∧ dy′2,(16)

Im(Ωt) = dx1 ∧ (β′
2,1dy

′
1 + β′

2,2dy
′
2)− dx2 ∧ (β′

1,1dy
′
1 + β′

1,2dy
′
2).(17)

Topologically all the fibers of ft (of Theorem 4.20) are identified with the
4-torus T with coordinates x1, x2, y′1, y′2. In H2(T,R), if we put

e := [dx1 ∧ dx2],
f := [dy′1 ∧ dy′2] and
v := [dx1 ∧ (B′

2,1dy
′
1 +B′

2,2dy
′
2)− dx2 ∧ (B′

1,1dy
′
1 +B′

1,2dy
′
2)],
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where (Bi,j := valtpi,j(t)), (B′
i,j)i,j := (Bi,j)

−1
i,j as a matrix, the above gives

log |t| · Re(Ωt) = log |t|e−O
(

1

log |t|

)
f(18)

log |t| · Im(Ωt) = (v + o(1)),(19)
for t → 0. As these (18), (19) fit to the reduction condition [OO21, p.47,
(4.11) and l.10-12] (set Ni := log |t|, ϵi := 1

Ni
in the notation of loc.cit), it

means the desired compatibility with the construction of ft in Theorem 4.9.

Corollary 4.24 (SYZ picture for maximal degenerating family of polarized
abelian varieties). Under the same setting as Theorem 4.20, we set the matrix

B := (valt(pi,j(t)))i,j .

Then SYZ picture with respect to the SYZ fibrations ft for each t ∈ ∆∗ as in
the proof of Theorem 4.20 gives the tuple

(B0,∇A(0),∇B(0), g0) ∼= (Rg/BZg, BE−1Zg,Zg, EB−1)

∼= (Rg/Zg, E−1Zg, B−1Zg, BE),

where the second (resp., third) terms of the right-hand sides represent the
integral points induced by∇A(0) (resp.,∇B(0)), and the fourth terms of the
right-hand sides represent the flat metrics induced by g0 with respect to the
standard basis of Rg, respectively.

Proof. Theorem 4.20 implies that the each SYZ fibration ft gives the tuple
(Bt,∇A(t),∇B(t), gt)

=

(
Rg/ImΩ(t)Zg, ImΩ(t)E−1Zg,

− log |t|
2π

Zg,
−2π
log |t|

E (ImΩ(t))−1

)
under the convention as explained above. Note that the Mclean metric gt is
determined by the transition function of the integral basis of ∇A(t) to that
of ∇B(t). By rescaling, we obtain the following:(

Rg/ImΩ(t)Zg, ImΩ(t)E−1Zg,
− log |t|

2π
Zg,
−2π
log |t|

E (ImΩ(t))−1

)
∼=

(
Rg/Zg, E−1Zg,

(
−2π
log |t|

ImΩ(t)

)−1

Zg,

(
−2π
log |t|

ImΩ(t)

)
E

)
.

Here, as we will see in Lemma 6.13, it holds that

B = lim
t→0

−2π
log |t|

Im(Ω(t)).

Hence, the tuple (Bt,∇A(t),∇B(t), gt) is convergent to a tuple
(Rg/Zg, E−1Zg, B−1Zg, BE)
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as t→ 0. That is,
(B0,∇A(0),∇B(0), g0) ∼= (Rg/Zg, E−1Zg, B−1Zg, BE).

By rescaling, it is also described as (Rg/BZg, BE−1Zg,Zg, EB−1). □

Remark 4.25. Note that the tuple (B0,∇A(0),∇B(0), g0) given by SYZ pic-
ture is determined by only B and E. In addition, B and E are independent
of each other.

If (X|∆∗ ,L|∆∗)/∆∗ is principally polarized, then we obtain the tuple
(B0,∇A(0),∇B(0), g0) ∼= (Rg/BZg, BZg,Zg, B−1)

∼= (Rg/Zg,Zg, B−1Zg, B).

It implies Theorem 4.9 (iv).

Corollary 4.26 (SYZ picture=Gromov-Hausdorff limit picture for K-trivial
finite quotients of abelian varieties). Use the same notation as in Theorem
4.20. Then the Gromov-Hausdorff limit of (X ′

t , g
′
KE(X ′

t )) for t → 0 coin-
cides with the Gromov-Hausdorff limit (B′

0, g
′
0) of (B′

t, g
′
t) for t→ 0, where

the metric g′KE(X ′
t ) (resp., g′t) onX ′

t (resp., B′) is induced by gKE(Xt) (resp.,
gt). Furthermore, the affine manifold (B′

0,∇′
B(0)) with singularities coin-

cides with the quotient of the affine manifold (B0,∇B(0)) by the group H ,
where the affine structure∇′

B(0) with singularities is induced by∇B(0). In
particular, we can regard the affine structure∇′

B(0) with singularities as an
IAMS structure by rescaling.

Proof. It follows from Theorem 4.20 (v). In addition, the affine structure
∇B(0) of B0 is detemined by the matrix valt(pi,j(t)) up to scaling, by The-
orem 4.20 (iii). Here, pi,j(t) is the meromorphic function as appeared in
Lemma 4.17. Hence, the last assertion holds. □

5. Non-Archimedean SYZ Fibration

This chapter is mainly based on [Got22, §4 and §5].

5.1. Preliminaries.
In this section, we introduce some important results from [NXY19].

5.1. Let T be a split algebraic K-torus of dimension n with its character
group M . We denote by N = M∨ the dual module of M . We define the
tropicalization map ρT : T an → NR of T by

T an ∋ x 7→ (m 7→ − log |m(x)|) ∈M∨
R = NR.

Then ρT is continuous, and its fibers are (not necessarily strictly)K-affinoid
tori. Further, the tropicalization map ρT has a canonical continuous section
s : NR → T an that sends each n ∈ NR to the Gauss point of the affinoid torus
ρ−1
T (n). The image of s is called the canonical skeleton of T , and denoted
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by ∆(T ). The map s induces a homeomorphism NR → ∆(T ). We identify
∆(T ) with NR via this homeomorphism.

Definition 5.2. Let Y be a K-analytic space, let B be a topological space
and let f : Y → B be a continuous map. Then f is called an n-dimensional
affinoid torus fibration if there is a open covering {Ui} of B such that, for
each Ui, there is an open subset Vi of NR ∼= Rn and a commutative diagram

f−1(Ui) //

f

��

ρ−1
T (Vi)

ρT

��
Ui

// Vi

⟳

where the upper horizontal map is an isomorphism ofK-analytic spaces and
the lower horizontal map is a homeomorphism.

5.3. If f : Y → B is an affinoid torus fibration, then f induces an integral
affine structure on the baseB as follows: For each open setU inB as in Def-
inition 5.2, we consider an invertible analytic function h on f−1(U). Then
the absolute value of h is constant along the fibers of f [KS06, §4.1, Lemma
1]. Hence h implies a continuous function |h| : U → R>0 by taking |h(b)|
as |h(y)| for some y ∈ f−1(b). We can define the integral affine functions
on U as the functions of the form − log |h|. If U is connected, then we can
identify the ring of integral affine functions onU with the ring of polynomial
functions of degree 1 with Z-coefficients on V ⊂ NR so that this construc-
tion indeed defines an integral affine structure onB via the homeomorphism
U → V [KS06, §4.1, Theorem 1]. More precisely, in loc.cit., they consid-
ered affine functions whose coefficients are in R, rather than Z. However,
that’s because they allowed the base fieldK to be a general nontrivial valued
field. Under the condition that K is a discrete-valued field as in our setting,
we can obtain affine functions whose coefficients are in Z as above. That is,
we can give the integral affine structure to B. To construct an integral affine
manifold in this way is often called non-Archimedean SYZ picture (NA SYZ
picture, for short).

5.2. K-trivial finite quotients of abelian varieties case.

5.4. First, we prepare two settings, one for general use and one for Kummer
surfaces, following [Got22]. If it is too complicated, it is enough to just
consider the latter setting (5.6), which is a special case of the former (5.5).
In the latter half of this section, we consider a setting (5.26) for K-trivial
finite quotients of abelian varieties, beyond [Got22].

Recall the notation in §2.3.
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5.5 (general setting). Let A be an Abelian variety over K and A be the
Néron model ofA. After taking a base change along f : S ′ → S as in (2.40)
if necessary, there is a triple (G,L ,M ) ∈ DEGsplit

ample such that A = Gη

and G = A 0 by the semiabelian reduction [Del72, Exposé I, Théorème
6.1]. In addition, we may assume that a finite group H acts on (G,L ,M )
such that the fixed locus of H on A is constant K-group scheme by taking a
further base change along f : S ′ → S as above, without loss of generality.
We assume thatG is maximally degenerated. For the tuple (M,L, ϕ, a, b) =
For(F ((G,L ,M ))), there is a decomposition Σ as Lem 2.55 after taking
a base change along f : S ′ → S as above. In particular, the decomposition
Σ is Γ = L⋊H-admissible.

Let P̃ be the toroidal compactification of T = SpecK[M ] over R asso-
ciated with Σ as constructed in (2.45) and P be the projective model of A
as Theorem 2.44. This P̃ is an SNC model of T . P is a Kulikov model of
A as we see in (2.46). By definition, this Kulikov model P is a good min-
imal dlt model with a technical assumption as in [NXY19, (2.3)]. Hence,
it follows that Sk(A) = Sk(P). Further, we replace L by L ⊗κ so that
L extends to the ample line bundle LP on P . Since M is trivial in our
setting, there is no need to consider M in particular. Since it holds that
T an = P̃ber and Aan = Pber, we can define the Berkovich retractions for
these SNC-models P̃ and P . We denote by ρP̃ (resp., ρP) the Berkovich
retraction associated with P̃ (resp., P) as in Definition 3.85. In particular,
ρP is a non-Archimedean SYZ fibration. Let ρT be the tropicalization map
of T .

5.6 (setting for Kummer surfaces). Let A be an Abelian surface over K and
X be the Kummer surface associated with A. We denote by A the Néron
model ofA. After taking a base change along f : S ′ → S as in (2.40) if nec-
essary, there is a (G,L ,M ) ∈ DEGsplit

ample such that A = Gη and G = A 0

by the semiabelian reduction [Del72, Exposé I, Théorème 6.1]. In addi-
tion, we may assume that the group H = {±1} acts on (G,L ,M ) so that
the K-group scheme A[2] is constant by taking a further base change along
f : S ′ → S as above, without loss of generality. We assume that G is max-
imally degenerated. For the tuple (M,L, ϕ, a, b) = For(F ((G,L ,M ))),
there is a decomposition Σ as Lem 2.55 after taking a base change along
f : S ′ → S as above. In particular, the decomposition Σ is Γ = L ⋊ H-
admissible.

Let P̃ be the toroidal compactification of T = SpecK[M ] overR associ-
ated with Σ as constructed in (2.45) and P be the projective model of A as
Theorem 2.44. This P̃ is an SNC model of T . P is a Kulikov model of A
as we see in (2.46). Further, we replace L by L ⊗κ so that L extends to the
ample line bundle LP on P . Since M is trivial in our setting, there is no
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need to consider M in particular. We denote by X the Kulikov model ofX
associated with Σ as in (2.58). By definition, these Kulikov models P and
X are good minimal dlt models with a technical assumption as in [NXY19,
(2.3)]. Hence, it holds that Sk(A) = Sk(P) and Sk(X) = Sk(X ). In
addition, we note that T an = P̃ber, Aan = Pber and Xan = Xber. Hence,
we can define the Berkovich retractions for these SNC-models P̃,P and
X . We denote by ρP̃ (resp., ρP , ρX ) the Berkovich retraction associated
with P̃ (resp., P , X ) as in Definition 3.85. In particular, ρP and ρX are
non-Archimedean SYZ fibrations. Let ρT be the tropicalization map of T .
Remark 5.7. As we can see, the setting (5.5) is a generalization of (5.6).
Under the setting (5.5), we consider a general dimensional abelian variety
with an action of a general finite group. However, we did not deal with K-
trivial finite quotients of abelian varieties under this setting (5.5) in [Got22].
At the end of this section, we consider K-trivial finite quotients of abelian
varieties beyond [Got22].
Proposition 5.8 ([Got22, Proposition 5.5]). Under the setting as in (5.5),
the Berkovich retraction ρP̃ of P̃ is equal to the tropicalization map ρT . In
particular, ρP̃ is an affinoid torus fibration.
Proof. We set d := dimN . The decomposition Σ gives the smooth rational
polyhedral decomposition Σ inNR obtained by intersectiong the cones in Σ
withNR×{1}. As we saw in (2.52), the Berkovich skelton Sk(P̃) coincides
with NR. Moreover, simplicial structure of Sk(P̃) coincides with Σ. Let
σ ∈ Σ be the smallest cone containing ρT (x) ∈ NR ∼= NR × {1}.

We set σ = R≥0ñ0 + · · · + R≥0ñs, where ñi = (ni, 1). We extend these
elements to a Z-basis ñ0, ..., ñd of ÑR. Let m̃i = (mi, ri) ∈ M̃ be the dual
basis of M̃ . We may assume that

ρT (x) =
s∑

i=0

aiñi =: ñ = (n, 1) ∈ NR × {1} ∼= NR,

where
∑
ai = 1 and ai > 0 for all 0 ≤ i ≤ s.

We set Aσ = R[M̃ ∩ σ∨] ∼= R[Y0, ..., Ys, Y
±
s+1, ..., Y

±
d ]/(Y0 · · ·Ys − t),

where Yi := triXmi . Then Uσ := SpecAσ ⊂ P̃ .
It follows that − log |Yj(x)| = ⟨m̃j, ñ⟩ = ⟨m̃j,

∑
aiñi⟩ = aj for x ∈

ρ−1
T (n) and for all 0 ≤ j ≤ d. Therefore redX (x) coincides with the

generic point ξσ of the toric stratumDσ corresponding to σ. Moreover, each
irreducible component Di of P̃0 that contains Dσ corresponds to each one
dimensional face τi = R≥0ñi of σ. Therefore, it follows that

ρP̃(x) =
s∑

i=0

aiñi = ρT (x).
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□

Corollary 5.9. Under the setting as in (5.6), the Berkovich retraction ρP̃ of
P̃ is equal to the tropicalization map ρT . In particular, ρP̃ is a 2 dimen-
sional affinoid torus fibration.

Proof. It follows by exactly the same argument as above Proposition 5.8. □

5.10. Under the setting as in Definition 3.85, let ρX : Xan ↠ Sk(X ) ⊂
Xan be the Berkovich retraction, where the simplicial structure of Sk(X ) is
given by a decomposition Σ = {σα}α∈I . Since the retraction ρX is contin-
uous, the inverse image ρ−1

X (Star(σα)) is an open set. In particular, it holds
that

Xan =
⋃
α∈I

ρ−1
X (Star(σα)).

We call this covering the retraction covering of Xan associated with X .
In other words, we can regard taking an snc-model of X as taking a retrac-
tion covering of Xan. To be precise, the stratification of the formal com-
pletion Xfor gives the retraction covering. We note that ρ−1

X (Star(σα)) =
red−1

X (Dα), whereDα is the scheme-theoretic intersection of the irreducible
components corresponding to 1-dimensional faces of σα. Let ξα be a stratum
of Xk corresponding to σα. Then Dα = {ξα}.

5.11. For the decomposition Σ = {σα}α∈I as in (5.5), the Berkovich skelton
Sk(P̃) is described as follows:

Sk(P̃) =
⋃

α∈I+
σα
∼= NR ∼= NR × {1},

where σα := σα ∩ (NR × {1}) as in (2.52). Theorem 3.3 implies that
Γ = L⋊H acts on Sk(P̃) as follows:

S(l,h)((n, 1)) = (n ◦ h+ b̃(l), 1).

Moreover, Sk(P) =
⋃

α∈I+L
σα (resp., B :=

⋃
α∈I+Γ

σα) is isomorphic to
Sk(P̃)/L (resp., Sk(P̃)/Γ) as simplicial complex. By Lemma 2.55, the
morphism Sk(P̃)→ Sk(P) is an unbranched cover such that its fundamen-
tal group is isomorphic to L, and the morphism Sk(P)→ B is a branched
double cover. Under the more concrete condition (5.6), the ramification lo-
cus of this morphism Sk(P)→ B = Sk(X ) is Z := 1

2
L/Γ. In particular,

Z consists of 4 points.

5.12. Under the setting as in (5.5), the action of Γ on P̃ induces Γ-action
on T an via the Raynaud generic fiber. In particular, the reduction map redP̃

and the Berkovich retraction map ρP̃ are Γ-equivariant. That is, it holds that
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ρP̃(γ · x) = Sγ(ρP̃(x)) for all x ∈ T an and γ ∈ Γ. Further, we can also
verify that the Berkovich retraction ρP of P is H-equivaliant, similarly.

Lemma 5.13. Under the setting (5.5), the following diagram commutes.

T an
/L

//

ρP̃
��

Aan

ρP

��
Sk(P̃)

/L
// Sk(P)

⟳

Proof. Since G is maximally degenerated, it holds that Pfor
∼= P̃for/L

as in (2.45). In particular, we obtain the morphism f : P̃for → Pfor.
Then fber : T an → Aan is the morphism appearing in the above diagram.
Let g : Sk(P̃) → Sk(P) be the morphism appearing in the above dia-
gram, similarly. Here, the proof is completed by showing the commutativ-
ity ρP ◦ fber = g ◦ ρP̃ . By definition, the image ρP̃(x) of x ∈ T an is
determined by the point ξ = redP̃(x) coresponding to the cone σξ ∈ Σ,
the irreducible components D1, ..., Dr containing ξ and the barycentric co-
ordinates (v1, ..., vr) with respect to the vertices corresponding to these Di,
where each Di corresponds to the 1-dimensional face σαi

of the cone σ for
some αi ∈ I1. Then the image ρP(fber(x)) is determined by the point
f(ξ) = redP(fber(x)), the irreducible components f(D1), ..., f(Dr) and
the barycentric coordinates (v1, ..., vr) with respect to the vertices corre-
sponding to these f(Di), where each f(Di) corresponds to 1-dimensional
cone σαi

for some αi ∈ I+L as in Theorem 2.44, where αi ∈ I1 is the one
above. On the other hand, g(ρP̃(x)) is determined by the simplex g(σ) ∈
Σ/L and the barycentric coordinates (v1, ..., vr) with respect to the ver-
tices g(σαi

), where αi ∈ I1 is the one above. Here, the retraction ρP̃ :

T an → Sk(P̃) is L-equivaliant as we see in (5.12). Hence we obtain
ρP(fber(x)) = g(ρP̃(x)). That is, the above diagram commutes. □

Proposition 5.14. Under the setting (5.6), letπ be the blow up π : BlA[2]A→
A. The following diagram commutes.

(BlA[2]A)
an

πan

��

H\

&&
T an

/L
//

ρP̃
��

Aan

ρP

��

Xan

ρX

��
Sk(P̃)

/Γ

44
/L

// Sk(P)

⟳

H\
// Sk(X )

⟳
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Proof. It follows by the same argument as above Lemma 5.13 that the left
part of the above diagram commutes. Hence it is enough to show that the
right part of the above diagram commutes. We set X̃ := BlA [2]P as in
(2.58). This X̃ is an snc model of BlA[2]A. We denote by ρX̃ the Berkovich
retraction. Since Sk(P) = Sk(X̃ ) as we see in (2.59), it holds that ρX̃ =
ρP ◦ πan. Since π is the blow-up along the fixed locus of H , the blow-up
π is H-equivaliant. In particular, H-equivaliant retraction ρP implies that
ρX̃ is H-equivaliant. After that, we can check the commutativity directly
by representing the two images concretely as in the proof of Lemma 5.13.
Hence, the right part of the above diagram commutes. □

Proposition 5.15 (cf.[NXY19, Proposition 3.8]). Under the setting (5.5),
the morphism T an → Aan is an unbranched cover. Moreover the open sets of
the form ρ−1

P (Star(σα)) for any α ∈ I+ are evenly covered neighborhoods.
In particular, ρP is an affinoid torus fibration.

Proof. By the property (e) of Lemma 2.55, Star(σα) ⊂ Sk(P) is an evenly
covered neighborhood with respect to Sk(P̃)→ Sk(P), where we identify
Star(σα) ⊂ Sk(P) with one of the sheets Star(σα) ⊂ Sk(P̃). For each
l ∈ L \ {0}, the following diagram holds.

ρ−1

P̃
(Star(σα))

≃
l
//

ρP̃

��

l · ρ−1

P̃
(Star(σα))

ρP̃

��
Star(σα)

Sl

≃ // Sl(Star(σα))

In particular, the upper horizontal map is an isomorphism of K-analytic
spaces and the lower horizontal map is a homeomorphism. The property
(e) of Lemma 2.55 says that Star(σα) ∩ Sl(Star(σα)) = ∅. It implies
that ρ−1

P̃
(Star(σα)) ∩ l · ρ−1

P̃
(Star(σα)) = ∅. By Lemma 5.13, we obtain

ρ−1

P̃
(Star(σα)) ∼= ρ−1

P (Star(σα)). That is, we can identify ρ−1
P (Star(σα))

with one of the sheets ρ−1

P̃
(Star(σα)). Hence, ρ−1

P (Star(σα)) is an evenly
covered neighborhoods. By Proposition 5.8, ρP̃ = ρT follows. It implies
the last assertion. □

Corollary 5.16. Under the setting (5.6), the morphism T an → Aan is an
unbranched cover. Moreover the open sets of the form ρ−1

P (Star(σα)) for
any α ∈ I+ are evenly covered neighborhoods. In particular, ρP is a 2-
dimensional affinoid torus fibration.

Proof. It follows by the same argument as above Proposition 5.15. □

5.17. In [NXY19, Proposition 3.8], they used the decomposition Σ which is
constructed in Proposition 2.44 and proved that the Berkovich retraction ρP
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does not depend on the choice of such decomposition. On the other hand, the
reason why we adopted the decomposition which is constructed in Lemma
2.55 is to show directly that ρP is an affinoid torus fibration by looking at
the covering map concretely.

Corollary 5.18. Under the setting (5.6), the morphism T an \ ρ−1
T (1

2
L) →

Xan \ ρ−1
X (Z) is an unbranched cover. Moreover the open sets of the form

ρ−1
X (Star(σα)) for any α ∈ I+ \ Ising are evenly covered neighborhoods.

In particular, the restriction of ρX to the open set Xan \ ρ−1
X (Z) is a 2-

dimensional affinoid torus fibration.

Proof. The morphism (BlA[2]A)
an → Xan as in Proposition 5.14 induces

the morphism

Aan \ ρ−1
P (

1

2
L/L)→ Xan \ ρ−1

X (Z)

by restricting to the open set which is isomorphic to Aan \ ρ−1
P (1

2
L/L). By

composing with T an → Aan, we consider the morphism

T an \ ρ−1
T (

1

2
L)→ Xan \ ρ−1

X (Z).

By the property (f) of Lemma 2.55, the above exceptional part 1
2
L corre-

sponds to Ising. By the property (g) of Lemma 2.55, Star(σα) ⊂ Sk(X )

is an evenly covered neighborhood with respect to Sk(P̃) → Sk(X ) for
all α ∈ I+ \ Ising. Hence, this morphism T an \ ρ−1

T (1
2
L) → Xan \ ρ−1

X (Z)
is an unbranched cover. Moreover, we obtain the latter assertion by using
Proposition 5.15. □

Proposition 5.19 (cf.[NXY19, (3.6), Proposition 3.8]). Under the setting
(5.5), the induced integral affine structure on Sk(A) by ρP coincides with
the quotient structure on NR/L.

Proof. It follows from (2.46) that Sk(A) = Sk(P). By Proposition 5.15,
the non-Archimedean SYZ fibration ρP is an affinoid torus fibration. Hence
this fibration ρP induces the integral affine structure on Sk(A). Then the
following commutative diagram

T an
/L

//

ρT
��

Aan

ρP

��
NR

/L
// Sk(A)

⟳

gives the morphism NR → Sk(A) between integral affine manifolds. In
particular, this morphism is defined by taking the quotient of NR by the
lattice b̃ : L ↪→ NR. Hence, this finishes the proof. □
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Corollary 5.20. Let T 2 = NR/L be the integral affine manifold constructed
in Proposition 5.19, and let TT 2 be the local system on T 2 of lattices of tan-
gent vectors. Then, the radiance obstruction cT 2 ∈ H1(T 2, TT 2) (cf.[GH84],
[GS06]) coincides with b̃ ∈ Hom(L,N) ⊂ Hom(L,NR) via the canonical
isomorphism H1(T 2, TT 2) ∼= Hom(L,NR).

Proof. It directly follows from Proposition 5.19. □

5.21. In [NXY19, Theorem 6.1], they proved that for each maximally de-
generating projective Calabi-Yau variety X over K and any good minimal
dlt-model X over S, the singular locus Z of the essential skeleton Sk(X)
with the IAMS structure induced by Sk(X ) is contained in the union of the
faces of codimension ≥ 2 in Sk(X ). In particular, the singular locus is of
codimension≥ 2. Further, in loc.cit., they proved that the piecewise integral
affine structure of Sk(X) induced by this IAMS structure of Sk(X) does not
depend on the choice of such dlt-models.

As we state in (3.87), however, what is called a piecewise integral struc-
ture is closer to the topological structure than to the integral affine structure.
In other words, the IAMS structure of Sk(X) induced by Sk(X ) does de-
pend on the choice of such dlt-models. In general, it is difficult to describe
its IAMS structure explicitly, but in the case of Kummer surfaces, it can be
described as follows:

Theorem 5.22 ([Got22, Theorem 5.19]). Under the setting (5.6), the re-
striction of the non-Archimedean SYZ fibration ρX : Xan → Sk(X) to the
open setXan\ρ−1

X (Z) is a 2-dimensional affinoid torus fibration. Moreover,
the integral affine structure on Sk(X) \Z induced by ρX coincides with the
restriction of the quotient structure on NR/Γ, where Γ = L⋊H .

Proof. It follows from (2.58) that Sk(X) = Sk(X ). By Corollary 5.18,
ρX |Xan\ρ−1

X (Z) is an affinoid torus fibration. The following commutative di-
agram

T an \ ρ−1
T (1

2
L) //

ρT
��

Xan \ ρ−1
X (Z)

ρX

��
NR \ 1

2
L

/Γ
// Sk(X) \ Z

⟳

gives the unbranched cover NR \ 1
2
L→ Sk(X) \ Z. In the same manner as

above Proposition 5.19, we obtain the isomorphism

Sk(X) \ Z ∼= (NR \
1

2
L)/Γ = (NR/Γ) \ {4pts}

as an integral affine manifold. □
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Corollary 5.23. Let S2 = NR/Γ be the IAMS constructed in Theorem 5.22
and let TS2\Z be the local system on S2 \ Z of lattices of tangent vectors.
We denote by ι : S2 \ Z → S2 the natural inclusion. Then the radiance
obstruction cS2 ∈ H1(S2, ι∗TS2\Z) coincides with 1

2
b̃ ∈ Hom(L,NR) via the

isomorphism Hom(L,NR) ∼= H1(T 2, TT 2) ∼= H1(S2, ι∗TS2\Z) induced by
the quotient morphism T 2 → S2 between these IAMS. Further, the radiance
obstruction cS2 is contained in Hom(L,N).

Proof. Tsutsui proved that the quotient morphism q : T 2 → S2 induces the
isomorphism q∗ : H1(T 2, TT 2) ∼= H1(S2, ι∗TS2\Z) such that cS2 = 1

2
cT 2

holds in his unpublished work[Tsu20]. Hence, the first assertion directly
follows from Theorem 5.22, Corollary 5.20 and the above Tsutsui’s work.

On the other hand, Overkamp proved that the map b : L×M → Z as in
(5.6) takes only even values [Ove21, Proposition 3.5]. Hence, b̃ : L → N
also takes only even values. It implies that cS2 = 1

2
b̃ ∈ Hom(L,N). □

These results are proved in [Got22]. After that, we extend these results to
more general K-trivial finite quotients of abelian varieties.

Theorem 5.24 ([GO22, Proof of Corollary 3.3]). Consider an arbitrary
abelian variety A over K of dimension g with an action of a finite group
H as appeared in (5.5). Assume that H acts trivially on the canonical bun-
dle ωA on A so that the canonical bundle ωA/H on A/H is trivial. Then,
for theH-equivariant SNC model P as appeared in Theorem 2.44, the pair
(P/H, (P/H)k) is qdlt in the sense of [dFKX17]. Further, we assume
that for any nontrivial h ∈ H , the fixed locus of its action on Sk(A) is 0-
dimensional. Then (P/H, (P/H)k) is dlt.

Proof. We write the irreducible decomposition of Pk as ∪iEi. We want
to show that for any h which is not the identity e, h does not fix any Ei

pointwise. Suppose the contrary and take a general point of x ∈ Ei. P is
smooth over R at x, where R is the DVR of K. We take local coordinates
(x1, · · · , xg) of x ∈ Ei which we extend to h-invariant coordinates around
x ∈ P . Then (x1, · · · , xg, t) is a H-invariant local coordinates of x ∈ P ,
which contradicts with nontriviality of h. Hence (P/H)k is reduced. In
particular, it implies that the quotient (P/H, (P/H)k) is qdlt.

Suppose there is h(̸= e) ∈ H which preserves a strata Z of Pk (a log
canonical center of (P,Pk)) pointwise. Then the strata of the dual complex
Sk(A) which corresponds to Z is fixed by h, hence contradicts with our last
assumption. It implies that the quotient (P/H, (P/H)k) is dlt. □

Remark 5.25. Theorem 5.24 partially extends a result by Overkamp in the
Kummer surfaces case cf., [Ove21, §2, §3]).

We are now in a position to generalize Theorem 5.22.
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5.26 (setting for K-trivial finite quotients of abelian varieties). Let A be a
g-dimensional abelian variety over K, H be a group satisfying the whole
conditions as appeared in Theorem 5.24, andX be the quotient of the abelian
variety A by the group H .

We denote by A the Néron model ofA. After taking a base change along
f : S ′ → S as in (2.40) if necessary, there is a (G,L ,M ) ∈ DEGsplit

ample

such thatA = Gη andG = A 0 by the semiabelian reduction [Del72, Exposé
I, Théorème 6.1]. We assume thatG is maximally degenerated. For the tuple
(M,L, ϕ, a, b) = For(F ((G,L ,M ))), there is a decomposition Σ as Lem
2.55 after taking a base change along f : S ′ → S as above. In particular,
the decomposition Σ is Γ = L⋊H-admissible.

Let P̃ be the toroidal compactification of T = SpecK[M ] over R asso-
ciated with Σ as constructed in (2.45) and P be the projective model of A
as Theorem 2.44. This P̃ is an SNC model of T . P is a Kulikov model of
A as we see in (2.46). Further, we replace L by L ⊗κ so that L extends to
the ample line bundle LP on P . Since M is trivial in our setting, there is
no need to consider M in particular. We denote by X the dlt model of X
associated with Σ as in Theorem 5.24. That is, X := P/H . By definition,
these Kulikov models P and X are good minimal dlt models with a techni-
cal assumption as in [NXY19, (2.3)]. Hence, it holds that Sk(A) = Sk(P)

and Sk(X) = Sk(X ). In addition, we note that T an = P̃ber, Aan = Pber,
and Xan = Xber. Hence, we can define the Berkovich retractions for these
models P̃,P , and X . We denote by ρP̃ (resp., ρP , ρX ) the Berkovich
retraction associated with P̃ (resp., P , X ) as in Definition 3.85. In par-
ticular, ρP and ρX are non-Archimedean SYZ fibrations. Let ρT be the
tropicalization map of T . Here, we denote by Z ⊂ Sk(X ) the ramification
locus of Sk(P)→ Sk(X ).

Theorem 5.27 (NA SYZ picture for K-trivial finite quotients of abelian vari-
eties). Under the setting (5.26), the restriction of the non-Archimedean SYZ
fibration ρX : Xan → Sk(X) to the open set Xan \ ρ−1

X (Z) is an affinoid
torus fibration. In partucular, the integral affine structure on Sk(X) \ Z
induced by ρX coincides with the restriction of the quotient structure on
NR/Γ, where Γ = L⋊H . Moreover, the skelton Sk(X) is an IAMS, that is
codimZ ≥ 2.
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Proof. In a similar way as Proposition 5.14, the following diagram com-
mutes.

T an
/L

//

ρP̃
��

Aan
H\

//

ρP

��

Xan

ρX

��
Sk(P̃)

/Γ

44

/L
// Sk(P)

⟳

H\
// Sk(X )

⟳

Hence, it induces an isomorphism Sk(X)\Z ∼= (NR/Γ)\Z as an integral
affine manifold by the same discussion as Theorem 5.22.

To finish the proof, we show codimZ ≥ 2. Since X is K-trivial, the
ramification divisor R of the finite morphism f : A→ X vanishes. If D is
a fixed prime divisor on A for some h ∈ H , then D is a ramification divisor
on A. Indeed, when we set ξ and ξ′ as the generic point of D and f(D),
the dimension of the finite morphism OX,ξ′ → OA,ξ between two DVR’s is
given by the stabilizer ofH . In particular, dimOX,ξ′

(OA,ξ) ≥ 2. On the other
hand, dimOX,ξ′

(OA,ξ) is equal to the value of an uniformizing parameter of
OX,ξ′ for the discrete valuation onOA,ξ. This is nothing but the ramification
index of D. Hence, D is a ramification divisor. From now on, we show that
A has a fixed divisor for some h ∈ H if codimZ = 1. As in (2.42), any
action h on A can lift to an action on the split torus T (= SpecK[M ]). In
particular, we may assume h ∈ GL(N)∩GL(L), whereN =M∨. Then this
action descends to the skeleton Sk(P) ∼= NR/L via the canonical projection
NR → NR/L. By construction, any action h ∈ H on Sk(P) is given in this
way. If codimZ = 1, then some h fixes some 1 codimensional subspace
in NR. Fix such an h. Here, for the simplicial decomposition of NR as in
Lemma 2.55, the stabilizer of H on each simplex is trivial. It implies that h
has g − 1 linear independent eigenvectors with eigenvalues 1. In particular,
h is diagonalizable. Further, h ∈ GL(N) implies deth = ±1. If deth = 1,
then hmust be trivial. Hence, deth = −1. That is, h is diagonalizable with
eigenvalues (−1, 1, . . . , 1). Since N = M∨, the same holds for the action
of h on M . Then we can take eigenvectors of h in M since h ∈ GL(M).
In particular, we take a primitive eigenvector m ∈ M of h with eigenvalue
−1. Here, zm − 1 = zm1

1 · · · z
mg
g − 1 is a prime element of K[M ]. Indeed,

we can take a basis of M such that an element of the basis is m ∈ M since
M/mZ is a free Z-module and 0→ mZ→M →M/mZ→ 0. That is, we
may assume that m = (1, 0, . . . , 0) after taking some B ∈ GL(M). Then
zm − 1 = z1 − 1 is a prime element of K[M ] since

K[M ]/(z1 − 1) ∼= K[z±2 , . . . , z
±
g ].
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Note that m is an eigenvector of h with eigenvalue −1. It implies that the
prime divisor on T defined by zm − 1 = 0 is invariant for h. Note that we
can take an affinoid domain V of T an such that the restriction of T an → Aan

to V is an isomorphism and the interior of V intersects the closed analytic
space defined by zm − 1 = 0. It implies that A has a prime divisor locally
defined by zm− 1 = 0. In particular, the prime divisor on A is invariant for
h. It is a contradiction. Hence codimZ ≥ 2 follows. □

Remark 5.28. Under the setting (5.26), these IAMS are uniquely deter-
mined byM , L and b. Hence, these IAMS do not depend on the polarization
ϕ. Under the notation in Corollary 4.24, b̃(L) (resp. ϕ(L)) corresponds to
B (resp., E). It means that the tuple (M,L, ϕ, a, b) = For(F ((G,L ,M )))
has enough information to construct an IAMS with a metric given by SYZ
picture as in Corollary 4.24. In our definition of NA SYZ picture, we could
not reflect the polarization to the IAMS. Later, Pille-Schneider proposed
more polished NA SYZ picture that also reflects the polarization [PS22,
Conjectute 3.21].

5.3. Equivalence between SYZ picture and NA SYZ picture.

5.29. In this section, we prove the coincidence between SYZ picture and NA
SYZ picture for K-trivial finite quotients of polarized abelian varieties.

5.30. Consider the same situation as (5.26). For the maximally degenerating
polarized abelian variety (Gη,Lη) of dimension g, we assume that k = C
and H-action fixes Lη. It gives a situation as in Theorem 4.20.

Lemma 5.31. Under the setting (5.30), we use the same notation as Corol-
lary 4.26. Then the integral affine manifold induced by the non-Archimedean
SYZ fibration coincides with the integral affine manifold induced by the fam-
ily of SYZ fibrations. That is, Sk(P) and∇B(0) give the same integral affine
structure (up to scaling) to the g-torus T g ∼= Rg/Zg.

Proof. It follows from Proposition 5.19 and Corollary 4.26. Indeed, we ob-
tain the integral affine structures on Rg/Zg as follows: In NA SYZ picture,
the integral affine structure of Rg/Zg ∼= NR/L is given by the inclusion
b̃ : L→ N . In SYZ picture, it follows from Corollary 4.26 that the integral
affine structure of Rg/Zg is given by the matrix B(li, lj) as in (2.39) up to
scaling. Hence, these two pictures give the same integral affine structure to
NR/L up to scaling. □

Theorem 5.32 (cf. [Got22, Theorem 5.31], [KS06, Conjecture 3] for K-triv-
ial finite quotients of abelian varieties). Under the setting (5.30), we use the
same notation as Corollary 4.26. Then the smooth locus of the IAMS in-
duced by the non-Archimedean SYZ fibration coincides with that of the IAMS
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induced by the family of SYZ fibrations up to scaling. That is, Sk(X ) and
∇′

B(0) give the same IAMS structure (up to scaling) to the topological space
NR/Γ.

Proof. It follows from Theorem 5.27, Corollary 4.26 and Lemma 5.31. In-
deed, those two IAMS structures are the quotient of NR/L by H . Hence,
these two pictures give the same integral affine structure toNR/Γ up to scal-
ing. □

Remark 5.33. Note that, in NA SYZ picture, we were implicitly rescaling
the affine structure by taking a base change f : S ′ → S as in (5.30). That is,
the rescaling is inevitable.

We only treat the B-side integral affine structures such as ∇B(0) given
by SYZ picture in Theorem 5.32. It is because the A-side affine structures
depend on polarizations by definition although NA SYZ picture does not
depend on polarizations as we see in Remark 5.28. Actually, the B-side
affine structures do not depend on polarizations as we see in (4.18).

The result of [Got22, Theorem 5.31] is contained in Theorem 5.32. In-
deed, under the setting (5.6), the IAMS induced by the non-Archimedean
SYZ fibration for the Kummer surface X that is given in Theorem 5.22, is
the same as the IAMS induced by the non-Archimedean SYZ fibration for
the singular Kummer surface A/H that is given in Theorem 5.27. Further,
theB-side affine structures given by SYZ picture for the Kummer surfaceX
and the singular Kummer surface A/H are the same too, while the A-side
affine structures might be different.

Theorem 5.32 states that NA SYZ picture is equivalent to SYZ picture for
finite quotients of abelian varieties somehow. In §6.2, we give another proof
of Theorem 5.32 and the reason why these two pictures coincide.

Remark 5.34. In [KS06, Conjecture 3], they predicted an equivalence be-
tween Collapse picture (or SYZ Picture assuming that Gromov-Hausdorff
limit picture holds) and NA SYZ picture. Note that, in our definitions, SYZ
picture gives two affine structures and one metric, Gromov-Hausdorff limit
picture gives a metric space, and NA SYZ picture gives an affine structure.
That is, the resulting objects of these pictures are different. Corollary 4.26
and Theorem 5.32 imply that, for K-trivial finite quotients of abelian vari-
eties, SYZ picture and Gromov-Hausdorff limit picture give the same metric
space, and (the B-side affine structure of) SYZ picture and NA SYZ picture
are the same as an IAMS.

6. Hybrid SYZ fibration

As briefly discussed in the introduction, this section discusses gluing two
kinds of fibrations in originally very different natures:
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• special Lagrangian fibrations (SYZ fibrations) and
• non-archimedean SYZ fibration,

which is a sort of enhanced answer to [KS06, Conjecture 3]. Indeed, we
use it to show the conjecture for certain finite quotients of abelian varieties,
generalizing [Got22, §5]. This chapter is mainly based on [GO22, §3 and
§4].

6.1. Preliminaries.

6.1. For the gluing, we use the recent technology of the hybrid norm orig-
inated in [Ber10] and re-explored in [BJ17, §2], [Oda19, Appendix]. It is
also closely related to earlier Morgan-Shalen’s partial compactification tech-
nique [MS84]. More precisely speaking, [BJ17] shows the following by two
different constructions i.e., as the projective limit of Morgan-Shalen type
extension and as a variant of Berkovich analytification.

6.2. As we saw in §3, Berkovich originally considered the Berkovich ana-
lytifications of locally algebraic schemes over a non-Archimedean field K.
Later, in [Ber10, §1], he presents the Berkovich analytifications of locally
algebraic schemes over a Banach ring K. In loc.cit., he only considered
their topological aspects. In this thesis, we also consider only topological
aspects. Later, Poineau and Lemanissier study their analytic aspects, that is,
their structure sheaves. See [Poi10], [Poi13] and [LP20].

Here, we now introduce the Berkovich analytifications of locally alge-
braic schemes over a Banach ring K, following [Ber10]. Let X be a lo-
cally algebraic scheme over a Banach ring K. For any affine open subset
U = SpecA of X , let UAn be the set consisting of all multiplicative semi-
norms on A whose restrictions to K are bounded be the equipped norm on
K. The topology on UAn is the weakest topology such that, for any f ∈ A,
the corresponding map UAn ∋ | · | 7→ |f | ∈ R is continuous. By gluing
together the spaces UAn, we obtain a topological space XAn.

We can easily see that this construction generalizes the one over a non-
Archimedean field. Compare with (3.39). Here, XAn is Hausdorff, locally
compact and countable at infinity. In a similar way to (3.43), we obtain
a canonical map φ : XAn → X defined by x 7→ ker | · |x. Further, the
construction X 7→ XAn is functorial and satisfies the following:

• A morphism f : X → Y between locally algebraic schemes over
a Banach ring is an open (resp., closed) embedding, then so is the
corresponding morphism fAn : XAn → Y An.
• A morphism f : X → Y between locally algebraic schemes over a

Banach ring is surjective, then so is fAn : XAn → Y An.
In particular, we obtain the morphism λ : XAn →M (K) corresponding to
the structure morphism X → SpecK.
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6.3. We now introduce some results about the hybrid norm. As in (3.6), the
hybrid norm | · |hyb on C is determined by |z|hyb := max{|z|0, |z|∞}. We
denote by Chyb the Banach field (C, | · |hyb). Then

M (Chyb) ∼= [0, 1].

Indeed, we can easily see that any element of M (Chyb) is of the form | · |ρ∞,
where ρ ∈ [0, 1]. Consider the analytification of a locally algebraic scheme
X over Chyb. As in (6.2), we obtain the structure morphism λ : XAn →
[0, 1]. It follows from [Jon16, Theorem C] that λ : XAn → [0, 1] is open
map. Further, the Gelfand-Mazur Theorem (cf. [Gel41]) implies a canonical
homeomorphism X(C) ∼= λ−1(ρ), where ρ ∈ (0, 1]. On the other hand, it
holds that λ−1(0) ∼= Xan, where the right-hand side means the Berkovich
analytification of X over (C, | · |0).

6.4. Fix ϵ≪ 1. Now consider the Banach ring over Chyb defined as

Aϵ :=

{
f =

∑
i∈Z

ait
i ∈ C((t))

∣∣∣∣∣ ai ∈ C, ||f || :=
∑
i∈Z

|ai|hybϵi < +∞

}
.

Note that f ∈ Aϵ is holomorphic on ∆ϵ
∗
:= ∆ϵ \ {0} and meromorphic at

0 ∈ ∆ϵ. Then, it follows from [Poi10, Proposition 2.1.1] that M (Aϵ) ∼= ∆ϵ,
where ∆ϵ := {t ∈ C | |t|∞ < ϵ}. In particular, the multiplicative seminorm
on Aϵ corresponding to z ∈ ∆ϵ is defined by

|f | =

{
ϵ−

log |f(t)|∞
log |t|∞ (t ̸= 0)

ϵ−valt(f) (t = 0),

where valt is the t-adic (additive) valuation on C((t)) as in (4.7). Here, the
map p : M (Aϵ)→M (Chyb) corresponding to Chyb → Aϵ is given by

p(z) =

{ log ϵ
log |t|∞ (t ̸= 0)

0 (t = 0)

under the indentifications M (Aϵ) ∼= ∆ϵ and M (Chyb) ∼= [0, 1]. It implies
that each fiber p−1(ρ) is of the form {|t|∞ = ϵ

1
ρ} ⊂ ∆ϵ, where ρ ∈ (0, 1],

and p−1(0) consists only one point corresponding to the valuation ϵ−valt

on C((t)). We denote the Berkovich analytification of a locally algebraic
schemeX over the Banach ringAϵ byXhyb. Such an analytification is called
a hybrid analytification after [BJ17]. Similarly, we set πhyb : Xhyb → ∆ϵ

as the map corresponding to the structure morphism X → SpecAϵ.
Now consider X/∆ as in (4.7). Then X can be considered as a locally

algebraic scheme over the Banach ring Aϵ for 0 < ϵ < 1. Indeed, the
morphism π : X → ∆ induces a morphism X → SpecAϵ. Then we can
consider the hybrid analytification X hyb. Here, we may assume ∆ϵ = ∆ by
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rescaling. Now it is known that the structure morphism πhyb : X hyb → ∆ϵ

coincides with the morphism π : X → ∆ away from the central fiber. More
precisely, the following fact is known.

Fact 6.5 ([BJ17, §4 and Appendix]). For each smooth projective family
π∗ : X ∗ → ∆∗ and associated smooth projective variety X over C((t))mero,
there is a topological space πhyb : X hyb → ∆ such that

(i) πhyb|∆∗ = π∗ : X ∗ → ∆∗ with the complex analytic topology,
(ii) (πhyb)−1(0) = Xan, where Xan means the Berkovich analytifica-

tion of X/C((t))mero.

Remark 6.6. Fact 6.5 implies the topology of each fiber depends only on
the generic fiberX ∗ (orX). To obtain the continuous map πhyb : X hyb → ∆
as appeared in Fact 6.5, we have to choose a model X of X . These choices
affect how horizontal sections converge.

6.2. Hybrid SYZ fibration.
We are now in a position to define hybrid SYZ fibration. The following is

one of our main theorems. We have not found literature which conjectured
the statements.

Theorem 6.7 (Hybrid SYZ fibration, [GO22, Theorem 3.2]). For any max-
imally degenerating family (X|∆∗ ,L|∆∗)/∆∗ of polarized abelian varieties
of dimension g we use the same notation as Theorem 4.20. Then, the follow-
ing hold.

(i) There is a family of tropical affine manifolds (real tori) i.e., a topo-
logical space B := ⊔t∈∆Bt with a natural continuous map to ∆ =
{t ∈ C | |t| < 1} and continuous family of tropical affine struc-
tures on Bt such that for t ̸= 0, they coincide with (Bt,∇B(t)) of
Theorem 4.20.

Further, it comes with a continuous proper map
fhyb : X hyb → B,(20)

such that
(a) for t ̸= 0, fhyb|Xt = ft i.e., coincides with the special La-

grangian fibrations in Theorem 4.20.
(b) fhyb|t=0 = fhyb|Xan is the non-archimedean SYZ fibration as

appeared in Proposition 5.15.
We call this map fhyb a hybrid SYZ fibration.

(ii) If a groupH acts holomorphically in a fiber-preserving manner on
X|∆∗ , which fixes c1(Lt) for t ̸= 0, it induces continuous actions on
both X hyb and B. (See also Theorem 6.23 for more details.) Fur-
thermore, fhyb isH-equivariant with respect to the induced actions
of H . If the group H also fixes Lt, then H must be a finite group
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and it descends to the quotient X hyb/H → B/H , which we denote
as fhyb/H .

(iii) Under the setup of above (ii), we further assume that H is given by
actions as considered in (5.26). Then, fhyb/H : X hyb/H → B/H
is again fiberwise special Lagrangian fibrations for t ̸= 0 and a
non-archimedean SYZ fibration for t = 0.

Proof. First, we prove (i). Recall from Fact 6.5 and [BJ17] that X hyb is the
projective limit of Morgan-Shalen type space X hyb(X ) := X ∗ ⊔ ∆(X0)
with the hybrid topology of [BJ17, §2], where X ∗ ⊂ X → ∆ runs over
SNC models and ∆(X0) denotes the dual complex of central fibers.

Here we take the Mumford construction by [Mum72, Kün98] (also cf.,
[Got22, MN22]) and construct a smooth minimal model X ∗ ⊂ X which is
projective over ∆ and the central fiber X0 is simple normal crossing. Then,
recall from [BJ17, §2] that the Morgan-Shalen type partial compactification
(X ∗ ⊂)X hyb(X ) satisfies

• πhyb extends to a continuous proper map πhyb : X hyb(X )→ ∆,
• (πhyb)−1(0) is the dual complex of X0.

See [BJ17, §2] (also cf., original [MS84]) for the details including the de-
scription of the topology. Below, we will show that there is a map

f(X ) : X hyb(X )→ B

such that the composite of f(X ) together with the natural retraction

X hyb → X hyb(X )

([Ber99], see also [KS06, BJ17]) gives the desired fhyb.
We take an arbitrary sequence

Pk = (tk, (Zi)k) ∈ ∆∗ × (C∗)g (k = 1, 2, · · · )

which satisfies that for each i ∈ {1, · · · , g}, there is a real constant ci such
that

log |(Zi)k|
log |tk|

→ ci(21)

for k → ∞. This condition means that, the points Pk (k = 1, 2, · · · ) con-
verge to (c1, · · · , cg) ∈ Rg modulo (Bi,j)Zg in the Morgan-Shalen type
partial compactification X ∗,hyb(X ). By the definition of the topology put
on the Morgan-Shalen type compactification (cf., [MS84], [BJ17, §2]), to
prove the desired assertion, it is enough to show that ftk(Pk) converges to
the same (c1, · · · , cg) ∈ B0 ⊂ B for k →∞.
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So we consider the sequence {ftk(Pk)} ∈ B. By Theorem 4.20 (ii) and
(iii), it is represented by

Im

(
log(Zi)k
2π
√
−1

)
mod. (βi,j(tk))1≤i,j≤gZg,(22)

hence as a point in Btk ⊂ B,

ftk(Pk) =

(
log |(Zi)k|
log |tk|

)
mod.

(
2πβi,j(tk)

− log |tk|

)
1≤i,j≤g

Zg.(23)

Since Im t√
−1

= − log |t| in general, applying to (23), ftk(Pk) converge to
(c1, · · · , cg) ∈ B0 ⊂ B for k →∞ by the assumption (21) on the sequence
Pk. To finish the proof of (i), we confirm that the obtained fhyb is proper. It
follows from the fact that X hyb(X )→ ∆ for each SNC model X is always a
proper map, together with the description of X hyb as the projective limit of
X hyb(X ) for a certain projective system of the model X s ([KS06, Appendix
A, Theorem 10], [BJ17, 4.12]) thanks to Tychonoff’s theorem.

Next, we prove (ii). It follows from the functoriality of the construction
of hybrid analytification ([Ber10]) that the H-action induces a natural con-
tinuousH-action on the whole X hyb. Theorem 4.20 (iv) states the existence
of continuous H-action B|t̸=0 with which fhyb|t̸=0 is H-equivariant, which
we want to extend to the whole base B. Recall there is aH-equivariant SNC
minimal model of X ∗ by [Kün98, 3.5, esp. (v)], applied over the DVR of
holomorphic germs Ohol

C,0 at 0 ∈ C. Hence, there is a natural H-action on
Bt=0 so that fhyb|t=0 isH-equivariant. Hence, summing up above, we have a
H-action onB with which fhyb isH-equivariant. What remains to complete
the proof of (ii) is the continuity of the H-action on B.

Suppose the contrary. Then there is a sequence xi (i = 1, 2, · · · ) ∈ B
and h ∈ H such that while limi→∞ xi exists in B0, but

lim
i→∞

h · xi ̸= h ·
(
lim
i→∞

xi

)
.(24)

We can lift each xi to x̃i ∈ X hyb(X ) whose image in B is xi. From the
properness of fhyb proven in (i) above and locally compactness of B, we can
and do assume that that limi→∞ x̃i exists. Then, limi→∞ h · x̃i maps down to
h·(limi→∞ xi)which contradicts with (24). Therefore, we can take the finite
quotient fhyb/H : X hyb/H → B/H in the category of topological spaces.

Finally, we prove (iii). From Theorem 4.20 (v), the assertions hold away
from t = 0. Here, take a H-equivariant maximal degeneration X over ∆
corresponding to a maximal degeneration P of the abelian variety A as
in (5.26). Then the quotient P/H is again a relatively minimal dlt model
of A/H by Theorem 5.24. Further, it holds that fhyb/H|t=0 = ρP/H by
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Theorem 5.27. Hence, the assertion holds. See [BM19, 6.1.9] for a related
result. □

Now, we are ready to rigorously formulate and prove [KS06, Conjecture
3] for K-trivial finite quotients of abelian varieties of any dimension, under
a slight assumption.

Corollary 6.8 ([GO22, Corollary 3.3],[KS06, Conjecture 3] for K-trivial
finite quotients of abelian varieties). Consider an arbitrary maximally de-
generating family (X ∗,L∗)/∆∗ of polarized abelian varieties of dimension
g and a holomorphic action of a group H (which must be a finite group) on
X ∗ in a fiber-preserving manner such that

• the H-action fixes Lt for t ̸= 0,
• theH-action acts trivially on ωX ∗/∆∗ so that X ∗/H → ∆∗ is again

a relatively K-trivial family,
• theH-action causes a toric action on the toroidal compactification

P̃ of the split torus as appeared in (5.26).
Then the following two tropical affine manifolds with singularities are

isomorphic (see Theorem 6.7 for the precise meaning):
(i) (complex side) the limit of the base Bt/H of special Lagrangian

fibrations for t→ 0 with ∇B(t)
(ii) (non-archimedean side) the base B0/H which underlies the non-

archimedean SYZ fibration.

Proof. It follows from Theorem 6.7 (ii), (iii) and their proofs. □

Remark 6.9. The complimentary “prediction"s in [KS06, Conjecture 3] are
the existence of some “natural" interpretation of the non-archimedean SYZ
fibration via Gromov-Hausdorff limit, together with a coincidence of criti-
cal locus. Note that original claim (the way to define πmer) itself was not
rigorous and the formulation itself was a nontrivial problem. Nevertheless,
our construction and study of X hyb(X ) and identification of its central fiber
with the Gromov-Hausdorff limit of Xts in the proof of Theorem 6.7 rigor-
ously formulated their predictions and, at the same time, affirmatively proven
them.

Remark 6.10 (K3 surfaces case). It is harder to consider the same problem
for polarized K3 surfaces and currently we are not sure if it works. Indeed,
a subtlety exists here, as pointed out to the first author by V.Alexeev in April
2019. That is, in the construction of B0 in [OO21], the appearing singu-
larities of affine structures are always of Kodaira type i.e., which underlies
singular fibers of minimal elliptic surfaces as well-known classical classifi-
cation by Kodaira. On the other hand, the essential skeleta [AET19] con-
structed as dual complexes of Kulikov degenerations of degree 2 polarized
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K3 surfaces, are not necessarily of Kodaira type. Hence, careful choice of
Kulikov degenerations seems necessary (even if the analogous hybrid SYZ
fibrations exist).

6.3. Degenerating abelian varieties and crystallographic groups.

6.11. In this section, we reveal, in an explicit manner, the relation between
the automorphism group of families of abelian varieties and the automor-
phism group of their Gromov-Hausdorff collapses, which can be regarded
as a crystallographic group.

6.12 (Set up). Consider the family of abelian varieties with polarizations of
the type E = diag(e1, · · · , eg), following Lemma 4.19, i.e.,

X ∗ = ((C∗)g ×∆∗)/⟨pi,j(t)⟩1≤i,j≤g → ∆∗,

for pi,j(t) ∈ C((t))mero, where each pi,j(t) converges at any t ∈ ∆∗. Recall
that the fibers are

Cg/(Zg ⊕ Ω(t)Zg) ∼= Cg/(EZg ⊕ Ω′(t)Zg)

where Ω(t) :=
(

1
2π

√
−1

log pi,j(t)
)
i,j

and Ω′(t) =
(

ei
2π

√
−1

log pi,j(t)
)
i,j
.

Of course, Ω(t) and Ω′(t) have the ambiguities caused by the monodromy
effect. However, the lattices (I Ω(t))Z2g ⊂ Cg and (E Ω′(t))Z2g ⊂ Cg are
well-defined. In addition, the imaginary part of Ω(t) (resp., Ω′(t)) is also
well-defined (see the proof of Lemma 4.17).

Note that
Im(Ω′(t)) =

(
−1
2π

log |qi,j(t)|
)

1≤i,j≤g

,

where qi,j(t) := pi,j(t)
ei .

In the following way, we re-describe the matrices B = (valtpi,j(t))i,j ∈
Matg×g(Z) and B′ = (valtqi,j(t))i,j ∈ Matg×g(Z), which appeared in
[FC90, Got22, Oda19] and the proof of Theorem 4.20.

Lemma 6.13. Under the above setup 6.12, the following hold:

(Bi,j)1≤i,j≤g = lim
t→0

−2π
log |t|

Im(Ω(t)),

(B′
i,j)1≤i,j≤g = lim

t→0

−2π
log |t|

Im(Ω′(t)).

Proof. The assertion simply follows from

lim
t→0

log |pi,j(t)|
log |t|

= valtpi,j(t) and lim
t→0

log |qi,j(t)|
log |t|

= valtqi,j(t).

□
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Below, we often denote Bi,j simply as B. Now we define and study the
following two automorphism groups of X in our context.

Definition 6.14. Under the above setup 6.12,
(i) Aut(X, c1(L)) consists of automorphisms ofX which preserve the

first Chern class c1(L). In other words, f ∈ Aut(X, c1(L)) pre-
serves the flat Kähler metric on eachXt with its Kähler class c1(Lt).

(ii) Aut(X,L) consists of automorphisms of X which preserve L. In
other words, f ∈ Aut(X,L) preserves the isomorphic class of the
principal polarization Lt on each Xt.

It is clear that Aut(X,L) is a subgroup of Aut(X, c1(L)).

Firstly, we refine Lemma 4.19.

Lemma 6.15. Under the above setup 6.12, the image of
l : Aut(X, c1(L))→ GL(g,Z)

in Lemma 4.19 lies in GL(g,Z) ∩ O(g, EB−1) ∩ B(GL(g,Z))B−1, where
O(g, EB−1) := {M ∈ GLg(R) | tMEB−1M = EB−1}.

Proof. Note that f ∈ Aut(X, c1(L)) induces an automorphism of X ∗ over
∆∗, possibly after shrinking the radius of ∆∗ by rescale, which we denote
by the same letter f ∈ Aut(X ∗). The restriction ft := f |Xt gives an auto-
morphism of (Xt, c1(Lt)). By the argument of Lemma 4.19, the automor-
phism ft of Xt = Cg/(I Ω(t))Z2g is induced from a linear transformation
l(f) =M ∈ GL(g,Z) which is independ of t ∈ ∆∗. Consider the polarized
abelian variety (Xt,Lt) defined by Cg/(I Ω(t))Z2g as (6.12). The metric
on Xt induced by c1(Lt) is given by the Hermite matrix (ImΩ(t))−1 on Cg

as we see in (2.26). Since the automorphism ft of Xt = Cg/(I Ω(t))Z2g

preserving the metric c1(Lt), the correspondingM ∈ GL(g,Z) satisfies the
equation tME(ImΩ(t))−1M = E(ImΩ(t))−1 for any t ∈ ∆∗. By Propo-
sition 6.13, the above equation gives an equation tMEB−1M = EB−1 by
taking the limit for t→ 0 after multiplying by − log |t|

2π
.

To finish the proof, we now show M ∈ B(GL(g,Z))B−1, that is,
MBZg = BZg

for the above M = l(f). Since M ∈ O(g,B−1), we obtain
MB = BE−1tM−1E.

It follows from the proof of Lemma 4.19 that MEZg = EZg. That is,
E−1ME ∈ GL(g,Z). It is equivalent to E−1tM−1E ∈ GL(g,Z). Hence,
MBZg = BE−1tM−1EZg = B(E−1tM−1E)Zg = BZg. □

Corollary 6.16. Under the same setting as Lemma 6.15, when e1 = · · · =
eg = 1 i.e., principally polarized case, the restriction l|Aut(X,L) is injective.
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Proof. An automorphism f ∈ Aut(X, c1(L)) induces an automorphism
f̃ : (C∗)g × ∆∗ → (C∗)g × ∆∗, possibly after shrinking the radius of ∆∗

by rescale. The automorphism f̃ can be described as follows.

f̃ : (C∗)g ×∆∗ −→ (C∗)g ×∆∗

∈ ∈

(z, t) 7−→ (f̃(z, t), t)

By Lemma 6.15, we can write

f̃(z, t) = f̃(1, t)zl(f),

where
l(f) = (ai,j)1≤i,j≤g ∈ GL(g,Z),

f̃(1, t) := f̃((1, . . . , 1), t),

and

f̃(1, t)zM :=

(
f̃i(1, t)

∏
j

z
ai,j
j

)
i

∈ (C∗)g,

where f̃i(1, t) ∈ C((t))mero are meromorphic functions on ∆. Here, we set
Tf̃ (z, t) := f̃(1, t)z. It induces a translation on each fiber Xt. In particular,
T−1

f̃
◦ f̃(z, t) = zl(f) holds. If l(f) = l(f ′), then it holds that

T−1

f̃
◦ f̃(z, t) = T−1

f̃ ′ ◦ f̃ ′(z, t).

That is, the equation f̃ ′(z, t) = T ˜f ′f−1 ◦ f̃(z, t) holds. The argument so far
does not need the assumption of principal polarization. In other words, it
holds for general polarizations.

The morphisms f and f ′ preserve the ample line bundle L. That is, ft and
f ′
t preserve Lt for each fiber Xt. Hence, the morphism T ˜f ′f−1|t preserves

the principal polarization Lt. Since Lt is principal polarization, i.e., the
morphism

ϕLt : Xt −→ Pic0Xt

∈ ∈

x 7−→ T ∗
x (Lt)⊗ L−1

t

is an isomorphism as we saw in (2.28). Hence, there is no (nontrivial) trans-
lation that preserves the principal polarization Lt. Therefore, the equation
f̃ ′(1, t) = f̃(1, t) holds. It implies that Tf̃ = Tf̃ ′ . Hence the equation

f̃(z, t) = Tf̃ (z
l(f)) = Tf̃ ′(z

l(f ′)) = f̃ ′(z, t)

holds. That is, the homomorphism l|Aut(X,L) is injective. □



88 Keita Goto

Note that the homomorphism
l : Aut(X, c1(L))→ GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1

ignores the effect of translations of the abelian varieties. Now we consider
a homomorphism that also reflects translations.

Theorem 6.17 (cf. [GO22, Theorem 4.6]). Under the same situation as
Lemma 6.15, there is a natural exact sequence

1 −→ Hol(∆, (C∗)g) ↪→ Aut(X, c1(L))
p−→ (GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg/BZg,

where Hol(∆, (C∗)g) denotes the group of the germs of holomorphic maps
from the neighborhood of 0 ∈ C to (C∗)g.
6.18. Note that, via a surjective homomorphism

s : (GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg

→ (GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg/BZg,

s−1(Im(p)) is a crystallographic group. Later, in Theorem 6.23, we provide
a geometric meaning to the above map p via “tropicalization" i.e., passing
to the base of special Lagrangian fibrations or non-archimedean SYZ fibra-
tions.

Proof of Theorem 6.17. In the proof of Corollary 6.16, we construct a pair
(l(f), Tf̃ ) for any automorphism f ∈ Aut(X, c1(L)). As we saw in the proof
of Corollary 6.16, for a generally polarized case, we can also construct a pair
(l(f), Tf̃ ) from any automorphism f ∈ Aut(X, c1(L)) in the same way.

By the definition of f̃(1, t), the lift f̃(1, t) of f(1, t) is uniquely deter-
mined up to ⟨pi,j(t)⟩. Hence,

valt(f(1, t)) := valt(f̃(1, t)) ∈ Zg/BZg

is well-defined. Then we define p(f) := (l(f), valt(f(1, t))). It is clear that
the map p is a homomorphism.

To end the proof, we verify that ker p = Hol(∆, (C∗)g). Take a lift f̃(z, t)
of f(z, t) ∈ ker p. By definition of ker p, the lift f̃(z, t) can be described
as f̃(1, t)z, where valtf̃(1, t) =

(
valtf̃i(1, t)

)
i
= Bv ∈ BZg for some

v ∈ Zg. Now we consider the morphism Ff̃ : ∆∗ → (C∗)g defined by

Ff̃ (t) := f̃(1, t)(pi,j(t))
−v :=

(
f̃i(1, t)

∏
j

pi,j(t)
−vj

)
i

,

where v = (vi) ∈ Zg. It is clear that valtF (t) = 0 ∈ Zg. In other words,
Ff̃ (t) ∈ Hol(∆, (C∗)g). Then Ff̃ (t) does not depend on how f̃ is taken.
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Hence Ff denotes Ff̃ . Indeed, the lift f̃(1, t) of f(1, t) is uniquely deter-
mined up to ⟨pi,j(t)⟩. Any other lift f̃ ′(z, t) of f(z, t) can be described as
f̃(z, t)(pi,j(t))

w for some w ∈ Zg. Consider Ff̃ ′(t) in the same manner with
respect to f̃ ′. Since valtf̃ ′(1, t) = Bv +Bw = B(v + w), it holds that

Ff̃ ′(t) = f̃ ′(1, t)(pi,j(t))
−(v+w) = f̃(1, t)(pi,j(t))

w(pi,j(t))
−(v+w)

= f̃(1, t)(pi,j(t))
−v = Ff̃ (t).

Hence, we obtain the homomorphismφ : ker p→ Hol(∆, (C∗)g) defined by
f 7→ Ff (t). On the other hand, for anyF (t) ∈ Hol(∆, (C∗)g), the morphism
F (t)z : (C∗)g×∆∗ → (C∗)g×∆∗ descends to an automorphism fF ∈ ker p.
That is, we obtain the homomorphism ψ : Hol(∆, (C∗)g) → ker p defined
by F 7→ fF . It is obvious that φ ◦ ψ = id. By construction of φ, for any
f ∈ ker p, we can take Ff (t)z as a lift of f . It implies that ψ ◦ φ = id also
holds. Therefore, ker p ∼= Hol(∆, (C∗)g) holds. □

6.19. Now we consider more geometric meaning of

(GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg/BZg.

For the family (X ∗, c1(L∗)) under discussion, set

B0 := (B0,∇A(0),∇B(0), g0)

as Theorem 4.20. Then Theorem 4.20 implies that

B0 = (B0,∇A(0),∇B(0), g0) = (Rg/BZg, BE−1Zg,Zg, EB−1)

in the convention of Corollary 4.24. Then the pair (∇B(0), g0) induces the
other affine structure ∇A(0) as a Legendre dual by [Hit97]. Hence, B0 is
abbreviated as (B0,∇B(0), g0) for simplicity. In summary, we see that

B0 = (B0,∇B(0), g0) = (Rg/BZg,Zg, EB−1)

for the family (X ∗, c1(L∗)) under discussion. See [GH84] or [GS06] for a
series of definitions on (integral) affine manifolds.

Definition 6.20. For the flat integral affine manifold (Rg/BZg,Zg, EB−1)
as above, define the automorphic group

Aut(Rg/BZg,Zg, EB−1)

to be the group consisting of automorphisms that preserve the structure of
(Rg/BZg,Zg, EB−1). That is, an element f ∈ Aut(Rg/BZg,Zg, EB−1) is
an integral affine map f : Rg/BZg ∼−→ Rg/BZg that preserves the integral
points Zg/BZg and the flat metric induced by EB−1.
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Proposition 6.21. Under the notation of Definition 6.20, the following holds:
(GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg/BZg

∼= Aut(Rg/BZg,Zg, EB−1).

Proof. Consider the universal covering u : Rg ↠ Rg/BZg which we de-
note by x 7→ x. Note that the map u is an integral affine map. For f ∈
Aut(Rg/BZg,Zg, EB−1), the map f ◦ u is also an universal covering. The
universality gives an homeomorphism f̃ : Rg ∼−→ Rg such that u◦f̃ = f ◦u.
Here, the map f̃ : (Rg, EB−1)

∼−→ (Rg, EB−1) is an isometry since the
map f is an isometry and the map u is locally trivial. Hence,

f̃(x) =Mx+ v,

where M ∈ O(g, EB−1) and v ∈ Rg. Moreover, since the map f is an
integral affine morphism and the map u is locally trivial, the map f̃ is also
an integral affine morphism. Hence, the above pair (M, v) satisfies M ∈
GL(g,Z) ∩ B(GL(g,Z))B−1 and v ∈ Zg. It implies that f(x) = Mx + v,
where (M, v) ∈ (GL(g,Z)∩O(g, EB−1)∩B(GL(g,Z))B−1)⋉Zg/BZg.
That is, we obtain the homomorphism

φ : Aut(Rg/BZg,Zg, EB−1)

→ (GL(g,Z) ∩O(g, EB−1) ∩B(GL(g,Z))B−1)⋉ Zg/BZg.

Since the existence of the inverse map is obvious, the assertion follows. □

6.22. In particular, Aut(X, c1(L)) induces at most finite group actions on
B0. In Theorem 6.7 (ii), we have already seen that Aut(X, c1(L)) induces
continuous actions on both X hyb and B. Further, fhyb is Aut(X, c1(L))-
equivariant. Now we describe the actions of Aut(X, c1(L)) concretely, by
relating the H-action of Theorem 6.7 (ii) and the map p in Theorem 6.17.

Theorem 6.23 (cf. [GO22, Theorem 4.9]). Under the same situation as
Theorem 6.17, for any subgroup H of Aut(X, c1(L)), consider the induced
actions on X hyb and B of H as Theorem 6.7. We denote the restriction of
the latter action on Bt as pt(h) for each h ∈ H and t ∈ ∆.

Then pt(h) is explicitly described as
(i) For t ̸= 0,(
l(h), log|t| |h̃(1, t)|

)
∈ GL(g,Z)⋉

(
Rg/

(
−2π
log |t|

ImΩ(t)

)
Zg

)
,

where h̃(1, t) is a lift of h(1, t). Note that the ambiguity of the choice
of h̃(1, t) vanishes on Bt.

(ii) p0(h) on B0 is equal to p(h) as constructed in Theorem 6.17.
Further, ft(hx) = pt(h)ft(x) for each h ∈ H and t ∈ ∆.
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Proof. First, we show (i). By the proof of Theorem 6.17, h ∈ H is lifted to

h̃(z, t) = ψ(t)tvzM : (C∗)g ×∆∗ → (C∗)g,

where (M, v) = p(h) and ψ(t) := h̃(1, t)/tv ∈ Hol(∆, (C∗)). By the
argument of Lemma 6.15, M = l(h) induces the automorphism of((

Rg/

(
−2π
log |t|

ImΩ(t)

)
Zg

)
,Zg, E

(
−2π
log |t|

Im(Ω(t))

)−1
)

for t ̸= 0. Since

Bt ∼=

((
Rg/

(
−2π
log |t|

ImΩ(t)

)
Zg

)
,Zg, E

(
−2π
log |t|

Im(Ω(t))

)−1
)
,

the pair
(
l(h), log|t| |h̃(1, t)|

)
also induces the automorphism of B0. Note

that the lift h̃(1, t) of h(1, t) is uniquely determined up to ⟨pi,j(t)⟩. It implies
that log|t| |h̃(1, t)| is well-defined on

Rg/

(
−2π
log |t|

ImΩ(t)

)
= Rg/

(
log|t| |pi,j(t)|

)
.

Now consider ft(hx). By the argument of the proof of Theorem 6.7, spe-
cial Lagrangian fibration ft(x = (x1, · · · , xg)) is described for t ̸= 0 as

ft(x) =
(
− log|t| |xi|

)
i=1,··· ,g ∈ Rg/

(
−2π
log |t|

ImΩ(t)

)
Zg.

Hence, it is clear that

ft(hx) = l(h)ft(x) + log|t| |h̃(1, t)| =
(
l(h), log|t| |h̃(1, t)|

)
· ft(x).

By Theorem 6.7, ft is H-equivalent. It implies that
(
l(h), log|t| |h̃(1, t)|

)
is

equal to the induced action pt(h) on Bt for t ̸= 0.
Now we prove (ii) by considering f0(hx). Now, the map f0(x) is defined

as (− log |Z|x) ∈ Rg/BZg, where x ∈ Xan, | · |x means the corresponding
multiplicative seminorm on X and Z = (Zi) is the coordinates of the split
algebraic torus as appeared in [Got22]. Then, it follows from log |ψ(t)|x = 0
that f0(hx) = p(h)f0(x). Thus, p0(h) = p(h) holds similarly. Finally, the
H-equivalence of fhyb implies the last claim of the theorem. □

6.24. In general, we cannot expect that the symmetry of B0 lifts on the sym-
metry of (X, c1(L)) or X ∗. However, we shall see that such lifting exists for
the following special situation.
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We start with a B = (bi,j)i,j ∈ Matg×g(Z) such that EB is a positive
definite symmetric matrix for some E = diag(e1, . . . eg) as appeared in
(6.12). Then we obtain the following family

X ∗
B = (∆∗ × (C∗)g)/⟨tB⟩i,j → ∆∗,

where tB means the g × g matrix
(
tbi,j
)
i,j

. We denote the associated polar-
ized smooth variety to (X ∗

B,L∗
B) by (XB, LB).

In this situation, we can strengthen Theorem 6.17 as a split exact sequence.

Proposition 6.25. Under the above setup 6.24, we have

Aut(XB, c1(LB)) ∼= Aut(B0)⋉ Hol(∆, (C∗)g).

Proof. By Theorem 6.17, it suffices to see that there is a homomorphism
ι : Aut(B0) → Aut(XB, c1(LB)) such that p ◦ ι = id. For (M, v) ∈
Aut(B0) ∼= (GL(g,Z) ∩ O(g, EB−1) ∩ B(GL(g,Z))B−1)⋉ Zg/BZg, we
consider the map f̃ : (C∗)g×∆∗ → (C∗)g×∆∗ defined by f̃(z, t) := tvzM

in the same manner of the proof of Corollary 6.15. Here, we see that the
map f̃ descends to the map f : (X ∗

B, c1(L∗
B)) → (X ∗

B, c1(L∗
B)). Indeed,

the fiber X ∗
B|t is given by Cg/(I Ω(t))Z2g for each t ∈ ∆∗, where Ω(t) =

log t
2π

√
−1
B. The above M ∈ (GL(g,Z) ∩ O(g, EB−1) ∩ B(GL(g,Z))B−1)

satisfies MBZg = BZg and tMEB−1M = EB−1. In particular, it implies
that MImΩ(t)Zg = ImΩ(t)Zg and tME(ImΩ(t))−1M = E(ImΩ(t))−1.
Hence the induced automorphism zM : X ∗

B → X ∗
B is well-defined and

preserves the metric for each fiber. Since translations have no effects on
the period matrix and the metric, f̃ descends to the automorphism f of
(XB, c1(LB)). Note that the morphism f does not depend on how f̃ is taken.
Indeed, the ambiguity of v vanishes in the process of obtaining f from f̃ .
Hence we obtain the homomorphism ι : Aut(B0)→ Aut(XB, c1(LB)). By
construction, it is obvious that p◦ι = id. Therefore, the assertion holds. □

Remark 6.26. We only considered maximal degenerations case in this thesis
but degenerations of g-dimensional polarized abelian varieties (X ∗,L∗)/∆∗

with other torus rank i should work similarly. Firstly, the same method as
[Mat16, proof of 1.1, cf., also Remark 5.3] by studying actions on weight fil-
tration or weight spectral sequences, implies that for any polarized endomor-
phism f of (X ∗,L∗)/∆∗, any eigenvalue e of f ∗|H1(Xt,C), the degree d of the
minimal polynomial of rational coefficients satisfies d ≥ max{i, 2g − 2i}.
We may explore more details in future.
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