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Abstract

This study performs eigenvalue analysis of two-dimensional amorphous solids
comprising frictional grains under athermal quasistatic shear. First, (Chapters
3 and 4) the eigenvalue analysis of amorphous solids with friction is performed
for two cases; (i) the contact force between grains expressed as the Hertzian
force under a linear response regime and (ii) the contact force between grains
owing to a linear spring, which is equivalent to a harmonic potential under finite
shear strain.

In Chapter 1, previous studies on mechanical responses of dispersed amor-
phous solids under external agitations are reviewed.

In Chapter 2 of this thesis, the models and methods used are explained.
In this study, the forces acting between grains are modeled using the discrete
element method (DEM), where the grains interact only when in contact. In
addition, the repulsive forces acting in the tangential direction at the point
of contact of grains are modeled, which is seldom investigated in conventional
eigenvalue analysis.

Two separated modes in the density of states for sufficiently small kT /kN ,
which is the ratio of the tangential to normal stiffness, are obtained. Rotational
modes are found at low frequencies or small eigenvalues, whereas translational
modes are found at high frequencies or large eigenvalues. Further, the location of
the rotational band shifts to the high-frequency region with an increase in kT /kN
and becomes indistinguishable from the translational band for large kT /kN . In
addition, the rigidity is obtained using the eigenvalue analysis for frictional
grains with infinitesimal strain with the aid of the Jacobian matrix. These are
brief summaries of obtained results in Chapter 3.

Thereafter, the eigenvalue analysis is extended to the case of finite strain in
Chapter 4. After obtaining the configuration of grains, the stress-strain curve
based on the eigenvalue analysis is found to have almost perfect agreement with
that obtained via the simulation, regardless of stress avalanches causing plastic
deformations. Moreover, in contrast to expectations, the eigenvalues in the
proposed model do not indicate any precursors to the stress-drop events.

In Chapter 5, we discuss and conclude our results obtained in the thesis.
We present some appendices to explain the details. In appendix A, we

summarize the properties of the Jacobian. In appendix B, we present the explicit
expressions of the Jacobian with the Hertzian contact force. In appendix C, we
derive the rigidity for the linear response regime by eigenvalue analysis. In
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appendix D, we investigate the effects of rattlers. In appendix E, we introduce
the DOS with the aid of the effective Hessian. In appendix F, we check the
absence of the history-dependent term on tangential contact force. In appendix
G, we provide an in-depth explain the behavior of the smallest eigenvalue in the
vicinity of the stress-drop points in detail. In appendix H, we briefly summarize
the properties of the Hessian matrix of the harmonic potential. In appendix I,
we briefly summarize the properties of the Jacobian matrix for the harmonic
contact model that was previously used in the description of frictional grains.
In appendix J, we present detailed expressions of rigidity and demonstrate the
quantitative accuracy of the Hessian analysis in the linear response regime.



Chapter 1

Introduction

1.1 Dispersed amorphous solids

Amorphous materials comprising dispersed grains such as powders, colloids,
bubbles, and emulsions are ubiquitous in nature [1–8]. Therefore, understanding
the behavior of dispersed amorphous systems is an important issue in the wide
field of research such as pharmacology, engineering, agriculture, and physics [2,
6–8]. In particular, the dynamic processes of dispersed amorphous materials can
be commonly observed in daily life for drug mixing, debris flow, snow avalanches,
etc. Thus, understanding their properties is vital.

Dispersed amorphous materials behave as fragile solids above a critical den-
sity, and as liquid or gas below this critical density [9–21]. This non-equilibrium
transition between the gas or liquid-like phase and the solid-like phase is referred
to as the jamming transition. At the jamming point, the viscosity diverges, and
rigidity emerges (see Fig. 1.1) [5]. Even when focusing on a dispersed amor-
phous solid where the density of grains is higher than the jamming density ϕc,
the behavior of the solid is different from conventional solids. Additionally, the
behavior is strongly dependent on the history of the preparation of the initial
state [22–24]. These studies examined the mechanical response of dispersed
amorphous solids under step strain. Such collections of dispersed dense grains
above the jamming density are referred to as (dispersed) amorphous solids in
this study.

Typically, solid-state physics assumes the crystalline structure of materials
as reported in the standard texts on condensed matter physics [1, 25]. How-
ever, there are numerous studies on amorphous solids wherein the structure of
particle arrangement lacks a long-range order [3, 5, 7, 26]. Nevertheless, amor-
phous solids have been studied within the framework of equilibrium statistical
mechanics for disordered systems. When considering a collection of repulsive
large grains with disorders such as granular materials, conventional statistical
mechanics is no longer applicable, because such a system can be regarded as
a system at zero temperature with an infinitely large number of degenerated
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CHAPTER 1. INTRODUCTION 5

Figure 1.1: Schematic image of collections of grains for the jamming transition.

ground states corresponding to the metastable states in the energy landscape.
In the late 1980s, Edwards and his coworkers attempted to formulate the sta-
tistical mechanics of granular assemblies [8, 27–29]. Consequently, it became a
fashionable field of physics in the early 1990s to study the physics of granular
materials such as sand avalanches [30–32]. Since the pioneering work by Liu and
Nagel [10], the jamming transition has attracted increased attention as a typical
problem of non-equilibrium physics [9–13, 16–19, 33]. The jamming transition
of frictionless grains is a mixed transition as a functions of density ϕ where
the pressure and shear modulus change continuously, whereas the coordination
number and bulk modulus change in a discontinuous manner at the jamming
point [12,16,18,19,34]. Researchers have found that the stresses of such systems
satisfy scaling laws as a function of ϕ−ϕc near the jamming point [6,12,16–19]
such as P ∝ (ϕ− ϕc) and G ∝ (ϕ− ϕc)

1/2 for linear spring contact model with
pressure P and rigidity G.

Dilatancy, which is the volume expansion of a dispersed amorphous material,
occurs [2, 35–37], when shear is applied. A more dilatant structure is realized
for a high shear rate [38–41]. Previous studies have reported the existence of
compaction wherein repeated oscillations to a system have rendered the system
denser with more ordered configurations [4, 42–47]. Recently, it was reported
that dilatant and compactified behaviors are strongly dependent on the prepa-
ration of the initial configuration of the collection of grains [48].

1.2 Effects of mutual friction between grains

Friction between materials is an important element for large grains, which can-
not be ignored, although many theoretical studies have ignored its contribution.
Here, the friction is essential for daily life because we cannot control moving



CHAPTER 1. INTRODUCTION 6

objects properly with zero friction, for example. The frictional force between
contacted grains can be classified into dynamic and static friction forces [49].
More than 500 years ago, Leonardo suggested that the static friction force is
directly proportional to the load on the contact surface:

FStatic = µsF⊥ (1.1)

where FStatic, F⊥, and µs are the static frictional force, force vertical to the
surface of the material, and static friction coefficient, respectively. In the 18th
century, Amontons and Coulomb presented a more modern interpretation, sum-
marizing the frictional forces as follows: (i) The frictional force does not depend
on the apparent contact area, (ii) it is proportional to the vertical force, and (iii)
the dynamic frictional coefficient µ is smaller than the static frictional coeffi-
cient µs and is independent of velocity. These empirical laws for frictional forces
are referred to as Amontons-Coulomb’s laws [49, 50]; however, the mechanism
underlying the empirical laws has not been clarified yet. This is because friction
is governed by various factors, such as the shape and surface conditions of con-
tacted materials, as well as the existence or absence of interstitial fluids between
them [51]. Moreover, Amontons-Coulomb’s law is not a precise empirical law
but an approximate one. Indeed, it has been confirmed theoretically and exper-
imentally that dynamic frictional force is dependent on relative velocity [52–54],
whereas the static friction is dependent on the duration time of contacted ma-
terials [54, 55]. Though the microscopic mechanism of friction remains unclear,
inter-grain dynamical friction is modeled using Amontons-Coulomb’s law when
considering the dynamics of a collection of grains.

Figure 1.2: Plot of the shear stress σ against the shear rate γ̇ observed in
amorphous solids consisting of frictional grains under steady shear. This figure
is modified by hand from the original one in Ref. [21].

In the case of dense granular and suspension systems, the inter-grain fric-
tion dramatically alters the rheological properties, such as discontinuous shear
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thickening (DST) [21,56–61] and shear jamming [60–66]. DST is a phenomenon
wherein the shear stress changes in a discontinuous manner with an increase or
decrease in the shear rate. It has attracted the attention of physicists because
the shear stress exhibits a hysteresis with an increase or decrease in the shear
rate (see Fig. 1.2) [21, 56–61]. Recently, it has been confirmed that the shear
jamming occurs owing to the memory effects of training a grain configuration,
such as shaking the system [60, 61]. In addition, it has been reported that
the DST occurs in the fragile region on the boundary between shear jamming
and non-jamming regions [60, 61]. In granular materials comprising frictionless
grains under oscillatory shear, two types of transitions have been reported; yield-
ing transition, wherein the grains lose their recurrence, and softening transition,
wherein the rigidity begins to decrease significantly [67–70]. Further, Ishima and
Hayakawa found that yielding and softening transitions were indistinguishable
in systems with mutual friction between grains [71]. This finding is consistent
with the observation of a frictionless system in Ref. [60]. Furthermore, a study
revealed that the scaling law between rigidity and strain scaled by pressure holds
for frictional grains in oscillatory sheared granular materials (see Fig. 1.3 (a)),
whereas it does not hold for frictionless grains (see Fig. 1.3 (b)) [21, 71, 72].
Here, rigidity G is introduced for oscillatory sheared materials [73–76]:

G :=
σ

γ0
(1.2)

where σ and γ0 are the shear stress and shear strain amplitude, respectively, for
oscillatory sheared systems.

Figure 1.3: Plots of the scaled rigidity against scaled strain for (a) frictional
grains with µ = 1.0 and (b) frictionless grains with µ = 0, where γ0, P̂ , and
µ are the shear strain amplitude, normalized pressure, and friction coefficient.
Here, we have introduced Gres := limγ0→0G. These figures are modified from
the original figures in Reference paper 1, corresponding to Ref. [71], where we
have deleted the slopes of the line.

Amorphous systems comprising repulsive grains with mutual friction contain
large constituent grains whose diameters satisfy d ≥ 0.01mm. The characteristic
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feature of a granular system is that the grains repel each other only when they
are in contact [2]. In the case of granular materials, owing to the grain size being
sufficiently large, the thermal fluctuations are negligible. However, if the grains
are wet, the adsorption force is mediated by water, which varies depending
on the amount of water [77]. Furthermore, if grains are mono-dispersed, the
systems exhibit melting and crystallization similar to a conventional liquid-
solid phase transition [78]. Thus, many previous studies on amorphous solids
adopted two dispersed dry grains for simplicity (see, e.g., [12,18,33]). Note that
the results obtained by bi-dispersed systems are not always universal ones. A
power law size distribution of the grain is generated after the impact fracture
of grains and other materials [79, 80]. The jamming point becomes denser in
systems with a power law distribution than that of bi-disperse systems [81]. In
this study, a granular system, wherein only simple repulsive interactions acted
between contacted grains with mutual friction, is considered.

1.3 Eigenvalue analysis of dynamical matrix for
amorphous solids

For amorphous solids comprising frictionless grains, an analysis of the dynam-
ical matrix or the Hessian matrix is useful. The Hessian matrix is defined as
the second derivative of the potential of a collection of grains concerning the
displacements from their stable configuration [5, 8, 17, 82–88]:

Hκζ
ij :=

∂2U

∂rκi ∂r
ζ
j

, (1.3)

where i and j denote the particle indices, and κ and ζ represent the position
component. The density of states (DOS) is the distribution function of the
eigenfrequency of Hessian matrix [5, 8, 17, 82, 84, 85, 87–89]. Debye’s theory,
D(ω) ∼ ωds−1, with the DOS D(ω), spatial dimension ds, and mode frequency
ω, is valid for low-frequency regions [12,85,90,91]. Recently, D(ω) ∼ ω4 is valid,
where this power-law behavior of frequencies is independent of dimension [84,92].
In particular, D(ω) ∼ ω4 is observed in the extremely low-frequency region for
the small system sizes, which is lower than the frequency of the Debye region [84].

From the analysis of the DOS for systems composed of anisotropic grains,
such as ellipses, dimers, deformable grains, and grains with rough surfaces with
the aid of the Hessian matrix [93–103], researchers found that a rotational band
in the DOS can be distinguished from the translational band [94, 96, 97, 100,
102, 103]. Additionally, the low-frequency mode called quartic mode has been
observed in ellipsoidal grains for hypostatic configurations [95,97]. Although for
systems of spherical grains with inter-grain friction, similar results are expected
owing to grain rotations, studies reporting the existence of rotational bands in
the DOS are rare. Because the frictional force between the grains is dependent
on the contact history, it cannot be a conservative force. Therefore, stability
analysis for frictional grains based on the Hessian cannot be used. Nevertheless,
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the Hessian analysis using an effective potential for frictional grains has been
performed [104,105], where the effective potential between contacting i and j-th
grains is introduced as

δeij :=
1

2

[
kN (δrij · nij)−

fN,ij

rij
+ kT δt

2
ij

]
, (1.4)

where kN is the normal spring constant, kT is the tangential spring constant, δrij
is the virtual displacement for the translational directions from the force balance
state of grains, δtij is the virtual displacement for the rotational directions, nij

is the normal unit vector, and fN,ij is the normal force between the i and j-th
grains at stable configuration. They reported that the mutual friction between
grains causes a continuous change in the functional form of the DOS from that
of frictionless systems [104, 105]. Recently, Liu et al. performed an eigenvalue
analysis of an amorphous solid comprising frictional grains considering slip pro-
cesses of grains, both experimentally and numerically [106]. Consequently, the
grain configuration is successfully partitioned into clusters that contribute to
the rigidity. However, studies on amorphous solids comprising frictional grains
are scarce.

Figure 1.4: Schematic plots of (a) the shear stress σ, and (b) the lowest
eigenvalue λmin near stress drop event against shear strain γ under quasistatic
shear. These figures are modified from the original one in Ref. [113].

It is generally known that plastic deformation for sheared amorphous solids
is caused by the rearrangements of grains. The eigenvalue of the Hessian matrix
approaches zero if the curvature of the potential landscape approaches zero
nearby a critical strain γc [107–113]. Thus, it has been suggested that the
decrement of the nonzero smallest eigenvalue of the Hessian matrix with the
strain is a precursor of an avalanche or stress drop near γc [107, 108, 110–113]
(see Fig. 1.4). Previous studies have indicated that instability appears owing
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to a saddle-node bifurcation at which the curvature of the potential landscape
becomes zero in one direction at the yielding point [107, 108, 114] (see Fig.
1.5). To determine the rigidity, eigenvalue analysis of the Hessian matrix [83,
86, 90, 107–109], is commonly used, although the quantitative accuracy of the
theoretical rigidity has not been verified to the best of our knowledge. The
analysis based on the saddle-node bifurcation predicts the behavior near γc
[107,108,110,114]:

G−Greg ∝ − 1√
γc − γ

, (1.5)

where Greg is the regular part of rigidity G.

Figure 1.5: Schematics of the change in the potential energy with increase in
the strain γ. This figure is modified from the original one in Ref. [108].

Clarifying the role of frictional force between grains is vital because the
frictional force cannot be ignored in physical situations. Owing to the inappli-
cability of the Hessian analysis for such systems, Chattoraj et al. adopted the
Jacobian matrix to analyze the stability of the configuration of frictional grains
under finite strain [115]. The Jacobian matrix is an asymmetric matrix because
it is defined as the derivative of the non-conservative forces originating from
inter-grain friction at a certain strain. Therefore, its eigenvalues are generally
complex numbers, and the imaginary part of the eigenvalues results in oscilla-
tory instability [115–117]. Till date, no theoretical studies have determined the
rigidity of the frictional grains.

1.4 The aim of this thesis

This study presents the results of eigenvalue analysis for dispersed amorphous
solids comprising repulsive grains with inter-grain friction. (i) The DOS and
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rigidity for Hertzian systems, which have history-dependent terms in contact
forces under linear response regime, were determined. (ii) The rigidity is deter-
mined, and subsequently, the absence of precursors of the smallest eigenvalue
for linear spring (or harmonic) systems for frictional grains under finite strain
with stress drop was demonstrated.

1.5 Organization of this thesis

This thesis is organized as follows: Chapter 2 summarizes the models and meth-
ods used in this study. First, the discrete element method (DEM), widely used
in numerical simulation for granular materials, is discussed. Next, the prepara-
tion method of the initial configuration using the fast inertial relaxation engine
(FIRE) is explained [118]. Finally, the numerical integration method, referred
to as the velocity Verlet method, is described in detail, including its accuracy.
Chapter 3 presents the results of the DOS and theoretical prediction of rigidity
in the linear response regime. The remainder of this chapter is organized as
follows. The first section is the introduction of this chapter. The subsequent
section introduces the numerical method. Section 3.3 introduces the Jacobian
matrix. Section 3.4 comprises Sec. 3.4.1, which presents the DOS, and Sec.
3.4.2, which describes the theoretical prediction of rigidity in the linear re-
sponse regime. The final section of this chapter summarizes the results of this
study and presents a discussion on future work. Chapter 4 presents the results
of the stress-strain relation obtained using the theory formulated in Sec. 4.3.
Further, the theoretical and simulation results are compared to demonstrate the
relevancy of the proposed theoretical analysis. The remainder of this chapter is
organized as follows. The first section is the introduction of this chapter. Section
4.2 introduces the model to be analyzed in this study. Then, Section 4.3 sum-
marizes the theoretical framework for determining the rigidity of an amorphous
solid comprising frictional grains without considering the dynamical slip pro-
cess. Section 4.4 presents the results of the stress-strain relation obtained using
the theory formulated in Sec. 4.3. In addition, the theoretical and simulation
results are compared to demonstrate the relevancy of the proposed theoretical
analysis. Thereafter, Section 4.5 summarizes the obtained results and addresses
future tasks to be solved. Finally, Chapter 5 summarizes all the results and con-
clusions. In Appendix A, we summarize the properties of the Jacobian, which is
necessary for history-dependent frictional contact. In Appendix B, we present
the explicit expressions of the Jacobian for Hertzian contact. In Appendix C,
we derive the theoretical expression of G for linear response. In Appendix D,
we investigate the effects of rattlers. In Appendix E, we introduce the DOS
with the aid of the effective Hessian as in Refs. [104–106]. In Appendix F,
we investigate the history-dependence of tangential displacement. In Appendix
G, we investigate the behavior of the smallest eigenvalue in the vicinity of the
stress-drop points. In Appendix H, we briefly summarize the properties of the
Hessian matrix of the harmonic contact model. In Appendix I, we briefly sum-
marize the properties of the Jacobian matrix for the harmonic contact model as
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in Refs. [115–117, 119]. In Appendix J, we derive the theoretical expression of
G with the eigenvalue analysis for finite strain.



Chapter 2

Models and methods used
in this thesis

In this chapter, we describe models and methods used in this thesis, such as
the discrete element method (DEM) method and the fast inertial relaxation
engine (FIRE). In Sec. 2.1, we introduce the equations of motion describing
the translational and rotational motions of grains. In Sec. 2.2, we describe the
modeling of inter-grain forces. In Sec. 2.3, we introduce a method for preparing
initial configurations using the FIRE. In particular, we describe the details of
FIRE and its application to our system. In Sec. 2.4, we explain the velocity
Verlet method, which is a numerical integration method for the MD, taking into
account its accuracy for the velocity-dependent system.

2.1 Equations of motion

We model the dynamics of granular material as a collection of grains which
are each specified by their position, momentum, and angular momentum. The
equation of motion of the i-th grain with the position ri is given by,

mi
d2ri
dt2

=
∑
j ̸=i

fij + F
(drag)
i , (2.1)

where mi, fij , and F
(drag)
i are the mass of the i-th grain, the repulsive force

acting on the i-th grain from j-th grain, and dissipative force of i-th grain,

respectively. Here, we introduce non-zero drag force F
(drag)
i := −miηDvi, as a

simplified description of friction between the moving grain and background fluid
[106, 120–122] only in Chapter 4, where ηD and vi := dri/dt are the damping
coefficient and the velocity of i-th grain, respectively. In other words, we use

the model with F
(drag)
i = 0 in Chapter 3. To conduct numerical simulation, we

have to model the repulsive force fij according to the properties of the grains.

13
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The equation of motion for the rotation of i-th grain in a two-dimensional
system is given by

Ii
dωi

dt
=
∑
j ̸=i

Tij + T
(drag)
i , (2.2)

where Ii, ωi, Tij , and T
(drag)
i are the moment of i-th grain, the angular velocity

of the i-th grain, the torque from the j-th grain acting on the i-th grain, and
the dissipative torque of i-th grain, respectively. Note that the torque-balance
equation is one for z-component in a 2D system. Since the force fij always acts
on the surface of i-th grain, the torque Tij is given by

Tij = −di
2
fij · tij , (2.3)

with diameter di of i-th grain and the unit vector tij in the tangential direction at

the contact point. We adopt that T
(drag)
i := −IiηDωi, as a simplified description

of friction between the moving grain and background only in Chapter 4, but

T
(drag)
i = 0 in Sec. 3.

2.2 Modeling of inter-grain force

For macroscopic grains such as granular particles, the force acting on each grain
is repulsive and dissipative [123–125]. In this thesis, we adopt the DEM proposed
by Cundall and Strack [123], which is a standard simulator of grain dynamics.
We assume that the repulsive force between contacting grains is elastic, which
can be expressed as a spring and dashpot, respectively (see Fig. 2.1), where we
use the divider (a pair of parallel bars vertical to the compression direction )
to express that the repulsive force only appears when the grains are contacted.
The force fij exerted by the j-th grain on the i-th grain is expressed as

fij = (fN,ij + fT,ij)H

(
dij
2

− rij

)
, (2.4)

where fN,ij and fT,ij are the contact force in the normal and tangential direc-
tions, respectively, with dij = (di + dj), rij = |rij |, and rij = ri − rj . Here,
H(x) is Heviside’s staircase function as

H(x) =

{
1 (x > 0)

0 (x ≤ 0)
. (2.5)

2.2.1 Elastic repulsive and dissipative forces

We have adopted the Hertzian normal force as the static repulsive force in the
normal direction in Chapter 3 and Hookean force in the normal repulsive force
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Figure 2.1: Schematics of the repulsive force in the DEM, where the divider and
spring express the condition of contact and elastic repulsive force, respectively.
Left and right figures express the contacting force in normal and tangential
directions acting on contacting grains, respectively. Here dashpots (with ηN
and ηT ) express dissipative force proportional to relative speed of contacting
grains.

in Chapter 4. Here, the compression in the normal direction between i and j-th
grains ξN,ij is defined as

ξN,ij =
dij
2

− |rij |. (2.6)

On the other hand, tangential compression ξT,ij is defined as

ξT,ij := |ξT,ij | (2.7)

with the tangential compression vector

ξT,ij(t) :=

∫
Cij(t′)

dt′vT,ij(t
′)−

[(∫
Cij(t′)

dt′vT,ij(t
′)

)
· nij(t)

]
nij(t), (2.8)

where nij := (nxij , n
y
ij)

T := rij/rij , vT,ij := vij − vN,ij + uij(diωi + djωj)/2,

and
∫
Cij(t′)

dt′ is the integration over the duration time of contact between i

and j-th grains. Here, we have introduced uij := (nyij ,−nxij)T, vij := drij/dt,
and vN,ij := (vij · nij)nij .

Hertzian case

The repulsive force of 3-dimensional spheres for normal direction is expressed
as Hertzian contact force [126–128], where the repulsive force is proportional to
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the ξ
3/2
N,ij with normal stiffness constant kN [126–128]:

fN,ij = kNξ
3/2
N,ijnij − ηNvN,ij , (2.9)

where nij := rij/|rij | and the normal damping coefficient ηN . The tangential
contact force fT,ij is expressed as

fT,ij = kT ξ
1/2
N,ijξT,ijtij − ηTvT,ij , (2.10)

where we have introduced tij := −ξT,ij/|ξT,ij |, tangential stiffness constant
kT , and tangential damping coefficient ηT . Although, strictly speaking, ηN is

proportional to ξ
1/2
N,ij [129–131], we adopt simplified dissipative forces where ηN

and ηT are constants as in Eq. (2.9) in the analysis in Chapter 3 because we
are not interested in the relaxation dynamics.

Hookean case

The repulsive force of contacting cylinders or circular disks in the normal direc-
tion is expressed as a product of a linear function of ξN,ij and its logarithmic
function [128]. When we ignore the logarithmic contribution, the normal con-
tacting force is reduced to

fN,ij = kNξN,ijnij − ηNvN,ij . (2.11)

Similarly, the tangential repulsive force is introduced as

fT,ij = kT ξT,ijtij − ηTvT,ij . (2.12)

Here, we may use the Hookean model to describe the approximate motion of
circular disks or cylinders. Although there are viscous or dissipative contact
force terms −ηNvN,ij and −ηTvT,ij proportional to inter-grain speed in realistic
situations, we ignore such effects in the analysis of Chapter 4 because we are
interested in quasi-static situations. In this case, fluid drag terms in Eqs. (2.1)
and (2.2) play important roles.

Sliding friction

The empirical frictional force switches from static to dynamic friction when the
tangential force exceeds the threshold of tangential force. To include this switch
mechanism between static and dynamic friction, we express fT,ij as [124]:

fT,ij =

{
f
(static)
T,ij (|f (static)

T,ij | < µ|fN,ij |)
µ|fN,ij |tij (otherwise)

, (2.13)

where µ, and f
(static)
T,ij are the friction coefficient, and static tangential force in

Eq. (2.10) or Eq. (2.12), respectively. Although the slip process is important in
physical situations, we focus only on non-slip grains in Chapters 3 and 4 from
the limitation of the applicability of our eigenvalue analysis.
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2.3 Method of preparing configuration before
applying the shear

In this section, we summarize the method of preparing a stable configuration of
grains before applying the shear. For this purpose, as a first step, we perform
the relaxation for frictionless grains with the FIRE. In the second step, the
system is relaxed, taking into account the static friction between grains. In the
first subsection, we summarize how to prepare the configurations of frictionless
grains by the FIRE [118]. In the second subsection, we describe the details of
the numerical method, including the force with static friction.

2.3.1 Method of preparing configuration before applying
shear by FIRE

At first, we place grains at random without any overlaps of grains with the
initial fraction ϕini = 0.6. We increase the projected area fraction of the system
by the increment of the fraction Φ := ϕNew − ϕOld up to the target fraction ϕ,
where ϕOld and ϕNew are the projected area fraction of the system before and
after each step of the increment, respectively. After each step of the increment,
the system is relaxed by the FIRE [118].

To implement the process of increasing the area fraction, we scale the system
as

LNew = LOld

√
ϕOld

ϕNew
, (2.14)

rNew
i = rOld

i

√
ϕOld

ϕNew
, (2.15)

where LOld/LNew and rOld
i /rNew

i are the linear system size and the position of
the i-th grain before/after rescaling, respectively. We adopt Φ = 10−4 through-
out this thesis. When there are overlaps between grains at ϕNew, the system
relaxes to a stable configuration with the aid of the FIRE.

The FIRE is a fast relaxation method of minimizing potentials U(r) de-
pending on the configuration of the grains r := (rT1 , r

T
2 , · · · , rTN )T with ri :=

(rxi , r
y
i )

T := (xi, yi)
T [118], where the superscript T expresses the transpose.

Here, we use the Hertzian potential for U(r) in Chapter 3 which is defined as

U(r) :=
2

5
kN
∑
j ̸=i

ξ
5/2
N,ijH(dij/2− |rij |). (2.16)

Let us introduce ζ-component of the force F ζ
F,i acting on the i-th grain as

F ζ
F,i : = − ∂U

∂rζi
=
∑
j ̸=i

kNξ
3/2
N,ijn

ζ
ijH(dij/2− |rij |), (2.17)
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where ζ = x or y. Note that F ζ
F,i only consists of the normal repulsive force.

In the FIRE, the position r and velocity vF := (vF,1,vF,2, · · · ,vF,N )T with
vF,i := (vxF,i, v

y
F,i)

T are updated by the following rules from (i) to (iv) with the
variable time increment ∆tF . (i) The numerical integration via the velocity
Verlet method is performed on r and vF :

rζi → rζi +∆tF v
ζ
i +∆t2F

F ζ
F,i(r)

2mi
, (2.18)

vζF,i → vζF,i +∆tF
F ζ
F,i(r̃) + F ζ

F,i(r)

2mi
, (2.19)

where r̃ is the updated configuration in Eq. (2.18). (ii) We calculate P :=
FF · vF , where FF := (FT

F,1,F
T
F,2, · · · ,FT

F,N )T with FF,i := (F x
F,i, F

y
F,i)

T. (iii)
The velocity vF is updated as

vF,i → vF,i + χ(v̂F,i − F̂F,i)|vF,i|, (2.20)

where χ is the relaxation parameter and â := a/|a| for an arbitrary vector a.
(iv) We update χ and ∆tF in the FIRE according to the positive or negative
value of P . To speed up the relaxation when the motion is along a potential
gradient, we increase ∆tF . Note that this process is performed only when the
number of numerical integrations along the potential gradient is larger than a
certain number of times Nmin to stabilize the numerical calculation. To imple-
ment this update rule, if P > 0 and the number of numerical integrations of
P > 0 is larger than Nmin, ∆tF and χ are updated as

∆tF → min(∆tF finc,∆tF,max), (2.21)

χ→ χfχ, (2.22)

where min(a, b) is a selecting function of smaller one from a and b, the parameter
finc is introduced to speed up the relaxation, and fχ, and ∆tF,max are parameters
to stabilize numerical calculations. Here, we adopt finc = 1.1, fχ = 0.99, Nmin =
5,∆tF,max = 10∆tF,ini, and ∆tF,ini = 1.0× 10−2t0 [118,132]. Note that Nmin is
necessary for the stability of the algorithm. In the case of P ≤ 0, we set

vF → 0, (2.23)

χ→ χstart, (2.24)

∆tF → ∆tF fdec, (2.25)

where we adopt fdec = 0.5 and χstart = 0.1 [118,132].

We repeat the operations (i) through (iv) until |F ζ
F,i| < FTh for arbitrary i

and ζ. Note that we have used the initial values for ∆tF = ∆tF,ini and χ = χstart

at the starting point of the FIRE. Here, r is given and we set vF = 0 at the
starting point of the FIRE.
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2.3.2 Numerical method for relaxation of the configura-
tion of frictional grains

After we obtain a stable configuration of frictionless grains at a target fraction
in terms of the FIRE, we consider the effect of static friction in the relaxation
process of frictional grains. The time evolution of the system is given by Eqs.
(2.1)–(2.4) until F̃α

F,i < FTh for arbitrary i and α. For the time integration, we

adopt the velocity Verlet method with the time increment ∆t = 1.0× 10−2t0.

2.4 Velocity Verlet method in our system

In this section, we first verify the accuracy of the velocity Verlet method. Next,
we summarize the implementation of the velocity Verlet method. To simplify
the notation, we introduce the generalized force f̃ := (f̃T

1 , f̃
T
2 , · · · , f̃T

N )T with

f̃i := (f̃xi , f̃
y
i , f̃

ℓ
i )

T := (F x
i /mi, F

y
i /mi, 2Ti/(diIi))

T in this section, where F ζ
i :=∑

j ̸=i f
ζ
ij − F

(drag),ζ
i for ζ = x and y, and Ti :=

∑
j ̸=i Tij − T (drag). Here, fζij

and F
(drag),ζ
i are ζ-component of fij and F

(drag)
i , respectively. Note that f̃αi is

the generalized force which depends on the generalized position vector q and
the generalized velocity q̇ as in Eqs. (2.9)–(2.12), where q := (qT

1 , q
T
2 , ·, qT

N )T

with qi := (rxi , r
y
i , diθi/2)

T and ȧ := da/dt for an arbitrary vector a.

2.4.1 Accuracy of the velocity Verlet method for the force
depending on the velocity

In this subsection, we check the accuracy of the velocity Verlet method for the
force depending on the velocity with the aid of discretization based on the Taylor
expansion. The velocity Verlet method is given by a set of equations

qαi (t+∆t) = qαi (t) + ∆tq̇αi (t) +
1

2
∆t2f̃αi (t), (2.26)

q̇αi (t+∆t) = q̇αi (t) + ∆t
f̃αi (t) + f̃αi (t+∆t)

2
. (2.27)

The first equation is called the velocity Velret equation for qαi (t) and the second
one is the equation for q̇αi (t). It is known that the velocity Verlet algorithm
has the accuracy of O(∆t2) in Hamiltonian systems [133], but little is known
about its accuracy for dissipative dynamics. In this subsection, we clarify the
accuracy of this method.

Here, we show from the Taylor expansion that the velocity Verlet method has
second-order and first-order accuracies of ∆t for q and q̇, respectively. Based
on the Taylor expansion of qαi (t+∆t), we obtain

qαi (t+∆t) = qαi (t) + ∆tq̇αi (t) +
1

2
∆t2q̈αi (t) +O(∆t3)

= qαi (t) + ∆tq̇αi (t) +
1

2
∆t2f̃αi (t) +O(∆t3), (2.28)
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where Ȧ := dA/dt for an arbitrary function A. We can obtain the quadratic
precision of ∆t for qαi (t + ∆t), because the RHS of Eq. (2.28) is a function of
current time t.

On the other hand, based on the Taylor expansion of q̇αi (t+∆t), we obtain

q̇αi (t+∆t) = q̇αi (t) + ∆tq̈αi (t) +
1

2
∆t2

...
q α

i (t) +O(∆t3)

= q̇αi (t) + ∆tf̃αi (t) +
1

2
∆t2

˙̃
fαi (t) +O(∆t3). (2.29)

By using f̃αi (t+∆t) = f̃αi (t) + ∆t
˙̃
fαi (t) +O(∆t2), we evaluate

˙̃
fαi (t) as

˙̃
fαi (t) =

f̃αi (t+∆t)− f̃αi (t)

∆t
+O(∆t). (2.30)

Substituting Eq. (2.30) into Eq. (2.29), we obtain [133]

q̇αi (t+∆t) = q̇αi (t) + ∆t
f̃αi (t+∆t) + f̃αi (t)

2
+O(∆t3). (2.31)

If the force f̃αi (t +∆t) is independent of q̇, we can obtain f̃αi (q(t +∆t)) from
q(t+∆t) with the aid of Eq. (2.28) [133]. However, if f̃αi (t+∆t) depends on q̇,
we have to evaluate f̃αi (q(t+∆t), q̇(t+∆t)), because f̃αi (q(t+∆t), q̇(t+∆t))
requires LHS of Eq. (2.31). Thus, we adopt the following replacements:

f̃αi (t+∆t) : = f̃αi (q(t+∆t), q̇(t+∆t)) → f̃αi (q(t+∆t), Q̇(t)), (2.32)

f̃αi (t) : = f̃αi (q(t), q̇(t)) → f̃αi (q(t), Q̇(t−∆t)), (2.33)

where we have introduced

Q̇α
i (t) : = q̇αi (t) + ∆t

f̃αi (q(t), Q̇(t−∆t))

2
, (2.34)

Q̇α
i (t−∆t) : = q̇αi (t−∆t) + ∆t

f̃αi (q(t−∆t), Q̇(t− 2∆t))

2
. (2.35)

Here, the difference between f̃αi (q(t + ∆t), q̇(t + ∆t)) and f̃αi (q(t + ∆t), Q̇(t))
caused by Eq. (2.32) is given by

∆f̃αi (t+∆t) := f̃αi (q(t+∆t), q̇(t+∆t))− f̃αi (q(t+∆t), Q̇(t))

= f̃αi

(
q(t+∆t), q̇(t) + ∆tf̃(t) +O(∆t2)

)
− f̃αi

(
q(t+∆t), q̇(t) + ∆t

f̃(q(t), q̇(t))

2
+O(∆t2)

)

= ∆t

N∑
j=1

∑
β=x,y,ℓ

f̃βj (q(t), q̇(t))

2

∂f̃αi (q(t), q̇(t))

∂q̇βj
+O(∆t2). (2.36)
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Similarly, the difference between f̃αi (t) := f̃αi (q(t), q̇(t)) and f̃
α
i (q(t), Q̇(t−∆t))

in Eq. (2.33) can be evaluated as

∆f̃αi (t) := f̃αi (q(t), q̇(t))− f̃αi (q(t), Q̇(t−∆t))

= ∆t

N∑
j=1

∑
β=x,y,ℓ

f̃βj (q(t), q̇(t))

2

∂f̃αi (q(t), q̇(t))

∂q̇βj
+O(∆t2). (2.37)

Thus, the replacement of Eqs. (2.32) and (2.33) in Eq. (2.31) with Eqs. (2.36)
and (2.37) leads to

q̇αi (t+∆t) = q̇αi (t) + ∆t
f̃αi (q(t+∆t), Q̇(t)) + f̃(q(t), Q̇(t−∆t))

2

−∆t2
N∑
j=1

∑
β=x,y,ℓ

f̃βj (q(t), q̇(t))

2

∂f̃αi (q(t), q̇(t))

∂q̇βj
+O(∆t3). (2.38)

Omitting the term including O(∆t2) in Eq.(2.38), we obtain the following nu-
merical integration methods for q̇:

q̇αi (t+∆t) → q̇αi (t) + ∆t
f̃αi (q(t+∆t), Q̇(t)) + f̃(q(t), Q̇(t−∆t))

2
. (2.39)

Note that Eq. (2.39) is the precise expression of the velocity Verlet scheme
for q̇ presented in Eq. (2.27). From the comparison between Eqs. (2.38) and
(2.39), we have confirmed that the velocity Verlet scheme has the first-order
precision of ∆t for q̇. We also note that if f̃αi is independent of q̇ as in the
case of Hamiltonian systems, the term proportional to ∆t2 is zero and thus, the
second-order accuracy of ∆t for q̇αi is guaranteed.

Let us go back to Eq. (2.28) with the replacement of Eq. (2.33) for f̃αi (t):

qαi (t+∆t) = qαi (t) + ∆tq̇αi (t) +
1

2
∆t2f̃αi (t) +O(∆t3)

= qαi (t) + ∆tq̇αi (t) +
1

2
∆t2f̃αi (q(t), Q̇(t−∆t)) +O(∆t3). (2.40)

Omitting the term including O(∆t3) in Eq.(2.40), we obtain the following nu-
merical integration methods for q:

qαi (t+∆t) → qαi (t) + ∆tq̇αi (t) +
1

2
∆t2f̃αi (q(t), Q̇(t−∆t)). (2.41)

Here, Eq. (2.41) is the precise expression of the velocity Verlet scheme for q
presented in Eq. (2.26). From Eqs. (2.40) and (2.41), we have confirmed that
the velocity Verlet scheme has the second-order precision of ∆t for q.
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2.4.2 Implementation of the velocity Verlet method for
the force depending on the velocity

In this subsection, we explain how to implement the velocity Verlet method in
our system. In this thesis, we adopt the following equations:

qαi (t+∆t) = qαi (t) + ∆tq̇αi (t) + ∆t2
f̃αi

(
q(t), Q̇ (t−∆t)

)
2

, (2.42)

Q̇α
i (t) = q̇αi (t) + ∆t

f̃αi

(
q(t), Q̇ (t−∆t)

)
2

. (2.43)

Here, the updated configuration qαi (t + ∆t) and modified velocity Q̇α
i (t) are

used to obtain the force f̃αi

(
q(t+∆t), Q̇ (t)

)
. Then, we update the velocity as

follows

q̇αi (t+∆t) = Q̇α
i (t) + ∆t

f̃αi

(
q(t+∆t), Q̇ (t)

)
2

. (2.44)



Chapter 3

Theory of rigidity and
density of states of
two-dimensional amorphous
solids of dispersed frictional
grains in the linear response
regime

3.1 Introduction of Chapter 3

Amorphous materials consisting of dispersed grains such as powders, colloids,
bubbles, and emulsions are ubiquitous in nature [2, 5, 8, 9]. These materials
behave like liquids at low densities and exhibit solid-like mechanical responses
above their jamming point [10]. In systems consisting of frictionless grains, the
rigidity changes continuously, but the coordination number of grains changes
discontinuously at the jamming point as a function of density [5, 9, 12]. The
critical behavior near the jamming point is of interest to physicists as a non-
equilibrium phase transition [11,16,18,20,33]. Dispersed grains above the jam-
ming point are fragile and exhibit softening and yielding transition under certain
loads [67–70,134–139].

For amorphous solids consisting of frictionless grains, it is useful to analyze
the dynamical matrix or the Hessian matrix, which is defined as the second
derivative of the potential of a collection of grains with respect to the displace-
ments from their stable configuration [5, 8, 17, 82, 84, 87, 88]. For instance, the
rigidity can be determined by eigenvalues and eigenvectors [83,86,90,107–109].
It has been reported that the minimum nonzero eigenvalue of the Hessian ma-

23



CHAPTER 3. THEORY OF RIGIDITY AND DENSITY OF STATES 24

trix decreases with increasing strain and eventually becomes negative, where an
irreversible stress drop takes place [107,108,111–113].

The density of states (DOS) for systems composed of anisotropic grains, such
as ellipses, dimers, deformable grains, and grains with rough surfaces have been
studied with the aid of the Hessian matrix [93–103]. Because of the rotation
of such anisotropic grains, there exists a rotational band in the DOS that is
distinguishable from the translational band [94,96,97,100,102,103].

Even for systems of spherical grains that cannot be free from inter-particle
friction, similar results are expected as a result of grain rotations. However, few
studies have reported the existence of rotational bands in the DOS. Because
the frictional force between the grains depends on the contact history, it cannot
be expressed as a conservative force. Therefore, stability analysis for frictional
grains based on the Hessian cannot be used. Nevertheless, the Hessian analysis
using an effective potential for frictional grains has been performed [104, 105].
Recently, Liu et al. suggested that the Hessian analysis with another effective
potential can be used even if slip processes exist [106]. The previous studies
[104, 105] reported that friction between grains causes a continuous change in
the functional form of the DOS from that of frictionless systems. However, there
are only a few reports on whether an isolated band in the DOS originating from
friction between grains is visible at lower frequencies.

Recently, Chattoraj et al. discussed the stability of the grain configuration
under strain using the Jacobian matrix of frictional grains [115]. They performed
eigenvalue analysis under athermal quasi-static shear processes and determined
the existence of oscillatory instability originating from inter-particle friction at
a certain strain [115–117]. However, they did not discuss the rigidity or the
DOS.

The theoretical determination of the rigidity of amorphous solids consisting
of frictional grains is important for controlling amorphous solids. However, we
do not know how to determine the rigidity from the Jacobian for the frictional
grains.

The purpose of this chapter is to clarify the role of mutual friction between
grains in terms of the rigidity and the DOS. We focus on the response to an
infinitesimal strain from a stable configuration of grains without any strain to
obtain tangible results. In this study, we assume that there is no slip between
grains because of an infinitesimal strain, and we then deal with friction as static
friction. We succeed in determining the rigidity in linear response regime. We
find that there are two modes in the DOS for sufficiently small kT /kN .

The remainder of this chapter is organized as follows. In the next section, we
introduce the numerical method. In Sec. 3.3, we introduce the Jacobian. Section
3.4 consists of Sec. 3.4.1, which deals with the DOS, and Sec. 3.4.2, which deals
with the theoretical prediction of rigidity in the linear response regime. In the
final section, we summarize the results of our study and discuss future work.
The appendix consists of five sections. In Appendix A, we summarize some
properties of the Jacobian. In Appendix B, we present the explicit expressions
of the Jacobian. In Appendix C, we derive the theoretical prediction of rigidity
using the Jacobian. In Appendix D, we investigate the effects of rattlers. In
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Appendix E, we introduce the DOS using the Hessian analysis.

3.2 Numerical Model Used in this Chapter

Our system contains N frictional spherical grains embedded in a monolayer con-
figuration. We treat this system as a two-dimensional system (see Fig. 3.1). To

Figure 3.1: Schematics of our system.

prevent the system from crystallizing [78], we prepare an equal number of grains
with diameters d and d/1.4. We assume that the mass of grain i is proportional
to d2i , where di is the diameter of i-th grain. We introduce m as the mass of a
grain with diameter d. In this study, xi, yi, and θi denote x, y coordinates, and
the rotational angle of the i-th grain, respectively. We introduce the general-
ized coordinates of the i-th grain qi := (rTi , ℓi)

T := (xi, yi, diθi/2)
T, where the

superscript T denotes the transposition.
Let the force, and z-component of the torque acting on the i-th grain be

Fi := (F x
i , F

y
i )

T and Ti, respectively. Then, the equations of motion of i-th
grain are expressed as

mi
d2ri
dt2

= Fi, (3.1)

Ii
d2θi
dt2

= Ti, (3.2)

with the mass mi and the momentum of inertia Ii := mid
2
i /8 of i-th grain. In

a system without volume forces such as gravity, we can write

Fi =
∑
j ̸=i

fij , (3.3)

Ti =
∑
j ̸=i

Tij , (3.4)
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where fij and Tij are the force and z-component of the torque acting on the
i-th grain from the j-th grain, respectively. Here, Tij is given by

Tij = −di
2
(nxijf

y
ij − nyijf

x
ij), (3.5)

where we have introduced the normal unit vector between i and j grains as
nij := rij/|rij | := (ri − rj)/|ri − rj |. Here, nζij and fζij refer to ζ-components
of nij and fij , respectively. Note that ζ expresses ζ = x or y throughout this
study. The force fij can be divided into normal fN,ij and tangential fT,ij parts
as

fij = (fN,ij + fT,ij)H(dij/2− |rij |), (3.6)

where dij := di + dj and H(x) is Heaviside’s step function, taking H(x) = 1
for x > 0 and H(x) = 0 otherwise. We model the repulsive force between the
contacted grains i and j as the Hertzian force in addition to the dissipative
force proportional to the relative velocity with a damping constant ηD [106] as
follows:

fN,ij : = kNξ
3/2
N,ijnij − ηDvN,ij , (3.7)

fT,ij : = kT ξ
1/2
N,ijξT,ijtij − ηDvT,ij , (3.8)

where kN and kT are the stiffness parameters of normal and tangential contacts,
respectively. For the normal compression and its velocity we have used ξN,ij :=
dij/2− |rij | and vN,ij := ṙij ·nij , respectively. For the tangential deformation,
with the aid of uij := (nyij ,−nxij)T, the tangential velocity vT,ij is defined as
vT,ij := ṙij − vN,ij + uij(diωi + djωj)/2, where we have introduced

ξT,ij :=

∫
Cij

dtvT,ij −

[(∫
Cij

dtvT,ij

)
· nij

]
nij , (3.9)

with ξT,ij := |ξT,ij | and tij := −ξT,ij/|ξT,ij |. Here, Ȧ := dA/dt and
∫
Cij

dt

is the integration over the duration time of contact between i and j grains.
Although the dissipative force between grains interacting with the Hertzian

force is proportional to the product of the relative velocity and ξ
1/2
ij,N [129–131],

we adopt simple dissipative forces as in Eqs. (3.7) and (3.8) because we are
not interested in the relaxation dynamics. We note that Eqs. (3.7) and (3.8)
assume the Hertzian contact force for the static repulsion of contacting spheres,
but all calculations in this study are those for two-dimensional systems. Here,
we do not consider the effects of slips in the tangential equation of motion. This
treatment can be justified if we restrict our interest in the linear response regime
to a stable configuration of grains without any strain. This situation corresponds
to frictional grains with infinitely large dynamical friction constant, in which the
friction is only characterized by static friction. Therefore, our analysis does not
apply to systems with finite strain [72], where the effect of slip is important.
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To generate a stable configuration of frictional grains, we prepare a stable
configuration of frictionless grains in a square box of linear size L using a fast
inertial relaxation engine (FIRE) [118]. Subsequently, we turn on the tangential
force using Eqs. (3.1) and (3.2) to achieve a stable configuration in the force-
balanced (FB) state for frictional grain1 (see Sec. 2.3 for details). Here, the

FB state satisfies the FB conditions |F ζ
i | = 0 and |Ti| = 0 for arbitrary grains.

Note that we set θi = 0 when the tangential force is turned on.
We impose the Lees-Edwards boundary condition [140, 141], where the di-

rection parallel to the shear strain is x-direction. After applying a step strain
∆γ to all grains, x-coordinate of the position of the i-th grain is shifted by an
affine displacement ∆xi(∆γ) := ∆γyFBi (0), where the superscript FB denotes
the FB state. The system is then relaxed to the FB state by the contact forces
between the grains expressed in Eqs. (3.7) and (3.8). Here, ζ-components of

translational ∆r̊ζi (∆γ) and rotational ∆ℓ̊i(∆γ) nonaffine displacements of the
i-th grain after the relaxation process are, respectively, defined as follows:

∆r̊ζi (∆γ) : = rFB,ζ
i (∆γ)− rFB,ζ

i (0)− δζx∆γy
FB
i (0), (3.10)

∆ℓ̊i : = ℓFBi (∆γ)− ℓFBi (0). (3.11)

Using Eqs. (3.10) and (3.11), we introduce the rate of nonaffine displacements
as:

d̊rζi
dγ

: = lim
∆γ→0

∆r̊ζi (∆γ)

∆γ

= lim
∆γ→0

rFB,ζ
i (∆γ)− rFB,ζ

i (0)

∆γ
− δζxy

FB
i (0), (3.12)

dℓ̊i
dγ

: = lim
∆γ→0

∆ℓ̊i(∆γ)

∆γ

= lim
∆γ→0

ℓFBi (∆γ)− ℓFBi (0)

∆γ
. (3.13)

1For simplicity, we prepare the configuration before applying shear for frictionless grains
at first, and then considered the friction between grains. If we prepare a configuration before
applying shear by compressing frictional grains, we confirm that the configuration had an
oscillatory instability that resulted from the appearance of a pair of imaginary eigenvalues of
the Jacobian divided by mass matrix: λ′ = λ′

r ± iλ′
i [115–117], where λ′, λ′

r, and λ′
i are the

complex, real, and imaginary eigenvalues of M−1J , respectively. Here, J is the Jacobian
defined in Eq. (3.20), and M is the mass matrix whose explicit form is given by M =M1

. . .

MN

, where Mi :=

mi

mi

4Ii/d
2
i

. Because the linearized equation of

motion is expressed as d2qαi /dt
2 = −

∑
k,κ

∑
j,β(M

ακ
ik )−1J κβ

kj qβj , there are four fundamental

solutions q ∝ eiω
′
nt, where iω′

n consists of iω′
±1 = ω′

i ± iω′
r and iω′

±2 = −ω′
i ± iω′

r. Here, ω′
r

and ω′
i satisfy the relation ω′

r ± iω′
i =

√
λ′
r ± iλ′

i. Thus, to avoid the oscillatory instability of
the configuration before applying shear, we adopt the protocol of creating the configuration
with frictionless grains, and then let the system relax by adding static friction between grains.
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Our system is characterized by the generalized coordinate

q(γ) := (qT
1 (γ), q

T
2 (γ), · · · , qT

N (γ))T. (3.14)

The configuration in the FB state at strain γ is denoted as

qFB(γ) := ((qFB
1 (γ))T, (qFB

2 (γ))T, · · · , (qFB
N (γ))T)T. (3.15)

The shear stress σxy(γ) at q
FB(γ) for one sample is given by:

σxy(q
FB(γ)) = − 1

L2

∑
i

∑
j>i

fxij(q
FB(γ))ryij(q

FB(γ)). (3.16)

The rigidity g in the linear response regime for one sample is defined as

g :=
dσxy(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(0)

, (3.17)

where the differentiation on the right-hand side (RHS) of Eq. (3.17) is defined
as follows:

dσxy(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(0)

:= lim
∆γ→0

σxy(q
FB(∆γ))− σxy(q

FB(0))

∆γ
. (3.18)

In the numerical calculation, we use a non-zero but sufficiently small ∆γ for the
evaluation of g. Then, the rigidity G in the linear response regime is defined as

G := ⟨g⟩ , (3.19)

where ⟨·⟩ is the ensemble average.
For the numerical FB condition, we use the condition |F̃α

i | < FTh for ar-
bitrary i, where FTh is the threshold force for the simulation and F̃i is the
generalized force, defined as F̃i := (F̃ x

i , F̃
y
i , F̃

ℓ
i )

T := (F x
i , F

y
i , 2Ti/di)

T.
In our simulation, we adopt ηD = (mkN )1/2d1/4 and FTh = 1.0×10−14kNd

3/2.
The control parameters are the ratio of the tangential to normal stiffness kT /kN
and projected area fraction to two-dimensional space ϕ. The operating ranges
of kT /kN and ϕ are 0.0 to 10.0 and 0.83 to 0.90, respectively. In this study,
we mainly present the results for N = 1024 and ∆γ = 1.0 × 10−6 with the
ensemble averages of 10 samples for each kT /kN and ϕ. Some results are ob-
tained with N = 128, ∆γ = 1.0 × 10−6, and five samples for each kT /kN
and ϕ. We verify that the results are independent of the choice of ∆γ for
1.0 × 10−6 ≤ ∆γ ≤ 1.0 × 10−4. We ignore the effect of dissipation between
grains because the velocity of each grain is sufficiently small for infinitesimal
agitation from the FB state. The time step of the simulation, ∆t, was set to
∆t = 1.0× 10−2t0, and numerical integration was performed using the velocity
Verlet method (see Sec. 2.4), where t0 := (m/kN )1/2d−1/4.

Figure 3.2 (a) shows an example of the affine displacements of grains, where
the displacements exist only in the shear direction, and Fig. 3.2 (b) shows the
nonaffine displacements.
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Figure 3.2: Plots of (a) affine displacements and (b) nonaffine displacements of
grains with ∆γ = 1.0×10−6. Here, the magnitudes of the vectors are multiplied
by (a) 0.1∆γ−1 and (b) 5.0∆γ−1 for the visualization. These figures are based
on numerical results for N = 128.

3.3 Theoretical Analysis

In this section, we introduce the Jacobian, the DOS, and theoretical expressions
of the linear rigidity. Here, we omit the effects of q̇ because the dissipative term
proportional to q̇ vanishes under quasistatic shear.

3.3.1 Jacobian and the DOS for frictional grains

In frictional systems, the stability of the system and DOS at qFB(γ) are analyzed
using the Jacobian (J ) defined as [115]:

J αβ
ij := − ∂F̃α

i (q(γ))

∂qβj

∣∣∣∣∣
q(γ)=qFB(0)

, (3.20)

where α and β are any of x, y and ℓ, while i and j express grain indices. There-
fore, the Jacobian matrix, which is a 3N × 3N matrix, can be written as

J =



J11 · · · J1i · · · J1j · · · J1N

...
. . .

...
...

...
Ji1 · · · Jii · · · Jij · · · JiN

...
...

. . .
...

...
Jj1 · · · Jji · · · Jjj · · · JjN

...
...

...
. . .

...
JN1 · · · JNi · · · JNj · · · JNN


, (3.21)
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where Jij is a 3× 3 submatrix of the Jacobian J for a pair of grains i and j:

Jij =

J
xx
ij J xy

ij J xℓ
ij

J yx
ij J yy

ij J yℓ
ij

J ℓx
ij J ℓy

ij J ℓℓ
ij

 . (3.22)

See Appendices A and B for detailed properties of the Jacobian. The right and
left eigenvalue equations of J are, respectively, given by

J |Rn⟩ = λn |Rn⟩ , (3.23)

⟨Ln| J = λn ⟨Ln| , (3.24)

where |Rn⟩ and ⟨Ln| are the right and left eigenvectors corresponding to λn,
respectively. Here, λn is the n-th eigenvalue of J . Note that |Rn⟩ and ⟨Ln|
satisfy the orthonormal relation ⟨Lm|Rn⟩ = δmn with normalization ⟨Rn|Rn⟩ =
⟨Ln|Ln⟩ = 1, if all eigenstates are non-degenerate. Here, the inner products for

the right and left eigenvectors are defined as ⟨Rn|Rn⟩ =
∑N

i=1

∑
α=x,y,ℓ |Rα

n,i|2

and ⟨Ln|Ln⟩ =
∑N

i=1

∑
α=x,y,ℓ |Lα

n,i|2, respectively. In the presence of friction,
the eigenvalue λn is generally a complex number, but if we restrict our interest
to infinitesimal distortions from stable configurations without shear strain, λn
becomes real and can be expressed as λn = ω2

n. The DOS is the distribution
function of the eigenvalues, defined as:

D(ω) :=
1

3N

3N∑
n=1

⟨δ(ω − ωn)⟩. (3.25)

Using the force decomposition, the Jacobian can also be divided into

J αβ
ij = J αβ

N,ij + J αβ
T,ij , (3.26)

where

J αβ
N,ij : =

∂f̃αN,ij(q(γ))

∂qβj

∣∣∣∣∣
q(γ)=qFB(γ)

, (3.27)

J αβ
T,ij : =

∂f̃αT,ij(q(γ))

∂qβj

∣∣∣∣∣
q(γ)=qFB(γ)

(3.28)

for i ̸= j and

J αβ
N,ij : =

∑
(i,k)

∂f̃αN,ik(q(γ))

∂qβi

∣∣∣∣∣
q(γ)=qFB(γ)

, (3.29)

J αβ
T,ij : =

∑
(i,k)

∂f̃αT,ik(q(γ))

∂qβi

∣∣∣∣∣
q(γ)=qFB(γ)

(3.30)
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for i = j. Here, we have introduced f̃N,ij := (f̃xN,ij , f̃
y
N,ij , f̃

ℓ
N,ij)

T := (fxN,ij , f̃
y
N,ij , 0)

T

and f̃T,ij := (f̃xT,ij , f̃
y
T,ij , f̃

ℓ
T,ij)

T := (fxT,ij , f̃
y
T,ij , 2Tij/di)

T, where fζN,ij and fζT,ij

are ζ-component of fN,ij and fT,ij , respectively. Note that
∑

(i,j) denotes the
summation for contacted grains of the i-th grain. The explicit expressions of
J αβ
N,ij and J αβ

T,ij are presented in the Appendix B.2.

3.3.2 Expressions of the linear rigidity via eigenmodes

Let us introduce |F̃ (q(γ))⟩ as

|F̃ (q(γ))⟩ := [F̃T
1 (q(γ)), F̃T

2 (q(γ)), · · · , F̃T
N (q(γ))]T. (3.31)

Because the forces acting on the grains are balanced in the FB state, |F̃ (q(γ))⟩ |q(γ)=qFB(γ)

satisfies

|F̃ (q(γ))⟩
∣∣∣
q(γ)=qFB(γ)

= |0⟩ , (3.32)

where |0⟩ is the ket vector containing 0 for all components. The stable configu-
ration in the FB state satisfies

d |F̃ (q(γ))⟩
dγ

∣∣∣∣∣
q(γ)=qFB(0)

= |0⟩ , (3.33)

where

d |F̃ (q(γ))⟩
dγ

∣∣∣∣∣
q(γ)=qFB(0)

:= lim
∆γ→0

∣∣∣F̃ (qFB(∆γ))
〉
−
∣∣∣F̃ (qFB(0))

〉
∆γ

. (3.34)

Introducing ∣∣∣∣ dq̊dγ
〉

:=

[
d̊rx1
dγ

,
d̊ry1
dγ

,
dℓ̊1
dγ

, · · · , d̊r
x
N

dγ
,
d̊ryN
dγ

,
dℓ̊N
dγ

]T
, (3.35)

the left-hand side (LHS) of Eq.(3.33) can be rewritten as:

d |F̃ (q(γ))⟩
dγ

∣∣∣∣∣
q(γ)=qFB(0)

= − |Ξ⟩+ J̃
∣∣∣∣ dq̊dγ

〉
, (3.36)

where we have used Eqs. (3.12) and (3.13) (see Appendix C.1). The first and
second terms on RHS of Eq. (3.36) represent the strain derivatives of the forces
for the contributions from the affine and nonaffine displacements, respectively.
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The explicit form of |Ξ⟩ is given by:

|Ξ⟩ :=



∑
j ̸=1 J xx

N,j1r
y
1j∑

j ̸=1 J
xy
N,j1r

y
1j∑

j ̸=1 J xℓ
N,j1r

y
1j

...∑
j ̸=N J xx

N,jNr
y
Nj∑

j ̸=N J xy
N,jNr

y
Nj∑

j ̸=N J xℓ
N,jNr

y
Nj


. (3.37)

Note that the tangential displacements do not contribute to |Ξ⟩. This is because
the affine displacements are applied to our system instantaneously as a step
strain; thus, the integral interval of the tangential displacement during the affine
deformation is zero. We have used J̃ in Eq. (3.36) defined as

J̃ αβ
ii :=


−J ℓx

ii (α = ℓ, β = x)

−J ℓy
ii (α = ℓ, β = y)

J αβ
ii (otherwise)

(3.38)

and

J̃ αβ
ij :=


−J xℓ

ij (α = x, β = ℓ)

−J yℓ
ij (α = y, β = ℓ)

J αβ
ij (otherwise)

(3.39)

for i ̸= j.
Expanding the nonaffine displacements by the eigenfunctions of J̃ and using

the fact that the LHS in Eq. (3.36) is zero, we obtain∣∣∣∣ dq̊dγ
〉

=
∑′

n

⟨L̃n|Ξ⟩
λ̃n

|R̃n⟩ , (3.40)

where λ̃n, ⟨L̃n|, and |R̃n⟩ are the n-th eigenvalue of J̃ , and the left and right
eigenvectors corresponding to λ̃n, respectively. Here,

∑′
n on RHS of Eq. (3.40)

excludes low-frequency modes for λ̃nt
2
0/m ≤ 10−12 to maintain the numerical

accuracy. Note that |R̃n⟩ and ⟨L̃n| satisfy the orthonormal relation ⟨L̃m|R̃n⟩ =
δmn, if all eigenstates are non-degenerate. See Appendix C.1 for the derivation
of Eq. (3.40).

The rigidity in the linear response regime under infinitesimal strain ∆γ is
decomposed into two parts:

G := GA +GNA, (3.41)

where GA and GNA are the rigidities corresponding to the affine and nonaffine
displacements, respectively. With the aid of Eqs. (3.16), (3.19), and (3.39) the
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expressions of GA and GNA are, respectively, given by (see Appendix C.2)

GA : =
1

2L2

〈 ∑
i,j(i ̸=j)

(ryij)
2J xx

N,ji

〉
, (3.42)

GNA : =
1

2L2

〈 ∑
i,j(i ̸=j)

[ ∑
ζ=x,y

ryijJ̃
xζ
ij

d̊rζij
dγ

− ryijJ̃
xℓ
ij

dℓ̊ij
dγ

]〉
, (3.43)

where we have introduced

d̊rζij
dγ

: =
d̊rζi
dγ

−
d̊rζj
dγ

, (3.44)

dℓ̊ij
dγ

: =
dℓ̊i
dγ

+
dℓ̊j
dγ

. (3.45)

Substituting Eq. (3.40) into Eq. (3.43), GNA can be rewritten as follows:

GNA = − 1

L2

〈∑′

n

⟨L̃n|Ξ⟩ ⟨Θ|R̃n⟩
λ̃n

〉
, (3.46)

where we have introduced

⟨Θ| :=



∑
j ̸=1 r

y
1jJ̃ xx

j1∑
j ̸=1 r

y
1jJ̃

xy
j1∑

j ̸=1 r
y
1jJ̃ xℓ

j1

...,∑
j ̸=N ryNjJ̃ xx

jN∑
j ̸=N ryNjJ̃

xy
jN∑

j ̸=N ryNjJ̃ xℓ
jN



T

. (3.47)

The affine rigidity can be also expressed as

GA =
1

L2
⟨⟨Y |Ξ⟩⟩ , (3.48)

where

⟨Y | :=
[
ry1j , 0, 0, r

y
2j , 0, 0, · · · , r

y
Nj , 0, 0

]
. (3.49)

3.4 Results

In this section, we present the results of eigenvalue analysis and rigidity based
on the formulation explained in the previous section. Section 3.4.1 clarifies the
effects of translational and rotational motions on the DOS. In Sec. 3.4.2, rigidity
is determined using the eigenmodes of the Jacobian.
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3.4.1 Eigenvalue analysis

In Fig. 3.3 we present some typical right eigenvectors |Rn⟩, which was intro-
duced in Eq. (3.23), and can be expressed as:

|Rn⟩ =


Rn,1

Rn,2

...
Rn,N

 , (3.50)

where Rn,i := (Rx
n,i, R

y
n,i, R

ℓ
n,i)

T. Figure 3.3 illustrates vectors (Rx
n,i, R

y
n,i)

T

and colors to characterize the rotation Rℓ
n,i of grain i for some characteristic ωn

with kT /kN = 1.0×10−8 (Figs. 3.3 (a1)-(a3)) and kT /kN = 1.0×10−4 (Figs. 3.3
(b1)-(b3)). Figures 3.3 (a1) and (b1) show the eigenvectors at ωnt0 = 1.0×10−2

and ωnt0 = 1.0 × 10−4, respectively, which are dominated by the rotational
modes. In Fig. 3.3 (a2), we confirm that the eigenvector at ωnt0 = 1.3 × 10−2

is expressed only by translational modes, whereas the eigenvector at ωnt0 =
1.3 × 10−2 shown in Fig. 3.3 (b2) is expressed as a coupling mode of the
rotational and translational modes. In Figs. 3.3 (a3) and (b3), we show the
eigenvectors at ωnt0 = 1.0 which are dominated by the translational modes.

To clarify the translational and rotational contributions at each eigenvalue,
we compute the translational and rotational participation fractions [96, 98] de-
fined as

ψT
n :=

N∑
i=1

[
|Rx

n,i|2 + |Ry
n,i|

2
]
, (3.51)

ψR
n :=

N∑
i=1

|Rℓ
n,i|2 = 1− ψT

n , (3.52)

respectively. Note that translational mode is dominant when ψT
n is close to 1

and rotational mode is dominant when ψR
n is close to 1. ψT (ω) and ψR(ω) are

plotted for various kT /kN in Fig. 3.4, where

ψT (ω) : =

∑3N
n=1⟨ψT

n δ(ω − ωn)⟩∑3N
n=1⟨δ(ω − ωn)⟩

, (3.53)

ψR(ω) : =

∑3N
n=1⟨ψR

n δ(ω − ωn)⟩∑3N
n=1⟨δ(ω − ωn)⟩

. (3.54)

Here, ψT and ψR are set to zero if there is no right eigenvalue for ω(s) <
ωt0 < ω(s+1) with the s-th data point for the logarithmic scale ω(s). Note that
the range of ω in Fig. 3.4 is discretized into Nlog = 60 pieces such that each
point is equally spaced on a logarithmic scale. Here, ω(s) satisfies the inductive
relation ω(s+1) = ω(s) + 2s∆ω with ω(0) = 0, and we use ∆ωt0 = 8.67 × 10−18

in our analysis. We also note that we do not consider the eigenmodes with
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Figure 3.3: Plots of eigenvectors for ϕ = 0.90 with (a1) ωnt0 = 1.0 × 10−4,
(a2) 1.3× 10−2, (a3) 1.0, (b1) 1.0× 10−2, (b2) 1.3× 10−2, and (b3) 1.0, where
(a1)-(a3) and (b1)-(b3) are the results for kT /kN = 1.0× 10−8 and 1.0× 10−4,
respectively. Here, (Rx

n,i, R
y
n,i)

T and Rℓ
n,i are represented by vectors and colors

for the i-th grain, respectively. Note that the magnitudes of the vectors are
magnified by 20 times for visualization. These figures are based on numerical
results for N = 1024.
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extremely small eigenvalues in our numerical calculations to ensure the accuracy
of our analysis. Such eigenmodes with small eigenvalues are supposed to be the
contributions of the rattlers (see details in Appendix D). As shown in Figs. 3.4

Figure 3.4: Semi-logarithmic plots of ψT (red filled squares and lines) and
ψR (blue filled circles and lines) for ϕ = 0.90 at (a) kT /kN = 1.0 × 10−8, (b)
1.0× 10−4, (c) 1.0, and (d) 10.0. The eigenvalues of (a1), (a2), (a3), (b1), (b2),
and (b3) in these figures correspond to Figs. 3.3 (a1), (a2), (a3), (b1), (b2) and
(b3), respectively. These figures are based on numerical results for N = 1024.

(a) and (b), we find the region of ψR ≃ 1 for low ω and kT /kN < 1.0×10−4. This
region is referred to as Region I. We also find a region that satisfies ψT ≃ 1 for
high ω and kT /kN < 1.0, in which the translational modes are dominant. This
region is referred to as Region II. Here, three characteristic behaviors depend
on kT /kN at ϕ = 0.90. First, the translational modes are separable from the
rotational modes for kT /kN ≤ 1.0 × 10−8 because we need a small amount of
energy to excite the rotational mode in nearly frictionless situations, as shown
in Figs. 3.4 (a) and (b). Second, the translational and rotational contributions
are not separated for 1.0×10−6 ≤ kT /kN ≤ 1.0×10−2. Third, the translational
and rotational contributions are indistinguishable for kT /kN ≥ 1.0.

The DOS obtained from the Jacobian eigenvalues is shown in Fig. 3.5. Note
that we did not consider the eigenmodes with extremely small eigenvalues in
our numerical calculations to ensure the accuracy of our analysis.
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Figure 3.5: Double logarithmic plots of D(ω) for ϕ = 0.90 at (a) kT /kN =
1.0× 10−8, (b) 1.0× 10−4, (c) 1.0, and (d) 10.0. The eigenvalues of (a1), (a2),
(a3), (b1), (b2) and (b3) in these figures correspond to Figs. 3.3 (a1), (a2), (a3),
(b1), (b2) and (b3), respectively. These figures are based on numerical results
for N = 1024.
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Based on the results of ψT (ω) and ψR(ω), the DOS is also separated into
two regions for kT /kN ≤ 1.0 × 10−8. The rotational band for low ω shifts to
the high ω region as kT /kN increases (see Figs. 3.5 (a) and (b)). In Region II
with a high ω (see Figs. 3.5 (a) and (b)), the DOS is almost independent of
kT /kN in which the translational modes are dominant for kT /kN ≤ 1.0× 10−2.
The distinctions between the two regions for the DOS are visible with a distinct
gap between the adjacent regions for 1.0 × 10−10 ≤ kT /kN ≤ 1.0 × 10−8. For
1.0 × 10−6 ≤ kT /kN ≤ 1.0 × 10−2; however, the high ω region of the DOS in
Region I partially overlaps with the low ω region of Region II. Furthermore,
Regions I and II are completely merged for kT /kN ≥ 1.0 (see Figs. 3.5 (c) and
(d)). Isolated DOS bands for low ω have been observed in systems containing
anisotropic grains, such as elliptical grains and dimers [96–98]. However, to the
best of our knowledge, there is no study pointing out the existence of isolated
bands of DOS in systems consisting of spheres or disks.

Because we have confirmed the existence of a peak of D(ω) around ωt0 ≃
(kT /kN )1/2, Fig. 3.6 shows the scaling of the DOS in Region I by plotting
ωRD(ω/ωR), where ωR :=

√
kT /kN t

−1
0

2. From Fig. 3.6 we find that ωRD(ω)

Figure 3.6: Scaling plots of ωRD(ω) versus ω/ωR for ϕ = 0.90 and various
kT /kN in 0.1 < ω/ωR < 10.0. The figure is based on numerical results for
N = 1024.

can be expressed as a universal function of ω/ωR for 0.1 < ω/ωR < 2 and
kT /kN ≤ 0.01.

To investigate the DOS for frictionless grains, we plot the DOS for frictionless
systems (see Fig. 3.7) obtained by the Hessian matrix, which is defined in
Appendix E. The DOS in Fig. 3.7 shows the absence of an isolated band in the

2The reason why D(ω) is multiplied by ωR in Fig. 3.6 is as follows. The integral value
of the DOS within Region I

∫
I dωD(ω) is almost independent of kT /kN . Then, LHS can be

rewritten as a variable
∫
I dωD(ω) =

∫
I dω̂D

∗(ω̂), where ω̂ := ω/ωR, D∗(ω̂) := ωRD(ω/ωR)
and

∫
I represents the integral in Region I.
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low ω region. Note that the negative slope of D(ω) at low ω vanishes in Fig.
3.7 if we ignore the contribution of the rattlers (see Appendix D).

Figure 3.7: Double logarithmic plots of D(ω)/t0 versus ωt0 for frictionless
grains with ϕ = 0.90, where red circles are the DOS for all modes, while blue
triangles are the DOS with the eliminations of rattlers. The figure is based on
numerical results for N = 1024.

At the end of this subsection, we examine the usefulness of the effective
Hessian H introduced in Refs. [104–106] by comparing D(ω) with DH(ω), where
DH(ω) is the DOS obtained from H (see Appendix E). As shown in Figs. 3.8
(a) and (b), D(ω) and DH(ω) at kT /kN = 1.0×10−8 and 1.0×10−4 are almost
identical. Here, the peak of the DOS near ω = 0 is caused by the rotational
motion of the grains. The peak of D(ω) is much higher than that of DH(ω) for
kT = kN , as shown in Fig. 3.8 (c). From Fig. 3.8 (d), we confirm that D(ω)
has a sharper peak around ωt0 ≈ 2.5 for kT /kN = 10.0 than that of DH(ω).
Therefore, the Jacobian analysis is relevant for a large kT /kN .

3.4.2 Theoretical evaluation of G

In this subsection, the validity of the theoretical rigidity expression presented in
the previous section is demonstrated. For this purpose, at first, we examine the
validity of Eq. (3.40), obtained by the eigenfunction expansion of the nonaffine
displacements. Figures 3.9 (a) and (b) illustrate the nonaffine displacements on
LHS and RHS of Eq. (3.40), respectively. In Figs. 3.9 (a) and (b), (x, y) and
ℓ-components of dq̊i/dγ at ri are represented by vectors and colors, respectively.
Figure 3.9 (c) shows the RHS and LHS of Eq. (3.40) against the components
of the vectors whose orders follow Eq. (3.35), that is, the local order of the
component follows x, y, and ℓ by fixing the particle number, and we align the
components from the first grain to the N -th grain without omitting modes with
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Figure 3.8: Plots of D(ω) (filled symbols) and DH(ω) (open symbols) for
ϕ = 0.90 at (a) kT /kN = 1.0×10−8, (b) 1.0×10−4, (c) 1.0, and (d) 10.0. These
figures are based on numerical results for N = 1024.
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extremely small and zero eigenvalues. Figure 3.9 shows that the expression in
Eq. (3.40) correctly reproduces the simulation results.

Figure 3.9: Plots of nonaffine displacements in (a) RHS and (b) LHS of Eq.
(3.40). The vector and color of each grain correspond to x, y, and ℓ-components
of the eigenvector of the grain, respectively. Here, the magnitude of the vectors
is magnified by 5 times for visualization. (c) Plots of the RHS (open symbols)
and LHS (filled symbols) of Eq. (3.40) for each component whose order follows
Eq. (3.35). These figures are based on numerical results for N = 128.

The dimensionless rigidity obtained from Eqs. (3.41),(3.42) and (3.46) with
the aid of G∗ := kNd

1/2 is shown in Fig. 3.10. This indicates the quantitative
agreement between the theoretical and numerical values. Therefore, the rigidity
in the linear response regime can be determined completely using the Jacobian
analysis. On the contrary to the previous studies [12, 21, 142], we should note
that G is not proportional to ϕ− ϕc for a large kT /kN , where ϕc is the critical
fraction of jamming transition for frictional grains.

The rigidity G is independent of kT /kN for kT /kN ≤ 1.0 × 10−4 (see Fig.
3.11). We have confirmed that G smoothly approaches the frictionless value in
the limit kT → 0 in contrary to Refs. [71, 72]. Here, G cannot be expressed as
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Figure 3.10: Plots of theoretical (Eq. (3.41): open symbols) and numerical
(Eq. (3.18): filled symbols) G against ϕ for various kT /kN . The figure obtained
by the numerical results for N = 128.

Figure 3.11: Plots of numerical G against kT /kN for various ϕ. The figure is
obtained by the numerical results for N = 1024.
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a factorization for large kT /kN
3.

To clarify the contributions of nonaffine deformations to the rigidity, we plot
GNA defined in Eq. (3.43) against ϕ in Fig. 3.12, in which GNA becomes large
as ϕ increases. Remarkably, GNA is positive for kT /kN > 2.0, GNA ≈ 0 at
kT /kN = 2.0, and GNA is negative for kT /kN < 2.0. The positive GNA for a
large kT /kN is counterintuitive, in which G increases from GA even when the
system is relaxed to the FB state. In the future, we must clarify the origin of
this counterintuitive GNA. We note that the negative GNA for a small kT /kN
can be understood by the relaxation process to look for a FB configuration after
applying affine deformations to the system.

Figure 3.12: Plots of GNA against ϕ for various kT /kN . The figure is obtained
by the numerical results for N = 1024.

Because GNA is proportional to the inverse of the eigenvalues from Eq.
(3.46), the contributions of the small eigenvalues are expected to be important
for the nonaffine displacements. In addition, it is possible to distinguish the
contribution of Region I from that of Region II for a sufficiently small kT /kN
by the apparent energy gap between the two regions. Here, we have divided
Regions I and II by ωct0 = 1.0 × 10−2 whose value splits Regions I and II for
ϕ = 0.90 and kT /kN = 1.0 × 10−8 (see Fig. 3.5 (a)). Then, gINA and gIINA are
the one-sample rigidities corresponding to the contributions from the nonaffine

3We have confirmed that the factorization G(ϕ, kT /kN ) = G0(ϕ)G(kT /kN ) is not held,
where G0(ϕ) is the rigidity of frictionless system.
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displacements obtained from Regions I and II, respectively, as follows:

gINA = − 1

L2

∑′

n(λ̃n<ω2
c)

⟨L̃n|Ξ⟩ ⟨Θ|R̃n⟩
λ̃n

, (3.55)

gIINA = − 1

L2

∑′

n(λ̃n≥ω2
c)

⟨L̃n|Ξ⟩ ⟨Θ|R̃n⟩
λ̃n

. (3.56)

We plot gINA, g
II
NA, and gNA for each sample in Fig. 3.13, where gNA is defined

as

gNA : =
1

2L2

∑
i,j(i ̸=j)

[ ∑
ζ=x,y

ryijJ̃
xζ
ij

d̊rζij
dγ

− ryijJ̃
xℓ
ij

dℓ̊ij
dγ

]
. (3.57)

Contrary to our expectations, the contributions to gINA are almost zero. Con-
sequently, GNA obtained from the eigenmode expansion of Region II is almost
identical to GNA. Recalling that Region I is dominated by the rotation of grains,
it is safe to assert that the rigidity of amorphous solids is determined only by
translational modes, at least for kT /kN = 1.0× 10−8.

Figure 3.13: Plots of gINA, g
II
NA, and gNA obtained by Eqs. (3.55)–(3.57) at

ϕ = 0.90 and kT /kN = 1.0 × 10−8 against samples for different configuration.
The figure is obtained by the numerical results for N = 1024.

3.5 Concluding Remarks of this Chapter

We analyzed the eigenmodes of the Jacobian and obtained an expression for the
rigidity of amorphous solids of frictional grains under an infinitesimal strain.
The rigidity obtained by the Jacobian completely agreed with that obtained
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from the simulation. We confirmed that the rigidity was determined by the
translational modes.

Further, we confirmed that the DOS can be divided into two regions. In
the low-frequency region (Region I), the rotation of the grains plays a dominant
role. These modes are characterized by the frequency (kT /kN )1/2/t0. Region I
merges into the high-frequency region (Region II) for large kT /kN , where Region
II is dominated by translational modes.

Although previous studies adopted the Hessian method by introducing an
effective potential for frictional grains [104–106], we adopted the Jacobian for
eigenvalue analysis. For a sufficiently small kT /kN , the DOS obtained from the
theoretical analysis by the Jacobian is similar to that obtained by the Hessian
analysis. However, the difference between the DOS obtained using the Jacobian
and that obtained using the Hessian is visible for kT ≥ kN . Therefore, our
theoretical analysis is significant for large kT /kN .

When we consider the effect of the dynamical friction, that is, slips between
grains, the rigidity is discontinuously changed in the frictionless limit [71, 72].
However, the rigidity continuously changes with kT /kN in our system and is
smoothly connected to that of frictionless systems (kT = 0). Because our sys-
tem can be regarded as having infinitely large static and dynamical frictional
constants, there is no slip between the grains. Therefore, it might be natural
for G to continuously change the limit for kT /kN → 0 in our system. In future
work, we will consider the effects of slips, which are important for real frictional
grains.

We reproduced the rigidity in the linear response regime using the eigenval-
ues and eigenfunctions of the Jacobian with modifications in the rotational part.
However, the applicability of this theory is limited. The method used in this
study cannot be used for finite strains because it is obvious that the eigenvectors
are not orthogonal in the sheared state. Moreover, there are plastic deforma-
tions of the grains under large strains, which were not considered in this study.
Therefore, we cannot predict the correct value of the theoretical rigidity at the
stress drop point. More importantly, the effect of the history dependence of
the frictional force is significant even in the linear response regime, although
we have ignored such contacts because of the difficulty in constructing a proper
theory. This issue should be addressed in future studies. Note that Chapter 4
gives a partial answer to the question of whether the eigenvalue analysis can be
used even if stress avalanches exist in finite strain, though we ignore the effects
of slip processes.



Chapter 4

Eigenvalue analysis of
amorphous solids consisting
of frictional particles for
finite shear strain

4.1 Introduction of Chapter 4

Amorphous materials consisting of dispersed repulsive grains, such as powders,
colloids, bubbles, and emulsions, behave as fragile solids above jamming den-
sity [2, 5, 8–10]. When we consider a response of such materials to an applied
strain γ, the rigidity G is independent of the strain in the linear response regime,
whereas it exhibits softening in the nonlinear regime [67–70, 134–139]. Above
the yielding points, there are some plastic events, such as stress avalanches in
the collection of grains.

The Hessian matrix determined by the configuration of grains is commonly
used for amorphous solids consisting of frictionless grains [5, 8, 17, 82, 84, 87–
89]. To determine the rigidity, eigenvalue analysis of the Hessian matrix [83,
86, 90, 107–109], is commonly used, although the quantitative accuracy of the
theoretical rigidity has not been verified to the best of our knowledge. Some
studies have suggested that the decrement of the non-zero smallest eigenvalue
of the Hessian matrix with the strain is a precursor of an avalanche or stress
drop near a critical strain γc [107,108,111–113]. Correspondingly, some studies
indicated that the rigidity G and the stress σ should behave as G − Greg ∝
−1/

√
γc − γ and σ−σreg ∝

√
γc − γ near γc, where Greg and σreg are the regular

parts of the rigidity and stress conversing to constants at γc, respectively [107,
108,110,114].

In general, the frictional force between the grains cannot be ignored in phys-
ical situations. Because the frictional force generally depends on the contact
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history, Hessian analysis is not applicable to such systems. Thus, Chattoraj
et al. adopted the Jacobian matrix instead of the Hessian matrix to discuss
the stability of the configuration of frictional grains under strain [115]. They
performed eigenvalue analysis under athermal quasi-static shear processes and
determined the existence of oscillatory instability originating from inter-particle
friction at a certain strain [115–117]. Moreover, some studies have performed an
analysis of the Hessian matrix with the aid of an effective potential for frictional
grains [104, 105]. Recently, Liu et al. suggested that Hessian matrix analysis
with another effective potential can be used, even if slip processes exist [106].
Previous studies [104,105] have reported that the friction between grains causes
a continuous change in the functional form of the density of states (DOS), which
differs from that of frictionless systems. So far, there have been few theoretical
studies to determine the rigidity of the frictional grains.

In our previous study [119] corresponding to Chapter 3, we developed an
analysis of the Jacobian matrix to determine the rigidity of two-dimensional
amorphous solids consisting of frictional grains interacting with the Hertzian
force in the linear response to an infinitesimal strain. In the study, we ignore
the dynamic friction caused by the slip processes of contact points. We found
that there are two modes in the DOS for a sufficiently small tangential-to-normal
stiffness ratio. Rotational modes exist in the region of low-frequency or small
eigenvalues, whereas translational modes exist in the region of high-frequency or
large eigenvalues. The rigidity determined by the translational modes is in good
agreement with that obtained by the molecular dynamics simulations, whereas
the contribution of the rotational modes is almost zero. Nevertheless, there
are several shortcomings in the previous analysis. (i) The analysis can be used
only in the linear response regime, where the base state is not influenced by
the applied strain. (ii) As a result, we cannot discuss the behavior of plastic
deformations or avalanches of grains. (iii) Even if we restrict our interest to the
linear response regime, we cannot include the effect of tangential contact for
the preparation of the initial configuration. (iv) We also ignored the effect of
dynamical slip between the contacted grains [119].

The purpose of this study is to overcome the shortcomings of our previ-
ous study except for point (iv) [119]. Thus, we analyze a collection of two-
dimensional grains interacting with repulsive harmonic potentials within the
contact radius, without considering the dynamical slip between the grains. Ow-
ing to the special properties of the harmonic potential, the eigenvalue analysis
of the Jacobian matrix becomes equivalent to that of the Hessian matrix. Sub-
sequently, using the eigenvalue analysis of the Hessian matrix, we demonstrate
that the theoretical rigidity under a large strain agrees with that obtained by
the simulation.

The remainder of this chapter is organized as follows. In Sec. 4.2, we in-
troduce the model to be analyzed in this study. In Sec. 4.3, we summarize
the theoretical framework for determining the rigidity of an amorphous solid
consisting of frictional grains without considering the dynamical slip process.
In Sec. 4.4, we present the results of the stress-strain relation obtained using
the theory formulated in Sec. 4.3. We also compare the theoretical results with
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the simulation results to demonstrate the relevancy of our theoretical analysis.
In Sec. 4.5, we summarize the obtained results and address future tasks to be
solved. In Appendix F, we numerically demonstrate the absence of history-
dependent tangential deformations in our system. In Appendix G, we explain
the detailed behavior of the eigenvalue near the stress-drop points. In Ap-
pendix H, we present some detailed properties of the Hessian matrix in a har-
monic system. In Appendix I, we present some properties of the Jacobian matrix
in a harmonic system and demonstrate its equivalency to the Hessian matrix.
Appendix J presents the detailed properties of rigidity.

4.2 Model used in this Chapter

Our system contains N frictional circular disks embedded in a two-dimensional
space. To prevent the system from crystallization, it contains an equal number
of grains with diameters d and d/1.4 [78]. We assume that the mass of grain i is
proportional to d2i , where di is the diameter of i-th grain. For later convenience,
we introduce m as the mass of grain having a diameter d. In this study, xi, yi,
and θi denote x and y components of the position of i-th grain, and the rotational
angle of the i-th grain, respectively. We introduce the generalized coordinates
of the i-th grain as follow:

qi := (rTi , ℓi)
T := (xi, yi, diθi/2)

T, (4.1)

where the superscript T denotes the transposition.
Let the force, and z-component of the torque acting on the i-th grain be

Fi := (F x
i , F

y
i )

T and Ti, respectively. Then, the equations of motion of i-th
grain are expressed as

mi
d2ri
dt2

= Fi, (4.2)

Ii
d2θi
dt2

= Ti, (4.3)

with mass mi and momentum of inertia Ii := mid
2
i /8 of i-th grain. In a system

without volume forces, such as gravity, we can write

Fi =
∑
j ̸=i

fij −miηDṙi, (4.4)

Ti =
∑
j ̸=i

Tij − IiηD θ̇i, (4.5)

where we have adopted the notation Ȧ := dA/dt for arbitrary variable A such as
A = ri and θi. fij and Tij are the force and z-component of the torque acting on
the i-th grain from the j-th grain, respectively. Here, as a simplified description
of the drag terms from the background fluid, ηD is a damping constant uniformly
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acting on grains, and Tij is given by

Tij = −di
2
(nxijf

y
ij − nyijf

x
ij), (4.6)

where we have introduced the normal unit vector between i-th and j-th grains
as nij := rij/|rij | := (ri − rj)/|ri − rj |. The force fij can be divided into
normal fN,ij and tangential fT,ij parts as

fij = (fN,ij + fT,ij)H(dij/2− |rij |), (4.7)

where dij := di + dj and H(x) is Heaviside’s step function, taking H(x) = 1 for
x > 0, and H(x) = 0 otherwise. We assume that the contact force is expressed
as

fN,ij : = kNξN,ijnij , (4.8)

fT,ij : = kT ξT,ijtij , (4.9)

where kN and kT are the stiffness parameters of normal and tangential contacts,
respectively. The contact force can be derived from the harmonic potential. In
Eqs. (4.8) and (4.9) we have introduced ξN,ij := dij/2− |rij | and

ξT,ij(t) : =

∫
Cij(t′)

dt′vT,ij(t
′)

−

[(∫
Cij(t′)

dt′vT,ij(t
′)

)
· nij(t)

]
nij(t), (4.10)

where we have used vT,ij := ṙij − ξ̇N,ij + uij(diθ̇i + dj θ̇j)/2 with uij :=
(nyij ,−nxij)T, tij := −ξT,ij/|ξT,ij |, ξT,ij := |ξT,ij |, and the integration over the

duration time of contact between i-th and j-th grains
∫
Cij(t′)

dt′ with the tra-

jectory Cij(t
′) of the contact point between i-th and j-th grains at t′. As shown

in Appendix F, we have confirmed that the second term on the right-hand side
(RHS) of Eq. (4.10) is zero for harmonic systems, although we do not have
any mathematical proof for this statement thus far. For simplicity, we consider
neither the effects of the dynamical slip processes in the tangential equation of
motion nor the dissipative contact force.

We impose the Lees-Edwards boundary conditions [140, 141], where the di-
rection parallel to the shear strain is the x-direction. After generating a stable
grain configuration starting from a random configuration by using Eqs. (4.2)–
(4.10) without strain, we apply a step strain ∆γ to all grains, where x-coordinate
of the position of the i-th grain is shifted by an affine displacement ∆xi(∆γ) :=
∆γyFBi (0). Here, the superscript FB denotes the force-balance (FB) state at
which Fi = 0 and Ti = 0 for arbitrary i. As shown in Sec. 4.3.1, the FB state
is equivalent to the potential minimum for harmonic grains. Subsequently, the
system is relaxed to an FB state. We further apply the step strain ∆γ associ-
ated with the subsequent relaxation process again to obtain the state at 2∆γ.
By repeating this process, we can reach a deformed state with the strain γ.
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The plastic deformations for a large γ depend on the choice of ∆γ [89].
Moreover, the theoretical formulation assumes ∆γ → 0. Therefore, we adopt
the backtracking method [143, 144]. If a plastic event is encountered under a
fixed ∆γin, the system is restored to its original state without a plastic event.
Subsequently, we apply a new strain, 0.1∆γin, to the system. Even if we en-
counter a plastic event with 0.1∆γin, we further examine the smaller step strain
of 0.01∆γin. We repeat this procedure until we reach ∆γ < ∆γTh (see Appendix
G).

We introduce the rate of nonaffine displacements for rFB,ζ
i (γ) with ζ = x or

y and ℓFBi (γ) as:

d̊rζi (γ)

dγ
: = lim

∆γ→0

rFB,ζ
i (γ +∆γ)− rFB,ζ

i (γ)

∆γ
− δζxy

FB
i (γ), (4.11)

dℓ̊i(γ)

dγ
: = lim

∆γ→0

ℓFBi (γ +∆γ)− ℓFBi (γ)

∆γ
. (4.12)

Our system is characterized by the generalized coordinate

q(γ) := (qT
1 (γ), q

T
2 (γ), · · · , qT

N (γ))T. (4.13)

The configuration in the FB state at strain γ is denoted by

qFB(γ) := ((qFB
1 (γ))T, (qFB

2 (γ))T, · · · , (qFB
N (γ))T)T. (4.14)

The shear stress σ(γ) at qFB(γ) for one sample is given by:

σ(qFB(γ)) = − 1

2L2

∑
i

∑
j>i

[
fxij(q

FB(γ))ryij(q
FB(γ))

+ fyij(q
FB(γ))rxij(q

FB(γ))
]
. (4.15)

The rigidity g for one sample is defined as

g :=
dσ(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(γ)

, (4.16)

where the differentiation on the RHS of Eq. (4.16) is defined as follows:

dσ(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(γ)

:= lim
∆γ→0

σ(qFB(γ +∆γ))− σ(qFB(γ))

∆γ
. (4.17)

In the numerical calculation, we use a non-zero but sufficiently small ∆γ for the
evaluation of g. Then, the averaged rigidity G is defined as

G := ⟨g⟩ , (4.18)

where ⟨·⟩ is the ensemble average.
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4.3 Theoretical Analysis

In this section, we introduce Hessian matrix in Sec. 4.3.1 and theoretical ex-
pressions of rigidity in Sec. 4.3.2.

4.3.1 Hessian matrix for frictional grains

Because the Hessian matrix is equivalent to the Jacobian matrix for harmonic
grains, as shown in Appendices H.1 and I.3, in this study, we adopt the Hessian
matrix (H), where the element is given by [132]:

Hαβ
ij :=

∂2δeij(q(γ))

∂qαi ∂q
β
j

∣∣∣∣∣
q(γ)=qFB(γ)

, (4.19)

where α and β are any of x, y and ℓ, while i and j express the grain indices. Here,
we have introduced the effective potential energy δeij between the contacted i-th
and j-th grains as:

δeij :=
kN
2

(δrij · nij)
2 +

kT
2
δr2ij,⊥, (4.20)

where δrij,⊥ is defined as

δrij,⊥ := δrij − (δrij · nij)nij − δℓij × nij (4.21)

with

δrij : = δri − δrj , (4.22)

δℓij : = (δℓi + δℓj)ez (4.23)

under the virtual displacements δri and δℓi from the FB state at rFBi and ℓFBi ,
respectively.

The Hessian matrix introduced in Eq. (4.19) can be written as

H =



H11 · · · H1i · · · H1j · · · H1N

...
. . .

...
...

...
Hi1 · · · Hii · · · Hij · · · HiN

...
...

. . .
...

...
Hj1 · · · Hji · · · Hjj · · · HjN

...
...

...
. . .

...
HN1 · · · HNi · · · HNj · · · HNN


, (4.24)

where Hij is a 3 × 3 submatrix of the Hessian H for a pair of grains i and j
satisfying:

Hij =

H
xx
ij Hxy

ij Hxℓ
ij

Hyx
ij Hyy

ij Hyℓ
ij

Hℓx
ij Hℓy

ij Hℓℓ
ij

 . (4.25)
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See Appendix H.1 for an explicit expression of each component of the Hessian
matrix. Note that Hαβ

ij = 0 if the i-th and j-th grains are not in contact with
each other.

Because H is a real symmetric matrix, its eigenvalues and eigenvectors are
also real. Using the decomposition of the potential, the Hessian matrix can be
divided into

Hαβ
ij = Hαβ

N,ij +Hαβ
T,ij , (4.26)

where

Hαβ
N,ij : =

∂2δeαN,ij(q(γ))

∂qαi ∂q
β
j

∣∣∣∣∣
q(γ)=qFB(γ)

, (4.27)

Hαβ
T,ij : =

∂2δeαT,ij(q(γ))

∂qαi ∂q
β
j

∣∣∣∣∣
q(γ)=qFB(γ)

(4.28)

for i ̸= j and

Hαβ
N,ij : =

∂2δeαN,ik(q(γ))

∂qαi ∂q
β
i

∣∣∣∣∣
q(γ)=qFB(γ)

, (4.29)

Hαβ
T,ij : =

∂2δeαT,ik(q(γ))

∂qαi ∂q
β
i

∣∣∣∣∣
q(γ)=qFB(γ)

(4.30)

for i = j. Here, we have introduced

δeN,ij : =
kN
2

(δrij · nij)
2, (4.31)

δeT,ij : =
kT
2
δr2ij,⊥. (4.32)

To determine the explicit expression of each component of the Hessian matrix,
refer to Appendix H.1.

The eigenequation of the Hessian matrix H is given by

H |Φn⟩ = λn |Φn⟩ , (4.33)

where |Φn⟩ is the right eigenvector corresponding to the n-th eigenvalue λn of
H. Because the Hessian matrix is a real symmetric matrix, its left eigenequation
is equivalent to its right eigenequation. Such properties remain unchanged even
under the Lees-Edwards boundary conditions (see Appendix H.2). If all eigen-
states are non-degenerate, |Φn⟩ satisfies the orthonormal relation ⟨Φm|Φn⟩ =

δmn with normalization ⟨Φn|Φn⟩ = 1, where ⟨Φn|Φn⟩ :=
∑N

i=1

∑
α=x,y,ℓ(Φ

α
n,i)

2.

4.3.2 Expressions of the rigidity via eigenmodes

In this subsection, we consider the rigidity g introduced in Eq. (4.18). See
Appendix J for the detailed properties of g.
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Let us introduce F̃i := (F̃ x
i , F̃

y
i , F̃

ℓ
i )

T := (F x
i , F

y
i , 2Ti/di)

T and |F̃ (q(γ))⟩ as

|F̃ (q(γ))⟩ := [F̃T
1 (q(γ)), F̃T

2 (q(γ)), · · · , F̃T
N (q(γ))]T. (4.34)

Because the FB state is the minimum state of the potential energy, as shown in
Appendix H.1, |F̃ (q(γ))⟩ |q(γ)=qFB(γ) satisfies

|F̃ (q(γ))⟩
∣∣∣
q(γ)=qFB(γ)

=
d |F̃ (q(γ))⟩

dγ

∣∣∣∣∣
q(γ)=qFB(γ)

= |0⟩ , (4.35)

where |0⟩ is the ket vector containing 0 for all components.
Introducing∣∣∣∣ dq̊dγ

〉
:=

[
d̊rx1
dγ

,
d̊ry1
dγ

,
dℓ̊1
dγ

, · · · , d̊r
x
N

dγ
,
d̊ryN
dγ

,
dℓ̊N
dγ

]T
, (4.36)

one can write

d |F̃ (q(γ))⟩
dγ

∣∣∣∣∣
q(γ)=qFB(γ)

= − |Ξ⟩+ H̃
∣∣∣∣ dq̊dγ

〉
, (4.37)

where we have used Eqs. (4.11) and (4.12). The first and second terms on the
RHS of Eq. (4.37) represent the strain derivatives of the forces for the contri-
butions from the affine and nonaffine displacements, respectively. In Eq. (4.37)
we have introduced |Ξ⟩, which is defined as:

|Ξ⟩ :=
∑
j



Hxx
N,j1r

y
1j

Hxy
N,j1r

y
1j

Hxℓ
N,j1r

y
1j

...
Hxx

N,jNr
y
Nj

Hxy
N,jNr

y
Nj

Hxℓ
N,jNr

y
Nj


. (4.38)

We have used H̃ in Eq. (4.37), which is defined as

H̃αβ
ii :=


−Hℓx

ii (α = ℓ, β = x)

−Hℓy
ii (α = ℓ, β = y)

Hαβ
ii (otherwise)

(4.39)

and

H̃αβ
ij :=


−Hxℓ

ij (α = x, β = ℓ)

−Hyℓ
ij (α = y, β = ℓ)

Hαβ
ij (otherwise)

(4.40)
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for i ̸= j. Note that Hαβ
T,ij or H̃αβ

T,ij does not affect |Ξ⟩, because the affine
displacements are instantaneously applied to the system as a step strain. Thus,
the integral interval of the tangential displacement during the affine deformation
is zero.

Expanding the nonaffine displacements by the eigenvectors of H̃ and using
the fact that the left-hand side of Eq. (4.37) is zero, we obtain∣∣∣∣ dq̊dγ

〉
=
∑′

n

⟨Φ̃n|Ξ⟩
λ̃n

|Φ̃n⟩ , (4.41)

where λ̃n and |Φ̃n⟩ are the n-th eigenvalues of H̃, and the eigenvector corre-
sponding to λ̃n, respectively. Here,

∑′
n on the RHS of Eq. (4.41) excludes

low-frequency modes for λ̃nt
2
0/m ≤ 10−12 to maintain the numerical accuracy.

Note that |Φ̃n⟩ satisfies the orthonormal relation ⟨Φ̃m|Φ̃n⟩ = δmn, if all eigen-
states are non-degenerate. The expression for dq̊/dγ in Eq. (4.41) leads to a
discontinuous change in dq̊/dγ at a critical strain γc for a plastic event because
the eigenvectors and eigenvalues are discontinuously changed at this point.

The rigidity is decomposed into two parts:

g := gA + gNA, (4.42)

where gA and gNA are the rigidities corresponding to the affine and nonaffine
displacements, respectively, for one sample. With the aid of Eqs. (4.15), (4.18),
and (4.40), the expressions for gA and gNA can be obtained as:

gA : =
1

4L2

∑
i,j(i ̸=j)

ryij

[
ryijH

xx
N,ji + rxijH

yx
N,ji

]
, (4.43)

gNA : =
1

4L2

∑
i,j(i ̸=j)

[ ∑
ζ=x,y

(
ryijH̃

xζ
ij + rxijH̃

yζ
ij

) d̊rζij
dγ

−
(
ryijH̃

xℓ
ij + rxijH̃

yℓ
ij

) dℓ̊ij
dγ

]
, (4.44)

where we have introduced

d̊rζij
dγ

: =
d̊rζi
dγ

−
d̊rζj
dγ

, (4.45)

dℓ̊ij
dγ

: =
dℓ̊i
dγ

+
dℓ̊j
dγ

. (4.46)

Substituting Eq. (4.41) into Eq. (4.44), gNA can be rewritten as

gNA = − 1

L2

∑′

n

⟨Φ̃n|Ξ⟩ ⟨Θ|Φ̃n⟩
λ̃n

, (4.47)
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where we have introduced

⟨Θ| := 1

2

∑
j



(
ry1jH̃xx

j1 + rx1jH̃
yx
j1

)(
ry1jH̃

xy
j1 + rx1jH̃

yy
j1

)(
ry1jJ̃ xℓ

j1 + rx1jJ̃
yℓ
j1

)
...,(

ryNjJ̃ xx
jN + rxNjJ̃

yx
jN

)(
ryNjH̃

xy
jN + rxNjH̃

yy
jN

)(
ryNjH̃xℓ

jN + rxNjH̃
yℓ
jN

)



T

. (4.48)

The affine rigidity can be also expressed as

gA =
1

L2
⟨Y |Ξ⟩ , (4.49)

where

⟨Y | := [y1, 0, 0, y2, 0, 0, · · · , yN , 0, 0] . (4.50)

To verify the validity of the theoretical treatment, we introduce the theoret-
ical stress σth(γ) with the aid of Eq.(4.42) as

σth(γ +∆γ) := σ(qFB(γ)) + g(γ)∆γ. (4.51)

4.4 Results and discussion

We verify the validity of the shear modulus obtained by the eigenvalue analysis
by comparing it with that obtained by the simulation. First, we have confirmed
the quantitative accuracy of our analysis to obtain the rigidity in the linear
response regime of our system (see Appendix J.2), as in Ref. [119] (Chapter 3).

For the numerical FB condition, we use the condition |F̃α
i | < FTh for arbi-

trary i, where we adopt FTh = 1.0 × 10−14kNd for the numerical calculation.
In our simulation, we also adopt ηD =

√
kN/m. In this study, we present the

results for kT /kN = 1, ϕ = 0.90, and ∆γin = 1.0 × 10−4 with the ensemble
averages of 30 samples, except for Appendix J.2. We ignore the effect of dis-
sipation in the eigenequation because the velocity of each grain is sufficiently
small to incur infinitesimal agitation from the FB state. The time step used
for the simulation, ∆t, is set to ∆t = 1.0 × 10−2t0 with t0 :=

√
m/kN , and

numerical integration is performed using the velocity Verlet method.
Now, let us consider a nonlinear regime in which there are many plastic

events caused by stress avalanches. Here, we regard an event as plastic if the
condition (i) σ(γ)− σ(γ −∆γ) < 0 or (ii) G(γ −∆γ)−G(γ) > 1.0× 10−2kN is
satisfied.
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Figure 4.1: A stress-strain curve for 0 ≤ γ ≤ 0.5 for one sample of the collection
of grains (N = 128), which includes the theoretical results (line) and simulation
results (filled symbols) under the condition∆γTh = ∆γin = 10−4. The inset is
a close-up of the stress-strain curve in the vicinity of a stress-drop event.

Figure 4.2: Stress-strain relations for ∆γTh = 1.0 × 10−4 (blue circles) and
∆γTh = 1.0× 10−8 (red triangles) with N = 128.
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Figure 4.1 shows a typical example of the stress-strain curve obtained by one
sample of the collection of grains based on both the simulation and eigenvalue
analysis developed in the previous section under the condition ∆γTh = ∆γin.
It should be noted that the difference between the theoretical and simulation
results is almost invisible, even in the presence of avalanches. However, the
eigenvalue analysis cannot be used immediately after plastic events, that is,
for γ ≈ γc (see the inset of Fig. 4.1), because the stress is not determined by
Eq. (4.51) immediately after a plastic event.

Figure 4.2 shows a comparison of the stress-strain curve for ∆γTh = 10−4∆γin
(blue circles) with those for ∆γTh = ∆γin (red triangles). From the figure, we
cannot find any ∆γTh dependence for γ < 0.08, but some differences for larger
γ can be observed as a result of stress avalanches.

Figure 4.3: Plots of (a) the smallest eigenvalue except for the zero modes and
(b) the rigidity g based on the eigenvalue analysis (open symbols) and numerical
shear stress (filled symbols) against γ for 0.3408 ≤ γ ≤ 0.3413 and N = 128.

We might expect that some precursors of a stress-drop event can be detected
from the behavior of the smallest non-zero eigenvalue. To verify this expecta-
tion, we plot the smallest non-zero eigenvalues in Fig. 4.3(a) near a critical strain
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with ∆γTh = 10−8. It can be observed that the eigenvalues changes discontinu-
ously at the critical strain (γc = 0.34102862 for γTh = 10−8), where the critical
strain converges if ∆γTh < 10−6 (see Appendix G for details). Notably, there is
no precursor for the smallest eigenvalue below the critical strain, in contrast to
Refs. [107, 108, 111, 112], where non-harmonic potentials are used. Correspond-
ingly, we cannot find any singularity of the rigidity as g − greg ∼ −(γc − γ)−1/2

as in Fig. 4.3(b) for γ ≲ γc predicted in Refs. [107,108,110,114]. The absence of
the precursors and singularities in our model can be understood in the form of
the Hessian matrix presented in Appendix I.3. In non-harmonic systems, some
elements of the Hessian matrix become zero as ξN,ij → 0 when the contact
between the i-th and j-th grains disappears. This leads to the precursors and
singularities [107,108]. However, in the harmonic systems, the corresponding el-
ement approaches a non-zero constant in the limit ξN,ij → 0 (see Appendix I.3),
which results in the absence of the precursors.

Figure 4.4 shows a set of plots of the eigenvectors corresponding to the
smallest eigenvalue at (a) γc− and at (b)γc+, where γc+ is the strain immediately
after the plastic event, and γc− := γc+−∆γTh is the strain just before the event.
As shown in Fig. 4.4, changes in eigenvectors owing to the stress drop event can
be observed. Here, we find the existence of domains of grains of clockwise
rotation and counter-clockwise rotation, and the collective motion of grains
between two domains. We may observe the excitation of the quadrupole-like
mode, although its structure is not sufficiently clear.

Figure 4.5 is the comparison of |dq̊/dγ⟩ obtained by the eigenvalue analysis
(a) with that by the simulation (b) at γ = γc+, where |dq̊/dγ⟩ in the simulation
is evaluated by (q̊(γc+ + ∆γTh) − q̊(γc+))/∆γTh with ∆γTh = 1.0 × 10−8. It
is obvious that the difference between the two figures is invisible, though the
quadrupole-like structure cannot be clearly seen as in Fig. 4.4. Nevertheless, we
can find the collective motion of grains in both figures.

Because we cannot use the eigenvalue analysis at the critical strain γc for
a plastic event, let us analyze the nonaffine displacement ∆q̊ between γc− and
γc+ caused by an avalanche using the simulation:

∆q̊|c :=


∆q̊1|c
∆q̊2|c

...
∆q̊N |c

 , (4.52)

where

∆q̊i|c :=

rFB,x
i (γc+)− rFB,x

i (γc−)−∆γrFB,y
i (γc−)

rFB,y
i (γc+)− rFB,y

i (γc−)
ℓFBi (γc+)− ℓFBi (γc−)

 . (4.53)

Figure 4.6 shows a plot of the nonaffine displacement ∆q̊|c around a yielding
point based on the simulation for N = 1024 at ∆γTh = 1.0× 10−8. This figure
indicates that (i) grains move with rotations, which is one of the effects of mu-
tual frictions between grains, and (ii) the existence of a quadrupole consisting
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Figure 4.4: Plots of eigenvectors at (a) γc− and at (b) γc+ corresponding to the
smallest eigenvalue. For visualization, the magnitudes of the vectors are three
times larger than their true values (N = 1024).
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Figure 4.5: Plots of |dq̊/dγ⟩ at γ = γc+ for N = 1024 and ∆γTh = 1.0 ×
10−8, where (a) and (b) are based on the eigenvalue analysis and simulation,
respectively. For visualization, we magnify the magnitudes of the vectors with
the factor 10.0.
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Figure 4.6: Plot of ∆q̊|c in the simulation for N = 1024 and ∆γTh = 1.0×10−8.
For visualization, we magnify ∆q̊|c with the factor 1.0× 103.

of four domains of collective rotating grains exists. In particular, the rotations
of the grains are sharply changed on the boundary between the domains. Un-
fortunately, ∆q̊|c cannot be described by the eigenvalue analysis, because ∆q̊|c
expresses the configuration change, which is unstable for a small change in γ.

Figures 4.7 (a) and (b) show plots of the rigidity and smallest eigenvalue
from γ = 0 to 0.002, which includes two plastic events based on the one-sample
calculation of the collection of grains with N = 128. One can find an almost
perfect agreement of the rigidity between the eigenvalue analysis and simulation,
except for the yielding points (see Fig. 4.7 (a)). We find discontinuous changes in
the smallest eigenvalue at the yielding point, where the rigidity changes discon-
tinuously (see Figs. 4.7 (b). As expected, the magnitude of the discontinuous
change in rigidity at the yielding point in Fig. 4.7 (a) for γ ≈ 0.001 is smaller
than that for a point of a stress drop for γ ≈ 0.341, as shown in Fig. 4.3.

Figure 4.8 shows the stress-strain curve corresponding to Fig. 4.7. It is
difficult to find the plastic events in the main figure of Fig. 4.8, but we can
find a small stress drop at this point if we use a close-up figure in the inset. We
verify the creation and annihilation of contacting pairs at the stress drop points.
The stress expression in Eq. (4.51) cannot be used at the yielding point; thus a
disagreement exists between the eigenvalue analysis and simulation at the point
in the inset of Fig. 4.8.

Figure 4.9 plots the rigidity of G over 30 samples for N = 128, where we
have omitted the data if stress drop events take place. We verify that rigidity
based on the eigenvalue analysis reproduces the results of the simulation. Note
that non-monotonic changes in G originate from changes in the contact points
and configuration of grains.
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Figure 4.7: Plots of the shear modulus with (a) the theoretical evaluation
(open symbols) and the simulation results (filled symbols) except for critical
strain with the close-up of g near a yielding point (inset), and (b) the smallest
eigenvalue, except for zero modes against γ for 0 ≤ γ ≤ 0.002 for N = 128.
Note that the rigidity is not plotted at the yielding points, because it diverges
there.



CHAPTER 4.
EIGENVALUE ANALYSIS FOR FINITE SHEAR
STRAIN

63

Figure 4.8: The plot of the stress-strain curve in the region 0 ≤ γ ≤ 0.002 for
N = 128.

Figure 4.9: Plots of the rigidity G based on the eigenvalue analysis (line) and
on the simulation (filled symbols) with ∆γTh = 1.0 × 10−4. We have used 30
samples for N = 128, where the error bars represent the standard deviations for
γ. Note that we have omitted the data if stress-drop events occur.
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4.5 Conclusion of this Chapter

In this Chapter, we have demonstrated that eigenvalue analysis of the Hessian
matrix provides precise descriptions of the rigidity and stress of dispersed fric-
tional grains in which the contact force is described by the harmonic potential,
in spite of stress-drop events, such as stress avalanches. However, our model
does not contain any slip processes between contacting grains. This success is
a natural extension of the previous studies on frictionless grains [107, 108] to
frictional grains and of our previous study on the linear response regime (Chap-
ter 3) [119] to the nonlinear response regime. Two remarkable features of the
contacting model are described by the harmonic potential. First, the tangential
contact force in this model is no longer a history-dependent one. This leads
to the significant simplification of the theoretical analysis. Second, unlike the
naive expectation, the eigenvalues in our model do not indicate any precursors
for the stress-drop events. In essence, stress-drop events take place suddenly by
releasing contact points.

Some future tasks that need to be addressed are as follows. First, we need to
consider the effect of slips, which causes a significant difference from our model
because history-dependent contacts play important roles in the presence of slip
events. Second, we must extend our analysis to nonlinear interacting models,
such as the Hertzian contact model in a three-dimensional space. We plan on
working on these points in the future.



Chapter 5

Conclusions and outlook

5.1 Conclusions

Chapter 3 presented an analysis of the eigenmodes of the Jacobian matrix for
systems of grains interacting with Hertzian force. Consequently, an expression
for the rigidity of amorphous solids comprising frictional grains interacting with
the Hertzian force under an infinitesimal strain was obtained. It was confirmed
that the DOS could be divided into two regions. In the low-frequency region
(Region I), the rotation of the grains was dominant. These modes are charac-
terized by the frequency (kT /kN )1/2/t0, where t0 := (m/kN )1/2d−1/4. Region I
was found to merge into the high-frequency region (Region II) in case of large
kT /kN , with translational modes dominating Region II. For a sufficiently small
kT /kN , the DOS obtained from the eigenvalue analysis of the Jacobian matrix
was similar to that obtained using the Hessian matrix analysis. However, the
difference between the DOS obtained using the Jacobian and that using the
Hessian was visible for kT ≥ kN . Therefore, the eigenvalue analysis is signifi-
cant for large kT /kN . Moreover, the rigidity obtained by the Jacobian matrix
was consistent with that obtained from the simulation. Furthermore, it was
confirmed that the translational modes determined the rigidity.

Chapter 4 demonstrated that the eigenvalue analysis of the Hessian matrix
provided precise descriptions of the rigidity and stress of dispersed frictional
grains wherein the contact force was described by the harmonic potential, de-
spite the existence of stress-drop events such as stress avalanches. The proposed
model did not contain any slip processes between contacting grains. This success
is a natural extension of the previous studies on frictionless grains [107, 108] to
frictional grains and a previous study on the linear response regime presented
in Chapter 3 to the nonlinear response regime. The harmonic potential de-
scribed two remarkable features of the contacting model. First, the tangential
contact force in this model is no longer history-dependent. This resulted in
the significant simplification of the theoretical analysis. Second, in contrast to
the naive expectation, the eigenvalues in the proposed model did not indicate
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any precursors for the stress-drop events. In essence, the stress-drop events
occurred suddenly through the release of contact points. Third, this analysis
should be extended without using the data of grains’ configuration. Although
the analysis is consistent with the results of the simulation, it cannot be a purely
theoretical one because the configuration is determined by the simulation. If an
approximate configuration of grains can be formulated based on a theory, it can
be claimed that the problem has been solved based on the theory. Thus, the
theoretical determination of grains ’configuration will be important in future
work.

5.2 Outlook

Some future tasks that need to be addressed are as follows. First, the effect of
slips must be considered, as they cause a significant difference from the proposed
model because history-dependent contacts play essential roles in the presence
of slip events. Second, the proposed analysis must be extended to nonlinear
interacting models for finite strain, such as the Hertzian contact model in a
three-dimensional space. These aspects will be worked upon in future studies.
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Appendix A

Jacobian properties

In this appendix, we summarize the properties of the Jacobian introduced in
Eq. (3.20).

A.1 Jacobian block elements

Let us write 3 × 3 sub-matrix Jij , which is (ij) block element of the Jacobian
obtained from Eq. (3.20):

[Jij ]
αβ := −∂F̃

α
i

∂qβj

=

−∂qxj F
x
i −∂qyj F

x
i −∂qℓjF

x
i

−∂qxj F
y
i −∂qyj F

y
i −∂qℓjF

y
i

−∂qxj T̃i −∂qyj T̃i −∂qℓj T̃i



=

−
∑N

k=1;k ̸=j ∂qxj f
x
ik −

∑N
k=1;k ̸=j ∂qyj f

x
ik −

∑N
k=1;k ̸=j ∂qℓjf

x
ik

−
∑N

k=1;k ̸=j ∂qxj f
y
ik −

∑N
k=1;k ̸=j ∂qyj f

y
ik −

∑N
k=1;k ̸=j ∂qℓjf

y
ik

−
∑N

k=1;k ̸=j ∂qxj T̃ik −
∑N

k=1;k ̸=j ∂qyj T̃ik −
∑N

k=1;k ̸=j ∂qℓj T̃ik



=




−∂qxj f

x
ij −∂qyj f

x
ij −∂qℓjf

x
ij

−∂qxj f
y
ij −∂qyj f

y
ij −∂qℓjf

y
ij

−∂qxj T̃ij −∂qyj T̃ij −∂qℓj T̃ij

 (i ̸= j)

−
∑N

k=1;k ̸=i ∂qxi f
x
ik −

∑N
k=1;k ̸=i ∂qyi f

x
ik −

∑N
k=1;k ̸=i ∂qℓi f

x
ik

−
∑N

k=1;k ̸=i ∂qxi f
y
ik −

∑N
k=1;k ̸=i ∂qyi f

y
ik −

∑N
k=1;k ̸=i ∂qℓi f

y
ik

−
∑N

k=1;k ̸=i ∂qxi T̃ik −
∑N

k=1;k ̸=i ∂qyi T̃ik −
∑N

k=1;k ̸=i ∂qℓi T̃ik

 (i = j)

,

(A.1)

where the superscripts α and β correspond to x, y, ℓ-components, and i and j
are the grain numbers (see Appendix B for each component of J ). Here, fζij , T̃ij
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are ζ-component of fij and scaled torque that the i-th grain receives from the
j-th grain, respectively. The sub-matrix for i = j is given by

[Jii]
αβ =


∑N

k=1;k ̸=i ∂qxkf
x
ik

∑N
k=1;k ̸=i ∂qykf

x
ik −

∑N
k=1;k ̸=i ∂qℓkf

x
ik∑N

k=1;k ̸=i ∂qxkf
y
ik

∑N
k=1;k ̸=i ∂qykf

y
ik −

∑N
k=1;k ̸=i ∂qℓkf

y
ik∑N

k=1;k ̸=i ∂qxk T̃ik
∑N

k=1;k ̸=i ∂qyk T̃ik −
∑N

k=1;k ̸=i ∂qℓk T̃ik

 , (A.2)

where we have used ∂qκi f
ζ
ik = −∂qκk f

ζ
ik, ∂qκi T̃ik = −∂qκi T̃ik, ∂qℓi f

ζ
ik = ∂qℓkf

ζ
ik, and

∂qℓi T̃ik = ∂qℓi T̃ik. Here, the superscripts ζ and κ correspond to x, y components.

From Eqs. (A.1) and (A.2) J ζβ
ij satisfies

J ζβ
ii = −

∑
j ̸=i

J ζβ
ij (A.3)

Thus, introducing Jnm (n,m = 1, 2, · · · , 3N) which is a rewriting of J αβ
ij in Eq.

(3.21) by the index from i and α to n, we obtain∑
n=1,4,··· ,3N−2

Jnm = 0, (A.4)

∑
n=2,5,··· ,3N−1

Jnm = 0. (A.5)

where
∑

n=1,4,··· ,3N−2 and
∑

n=2,5,··· ,3N−1 express the summations of modulus 1
and modulus 2 with the intervals 3, respectively. Here, we write 3N -dimensional
vector translating in the x direction ex as

ex =


ex,1
ex,2
...

ex,N

 . (A.6)

where ex,i := (1, 0, 0)T for i = 1, 2, · · · , N . Here, the n-th component of the
action of J on ex satisfies

{J ex}n =
∑
m

Jnmex,m

=
∑

m=1,4,··· ,3N−2

Jnm

= 0, (A.7)

where we have used Eq. (A.4) for the last equality. Thus, we obtain J ex = 0,
where 0 is zero vector. Similarly, using

ey =


ey,1
ey,2
...

ey,N

 , (A.8)
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with ey,i := (0, 1, 0)T we also obtain J ey = 0. Therefore, ex and ey are the
zero modes for J .



Appendix B

Explicit Jacobian
expressions with Hertzian
force

In this appendix, we present the explicit expressions of the Jacobian with the
Hertzian contact force based on Eqs. (3.6)–(3.8). Then, we clarify the dif-
ference between the present results and the case where the tangential force is
approximated by the conservative force used in the previous studies [104,105].

B.1 Calculation of Jacobian

Let us consider only the normal and tangential elastic contact forces

fN,ij = kNξ
3/2
N,ijnij , (B.1)

fT,ij = kT ξ
1/2
N,ijξT,ij , (B.2)

where the integration of dξT,ij

ξT,ij :=

∫
Cij

dξT,ij (B.3)

is performed during the contact between i and j grains. Since Eq. (B.3) does not
contain the second term on RHS of Eq. (3.9), ξT,ij may not be perpendicular
to ξN,ij . Neverthelss, we adopt Eq. (B.3) for simplicity. Here, dξT,ij is defined
as

dξT,ij = drij − (drij · nij)nij − dℓij × nij , (B.4)
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where ℓij is defined as

ℓij :=

 0
0

ℓi + ℓj

 . (B.5)

Each component of Eq. (B.4) is written as

dξxT,ij = drxij − (drij · nij)n
x
ij + dℓijn

y
ij , (B.6)

dξyT,ij = dryij − (drij · nij)n
y
ij − dℓijn

x
ij . (B.7)

The derivative of the normal force is given by

∂rζi
fκN,ij = kN

[
δζκ

ξ
3/2
N,ij

rij
−
(
3

2
+
ξN,ij

rij

)
ξ
1/2
N,ijn

ζ
ijn

κ
ij

]
, (B.8)

∂ℓif
κ
N,ij = 0, (B.9)

where Kronecker’s delta δζκ satisfies δζκ = 1 for ζ = κ and δζκ = 0 otherwise.
We have used

∂nζ
ij

∂rκi
=

1

rij

(
δζκ − nζijn

κ
ij

)
, (B.10)

∂rij

∂rζi
= nζij (B.11)

to obtain Eq. (B.8).
The derivative of the tangential force is written as

∂rζi
fκT,ij =

1

2
kT ξ

−1/2
N,ij n

ζ
ijξ

κ
T,ij − kT ξ

1/2
N,ij

(
δζκ − nζijn

κ
ij

)
, (B.12)

∂ℓif
κ
T,ij = −εκkT ξ1/2N,ijn

νκ
ij , (B.13)

where εζ and νζ are, respectively, defined as

εζ : =

{
1 (ζ = x)

−1 (ζ = y),
(B.14)

νζ : =

{
y (ζ = x)
x (ζ = y).

(B.15)

Here, ∂rζi
ξκT,ij and ∂ℓiξ

κ
T,ij in Eqs. (B.12) and (B.13) satisfy

∂ξκT,ij

∂rζi
= δζκ − nζijn

κ
ij , (B.16)

∂ξκT,ij

∂ℓi
= ϵκnνκ

ij . (B.17)
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The derivation of Eqs. (B.16) and (B.17) are as follows [115]. From Eq. (B.4)

dξζT,ij can be written as

dξζT,ij = drζij − (drij · nij)n
ζ
ij + (−1)ζ(dℓi + dℓj)n

νζ

ij . (B.18)

Then, dξxT,ij satisfies

dξxT,ij = drxij −
∑

κ=x,y

drκijn
κ
ijn

x
ij + nyij(dℓi + dℓj)

= (1− (nxij)
2)drxij − nxijn

y
ijdr

y
ij + nyij(dℓi + dℓj)

= (nyij)
2drxij − nxijn

y
ijdr

y
ij + nyij(dℓi + dℓj)

= (nyij)
2(dxi − dxj)− nxijn

y
ij(dyi − dyj) + nyij(dℓi + dℓj). (B.19)

Similarly, dξyT,ij also satisfies

dξyT,ij = −nxijn
y
ij(dxi − dxj) + (nyij)

2(dyi − dyj)− nxij(dℓi + dℓj). (B.20)

Here, dξζT,ij is the function of xi, yi, ℓi, xj , yj , and ℓj . We obtain the differential

form of dξζT,ij :

dξζT,ij =

(
∂ξζT,ij

∂xi

)
(yi,ℓi,xj ,yj ,ℓj)

dxi +

(
∂ξζT,ij

∂xj

)
(xi,yi,ℓi,yj ,ℓj)

dxj

+

(
∂ξζT,ij

∂yi

)
(xi,ℓi,xj ,yj ,ℓj)

dyi +

(
∂ξζT,ij

∂yj

)
(xi,yi,ℓi,xj ,ℓj)

dyj

+

(
∂ξζT,ij

∂ℓi

)
(xi,yi,xj ,yj ,ℓj)

dℓi +

(
∂ξζT,ij

∂ℓj

)
(xi,yi,ℓi,xj ,yj)

dℓj . (B.21)

Then, we obtain Eqs. (B.16), (B.17), by comparing Eqs. (B.19) and (B.20)
with Eq. (B.21).

Since the scaled torque T̃ij satisfies

T̃ij :=
2Tij
di

= −nxijf
y
T,ij + nyijf

x
T,ij , (B.22)
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we obtain

∂rζi
T̃ij = −

(
∂rζi

nxij

)
fyT,ij − nxij∂rζi

fyT,ij +
(
∂rζi

nyij

)
fxT,ij + nyij∂rζi

fxT,ij

= −

(
δζx
rij

−
nζijn

x
ij

rij

)
fyT,ij − nxij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

y
ij − kT ξ

1/2
N,ij

(
δζy − nζijn

y
ij

)]

+

(
δζy
rij

−
nζijn

y
ij

rij

)
fxT,ij + nyij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

x
ij − kT ξ

1/2
N,ij

(
δζx − nζijn

x
ij

)]
= −nxij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

y
ij − kT ξ

1/2
N,ij

(
δζy − nζijn

y
ij

)]
+ nyij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

x
ij − kT ξ

1/2
N,ij

(
δζx − nζijn

x
ij

)]
= −nxij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

y
ij − kT ξ

1/2
N,ijδζy

]
+ nyij

[
1

2
kT ξ

−1/2
N,ij ξT,ijn

ζ
ijt

x
ij − kT ξ

1/2
N,ijδζx

]
,

(B.23)

∂ℓi T̃ij = −nxij∂ℓif
y
T,ij + nyij∂ℓif

x
T,ij

= −nxijkT ξ
1/2
N,ijn

x
ij − nyijkT ξ

1/2
N,ijn

y
ij

= −kT ξ1/2N,ij , (B.24)

where we have used
∑

ζ f
ζ
T,ijn

ζ
ij = 0.

The terms proportional to ξT,ij in the Jacobian include the history-dependent
tangential displacements which are ignored in the effective potential (see Ap-
pendix E) [104–106]. The reason we use the Jacobian is to include the history-
dependent tangential displacements in the dynamical matrix.

B.2 Explicit Jacobian expressions

In this section, we have written down the explicit results of JN and JT . From the
results for the derivative of F̃α

i , the non-diagonal block elements J αβ
N,ij ,J

αβ
T,ij(i ̸=
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j) are given by

J xx
N,ij = kN

ξ
3/2
N,ij

rij
− kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ij(n

x
ij)

2, (B.25)

J xx
T,ij − kT ξ

1/2
N,ij(n

y
ij)

2 +
1

2
kT ξ

−1/2
N,ij ξT,ijn

x
ijt

x
ij , (B.26)

J xy
N,ij = −kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ijn

x
ijn

y
ij , (B.27)

J xy
T,ij = kT ξ

1/2
N,ijn

x
ijn

y
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

x
ijt

y
ij , (B.28)

J xℓ
N,ij = 0, (B.29)

J xℓ
T,ij = kT ξ

1/2
N,ijn

y
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

x
ij(n

x
ijt

y
ij − nyijt

x
ij), (B.30)

J yx
N,ij = −kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ijn

x
ijn

y
ij , (B.31)

J yx
T,ij = kT ξ

1/2
N,ijn

x
ijn

y
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ijt

x
ij , (B.32)

J yy
N,ij = kN

ξ
3/2
N,ij

rij
− kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ij(n

y
ij)

2, (B.33)

J yy
T,ij = −kT ξ1/2N,ij(n

x
ij)

2 +
1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ijt

y
ij , (B.34)

J yℓ
N,ij = 0, (B.35)

J yℓ
T,ij = −kT ξ1/2N,ijn

x
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ij(n

x
ijt

y
ij − nyijt

x
ij), (B.36)

J ℓx
N,ij = 0, (B.37)

J ℓx
T,ij = −kT ξ1/2N,ijn

y
ij , (B.38)

J ℓy
N,ij = 0, (B.39)

J ℓy
T,ij = kT ξ

1/2
N,ijn

x
ij , (B.40)

J ℓℓ
N,ij = 0, (B.41)

J ℓℓ
T,ij = kT ξ

1/2
N,ij . (B.42)
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Similarly, the diagonal block elements J αβ
N,ij ,J

αβ
T,ij(i = j) are given by

J xx
N,ii = −

∑
j ̸=i

{
kN

ξ
3/2
N,ij

rij
− kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ij(n

x
ij)

2

}
, (B.43)

J xx
T,ii = −

∑
j ̸=i

{
−kT ξ1/2N,ij(n

y
ij)

2 +
1

2
kT ξ

−1/2
N,ij ξT,ijn

x
ijt

x
ij

}
, (B.44)

J xy
N,ii = −

∑
j ̸=i

{
−kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ijn

x
ijn

y
ij

}
, (B.45)

J xy
T,ii = −

∑
j ̸=i

{
kT ξ

1/2
N,ijn

x
ijn

y
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

x
ijt

y
ij

}
, (B.46)

J xℓ
N,ii = 0, (B.47)

J xℓ
T,ii =

∑
j ̸=i

{
kT ξ

1/2
N,ijn

y
ij +

1

2
ξ
−1/2
N,ij ξT,ijn

x
ij(n

x
ijt

y
ij − nyijt

x
ij)

}
, (B.48)

J yx
N,ii = −

∑
j ̸=i

{
−kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ijn

x
ijn

y
ij

}
, (B.49)

J yx
T,ii = −

∑
j ̸=i

{
kT ξ

1/2
N,ijn

x
ijn

y
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ijt

x
ij

}
, (B.50)

J yy
N,ii = −

∑
j ̸=i

{
kN

ξ
3/2
N,ij

rij
− kN

[
3

2
+
ξN,ij

rij

]
ξ
1/2
N,ij(n

y
ij)

2

}
, (B.51)

J yy
T,ii = −

∑
j ̸=i

{
−kT ξ1/2N,ij(n

x
ij)

2 +
1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ijt

y
ij

}
, (B.52)

J yy
N,ii = 0, (B.53)

J yℓ
T,ii = −

∑
j ̸=i

{
kT ξ

1/2
N,ijn

x
ij +

1

2
kT ξ

−1/2
N,ij ξT,ijn

y
ij(n

x
ijt

y
ij − nyijt

x
ij)

}
, (B.54)

J ℓx
N,ii = 0, (B.55)

J ℓx
T,ii =

∑
j ̸=i

kT ξ
1/2
N,ijn

y
ij , (B.56)

J ℓy
N,ii = 0, (B.57)

J ℓy
T,ii = −

∑
j ̸=i

kT ξ
1/2
N,ijn

x
ij , (B.58)

J ℓℓ
N,ii = 0, (B.59)

J ℓℓ
T,ii =

∑
j ̸=i

kT ξ
1/2
N,ij . (B.60)
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Note that the terms proportional to ξT,ij in JT include the history-dependent
tangential displacements which are ignored in the effective potential [104–106].



Appendix C

The detailed derivation of G
in the Jacobian analysis

In this appendix, we derive Eq. (3.40) that gives the rigidity. First, nonaffine
displacements are expanded in terms of eigenfunctions of the Jacobian. Next, we
express the rigidity as the eigenvalues and eigenfunctions of the Jacobian. Note
that we adopt the abbreviation dA(qFB(0))/dγ := dA(q(γ))/dγ|q(γ)=qFB(0) in
this appendix.

C.1 Expansion for nonaffine displacements via
eigenfunction of Jacobian

At FB state, F̃α
i /dγ is expressed as

dF̃α
i

dγ
= lim

∆γ→0

F̃α
i (q

FB(∆γ))− F̃α
i (q

FB(0))

∆γ

=
∑
j ̸=i

∂fαij
∂qxi

yij(q
FB(0)) +

∑
ζ=x,y

∂fαij

∂rζi

d̊rζij(q
FB(0))

dγ
+
∂fαij
∂ℓi

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

) .
(C.1)

Using the Jacobian, we rewrite Eq. (C.1) as

dF̃α
i

dγ
= −

∑
j ̸=i

J αx
ji yij(q

FB(0)) +
∑

ζ=x,y

J αζ
ji

d̊rζij(q
FB(0))

dγ
+ J αℓ

ji

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

) ,
(C.2)

where the first and second terms on the RHS represent the contributions from
the affine and nonaffine displacements, respectively. Since the affine displace-
ments are applied to our system instantaneously as a step strain, the integral in-
terval of tangential displacements during the affine deformation are zero. Thus,
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only the normal contributions in the first term on RHS of Eq. (C.2) survive in

the affine displacements. Then, we rewrite J αβ
ij as J αβ

N,ij in Eq. (C.2):

dF̃α
i

dγ
= −

∑
j ̸=i

J αx
N,jiyij(q

FB(0)) +
∑

ζ=x,y

J αζ
ji

d̊rζij(q
FB(0))

dγ
+ J αℓ

ji

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

) .
(C.3)

Introducing

|Ξi⟩ :=


∑

j ̸=i J xx
N,jiyij∑

j ̸=i J
xy
N,jiyij∑

j ̸=i J xℓ
N,jiyij

 (C.4)

and with the aid of dF̃α
i /dγ = 0 at the FB state in Eq. (C.3), we obtain

Ξα
i = −

∑
j ̸=i

 ∑
ζ=x,y

J αζ
ji

d̊rζij
dγ

+ J αℓ
ji

(
dℓ̊i
dγ

+
dℓ̊j
dγ

) . (C.5)

Since J satisfies J κβ
ii = −

∑
j ̸=i J

κβ
ji , we obtain

Ξκ
i = −

∑
ζ=x,y

∑
j ̸=i

J κζ
ji

 d̊rζi
dγ

−
∑
j ̸=i

J κζ
ji

d̊rζj
dγ

−

∑
j ̸=i

J κℓ
ji

 dℓ̊i
dγ

+
∑
j ̸=i

J κℓ
ji

dℓ̊j
dγ


= −

∑
ζ=x,y

−J κζ
ii

d̊rζi
dγ

−
∑
j ̸=i

J κζ
ji

d̊rζj
dγ

−

−J κℓ
ii

dℓ̊i
dγ

+
∑
j ̸=i

J κℓ
ji

dℓ̊j
dγ


=
∑

ζ=x,y

N∑
j=1

J κζ
ji

d̊rζj
dγ

+ J κℓ
ii

dℓ̊i
dγ

−
∑
j ̸=i

J κℓ
ji

dℓ̊j
dγ

. (C.6)

Since J satisfies J ℓβ
ii =

∑
j ̸=i J

ℓβ
ji , we obtain

Ξℓ
i = −

∑
ζ=x,y

∑
j ̸=i

J ℓζ
ji

 d̊rζi
dγ

−
∑
j ̸=i

J ℓζ
ji

d̊rζj
dγ

−

∑
j ̸=i

J ℓℓ
ji

 dℓ̊i
dγ

+
∑
j ̸=i

J ℓℓ
ji

dℓ̊j
dγ


= −

∑
ζ=x,y

J ℓζ
ii

d̊rζi
dγ

−
∑
j ̸=i

J ℓζ
ji

d̊rζj
dγ

+

J ℓℓ
ii

dℓ̊i
dγ

+
∑
j ̸=i

J ℓℓ
ji

dℓ̊j
dγ


= −

∑
ζ=x,y

J ℓζ
ii

d̊rζi
dγ

−
∑
j ̸=i

J ℓζ
ji

d̊rζj
dγ

+

N∑
j=1

J ℓℓ
ji

dℓ̊j
dγ

. (C.7)

Let us introduce J̃ αβ
ii as

J̃ αβ
ii :=


−J ℓx

ii (α = ℓ, β = x)

−J ℓy
ii (α = ℓ, β = y)

J αβ
ii (otherwise)

(C.8)
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and

J̃ αβ
ij := J αβ

ij . (C.9)

Here, J̃ij satisfies

J̃ αβ
ji =


−J xℓ

ij (α = x, β = ℓ)

−J yℓ
ij (α = y, β = ℓ)

J αβ
ij (otherwise).

(C.10)

With the aid of J̃ Eqs. (C.6) and (C.7) are rewritten as

Ξα
i =

∑
ζ=x,y

N∑
j=1

J̃ αζ
ij

d̊rζj
dγ

+ J̃ αℓ
ii

dℓ̊i
dγ

+
∑
j ̸=i

J̃ αℓ
ij

dℓ̊j
dγ

=
∑

ζ=x,y

N∑
j=1

J̃ αζ
ij

d̊rζj
dγ

+

N∑
j=1

J̃ αℓ
ij

dℓ̊j
dγ

=
∑

β=x,y,ℓ

N∑
j=1

J̃ αβ
ij

dq̊βj
dγ

, (C.11)

Ξℓ
i =

∑
ζ=x,y

J ℓζ
ii

d̊rζi
dγ

+
∑
j ̸=i

J ℓζ
ij

d̊rζj
dγ

+

N∑
j=1

J ℓℓ
ji

dℓ̊j
dγ

=
∑

ζ=x,y

N∑
j=1

J ℓζ
ij

d̊rζj
dγ

+

N∑
j=1

J ℓℓ
ji

dℓ̊j
dγ

=
∑

β=x,y,ℓ

N∑
j=1

J ℓβ
ij

dq̊βj
dγ

. (C.12)

Equations (C.11) and (C.12) can be rewritten as

Ξα
i =

N∑
j=1

∑
β=x,y,ℓ

J̃ αβ
ij

dq̊βj
dγ

. (C.13)

Furthermore, Eq. (C.13) can be expressed as

|Ξ⟩ = J̃
∣∣∣∣ dq̊dγ

〉
, (C.14)

which corresponds to Eq. (3.36) in Sec. 4.3.2, where |dq̊/dγ⟩ is introduced in
Eq. (3.35).

Let us expand |dq̊/dγ⟩ by the right eigenfunction |R̃n⟩ of J̃ as∣∣∣∣ dq̊dγ
〉

= an |R̃n⟩ . (C.15)
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Substituting Eq. (C.15) into Eq. (C.14), we obtain

|Ξ⟩ = λ̃nan |R̃n⟩ . (C.16)

Multiplying ⟨L̃m| to Eq. (C.16) with the aid of the orthonormal relation, we
obtain 〈

L̃m

∣∣∣Ξ〉 = λ̃nan

〈
L̃m

∣∣∣ R̃n

〉
= λ̃mam. (C.17)

Substituting this into Eq. (C.15), we obtain Eq. (3.40).

C.2 The expression of G

Let us evaluate the rigidity G defined as Eq. (3.19). Substituting Eqs. (3.16)
and (3.17) into Eq. (3.19), we obtain

G = −

〈
lim

∆γ→0

1

2∆γL2

∑
i,j(i ̸=j)

[
fxij(q

FB(∆γ))ryij(q
FB(∆γ))− fxij(q

FB(0))ryij(q
FB(0))

]〉
,

(C.18)

where we have adopted the symmetric expression for i and j in the summation
in Eq. (C.18).

Expanding rαij(q
FB(∆γ)) in Eq. (C.18) by ∆γ from the zero strain state, we

obtain

rαij(q
FB(∆γ)) = rαi (q

FB(∆γ))− rαj (q
FB(∆γ))

≃ rαij(q
FB(0)) + ∆γ

{
δαx

(
yi(q

FB(0))− yj(q
FB(0))

)
+
d̊rαi (q

FB(0))

dγ
−
d̊rαj (q

FB(0))

dγ

}

= rαij(q
FB(0)) + ∆γ

{
δαxyij(q

FB(0)) +
d̊rαij(q

FB(0))

dγ

}
. (C.19)

Similarly, expanding fαij(∆γ) in Eq. (C.18) from the zero strain state, we
obtain

fαij(q
FB(∆γ)) ≃ fαij(q

FB(0)) +

N∑
k=1

∑
ζ=x,y

∆γ
∂fαij

∂rζk

drζk
dγ

+

N∑
k=1

∆γ
∂fαij
∂ℓk

dℓk
dγ

= fαij(q
FB(0)) +

∑
ζ=x,y

∆γ

[
∂fαij

∂rζi

(
δζxyi(q

FB(0)) +
d̊rζi (q

FB(0))

dγ

)

+
∂fαij

∂rζj

(
δζxyj(q

FB(0)) +
d̊rζj (q

FB(0))

dγ

)]

+∆γ

[
∂fαij
∂ℓi

(
δℓxyi(q

FB(0)) +
dℓ̊i(q

FB(0))

dγ

)
+
∂fαij
∂ℓj

(
δℓxyj(q

FB(0)) +
dℓ̊j(q

FB(0))

dγ

)]
.

(C.20)
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Furthermore, using ∂fαij/∂r
ζ
j = −∂fαij/∂r

ζ
i and ∂fαij/∂ℓj = ∂fαij/∂ℓi, f

α
ij can be

written as

fαij(q
FB(∆γ)) = fαij(q

FB(0))

+
∑

ζ=x,y

∆γ
∂fαij

∂rζi

(
δζxyij(q

FB(0)) +
d̊rζij(q

FB(0))

dγ

)

+∆γ
∂fαij
∂ℓi

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

)
. (C.21)

Substituting Eqs. (C.19) and (C.21) into Eq. (C.18), we obtain

G = − 1

2L2

〈 ∑
i,j(i ̸=j)

[
fxij(q

FB(0))
dq̊xij(q

FB(0))

dγ

+
∑

ζ=x,y

∂fxij(q
FB(0))

∂rζi
ryij(q

FB(0))

(
δζxyij(q

FB(0)) +
d̊rζij(q

FB(0))

dγ

)

+
∂fxij(q

FB(0))

∂ℓi
ryij(q

FB(0))

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

)]〉
.

(C.22)

Because
∑

i(i ̸=j) f
α
ij(q

FB(0)) = 0 at the FB state, the first term on RHS of Eq.

(C.22) can be written as

∑
i,j(i ̸=j)

fxij(q
FB(0))

dq̊xij(q
FB(0))

dγ
=

∑
i,j(i ̸=j)

fxij(q
FB(0))

(
dq̊xi (q

FB(0))

dγ
−
dq̊xj (q

FB(0))

dγ

)

=
∑
j

 ∑
j(j ̸=i)

fxij(q
FB(0))

 dq̊xi (q
FB(0))

dγ

−
∑
i

 ∑
i(i ̸=j)

fxij(q
FB(0))

 dq̊xj (q
FB(0))

dγ

= 0. (C.23)

Thus, G is expressed as

G = − 1

2L2

〈 ∑
i,j(i ̸=j)

 ∑
ζ=x,y

∂fxij(q
FB(0))

∂rζi
yij(q

FB(0))

(
δζxyij(q

FB(0)) +
d̊rζij(q

FB(0))

dγ

)

+
∂fxij(q

FB(0))

∂ℓi
yij(q

FB(0))

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

)]〉
.

(C.24)



APPENDIX C.
THE DETAILED DERIVATION OF G IN THE JA-
COBIAN ANALYSIS

83

With the aid of J αβ
ij := −∂qβj f

α
ij (i ̸= j), we can express G as

G =
1

2L2

〈 ∑
i,j(i ̸=j)

 ∑
ζ=x,y

yij(q
FB(0))J xζ

ji (qFB(0))

(
δζxyij(q

FB(0)) +
d̊rζij(q

FB(0))

dγ

)

+yij(q
FB(0))J xℓ

ji (q
FB(0))

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

)]〉

=
1

2L2

〈 ∑
i,j(i ̸=j)

y2ij(qFB(0))J xx
ji (qFB(0)) +

∑
ζ=x,y

yij(q
FB(0))J xζ

ji (qFB(0))
d̊rζij(q

FB(0))

dγ

+yij(q
FB(0))J xℓ

ji (q
FB(0))

(
dℓ̊i(q

FB(0))

dγ
+
dℓ̊j(q

FB(0))

dγ

)]〉
.

(C.25)

Thus, with Eqs (3.38) and (3.39), we obtain Eqs. (3.41)–(3.43).



Appendix D

Effects of rattlers

In this appendix, we investigate the effects of rattlers. In the first section, we
investigate the effects of rattlers for the DOS. In the second section, we clarify
the contributions of rattlers by using the participation ratio.

D.1 Effects of rattlers on the DOS

In this section, we investigate the role of rattlers. We call grain i a rattler,
if its coordination number Zi is Zi ≤ ZTh. Since the coordination number of
isostatic state is three, ZTh can be 1 or 2 for frictional grains. The rattlers are
determined by the following method. Given a grain configuration, we measure

the coordination number Z
(n=1)
i of each grain. Then, we regard N1 grains sat-

isfying Z
(n=1)
i ≤ ZTh as rattlers at the first trial. We measure the coordination

number Z
(n=2)
i after we remove the rattler grains. In the second trial, we regard

grains satisfying Z
(n=2)
i ≤ ZTh as new rattlers. We repeat these processes until

the number of rattlers is converged. As shown in Fig. D.1, at which we adopt
ZTh = 2, low frequency modes in Region I and a doubling pair between Regions
I and II are contributions from rattlers.

D.2 Participation ratio

In this section, to clarify whether the mode at ωn is localized or spread to the
whole system, we introduce a participation ratio pn [96, 98]

pn :=

(∑N
i=1 |Rn,i|2

)2
N
∑N

i=1 |Rn,i|4
. (D.1)
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Figure D.1: Double logarithmic plots of D(ω) with (red circles) and without
(blue triangles by using ZTh = 2) rattlers for ϕ = 0.90 at (a) kT /kN = 1.0×10−8

and (b) kT /kN = 1.0 × 10−4. These figures are based on numerical results for
N = 1024.

We plot p(ω) defined as

p(ω) :=

∑3N
n=1⟨pnδ(ω − ωn)⟩∑3N
n=1⟨δ(ω − ωn)⟩

(D.2)

against ωt0 for ϕ = 0.90 in Fig. D.2. Note that p(ω) are set to be zero if there
is no right eigenvalue in the region (ω(s) < ω < ω(s+1)). Figure D.2 shows that
the modes ωt0 ≈ 10−6 and ωt0 ≈ 10−3 in Fig. D.2 (a) and ωt0 ≈ 10−4 in Fig.
D.2 (b) are nearly equal to p ≈ 1/N . Recalling that those modes consist of
the rattler, we conclude that the contribution of the rattler is localized. In the
middle range of ω in Fig. D.2, there is an isolated band which shifts to the large
ω as kT /kN increases with keeping its shape which can be seen in Sec. 3.4.1.
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Figure D.2: Double logarithmic plots of p(ω) for ϕ = 0.90 at (a) kT /kN =
1.0 × 10−8 and (b) kT /kN = 1.0 × 10−4, where the guide line is 1/N . These
figures are based on numerical results for N = 1024.



Appendix E

DOS in terms of the
effective Hessian

In this appendix, we introduce the DOS with the aid of the effective Hessian as
in Refs. [104–106]. The effective Hessian H at the FB state is defined as

Hαβ
ij :=

∂2Ueff

∂qαi ∂q
β
j

∣∣∣∣∣
q(γ)=qFB(0)

, (E.1)

where Ueff is the effective potential defined as

Ueff :=
1

2

∑
⟨ij⟩

[
kN (δrij · nij)

2 − |fN,ij |
rFBij

(δrij · tij)2 + kT δt
2
ij

]
(E.2)

with δrij := δri − δrj , δri := ri − rFBi , rFBij := |rFBi − rFBj |, δtij := δrij · tij −
(δℓi+ δℓj), and δℓi := ℓi− ℓFBi . Here, rFBi and ℓFBi are the position of i-th grain
and 3rd component of qi at the FB state, respectively. Thus, H is a 3N × 3N
matrix corresponding to the Jacobian. We note that this Hessian matrix is a real
symmetric matrix, and thus, it can be diagonalized by an orthogonal matrix,
where the eigenvectors are orthogonal with each other, and the corresponding
eigenvalues are real number.

The eigenvalue equation of H is expressed as

H |n⟩ = λH,n |n⟩ , (E.3)

where λH,n and |n⟩ are the n-th eigenvalue and eigenvector of H, respectively.
Note that the left eigenvalue is also given by ⟨n|H = λH,n⟨n|, where ⟨n| = |n⟩T .
Then, we introduce the DOS DH in terms of H as

DH(ω) :=
1

3N

3N∑
n=1

⟨δ(ω − ωH,n)⟩, (E.4)

where ωH,n :=
√
λH,n.
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Appendix F

Absence of the second term
on RHS of Eq. (4.10)

Figure F.1: Plot of the maximum Err against γ.

Thus far, we could not prove that the second term on RHS of Eq. (4.10)
can be regarded as zero with numerical accuracy, but we verify that this term is
zero, at least, in the numerical simulation of harmonic systems as follows: Let
us calculate the ratio of the second term in Eq. (4.10) to the first term using

Err :=

∣∣∣[(∫Cij
dtvT,ij

)
· nij

]
nij

∣∣∣∣∣∣∫Cij
dtvT,ij

∣∣∣ . (F.1)

Figure F.1 shows the plots of the largest Err in contacting pairs against γ, which
indicates |Err| < 3 × 10−16. As our calculation is based on double precision,
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which has only 16 significant digits, Err can be regarded as zero.



Appendix G

The behavior of the
smallest eigenvalue near
stress-drop points

In this appendix, we provide an in-depth explain the behavior of the smallest
eigenvalue in the vicinity of the stress-drop points in detail. We adopt the
following protocol to reduce the step strain small in the vicinity of the stress-
drop point. We adopt ∆γin = 10−4 in the appendix. We use ∆γ = ∆γin if
there is no plastic event during the strain increment ∆γ. If we find a stress
drop during the strain from γ to γ + ∆γ, we restore the system to the state
γ, and examine γ + 0.1∆γin. If we do not find any stress drop, we further add
the strain with ∆γin; if we still have a stress drop, we repeat the procedure of
restoring and adding strain 0.01∆γin. This protocol is repeated to detect stress
drop events until we reach ∆γ < ∆γTh. In this appendix, we illustrate how
the results depend on the choice of ∆γTh, where the smallest value of ∆γTh is
10−10.

Figure G.1 presents the stress-strain curves obtained using this protocol. The
upper branch in Fig. G.1 represents the shear stress below the stress drop, and
the lower branch represents the shear stress above the stress drop. The smallest
γ in the lower branch and the largest γ in the upper branch strongly depend
on ∆γTh. As shown in Fig. G.2, the stress drop takes place at γ ≈ 0.01330
for ∆γTh = 10−4, whereas the critical strain γc for the stress drop approaches
0.013334 as ∆γTh decreases, where γc is 0.013334 for ∆γTh ≤ 10−6.

Figure G.3 plots the behavior of the smallest eigenvalue against γ corre-
sponding to Fig. G.1 for ∆γTh = 10−10 immediately below the stress drop
point, where the symbols correspond to the analysis for the corresponding ∆γ
as in Fig. G.1. We have confirmed that there is no precursor of the eigenval-
ues below γc as observed in Hertzian and Lennard-Jones systems [107,108,111].
Thus, the harmonic system does not have any precursors in the behavior of the
smallest eigenvalue.
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Figure G.1: The stress-strain curve for N = 128, which are the stress drop
points for various ∆γTh (from ∆γTh = 10−4 and ∆γTh = 10−10).

Figure G.2: Plot of the critical strain γc against ∆γTh for N = 128.
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Figure G.3: The plot of the smallest non-zero eigenvalue in the vicinity of γc
for ∆γTh = 1.0× 10−10.



Appendix H

Some properties of the
Hessian matrix in a
harmonic potential

In this appendix, we briefly summarize the properties of the Hessian matrix of
the harmonic potential. In Sec. H.1, we explicitly express the elements of the
Hessian matrix in this model. In Sec. H.2, we demonstrate that the symmetry of
the Hessian matrix still holds even under the Lees-Edwards boundary condition.

H.1 The explicit expression for the Hessian ma-
trix

In this section, we present an explicit expression for the Hessian matrix. To this
end, we return to the effective potential in Eq. (4.20). It is straightforward to
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obtain

∂2δr2ij,⊥
∂x2i

= 2− 2(nxij)
2, (H.1)

∂2δr2ij,⊥
∂xi∂yi

= −2nxijn
y
ij , (H.2)

∂2δr2ij,⊥
∂xi∂ℓi

= 2nyij , (H.3)

∂2δr2ij,⊥
∂yi∂xi

=
∂2δr2ij,⊥
∂xi∂yi

, (H.4)

∂2δr2ij,⊥
∂y2i

= 2− 2(nyij)
2, (H.5)

∂2δr2ij,⊥
∂yi∂ℓi

= 2nxij , (H.6)

∂2δr2ij,⊥
∂ℓi∂xi

=
∂2δr2ij,⊥
∂xi∂ℓi

, (H.7)

∂2δr2ij,⊥
∂ℓi∂yi

=
∂2δr2ij,⊥
∂yi∂ℓi

, (H.8)

∂2δr2ij,⊥
∂ℓ2i

= 2. (H.9)

Thus, we obtain

Hxx
ij =

∂2δeij
∂xi∂xj

= −∂
2δeij
∂x2i

= −kN + kN

[
1 +

ξN,ij

|rij |

]
(nyij)

2 − kT (n
y
ij)

2, (H.10)

Hxy
ij =

∂2δeij
∂xi∂yj

= − ∂2δeij
∂xi∂yi

= −kN
[
1 +

ξN,ij

|rij |

]
nxijn

y
ij + kTn

x
ijn

y
ij , (H.11)

Hxℓ
ij =

∂2δeij
∂xi∂ℓj

=
∂2δeij
∂xi∂ℓi

= kTn
y
ij , (H.12)

Hyy
ij =

∂2δeij
∂yi∂yj

= −∂
2δeij
∂y2i

= −kN + kN

[
1 +

ξN,ij

|rij |

]
(nxij)

2 − kT (n
x
ij)

2, (H.13)

Hyℓ
ij =

∂2δeij
∂yi∂ℓj

=
∂2δeij
∂yi∂ℓi

= −kTnxij , (H.14)

Hℓℓ
ij =

∂2δeij
∂ℓi∂ℓj

=
∂2δeij
∂ℓ2i

= kT (H.15)
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for i ̸= j and

Hxx
ii =

∑
j ̸=i

∂2δeij
∂x2i

= −
∑
j ̸=i

[
−kN + kN

[
1 +

ξN,ij

|rij |

]
(nyij)

2 − kT (n
y
ij)

2

]
, (H.16)

Hxy
ii =

∑
j ̸=i

∂2δeij
∂xi∂yi

= −
∑
j ̸=i

[
−kN

[
1 +

ξN,ij

|rij |

]
nxijn

y
ij + kTn

x
ijn

y
ij

]
, (H.17)

Hxℓ
ii =

∑
j ̸=i

∂2δeij
∂xi∂ℓi

=
∑
j ̸=i

kTn
y
ij , (H.18)

Hyy
ii =

∑
j ̸=i

∂2δeij
∂y2i

=
∑
j ̸=i

[
−kN + kN

[
1 +

ξN,ij

|rij |

]
(nxij)

2 − kT (n
x
ij)

2

]
, (H.19)

Hyℓ
ii =

∑
j ̸=i

∂2δeij
∂yi∂ℓi

= −
∑
j ̸=i

kTn
x
ij , (H.20)

Hℓℓ
ii =

∑
j ̸=i

∂2δeij
∂ℓ2i

=
∑
j ̸=i

kT . (H.21)

H.2 Effect of the boundary condition to the Hes-
sian matrix

In this section, we explain the influence of strain and the boundary condition on
the Hessian matrix in detail to determine whether the symmetry of the Hessian
matrix is still maintained, even if we consider a system with non-zero strain.

First, let us consider the case in which grain i interacts with the grain j
through a mirror image in x-direction, as shown in Fig. H.1. In this case, rij is
given by

rij := ri − rj − Lex, (H.22)

where ex := (1, 0)T. Similarly, rji is given by

rji := rj − ri + Lex. (H.23)

Thus, rij satisfies

rji = −rij . (H.24)

Then, we obtain

ξN,ij : =
di + dj

2
− |rij |

=
di + dj

2
− |rji|

= ξN,ji. (H.25)
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Figure H.1: A schematic of the case where the grain i interacts with the grain
j through the mirror image in x-direction.

Thus, the result is independent of the strain, and the symmetry of the Hessian
is still valid in this case.

Next, let us consider the case in which the grain i interacts with the grain
j through a mirror image in the y-direction (see Fig. H.2). In this case, rij is
given by

rij := ri − rj + Ley + γLex, (H.26)

where ey := (0, 1)T. Similarly, rji is given by

rji := rj − ri − Ley − γLex. (H.27)

Since the relation

rji = −rij , (H.28)

we obtain

ξN,ij : =
di + dj

2
− |rij |

=
di + dj

2
− |rji|

= ξN,ji. (H.29)

Thus, ξN,ij and ξN,ji depend on γ in the same way. With the aid of Eqs. (H.26),(H.27)
and (H.29), the Hessian matrix depends on γ if the grain interacts with another
grain through the mirror image in y-direction, although the symmetry of the
Hessian is still maintained.
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Figure H.2: A schematic of the case that the grain i interacts with the grain j
through the mirror image in y-direction.



Appendix I

Some properties of the
Jacobian matrix in a
harmonic system and its
equivalency to the Hessian
matrix

In this appendix, we briefly summarize the properties of the Jacobian matrix
for the harmonic contact model that was previously used in the description
of frictional grains [115–117, 119]. In Sec.I.1, we present explicit forms of the
diagonal and non-diagonal blocks of the Jacobian matrix. In Sec.I.2, we present
the derivation of the Jacobian for the harmonic contact model. In Sec. I.3, we
explicitly write the elements of the Jacobian matrix in the model.
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I.1 Jacobian block elements

Let us write a 3 × 3 sub-matrix Jij , which is the (ij) block element of the
Jacobian obtained from Eq. (4.19):

[
J αβ
ij

]
:=

[
−∂F̃

α
i

∂qβj

]

=

−∂qxj F
x
i −∂qyj F

x
i −∂qℓjF

x
i

−∂qxj F
y
i −∂qyj F

y
i −∂qℓjF

y
i

−∂qxj T̃i −∂qyj T̃i −∂qℓj T̃i



=

−
∑N

k=1;k ̸=j ∂qxj f
x
ik −

∑N
k=1;k ̸=j ∂qyj f

x
ik −

∑N
k=1;k ̸=j ∂qℓjf

x
ik

−
∑N

k=1;k ̸=j ∂qxj f
y
ik −

∑N
k=1;k ̸=j ∂qyj f

y
ik −

∑N
k=1;k ̸=j ∂qℓjf

y
ik

−
∑N

k=1;k ̸=j ∂qxj T̃ik −
∑N

k=1;k ̸=j ∂qyj T̃ik −
∑N

k=1;k ̸=j ∂qℓj T̃ik



=




−∂qxj f

x
ij −∂qyj f

x
ij −∂qℓjf

x
ij

−∂qxj f
y
ij −∂qyj f

y
ij −∂qℓjf

y
ij

−∂qxj T̃ij −∂qyj T̃ij −∂qℓj T̃ij

 (i ̸= j)

−
∑N

k=1;k ̸=i ∂qxi f
x
ik −

∑N
k=1;k ̸=i ∂qyi f

x
ik −

∑N
k=1;k ̸=i ∂qℓi f

x
ik

−
∑N

k=1;k ̸=i ∂qxi f
y
ik −

∑N
k=1;k ̸=i ∂qyi f

y
ik −

∑N
k=1;k ̸=i ∂qℓi f

y
ik

−
∑N

k=1;k ̸=i ∂qxi T̃ik −
∑N

k=1;k ̸=i ∂qyi T̃ik −
∑N

k=1;k ̸=i ∂qℓi T̃ik

 (i = j)

,

(I.1)

where the superscripts α and β correspond to x, y, ℓ-components, and i and j
are the grain numbers. Here, fζij , T̃ij are ζ-component of fij and scaled torque
that the i-th grain receives from the j-th grain, respectively. The sub-matrix
for i = j is given by

[
J αβ
ii

]
=


∑N

k=1;k ̸=i ∂qxkf
x
ik

∑N
k=1;k ̸=i ∂qykf

x
ik −

∑N
k=1;k ̸=i ∂qℓkf

x
ik∑N

k=1;k ̸=i ∂qxkf
y
ik

∑N
k=1;k ̸=i ∂qykf

y
ik −

∑N
k=1;k ̸=i ∂qℓkf

y
ik∑N

k=1;k ̸=i ∂qxk T̃ik
∑N

k=1;k ̸=i ∂qyk T̃ik −
∑N

k=1;k ̸=i ∂qℓk T̃ik

 , (I.2)

where we have used ∂qκi f
ζ
ik = −∂qκk f

ζ
ik, ∂qκi T̃ik = −∂qκi T̃ik, ∂qℓi f

ζ
ik = ∂qℓkf

ζ
ik, and

∂qℓi T̃ik = ∂qℓi T̃ik. Here, the superscripts ζ and κ correspond to x, y components.

I.2 Derivation of Jacobian matrix in the har-
monic system

Let us consider only the normal and tangential elastic contact forces

fN,ij = kNξN,ijnij , (I.3)

fT,ij = −kT ξT,ij , (I.4)
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where the integration of dξT,ij

ξT,ij :=

∫
Cij

dξT,ij (I.5)

is performed during the contact between the i-th and j-th grains. Since Eq.
(I.5) does not contain the second term on RHS of Eq. (4.10), ξT,ij may not be
perpendicular to ξN,ij . Nevertheless, we adopt Eq. (I.5) for simplicity. Here,
dξT,ij is defined as

dξT,ij = drij − (drij · nij)nij − dℓij × nij , (I.6)

where ℓij is defined as

ℓij :=

 0
0

ℓi + ℓj

 . (I.7)

Each component of Eq. (I.6) is written as

dξxT,ij = drxij − (drij · nij)n
x
ij + dℓijn

y
ij , (I.8)

dξyT,ij = dryij − (drij · nij)n
y
ij − dℓijn

x
ij . (I.9)

The derivative of the normal force is given by

∂rζi
fκN,ij = kN

[
ξN,ij

rij
δζκ −

(
1 +

ξN,ij

rij

)
nζijn

κ
ij

]
, (I.10)

∂ℓif
κ
N,ij = 0, (I.11)

where Kronecker’s delta δζκ satisfies δζκ = 1 for ζ = κ and δζκ = 0 otherwise.
We have used

∂nζ
ij

∂rκi
=

1

rij

(
δζκ − nζijn

κ
ij

)
, (I.12)

∂rij

∂rζi
= nζij (I.13)

to obtain Eq. (I.10).
The derivative of the tangential force is written as

∂rζi
fκT,ij = −kT

(
δζκ − nζijn

κ
ij

)
, (I.14)

∂ℓif
κ
T,ij = −εκkTnνκ

ij , (I.15)

where εζ and νζ are defined, respectively, as

εζ : =

{
1 (ζ = x)

−1 (ζ = y),
(I.16)

νζ : =

{
y (ζ = x)
x (ζ = y).

(I.17)
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Here, ∂rζi
ξκT,ij and ∂ℓiξ

κ
T,ij in Eqs. (I.14) and (I.15) satisfy the following:

∂ξκT,ij

∂rζi
= δζκ − nζijn

κ
ij , (I.18)

∂ξκT,ij

∂ℓi
= εκn

νκ
ij . (I.19)

The derivation of Eqs. (I.18) and (I.19) are as follows [115]. From Eq. (I.6),

dξζT,ij can be written as

dξζT,ij = drζij − (drij · nij)n
ζ
ij + (−1)ζ(dℓi + dℓj)n

νζ

ij . (I.20)

Then, dξxT,ij satisfies

dξxT,ij = drxij −
∑

κ=x,y

drκijn
κ
ijn

x
ij + nyij(dℓi + dℓj)

= (1− (nxij)
2)drxij − nxijn

y
ijdr

y
ij + nyij(dℓi + dℓj)

= (nyij)
2drxij − nxijn

y
ijdr

y
ij + nyij(dℓi + dℓj)

= (nyij)
2(dxi − dxj)− nxijn

y
ij(dyi − dyj) + nyij(dℓi + dℓj). (I.21)

Similarly, dξyT,ij also satisfies

dξyT,ij = −nxijn
y
ij(dxi − dxj) + (nyij)

2(dyi − dyj)− nxij(dℓi + dℓj). (I.22)

Here, dξζT,ij is the function of xi, yi, ℓi, xj , yj , and ℓj . We obtain the differential

form of dξζT,ij :

dξζT,ij =

(
∂ξζT,ij

∂xi

)
(yi,ℓi,xj ,yj ,ℓj)

dxi +

(
∂ξζT,ij

∂xj

)
(xi,yi,ℓi,yj ,ℓj)

dxj

+

(
∂ξζT,ij

∂yi

)
(xi,ℓi,xj ,yj ,ℓj)

dyi +

(
∂ξζT,ij

∂yj

)
(xi,yi,ℓi,xj ,ℓj)

dyj

+

(
∂ξζT,ij

∂ℓi

)
(xi,yi,xj ,yj ,ℓj)

dℓi +

(
∂ξζT,ij

∂ℓj

)
(xi,yi,ℓi,xj ,yj)

dℓj . (I.23)

Next, we obtain Eqs. (I.18), (I.19), by comparing Eqs. (I.21) and (I.22) using
Eq. (I.23).

Because the scaled torque T̃ij satisfies

T̃ij :=
2Tij
di

= −nxijf
y
T,ij + nyijf

x
T,ij , (I.24)
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we obtain

∂rζi
T̃ij = −

(
∂rζi

nxij

)
fyT,ij − nxij∂rζi

fyT,ij +
(
∂rζi

nyij

)
fxT,ij + nyij∂rζi

fxT,ij

= −

(
δζx
rij

−
nζijn

x
ij

rij

)
fyT,ij + kTn

x
ij

(
δζy − nζijn

y
ij

)
+

(
δζy
rij

−
nζijn

y
ij

rij

)
fxT,ij − kTn

y
ij

(
δζx − nζ

ijn
x
ij

)
= −εκ

nνκ
ij

rij
(nij · fT,ij)− εκn

νκ
ij (nij · nij)− εκn

νκ
ij , (I.25)

∂ℓi T̃ij = −nxij∂ℓif
y
T,ij + nyij∂ℓif

x
T,ij

= −nxijkTnxij − nyijkTn
y
ij

= −kT , (I.26)

where we have used fT,ij · nij = 0 and nij · nij = 1.

I.3 Explicit form of Jacobian for grains interact-
ing with harmonic potential

From Sec. I.2, the off-diagonal elements of the Jacobian matrix J αβ
ij := −∂qsj F̃

r
i (α, β =

x, y, ℓ) with i ̸= j are given by

J xx
ij = −kN + kN

[
1 +

ξN,ij

rij

]
(nyij)

2 − kT (n
y
ij)

2, (I.27)

J xy
ij = −kN

[
1 +

ξN,ij

rij

]
nxijn

y
ij + kTn

x
ijn

y
ij , (I.28)

J xℓ
ij = −kTnyij , (I.29)

J yx
ij = −kN

[
1 +

ξN,ij

rij

]
nxijn

y
ij + kTn

x
ijn

y
ij , (I.30)

J yy
ij = −kN + kN

[
1 +

ξN,ij

rij

]
(nxij)

2 − kT (n
x
ij)

2, (I.31)

J yℓ
ij = kTn

x
ij , (I.32)

J ℓx
ij = kTn

y
ij , (I.33)

J ℓy
ij = −kTnxij , (I.34)

J ℓℓ
ij = kT . (I.35)

Notably, the elements of the Jacobian matrix are independent of ξT,ij .
With the aid of Eq. (I.1), the elements in the diagonal block J rs

ii are given
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by

J xx
ii = −

∑
j ̸=i

{
−kN + kN

[
1 +

ξN,ij

rij

]
(nyij)

2 − kT (n
y
ij)

2

}
, (I.36)

J xy
ii = −

∑
j ̸=i

{
−kN

[
1 +

ξN,ij

rij

]
nxijn

y
ij + kTn

x
ijn

y
ij

}
, (I.37)

J xℓ
ii =

∑
j ̸=i

kTn
y
ij , (I.38)

J yx
ii = −

∑
j ̸=i

{
−kN

[
1 +

ξN,ij

rij

]
nxijn

y
ij + kTn

x
ijn

y
ij

}
, (I.39)

J yy
ii = −

∑
j ̸=i

{
−kN + kN

[
1 +

ξN,ij

rij

]
(nxij)

2 − kT (n
x
ij)

2

}
, (I.40)

J yℓ
ii = −

∑
j ̸=i

kTn
x
ij , (I.41)

J ℓx
ii =

∑
j ̸=i

kTn
y
ij , (I.42)

J ℓy
ii = −

∑
j ̸=i

kTn
x
ij , (I.43)

J ℓℓ
ii =

∑
j ̸=i

kT . (I.44)

The expressions in Eqs. (I.27)–(I.44) are equivalent to Eqs. (H.10)–(H.21) for a
Hessian matrix. Thus, we conclude that the Jacobian matrix is equivalent to
the Hessian matrix for the harmonic system without considering dynamical slip.



Appendix J

The detailed properties of
rigidity

This appendix consists of two sections. In Appendix J.1, we present the detailed
expressions of rigidity g. In Appendix J.2, we demonstrate the quantitative
accuracy of the Hessian analysis in the linear response regime by comparing
the theoretical evaluation of the rigidity with that obtained by the numerical
simulation as in Ref. [119].

J.1 The expression of g

The symmetrized shear stress in Eq. (4.15) is expressed as

σ(qFB(γ)) =
σxy(q

FB(γ)) + σyx(q
FB(γ))

2
, (J.1)

where

σαβ(q
FB(γ)) := − 1

2L2

∑
i,j(i ̸=j)

fαij(q
FB(γ))rβij(q

FB(γ)). (J.2)

Substituting Eq. (J.1) into Eq. (4.17), we obtain

g(γ) = lim
∆γ→0

1

2∆γ

[
σxy(q

FB(γ +∆γ)) + σyx(q
FB(γ +∆γ))−

{
σxy(q

FB(γ)) + σyx(q
FB(γ))

}]
= − lim

∆γ→0

1

4∆γL2

[
fxij(q

FB(γ +∆γ))ryij(q
FB(γ +∆γ)) + fyij(q

FB(γ +∆γ))rxij(q
FB(γ +∆γ))

−
{
fxij(q

FB(γ))ryij(q
FB(γ)) + fyij(q

FB(γ))rxij(q
FB(γ))

}]
.

(J.3)

104
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Substituting Eq. (J.3) into Eq. (J.1), the rigidity g is expressed as

g(γ) = − lim
∆γ→0

1

4∆γL2

[
fxij(q

FB(γ +∆γ))ryij(q
FB(γ +∆γ)) + fyij(q

FB(γ +∆γ))rxij(q
FB(γ +∆γ))

−
{
fxij(q

FB(γ))ryij(q
FB(γ)) + fyij(q

FB(γ))rxij(q
FB(γ))

}]
.

(J.4)

By expanding rαij(q
FB(γ +∆γ)) in Eq. (J.4) by ∆γ from the finite strain γ,

we obtain

rαij(q
FB(γ +∆γ)) = rαi (q

FB(γ +∆γ))− rαj (q
FB(γ +∆γ))

≃ rαij(q
FB(γ)) + ∆γ

{
δαx

(
yi(q

FB(γ))− yj(q
FB(γ))

)
+
d̊rαi (q

FB(γ))

dγ
−
d̊rαj (q

FB(γ))

dγ

}

= rαij(q
FB(γ)) + ∆γ

{
δαxyij(q

FB(γ)) +
d̊rαij(q

FB(γ))

dγ

}
.

(J.5)

Similarly, by expanding fαij(γ +∆γ) in Eq. (J.4) from the zero strain state,
we obtain

fαij(q
FB(γ +∆γ)) ≃ fαij(q

FB(γ)) +

N∑
k=1

∑
ζ=x,y

∆γ
∂fαij

∂rζk

drζk
dγ

+

N∑
k=1

∆γ
∂fαij
∂ℓk

dℓk
dγ

= fαij(q
FB(γ))

+
∑

ζ=x,y

∆γ

[
∂fαij

∂rζi

(
δζxyi(q

FB(γ)) +
d̊rζi (q

FB(γ))

dγ

)

+
∂fαij

∂rζj

(
δζxyj(q

FB(γ)) +
d̊rζj (q

FB(γ))

dγ

)]

+∆γ

[
∂fαij
∂ℓi

(
δℓxyi(q

FB(γ)) +
dℓ̊i(q

FB(γ))

dγ

)

+
∂fαij
∂ℓj

(
δℓxyj(q

FB(γ)) +
dℓ̊j(q

FB(γ))

dγ

)]
. (J.6)

Moreover, using ∂fαij/∂r
ζ
j = −∂fαij/∂r

ζ
i and ∂fαij/∂ℓj = ∂fαij/∂ℓi, and fαij can

be written as

fαij(q
FB(γ +∆γ)) = fαij(q

FB(γ)) +
∑

ζ=x,y

∆γ
∂fαij

∂rζi

(
δζxyij(q

FB(γ)) +
d̊rζij(q

FB(γ))

dγ

)

+∆γ
∂fαij
∂ℓi

(
dℓ̊i(q

FB(γ))

dγ
+
dℓ̊j(q

FB(γ))

dγ

)
. (J.7)
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Substituting Eqs. (J.5) and (J.7) into Eq. (J.4), we obtain

g(γ) = − 1

4L2

∑
i,j(i ̸=j)

[
fxij(q

FB(γ))
d̊ryij(q

FB(γ))

dγ
+ fyij(q

FB(γ))
d̊rxij(q

FB(γ))

dγ

+
∑

ζ=x,y

(
∂fxij(q

FB(γ))

∂rζi
ryij(q

FB(γ)) +
∂fyij(q

FB(γ))

∂rζi
rxij(q

FB(γ))

)

×

(
δζxyij(q

FB(γ)) +
d̊rζij(q

FB(γ))

dγ

)

+

(
∂fxij(q

FB(γ))

∂ℓi
ryij(q

FB(γ)) +
∂fyij(q

FB(γ))

∂ℓi
rxxij (q

FB(γ))

)

×

(
dℓ̊i(q

FB(γ))

dγ
+
dℓ̊j(q

FB(γ))

dγ

)]
. (J.8)

Because
∑

i(i ̸=j) f
α
ij(q

FB(γ)) = 0 in the FB state, the first and second terms on

the RHS of Eq. (J.8) can be written as

∑
i,j(i ̸=j)

fαij(q
FB(γ))

d̊rκij(q
FB(γ))

dγ
=

∑
i,j(i ̸=j)

fαij(q
FB(γ))

(
d̊rκi (q

FB(γ))

dγ
−
d̊rκj (q

FB(γ))

dγ

)

=
∑
j

 ∑
j(j ̸=i)

fαij(q
FB(γ))

 d̊rκi (q
FB(γ))

dγ

−
∑
i

 ∑
i(i ̸=j)

fαij(q
FB(γ))

 d̊rκj (q
FB(γ))

dγ

= 0. (J.9)

Thus, g is expressed as

g(γ) = − 1

4L2

∑
i,j(i ̸=j)

[ ∑
ζ=x,y

(
∂fxij(q

FB(γ))

∂rζi
ryij(q

FB(γ)) +
∂fyij(q

FB(γ))

∂rζi
rxij(q

FB(γ))

)

×

(
δζxyij(q

FB(γ)) +
d̊rζij(q

FB(γ))

dγ

)

+

(
∂fxij(q

FB(γ))

∂ℓi
ryij(q

FB(γ)) +
∂fyij(q

FB(γ))

∂ℓi
rxxij (q

FB(γ))

)

×

(
dℓ̊i(q

FB(γ))

dγ
+
dℓ̊j(q

FB(γ))

dγ

)]
. (J.10)

Using Hαβ
ij = J αβ

ij := −∂qβj f
α
ij for i ̸= j in the case of the harmonic potential,
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we can express g as

g(γ) =
1

4L2

∑
i,j(i ̸=j)

 ∑
ζ=x,y

(
yij(q

FB(γ))Hxζ
ji (q

FB(γ)) + xij(q
FB(γ))Hyζ

ji (q
FB(γ))

)

×

(
δζxyij(q

FB(γ)) +
d̊rζij(q

FB(γ))

dγ

)
+
(
yij(q

FB(γ))Hxℓ
ji (q

FB(γ)) + xij(q
FB(γ))Hyℓ

ji (q
FB(γ))

)
×

(
dℓ̊i(q

FB(γ))

dγ
+
dℓ̊j(q

FB(γ))

dγ

)]

=
1

4L2

∑
i,j(i ̸=j)

[
yij
(
yij(q

FB(γ))Hxx
ji (q

FB(γ)) + xij(q
FB(γ))Hyx

ji (q
FB(γ))

)
+
∑

ζ=x,y

(
yij(q

FB(γ))Hxζ
ji (q

FB(γ)) + xij(q
FB(γ))Hyζ

ji (q
FB(γ))

) d̊rζij(qFB(γ))

dγ

+
(
yij(q

FB(γ))Hxℓ
ji (q

FB(γ)) + xij(q
FB(γ))Hyℓ

ji (q
FB(γ))

)
×

(
dℓ̊i(q

FB(γ))

dγ
+
dℓ̊j(q

FB(γ))

dγ

)]
. (J.11)

Thus, using Eqs (4.39) and (4.40), we obtain Eqs. (4.42)–(4.44).

J.2 The rigidity of the harmonic potential in the
linear response regime

In this appendix, we verify the validity of our method to evaluate the rigidity
G0 for frictional harmonic potential in the linear response regime for various
kT /kN and ϕ as in Ref. [119]. Figure J.1 presents the results of the rigidity,
in which G0 obtained by the eigenvalue analysis (filled symbols) is in perfect
agreement with that obtained by the simulation (open symbols). Here we take
the average over 5 ensembles for each ϕ and kT . This figure confirms the validity
of the theoretical method in the linear response regime.
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Figure J.1: The plot of the rigidity G0 in the linear response regime for various
kT /kN and ϕ, where open symbols and filled symbols are results of the theory
and simulation, respectively.
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[13] N. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases, (Oxford,
2004).

[14] P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense gran-
ular flows Nature 441, 727 (2006).

[15] K. Saitoh and H. Hayakawa, Rheology of a granular gas under a plane
shear, Phys. Rev. E 75, 021302 (2007).

[16] H. P. Zhang and H. A. Makse, Jamming transition in emulsions and gran-
ular materials, Phys. Rev. E 72, 011301 (2005).

[17] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saarloos, Crit-
ical Scaling in Linear Response of Frictionless Granular Packings near
Jamming, Phys. Rev. Lett. 97, 258001 (2006).

[18] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer, Jamming
Transition in Granular Systems, Phys. Rev. Lett. 98, 058001 (2007).

[19] M. Otsuki, H. Hayakawa, Critical behaviors of sheared frictionless granular
materials near the jamming transition, Phys. Rev. E 80, 011308 (2009).

[20] M. P. Ciamarra, R. Pastore, M. Nicodemi, and A. Coniglio, Jamming
phase diagram for frictional particles, Phys. Rev. E 84, 041308 (2011).

[21] M. Otsuki and H. Hayakawa, Critical scaling near jamming transition for
frictional granular particles, Phys. Rev. E 83, 051301 (2011).

[22] P. Chaudhuri, L. Berthier, and S. Sastry, Jamming Transitions in Amor-
phous Packings of Frictionless Spheres Occur over a Continuous Range of
Volume Fractions, Phys. Rev. Lett. 104, 165701 (2010).

[23] M. Ozawa, T. Kuroiwa, A. Ikeda, and K. Miyazaki, Jamming Transition
and Inherent Structures of Hard Spheres and Disks, Phys. Rev. Lett.
109, 205701 (2012).

[24] N. Kumar and S. Luding, Memory of jamming-multiscale models for soft
and granular matter, Granular Matter 18, 58 (2016).

[25] N. D. Ashcroft and N. W. Mermin, Solid State Physics (Harcourt, 1976).

[26] A. Virtanen, J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilä, J. Le-
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[110] S. Karmakar, A. Lemâıtre, E. Lerner, and I. Procaccia, Predicting Plastic
Flow Events in Athermal Shear-Strained Amorphous Solids, Phys. Rev.
Lett. 104, 215502 (2010).

[111] M. L. Manning and A. J. Liu, Vibrational Modes Identify Soft Spots in a
Sheared Disordered Packing, Phys. Rev. Lett. 107, 108302 (2011).

[112] R. Dasgupta, S. Karmakar, and I. Procaccia, Universality of the Plastic
Instability in Strained Amorphous Solids, Phys. Rev. Lett. 108, 075701
(2012).

[113] F. Ebrahem, F. Bamer, and B. Markert, Origin of reversible and irre-
versible atomic-scale rearrangements in a model two-dimensional network
glass, Phys. Rev. E 102, 033006 (2020).

https://doi.org/10.1073/pnas.1812457115
https://doi.org/10.1073/pnas.1812457115
https://doi.org/10.1103/PhysRevMaterials.5.055605
https://doi.org/10.1103/PhysRevLett.124.208001
https://doi.org/10.1140/epje/s10189-021-00116-8
https://doi.org/10.1140/epje/s10189-021-00116-8
https://doi.org/10.1103/PhysRevE.75.020301
https://doi.org/10.1103/PhysRevE.75.020301
https://doi.org/10.1209/0295-5075/90/14003
https://doi.org/10.1209/0295-5075/90/14003
https://doi.org/10.1103/PhysRevLett.126.088002
https://doi.org/10.1103/PhysRevLett.126.088002
https://doi.org/10.1103/PhysRevLett.93.195501
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1007/s10955-005-9015-5
https://doi.org/10.1007/s10955-005-9015-5
https://doi.org/10.1103/PhysRevLett.104.215502
https://doi.org/10.1103/PhysRevLett.104.215502
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/PhysRevLett.108.075701
https://doi.org/10.1103/PhysRevLett.108.075701
https://doi.org/10.1103/PhysRevE.102.033006


BIBLIOGRAPHY 117

[114] D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Ridout,
B. Xu, G. Zhang, P. K. Morse, J.-L. Barrat, L. Berthier, M. L. Falk, P.
Guan, A. J. Liu, K. Martens, S. Sastry, D. Vandembroucq, E. Lerner, and
M. L. Manning, Predicting plasticity in disordered solids from structural
indicators, Phys. Rev. Materials 4, 113609 (2020).

[115] J. Chattoraj, O. Gendelman, M. Pica Ciamarra, and I. Procaccia, Oscil-
latory Instabilities in Frictional Granular Matter, Phys. Rev. Lett. 123,
098003 (2019).

[116] J. Chattoraj, O. Gendelman, M. P. Ciamarra, and I. Procaccia, Noise
amplification in frictional systems: Oscillatory instabilities, Phys. Rev. E
100, 042901 (2019).

[117] H. Charan, O. Gendelman, I. Procaccia, and Y. Sheffer, Giant amplifica-
tion of small perturbations in frictional amorphous solids, Phys. Rev. E
101, 062902 (2020).

[118] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural
Relaxation Made Simple, Phys. Lev. Lett. 97, 170201 (2006).

[119] D. Ishima, K. Saitoh, M. Otsuki, and H. Hayakawa, Theory of rigidity
and density of states of two-dimensional amorphous solids of dispersed
frictional grains in the linear response regime, arXiv:2207.06632.

[120] L. D. Landau, and E. M. Lifshitz, Fluid Mechanics, (Pergamon Press,
1987).

[121] J. F. Brady, and G. Bossis, Stokesian Dynamics, Annu. Rev. Fluid Mech.
20, 111 (1988).

[122] R. C. Ball, and J. R. Melrose, A simulation technique for many spheres in
quasi-static motion under frame-invariant pair drag and Brownian forces,
Physica A 247 444 (1997).

[123] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular
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