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Abstract

Turbulence appears ubiquitously, often inevitably, in natural environments, engineering
applications, and everyday life. It still remains a major challenge for science, despite its
importance to many other research fields. Turbulence is characterized by cascade transfer,
where inviscid conserved quantities such as energy are conservatively transferred from
large to small scales. Cascade transfer can be regarded as a nonequilibrium cooperative
phenomenon that emerges from strong interference of fluctuations between disparate space-
time scales. This transfer phenomenon is widely observed in various systems, not limited
to ordinary fluids, and underlies the universality in those systems. In this thesis, we
investigate such universal aspects of cascade transfer from the viewpoint of statistical
physics.

In Part I, we aim to establish the concept of “universality class” for cascade transfer. As
a first step toward this end, we explore novel types of cascade phenomena by considering
(i) fluid quite different from ordinary fluid, (ii) ordinary fluid under extreme conditions,
and (iii) a simple model different from a fluid model:

(i) We investigate the similarity and difference between quantum and classical turbu-
lence. By using a phenomenological argument based on the Onsager “ideal turbu-
lence” theory, we show that the compressibility effects can induce a novel energy
cascade, which we call quantum stress cascade, at scales smaller than the mean in-
tervortex distance.

(ii) We explore a novel type of energy cascade by focusing on supercritical turbulence
near a gas-liquid critical point. We find that it exhibits a novel type of energy cascade,
which we call van der Waals cascade, at “microscopic length scales” smaller than the
correlation length of equilibrium density fluctuations. Interestingly, the mechanism
of this novel cascade is analogous to that of the quantum stress cascade in quantum
turbulence.

(iii) We propose a simple model representing one universality class for cascade transfer
without paying much attention to its relevance to real systems. The constructed
model can be regarded as a modified XY model where the amplitude fluctuates.
We show that an inverse energy cascade with a non-Kolmogorov energy spectrum
emerges from spatially local interactions. Interestingly, the behavior of this model is
similar to that observed in spin turbulence and atmospheric turbulence.

In Part II, we aim to elucidate the nature of information flow associated with cascade
transfer in ordinary fluid turbulence. Specifically, we investigate how information flows in
the shell model with thermal noise from an information-thermodynamic viewpoint. We
find that information of turbulent fluctuations flows from large to small scales along with
the energy cascade. Furthermore, our numerical simulations suggest that transferring
information from large to small scales involves enormous thermodynamic costs.
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Chapter 1

Introduction

Our world is filled with various types of fluid flows. Most of these flows exhibit extremely
complicated behavior, described as turbulence.1 Turbulence appears ubiquitously, often
inevitably, in natural environments, engineering applications, and everyday life. Despite
its importance to many other research fields, turbulence remains a major challenge and is
sometimes even referred to as “graveyard of theories” [2].

In a nutshell, turbulence is intricate and unpredictable fluid motion caused by inter-
ference of fluctuations between disparate space-time scales. Fluid flow patterns can be
classified by using the Reynolds number Re := UL/ν, where U and L denote a characteris-
tic velocity and length scale of the flow, and ν denotes the kinematic viscosity. A fluid flow
becomes turbulent when Re is sufficiently large. In particular, turbulence that emerges in
the limit Re → ∞ is called fully developed turbulence. Throughout this thesis, “turbulence”
shall mean “fully developed turbulence” unless otherwise stated.

Although turbulence appears to be hopelessly complicated, the great efforts of scien-
tists have revealed that some universal aspects are hidden in the disordered fluid motion.
For example, the energy spectrum exhibits a universal power law called the Kolmogorov
spectrum over a wide range of scales, independent of the details of the flow under consider-
ation. Such remarkable universality is believed to be induced by energy cascade process,2

where the energy is transferred conservatively from large to small scales. While the energy
cascade can be described intuitively as the successive generation of smaller vortices by the
stretching of larger vortices, the existence of such a well-ordered unidirectional transport
phenomenon in disordered fluid flow is nontrivial and mysterious. Along with the energy
cascade, turbulent fluctuations also exhibit quite nontrivial and universal behavior called
intermittency, which is the central enigma of turbulence. In this thesis, we focus on these
universal aspects of turbulent cascade.

In the following few sections, we provide a more detailed overview of three-dimensional
fluid turbulence, focusing on the incompressible case where the mass density of a fluid is
constant. For more exhaustive and pedagogical reviews, see, e.g., [4–10]. We begin by
presenting three key experimental observations in the next section. In Section 1.2, we
introduce the Navier–Stokes equation, which can be regarded as the “standard model” of

1The word “turbulence” derives from the Latin turbulentia and has been used to mean “trouble” or
“crowds.” In the context of hydrodynamics, “turbulence” seems to have been used for the first time in
1887 by Lord Kelvin [1]. The main researchers of the time, including Reynolds, Rayleigh, and Boussinesq,
did not use the term “turbulence” but instead used “sinuous motion,” “irregular motion,” “eddy agitation,”
“sinuous path,” etc.

2In the context of turbulence, it seems that the term cascade was used for the first time by Onsager
in his note to Lin [3].
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2 CHAPTER 1. INTRODUCTION

fluid turbulence. In Section 1.3, we review one of the few exact and nontrivial results in
fluid turbulence, called Kolmogorov’s 4/5-law. Then, in Section 1.4, we describe the main
aim of this thesis and summarize the main contribution.

1.1 Experimental observation

In this section, we describe three important observations from experiments and numerical
simulations of turbulence. Let v(x, t) be the velocity field of the fluid at position x and
time t, which can be measured, e.g., by using hot wire anemometers, PIV (Particle Image
Velocimetry), PTV (Particle Tracking Velocimetry), and LDV (Laser Doppler Velocime-
try). Similarly, let ν be the kinematic viscosity, which is a material constant different for
each system. Throughout this thesis, we often suppress argument t to simplify the nota-
tion. Hereafter, the bracket 〈·〉 denotes some suitable average such as ensemble, spatial, or
time average. The first observation concerns the energy dissipation. Let ε be the kinetic
energy dissipation rate defined by

ε := ν〈|∇v|2〉. (1.1)

Dissipative anomaly� �
In the inviscid limit ν → 0, ε does not vanish:

ε∗ = lim inf
ν→0

ε > 0. (1.2)� �
There are many experimental and numerical results that are consistent with this remarkable
phenomenon [11–17]. At first glance, this behavior is counter-intuitive because the energy
dissipation rate is proportional to the viscosity ν. In order to achieve a non-vanishing limit
of dissipation, 〈|∇v|2〉 must diverge. This observation is at the heart of the Onsager “ideal
turbulence” theory [3, 18], which will be described in Chapter 2. Since most turbulence
theories are based on this experimental fact, it is often called the “zeroth law” of turbulence.

The second key observation concerns the second-order longitudinal structure function
〈(δv∥(ℓ;x))2〉, where

δv∥(ℓ;x) := δv(ℓ;x) · ℓ
ℓ

(1.3)

with

δv(ℓ;x) := v(x+ ℓ)− v(x) (1.4)

denotes the longitudinal velocity increment. Let L be the energy injection scale or integral
scale, which is the characteristic length scale for the generation of turbulence. Similarly,
let η := ν3/4ε−1/4 be the Kolmogorov dissipation scale, where the viscous effects become
relevant. As Re increases, the dissipation scale η becomes much smaller than the injection
scale L, and we can take the intermediate asymptotic limit η � ℓ � L, which is called
the inertial range. For atmospheric boundary layer turbulence, for instance, these length
scales are typically L ∼ 100m and η ∼ 1mm with Re ∼ 107 and ν ∼ 0.1cm2/s [19, 20].
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Two-thirds law� �
In the inertial range η � ℓ � L, the second-order longitudinal structure function
exhibits the following power law:

〈(δv∥(ℓ;x))2〉 = C2ε
2/3ℓ2/3, (1.5)

where C2 = 2.0± 0.4 is a dimensionless constant, which may not be universal.
This two-thirds law is equivalent to the five-thirds law for the energy spectrum, which
is called the Kolmogorov spectrum:

E(k) = CKε
2/3k−5/3 for kf � k � kν , (1.6)

where kf := L−1 and kν := η−1.� �
The energy spectrum satisfies the relation 1

2〈|v|
2〉 =

∫∞
0 dkE(k) and can be interpreted as

the mean kinetic energy per unit mass at scale k. We note that the Kolmogorov spectrum
can be obtained by a simple dimensional analysis. Indeed, if we suppose that E(k) depends
only on ε and k in the inertial range, then we obtain E(k) ∼ ε2/3k−5/3. Historically, (1.5)
was derived by Kolmogorov from his 4/5-law by assuming self-similarity of the velocity
field at a time when there were no convincing experimental data to suggest the two-thirds
law [21].3

We now consider the higher-order longitudinal structure function 〈(δv∥(ℓ;x))p〉 (p ≥ 2).
If we assume self-similarity of the velocity field

δv(λℓ;x)
d
= λhδv(ℓ;x), (1.7)

i.e., δv(λℓ;x) and λhδv(ℓ;x) have the same statistical property for a unique scaling ex-
ponent λ ∈ R+ for all x ∈ Ω and ℓ in the inertial range, the two-thirds law implies that
h = 1/3. Therefore, we expect that

〈(δv∥(ℓ;x))p〉 = Cpε
p/3ℓp/3 for η � ℓ� L (1.8)

with a dimensionless constant Cp.4 This scaling is called K41 scaling, since it was obtained
in Kolmogorov’s 1941 paper [21, 22]. Interestingly, many experiments and numerical sim-
ulations suggest that (1.8) is questionable especially when p ≥ 4. The breakdown of
self-similarity is called intermittency.

Intermittency� �
In the inertial range η � ℓ� L, the p-th order longitudinal structure function displays
the power-law behavior

〈(δv∥(ℓ;x))p〉 ∝ ℓζp (1.9)

with the exponent ζp that is not exactly p/3.� �
3He also derived (1.5) by assuming universality of small-scale statistical properties [22]. This univer-

sality assumption is questionable, as first pointed out by Landau [5, 23]. It should also be noted that the
Kolmogorov spectrum was independently discovered by Obukhov [24,25], Onsager [26], von Weizsäcker [27],
and Heisenberg [28].

4Even if C2 is universal, there is no guarantee that Cp for p ̸= 2 is universal. At present, only C3 is
found to be universal.
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Fig. 1.1: p-dependence of the exponent ζp. Black circles, white squares, and white circles denote experi-
mental data from [29]. Solid line denotes ζp = p/3. Dashed line denotes the prediction of the log-normal
model: ζp = p/3+µ(3p−p2)/18 with µ = 0.2 [30,31]. Dotted line denotes the prediction of the log-Poisson
model: ζp = p/9 + 2 − 2(2/3)p/3 [32–34]. Dash-dotted line denotes the prediction of the Ruelle model:
ζp = p/3− ln Γ(p/3 + 1)/ lnκ with κ = 22 [35–37].

Figure 1.1 shows experimental data from [29]. The solid, dashed, dotted, and dash-dotted
lines denote the theoretical prediction based on various models. It clearly shows the break-
down of self-similarity. The scaling exponent ζp is believed to be universal.5 By introducing
the anomalous dimension δζp := ζp − p/3, (1.9) can be expressed as

〈(δv∥(ℓ;x))p〉 = Cpε
p/3ℓp/3

(
ℓ

L

)δζp

. (1.11)

From this expression, we see that deviations from K41 scaling require that the structure
functions explicitly depend on the injection scale L. In other words, the small-scale tur-
bulent fluctuations “remember” the number of “cascade steps” log2(L/ℓ) [10]. Intuitively,
intermittency corresponds to the occurrence of clumps of intense turbulent fluctuations in
a relatively quiescent background.

1.2 “Standard model” of turbulence

To understand these remarkable and mysterious behaviors of fluid turbulence, we need
some phenomenological model. While there can be a variety of such models,6 it is believed
that incompressible fluid turbulence can be described by the Navier–Stokes equation:

∂tv + v · ∇v = −∇p+ ν∇2v. (1.12)

This is a nonlinear and nonlocal equation that governs the time evolution of the velocity
field v(x, t) with ∇ · v = 0. Here, p(x, t) denotes the pressure divided by the constant

5A more precise definition of the scaling exponent ζp is as follows [5, 10]:

ζp := lim inf
ℓ→0

ln⟨(δv∥(ℓ;x))p⟩
ln(ℓ/L)

. (1.10)

6“Nature gives physicists phenomena, not equations” [38].
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mass density of a fluid ρ(x, t) = ρ. Although the existence and uniqueness of the solution
of the Navier–Stokes equation are still unknown,7 this model probably contains all of the
turbulence [5]. The Navier–Stokes equation can be derived from the Boltzmann equation
(for dilute gases) [40], lattice gas models [41], and even Hamiltonian particle systems [42].
For later convenience, here we describe the inviscid conservation laws of the Navier–Stokes
equation. We suppose that a fluid is confined in a cube Ω = [0, LΩ]

3 with periodic boundary
conditions. Let 〈·〉Ω :=

∫
Ω d

3x · /|Ω| be the spatial average.

• Inviscid conservation law of energy.
The mean kinetic energy per unit mass 〈|v|2〉Ω/2 obeys the following balance equa-
tion:8

d

dt

〈
1

2
|v|2

〉
Ω

= −ν〈|∇v|2〉Ω. (1.13)

Note that 〈|∇v|2〉Ω can be rewritten as 〈|ω|2〉Ω, which is called mean enstrophy.9

• Inviscid conservation law of helicity.
The mean helicity 〈v · ω〉Ω/2 obeys the following balance equation:

d

dt

〈
1

2
v · ω

〉
Ω

= −ν〈ω · ∇ × ω〉Ω, (1.14)

where ω := ∇× v denotes the vorticity field.

In two-dimensional flow, there is an additional inviscid conservation law:

• Inviscid conservation law of enstrophy (in two-dimensional flow).
The mean enstrophy 〈|ω|2〉Ω/2 obeys the following balance equation:

d

dt

〈
1

2
|ω|2

〉
Ω

= −ν〈|∇ × ω|2〉Ω. (1.15)

In the inviscid limit ν → 0, the energy and helicity (and enstrophy in two-dimensional
flow) become conserved quantities if the velocity field is sufficiently smooth. Therefore, we
call such quantities inviscid conserved quantities. In deriving these inviscid conservation
laws, we have assumed that the velocity and pressure fields are sufficiently smooth. While
we conjecture that this assumption is valid for finite positive viscosity, it may breakdown
for the solutions of the Euler equations, as first conjectured by Onsager [3,18]. We finally
note that the nonlinear term in the Navier–Stokes equation does not contribute to the
balance equations for inviscid conserved quantities. As we will see in the next section, the
nonlinear term redistributes the inviscid conserved quantities over a wide range of scales.

1.3 Milestone: Kolmogorov’s 4/5-law

At present, there is no satisfactory theory that can derive the empirical laws presented
in Section 1.1 based on the Navier–Stokes equation. Still, for the third-order longitudinal

7This is one of the million-dollar prize problems: https://www.claymath.org/millennium-problems/
navier-stokes-equation. Its mathematical status is summarized in [39].

8The words “mean” and “per unit mass” are often omitted.
9Only the quantity ν|∇v(x, t)|2 deserves to be called the local energy dissipation, because it is possible

that there is no energy dissipation although |ω(x, t)|2 is finite.

https://www.claymath.org/millennium-problems/navier-stokes-equation
https://www.claymath.org/millennium-problems/navier-stokes-equation
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structure function 〈(δv∥(ℓ;x))3〉, an exact relation can be derived. This exact relation was
first derived by Kolmogorov, and it is called Kolmogorov’s 4/5-law [21].

Kolmogorov’s 4/5-law� �
By assuming homogeneity, isotropy, and dissipative anomaly, the third-order longi-
tudinal structure function for ℓ � L takes the following form in the inviscid limit
ν → 0:

〈(δv∥(ℓ;x))3〉 = −4

5
εℓ. (1.16)� �

Here, homogeneity means that δv(ℓ;x+r)
d
= δv(ℓ;x) for all x ∈ Ω and r, ℓ small compared

to L. Similarly, isotropy means that Rδv(R−1ℓ;x)
d
= δv(ℓ;x) for all x ∈ Ω, R ∈ SO(3),

and ℓ small compared to L. The 4/5-law is one of the few exact and nontrivial results in
fully developed fluid turbulence. We note that the two-thirds law can be derived from the
4/5-law if we assume self-similarity. The important point here is that the dimensionless
constant C3 = −4/5 does not depend on the details of the flow under consideration. That
is, Kolmogorov’s 4/5-law is a universal relation, which is valid for all types of flow that
satisfies the assumptions imposed in deriving it. There is compelling experimental and
numerical support for this law [43–45].

Below, we provide an outline of the proof. To this end, we first show that kinetic
energy is transferred conservatively from large to small scales in three-dimensional fluid
turbulence. We will see that this energy cascade is crucial in deriving the 4/5-law and
underlies the universality.

Energy cascade. We consider the Navier–Stokes equation with the external force that
acts at large scales ∼ L = k−1

f :

∂tv + v · ∇v = −∇p+ ν∇2v + f . (1.17)

To investigate the energy transfer across scales, we introduce the low-pass filtering operator

P<
K : a(x) 7→ a<

K(x), (1.18)

which sets to zero all Fourier components of any field a with wavenumber larger than K:

a<
K(x) :=

∑
|k|≤K

âke
ik·x, (1.19)

where âk =
∫
Ω d

3xa(x)e−ik·x is the Fourier coefficient with wavevector k ∈ (2π/LΩ)Z3.
Note that P<

K is a projection operator, P<
K = P<

K ◦P<
K , and commutes with ∇. By applying

P<
K to the Navier–Stokes equation, we obtain the time evolution equation for the large-scale

energy 〈|v<
K |2〉/2:

∂t

〈
1

2
|v<

K |2
〉

= −ΠK − ν
∑

|k|≤K

k2〈|v̂k|2〉+
∑

|k|≤K

〈f̂k · v̂−k〉. (1.20)

Here, ΠK denotes the scale-to-scale energy flux through wavenumber K:

ΠK := −〈∇v<
K :

(
P<
K [vv]− v<

Kv<
K

)
〉. (1.21)
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Energy cascade

Fig. 1.2: Schematic of energy cascade. The kinetic energy in the shaded region corresponds to the large-
scale energy ⟨|v<

K |2⟩/2.

From this expression, we can see that ΠK represents the nonlinear interference between
large and small scales. The second term on the right-hand side of (1.20) denotes the viscous
dissipation, and the last term denotes the energy injection due to the external force. We
note that if we take the limit K → ∞ for fixed ν, we recover the energy balance equation:

d

dt

〈
1

2
|v|2

〉
= −ν〈|∇v|2〉+ 〈f · v〉. (1.22)

Now, we take the inviscid limit ν → 0 (i.e., kν = η−1 → ∞) for fixed K in (1.20). Then,
we find that

ν
∑

|k|≤K

k2〈|v̂k|2〉 ≤ νK2〈|v<
K |2〉

≤ νK2〈|v|2〉 → 0. (1.23)

Next, we take the limit K → ∞ with fixed kf . Since f acts only at large scales ∼ L = k−1
f ,

we obtain ∑
|k|≤K

〈f̂k · v̂−k〉 → 〈f · v〉. (1.24)

By assuming the dissipative anomaly ε := ν〈|∇v|2〉 > 0 in the inviscid limit, we have
〈f · v〉 = ε in the steady state. Therefore, we obtain

lim
K→∞

lim
ν→0

ΠK = ε. (1.25)

This relation states that the scale-to-scale energy flux is independent of K in the inertial
range kf � K � kν . In other words, the kinetic energy is transferred conservatively
from large to small scales (Fig. 1.2). This is the energy cascade phenomenon and governs
the energy distribution in the k-space. Since this phenomenon was intuitively described
by Richardson as the successive generation of smaller vortices by the stretching of larger
vortices, the energy cascade in ordinary fluid turbulence is also called the Richardson
cascade.
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Outline of the proof of Kolmogorov’s 4/5-law. We prove the 4/5-law in the steady
state regime, although it is valid even in freely decaying turbulence. Our starting point is
the relation (1.25). We use the fact that ΠK can be expressed in terms of the third-order
longitudinal structure function if we assume homogeneity and isotropy:

ΠK = − 1

6π

∫ ∞

0
dℓ

sin(Kℓ)

ℓ
(1 + ℓ∂ℓ)(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)

〈(δv∥(ℓ;x))3〉
ℓ

. (1.26)

For the derivation of this expression, see, e.g., [5]. By substituting this expression into
(1.25) and changing variable from ℓ to x = Kℓ, we obtain

− lim
K→∞

lim
ν→0

∫ ∞

0
dx

sinx

x
F
( x
K

)
= ε, (1.27)

where we have introduced

F (ℓ) := (1 + ℓ∂ℓ)(3 + ℓ∂ℓ)(5 + ℓ∂ℓ)
〈(δv∥(ℓ;x))3〉

6πℓ
. (1.28)

By noting that
∫∞
0 dx sinx/x = π/2, we obtain the following differential equation for small

ℓ:

F (ℓ) = − 2

π
ε. (1.29)

By solving this equation, we obtain

〈(δv∥(ℓ;x))3〉
ℓ

= −4

5
ε+Aℓ−1 +Bℓ−3 + Cℓ−5, (1.30)

where A, B, and C are constants. Therefore, the only solution that 〈(δv∥(ℓ;x))3〉 → 0 as
ℓ→ 0 is10

lim
ℓ→0

lim
ν→0

〈(δv∥(ℓ;x))3〉
ℓ

= −4

5
ε. (1.31)

Remark 1: dimensional analysis. Here, we remark that dimensional analysis pro-
vides results consistent with Kolmogorov’s 4/5-law. Let vℓ be the characteristic velocity
associated with the length scale ℓ� L, which is defined, for instance, as 〈(δv∥(ℓ;x))2〉1/2.
Similarly, we denote by vL ∼ vrms := 〈|v|2〉1/2 the characteristic velocity at the injection
scale L. Then, the characteristic time scale for an eddy of size ∼ ℓ to be stretched into
smaller eddies reads

τℓ ∼
ℓ

vℓ
. (1.32)

This time scale is called eddy turnover time or circulation time associated with the length
scale ℓ. In particular, τL is called the large-eddy turnover time. Now, let Πℓ be the energy
flux from scales ∼ ℓ to smaller scales, which may be defined as ΠK in (1.21) with K ∼ ℓ−1.
By using vℓ and τℓ, we estimate Πℓ as

Πℓ ∼
v2ℓ
τℓ

∼
v3ℓ
ℓ
. (1.33)

10We note that the condition ⟨(δv∥(ℓ;x))3⟩ → 0 as ℓ → 0 is an assumption, since the limit ν → 0 is
taken before the limit ℓ → 0.
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We now assume the dissipative anomaly. Then, in the inertial range η � ℓ � L, where
there is neither external energy injection nor viscous dissipation, the energy flux should be
independent of ℓ and equal to the energy dissipation rate:

Πℓ ∼ ε. (1.34)

From (1.33) and (1.34), we obtain

vℓ ∼ ε1/3ℓ1/3. (1.35)

This estimation states that the velocity field is scale-invariant with exponent h = 1/3,
which is consistent with Kolmogorov’s 4/5-law. Furthermore, by substituting this expres-
sion into (1.32), we find that

τℓ ∼ ε−1/3ℓ2/3. (1.36)

Thus, the small-scale eddies evolve faster, or in other words, the cascade is accelerated
as ℓ decreases. By extrapolating the estimation (1.35) to the injection scale L, we can
obtain Taylor’s estimation of the energy dissipation ε ∼ v3L/L [46]. We remark that the
Kolmogorov dissipation scale η can also be obtained by comparing the eddy turnover time
τℓ with the characteristic time scale for viscous dissipation τvisℓ := ℓ2/ν:

τη ∼ τvisη

∴ η ∼ ν3/4ε−1/4 ∼ Re−3/4L. (1.37)

In the atmospheric boundary layer turbulence, the large-eddy turnover time can be esti-
mated as τL ∼ 1min. Therefore, the cascade may reach from L ∼ 100m to η ∼ 1mm within
a few minutes.

Remark 2: cascade and universality. One important property about energy cascade
not mentioned above is scale locality. Energy cascade is scale-local if only modes near a
given scale mainly contribute to the energy transfer at that scale. It is believed that the
universality of small-scale turbulent fluctuations is due to this scale-local cascade process [5,
10]. In other words, small-scale turbulent fluctuations “forget” the details of large scales
because of the chaotic nature of the stepwise cascade process.

1.4 Overview of this thesis

So far, we have reviewed some of the most notable experimental observations and theo-
retical achievements on fully developed fluid turbulence. In particular, we have seen that
turbulence exhibits rich universal behaviors despite its seemingly extremely complicated
flow patterns. Importantly, energy cascade lies at the core of this remarkable universality
of small-scale turbulent fluctuations. In this thesis, we investigate the universal aspect
of energy cascade from the viewpoint of statistical physics. Below, we describe the main
purpose of this thesis and summarize the main contribution.

Part I: Toward establishing the concept of “universality class” for cascade
transfer

It is important to note that cascade transfer phenomenon is not limited to kinetic energy,
but is also possible for other inviscid conserved quantities, such as enstrophy and helicity.
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Remarkably, such cascade transfer phenomena are widely observed in various systems,
including quantum fluids, elastic bodies, and spin systems [47–59]. For example, it is known
that quantum turbulence, which is explained below, exhibits the Kolmogorov spectrum
at scales larger than the mean intervortex distance, although the governing equation is
different from the Navier–Stokes equation [47–51]. Thus, cascade transfer phenomena are
ubiquitous and underlie the universality observed in various systems. This fact motivates
us to systematically classify various cascade phenomena by establishing the concept of
a “universality class,” as in equilibrium critical phenomena. As a first step toward this
end, we explore novel types of cascade phenomena by considering (i) fluid quite different
from ordinary fluid, (ii) ordinary fluid under extreme conditions, and (iii) a simple model
different from a fluid model. Specifically, (i) we investigate the similarity and difference
between quantum and classical turbulence [60, 61], (ii) explore a novel type of energy
cascade by focusing on supercritical turbulence [62], and (iii) construct a simple model
where energy cascade emerges from spatially local interaction [63]. Below, we provide a
brief summary of these three works.

(i) Quantum turbulence

Quantum fluids, such as superfluid helium and atomic Bose-Einstein condensates, also ex-
hibit complicated and unpredictable fluid motion, which is called quantum turbulence [47–
51]. We focus on pure quantum turbulence, where the temperature is sufficiently low so
that the viscous normal fluid density is negligible compared to the inviscid superfluid den-
sity. Different from ordinary fluids, the vorticity in quantum fluids is quantized [18, 64].
Many experiments and numerical simulations suggest that at scales larger than the mean
intervortex distance ℓi, quantum turbulence exhibits the Richardson cascade with the
Kolmogorov spectrum, while at scales smaller than ℓi, a novel energy cascade specific to
quantum turbulence emerges. This novel energy cascade is believed to be induced by the
interaction of Kelvin waves of different wave numbers on a single quantum vortex, and is
called Kelvin-wave cascade. While the nature of the Kelvin-wave cascade has been inten-
sively investigated over recent decades, the effects of compressibility on the novel cascade
remain to be elucidated. Because the superfluid density changes significantly in the vicin-
ity of quantum vortices, the compressibility effects can induce a nontrivial impact on the
energy cascade.

In Chapter 3, we aim to reveal the compressibility effects on the energy cascade. To this
end, we theoretically analyze the Gross-Pitaevskii equation by taking a phenomenological
approach based on the Onsager “ideal turbulence” theory. We show that the compressibility
effects can induce a novel energy cascade, which we call quantum stress cascade, at scales
smaller than ℓi. We conjecture that the incompressible part of this quantum stress cascade
corresponds to the conventional Kelvin-wave cascade.

(ii) Van der Waals turbulence

In ordinary fluid turbulence, the Kolmogorov dissipation scale η is overwhelmingly larger
than the microscopic length scales such as the molecular mean free path λmfp [5], and
thus the cascade never reaches microscopic length scales. However, if we consider the
strong turbulent regime of a supercritical fluid near a gas-liquid critical point, where the
correlation length of equilibrium density fluctuations ξ reaches a macroscopic order of
magnitude, the cascade possibly reaches “microscopic length scales” smaller than ξ. Then,
we ask how the Richardson cascade is modified by density fluctuations at scales smaller
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than ξ.
In Chapter 4, we answer this question by investigating hydrodynamic equations called

the Navier–Stokes–Korteweg equation. This equation includes the stress due to the density
fluctuations determined by the van der Waals theory. By using a similar argument devel-
oped in Chapter 3, we show that supercritical turbulence near a critical point exhibits a
novel type of energy cascade, which we call van der Waals cascade, at “microscopic length
scales” smaller than ξ. Interestingly, the mechanism of this novel cascade is analogous to
that of the quantum stress cascade in quantum turbulence. In other words, pure quantum
turbulence and this van der Waals turbulence may belong to the same “universality class.”

(iii) Simple XY model for cascade transfer

Since we are interested only in the universal aspect of cascade transfer, it is sufficient
to investigate the simplest model that describes it. Simple models have provided phe-
nomenological perspectives on various phenomena such as critical phenomena [65], phase
separation [38,66], directed percolation [67], surface growth [68,69], and flocking [70]. Here,
we aim to construct a simple model representing one universality class for cascade transfer
without paying much attention to its relevance to real systems. In doing so, we regard
cascade transfer as a cooperative phenomenon and ask how it emerges from spatially local
interactions.

In Chapter 5, we propose such a simple model that represents a different “universality
class” from ordinary fluid turbulence. The constructed model can be regarded as a modified
XY model where the amplitude fluctuates. We show that an inverse energy cascade with
a non-Kolmogorov energy spectrum E(k) ∝ k−3 emerges from spatially local interactions.
Interestingly, the behavior of this model is similar to that observed in spin turbulence and
atmospheric turbulence.

Part II: Information flow in turbulence

At the end of Section 1.3, we mentioned a common intuitive picture of the origin of uni-
versality that small-scale turbulent fluctuations “forget” the details of large scales because
of the chaotic nature of the stepwise cascade process. Somewhat contrary to this picture,
it is known that, along with the energy cascade, fluctuations of small-scale quantities (e.g.,
the energy dissipation rate) follow those of large-scale quantities (e.g., the energy injection
rate) with a time delay that corresponds to the large-eddy turnover time [71–73]. Moreover,
the energy cascade induces chaos synchronization of small-scale motions, where small-scale
velocity field is slaved to the chaotic dynamics of large-scale velocity field [74–78]. These
phenomena suggest that information of large-scale turbulent fluctuations is transferred to
small scales.

In Chapter 7, we aim to elucidate the nature of information flow in ordinary fluid
turbulence from an information-thermodynamic viewpoint [79]. To this end, we employ
the framework of fluctuating hydrodynamics to explicitly take thermal fluctuations into
account. Specifically, we use the shell model with thermal noise, which is a simplified
caricature of the fluctuating Navier–Stokes equation. Information thermodynamics is es-
sentially stochastic thermodynamics for subsystems [80, 81] and provides constraints that
are consistent with thermodynamics on the exchange of information between subsystems.
This approach not only enables us to obtain fundamental constraints on information flow,
but also allows comparative studies with other information processing systems.
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We show that information of large-scale eddies is transferred to small scales along
with the energy cascade. The information transfer rate is characterized by the large-eddy
turnover time. Furthermore, we numerically show that the information-thermodynamic
efficiency is extremely low compared to other information processing systems such as
Maxwell’s demon. This result implies that transferring information from large to small
scales involves enormous thermodynamic costs, indicating the poor performance of turbu-
lence as an information processing system.

1.4.1 Organization of the thesis

The remainder of this thesis is organized as follows (see also Fig. 1.3).

Part I consists of Chapters 2, 3, 4, and 5:

• In Chapter 2, we briefly review the Onsager “ideal turbulence” theory, which can be
regarded as a central pillar of our understanding of fluid turbulence. The Onsager
theory provides exact results consistent with various experimental facts and rich
phenomenological perspectives, which will be used in Chapter 3 and 4.

• In Chapter 3, we investigate the similarity and difference between quantum and
classical turbulence. Specifically, by taking a phenomenological approach based on
the Onsager “ideal turbulence” theory, we show that the compressibility effects can
induce a novel energy cascade, which we call quantum stress cascade. This chapter is
based on [T. Tanogami, Phys. Rev. E 103, 023106 (2021)] and [T. Tanogami, Phys.
Rev. E 105, 027102 (2022)].

• In Chapter 4, we explore a novel type of energy cascade by focusing on supercritical
turbulence near a gas-liquid critical point. We show that supercritical turbulence
near a critical point exhibits a novel type of energy cascade, which we call van der
Waals cascade. This chapter is based on [T. Tanogami and S.-i. Sasa, Phys. Rev.
Research 3, L032027 (2021)].

• In Chapter 5, we construct a simple model representing one universality class for
cascade transfer without paying much attention to its relevance to real systems. We
show that an inverse energy cascade with a non-Kolmogorov energy spectrum emerges
from spatially local interactions. This chapter is based on [T. Tanogami and S.-i.
Sasa, Phys. Rev. Research 4, L022015 (2022)].

Part II consists of Chapters 6 and 7:

• In Chapter 6, we introduce several information-theoretic quantities and briefly review
stochastic thermodynamics and information thermodynamics, which will be used in
Chapter 7.

• In Chapter 7, we investigate the nature of information flow in ordinary fluid turbu-
lence from an information-thermodynamic viewpoint. We show that information of
turbulent fluctuations flows from large to small scales along with the energy cascade.
This chapter is based on [T. Tanogami and R. Araki, arXiv:2206.11163].

Finally, in Chapter 8, we conclude this thesis with some future perspectives.
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Chapter 2

Onsager’s “ideal turbulence” theory

In this chapter, we briefly review the Onsager “ideal turbulence” theory [3, 10, 18, 82]. In
the previous chapter, we have seen that dissipative anomaly is one of the most crucial ex-
perimental facts in three-dimensional fluid turbulence. This phenomenon implies that the
velocity field does not remain differentiable in the inviscid limit and that the core of turbu-
lence can be described by “non-differentiable solutions,” or in modern terms, weak solutions,
of the Euler equation. This observation is at the heart of the Onsager “ideal turbulence”
theory. The Onsager theory has been extended to various turbulent phenomena, such
as two-dimensional enstrophy cascade [83, 84], three-dimensional helicity cascade [85, 86],
magnetohydrodynamic turbulence [87–89], compressible turbulence [90–95], collisionless
plasma turbulence [96], and relativistic fluid turbulence [97]. Although the Onsager theory
involves sophisticated mathematical concepts such as weak solutions, it also provides a
phenomenological perspective on the relation between cascades and the singularity of the
velocity field. Such a phenomenological perspective provides a basis for the argument in
Chapter 3 and 4.

This chapter is organized as follows. In the next section, we explain the so-called
Onsager’s conjecture. In Section 2.2, we briefly explain the outline of the proof of the first
part of the conjecture. Some mathematical concepts and results introduced in this section
will be used in Chapter 3 and 4. In Section 2.3, we provide a brief introduction to the ideas
behind the proof of the second part of the conjecture. Concluding remarks are provided
in Section 2.4.

2.1 The Onsager conjecture

At the end of his 1949 paper [18], Onsager provided the following remark, which is now
called the “Onsager conjecture”:1

“It is of some interest to note that in principle, turbulent dissipation as described
could take place just as readily without the final assistance by viscosity. In the
absence of viscosity, the standard proof of the conservation of energy does not
apply, because the velocity field does not remain differentiable! In fact it is
possible to show that the velocity field in such “ideal” turbulence cannot obey
any LIPSCHITZ condition of the form

|v(r′ + r)− v(r′)| < (const.)rn,

1Onsager was aware of Taylor’s estimation of the energy dissipation ε ∼ v3rms/L [46] and of Dryden’s
experiments suggesting the existence of dissipative anomaly [11].

17
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for any order n greater than 1/3; otherwise the energy is conserved. Of course,
under the circumstances, the ordinary formulation of the laws of motion in
terms of differential equations becomes inadequate and must be replaced by
a more general description; for example, the formulation (15) in terms of
FOURIER series will do. The detailed conservation of energy (17) does not
imply conservation of the total energy if the number of steps in the cascade is
infinite, as expected, and the double sum of Q(k,k′) converges only condition-
ally.”

This remark can be summarized in the following two statements:

Onsager conjecture� �
Let v be a (generalized) solution of the Euler equation with Hölder exponent h:

|v(x+ r)− v(x)| ≤ Crh, ∀r,x,

where C is a constant independent of r,x.

1. If h > 1/3, then energy is conserved.

2. For h < 1/3, there are solutions that dissipates energy.� �
Historically, the Onsager conjecture seems to have been nearly forgotten for a long time
until rediscovered by Eyink [3, 98].2 In [98], a result close to the first part of the Onsager
conjecture was proved in terms of weak solutions, which can be regarded as the modern
concept corresponding to “general description” in Onsager’s remark. Shortly thereafter,
Constantin et al. found a proof of the first conjecture and even obtained a sharper result
based on Besov spaces [100]. In later work, Duchon and Robert provided another similar
proof for the first conjecture by using the so-called point-splitting regularization and estab-
lished the connection between the Onsager conjecture and the Kolmogorov 4/5-law [101].
Remarkably, Onsager had obtained results similar to those of Duchon and Robert in his
unpublished notes (see pp. 14-18 of [https://ntnu.tind.io/record/121183] for his hand-
written notes and [3] for a historical review).

The second part of the conjecture was almost certainly not proved by Onsager and has
a long history. The first related result was provided by Scheffer [102] and Shnirelman [103],
although they were not motivated by the Onsager conjecture. They constructed a nontrivial
weak Euler solution with compact support in space and time, which is hard to interpret
physically. The essential idea toward settling the second conjecture was proposed by De
Lellis and Székelyhidi Jr [104–107]. Remarkably, their idea is closely connected with the
Nash–Kuiper theorem [108–110] and Gromov’s homotopy principle (or h-principle) [111,
112]. Based on their program, the second conjecture was finally proved by Isett [113] and
Buckmaster et al. [114].

Below, we provide a brief sketch of the proof of the Onsager conjecture. We mainly focus
on the first part of the conjecture, because some mathematical concepts and arguments in
the proof provide a basis for the phenomenological approach used in Chapter 3 and 4.

2Even in the review article on turbulence by J. von Neumann in 1949 [99], Onsager’s remark is not
mentioned. In this article, Neumann reviews, e.g., the K41 theory, Heisenberg’s theory, and the Burgers
equation, and emphasizes the importance of numerical simulations in turbulence research.

https://ntnu.tind.io/record/121183
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2.2 On the first part of the conjecture

Here, we sketch the proof of the first part of the Onsager conjecture following Constantin et
al. [100]. Before we proceed to the sketch of the proof, we first introduce some mathematical
concepts.

2.2.1 Some mathematical concepts

Here, we introduce some mathematical concepts and useful results without proof. The em-
phasis is on relevance to physics rather than mathematical rigor. For more mathematically
rigorous definitions and proofs, see, e.g., [115–117].

Lp-norm

To prove the first part of the Onsager conjecture, we need to measure the “size” of the
energy flux. Therefore, we introduce the Lp-norm: for any measurable function f : Ω → R,
Lp-norm of f is defined by3

‖f‖p :=


(

1

|Ω|

∫
Ω
|f(x)|pd3x

)1/p

= 〈|f |p〉1/pΩ if 1 ≤ p <∞,

‖f‖∞ := ess supΩ |f | if p = ∞.

(2.1)

The set of all measurable functions f : Ω → R such that ‖f‖p < ∞ is called Lp space,
denoted by Lp(Ω).4 For a vector a : Ω → Rm, we define ‖a‖p := ‖|a|‖p with |a| :=√
a21 + a22 + · · ·+ a2m. For a matrix A = (aij), we define its Lp-norm ‖A‖p = ‖|A|‖p via the

Frobenius norm |A| :=
√∑

i

∑
j |aij |2.

(Generalized) Hölder inequality� �
Suppose p, q, r ∈ [1,∞] satisfy 1/p+ 1/q = 1/r and f ∈ Lp(Ω) and g ∈ Lq(Ω). Then,
fg ∈ Lr(Ω) and

‖fg‖r ≤ ‖f‖p‖g‖q. (2.2)� �
Minkowski inequality� �

Suppose p ∈ [1,∞] and f, g ∈ Lp(Ω). Then, f + g ∈ Lp(Ω) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (2.3)� �
From the Hölder inequality, we note that ‖f‖p ≤ ‖f‖q for p ≤ q.

3Here, we employed the definition where the integral is normalized by |Ω| so that the absolute structure
function can be expressed as ⟨|δv(r;x)|p⟩Ω = ∥δv(r; ·)∥pp.

4Strictly speaking, Lp(Ω) is not a space of functions, but of equivalence classes. That is, we identify
two functions if they are equal almost everywhere.
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Besov regularity

Next, we introduce the Besov regularity, which is a “Lp-version” of Hölder continuity [90,
118,119]. A function a ∈ Lp(Ω) (p ∈ [1,∞]) with

‖δa(r; ·)‖p ≤ Crσp (2.4)

is called Besov regular with pth-order Besov exponent σp.5 Note that Besov regularity of
p = ∞ corresponds to uniform Hölder continuity:

|δa(r;x)| ≤ Crσ∞ , ∀x ∈ Ω. (2.6)

In the context of turbulence, note that ‖δv(r; ·)‖p is essentially the traditional absolute
structure function 〈|δv(r;x)|p〉Ω = ‖δv(r; ·)‖pp:

〈|δv(r;x)|p〉Ω ∼ vprms

( r
L

)ζp
for r � L, (2.7)

where the symbol ∼ means that

ζp = lim inf
r→0

ln〈|δv(r;x)|p〉Ω
ln(r/L)

. (2.8)

Therefore, if σp is the maximal Besov exponent of order p for the velocity field, i.e.,6

σp = lim inf
r→0

ln ‖δv(r; ·)‖p
ln(r/L)

, (2.11)

then σp = ζp/p [10].

Mollification

We now introduce mollification or coarse-graining procedure. Let Gℓ(r) := ℓ−3G(r/ℓ) be
the Friedrichs mollifier with ℓ > 0, where G ∈ C∞

0 (Ω) satisfies

G(r) ≥ 0, (2.12)
G(r) = 0 for r ≥ 1, (2.13)∫

Ω
d3rG(r) = 1. (2.14)

5More precisely, the Besov space B
σp,∞
p (Ω) comprises measurable functions f : Ω → R such that the

following Besov norm is finite:

∥f∥
B

σp,∞
p (Ω)

:= ∥f∥p + sup
r

∥δf(r; ·)∥p
rσp

. (2.5)

6In other words, for every ϵ > 0, there exists a δ > 0 such that whenever ℓ < δ, we have

σp − ϵ ≤ inf
r<ℓ

ln ∥δv(r; ·)∥p
ln(r/L)

≤ σp + ϵ. (2.9)

By noting that ln(r/L) < 0, this implies that

∃r < ℓ, ∥δv(r; ·)∥p ≥ C
( r

L

)σp+ϵ

and ∀r < ℓ, ∥δv(r; ·)∥p ≤ C
( r

L

)σp−ϵ

. (2.10)

That is, v ∈ Bσ,∞
p (Ω) for any σ < σp, while v /∈ Bσ,∞

p (Ω) for any σ > σp.
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For convenience, we also assume isotropy: G(r) = G(r) with r := |r|. For any locally
integrable function a(x),7 we define a coarse-grained field at length-scale ℓ > 0 as

āℓ(x) :=

∫
Ω
d3rGℓ(r)a(x+ r). (2.15)

Note that the coarse-grained field āℓ is a smooth function because of the smoothness of
the mollifier. We remark that if f ∈ Lp(Ω) for 1 ≤ p <∞, then f̄ℓ ∈ Lp(Ω) with

‖f̄ℓ‖p ≤ ‖f‖p, (2.16)

and f̄ℓ → f in Lp(Ω) as ℓ→ 0:

lim
ℓ→0

‖f̄ℓ − f‖p = 0. (2.17)

Weak solution

We introduce a weak solution (also called distributional or generalized solution) of the
Euler equation through the coarse-graining procedure. We consider the incompressible
Euler equation:

∂tv + v · ∇v = −∇p, (2.18)
∇ · v = 0. (2.19)

For simplicity, we assume that the solution is differentiable in time and do not consider
external forces. Because the coarse-graining operation commutes with space and time
derivatives, coarse-graining of (2.18) and (2.19) reads

∂tv̄ℓ +∇ · [v̄ℓv̄ℓ + τ̄ℓ(v,v)] = −∇p̄ℓ, (2.20)
∇ · v̄ℓ = 0, (2.21)

where we have introduced the small-scale stress tensor

τ̄ℓ(v,v) := (vv)ℓ − v̄ℓv̄ℓ. (2.22)

Note that the coarse-grained equation is not closed in terms of the coarse-grained fields v̄ℓ
and p̄ℓ due to the existence of the small-scale stress tensor τ̄ℓ.

We say that v is a weak solution of the Euler equation (2.18) and (2.19) if it satisfies
the coarse-grained equation (2.20) and (2.21) for all ℓ > 0. Note that this definition of
weak solution is equivalent to the conventional definition based on distributions [92]. We
remark that weak solutions are not unique in general. That is, there can be more than one
solution even for the same initial data.

2.2.2 Sketch of the proof

We assume that v is a weak solution of the Euler equation that satisfies the Besov regularity

‖δv(r; ·)‖p ∼ vrms

( r
L

)σp

for r � L (2.23)

7Locally integrable means that f is integrable for every compact set K ⊂ Ω, and the set of locally
integrable functions is denoted by L1

loc(Ω). For p ∈ [1,∞], there is a inclusion Lp(Ω) ⊂ L1
loc(Ω).
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with the Besov exponent σp ∈ (0, 1] for some p ≥ 3. Our starting point is the coarse-grained
Euler equation (2.20) and (2.21). We define the large-scale kinetic energy density per mass
as |v̄ℓ|2/2. From (2.20), we obtain the large-scale kinetic energy balance equation:

∂t

(
1

2
|v̄ℓ|2

)
+∇ · Jℓ = −Πℓ, (2.24)

where

Jℓ :=

(
1

2
|v̄ℓ|2 + p̄ℓ

)
v̄ℓ + v̄ℓ · τ̄ℓ(v,v) (2.25)

denotes the spatial transport of large-scale kinetic energy, and

Πℓ := −∇v̄ℓ : τ̄ℓ(v,v) (2.26)

denotes the scale-to-scale energy flux called deformation work [4], which represents work
done by the large-scale strain ∇v̄ℓ against the small-scale stress τ̄ℓ(v,v).8 We note that
for smooth solutions, we obtain Πℓ → 0 as ℓ→ 0.

A key observation in the proof is that Πℓ can be expressed in terms of velocity-
increments δv(r;x) = v(x+ r)− v(x). Indeed, the large-scale strain ∇v̄ℓ and the small-
scale stress τ̄ℓ(v,v) can be expressed as

∇v̄ℓ = −1

ℓ

∫
Ω
d3r(∇G)ℓ(r)δv(r;x), (2.28)

τ̄ℓ(v,v) =

∫
Ω
d3rGℓ(r)δv(r;x)δv(r;x)−

∫
Ω
d3rGℓ(r)δv(r;x)

∫
Ω
d3rGℓ(r)δv(r;x),

(2.29)

where we have used
∫
Ω d

3r∇G(r) = 0 in (2.28). Based on this observation, we now evaluate
the scale dependence of the deformation work by using Lp-norm. We first note that, by
using the Cauchy-Schwarz and Hölder inequality,

‖Πℓ‖p/3 = ‖∇v̄ℓ : τ̄ℓ(v,v)‖p/3
≤ ‖∇v̄ℓ‖p‖τ̄ℓ(v,v)‖p/2. (2.30)

For the large-scale strain ∇v̄ℓ, we can evaluate its scale dependence as follows:

‖∇v̄ℓ‖p =
∥∥∥∥1ℓ
∫
Ω
d3r(∇G)ℓ(r)δv(r; ·)

∥∥∥∥
p

≤ 1

ℓ

∫
Ω
d3r|(∇G)ℓ(r)|‖δv(r; ·)‖p

≤ C

ℓ
‖δv(ℓ)‖p, (2.31)

8Note that the deformation work is a spatially local version of the spectral energy flux ΠK introduced
in Section 1.3. Indeed, by using isotropy of G(r), we can show that the two fluxes are related by [82]

⟨Πℓ⟩Ω =

∫ ∞

0

dkPℓ(k)ΠK . (2.27)

Here, Pℓ(k) := −dk|Ĝ(kℓ)|2 satisfies
∫∞
0

dkPℓ(k) = 1 and Pℓ(k) ≥ 0 for standard mollifier, where Ĝ(k) is
the Fourier transform of G(r).
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where C :=
∫
Ω d

3ρ|∇G(ρ)|, and ‖δv(ℓ)‖p := sup|r|<ℓ ‖δv(r; ·)‖p. Therefore, we find that

‖∇v̄ℓ‖p = O

(
‖δv(ℓ)‖p

ℓ

)
. (2.32)

Similarly, by using the Minkowski and Hölder inequalities, the scale dependence of the
small-scale stress τ̄ℓ(v,v) can be evaluated as

‖τ̄ℓ(v,v)‖p/2 ≤
∥∥∥∥∫

Ω
d3rGℓ(r)δv(r; ·)δv(r; ·)

∥∥∥∥
p/2

+

∥∥∥∥∫
Ω
d3rGℓ(r)δv(r; ·)

∥∥∥∥2
p

≤
∫
Ω
d3rGℓ(r)‖δv(r; ·)‖2p +

(∫
Ω
d3rGℓ(r)‖δv(r; ·)‖p

)2

≤ 2‖δv(ℓ)‖2p, (2.33)

and thus

‖τ̄ℓ(v,v)‖p/2 = O(‖δv(ℓ)‖2p), p ≥ 2. (2.34)

By combining (2.32) and (2.34), we obtain a rigorous upper bound for the deformation
work:

‖Πℓ‖p/3 = O

(
‖δv(ℓ)‖3p

ℓ

)
, p ≥ 3. (2.35)

From the Besov regularity assumption, we finally obtain

‖Πℓ‖p/3 = O
(
ℓ3σp−1

)
, p ≥ 3. (2.36)

Note that

|〈Πℓ〉Ω| ≤ 〈|Πℓ|〉Ω
≤ ‖Πℓ‖r for r ≥ 1, (2.37)

where we have used the Hölder inequality in the second line. Then, (2.36) implies that
〈Πℓ〉Ω → 0, i.e., ∂t〈|v̄ℓ|2〉Ω/2 → 0 as ℓ → 0 if σp > 1/3 for some p ≥ 3. In other
words, dissipative anomaly requires a singular velocity field with σp ≤ 1/3 for any p ≥
3. Interestingly, in terms of the scaling exponent ζp for the absolute structure function,
defined by (2.7), this result implies that ζp ≤ p/3 for any p ≥ 3, which is consistent with
intermittency.

2.2.3 Remark: dissipative anomaly and Kolmogorov’s 4/5-law

We can further derive the local energy balance equation in the sense of distributions by
taking the limit ℓ→ 0 in the large-scale kinetic energy balance equation (2.24):

∂t

(
1

2
|v|2

)
+∇ ·

[(
1

2
|v|2 + p

)
v

]
= −D(v), (2.38)

where D(v) = limℓ→0Πℓ, which is independent of the choice of G(r) [101]. D(v) represents
a possible dissipation or production of energy caused by the lack of smoothness in the
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velocity field v. The result (2.36) implies that D(v) = 0 if σp > 1/3 for some p ≥ 3.9

Note that if ζp ≤ p/3 for any p ≥ 3, D(v) need not be zero and can be both positive
and negative, reflecting the time-reversal symmetry of the Euler equation. In particular,
for weak solutions of the Euler equation obtained in the inviscid limit of Navier–Stokes
solutions, it is true that D(v) ≥ 0. More specifically, if a sequence of Navier–Stokes
solutions vν converges vν → v as ν → 0 in L3-norm, i.e., limν→0 ‖vν −v‖3 = 0, then v is a
weak solution of the Euler equation and satisfies the local energy balance equation (2.38)
with the following relation [101]:1011

D(v) = lim
ν→0

ν|∇vν |2 ≥ 0. (2.41)

This relation implies that the Euler equation has a mechanism for energy dissipation with-
out the aid of viscosity, as pointed out by Onsager.

From the relation (2.41), we can further derive a generalization of Kolmogorov’s 4/5-
law [101]. To see this, we first note that there is an alternative expression for D(v):

D(v) = lim
ℓ→0

1

4ℓ

∫
Ω
d3r(∇G)ℓ(r) · δv(r;x)|δv(r;x)|2. (2.42)

In fact, by introducing a point-splitting regularization of the kinetic energy density as
v · v̄ℓ/2, we have12

∂t

(
1

2
v · v̄ℓ

)
+∇ ·

[(
1

2
v · v̄ℓ

)
v +

1

2
(p̄ℓv + pv̄ℓ) +

1

2

(
(|v|2v)ℓ − (|v|2)ℓv

)]
= −Dℓ(v),

(2.43)

where

Dℓ(v) :=
1

4ℓ

∫
Ω
d3r(∇G)ℓ(r) · δv(r;x)|δv(r;x)|2. (2.44)

Because the left-hand side of (2.43) converges to the left hand-side of (2.38) in the sense of
distributions if v ∈ L3, limℓ→0Dℓ(v) corresponds to D(v). Thus, the relation (2.41) can
be rewritten as

lim
ℓ→0

1

4ℓ

∫
Ω
d3r(∇G)ℓ(r) · δv(r;x)|δv(r;x)|2 = ε̂ (2.45)

9In fact, since for every test function φ ∈ C∞
0 (Ω),

|⟨φΠℓ⟩Ω| ≤ ∥φ∥∞∥Πℓ∥r (2.39)

for r ≥ 1, we find that limℓ→0 |⟨φΠℓ⟩Ω| = 0 if σp > 1/3 for some p ≥ 3. Thus, Πℓ converges to zero in the
sense of distributions.

10More precisely, D(v) is a nonnegative distribution: for every test function φ ∈ C∞
0 (Ω), ⟨φD(v)⟩Ω ≥ 0.

11Here, we have assumed that there are no singularities in the Navier–Stokes solutions at any small,
but finite, viscosity. If there exists the Navier–Stokes singularities, then (2.41) is modified as follows [101]:

D(v) = lim
ν→0

(
ν|∇vν |2 +D(vν)

)
≥ 0 (2.40)

in the sense of distributions.
12This relation appears in p. 14 of Onsager’s unpublished note [https://ntnu.tind.io/record/121183]

in a space-integrated form (see also [3]).

https://ntnu.tind.io/record/121183
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with ε̂ := limν→0 ν|∇vν |2. By using isotropy of G(r) and introducing the angular average
〈·〉ang := (4π)−1

∫
S2 ·dω(r̂), where dω denotes the measure on solid angles, we obtain

ε̂ = lim
ℓ→0

1

4ℓ
4π

∫
r2dr(G′)ℓ(r)〈δv∥(r;x)|δv(r;x)|2〉ang

= lim
ℓ→0

π

∫
ρ3dρG′(ρ)

〈δv∥(r;x)|δv(r;x)|2〉ang
r

∣∣∣∣∣
r=ℓρ

= −3

4
lim
r→0

〈δv∥(r;x)|δv(r;x)|2〉ang
r

, (2.46)

where we have used δv∥(r;x) := δv(r;x) · r̂ and 4π
∫
ρ2dρG(ρ) = 1. Thus, we conclude

that

lim
r→0

〈δv∥(r;x)|δv(r;x)|2〉ang
r

= −4

3
ε̂. (2.47)

By introducing δv⊥ := δv− δv∥r̂ that satisfies r̂ · δv⊥ = 0, we can further show that [120]

lim
r→0

〈
(
δv∥(r;x)

)3〉ang
r

= −4

5
ε̂. (2.48)

Interestingly, while the original Kolmogorov’s 4/5-law requires averaging over ensembles
assuming homogeneity and isotropy, this form of the 4/5-law is valid for individual real-
izations.

2.3 On the second part of the conjecture

The proof of the second part of the conjecture is based on Gromov’s convex integration,
which is a deep mathematical work originating in the Nash–Kuiper theorem and Gromov’s
h-principle. Here, we shall not go into details of the proof, but only provide a brief
introduction to the ideas behind it. For more detailed reviews on the second part of the
Onsager conjecture, see, e.g., [10, 121,122].13

The Nash–Kuiper theorem concerns the isometric embedding of Riemannian manifolds,
a classical problem in differential geometry [108–110]:

Nash–Kuiper theorem� �
Let (M, g) be an m-dimensional Riemannian manifold, and let ū :M → Rn be a C∞

short embedding into Euclidean space Rn with n ≥ m+ 1. Then, for arbitrary ϵ > 0,
there exists a C1 isometric embedding u : M → Rn with |ū(x) − u(x)| < ϵ for any
x ∈M .� �
13See also

https://abelprize.no/abel-prize-laureates/2015

https://hevea-project.fr/ENIndexHevea.html

for an introductory review of the Nash–Kuiper theorem and convex integration. For more technical review
of the convex integration, see, e.g., the textbook [123] or Borrelli’s lecture notes at

http://math.univ-lyon1.fr/homes-www/borrelli/Recherche.html

https://abelprize.no/abel-prize-laureates/2015
https://hevea-project.fr/ENIndexHevea.html
http://math.univ-lyon1.fr/homes-www/borrelli/Recherche.html
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Here, short embedding means that ū decreases length of curves on M :

∂iū · ∂jū ≤ gij , (2.49)

while isometric embedding means that u preserves the length:

∂iu · ∂ju = gij . (2.50)

Let us consider embedding the square flat torus in three-dimensional space R3, for example.
Without stretching the square, it seems impossible to represent it in R3. In fact, Gauss’s
Theorema Egregium implies that curvature must be preserved by any isometric embedding.
However, the Nash–Kuiper theorem states that isometric embedding of the square flat
torus in three-dimensional space is possible if the embedding belongs to the class C1.
Remarkably, this theorem further states that there are infinitely many such isometric
embeddings, although the system (2.50) is overdetermined for m ≥ 3 and n = m+ 1.

While Nash and Kuiper’s proof relies on intricate construction, Gromov proposed a
more systematic and general construction method, called convex integration, by extracting
the underlying concept of Nash and Kuiper’s result: the h-principle [111, 112]. Simply
put, the convex integration technique enables us to systematically construct sequences
of short embeddings converging toward isometric embeddings. That is, starting from a
short embedding, we iteratively add a highly oscillatory correction, called corrugations,
to lengthen distances in various directions to reduce the metric error. The algorithmic
nature of the convex integration technique led to the visualization of an isometrically
embedded square flat torus in three-dimensional space [124] (for an introductory review,
see https://hevea-project.fr/ENIndexHevea.html).

De Lellis and Székelyhidi Jr realized that there is an unexpected and deep mathematical
analogy between C1 isometric embedding and weak solutions of the Euler equation [104–
107]. The analog of a short embedding ū : M → Rn for the Euler equation is a smooth
subsolution v̄ that satisfies

∂tv̄ +∇ · [v̄v̄ + τ̄ ] = −∇p̄, (2.51)
∇ · v̄ = 0, (2.52)

where τ̄ is a symmetric positive-definite tensor. The equation (2.51) has the same form as
the coarse-grained Euler equation (2.20). That is, the error term τ̄ in (2.51) corresponds
to a small-scale stress tensor τ̄ℓ(v,v) := (vv)ℓ− v̄ℓv̄ℓ in (2.20). In the context of the Nash–
Kuiper theorem, τ̄ ≥ 0 is a precise analogue of (2.49). By using the convex integration
technique, the second part of the Onsager conjecture was finally proved by Isett [113] and
Buckmaster et al. [114]:

Theorem 1.1 of [114]� �
Let e : [0, T ] → R+ be any strictly positive smooth function. For any h ∈ (0, 1/3),
there exists a weak solution v ∈ Ch(T3 × [0, T ]) of the Euler equation such that∫

T3

d3x
1

2
|v(x, t)|2 = e(t). (2.53)� �

Note that e(t) can be any function strictly decreasing in time. Thus, this theorem states
that there is a weak Euler solution with Hölder regularity h < 1/3 that dissipates kinetic

https://hevea-project.fr/ENIndexHevea.html
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energy.14 Such a dissipative weak Euler solution is constructed by the convex integration
procedure as follows. For some specified smooth subsolution v̄n with τ̄n that satisfies

∂tv̄n +∇ · [v̄nv̄n + τ̄n] = −∇p̄n, (2.54)
∇ · v̄n = 0, (2.55)

we add small-scale modes Wn+1 to the velocity field so that v̄n+1 = v̄n +Wn+1 is again a
subsolution with |τ̄n+1| � |τ̄n|. By iterating this procedure, we have τ̄n → 0 and v̄n → v,
which is a weak solution of the Euler equation.

2.4 Concluding remarks

Many experiments and numerical simulations suggest the validity of Onsager’s prediction
that the velocity field in “ideal turbulence” must be singular with the Hölder exponent
h ≤ 1/3. For example, the multifractal dimension spectrum of Hölder singularities D(h) =
infp{ph+(3−ζp)} has been obtained with the most probable exponent h∗ ' 1/3 [125,126].
The Besov regularity of the velocity field with σp ≤ 1/3 for any p ≥ 3 has also been
well-established through the measurement of the structure functions [29, 43, 44, 127, 128].
Thus, the Onsager theory provides exact results consistent with various experimental facts.
While the concept of weak solutions seems irrelevant and even pathological for many other
phenomena, the consistency of the Onsager theory and experiments suggests that the
mathematical framework of weak solutions is suitable for describing fluid turbulence.

There remain many interesting open questions concerning the Onsager theory. For
example, it is not known whether the constructed dissipative weak Euler solution exhibits
intermittency. It seems also interesting research direction to investigate what behavior
of fluid motion and microscopic molecular dynamics corresponds to the dissipative weak
solutions.

14In their construction, it is impossible to construct a weak Euler solution with Hölder regularity
h = 1/3.





Chapter 3

Quantum turbulence

As emphasized in Chapter 1, cascade transfer of inviscid conserved quantities with uni-
versal scaling of turbulent fields is a ubiquitous phenomenon. In this chapter, we focus
on such turbulent behavior observed in quantum fluids, such as superfluid helium and
atomic Bose-Einstein condensates (BECs) [47–51]. Specifically, we consider pure quan-
tum turbulence, where the temperature is sufficiently low so that the viscous normal fluid
density is negligible compared to the inviscid superfluid density. Quantum fluids differ
significantly from ordinary classical fluids in that vorticity is quantized, as first pointed
out by Onsager and Feynman [18, 64]. Despite this difference, many experiments and nu-
merical simulations suggest that at scales larger than the mean intervortex distance ℓi,
the Richardson cascade with the Kolmogorov spectrum emerges, as in ordinary classical
turbulence [129–133]. Because of this similarity, pure quantum turbulence is sometimes
referred to as the “prototype” or “skeleton” of turbulence [131,132,134].

At scales smaller than ℓi, however, a novel energy cascade emerges that has never
been observed in classical turbulence. This novel energy cascade is believed to be induced
by the interaction of Kelvin waves of different wave numbers on a single quantum vor-
tex and is called Kelvin-wave cascade. The nature of the Kelvin-wave cascade has been
intensively investigated, and the associated energy spectral exponent is predicted to be,
e.g., −7/5 [135], −5/3 [136], or −1 [137–139]. Because these previous studies are based
on the vortex filament model [140], the effects of compressibility on the Kelvin-wave cas-
cade remain to be elucidated [134]. The compressibility effect is particularly important in
quantum turbulence in atomic BECs, for which various experimental techniques have been
developed in recent years. Note that the superfluid density changes significantly in the
vicinity of quantum vortices. Therefore, the compressibility effects can induce a nontrivial
impact on the energy cascade, at least for scales smaller than ℓi.

In this chapter, we aim to reveal the compressibility effects on the energy cascade in
three-dimensional pure quantum turbulence. To this end, we theoretically analyze the
Gross-Pitaevskii (GP) equation, which can describe quantum turbulence in atomic BECs,
by taking a phenomenological approach based on the Onsager “ideal turbulence” theory.
Specifically, we use the fact that the GP equation can be mapped to the quantum Euler
equation via the Madelung transformation, which has a form similar to that of the ordinary
compressible Euler equation. Although the Onsager theory involves sophisticated mathe-
matical concepts such as weak solutions, it also provides a phenomenological perspective
on the relation between cascades and the singularity of the velocity field. In particular, we
can exploit recent developments that extend the Onsager theory to classical compressible
turbulence [90–95].

29
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We show that the compressibility effects can induce a novel energy cascade, which we
call quantum stress cascade, at scales smaller than ℓi. In doing so, we derive the quantum
counterpart of Kolmogorov’s 4/5-law. We conjecture that the incompressible part of this
quantum stress cascade corresponds to the conventional Kelvin-wave cascade.

This chapter is organized as follows. In the next section, we explain the setup and
introduce the quantum Euler equations. Its basic properties are described in Section 3.2.
In particular, we investigate the local energy balance and the characteristic length scales
of this system. In Section 3.3, by coarse-graining turbulent fields, we show that there are
three types of scale-to-scale energy fluxes. In Section 3.4, we describe our main results.
We derive these results in Section 3.5. Concluding remarks are provided in Section 3.6.

3.1 Setup

We consider a superfluid system of weakly interacting bosons of mass m, confined in a
cube Ω = [0, LΩ]

3 with periodic boundary conditions. Let Ψ(x, t) be the condensate wave
function. The time evolution of Ψ(x, t) is described by the following GP equation:

i~
∂

∂t
Ψ(x, t) =

[
− ~2

2m
∇2 + Vext + g|Ψ|2

]
Ψ(x, t). (3.1)

Here, g > 0 denotes a constant that represents the strength of the interaction between
bosons, and Vext(x, t) expresses both the trapping potential and external stirring, e.g.,
rotation along distinct axes [141]. Note that our analysis can be applied for both decaying
and forced turbulence. By applying the Madelung transformation Ψ =

√
n exp(iθ) [142,

143], which relates Ψ to the superfluid mass density ρ = mn and velocity v = (~/m)∇θ,
the GP equation (3.1) can be mapped to the quantum Euler equations:1

∂tρ+∇ · (ρv) = 0, (3.3)

∂t(ρv) +∇ · (ρvv + pI −Σ) = f , (3.4)

where p := gρ2/(2m2), f denotes the external force due to Vext, which acts at large scales
∼ L, and Σ denotes the quantum stress, which is also called quantum pressure:

Σ :=
~2

4m2
∆ρI − ~2

m2
∇√

ρ∇√
ρ, (3.5)

1Note that the quantum Euler equations can describe the motion of the vortex lines. In other words,
the solutions of the quantum Euler equations contain the solutions of the GP equation with quantum
vortices as a proper subset [61]. To see this, let {ρΨ(·, t),vΨ(·, t)} be the superfluid mass density and
velocity fields at time t obtained from the condensate’s complex wave function Ψ(·, t) that satisfies the GP
equation via the Madelung transformation:

Ψ(x, t) =

√
ρΨ(x, t)

m
exp(iθ(x, t)) (3.2)

with vΨ = (~/m)∇θ, where m denotes the boson mass. Note that {ρΨ(·, t),vΨ(·, t)} satisfies the following
properties: (i) on the nodal lines where superfluid is absent, i.e., {x|ρΨ(x, t) = 0}, the superfluid velocity
vΨ is obviously not defined, and (ii) for any closed loop C that does not pass through the nodal lines, the
circulation ΓC :=

∮
C
vΨ(r, t) · dr is an integer multiple of 2π~/m because of the single-valuedness of Ψ.

Conversely, the single-valued function Ψ(·, t) is uniquely recovered from {ρΨ(·, t),vΨ(·, t)} up to an overall
phase factor because of the quantization condition for ΓC [144]. Because these properties hold at any time
t, there is one-to-one correspondence between Ψ and {ρΨ,vΨ} up to an overall phase factor. Of course,
in general, a function Ψ̃ constructed from the solutions of the quantum Euler equations {ρ,v} becomes a
multivalued function because v does not necessarily satisfy the quantization condition. Thus, the solutions
of the quantum Euler equations contain the solutions of the GP equation as a proper subset [61,144].
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where I is the unit tensor. Note that the quantum Euler equations (3.3) and (3.4) become
identical to the ordinary compressible Euler equations if Σ → 0, which is achieved in
the classical limit ~ → 0. The important point here is that the quantum stress ∇ · Σ
becomes relevant in the vicinity of quantum vortices because it contains higher-order spatial
derivatives. Note that because the density changes are significant even outside the vortex
cores [145–147], we cannot ignore the quantum stress even in that region in general.

3.2 Basic properties

3.2.1 Quantum vortex

One of the most striking properties of quantum fluids is the fact that vorticity is quantized.
We first note that the superfluid velocity v is not defined on the nodal lines where superfluid
is absent, i.e., {x|ρ(x, t) = 0}. For any closed loop C that does not pass through the nodal
lines, the circulation ΓC :=

∮
C v(r, t) · dr is an integer multiple of the quantum circulation

κ := 2π~/m because of the single-valuedness of Ψ:

ΓC :=

∮
C
v(r, t) · dr = nκ (n ∈ Z). (3.6)

3.2.2 Energy balance

The total energy E of this system can be decomposed into three parts, the kinetic energy∫
d3xρ|v|2/2, interaction energy

∫
d3xp, and quantum energy

∫
d3x~2|∇√

ρ|2/2m2 [129,
130]:

E =

∫
Ω
d3x

[
1

2
ρ|v|2 + p+

~2

2m2
|∇√

ρ|2
]
. (3.7)

The local energy balance equation is given by2

∂t

(
1

2
ρ|v|2 + p+

~2

2m2
|∇√

ρ|2
)
+∇ ·

{[(
1

2
ρ|v|2 + p+

~2

2m2
|∇√

ρ|2
)
I + pI −Σ

]
· v

+
~2

4m2
(∇ρ)∇ · v

}
= v · f . (3.8)

The evolution equation for the kinetic energy density is given by

∂t

(
1

2
ρ|v|2

)
+∇ ·

[(
1

2
ρ|v|2 + p

)
v −Σ · v

]
= p∇ · v −Σ : ∇v + v · f . (3.9)

By combining (3.8) and (3.9), we can also derive the evolution equation for the sum of the
interaction and quantum energy densities:

∂t

(
p+

~2

2m2
|∇√

ρ|2
)
+∇ ·

[(
p+

~2

2m2
|∇√

ρ|2
)
v +

~2

4m2
(∇ρ)∇ · v

]
= −p∇ · v+Σ : ∇v.

(3.10)
Note that, even with no external force, the total kinetic energy is not conserved because

of the effect of the first two terms on the right-hand side of (3.9). The first term (with
2We note that the energy current term ~2(∇ρ)∇ · v/4m2 appearing in (3.8) and (3.10) does not exist

in ordinary hydrodynamics. This term corresponds to interstitial working in the Navier–Stokes–Korteweg
equations [148,149] (see also Chapter 4).
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minus sign) −p∇·v is known as pressure-dilatation, which represents conversion of kinetic
energy into interaction or quantum energy and vice versa. From numerical simulations for
classical compressible turbulence [150], we conjecture that the pressure-dilatation converts
kinetic energy into interaction or quantum energy on average. The existence of the second
term Σ : ∇v is specific to quantum turbulence. Because the form of this term is similar to
that of pressure-dilatation, we refer to it as quantum-stress–strain. It also represents the
conversion of kinetic energy into interaction or quantum energy and vice versa.

3.2.3 Characteristic length scales

The existence of quantum vortices leads to several characteristic length scales specific to
quantum turbulence. One of the most important length scales is the mean intervortex
distance ℓi := L

−1/2
D , where LD denotes the vortex line density, i.e., the total length of

vortex lines per unit volume. In terms of the critical velocity for the amplification of the
remnant vortices vc,3 the mean intervortex distance can be estimated as [152]4

ℓi ∼ κ/vc. (3.11)

In addition to the mean intervortex distance, there is another characteristic length scale as-
sociated with quantum vortices: the vortex core radius, or healing length ξ ∼ ~/

√
2mgρ0,

where ρ0 := 〈ρ〉Ω denotes the average superfluid mass density. In a typical fully de-
veloped quantum turbulence, ξ ∼ 10−10m in 4He (10−8m in 3He-B), ℓi ∼ 10−5m, and
L ∼ 10−2m [50]. Note that these scales are not widely separated in atomic BECs.

We remark that the mean intervortex distance can also be interpreted as the character-
istic length scale where the quantum stress Σ becomes comparable to the momentum flux
ρvv. Indeed, if we use vc and ρ0 as the characteristic velocity and density, respectively,
and denote by ℓc the crossover length scale, we obtain

ρvv ∼ Σ

ρ0v
2
c ∼ κ2ρ0/ℓ

2
c

∴ ℓc ∼ κ/vc ∼ ℓi. (3.12)

This observation implies the possibility of the quantum stress cascade, induced by the
quantum stress Σ, at scales � ℓi.

We now introduce other important characteristic length scales by considering the kinetic
energy balance (3.9). Recall that there are energy sink or source terms on the right-hand
side of (3.9): the pressure-dilatation −p∇·v and the quantum-stress–strain Σ : ∇v. Recent
numerical simulations [150,154] suggest that there is a characteristic length scale ℓlarge such
that the contribution to the global pressure-dilatation 〈−p∇ · v〉Ω from scales � ℓlarge is
dominant, whereas the contribution from scales � ℓlarge is negligible. The length scale
ℓlarge is defined, for instance, as follows:

ℓlarge :=

∑
k k

−1E(p)(k)∑
k E

(p)(k)
, (3.13)

3Several experimental studies suggest that vc ∼ 1mm/s to 200mm/s [47,49,151]. Note that this critical
velocity characterizes the amplification of remnant vortices rather than the intrinsic nucleation of vortices,
which is characterized by the Landau critical velocity ∼ 50m/s.

4In terms of the quantum circulation κ and the effective energy injection rate εeff , which will be
defined in Section 3.4, the critical velocity may be estimated as vc ∼ (κεeff)

1/4 [153]. Correspondingly, the
mean intervortex distance can be estimated as ℓi ∼ (κ3/εeff)

1/4, which is also called the quantum length
scale [153].
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where E(p)(k) denotes the pressure-dilatation co-spectrum:

E(p)(k) := − 1

∆k

∑
k−∆k/2<|k|<k+∆k/2

p̂(k)∇̂ · v(−k) (3.14)

with ∆k := 2π/LΩ. Similarly, because both the quantum stress Σ and strain ∇v change
rapidly in space, there may be a characteristic length scale ℓsmall such that the contribution
to the global quantum-stress–strain 〈−Σ : ∇v〉Ω from scales � ℓsmall is negligible, whereas
the contribution from scales � ℓsmall is dominant. We define ℓsmall as

ℓsmall :=

∑
k k

−1E(Σ)(k)∑
k E

(Σ)(k)
, (3.15)

where E(Σ)(k) denotes the quantum-stress–strain co-spectrum:

E(Σ)(k) :=
1

∆k

∑
k−∆k/2<|k|<k+∆k/2

Σ̂(k) : ∇̂v(−k). (3.16)

In the following, we assume the existence of the intermediate asymptotic limit ξ ≲ ℓsmall �
ℓ � ℓi and ℓi � ℓ � ℓlarge ≲ L for fully developed quantum turbulence. The validity of
this assumption will be discussed in Section 3.5.

3.3 Scale-to-scale energy fluxes

3.3.1 Coarse-graining

We investigate energy transfer across scales by using coarse-graining procedure introduced
in the previous chapter. For any locally integrable function a(x), we define a coarse-grained
field at length scale ℓ > 0 as

āℓ(x) :=

∫
Ω
d3rGℓ(r)a(x+ r). (3.17)

Here, Gℓ(r) := ℓ−3G(r/ℓ) is the Friedrichs mollifier, where G : Ω → [0,∞) is a smooth
symmetric function supported in the open unit ball with

∫
ΩG = 1. In the following, we

always assume that ℓ� ξ because we are interested only in scales � ξ.
Because the coarse-graining operation commutes with space and time derivatives, coarse-

graining of (3.3) and (3.4) gives

∂tρ̄ℓ +∇ · (ρv)ℓ = 0, (3.18)

∂t(ρv)ℓ +∇ · (ρvv)ℓ = −∇p̄ℓ +∇ · Σ̄ℓ + f̄ℓ. (3.19)

Note that the coarse-grained equations (3.20) and (3.21) are not closed in terms of large-
scale fields ρ̄ℓ, v̄ℓ, p̄ℓ, Σ̄ℓ, and f̄ℓ. This point becomes more explicit by introducing the
density-weighted Favre average ãℓ := (ρa)ℓ/ρ̄ℓ [155]:

∂tρ̄ℓ +∇ · (ρ̄ℓṽℓ) = 0, (3.20)

ρ̄ℓ(∂t + ṽℓ · ∇)ṽℓ +∇ · (ρ̄ℓτ̃ℓ(v,v)) = −∇p̄ℓ +∇ · Σ̄ℓ + f̄ℓ, (3.21)

where τ̃ℓ(v,v) := (̃vv)ℓ − ṽℓṽℓ. Note that there appears an additional cumulant term
∇ · (ρ̄ℓτ̃ℓ(v,v)) on the left-hand side of (3.21). This cumulant term depends on the small-
scale (< ℓ) velocity field and can be regarded as the source of the energy cascade, as
described below.
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3.3.2 Large-scale energy balance

We derive the large-scale energy balance equation and show that there are three types of
scale-to-scale energy fluxes in quantum turbulence. Here, the large-scale kinetic energy
density is defined as ρ̄ℓ|ṽℓ|2/2 and satisfies the inequality [91]∫

Ω
d3x

1

2
ρ̄ℓ|ṽℓ|2 ≤

∫
Ω
d3x

1

2
ρ|v|2. (3.22)

From the coarse-grained equations (3.20) and (3.21), we can obtain the large-scale kinetic
energy balance equation,

∂t

(
1

2
ρ̄ℓ|ṽℓ|2

)
+∇ · Jℓ = p̄ℓ∇ · v̄ℓ − Σ̄ℓ : ∇v̄ℓ −Qflux

ℓ + εinℓ . (3.23)

Here, Jℓ represents the spatial transport of large-scale kinetic energy, which does not
contribute to the transfer of kinetic energy across scales:

Jℓ :=

(
1

2
ρ̄ℓ|ṽℓ|2 + p̄ℓ

)
ṽℓ + ρ̄ℓṽℓ · τ̃ℓ(v,v)−

p̄ℓ
ρ̄ℓ
τ̄ℓ(ρ,v)− Σ̄ℓ · ṽℓ +

Σ̄ℓ

ρ̄ℓ
· τ̄ℓ(ρ,v), (3.24)

where τ̄ℓ(ρ,v) := (ρv)ℓ − ρ̄ℓv̄ℓ, and εinℓ denotes the energy injection rate due to external
stirring at scale ℓ:

εinℓ := ṽℓ · f̄ℓ. (3.25)

The first two terms on the right-hand side of (3.23), −p̄ℓ∇ · v̄ℓ and Σ̄ℓ : ∇v̄ℓ, can be
interpreted as the large-scale pressure-dilatation and quantum-stress–strain, respectively.
Note that these two terms are closed in terms of the large-scale fields v̄ℓ, p̄ℓ, and Σ̄ℓ.
Therefore, they only contribute to the conversion of the large-scale kinetic energy into
interaction and quantum energies, and vice versa.

The third term on the right-hand side of (3.23), Qflux
ℓ , can be decomposed into three

parts:
Qflux

ℓ = Πℓ + Λ
(p)
ℓ + Λ

(Σ)
ℓ . (3.26)

The first term Πℓ is called deformation work [4], which corresponds to the energy flux of
the Richardson cascade:

Πℓ := −ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v). (3.27)

The deformation work represents work done by the large-scale strain ∇ṽℓ against the
small-scale stress ρ̄ℓτ̃ℓ(v,v). The second term Λ

(p)
ℓ is called baropycnal work [93, 95, 156],

which represents work done by the large-scale pressure gradient force −∇p̄ℓ/ρ̄ℓ against the
small-scale mass flux τ̄ℓ(ρ,v):

Λ
(p)
ℓ :=

1

ρ̄ℓ
∇p̄ℓ · τ̄ℓ(ρ,v). (3.28)

While the deformation work and the baropycnal work also exist in classical compressible
turbulence, the existence of the third term Λ

(Σ)
ℓ is specific to quantum turbulence:

Λ
(Σ)
ℓ := − 1

ρ̄ℓ
∇ · Σ̄ℓ · τ̄ℓ(ρ,v). (3.29)

Because this term has a form similar to that of the baropycnal work, we call it quantum
baropycnal work. The quantum baropycnal work represents work done by the large-scale
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force ∇ · Σ̄ℓ/ρ̄ℓ against the small-scale mass flux τ̄ℓ(ρ,v). Importantly, in the large-scale
kinetic energy balance equation (3.23), only these three terms are capable of the direct
transfer of kinetic energy across scales because each of the three terms has a form “large-
scale (> ℓ) quantity × small-scale (< ℓ) quantity,” whereas the other terms on the right-
hand side of (3.23) do not.5 Thus, Qflux

ℓ can be interpreted as the total scale-to-scale
kinetic energy flux.

3.4 Main result

The first main result concerns the most fundamental property of the energy cascade: the
total scale-to-scale energy flux 〈Qflux

ℓ 〉Ω becomes scale-independent in the “inertial range”
ℓsmall � ℓ� ℓlarge:

〈Qflux
ℓ 〉Ω ' εeff , (3.30)

where εeff := 〈p∇ · v〉Ω + 〈v · f〉Ω denotes the effective energy injection rate, which is
scale-independent. We emphasize that, because Qflux

ℓ can be expressed in terms of field
increments δv(r;x) and δρ(r;x), the relation (3.30) plays the same role as Kolmogorov’s
4/5-law [21].

The second main result is the prediction of the quantum stress cascade. Specifically,
in the range of ℓi � ℓ � ℓlarge, the Richardson cascade, induced by the momentum flux,
becomes dominant, whereas in the range of ℓsmall � ℓ � ℓi, the quantum stress cascade,
induced by quantum stress, develops:

〈Λ(Σ)
ℓ 〉Ω � 〈Πℓ〉Ω ' εeff for ℓi � ℓ� ℓlarge, (3.31)

〈Πℓ〉Ω � 〈Λ(Σ)
ℓ 〉Ω ' εeff for ℓsmall � ℓ� ℓi. (3.32)

Correspondingly, the velocity power spectrum is estimated to exhibit the power-law ∝
k−5/3 for ℓ−1

large � k � ℓ−1
i and ∝ k−3 for ℓ−1

i � k � ℓ−1
small (see Fig. 3.1).6

3.4.1 Interpretation of the result

From the above result, we conjecture the following energy transfer scenario (see also
Fig. 3.1):

1. At large scales (∼ L), kinetic energy is injected due to external force.

2. In the scale range larger than ℓlarge, part of the injected kinetic energy is transferred to
smaller scales because of the effect of deformation work, while some part of the kinetic
energy is converted into interaction and quantum energies through the pressure-
dilatation effect.

3. In the inertial range ℓsmall � ℓ � ℓlarge, the following two-step cascade process
emerges:

5We note that these three terms are all Galilean invariant. While we can also define, for instance,
the deformation work as ṽj∂i(ρ̄τ̃ℓ(vi, vj)) (i ∈ {1, 2, 3}), which differs from (3.27) by the total gradient
∂j(ρ̄ℓṽiτ̃ℓ(vi, vj)), this quantity is not Galilean invariant. That is, the amount of energy transferred from
large to small scales at point x in the flow would depend on the velocity of the observer. As pointed out
by Eyink [157], Galilean invariance is necessary for the scale locality of the energy cascade. Note that
non-Galilean-invariant terms in (3.23) do not contribute to the energy transfer across scales.

6The k−3 scaling at small scales seems to be consistent with experimental observations for grid turbu-
lence in 3He-B [153,158].
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Richardson 

cascade

Quantum stress 

cascade

Fig. 3.1: Schematic of the predicted velocity power spectrum Ev(k) in the inertial range ℓ−1
large ≪ k ≪ ℓ−1

small.

(a) In the scale range ℓi � ℓ � ℓlarge, the Richardson cascade, induced by defor-
mation work, becomes dominant. Intuitively, this is because quantum vortices
form a tangled structure that effectively behaves like classical eddies.

(b) At scales smaller than the mean intervortex distance ℓi, the effect of the quantum
stress due to quantum vortices becomes significant. Therefore, the Richardson
cascade is no longer dominant, and the quantum stress cascade, induced by
quantum baropycnal work, develops.

4. In the scale range smaller than ℓsmall, part of the kinetic energy transferred by the
two-step cascade is converted into interaction and quantum energies through the
quantum-stress–strain effect, while some part of the kinetic energy is converted into
compressible excitations through vortex reconnections and Kelvin-waves [159, 160].
The kinetic energy may also dissipate due to the interaction between the condensate
and the excitations [161].7

3.4.2 Remark

Here, we remark on several assumptions imposed in deriving the main result. In deriv-
ing the second main result, we have assumed that the velocity field satisfies the Besov
regularity, introduced in the previous chapter:

‖δv(r; ·)‖p ∼ vrms

( r
L

)σp

for r � L, (3.33)

with the Besov exponent σp ∈ (0, 1] for p ∈ [1,∞]. We note that ‖δv(r; ·)‖p is essentially
the traditional absolute structure function. According to recent experiments on quantum
turbulence [162], the condition (3.33) is expected to hold up to p = 6 at least in the scale
range ℓi � ℓ� ℓlarge.

7While there is no viscous dissipation in pure quantum turbulence, dissipation of the condensate can be
induced by the interaction between the condensate and the excitations [161]. If we add such a dissipation
term in the GP equation, which acts at small scales ≲ ξ at a low temperature, the system can reach a
steady state where the mean kinetic energy is constant [131].
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In addition, we have imposed the following conditions for the density field:

‖δρ(r; ·)‖p = O (r/L) for r � L, (3.34)
‖1/ρ̄ℓ‖∞ ≤M for ℓ� ξ, (3.35)

where M is a ℓ-independent positive constant. The requirements (3.34) are reasonable
because the energy density of the system (3.7) contains the density gradient term ∝ |∇ρ|2.
Note that the condition (3.35) is not strong enough to prohibit the existence of the nodal
lines {x ∈ Ω|ρ(x) = 0} where the quantized vortices exists.

3.5 Derivation of the main result

In this section, we derive the main result. First, we investigate the scale dependence of the
scale-to-scale energy fluxes. Then, we derive the first and second main results.

3.5.1 Scale dependence of the energy fluxes

Here, we investigate the scale dependence of deformation work, baropycnal work, and
quantum baropycnal work, by using arguments similar to those used in the Onsager “ideal
turbulence” theory.

Deformation work

We first investigate the scale dependence of the deformation work Πℓ = −ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v)
by expressing it in terms of the increments δv(r;x) and δρ(r;x). By using the Cauchy-
Schwarz and Hölder inequalities, we obtain

‖Πℓ‖p/3 = ‖ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v)‖p/3
≤ ‖ρ‖∞‖∇ṽℓ‖p‖τ̃ℓ(v,v)‖p/2. (3.36)

First, we investigate the scale dependence of the large-scale strain ∇ṽℓ. Because ṽℓ can be
rewritten as

ṽℓ = v̄ℓ +
τ̄ℓ(ρ,v)

ρ̄ℓ
, (3.37)

the large-scale strain can be expressed as

∇ṽℓ = ∇v̄ℓ +
1

ρ̄ℓ
∇τ̄ℓ(ρ,v)−

τ̄ℓ(ρ,v)

ρ̄2ℓ
∇ρ̄ℓ. (3.38)

Therefore, from the Minkowski inequality, it follows that

‖∇ṽℓ‖p ≤ ‖∇v̄ℓ‖p +
∥∥∥∥ 1

ρ̄ℓ
∇τ̄ℓ(ρ,v)

∥∥∥∥
p

+

∥∥∥∥ τ̄ℓ(ρ,v)ρ̄2ℓ
∇ρ̄ℓ

∥∥∥∥
p

. (3.39)

Note that for any locally integrable function a(x),

∇āℓ(x) = −1

ℓ

∫
Ω
d3r(∇G)ℓ(r)δa(r;x), (3.40)
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because
∫
d3r∇G(r) = 0. Hence, we obtain

‖∇āℓ‖p =
∥∥∥∥1ℓ
∫
Ω
d3r(∇G)ℓ(r)δa(r; ·)

∥∥∥∥
p

≤ 1

ℓ

∫
Ω
d3r|(∇G)ℓ(r)|‖δa(r; ·)‖p

≤ (const)

ℓ
‖δa(ℓ)‖p, (3.41)

where ‖δa(ℓ)‖p := sup|r|<ℓ ‖δa(r; ·)‖p, and thus we find that

‖∇v̄ℓ‖p = O

(
‖δv(ℓ)‖p

ℓ

)
. (3.42)

To evaluate the second and last terms of (3.39), we use the assumption (3.35) and Propo-
sitions (3.79) and (3.80) in Appendix 3.7.1. Then, we obtain∥∥∥∥ 1

ρ̄ℓ
∇τ̄ℓ(ρ,v)

∥∥∥∥
p

≤ (const)

ℓ
‖1/ρ̄ℓ‖∞‖δρ(ℓ)‖∞‖δv(ℓ)‖p

≤ (const)

ℓ
M‖ρ‖∞‖δv(ℓ)‖p, (3.43)

and ∥∥∥∥ τ̄ℓ(ρ,v)ρ̄2ℓ
∇ρ̄ℓ

∥∥∥∥
p

≤M2‖∇ρ̄ℓ‖∞‖τ̄ℓ(ρ,v)‖p

≤ (const)

ℓ
M2‖δρ(ℓ)‖2∞‖δv(ℓ)‖p

≤ (const)M2‖ρ‖2∞
‖δv(ℓ)‖p

ℓ
. (3.44)

Thus, combining the results (3.42), (3.43), and (3.44), we obtain

‖∇ṽℓ‖p =
‖δv(ℓ)‖p

ℓ

(
O(1) +O(M‖ρ‖∞) +O(M2‖ρ‖2∞)

)
= O

(
‖δv(ℓ)‖p

ℓ

)
. (3.45)

We now evaluate the scale dependence of the small-scale stress τ̃ℓ(v,v). By using the
relation

τ̃ℓ(v,v) = τ̄ℓ(v,v) +
1

ρ̄ℓ
τ̄ℓ(ρ,v,v)−

1

ρ̄2ℓ
τ̄ℓ(ρ,v)τ̄ℓ(ρ,v) (3.46)

and the Minkowski inequality, we obtain

‖τ̃ℓ(v,v)‖p/2 ≤ ‖τ̄ℓ(v,v)‖p/2 +
∥∥∥∥ 1

ρ̄ℓ
τ̄ℓ(ρ,v,v)

∥∥∥∥
p/2

+

∥∥∥∥ 1

ρ̄2ℓ
τ̄ℓ(ρ,v)τ̄ℓ(ρ,v)

∥∥∥∥
p/2

. (3.47)

Subsequently, by using the assumption (3.35) and Proposition (3.79) in Appendix 3.7.1,
one obtains

‖τ̃ℓ(v,v)‖p/2 = ‖δv(ℓ)‖2p
(
O(1) +O(M‖ρ‖∞) +O(M2‖ρ‖2∞)

)
= O

(
‖δv(ℓ)‖2p

)
, p ≥ 2. (3.48)
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By combining (3.36), (3.45), (3.48), and the assumptions (3.33), we finally obtain

‖Πℓ‖p/3 = ‖ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v)‖p/3

= O

(
‖δv(ℓ)‖3p

ℓ

)

= O

((
ℓ

L

)3σp−1
)
, p ≥ 3, (3.49)

as a rigorous upper bound. This implies that if σp > 1/3 for some p ≥ 3, then the mean
deformation work goes to zero 〈Πℓ〉Ω → 0, because |〈Πℓ〉Ω| ≤ 〈|Πℓ|〉Ω ≤ ‖Πℓ‖p/3 for p ≥ 3.
Note that the upper bound of (3.49) becomes independent of ℓ when σp = 1/3.

Baropycnal work

We next evaluate the scale dependence of the baropycnal work Λ
(p)
ℓ = (1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v).

By using the assumption (3.35) and Cauchy-Schwarz and Hölder inequalities, we obtain

‖Λ(p)
ℓ ‖p/3 = ‖(1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v)‖p/3

≤M‖∇p̄ℓ‖p‖τ̄ℓ(ρ,v)‖p/2. (3.50)

For ‖∇p̄ℓ‖p, from the inequality (3.41),

‖∇p̄ℓ‖p ≤
(const)

ℓ
‖δp(ℓ)‖p

= O

(
‖δρ(ℓ)‖p

ℓ

)
, (3.51)

where we have used ‖δp(ℓ)‖p = O(‖δρ(ℓ)‖p), which follows from the definition of p :=
gρ2/(2m2) and the mean value theorem. For ‖τ̄ℓ(ρ,v)‖p/2, by using Proposition (3.79) in
Appendix 3.7.1, we obtain

‖τ̄ℓ(ρ,v)‖p/2 = O(‖δρ(ℓ)‖p‖δv(ℓ)‖p). (3.52)

From the assumptions (3.33) and (3.34), we thus obtain

‖Λ(p)
ℓ ‖p/3 = ‖(1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v)‖p/3

= O

(
1

ℓ
‖δρ(ℓ)‖p‖δρ(ℓ)‖p‖δv(ℓ)‖p

)
= O

((
ℓ

L

)σp+1
)
, p ≥ 3. (3.53)

This result implies that the mean baropycnal work goes to zero 〈Λ(p)
ℓ 〉Ω → 0 as ℓ/L → 0.

Therefore, baropycnal work does not contribute to the energy transfer across scales.8

8In classical compressible turbulence, the baropycnal work can contribute to energy transfer [93,95,156].
If the assumption (3.34) is violated, the baropycnal work can induce energy transfer across scales even in
quantum turbulence, at least in the large scale ℓi ≪ ℓ ≪ ℓlarge.
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Quantum baropycnal work

Now, we investigate the scale dependence of the quantum baropycnal work Λ
(Σ)
ℓ = −(1/ρ̄ℓ)∇·

Σ̄ℓ · τ̄ℓ(ρ,v). From the assumption (3.35) and the Cauchy-Schwarz and Hölder inequalities,
we obtain

‖Λ(Σ)
ℓ ‖p/3 =

∥∥(1/ρ̄ℓ)∇ · Σ̄ℓ · τ̄ℓ(ρ,v)
∥∥
p/3

≤M‖∇ · Σ̄ℓ‖p‖τ̄ℓ(ρ,v)‖p/2. (3.54)

For ‖∇ · Σ̄ℓ‖p, by using the Minkowski inequality and the inequality (3.41), one obtains

‖∇ · Σ̄ℓ‖p ≤
∥∥∥∥ ~2

4m2
∇∆ρ̄ℓ

∥∥∥∥
p

+

∥∥∥∥ ~2

m2
∇ · (∇√

ρ∇√
ρ)ℓ

∥∥∥∥
p

≤ (const)

ℓ3
‖δρ(ℓ)‖p +

(const)

ℓ
‖∇ρ‖2∞. (3.55)

Here, we have implicitly assumed that ‖∇ρ‖∞ < ∞, which is reasonable by considering
the fact that the energy density of the system includes the gradient term ∝ |∇ρ|2. From
(3.52), (3.54), (3.55), and the assumptions (3.33), (3.34), and (3.35), we thus obtain

‖Λ(Σ)
ℓ ‖p/3 =

∥∥(1/ρ̄ℓ)∇ · Σ̄ℓ · τ̄ℓ(ρ,v)
∥∥
p/3

= O

(
1

ℓ3
‖δρ(ℓ)‖2p‖δv(ℓ)‖p

)
+O

(
1

ℓ
‖δρ(ℓ)‖p‖δv(ℓ)‖p

)
= O

((
ℓ

L

)σp−1
)

+O

((
ℓ

L

)σp
)

= O

((
ℓ

L

)σp−1
)
, p ≥ 3. (3.56)

Note that, for any σp ∈ (0, 1], we cannot conclude that the quantum baropycnal work goes
to zero as ℓ/L → 0. In other words, unlike deformation work, quantum baropycnal work
can contribute to the transfer of kinetic energy across scales regardless of the regularity of
the velocity field. The scale-independent upper bound is obtained when σp = 1.

3.5.2 Derivation of the first main result

We derive the first main result in the steady state regime for simplicity, although it is valid
even in freely decaying turbulence. In the steady state, spatial averaging of (3.23) reads

〈Qflux
ℓ 〉Ω = 〈p̄ℓ∇ · v̄ℓ〉Ω − 〈Σ̄ℓ : ∇v̄ℓ〉Ω + 〈εinℓ 〉Ω. (3.57)

As mentioned in Section 3.2.3, the pressure-dilatation is assumed to be significant at large
scales � ℓlarge. That is, the large-scale pressure-dilatation can be approximated as −〈p̄ℓ∇·
v̄ℓ〉Ω ' −〈p∇ · v〉Ω for ℓ � ℓlarge. Similarly, because the contribution to 〈Σ : ∇v〉Ω
from large scales � ℓsmall is assumed to be negligible, the large-scale quantum-stress–
strain becomes 〈Σ̄ℓ : ∇v̄ℓ〉Ω ' 0 for ℓ � ℓsmall. Finally, because the external force
f acts at large scales ∼ L, the coarse-grained energy injection can be approximated as
〈εinℓ 〉Ω := 〈ṽℓ · f̄ℓ〉Ω ' 〈v · f〉Ω for ℓ� L [10, 95]. Thus, we conclude that

〈Qflux
ℓ 〉Ω ' 〈p∇ · v〉Ω + 〈v · f〉Ω =: εeff , (3.58)
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in the “inertial range” ℓsmall � ℓ� ℓlarge.
Here, we remark on the existence of the intermediate scale range ℓsmall � ℓ � ℓlarge.

In the above derivation, we have assumed that −〈p̄ℓ∇ · v̄ℓ〉Ω ' −〈p∇ · v〉Ω for ℓ �
ℓlarge. In other words, we have assumed that the pressure-dilatation co-spectrum satis-
fies E(p)(k) = O(k−α) with α > 1, as in classical compressible turbulence [93,94,150,154].
This assumption is based on the decorrelation effects between the large-scale pressure p̄ℓ,
which mainly acts at large scales, and ∇ · v̄ℓ, which becomes significant at small scales as
‖∇ · v̄ℓ‖p = O(‖δv(ℓ)‖p/ℓ) [93,94]. For the large-scale quantum-stress–strain, on the other
hand, such decorrelation effects are not expected because both Σ̄ℓ and ∇v̄ℓ change rapidly
in space. By combining the similar argument as in (3.55) and (3.42), its scale-dependence
can be evaluated as follows:

‖Σ̄ℓ : ∇v̄ℓ‖p/2 ≤ ‖Σ̄ℓ‖p‖∇v̄ℓ‖p

= O

((
ℓ

L

)σp−2
)
, p ≥ 2. (3.59)

Thus, there possibly exists a characteristic length scale ℓsmall � ℓlarge such that 〈Σ̄ℓ :
∇v̄ℓ〉Ω ' 0 for ℓ� ℓsmall.

3.5.3 Derivation of the second main result

We first note that the contribution to the energy transfer from the baropycnal work Λ
(p)
ℓ

can be ignored because it converges to zero as ℓ/L→ 0, as shown in (3.53). Therefore, the
first main result (3.58) can be further approximated as

〈Πℓ〉Ω + 〈Λ(Σ)
ℓ 〉Ω ' εeff . (3.60)

From (3.49) and (3.56), it immediately follows that the upper bounds of the mean deforma-
tion work 〈Πℓ〉Ω and mean quantum baropycnal work 〈Λ(Σ)

ℓ 〉Ω have different ℓ dependences.
In particular, the upper bound of 〈Πℓ〉Ω becomes scale independent when σ3 = 1/3, whereas
that of 〈Λ(Σ)

ℓ 〉Ω behaves as O(ℓ−2/3):

〈Πℓ〉Ω ≤ ‖Πℓ‖1 = O(1), (3.61)

〈Λ(Σ)
ℓ 〉Ω ≤ ‖Λ(Σ)

ℓ ‖1 = O

((
ℓ

L

)−2/3
)
, (3.62)

When σ3 = 1, on the other hand, the upper bound of 〈Λ(Σ)
ℓ 〉Ω becomes constant, whereas

that of 〈Πℓ〉Ω behaves as O(ℓ2):

〈Πℓ〉Ω ≤ ‖Πℓ‖1 = O

((
ℓ

L

)2
)
, (3.63)

〈Λ(Σ)
ℓ 〉Ω ≤ ‖Λ(Σ)

ℓ ‖1 = O(1). (3.64)

The above observation and the first main result implies that there exists a characteristic
length scale λ such that deformation work is dominant in λ � ℓ � ℓlarge, while quantum
baropycnal work becomes dominant in ℓsmall � ℓ� λ (see Fig. 3.2):

〈Λ(Σ)
ℓ 〉Ω � 〈Πℓ〉Ω = O(1) for λ� ℓ� ℓlarge, (3.65)

〈Πℓ〉Ω � 〈Λ(Σ)
ℓ 〉Ω = O(1) for ℓsmall � ℓ� λ. (3.66)
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Richardson 
cascade

Quantum stress 
cascade

Fig. 3.2: Scale dependence of the scale-to-scale kinetic energy fluxes. The solid lines indicate the upper
bounds of the energy fluxes, and the arrow indicates the direction of energy transfer.

The crossover scale λ can be estimated, for instance, as follows. If we use the critical
velocity vc and the average mass density ρ0 = 〈ρ〉Ω as the characteristic velocity and
density, the deformation work (3.27) and quantum baropycnal work (3.29) can be evaluated
as

Λ
(Σ)
ℓ ∼ κ2ℓ−3ρ0vc (3.67)

with the quantum circulation κ = h/m, and

Πℓ ∼ ρ0ℓ
−1v3c . (3.68)

Then, the balance condition Πλ ∼ Λ
(Σ)
λ leads to λ ∼ κ/vc ∼ ℓi. Thus, in the range

of ℓi � ℓ � ℓlarge, the Richardson cascade, induced by the deformation work, becomes
dominant, whereas in the range of ℓsmall � ℓ � ℓi, the quantum stress cascade, induced
by quantum baropycnal work, develops.

We now consider the pth-order (absolute) structure function for the velocity field:

Sv
p (ℓ) := 〈|δv(ℓ)|p〉Ω = ‖δv(ℓ)‖pp (3.69)

with assumed scaling exponent ζp:

Sv
p (ℓ) ∼ Cpv

p
rms

(
ℓ

L

)ζp

for ℓ� L, (3.70)

where Cp is a dimensionless constant. Using the Hölder inequality, it can be shown that
ζp is a concave function of p ∈ [0,∞) [5, 10]. From this property, it immediately follows
that σp = ζp/p is a non-increasing function of p [10]. Note that the second-order structure
function Sv

2 (ℓ) ∝ ℓζ2 is related to the velocity spectrum Ev(k) ∝ k−ζ2−1.
Because σ3 = 1/3 in ℓi � ℓ� ℓlarge and σp is a non-increasing function of p, it follows

that σ2 ≥ 1/3 in this scale range. Hence, we can write ζ2 = 2σ2 ≡ 2/3 + µ/9, where µ
is a positive constant. This additional constant µ formally corresponds to the so-called
intermittency exponent [5]. Therefore, the velocity power spectrum exhibits the following
asymptotic behavior:

Ev(k) ∼ Clargek
−5/3−µ/9 for ℓ−1

large � k � ℓ−1
i , (3.71)
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where Clarge is a positive constant.
In ℓsmall � ℓ � ℓi, where the quantum stress cascade becomes dominant, we have

found that σ3 = 1. Because σp is a non-increasing function of p, it follows that σ2 = 1.
This result implies that the velocity power spectrum exhibits the following asymptotic
behavior:

Ev(k) ∼ Csmallk
−3 for ℓ−1

i � k � ℓ−1
small, (3.72)

where Csmall is a positive constant.

3.6 Concluding remarks

In this chapter, we have investigated the compressibility effects on energy transfer across
scales in three-dimensional pure quantum turbulence described by the GP equation. We
first derived the quantum counterpart of Kolmogorov’s 4/5-law. Then, we have shown that
a novel energy cascade, which we call quantum stress cascade, emerges due to the quantum
stress at scales � ℓi by using a phenomenological argument based on the Onsager “ideal
turbulence” theory. Below, we provide some remarks on our results.

Kelvin-wave cascade and quantum stress cascade

We first consider the relation between the Kelvin-wave cascade and the quantum stress
cascade. If the Kelvin-wave cascade exists, there must be the corresponding scale-to-scale
energy flux other than the deformation work Πℓ. In the large-scale kinetic energy balance
equation (3.23), such energy flux specific to the quantum case is only the quantum baropy-
cnal work Λ

(Σ)
ℓ , which induces the quantum stress cascade. From this observation, we

conjecture that the incompressible part of the quantum baropycnal work Λ
(Σ)
ℓ corresponds

to the energy flux of the Kelvin-wave cascade.

Scale locality of energy cascade

Scale locality is one of the most crucial aspects of the energy cascade because it is consid-
ered to underlie universality in the inertial range. An energy cascade is scale-local if only
modes near a given scale mainly contribute to the energy transfer at that scale. While we
can show that the Richardson cascade in quantum turbulence is scale local, the quantum
stress cascade is only ultraviolet local and does not satisfy the sufficient condition to be
infrared local (see Appendix 3.7.2). Thus, the contributions of large-scale velocity incre-
ments could be non-negligible and could contribute to quantum baropycnal work. Note
that this situation is similar to the enstrophy cascade in two-dimensional incompressible
turbulence [157,163,164].

Optimality of the upper bound on quantum baropycnal work

We note that k−3 spectrum for the quantum stress cascade can become shallower due to
depletion of nonlinearity [5]. The depletion of nonlinearity is a phenomenon that the non-
linear effect is “reduced” because of cancellations due to wave oscillations [96] or dynamical
alignment [165, 166]. In our case, Kelvin-wave oscillations could lead to cancellations in
the quantum baropycnal work, making the upper bound (3.56) no longer optimal.
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We can also obtain a tighter bound on the quantum baropycnal work by further as-
suming the Besov regularity of the density gradient field ∇ρ:

‖δ(∇ρ)(r; ·)‖p = O((r/L)σ
∇ρ
p ) for r � L, (3.73)

with σ∇ρ
p ∈ (0, 1]. In this case, the upper bound of the quantum baropycnal work can be

evaluated as

‖Λ(Σ)
ℓ ‖p/3 = O

((
ℓ

L

)σp+σ∇ρ
p −1

)
, p ≥ 3, (3.74)

and the velocity power spectrum can be estimated as Ev(k) ∝ k−3+2σ∇ρ
2 for ℓ−1

i � k �
ℓ−1
small. Thus, the spectral exponent associated with the quantum stress cascade possibly

depends on the scaling exponent for the density field.

Besov regularity of the velocity field

Although the Besov regularity for the velocity field is expected to hold up to p = 6 at least
in the scale range ℓi � ℓ� ℓlarge according to recent experiments [162], the validity is still
not verified at small scales ℓsmall � ℓ � ℓi. To avoid this subtle problem, we can instead
use the density-weighted velocity w :=

√
ρv. Specifically, we assume the Besov regularity

of the density-weighted velocity w:

‖δw(r; ·)‖p ∼ wrms

( r
L

)σp

for r � L (3.75)

with the Besov exponent σp ∈ (0, 1] for p ∈ [1,∞]. Note that the validity of this condition
is partially verified in several numerical simulations [145, 167–169]. Even for this case, we
can predict the two-step cascade scenario, where the quantum stress cascade follows the
Richardson cascade, as shown in Appendix 3.7.3.

3.7 Appendix

3.7.1 Cumulant estimation

In this section, we present some useful results concerning the cumulant estimation obtained
by Drivas and Eyink [92]. We consider coarse-graining of functions fi ∈ L∞(Ω), i =
1, 2, 3, · · · . Because L∞(Ω) ⊂ Lp(Ω) for p ≥ 1, fi ∈ Lp(Ω).

Coarse-graining cumulants {τ̄ℓ(f1, f2, · · · , fn)}n are defined iteratively in n by τ̄ℓ(f) :=
f̄ℓ and

(f1f2 · · · fn)ℓ =
∑
P

|P |∏
p=1

τ̄ℓ

(
f
i
(p)
1

, · · · , f
i
(p)
np

)
, (3.76)

where the sum is over all the partitions P of the set {1, 2, · · · , n} into |P | disjoint subsets
{i(p)1 , · · · , i(p)np }, p = 1, · · · , |P |. For example, when n = 2,

(fg)ℓ = f̄ℓḡℓ + τ̄ℓ(f, g). (3.77)
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Lemma 1 of [92]� �
For n > 1, the coarse-graining cumulants are related to the cumulants of increment
δf(r;x) := f(x+ r)− f(x) as follows:

τ̄ℓ(f1, f2, · · · , fn) = 〈δf1, · · · , δfn〉cℓ, (3.78)

where 〈·〉ℓ denotes the average over displacement vector r with density Gℓ(r) and
superscript c indicates the cumulant with respect to this average.� �

From the above lemma, the propositions below immediately follow:

Proposition 3 of [92] (Cumulant estimates)� �
For p ∈ [1,∞] and n > 1,

‖τ̄ℓ(f1, f2, · · · , fn)‖p = O

(
n∏

i=1

‖δfi(ℓ)‖pi

)
with

1

p
=

n∑
i=1

1

pi
, (3.79)

where ‖δf(ℓ)‖p := sup|r|<ℓ ‖δf(r; ·)‖p.� �
Proposition 4 of [92] (Cumulant-derivative estimates)� �

For n > 1 and ∂k = ∂/∂xk, k = 1, 2, · · · , d,

‖∂k1 · · · ∂km τ̄ℓ(f1, f2, · · · , fn)‖p = O

(
ℓ−m

n∏
i=1

‖δfi(ℓ)‖pi

)
with

1

p
=

n∑
i=1

1

pi
.

(3.80)� �
3.7.2 Scale locality of quantum baropycnal work

In proving the scale locality of the quantum baropycnal work Λ
(Σ)
ℓ = −(1/ρ̄ℓ)∇·Σ̄ℓ ·τ̄ℓ(ρ,v),

it is not necessary to consider ∇√
ρ∇√

ρ in the quantum stress because its contribution to
the energy flux vanishes as ℓ/L→ 0 (see Section 3.5.1). Therefore, it is sufficient to prove
the scale locality of

Zℓ(ρ, ρ, ρ,v) := −(~2/4m2ρ̄ℓ)∇∆ρ̄ℓ · τ̄ℓ(ρ,v), (3.81)

where the first density argument corresponds to the factor 1/ρ̄ℓ, and the second to the
factor ∇∆ρ̄ℓ. Following Eyink [157], we describe the energy flux Zℓ(ρ, ρ, ρ,v) as ultraviolet
local if 〈Zℓ(ρ

′
δ, ρ

′
δ, ρ

′
δ,v

′
δ)〉Ω decays as fast as (δ/ℓ)α, for α > 0, whenever δ � ℓ. Here, a′

ℓ

denotes a small-scale field defined by

a′
ℓ(x) := a(x)− āℓ(x). (3.82)

Similarly, we describe the energy flux Zℓ(ρ, ρ, ρ,v) as infrared local if 〈Zℓ(ρ, ρ, ρ, v̄∆)〉Ω
decays as fast as (∆/ℓ)−α, for α > 0, whenever ∆ � ℓ. As observed by Aluie [93, 94], in
defining the infrared locality of the energy flux, the condition of negligible contribution of
the large-scale density field to the flux is not necessary.



46 CHAPTER 3. QUANTUM TURBULENCE

Ultraviolet locality

It is obvious that 1/ρ̄ℓ has a vanishing contribution from small scales δ � ℓ because its
Fourier amplitudes decay faster than any power n of wavenumber k−n as k → ∞ as a
direct consequence of the Riemann-Lebesgue lemma. For the remaining three arguments,
using the assumptions (3.33), (3.34), and (3.35) and the Hölder inequality, we obtain

‖Zℓ(ρ, ρ
′
δ, ρ

′
δ,v

′
δ)‖p/3 =

∥∥∥(~2/4m2ρ̄ℓ)∇∆(ρ′δ)ℓ · τ̄ℓ(ρ
′
δ,v

′
δ)
∥∥∥
p/3

≤ (const)

(
1

ℓ3

∫
Ω
d3r|(∇∆G)ℓ(r)|‖ρ′δ‖p

)
‖τ̄ℓ(ρ′δ,v′

δ)‖p/2

≤ (const)
1

ℓ3
‖ρ′δ‖p‖ρ′δ‖p‖v′

δ‖p

= O

((
δ

ℓ

)σp+2
)
, p ≥ 3. (3.83)

Here, we have used the fact that

‖a′
δ‖p ≤

∫
Ω
d3rGδ(r)‖δa(r; ·)‖p

≤ ‖δa(δ)‖p. (3.84)

Therefore, Zℓ is ultraviolet local.

Infrared locality

Using the assumptions (3.33), (3.34), and (3.35) and the Hölder inequality, we obtain

‖Zℓ(ρ, ρ, ρ, v̄∆)‖p/3 =
∥∥(~2/4m2ρ̄ℓ)∇∆ρ̄ℓ · τ̄ℓ(ρ, v̄∆))

∥∥
p/3

≤ (const)
1

ℓ3
‖δρ(ℓ)‖p‖δρ(ℓ)‖p‖δv̄∆(ℓ)‖p

= O

((
∆

ℓ

)σp−1
)
, p ≥ 3. (3.85)

Here, we have used the following evaluation [157]:

‖δv̄∆(ℓ)‖p ≤ sup
|ρ|<ℓ

∥∥∥∥∫
Ω
d3rG∆(r) (v(x+ ρ+ r)− v(x+ r))

∥∥∥∥
p

= sup
|ρ|<ℓ

∥∥∥∥∫
Ω
d3r (G∆(r − ρ)−G∆(r))v(x+ r)

∥∥∥∥
p

= sup
|ρ|<ℓ

∥∥∥∥ 1

∆

∫ 1

0
dθ

∫
Ω
d3rρ · (∇G)∆(r − θρ)δv(r;x)

∥∥∥∥
p

≤ ℓ

∆

∫ 1

0
dθ

∫
Ω
d3r|(∇G)∆(r)|‖δv(∆)‖p

= O

((
∆

ℓ

)σp−1
)
. (3.86)
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Therefore, in the scale range ℓsmall � ℓ� ∆ � ℓi,

〈Zℓ(ρ, ρ, ρ, v̄∆)〉Ω ≤ ‖Zℓ(ρ, ρ, ρ, v̄∆)‖1
= O(1) for ℓ� ∆, (3.87)

because σ3 = 1 in this range. Thus, Zℓ does not satisfy the sufficient condition to be
infrared local.

3.7.3 More sophisticated analysis using the density-weighted velocity

Here, we provide the details of the more sophisticated analysis using the density-weighted
velocity. Let w :=

√
ρv be the density-weighted velocity. The quantum Euler equations

can be rewritten in terms of this quantity as

∂tρ+∇ · (√ρw) = 0, (3.88)

∂t(
√
ρw) +∇ · (ww) = −∇p+∇ ·Σ+ f . (3.89)

Coarse-graining of (3.88) and (3.89) gives

∂tρ̄ℓ +∇ · (√ρw)ℓ = 0, (3.90)

∂t(
√
ρw)ℓ +∇ · (ww)ℓ = −∇p̄ℓ +∇ · Σ̄ℓ + f̄ℓ. (3.91)

We introduce the following density-weighted coarse-grained variable ŵℓ to obtain a simple
physical interpretation:

ŵℓ :=
(
√
ρw)ℓ√
ρ̄ℓ

. (3.92)

Note that ŵℓ is different from the density-weighted average (
√
ρw)ℓ/

√
ρ
ℓ
. In fact, because

√
ρ is a concave function of ρ, we find that √

ρ
ℓ
≤

√
ρ̄ℓ. We can rewrite (3.90) and (3.91)

in terms of ŵℓ as
∂tρ̄ℓ +∇ ·

(√
ρ̄ℓŵℓ

)
= 0, (3.93)

∂t
(√
ρ̄ℓŵℓ

)
+∇ · (ww)ℓ = −∇p̄ℓ +∇ · Σ̄ℓ + f̄ℓ. (3.94)

We now consider the large-scale kinetic energy balance. We first not that, since |v|2 is
a convex function of v, the following inequality holds:

1

2
|ŵℓ|2 =

1

2
ρ̄ℓ

∣∣∣∣∣(ρv)ℓρ̄ℓ

∣∣∣∣∣
2

≤ 1

2
ρ̄ℓ
(ρ|v|2)ℓ
ρ̄ℓ

=
1

2
(ρ|v|2)ℓ. (3.95)

Therefore, the integral over space of |ŵℓ|2/2 is less than the total kinetic energy:∫
Ω
d3x

1

2
|ŵℓ|2 ≤

∫
Ω
d3x

1

2
ρ|v|2, (3.96)

and thus |ŵℓ|2/2 represents the large-scale kinetic energy as in the one based on the Favre
averaging [60,91]. From (3.93) and (3.94), we obtain the large-scale kinetic energy balance:

∂t
1

2
|ŵℓ|2 +∇ · Jℓ = p̄ℓ∇ ·

√
ρ
ℓ
w̄ℓ

ρ̄ℓ
− Σ̄ℓ : ∇

√
ρ
ℓ
w̄ℓ

ρ̄ℓ
+ εinℓ −Qflux

ℓ −∇ ŵℓ√
ρ̄ℓ

: (ŵℓŵℓ − w̄ℓw̄ℓ) .

(3.97)
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Here, εinℓ := ŵℓ · f̄ℓ/
√
ρ̄ℓ denotes the energy injection rate due to external stirring at scale

ℓ and Jℓ represents the spatial transport of large-scale kinetic energy:

Jℓ :=
1

2
|ŵℓ|2

ŵℓ√
ρ̄ℓ

+ p̄ℓ

√
ρ
ℓ
w̄ℓ

ρ̄ℓ
− Σ̄ℓ ·

√
ρ
ℓ
w̄ℓ

ρ̄ℓ
+

ŵℓ√
ρ̄ℓ

· τ̄ℓ(w,w)− ŵℓ√
ρ̄ℓ

· (ŵℓŵℓ − w̄ℓw̄ℓ) ,

(3.98)

where τ̄ℓ(f, g) := (fg)ℓ − f̄ℓḡℓ. The first two terms on the right-hand side of (3.97) are
the large-scale pressure-dilatation and quantum-stress–strain. The last term on the right-
hand side of (3.97), which does not exist in (3.23), arises due to the introduction of the
density-weighted variable ŵℓ. Since this term contains ŵℓŵℓ − w̄ℓw̄ℓ, we expect that its
contribution to the energy balance is small relative to the other terms. The term Qflux

ℓ

represents the scale-to-scale kinetic energy flux:

Qflux
ℓ := Πℓ + Λ

(p)
ℓ + Λ

(Σ)
ℓ . (3.99)

Here, Πℓ is the deformation work,

Πℓ := −∇ ŵℓ√
ρ̄ℓ

: τ̄ℓ(w,w), (3.100)

Λ
(p)
ℓ is the baropycnal work,

Λ
(p)
ℓ :=

1

ρ̄ℓ
∇p̄ℓ · τ̄ℓ(

√
ρ,w), (3.101)

and Λ
(Σ)
ℓ is the quantum baropycnal work,

Λ
(Σ)
ℓ := − 1

ρ̄ℓ
∇ · Σ̄ℓ · τ̄ℓ(

√
ρ,w). (3.102)

Note that only these three terms are capable of the direct transfer of kinetic energy across
scales because each of the three terms has a form “large-scale (> ℓ) quantity × small-scale
(< ℓ) quantity,” whereas the other terms on the right-hand side of (3.97) do not. We
remark that these energy fluxes are not Galilean invariant unlike those defined in [60].
Therefore, they can be scale local only if spatially or ensemble averaged [170].

Instead of assuming the Besov regularity of the velocity field v, we here assume the
Besov regularity of the density-weighted velocity w:

‖δw(r; ·)‖p ∼ wrms

( r
L

)σp

for r � L (3.103)

with the Besov exponent σp ∈ (0, 1] for p ∈ [1,∞]. The important point here is that the
validity of the Besov regularity (3.103) is well-established even at scales � ℓi [145,167,169].
In addition, we assume the following properties for √

ρ instead of ρ:

‖δ√ρ(r; ·)‖p = O(r/L) for r � L, (3.104)

‖1/
√
ρ̄ℓ‖∞ ≤M for ℓ� ξ, (3.105)
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where M is a ℓ-independent positive constant. Under these assumptions, we can derive
the same results as in the main text:

‖Πℓ‖p/3 = O

((
ℓ

L

)3σp−1
)
, (3.106)

‖Λ(p)
ℓ ‖p/3 = O

((
ℓ

L

)σp+1
)
, (3.107)

‖Λ(Σ)
ℓ ‖p/3 = O

((
ℓ

L

)σp−1
)
, (3.108)

for p ≥ 3. We thus find that the asymptotic behavior of the energy spectrum reads

E(k) ∼

{
Clargek

−5/3 for ℓ−1
large � k � ℓ−1

i ,

Csmallk
−3 for ℓ−1

i � k � ℓ−1
small,

(3.109)

where Clarge and Csmall are positive constants. Note that E(k) denotes the standard
energy spectrum, not the velocity power spectrum Ev(k). We also remark that the k−3

spectrum for the quantum stress cascade can become shallower because of the Kelvin-wave
oscillations, as mentioned in Section 3.6.





Chapter 4

Van der Waals turbulence

We begin this chapter by considering whether the Richardson cascade can reach the mi-
croscopic length scales in ordinary fluid turbulence. Within the K41 theory, we can show
that the Kolmogorov dissipation scale η := ν3/4ε−1/4 is overwhelmingly larger than the
microscopic length scales such as the molecular mean free path λmfp [5]. Indeed, by esti-
mating the injection scale as L ∼ v3rms/ε ∼ Re3/4η and by denoting cs the sound velocity,
we find that

η

λmfp
∼ η

L

Lvrms

λmfpcs

cs
vrms

∼ Re1/4Ma−1 � 1, (4.1)

where Ma = vrms/cs denotes the Mach number. Thus, the Richardson cascade never
reaches the microscopic length scales in ordinary fluid turbulence.

In the vicinity of a gas-liquid critical point, however, it is not obvious whether the
Richardson cascade is truncated at the Kolmogorov dissipation scale because the correlation
length of equilibrium density fluctuations ξ reaches a macroscopic order of magnitude [171,
172]. We here consider the strong turbulent regime of a supercritical fluid near a critical
point where ξ is much larger than the Kolmogorov dissipation scale. Even for such strong
turbulence, ξ still provides a length scale at which the stress induced by density fluctuations
is comparable to the momentum flux. In this case, density fluctuations are driven by
turbulence, so that the equilibrium critical fluctuations are destroyed. We then ask how
the Richardson cascade is modified by density fluctuations in the turbulence near a critical
point. Although turbulence in supercritical fluids has been studied over the past few
decades, previous studies have focused on cases where the Kolmogorov dissipation scale is
larger than ξ [173–176].

We answer the above question by studying hydrodynamic equations including density
fluctuations. Specifically, we include a density gradient contribution to the entropy func-
tional to describe the effects of density fluctuations. Such a formulation that takes into
account gradient contributions was originally proposed in the pioneering work of van der
Waals [177], who introduced a gradient term in the Helmholtz free energy density to de-
scribe a gas-liquid interface, and the formulation has been widely used in statistical physics
since the publication of seminal papers by Ginzbrug and Landau for type-I superconduc-
tors [178] and by Cahn and Hilliard for binary alloys [179]. Following the van der Waals
theory, Korteweg proposed hydrodynamic equations that contain the van der Waals stress
(vdW stress), arising from the density gradient [148,180], and Onuki generalized the theory
by including the gradient contribution to both entropy and energy functionals [181,182].
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In this study, we analyze the model using a phenomenological approach based on the
Onsager “ideal turbulence” theory [3, 18, 82], as in Chapter 3. We show that supercritical
turbulence near a critical point exhibits the Richardson cascade and novel type of cascade
which we call van der Waals cascade, induced by the vdW stress.

This chapter is organized as follows. In the next section, we explain the setup. In
Section 4.2, we investigate characteristic length scale of the system. In Section 4.3, by
coarse-graining turbulent fields, we show that there are three types of scale-to-scale energy
fluxes. In Section 4.4, we describe our main results. We consider the experimental condi-
tions required to observe van der Waals cascade in Section 4.5. We derive the main results
in Section 4.6. Concluding remarks are provided in Section 4.7.

4.1 Setup

Let ρ be the mass density, v be the fluid velocity, and u be the internal energy density.
For simplicity, we assume that a fluid is confined in a cube Ω = [0, LΩ]

3 with periodic
boundary conditions. We further assume that there is no vacuum region; i.e., ρ(x, t) > 0
for all x ∈ Ω and time t. Following the van der Waals theory, we include a gradient
contribution to the entropy functional to describe enhanced density fluctuations near a
critical point [177,181–183]:1

S([u], [ρ]) =
∫
Ω
d3x

(
s(u, ρ) +

c(ρ)

2
|∇ρ|2

)
, (4.2)

where ([u], [ρ]) := (u(x), ρ(x))x∈Ω, s(u, ρ) denotes the entropy density, and c(ρ) ≤ 0 is
the capillary coefficient. In the following discussion, we consider the case in which the
capillary coefficient is a sufficiently smooth function of ρ; e.g., c(ρ) = const [182]. Through
thermodynamic relations, the temperature T (u, ρ) and pressure tensor P are determined
from (4.2):

P = pI +Σ, (4.3)

where p(u, ρ) denotes the pressure defined by s(u, ρ), I is the unit tensor, and Σ is the
vdW stress tensor, which arises from the gradient contribution and is defined as

Σ :=

(
Tcρ∆ρ+

1

2
Tc′ρ|∇ρ|2 + 1

2
Tc|∇ρ|2

)
I − Tc∇ρ∇ρ. (4.4)

For the derivation, see Appendix 4.8.1. The time evolution of the densities of mass ρ, mo-
mentum ρv, and total energy ρ|v|2/2+u is then governed by the Navier–Stokes–Korteweg
equations [149,184]:2

∂tρ+∇ · (ρv) = 0, (4.5)

∂t(ρv) +∇ · (ρvv + P + σ) = f , (4.6)

∂t

(
u+

1

2
ρ|v|2

)
+∇ ·

{[(
u+

1

2
ρ|v|2

)
I + P + σ

]
· v − λ∇T

}
= v · f , (4.7)

1Here, we have assumed that there is no gradient contribution to the internal energy [182].
2For the Euler-Korteweg equations, an Onsager-type theorem was obtained in [185].
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where f denotes an external force acting at large scales ∼ L, λ is the thermal conductivity,
and σ is the viscous stress tensor of the form

σij = −µ
(
∂ivj + ∂jvi −

2

3
δij∇ · v

)
− ζδij∇ · v. (4.8)

Here µ and ζ are the shear and bulk viscosity coefficients, respectively. We assume that the
viscous effect is sufficiently weak for the Kolmogorov dissipation scale η to be sufficiently
smaller than any other length scales.

In the following, (4.5)-(4.7) are applied even to scales smaller than the equilibrium
correlation length. Strictly speaking, dynamics at such scales should be described within
the framework of fluctuating hydrodynamics [23,186,187]. In a turbulent regime, however,
the equilibrium correlation may be cut off, and the noise terms may be irrelevant for energy
transfer. We therefore assume that (4.5)-(4.7) are sufficient for our phenomenological
argument.

4.2 Characteristic length scales

Owing to the effect of the gradient contribution, several characteristic length scales that are
not relevant in ordinary fluid turbulence become important. Let ρ0 := 〈ρ〉Ω, c0 := c(ρ0),
and T0 := 〈T 〉Ω be the typical density, capillary coefficient, and temperature, respectively.
In addition, let v0 := (ρ0KT0)

−1/2 be a velocity characterized by the isothermal compress-
ibility KT0 := ρ−1

0 ∂ρ(T0, p)/∂p, which is zero at a critical point. One of the most crucial
length scales is the correlation length of equilibrium density fluctuations

ξ =

√
T0|c0|ρ0
v0

, (4.9)

which is expressed by the capillary coefficient c(ρ) and parameters in the entropy density
s(u, ρ) (for the derivation, see Appendix 4.8.2). The important point here is that even for
strong turbulence, ξ still provides a characteristic length scale at which the vdW stress
Σ and momentum flux ρvv are comparable. Let ℓc be such a length scale. Using an
estimation that ρvv ∼ ρ0v

2
0 and Σ ∼ T0|c0|ρ20/ℓ2c , we obtain

ℓc ∼ ξ. (4.10)

Note that Σ can be significant at small scales because it contains higher-order spatial
derivatives. Therefore, at scales � ℓc, the effect of the vdW stress is small compared
with the momentum flux, whereas at scales � ℓc, the vdW stress becomes relevant. This
observation implies the possibility of the van der Waals cascade, induced by the vdW
stress, at scales � ℓc.

We now introduce other important characteristic length scales by noting the local
kinetic energy balance equation

∂t

(
1

2
ρ|v|2

)
+∇ ·

[(
1

2
ρ|v|2I + P + σ

)
· v
]
= p∇ · v +Σ : ∇v + σ : ∇v + v · f .

(4.11)

The first term (with minus sign) on the right-hand side of (4.11), −p∇ · v, is the pressure-
dilatation, which represents the conversion of kinetic energy into internal energy and vice
versa. As mentioned in Chapter 3, recent numerical simulations on ordinary compressible
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turbulence [150,154] suggest that there is a characteristic length scale ℓlarge such that the
contribution to the global pressure-dilatation 〈−p∇ · v〉Ω from scales � ℓlarge is dominant,
whereas the contribution from scales � ℓlarge is negligible. The length scale ℓlarge is defined,
for instance, as follows:

ℓlarge :=

∑
k k

−1E(p)(k)∑
k E

(p)(k)
, (4.12)

where E(p)(k) denotes the pressure-dilatation co-spectrum:

E(p)(k) := − 1

∆k

∑
k−∆k/2<|k|<k+∆k/2

p̂(k)∇̂ · v(−k) (4.13)

with ∆k := 2π/LΩ. The second term (with minus sign) on the right-hand side of (4.11),
−Σ : ∇v, which we call the vdW-stress–strain, arises because of the gradient contribution.
It also represents the conversion between kinetic and internal energy. Because both the
vdW stress Σ and strain ∇v change rapidly in space, there may be a characteristic length
scale ℓsmall such that the contribution to the global vdW-stress–strain 〈−Σ : ∇v〉Ω from
scales � ℓsmall is negligible, whereas the contribution from scales � ℓsmall is dominant.
We define ℓsmall as

ℓsmall :=

∑
k k

−1E(Σ)(k)∑
k E

(Σ)(k)
, (4.14)

where E(Σ)(k) denotes the vdW-stress–strain co-spectrum:

E(Σ)(k) := − 1

∆k

∑
k−∆k/2<|k|<k+∆k/2

Σ̂(k) : ∇̂v(−k). (4.15)

In the following, we assume the existence of the intermediate asymptotic limit ℓsmall �
ℓ � ℓc and ℓc � ℓ � ℓlarge ≲ L. The validity of this assumption will be discussed in
Section 4.6.

4.3 Scale-to-scale energy fluxes

We investigate energy transfer across scales by coarse-graining turbulent fields, as in the
previous chapter. For any locally integrable function a(x), we define a coarse-grained field
at length scale ℓ as

āℓ(x) :=

∫
Ω
d3rGℓ(r)a(x+ r). (4.16)

Here, Gℓ(r) := ℓ−3G(r/ℓ) is the Friedrichs mollifier, where G : Ω → [0,∞) is a smooth
symmetric function supported in the open unit ball with

∫
ΩG = 1. By coarse-graining

(4.5) and (4.6), we can obtain the large-scale kinetic energy balance equation

∂t

(
1

2
ρ̄ℓ|ṽℓ|2

)
+∇ · Jℓ = p̄ℓ∇ · v̄ℓ + Σ̄ℓ : ∇v̄ℓ −Qflux

ℓ −Dℓ + εinℓ , (4.17)

where we have introduced the density-weighted coarse-grained velocity ṽℓ := (ρv)ℓ/ρ̄ℓ to
reduce the number of additional cumulant terms and to obtain a simple physical inter-
pretation. Here, εinℓ := ṽℓ · f̄ℓ denotes the energy injection rate due to external stirring
at scale ℓ, Dℓ := −∇ṽℓ : σ̄ℓ denotes the viscous dissipation acting at scale ℓ, and Jℓ
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represents the spatial transport of large-scale kinetic energy, which does not contribute
to the energy transfer across scales. The first two terms on the right-hand side of (4.17),
−p̄ℓ∇ · v̄ℓ and −Σ̄ℓ : ∇v̄ℓ, are the large-scale pressure-dilatation and vdW-stress–strain,
respectively. Note that these two terms are closed in terms of the large-scale fields v̄ℓ, p̄ℓ,
and Σ̄ℓ. Therefore, they contribute only to the conversion of the large-scale kinetic energy
into internal energy and vice versa. The third term on the right-hand side of (4.17) denotes
the total scale-to-scale kinetic energy flux:

Qflux
ℓ := Πℓ + Λ

(p)
ℓ + Λ

(Σ)
ℓ . (4.18)

Here, the first term Πℓ denotes the deformation work, which corresponds to the energy
flux of the Richardson cascade:

Πℓ := −ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v), (4.19)

where τ̃ℓ(v,v) := (̃vv)ℓ − ṽℓṽℓ. The deformation work represents the work done by the
large-scale strain ∇ṽℓ against the small-scale stress ρ̄ℓτ̃ℓ(v,v). The second term Λ

(p)
ℓ de-

notes the baropycnal work defined by

Λ
(p)
ℓ :=

1

ρ̄ℓ
∇p̄ℓ · τ̄ℓ(ρ,v), (4.20)

where τ̄ℓ(ρ,v) := (ρv)ℓ − ρ̄ℓv̄ℓ, and it represents the work done by the large-scale pressure
gradient force −∇p̄ℓ/ρ̄ℓ against the small-scale mass flux τ̄ℓ(ρ,v). While Πℓ and Λ

(p)
ℓ also

exist in ordinary compressible turbulence, the existence of the third term Λ
(Σ)
ℓ is specific

to a fluid near a gas-liquid critical point. Because this term arises due to the gradient
contribution, we call it capillary work. The capillary work has a form similar to that of
baropycnal work,

Λ
(Σ)
ℓ :=

1

ρ̄ℓ
∇ · Σ̄ℓ · τ̄ℓ(ρ,v), (4.21)

and represents the work done by the large-scale force ∇·Σ̄ℓ/ρ̄ℓ against the small-scale mass
flux τ̄ℓ(ρ,v). Note that in (4.17), only these three terms are capable of the direct transfer
of kinetic energy across scales because each of the three terms has a form “large-scale (> ℓ)
quantity × small-scale (< ℓ) quantity,” whereas the other terms on the right-hand side of
(4.17) do not.

4.4 Main result

The first main result concerns the most fundamental property of the energy cascade: the
total scale-to-scale energy flux 〈Qflux

ℓ 〉Ω becomes scale-independent in the “inertial range”
ℓsmall � ℓ� ℓlarge:

〈Qflux
ℓ 〉Ω ' εeff , (4.22)

where εeff := 〈p∇ · v〉Ω + 〈v · f〉Ω denotes the effective energy injection rate, which is
scale-independent. We emphasize that, because Qflux

ℓ can be expressed in terms of field
increments δv(r;x) and δρ(r;x), the relation (4.22) plays the same role as Kolmogorov’s
4/5-law [21].

The second main result is the prediction of the van der Waals cascade. In the range
of ℓc � ℓ � ℓlarge, the Richardson cascade, induced by the momentum flux, becomes
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Richardson 

cascade

Van der Waals 

cascade

Fig. 4.1: Velocity power spectrum Ev(k) in the inertial range ℓ−1
large ≪ k ≪ ℓ−1

small.

dominant, whereas in the range of ℓsmall � ℓ� ℓc, the van der Waals cascade, induced by
vdW stress, develops:

〈Λ(Σ)
ℓ 〉Ω � 〈Πℓ〉Ω ' εeff for ℓc � ℓ� ℓlarge,

〈Πℓ〉Ω � 〈Λ(Σ)
ℓ 〉Ω ' εeff for ℓsmall � ℓ� ℓc. (4.23)

Correspondingly, the velocity power spectrum is estimated to exhibit the power-law ∝
k−5/3 for ℓ−1

large � k � ℓ−1
c and ∝ k−3 for ℓ−1

c � k � ℓ−1
small (see Fig. 4.1).

4.4.1 Interpretation of the result

The above result can be interpreted in terms of the following energy transfer scenario (see
Fig. 4.1):

1. At large scales (∼ L), kinetic energy is injected due to external force.

2. In the scale range larger than ℓlarge, part of the injected kinetic energy is transferred
to smaller scales because of the effect of deformation work, while part of the kinetic
energy is converted into internal energy through the pressure-dilatation effect.

3. In the inertial range ℓsmall � ℓ � ℓlarge, the following two-step cascade process
emerges:

(a) In the scale range ℓc � ℓ � ℓlarge, the Richardson cascade, induced by defor-
mation work, becomes dominant.

(b) At scales smaller than the crossover length ℓc, the effect of the vdW stress due to
enhanced density fluctuations becomes significant. Therefore, the Richardson
cascade is no longer dominant, and the van der Waals cascade, induced by
capillary work, develops.

4. In the scale range smaller than ℓsmall, the kinetic energy transferred by the two-step
cascade is dissipated due to the viscous effects.
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4.4.2 Remark

Here, we remark on several assumptions imposed in deriving the main result. In deriving
the second main result, we have assumed that the velocity field satisfies the Besov regularity
in the inviscid limit:

‖δv(r; ·)‖p ∼ vrms

( r
L

)σp

for r � L, (4.24)

with the Besov exponent σp ∈ (0, 1] for p ∈ [1,∞].
In addition, we have imposed the following conditions for the density and pressure field:

‖δρ(r; ·)‖p = O
( r
L

)
, (4.25)

‖δp(r; ·)‖p = O

(( r
L

)σp
p
)
, (4.26)

where σpp ∈ (0, 1]. The requirement (4.25) is reasonable because the entropy functional
of the system (4.2) includes the density gradient term ∝ |∇ρ|2. For ordinary compress-
ible turbulence, the Besov regularity of these turbulent fields is well-established through
experiments and numerical simulations [94,188–190].

4.5 Suggested experiments

We consider the experimental conditions required for observing the van der Waals cascade.
In the study of critical phenomena, CO2 has been widely used because its critical state
occurs under readily realized experimental conditions (Tc = 304.13 K, pc = 7.3773 MPa,
ρc = 0.4678 g cm−3) [191, 192]. In this case, the shear viscosity µ takes a value around
3.5× 10−4 g cm−1 s−1 [176, 191, 193]. We first estimate the Kolmogorov dissipation scale
η, which can be estimated in terms of µ, ρc, L, and vrms :=

√
〈|v|2〉Ω as

η ∼
(

µ

ρcvrmsL

)3/4

L. (4.27)

If we achieve a quite strong turbulent regime, in which Re ∼ 107 (e.g., vrms ∼ 10 m/s and
L ∼ 0.1 m), the Kolmogorov dissipation scale is ∼ 103 Å. Therefore, if one can reach the
vicinity of the critical point such that the correlation length is at least ∼ 104 Å, it may be
possible to verify our predictions by measuring the velocity field using hot-wire anemometry
or laser Doppler velocimetry. To achieve a correlation length of that magnitude, we must
control the system with an accuracy of at least T −Tc ∼ 10−4 K because ξ ' ξ0ε

−ν , where
ξ0 = 1.5 Å, ε := (T − Tc)/Tc, and ν = 0.630 [191,193].

4.6 Derivation of the main result

In this section, we derive the main result. First, we investigate the scale dependence of the
scale-to-scale energy fluxes. Then, we derive the first and second main results.

4.6.1 Scale dependence of the energy fluxes

Here, we investigate the scale dependence of deformation work, baropycnal work, and
capillary work, by using arguments similar to those used in the Onsager “ideal turbulence”
theory.
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Deformation work

The scale dependence of the deformation work Πℓ = −ρ̄ℓ∇ṽℓ : τ̃ℓ(v,v) is completely the
same as in pure quantum turbulence (Section 3.5.1). The result reads

‖Πℓ‖p/3 = O

((
ℓ

L

)3σp−1
)
, p ≥ 3. (4.28)

Baropycnal work

We next evaluate the scale dependence of the baropycnal work Λ
(p)
ℓ = (1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v).

By using the Cauchy-Schwarz and Hölder inequalities, we obtain

‖Λ(p)
ℓ ‖p/3 = ‖(1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v)‖p/3

≤ ‖1/ρ̄ℓ‖∞‖∇p̄ℓ‖p‖τ̄ℓ(ρ,v)‖p/2. (4.29)

The second factor ‖∇p̄ℓ‖p can be evaluated as (see (3.41) of Section 3.5.1)

‖∇p̄ℓ‖p = O

(
‖δp(ℓ)‖p

ℓ

)
. (4.30)

For ‖τ̄ℓ(ρ,v)‖p/2, by using Proposition (3.79) in Appendix 3.7.1, we obtain

‖τ̄ℓ(ρ,v)‖p/2 = O(‖δρ(ℓ)‖p‖δv(ℓ)‖p). (4.31)

Then, from the Besov regularity (4.24), (4.25), and (4.26), we obtain

‖Λ(p)
ℓ ‖p/3 = ‖(1/ρ̄ℓ)∇p̄ℓ · τ̄ℓ(ρ,v)‖p/3

= O

(
1

ℓ
‖δp(ℓ)‖p‖δρ(ℓ)‖p‖δv(ℓ)‖p

)
= O

((
ℓ

L

)σp+σp
p
)
, p ≥ 3. (4.32)

This result implies that the mean baropycnal work goes to zero 〈Λ(p)
ℓ 〉Ω → 0 as ℓ/L → 0.

Therefore, the baropycnal work does not contribute to the energy transfer across scales.3

Capillary work

Finally, we investigate the scale dependence of the capillary work, Λ(Σ)
ℓ = (1/ρ̄ℓ)∇ · Σ̄ℓ ·

τ̄ℓ(ρ,v). From the Cauchy-Schwarz and Hölder inequalities, we obtain

‖Λ(Σ)
ℓ ‖p/3 =

∥∥(1/ρ̄ℓ)∇ · Σ̄ℓ · τ̄ℓ(ρ,v)
∥∥
p/3

≤ ‖1/ρ̄ℓ‖∞
(
‖∇(Tcρ∆ρ)ℓ‖p + ‖∇ · Ξ̄ℓ‖p

)
‖τ̄ℓ(ρ,v)‖p/2 (4.33)

where we have introduced Ξ as

Ξ :=

(
1

2
Tc′ρ|∇ρ|2 + 1

2
Tc|∇ρ|2

)
I − Tc∇ρ∇ρ. (4.34)

3In ordinary compressible turbulence, the baropycnal work can contribute to energy transfer [93, 95,
156]. If the assumption (4.25) is violated, the baropycnal work can induce energy transfer across scales
even in this case, at least in the large scale ℓc ≪ ℓ ≪ ℓlarge.
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We now evaluate ‖∇(Tcρ∆ρ)ℓ‖p and ‖∇ · Ξ̄ℓ‖. By noting that

∇(Tcρ∆ρ)ℓ = −1

ℓ

∫
Ω
d3r(∇G)ℓ(r)(Tcρ∆ρ)(x+ r)

=
1

ℓ2

∫
Ω
d3r(∇∇G)ℓ(r) · (Tcρ∇ρ)(x+ r)

+
1

ℓ

∫
Ω
d3r(∇G)ℓ(r)(∇(Tcρ) · ∇ρ)(x+ r),

(4.35)

we obtain

‖∇(Tcρ∆ρ)ℓ‖p ≤
1

ℓ2

∫
Ω
d3r|(∇∇G)ℓ(r)|‖Tcρ∇ρ‖p +

1

ℓ

∫
Ω
d3r|(∇G)ℓ(r)|‖∇(Tcρ) · ∇ρ‖p

= O
(
ℓ−2
)
. (4.36)

Similarly, ‖∇ · Ξ̄ℓ‖ can be evaluated as

‖∇ · Ξ̄ℓ‖p ≤
1

ℓ

∫
Ω
d3r|(∇G)ℓ(r)|‖Ξ‖p

= O
(
ℓ−1
)
. (4.37)

By combining (4.33), (4.36), (4.37), and the conditions (4.24) and (4.25), we obtain

‖Λ(Σ)
ℓ ‖p/3 = ‖(1/ρ̄ℓ)∇ · Σ̄ℓ · τ̄ℓ(ρ,v)‖p/3

= O

((
ℓ

L

)σp−1
)
, p ≥ 3. (4.38)

Note that, for any σp ∈ (0, 1], we cannot conclude that the capillary work goes to zero as
ℓ/L → 0. In other words, unlike deformation work, capillary work can contribute to the
transfer of kinetic energy across scales regardless of the regularity of the velocity field. The
scale-independent upper bound is obtained when σp = 1.

4.6.2 Derivation of the first main result

We derive the first main result in the steady state regime for simplicity, although it is valid
even in freely decaying turbulence. In the steady state, the spatial averaging of (4.17) gives

〈Qflux
ℓ 〉Ω = 〈p̄ℓ∇ · v̄ℓ〉Ω + 〈Σ̄ℓ : ∇v̄ℓ〉Ω − 〈Dℓ〉Ω + 〈εinℓ 〉Ω. (4.39)

As mentioned in Section 4.2, the pressure-dilatation is assumed to be significant at large
scales � ℓlarge. That is, the large-scale pressure-dilatation can be approximated as −〈p̄ℓ∇·
v̄ℓ〉Ω ' −〈p∇ · v〉Ω for ℓ � ℓlarge. Similarly, because the contribution to −〈Σ : ∇v〉Ω
from large scales � ℓsmall is assumed to be negligible, the large-scale vdW-stress–strain
becomes −〈Σ̄ℓ : ∇v̄ℓ〉Ω ' 0 for ℓ � ℓsmall. Finally, because the Kolmogorov dissipation
scale is assumed to be sufficiently smaller than other length scales and the external force
f acts at large scales ∼ L, the viscous dissipation 〈D̄ℓ〉Ω and the energy injection can be
approximated as 〈D̄ℓ〉Ω ' 0 and 〈εinℓ 〉Ω := 〈ṽℓ ·f̄ℓ〉Ω ' 〈v ·f〉Ω for ℓsmall � ℓ� ℓlarge [10,95].
Thus, in the intermediate scale range ℓsmall � ℓ� ℓlarge, (4.39) becomes

〈Qflux
ℓ 〉Ω ' 〈p∇ · v〉Ω + 〈v · f〉Ω =: εeff . (4.40)
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Here, we remark on the existence of the intermediate scale range ℓsmall � ℓ � ℓlarge.
In the above derivation, we have assumed that −〈p̄ℓ∇ · v̄ℓ〉Ω ' −〈p∇ · v〉Ω for ℓ �
ℓlarge. In other words, we have assumed that the pressure-dilatation co-spectrum satis-
fies E(p)(k) = O(k−α) with α > 1, as in ordinary compressible turbulence [93,94,150,154].
This assumption is based on the decorrelation effects between the large-scale pressure p̄ℓ,
which mainly acts at large scales, and ∇ · v̄ℓ, which becomes significant at small scales
as ‖∇ · v̄ℓ‖p = O(‖δv(ℓ)‖p/ℓ) [93, 94]. For the large-scale vdW-stress–strain, on the other
hand, such decorrelation effects are not expected because both Σ̄ℓ and ∇v̄ℓ change rapidly
in space. From the similar argument as in (4.38), its scale-dependence can be evaluated as
follows:

‖Σ̄ℓ : ∇v̄ℓ‖p/2 ≤ ‖Σ̄ℓ‖p‖∇v̄ℓ‖p

= O

((
ℓ

L

)σp−2
)
, p ≥ 2. (4.41)

Thus, there possibly exists a characteristic length scale ℓsmall � ℓlarge such that 〈Σ̄ℓ :
∇v̄ℓ〉Ω ' 0 for ℓ� ℓsmall.

4.6.3 Derivation of the second main result

We first note that the contribution to the energy transfer from the baropycnal work Λ
(p)
ℓ

can be ignored because it converges to zero as ℓ/L→ 0, as shown in (4.32). Therefore, the
first main result (4.22) can be further approximated as

〈Πℓ〉Ω + 〈Λ(Σ)
ℓ 〉Ω ' εeff . (4.42)

From (4.28) and (4.38), it immediately follows that the upper bounds of the mean de-
formation work 〈Πℓ〉Ω and mean capillary work 〈Λ(Σ)

ℓ 〉Ω have different ℓ dependences. In
particular, the upper bound of 〈Πℓ〉Ω becomes scale independent when σ3 = 1/3, whereas
that of 〈Λ(Σ)

ℓ 〉Ω behaves as O(ℓ−2/3):

〈Πℓ〉Ω ≤ ‖Πℓ‖1 = O(1), (4.43)

〈Λ(Σ)
ℓ 〉Ω ≤ ‖Λ(Σ)

ℓ ‖1 = O

((
ℓ

L

)−2/3
)
, (4.44)

When σ3 = 1, on the other hand, the upper bound of 〈Λ(Σ)
ℓ 〉Ω becomes constant, whereas

that of 〈Πℓ〉Ω behaves as O(ℓ2):

〈Πℓ〉Ω ≤ ‖Πℓ‖1 = O

((
ℓ

L

)2
)
, (4.45)

〈Λ(Σ)
ℓ 〉Ω ≤ ‖Λ(Σ)

ℓ ‖1 = O(1). (4.46)

The above observation and the first main result implies that there exists a characteristic
length scale λ such that deformation work is dominant in λ � ℓ � ℓlarge, while capillary
work becomes dominant in ℓsmall � ℓ� λ (see Fig. 4.2):

〈Λ(Σ)
ℓ 〉Ω � 〈Πℓ〉Ω = O(1) for λ� ℓ� ℓlarge, (4.47)

〈Πℓ〉Ω � 〈Λ(Σ)
ℓ 〉Ω = O(1) for ℓsmall � ℓ� λ. (4.48)
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Richardson 
cascade

Van der Waals 
cascade

Fig. 4.2: Scale dependence of the scale-to-scale kinetic energy fluxes. The solid lines indicate the upper
bounds of the energy fluxes, and the arrow indicates the direction of energy transfer.

The crossover scale λ can be estimated, for instance, as follows. If we use v0 := (ρ0KT0)
−1/2

and ρ0 = 〈ρ〉Ω as the characteristic velocity and density, the deformation work (4.19) and
capillary work (4.21) can be evaluated as

Λ
(Σ)
ℓ ∼ λ−3T0|c0|ρ20v0 (4.49)

and
Πℓ ∼ ρ0ℓ

−1v30. (4.50)

Then, the balance condition Πλ ∼ Λ
(Σ)
λ leads to λ ∼

√
T0|c0|ρ0/v0. Thus, in the range

of ℓc � ℓ � ℓlarge, the Richardson cascade, induced by the deformation work, becomes
dominant, whereas in the range of ℓsmall � ℓ � ℓc, the van der Waals cascade, induced
by capillary work, develops. From the same argument as in Section 3.5.3, we can estimate
the velocity power spectrum as Ev(k) ∝ k−5/3 for ℓ−1

large � k � ℓ−1
c and Ev(k) ∝ k−3 for

ℓ−1
c � k � ℓ−1

small.

4.7 Concluding remarks

In summary, we have shown that supercritical turbulence near a critical point can exhibit
a novel type of cascade, which we call van der Waals cascade, at scales smaller than the
correlation length of equilibrium density fluctuations ξ. This van der Waals turbulence is
distinct from other known ordinary fluid turbulence in that its cascade reaches the “micro-
scopic length scales” smaller than ξ. Thus, the problem addressed here could lead to an
understanding not only of turbulence but also of the relation between the macroscopic and
microscopic descriptions of nature. We therefore hope that experiments will be conducted
to verify our predictions. Below, we provide some remarks on our results.

Similarity to pure quantum turbulence

Interestingly, the behavior of the van der Waals turbulence is quite similar to those of pure
quantum turbulence described in Chapter 3. Indeed, if we replace c(ρ) and T with A/ρ
and −~2/(4m2A) with some constant A, respectively, the van der Waals stress formally
corresponds to the quantum stress. Thus, the mechanisms of the quantum stress cascade
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and the van der Waals cascade are essentially the same. Therefore, our results provide
an interesting perspective on quantum turbulence, which will help illuminate the role of
quantized vortices and Kelvin waves in the energy cascade.

Scale locality of van der Waals cascade

As in pure quantum turbulence, the van der Waals cascade is only ultraviolet local and
does not satisfy the sufficient condition to be infrared local (for the scale locality in pure
quantum turbulence, see Appendix 3.7.2). Thus, the contributions of large-scale velocity
increments could be non-negligible and could contribute to capillary work.

Optimality of the upper bound on capillary work

We note that k−3 spectrum for the van der Waals cascade can become shallower due
to depletion of nonlinearity [5] or additional assumption on the Besov regularity. For
example, we can obtain a tighter bound on the capillary work by further assuming the
Besov regularity of the density gradient field ∇ρ:

‖δ(∇ρ)(r; ·)‖p = O((r/L)σ
∇ρ
p ) for r � L, (4.51)

with σ∇ρ
p ∈ (0, 1]. In this case, the upper bound of the capillary work can be evaluated as

‖Λ(Σ)
ℓ ‖p/3 = O

((
ℓ

L

)σp+σ∇ρ
p −1

)
, p ≥ 3, (4.52)

and the velocity power spectrum can be estimated as Ev(k) ∝ k−3+2σ∇ρ
2 for ℓ−1

c � k �
ℓ−1
small. Thus, the spectral exponent associated with the van der Waals cascade possibly

depends on the scaling exponent for the density field.

4.8 Appendix

4.8.1 Derivation of the pressure tensor

Here, we derive the pressure tensor ((4.3) and (4.4) in the main text). The equilibrium
value of ([u], [ρ]) = (u(x), ρ(x))x∈Ω in the isolated system enclosed by adiabatic walls,
denoted as (u∗(x), ρ∗(x)), is determined as the maximizer of the entropy functional,

S([u], [ρ]) =
∫
Ω
d3x

(
s(u, ρ) +

c(ρ)

2
|∇ρ|2

)
(4.53)

with the conservation law, ∫
Ω
d3xρ(x)/m = N, (4.54)∫
Ω
d3xu(x) = E, (4.55)

where E and N are constants. The variational equation reads

1

T (u∗, ρ∗)
= λ1, (4.56)
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−µ(u∗, ρ∗)

T (u∗, ρ∗)
+
c′(ρ∗)

2
|∇ρ∗|2 −∇ · (c(ρ∗)∇ρ∗) = λ2, (4.57)

where λ1 and λ2 are Lagrange multipliers that are physically connected to the equilib-
rium values of temperature and chemical potential as λ1 = 1/T eq and λ2 = −µeq/T eq,
respectively.

We define
µ̃ := µ(u, ρ)− T (u, ρ)

(
c′(ρ)

2
|∇ρ|2 −∇ · (c(ρ)∇ρ)

)
, (4.58)

such that the equilibrium condition is given by ∇µ̃ = 0. We then determine p̃, such that
∇· p̃ = 0 in equilibrium and p̃ = p(u, ρ) when the gradient terms are ignored. To this end,
we use a relation,

∇(p/T ) = −u∇(1/T ) + ρ∇(µ/T ), (4.59)

which is derived from

p = µρ− u+ Ts, (4.60)

∇s = 1

T
∇u− µ

T
∇ρ. (4.61)

We first rewrite the second term on the right-hand side of (4.59) in terms of the generalized
chemical potential, µ̃, as

ρ∇(µ/T ) = ρ∇(µ̃/T )− ρ∇((µ̃− µ)/T )

= ρ∇(µ̃/T )−∇(ρ(µ̃− µ)/T ) +∇ ·
(
− c
2
|∇ρ|2I + c∇ρ∇ρ

)
= ρ∇(µ̃/T )−∇ ·

(
ρc∆ρI +

1

2
ρc′|∇ρ|2I +

1

2
c|∇ρ|2I − c∇ρ∇ρ

)
. (4.62)

Here, we used the relation,

(µ̃− µ)/T = −1

2
c′|∇ρ|2 +∇ · (c∇ρ), (4.63)

which follows from the definition of µ̃ (4.58). By substituting this result into (4.59), we
obtain

∇(p̃/T ) = −u∇(1/T ) + ρ∇(µ̃/T ) (4.64)

with

p̃ =

(
p+ Tρc∆ρ+

1

2
Tρc′|∇ρ|2 + 1

2
Tc|∇ρ|2

)
I − Tc∇ρ∇ρ. (4.65)

The equilibrium condition, ∇T = 0 and ∇µ̃ = 0, leads to ∇ · p̃ = 0. In addition, it is
evident that p̃ = pI when the density gradient is ignored. In the main text, we used the
notation P = p̃ to emphasize that p̃ is a second-order tensor and defined the van der Waals
stress Σ as

Σ := P − pI

=

(
Tcρ∆ρ+

1

2
Tc′ρ|∇ρ|2 + 1

2
Tc|∇ρ|2

)
I − Tc∇ρ∇ρ. (4.66)
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4.8.2 Correlation length of equilibrium density fluctuations

In this section, we derive the correlation length of equilibrium density fluctuations and
thus confirm that the correlation length is determined by the capillary coefficient and
parameters in the entropy density. To this end, we introduce the Helmholtz free energy
functional,

F(T, [ρ]) :=

∫
Ω
d3x

(
f(T, ρ)− 1

2
Tc(ρ)|∇ρ|2

)
, (4.67)

where f := u− Ts. Assuming small, slowly varying deviations in density, we consider the
expansion of f in terms of the local deviation, δρ(x) := ρ(x)− ρ0, as follows:

f(T, ρ) = f(T, ρ0) + µ(T, ρ0)δρ+
1

2

1

ρ20KT
(δρ)2 + · · · , (4.68)

where KT is the isothermal compressibility, given by

KT :=
1

ρ

∂ρ(T, p)

∂p

∣∣∣∣
ρ=ρ0

. (4.69)

Substituting (4.68) into (4.67), we obtain

F(T, [ρ]) '
∫
Ω
d3x

(
f(T, ρ0) +

1

2

1

ρ20KT
(δρ)2 − 1

2
Tc0|∇ρ|2

)
=

∫
Ω
d3xf(T, ρ0) + δF(T, [ρ]), (4.70)

where

δF(T, [ρ]) :=

∫
Ω
d3x

(
1

2

1

ρ20KT
(δρ)2 − 1

2
Tc0|∇ρ|2

)
. (4.71)

Here, the first power of δρ has been dropped considering the conservation of particles, and
c(ρ) is replaced by c0 := c(ρ0) because the difference c(ρ)−c0 is a higher-order contribution.

Introducing the Fourier transform of the density deviation,

δρ̂(k) =
1

V

∫
Ω
d3xe−ik·xδρ(x), (4.72)

where V := L3
Ω and k ∈ (2π/LΩ)Z, (4.71) becomes

δF(T, [ρ]) =
1

2
V
∑
k

(
1

ρ20KT
− Tc0k

2

)
|δρ̂(k)|2, (4.73)

and k := |k|. According to fluctuation theory in equilibrium statistical mechanics, δF (T, [ρ])
plays a role of an effective Hamiltonian describing density fluctuations of the system
with temperature T . That is, the density correlation function takes the Ornstein-Zernike
form [194], as follows:

〈|δρ̂(k)|2〉Ω =

∫ (∏
q dδρ̂(q)

)
|δρ̂(k)|2 exp

(
− V

2kBT

∑
q

(
1

ρ20KT
− Tc0q

2

)
|δρ̂(q)|2

)
∫ (∏

q dδρ̂(q)
)
exp

(
− V

2kBT

∑
q

(
1

ρ20KT
− Tc0q2

)
|δρ̂(q)|2

)
=
kBT

V

1

(ρ20KT )−1 − Tc0k2

=
kB
V |c0|

1

ξ−2 + k2
for k 6= 0. (4.74)
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Here, ξ is the correlation length of density fluctuations

ξ :=
√
T |c0|ρ20KT

=

√
T |c0|ρ0
v0

, (4.75)

where we introduce a velocity characterized by the isothermal compressibility, as follows:

v0 :=
1√
ρ0KT

. (4.76)

As an example, we consider a van der Waals fluid for which the equation of state is
given as follows:

p(T, ρ) =
kBT

m

ρ

1− bρ
− aρ2, (4.77)

where m denotes the mass of a particle; the heat capacity per unit volume is given by

cV (T, ρ) = ηkBρ, (4.78)

where a, b, and η are constants. In this case, the entropy density is given by

s(u, ρ) =
kB
m
ρ ln

1− bρ

ρ/m
+ ηkBρ ln

u+ aρ2

ρ/m
+ cρ, (4.79)

where c is a constant. The critical density, temperature, and pressure are expressed as

ρc =
1

3b
, Tc =

8am

27bkB
, pc =

a

27b2
, (4.80)

respectively. If ρ0 = ρc, the isothermal compressibility can be expressed as

KT =
1

6pc

Tc
T − Tc

. (4.81)

From (4.75), (4.79), (4.80), and (4.81), it is straightforward to confirm that the correlation
length ξ is determined by the capillary coefficient c(ρ) and the parameters in the entropy
density s(u, ρ).





Chapter 5

Simple XY model for cascade
transfer

Many phenomena in nature can be regarded as cooperative phenomena in the sense that
they emerge from interactions between many components. Even if such interactions are
complicated, the resulting cooperative phenomena can be universal regardless of the details
of the interactions, allowing for phenomenological understanding. Therefore, if we are
interested only in the universal aspect of such a phenomenon, it is sufficient to investigate
the simplest model that describes it. Simple models have provided phenomenological
perspectives on various phenomena such as critical phenomena [65], phase separation [38,
66], directed percolation [67], surface growth [68,69], and flocking [70].

Cascade transfer can also be regarded as a nonequilibrium cooperative phenomenon,
where inviscid conserved quantities are conservatively transferred across scales due to ex-
tremely complicated nonlinear interactions. Remarkably, cascade transfer is also observed
even in systems different from fluids, including elastic bodies and spin systems [52–59].
Thus, cascade transfer phenomena are ubiquitous and underlie the universality in various
systems. This fact motivates us to systematically classify various cascade phenomena by
establishing the concept of a “universality class,” as in equilibrium critical phenomena. As
a first step toward this end, we have explored novel types of cascade transfer in quantum
fluid and supercritical fluid near a critical point in Chapters 3 and 4.

In this chapter, we explore novel cascade phenomena by constructing a simple model
representing one universality class for cascade transfer without paying much attention to
its relevance to real systems. In constructing the model, we focus on how cascade transfer
emerges from spatially local interactions, noting that most existing cascade models have
nonlocal interactions [5, 195–197].

The constructed model is a modified XY model with amplitude fluctuations, in which
the spin is regarded as the “velocity” of a turbulent field in d dimensions. We show that
the model exhibits an inverse “energy” cascade, and we calculate the functional form of the
velocity correlation function, which corresponds to the non-Kolmogorov energy spectrum ∝
k−3. This behavior is quite different from ordinary fluid turbulence even in two dimensions,
where the inverse energy cascade inevitably accompanies the enstrophy cascade and the
Kolmogorov spectrum.

This chapter is organized as follows. In the next section, we consider the minimum
elements required for cascade transfer. In Section 5.2, we introduce our model. Then, its
basic properties are described in Section 5.3. The main results are presented in Section 5.4.
In Section 5.5, we numerically illustrate these results. The derivation of the main results

67
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are explained in Section 5.6. Concluding remarks are provided in Section 5.7.

5.1 Insights into the cascade transfer

Let us consider the minimum elements required for cascade transfer to occur. Obviously,
nonlinearity is indispensable because the essence of cascade transfer is strong inevitable
interference between widely separated length scales. Furthermore, this nonlinearity must
conserve “energy” if there is neither injection nor dissipation.1 To ensure the existence
of the “inertial range,” the injection and dissipation must act at large (small) and small
(large) scales, respectively. Thus, the minimum elements required for the “energy” cascade
to occur are (i) nonlinearity that conserves “energy”; (ii) injection at large (small) scales;
and (iii) dissipation at small (large) scales.

We now construct a simple model for cascade transfer by specifying these three el-
ements. Respecting the ease of the intuitive interpretation of the nonlinear interaction,
we consider the two-component “velocity” vector vi at each site i on a two-dimensional
square lattice. In the case shown in Figs. 5.1(a) and 5.1(b), the “energy” 〈|vi|2〉/2 is lo-
calized at small and large scales, respectively. For the model to evolve from the state

(a) (b)

Fig. 5.1: Schematic illustration of the idea of constructing a simple model. The arrow on each site represents
the “velocity” of a turbulent field. Bottom panels show the corresponding energy spectrum.

shown in Fig. 5.1(a) to that shown in Fig. 5.1(b) while conserving energy, “ferromagnetic
interactions” may be suitable nonlinearity. Because this nonlinear interaction may induce
an inverse energy cascade, where the energy is transferred from small to large scales, we
must incorporate into the model injection and dissipation terms that act at small and large
scales, respectively. To this end, it may be suitable for the ease of analysis to choose a
random force that is white in space and time and a friction dissipation.

5.2 Model

Let vi(t) := (v1i (t), v
2
i (t)) ∈ R2 be the “velocity” at site i of a d-dimensional hypercubic lat-

tice. For simplicity, we consider a hypercubic lattice with Nd vertices and lattice constant
a and impose periodic boundary conditions. The collection of the nearest neighboring sites
of i is denoted Bi. The time evolution of vai , a ∈ {1, 2}, is given by the following Langevin

1Here, we do not consider the case where the nonlinear term itself dissipates energy.
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equation:

∂tv
a
i = λ

∑
j∈Bi

Rab(vi)v
b
j − γvai +

√
εξai , (5.1)

where Rab(vi) represents the projection in the direction perpendicular to vi:

Rab(vi) := δab − vai v
b
i

|vi|2
. (5.2)

Here, λ > 0 is a coupling constant, γ ≥ 0 is a friction coefficient, and ε > 0 represents the
strength of the random force, which is the zero-mean white Gaussian noise that satisfies

〈ξai (t)ξbj(t′)〉 = δabδijδ(t− t′), (5.3)

and |vi|2 := vci v
c
i . Here and hereafter, we employ the summation convention for a, b, c

that repeated indices in one term are summed over {1, 2}. A snapshot of the steady-state
velocity profile of the model for the case d = 2 is shown in Fig. 5.2. Below, we mainly
consider the case of d = 2, but the extension to any d is straightforward.
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Fig. 5.2: Snapshot of the steady-state velocity profile of the model with T = λ = 1 and γ = 0.001. The
color bar denotes the magnitude of the velocity vector |vi|.

5.3 Basic properties

Let |vi|2/2 be the “energy” at site i. A crucial property of the nonlinear term of the model
(5.1) is that the term does not contribute to the energy exchange:

vai

λ∑
j∈Bi

Rab(vi)v
b
j

 = 0. (5.4)

Therefore, the time evolution of |vi|2/2 is governed only by the dissipation rate γ|vi|2 and
injection rate

√
εvci ◦ ξci :

∂t
1

2
|vi|2 = −γ|vi|2 +

√
εvci ◦ ξci , (5.5)
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where the symbol ◦ denotes multiplication in the sense of Stratonovich [198] (see also
Appendix 6.4 of Chapter 6). Thus, if there is neither injection nor dissipation (i.e., ε =
γ = 0), the energy at site i, |vi|2/2, is conserved without any averaging. If ε > 0 and
γ > 0, it follows that 〈|vi|2〉 = 2T in the steady-state, where we have introduced the
“temperature” as T := ε/2γ.

It becomes easier to understand the behavior of the model by introducing the amplitude
Ai and the phase θi as vi = Ai(cos θi, sin θi). In terms of Ai and θi, (5.1) can be expressed
as (see Appendix 5.8.1)

∂tAi = −γAi +
ε

2Ai
+
√
εξAi , (5.6)

Ai∂tθi = −λ
∑
j∈Bi

Aj sin(θi − θj) +
√
εξθi . (5.7)

Here, ξAi := ξ1i cos θi + ξ2i sin θi and ξθi := −ξ1i sin θi + ξ2i cos θi, where the multiplication is
interpreted in the Ito sense [198] (see also Appendix 6.4 of Chapter 6). Note that (5.7) has
the form of the random-bond XY model with asymmetric coupling. If Ai is frozen uniformly
in space, the system exhibits the Kosterlitz-Thouless transition [199–201]. Therefore, we
can say that this model is a modified XY model with amplitude (energy) fluctuations. We
emphasize that, in contrast with the standard XY model, the detailed balance is broken
in our model due to the amplitude fluctuations (see Appendix 5.8.2). The absence of the
detailed balance is necessary for the cascade transfer to occur in the steady-state.

In the following, we use the property that the energy dissipation and injection act at
large and small scales, respectively. Let Ki ≡ ℓ−1

i be the energy injection scale. Since the
injection due to the noise ξai acts with uniform strength on each Fourier mode, Ki can be
defined, for instance, as

Ki :=
2π

L

1

Nd

N/2∑
n1=−N/2+1

· · ·
N/2∑

nd=−N/2+1

√
n21 + · · ·+ n2d, (5.8)

where L := Na. The energy injection due to the “thermal noise” mainly acts at scales � ℓi.
Similarly, let Kγ ≡ ℓ−1

γ be the dissipation scale. This scale may depend on the friction
coefficient γ and dissipation rate γ〈|vi|2〉 = ε. Therefore, Kγ is defined as Kγ := γ3/2ε−1/2

[202–204]. We thus expect that the dissipation is dominant at scales � ℓγ . Note that
Kγ → 0 as γ → 0.

5.4 Main result

Let Π(k) be the scale-to-scale energy flux, which represents the energy transfer from scales
> k−1 to scales < k−1. (The precise definition is given below.) In the steady-state, Π(k)
becomes scale independent in the “inertial range” Kγ � k � Ki:

Π(k) ' −ε < 0. (5.9)

Since Π(k) is negative, (5.9) states that the model exhibits an inverse energy cascade;
i.e., the energy is transferred conservatively and continuously from small to large scales.
Correspondingly, the equal-time correlation function C(ℓ) := 〈vci vcl 〉, where ℓ := ri − rl
and ri denotes the position of site i, follows a power law:

C(ℓ) ∼ 1

16
(λa2)−1εℓ2 for ℓi � ℓ� ℓγ . (5.10)
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From (5.10), the one-dimensional energy spectrum E(1D)(k) reads

E(1D)(k) ∼ C(λa2)−1εk−3 for Kγ � k � Ki, (5.11)

where C is a positive dimensionless constant.

5.5 Numerical simulation

We here present the results of numerical simulation for the case d = 2 (see Appendix 5.8.3
for three-dimensional case). Time integration is performed using the simplest discretization
method with ∆t = 0.01. The initial value of vai is set as vai (0) =

√
ε∆W a

i , where {∆W a
i }

denote the independent Wiener processes with variance ∆t. The parameter values are
chosen as λ = 1, ε = 0.002, and γ = 0.001, so that T = 1. The system size is fixed as
N = 1024 with a = 1. In this case, the injection and dissipation scales are estimated
as Kia ' 2.41 and Kγa ' 1 × 10−3, respectively. Note that Ki does not increase but
approaches a constant value as N increases.
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Fig. 5.3: Scale dependence of (a) the scale-to-scale energy flux Π(k)/ε and (b) the energy spectrum E(1D)(k)
with T = λ = 1 and γ = 0.001 at different times. The dash-dotted and dotted lines represent the power-
laws ∝ k−3 and ∝ k, respectively. The inset shows the compensated energy spectrum λa2ε−1k3E(1D)(k),
where the solid line represents C = 1/2.

Figure 5.3(a) shows the scale dependence of the scale-to-scale energy flux Π(k) at
different times. As expected from the result (5.9), Π(k) is negative and scale independent
in the inertial range Kγ � k � Ki. The magnitude of Π(k) in the inertial range is on



72 CHAPTER 5. SIMPLE XY MODEL FOR CASCADE TRANSFER

the order of ε, i.e., Π(k)/ε ' −1, which is consistent with (5.9). Furthermore, the scale
range over which Π(k) is nearly constant extends to larger scales as time increases. This
result also supports that the energy is continuously transferred from small to large scales.
In Fig. 5.3(b), we plot the one-dimensional energy spectrum E(1D)(k) for the same times
as in Fig. 5.3(a). In the inertial range, E(1D)(k) follows the power law ∝ k−3, which
is consistent with the theoretical prediction (5.11). At scales smaller than the injection
scale Ki, E(1D)(k) is proportional to k. This result implies that the “equipartition of
energy” is realized for small scales ≳ Ki. We can also confirm the existence of the inverse
energy cascade by noting that the spectrum extends to larger scales as time passes. Note
that the range over which Π(k) is flat does not exactly correspond to the range over
which E(1D)(k) ∝ k−3. This discrepancy is similar to that observed in ordinary fluid
turbulence [16].

5.6 Derivation of the main result

Let v̂ak be the discrete Fourier transform of vai with k := 2πn/L, where n1, n2 ∈ {−N/2 +
1, · · · , 0, 1, · · · , N/2}. We define the low-pass filtering operator by

P<K : vi 7→ v<K
i :=

∑
|k|<K

v̂ke
ik·ri , (5.12)

where
∑

|k|<K denotes the sum over all possible k that satisfy |k| < K. This operator
sets to zero all Fourier components with a wavenumber larger than K. By applying this
operator to both sides of (5.1) and taking the average, we obtain the low-pass filtered
energy balance equation:

∂t
1

2
〈|v<K

i |2〉 = −Π(K)− γ〈|v<K
i |2〉+

√
ε〈v<K

i ◦ ξ<K
i 〉, (5.13)

where

Π(K) := −λ

〈
v<K
i · P<K

∑
j∈Bi

R(vi) · vj

〉 (5.14)

denotes the scale-to-scale energy flux. Note that only Π(K) includes the contribution from
the Fourier modes with |k| ≥ K because of the nonlinear interaction. The dissipation
mainly acts at scales � ℓγ , and it follows that γ〈|v<K

i |2〉 ' γ〈|v<Kγ

i |2〉 ' γ〈|vi|2〉 for
Kγ � K. Similarly, because the injection mainly acts at scales � ℓi, 〈v<K

i ◦ ξ<K
i 〉 ' 0 for

K � Ki. Therefore, in the steady-state, we obtain

Π(K) = −γ〈|v<K
i |2〉+

√
ε〈v<K

i ◦ ξ<K
i 〉

' −γ〈|vi|2〉
= −ε < 0 for Kγ � K � Ki. (5.15)

The model thus exhibits the inverse energy cascade; i.e., the energy is transferred conserva-
tively from small to large scales in the “inertial range” Kγ � K � Ki. Note that the above
argument is essentially the same as that for the two-dimensional fluid turbulence [202–205].

We now determine the functional form of the energy spectrum. To this end, we express
the energy flux in terms of the velocity correlation function as in the derivation of the
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Kolmogorov 4/5-law (see Section 1.3). We first note that Π(K) can be rewritten as

Π(K) = − ∂t
1

2
〈|v<K

i |2〉
∣∣∣∣
NL

= −
∑

|k|<K

1

N2

∑
rj−rl

e−ik·(rj−rl) ∂t
1

2
〈vcjvcl 〉

∣∣∣∣
NL

,

(5.16)

where ∂t·|NL denotes the time evolution due to the nonlinear term. By taking the contin-
uum limit, (5.16) can be expressed as

Π(K) = −
∫
|k|<K

d2k

(2π)2

∫
d2ℓe−ik·ℓε(ℓ)

= −
∫ ∞

0
KdℓJ1(Kℓ)ε(ℓ). (5.17)

Here, J1 is the Bessel function of the first kind and we have assumed the homogeneity
ε(ℓ) := ∂t〈vc(ℓ)vc(0)〉/2|NL = ∂t〈vc(rj)vc(rl)〉/2|NL and isotropy ε(ℓ) = ε(ℓ) with ℓ :=
rj − rl. We now substitute (5.17) into the relation (5.15) to find∫ ∞

0
dxJ1(x)ε

( x
K

)
' ε for Kγ � K � Ki. (5.18)

By taking first the limit γ → 0 (Kγ → 0) and then the limit K → 0, we obtain, for large
ℓ, [5]

ε(ℓ) ' ε, (5.19)

where we have used the identity
∫∞
0 dxJ1(x) = 1. A simple expression for ε(ℓ) can be ob-

tained by noting that vi tends to align with 〈〈vi〉〉 :=
∑

j∈Bi
vj/4 because of the nonlinear-

ity of the model. In other words, for the angle αi between v̂i := vi/|vi| and 〈〈vi〉〉/|〈〈vi〉〉|,
we conjecture that αi � 1 in the steady-state. Therefore, by assuming that each angle
between v̂i and its nearest neighbor v̂j is on the order of αi � 1, we find that

Rab(vi)〈〈vbi 〉〉 = 〈〈vai 〉〉 − v̂ai |〈〈vi〉〉| cosαi

' 〈〈vai 〉〉 − v̂ai |〈〈vi〉〉|
' 〈〈vai 〉〉 − vai + v̂ai (Ai − 〈〈Ai〉〉) . (5.20)

Since {Ai} are independent and identically distributed random variables, we obtain from
(5.20) that

∂t
1

2
〈vcjvcl 〉

∣∣∣∣
NL

= 2λ
[〈
val R

ac(vj)〈〈vcj〉〉
〉
+
〈
vajR

ac(vl)〈〈vcl 〉〉
〉]

' 2λ
[
〈vcl
[
〈〈vcj〉〉 − vcj

]
〉+ 〈vcj [〈〈vcl 〉〉 − vcl ]〉

]
, (5.21)

for |rj − rl| > a. Note that 〈〈·〉〉 − · is the discrete Laplacian. Therefore, ε(ℓ) in (5.19) can
be expressed in terms of C(ℓ) := 〈vc(rj)vc(rl)〉:

4λa2
(
∂2

∂ℓ2
+

1

ℓ

∂

∂ℓ

)
C(ℓ) ' ε. (5.22)



74 CHAPTER 5. SIMPLE XY MODEL FOR CASCADE TRANSFER

It follows from this equation that

C(ℓ) ∼ 1

16
(λa2)−1εℓ2 for ℓi � ℓ� ℓγ . (5.23)

Correspondingly, the asymptotic behavior of the one-dimensional energy spectrumE(1D)(k)
in the inertial range reads

E(1D)(k) ∼ C(λa2)−1εk−3 for Kγ � k � Ki, (5.24)

where C is a dimensionless positive constant.

5.7 Concluding remarks

One of the fundamental properties of cascades that we have not discussed here is scale
locality [157, 170,206]. From the fact that the energy flux and spectrum gradually extend
to larger scales as time passes (see Fig. 5.3), it seems that the inverse cascade is scale-
local. However, a numerical study of scale locality implies that it is not scale-local (see
Appendix 5.8.4), although there remains a problem of how to define the scale locality. A
more detailed study on the scale locality should be carried out in the future.

Interestingly, the behavior of the energy spectrum E(1D)(k) ∝ k−3 at large scales is
also observed in atmospheric turbulence. In the upper troposphere and lower stratosphere,
E(1D)(k) ∝ k−5/3 at scales between 10 and 500 km while E(1D)(k) ∝ k−3 at scales between
500 and 3000 km [205, 207–212]. We also note that turbulent behavior similar to that of
our model is found in so-called spin turbulence [54–59] and Fibonacci turbulence [213]. It
would thus be interesting to investigate the relationship between these systems and our
model.

In conclusion, we constructed a modified XY model in which cascade transfer emerges.
Because this inverse cascade induces the non-Kolmogorov spectrum E(1D)(k) ∝ k−3, it
represents a different universality class from ordinary fluid turbulence. We thus hope that
our model triggers further investigation of cascade transfer in various systems such as
condensed matter, active matter, and other statistical mechanical systems.

5.8 Appendix

5.8.1 Derivation of (5.6) and (5.7)

The model (5.1) is mathematically the following stochastic differential equation (for stochas-
tic differential equation, see Appendix 6.4 of Chapter 6):

dvai = λ
∑
j∈Bi

Rab(vi)v
b
jdt− γvai dt+

√
εdW a

i , (5.25)

where W a
i denotes the independent Wiener process. We set vi = Ai(cos θi, sin θi) and

ai := lnAi, so that

ai + iθi = ln(v1i + iv2i ). (5.26)
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By using the Ito calculus [198], we obtain

d(ai + iθi) =
d(v1i + iv2i )

v1i + iv2i
− [d(v1i + iv2i )]

2

2(v1i + iv2i )
2

=
λ

v1i + iv2i

∑
j∈Bi

R1b(vi)v
b
j + i

∑
j∈Bi

R2b(vi)v
b
j

 dt− γdt+

√
ε

v1i + iv2i
(dW 1

i + idW 2
i )

− ε

2(v1i + iv2i )
2
(dW 1

i + idW 2
i )

2

= λe−ai−iθi
∑
j∈Bi

[
(1− cos2 θi)Aj cos θj − cos θi sin θiAj sin θj

−i cos θi sin θiAj cos θj + i(1− sin2 θi)Aj sin θj
]
dt

− γdt+
√
εe−ai−iθi(dW 1

i + idW 2
i ) (5.27)

By taking the real and imaginary parts, we obtain

dai = −γdt+
√
εe−aidWA

i , (5.28)

dθi = e−ai

−λ∑
j∈Bi

Aj sin(θi − θj)dt+
√
εdW θ

i

 , (5.29)

where dWA
i := cos θidW

1
i + sin θidW

2
i and dW θ

i = − sin θidW
1
i + cos θidW

2
i . Therefore,

dAi = Aidai +
1

2
Ai(dai)

2

= −γAidt+
ε

2Ai
dt+

√
εdWA

i , (5.30)

Aidθi = −λ
∑
j∈Bi

Aj sin(θi − θj)dt+
√
εdW θ

i . (5.31)

5.8.2 Violation of detailed balance

The Fokker-Planck equation corresponding the model (5.1) reads

∂tPt({vai }) = −
∑
i

∂

∂vai

λ∑
j∈Bi

Rab(vi)v
b
j − γvai −

ε

2

∂

∂vai

Pt({vai }), (5.32)

where Pt({vai }) denotes the probability density of finding {vai } at time t. Note that,
regardless of whether the “velocity” variables {vai } are even or odd under time reversal, the
drift term is irreversible. Therefore, the necessary and sufficient condition for the system
to have a stationary distribution that satisfies detailed balance is [198]

∂

∂vai
lnPss({vai }) =

2

ε

λ∑
j∈Bi

Rab(vi)v
b
j − γvai


=: Za

i ({vai }), (5.33)

which expresses the vanishing of the probability current. However, this condition cannot
be satisfied because

∂Za
i

∂vbj
6=
∂Zb

j

∂vai
for j ∈ Bi, (5.34)
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in general. In fact,

∂Za
i

∂vbj
=

2λ

ε

(
δab − vai v

b
i

|vi|2

)
, (5.35)

whereas

∂Zb
j

∂vai
=

2λ

ε

(
δab −

vaj v
b
j

|vj |2

)
. (5.36)

5.8.3 Three-dimensional case

In this section, we present the numerical result for the three-dimensional case with two-
component velocity vi. Even for this case, we can derive the inverse energy cascade with
k−3 spectrum: for Kγ � k � Ki,

Π(k) ' −ε (5.37)

and
E(1D)(k) ∼ C(λa2)−1εk−3, (5.38)

where C is a positive dimensionless constant. In Fig. 5.4, we plot the scale dependence of
the energy flux Π(k) and spectrum E(1D)(k). The parameter values and the system size are
chosen as λ = 1, ε = 0.002, γ = 0.001, and N = 128 with a = 1. In this case, the injection
and dissipation scales are estimated as Kia ' 3.02 and Kγa ' 1 × 10−3. This result is
consistent with the prediction (5.37) and (5.38). Note that, in this case, E(1D)(k) ∝ k2 at
small scales, whereas it is proportional to E(1D)(k) ∝ k in the two-dimensional case. This
result also implies that the “equipartition of energy” is realized for small scales.
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Fig. 5.4: The scale-to-scale energy flux Π(k)/ε (left). The energy spectrum E(1D)(k) (right). The dash-
dotted and dotted lines represent the power laws ∝ k−3 and ∝ k2, respectively.

5.8.4 Scale locality

In this section, we numerically investigate the scale locality of the inverse energy cascade.
An energy cascade is scale-local if modes that make a significant contribution to energy
transfer at each scale are limited to those in the vicinity of that scale. More precisely, we
define the scale locality of the inverse energy cascade for our model as follows [157,170,206].
We first note that the scale-to-scale energy flux Π(K) := −λ〈v<K

i · P<K [
∑

j∈Bi
R(vi) ·vj ]〉

has a form of “velocity” v<K
i times “force” λP<K [

∑
j∈Bi

R(vi) ·vj ]. We describe the energy
flux as infrared local if |λ〈v<Q

i ·P<K [
∑

j∈Bi
R(vi) ·vj ]〉| and |λ〈v<K

i ·P<K [
∑

j∈Bi
R(v<Q

i ) ·
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Fig. 5.5: Q-dependence of |λ⟨v<Q
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R(vi) · vj ]⟩/Π(K)| for Ka ≃ 0.31 (left) and Ka ≃ 0.18
(right).
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Fig. 5.6: Q-dependence of |λ⟨v<K
i ·P<K [

∑
j∈Bi

R(v<Q
i ) ·v<Q

j ]⟩/Π(K)| for Ka ≃ 0.31 (left) and Ka ≃ 0.18
(right).

v<Q
j ]〉| gives an asymptotically negligible contribution for Q � K. That is, the en-

ergy flux satisfies the infrared locality if |λ〈v<Q
i · P<K [

∑
j∈Bi

R(vi) · vj ]〉| and |λ〈v<K
i ·

P<K [
∑

j∈Bi
R(v<Q

i ) · v<Q
j ]〉| decay as fast as (Q/K)α with α > 0 for Q � K. Here, we

have used the fact that (v<Q
i )<K = v<Q

i for Q ≤ K. Similarly, we describe the energy flux
as ultraviolet local if |λ〈v<K

i ·P<K [
∑

j∈Bi
R(v>Q

i ) ·v>Q
j ]〉| decays as fast as (Q/K)−α with

α > 0 for Q� K. Here, we do not need to consider |λ〈(v>Q
i )<K · P<K [

∑
j∈Bi

R(vi) · vj ]〉|
because (v>Q

i )<K = 0 for Q ≥ K.

We here remark that the energy flux Π(K) in our model cannot be scale-local without
averaging. That is, because Π(K) is not Galilean invariant, a k = 0 mode can directly
contribute to the unaveraged energy flux if we boost the flow with a uniform velocity U ,
i.e., vi 7→ vi +U for all i. Note that this property is the same as the unsubtracted flux for
fluid turbulence [170]. Even though the unaveraged flux is not scale-local, the averaged flux
Π(K) may become scale-local because of the cancellation of the large-scale contribution.

We now present the results of numerical simulation. The parameter values and system
size are the same as in the main text: λ = 1, ε = 0.002, γ = 0.001, and N = 1024
with a = 1, so that the injection and dissipation scales are estimated as Kia ' 2.41 and
Kγa ' 1 × 10−3. We first consider the infrared locality. For the infrared locality, we
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investigate the Q-dependence of the following quantities:∣∣∣∣∣∣λ
〈
v<Q
i · P<K

∑
j∈Bi

R(vi) · vj

〉∣∣∣∣∣∣ , (5.39)

∣∣∣∣∣∣λ
〈
v<K
i · P<K

∑
j∈Bi

R(v<Q
i ) · v<Q

j

〉∣∣∣∣∣∣ . (5.40)

We calculated these two quantities for Ka ' 0.31 and Ka ' 0.18 (K = 2πn/Na with
n = 50 and 30, respectively), which is within the inertial range: Kγ � K � Ki. Figures
5.5 and 5.6 show the Q-dependences of these quantities at t = 50000 normalized by |Π(K)|
with Q < K for Ka ' 0.31 and Ka ' 0.18, respectively. Although both quantities decay
as Q→ 0, they are almost flat in the inertial range Kγ � Q < K � Ki. This result implies
that the inverse cascade is not strictly infrared local. In other words, the contributions to
the energy flux from large-scale modes may not be ignored.

For the ultraviolet locality, we investigate the Q-dependence of the following quantity:∣∣∣∣∣∣λ
〈
v<K
i · P<K

∑
j∈Bi

R(v>Q
i ) · v>Q

j

〉∣∣∣∣∣∣ . (5.41)

The result is shown in Fig. 5.7. As in the case of the infrared locality, this quantity does
not decay rapidly in the inertial range Kγ � K < Q � Ki. Therefore, small-scale modes
may contribute significantly to the energy flux.
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Chapter 6

Information thermodynamics

Various phenomena observed in complicated systems such as the Earth system [214–216]
and chemical reaction network [217] can be regarded as nonequilibrium cooperative phe-
nomena that emerge from many-body interactions. To elucidate and control the dynamics
behind such phenomena, it is pertinent to focus on information transfer between com-
ponents constituting the system. Particularly in mesoscopic systems affected by thermal
fluctuations, the nature of such information transfer can be described by information ther-
modynamics [79, 218]. Information thermodynamics is essentially stochastic thermody-
namics for subsystems [80, 81, 219, 220] and provides constraints that are consistent with
thermodynamics on the exchange of information between subsystems. Recently, it has
been applied to information processing at the cellular level in biological systems [221–225]
and even to deterministic chemical reaction networks [226].

In this chapter, we briefly review information thermodynamics. In the next section,
we introduce several information-theoretic quantities. In Section 6.2 and 6.3, we review
stochastic thermodynamics and information thermodynamics, focusing only on aspects
relevant to this thesis. For more exhaustive and pedagogical reviews, see, e.g., [79–81,219,
220].

6.1 Information-theoretic quantities

In this section, we introduce important information-theoretic quantities used in Chapter 7.
While we use continuous random variables in introducing these quantities to make ex-
plicit the connection with Chapter 7, several examples are given by using discrete random
variables.

Shannon entropy

Let x be a continuous random variable, and pX(x) be its probability density. The Shannon
entropy is defined by [227]

S[X] := −
∫
dxpX(x) ln pX(x). (6.1)

The Shannon entropy S[X] quantifies the randomness of the variable x. For discrete
random variables, the Shannon entropy is nonnegative. We remark that the Shannon
entropy is not invariant under the transformation of the variable in the continuous case.

81
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As an example, we consider a simple case with x ∈ {0, 1}. We set pX(0) = p and
pX(1) = 1− p with p ∈ [0, 1]. Then, the Shannon entropy reads

S[X] = −p ln p− (1− p) ln(1− p). (6.2)

As expected, it takes the maximum value ln 2 for p = 1/2 and minimal value 0 for p = 0
or 1.

Mutual information

Let x and y be the two continuous random variables, and p(x, y) be their joint distribution.
The marginal distributions are given by pX(x) :=

∫
dyp(x, y) and pY (y) :=

∫
dxp(x, y).

The mutual information is defined by [227]

I[X :Y ] :=

∫
dxdyp(x, y) ln

p(x, y)

pX(x)pY (y)
. (6.3)

Note that it is symmetric between X and Y . By introducing the conditional Shannon
entropy

S[X|Y ] := −
∫
dxdyp(x, y) ln p(x|y)

= S[X,Y ]− S[Y ], (6.4)

where p(x|y) = p(x, y)/pY (y) is the conditional probability density, the mutual information
can be expressed as

I[X :Y ] = S[X] + S[Y ]− S[X,Y ]

= S[X]− S[X|Y ]

= S[Y ]− S[Y |X]. (6.5)

Thus, I[X :Y ] quantifies how much knowing X (Y ) reduces uncertainty about Y (X). In
other words, the mutual information quantifies the strength of the correlation between
X and Y . Indeed, it can also be expressed in terms of the Kullback-Leibler divergence
DKL(p‖q), which quantifies the “distance” between the two probability distributions p and
q [227]:

I[X :Y ] = DKL

(
p‖pXpY

)
. (6.6)

From the nonnegativity of the Kullback-Leibler divergence, it follows that the mutual
information is nonnegative I[X :Y ] ≥ 0. The equality I[X :Y ] = 0 holds if and only if X
and Y are independent p(x.y) = pX(x)pY (y). In fact, by applying Jensen’s inequality,

I[X :Y ] = −
〈
ln
pX(x)pY (y)

p(x, y)

〉
p

≥ − ln

〈
pX(x)pY (y)

p(x, y)

〉
p

= − ln 1 = 0, (6.7)

where 〈·〉p denotes the average with respect to p(x, y).
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As an example, we consider a binary symmetric channel (see Fig. 6.1). Let x ∈ {0, 1}
be a measured random variable, and y ∈ {0, 1} be a measurement outcome. For simplicity,
we set pX(0) = pX(1) = 1/2. We assume that the measurement error is characterized by

p(y = 0|x = 0) = p(y = 1|x = 1) = 1− ϵ, (6.8)
p(y = 1|x = 0) = p(y = 0|x = 1) = ϵ, (6.9)

where ϵ ∈ [0, 1] is the error probability. In this case, the mutual information reads

I[X :Y ] = ln 2 + ϵ ln ϵ+ (1− ϵ) ln(1− ϵ). (6.10)

Thus, the mutual information takes the maximum value ln 2 when ϵ = 0 or 1, while it
takes the minimal value 0 when ϵ = 1/2.
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Fig. 6.1: Schematic of the binary symmetric channel (left) and the ϵ-dependence of the mutual information
(right).

Learning rate (Information flow)

Here, we consider dynamical evolution of X and Y . Let xt and yt be continuous random
variables at time t. The directional information flow from one variable to the other can be
quantified by the learning rate, which is also called the information flow [221,224,228,229].
The learning rate that characterizes the rate at which Xt acquires information about Yt is
defined as

lX(t) := lim
dt→0+

I[Xt+dt :Yt]− I[Xt :Yt]

dt
. (6.11)

Similarly, the learning rate associated with Y is defined by

lY (t) := lim
dt→0+

I[Xt :Yt+dt]− I[Xt :Yt]

dt
. (6.12)

The learning rates have a clear meaning. Suppose that lX(t) > 0, for example. From the
definition, the positivity of lX(t) > 0 means that the dynamical evolution of X increases
the mutual information. In other words, X is “learning” about Y through its dynamical
evolution. Similarly, lX(t) < 0 means that the dynamical evolution of X decreases the
mutual information. That is, X is destroying or consuming correlation with Y through its
dynamical evolution.
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If these two stochastic processes xt and yt are Markovian and bipartite, i.e., if the
transition probability p(xt+dt, yt+dt|xt, yt) satisfies

p(xt+dt, yt+dt|xt, yt) = p(xt+dt|xt, yt)p(yt+dt|xt, yt) +O(dt2), (6.13)

then it follows that1

d

dt
I[Xt :Yt] = lX(t) + lY (t). (6.17)

Thus, the learning rates lX(t) and lY (t) give the natural decomposition of the time deriva-
tive of the mutual information. Note that in the steady state, we have d

dtI[Xt : Yt] = 0,
and thus the two learning rates have opposite signs.

6.2 Stochastic thermodynamics

In this section, we briefly review stochastic thermodynamics, focusing only on aspects
relevant to this thesis. In a nutshell, stochastic thermodynamics is a theoretical framework
that extends thermodynamics to systems where thermal fluctuations are significant, such as
colloidal particles and molecular motors in living cells [80,81,220]. Note that, in principle,
stochastic thermodynamics is valid even for macroscopic systems where thermal fluctuation
effects are negligible.

As an illustrative model, we here consider a colloidal particle described by an over-
damped Langevin equation. Let xt be the position of the particle at time t. The time
evolution of xt is governed by the following equation:

γẋt = −∂xU(xt, λt) + ft(xt) +
√
2γkBTξt, (6.18)

where γ denotes the friction coefficient, U(x, λ) denotes a potential with an external control
parameter λt, ft(x) denotes a nonconservative force. The last term on the right-hand side
of (6.18) represents the thermal fluctuation due to a thermal bath at temperature T , where
ξt is the zero-mean white Gaussian noise that satisfies 〈ξtξs〉 = δ(t− s). The specific form
of the coefficient in front of ξt satisfies the fluctuation-dissipation relation (FDR) of the
second kind, which expresses “balance” between the friction and fluctuation, both induced
by the same equilibrium environment [230, 231].2 We remark that the second FDR can
also be derived from the local detailed balance condition, which requires the environment be
quickly equilibrated [232–234]. Thus, this relation ensures the thermodynamic consistency
of the mesoscopic model.

1Even if the two stochastic processes are neither bipartite nor Markovian, we still have the following
relation [229]:

d

dt
I[Xt :Yt] = l+X(t) + l−Y (t) = l−X(t) + l+Y (t), (6.14)

where l+X(t) and l+Y (t) are the same as (6.11) and (6.12), and l−X(t) and l−Y (t) are the backward learning
rates defined by

l−X(t) := lim
dt→0+

I[Xt+dt : Yt+dt]− I[Xt :Yt+dt]

dt
, (6.15)

l−Y (t) := lim
dt→0+

I[Xt+dt : Yt+dt]− I[Xt+dt :Yt]

dt
. (6.16)

2In nonequilibrium environment, the second FDR can be violated. Even in that case, there is some
restriction on the degree of the violation [231].
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The corresponding Fokker-Planck equation reads

∂tpt(x) = −∂xJt(x), (6.19)

where Jt(x) denotes the probability current:

Jt(x) :=
1

γ
[−∂xU(x, λt) + ft(x)] pt(x)−

kBT

γ
∂xpt(x). (6.20)

6.2.1 First law of thermodynamics

We introduce thermodynamic quantities for the above illustrative model. In stochastic
thermodynamics, heat and work are introduced at the level of individual trajectories. The
energy change of the overdamped system reads

d

dt
U(xt, λt) = ∂xU(xt, λt) ◦ ẋt + ∂λU(xt, λt)λ̇t, (6.21)

where the symbol ◦ denotes multiplication in the sense of Stratonovich (see Appendix 6.4).
We identify the increment in work applied to the system as

ˆ̇W = ∂λU(xt, λt)λ̇t + ft(xt) ◦ ẋt, (6.22)

where the over-dot of W indicates that it is not a time derivative of a state function, and
the hat indicates that it is a fluctuating quantity. The first and second terms arise from
external control of the potential and the applied nonconservative force, respectively. By
noting that −γẋt +

√
2γkBTξt represents the force exerted by the environment, we then

identify heat absorbed by the system as

ˆ̇Q =
[
−γẋt +

√
2γkBTξt

]
◦ ẋt

= − [−∂xU(xt, λt) + ft(xt)] ◦ ẋt. (6.23)

Note that − ˆ̇Q can be interpreted as work done by the particle to the environment by
regarding −(−γẋt+

√
2γkBTξt) as the reaction force on the environment [219]. We remark

that this identification of heat is consistent with the local detailed balance condition. From
(6.22) and (6.23), we obtain

d

dt
U(xt, λt) =

ˆ̇W + ˆ̇Q, (6.24)

which is analogous to the first law of thermodynamics.

6.2.2 Second law of thermodynamics

We here formulate the second law of thermodynamics. The average heat dissipated into
the environment is identified with an increase in entropy of the environment:

Ṡenv = − Q̇

kBT
, (6.25)
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where Q̇ := 〈 ˆ̇Q〉. Similarly, we identify the Shannon entropy S[Xt] with the system entropy.
Then, the sum of dtS[Xt] and Ṡenv is interpreted as the total entropy production rate, which
is nonnegative:3

d

dt
S[Xt] + Ṡenv = −

∫
dx∂tpt(x) ln pt(x)−

∫
dx∂tpt(x) +

1

kBT
〈[−∂xU(xt, λt) + ft(xt)] ◦ ẋt〉

= −
∫
dxJt(x)∂x ln pt(x) +

1

kBT

∫
dx [−∂xU(x, λt) + ft(x)] Jt(x)

=
γ

kBT

∫
dx
J2
t (x)

pt(x)
≥ 0. (6.27)

6.3 Information thermodynamics

In this section, we briefly review information thermodynamics, again focusing only on as-
pects relevant to this thesis. Information thermodynamics is essentially stochastic thermo-
dynamics for subsystems and provides constraints that are consistent with thermodynamics
on the exchange of information between subsystems [79,218].

As an illustrative model, we here consider the following coupled overdamped Langevin
equations:

γX ẋt = −∂xU(xt, yt) + fXt (xt, yt) +
√

2γXkBTξ
X
t , (6.28)

γY ẏt = −∂yU(xt, yt) + fYt (xt, yt) +
√
2γY kBTξ

Y
t , (6.29)

where U(x, y) denotes the interaction potential, fαt (x, y) (α = X,Y ) denotes the nonconser-
vative force, and ξαt is a zero-mean white Gaussian noise that satisfies 〈ξαt ξα

′
t′ 〉 = δαα′δ(t−t′).

Here, for simplicity, we have assumed that both X and Y are in contact with the same
environment at temperature T with the friction coefficients γX and γY , respectively. We
have also assumed that there is no control parameter λt in the interaction potential. Note
that since ξXt and ξYt are independent, this system satisfies the bipartite property.

The corresponding Fokker-Planck equation reads

∂tpt(x, y) = −∂xJX
t (x, y)− ∂yJ

Y
t (x, y), (6.30)

where JX
t and JY

t denote the probability currents:

JX
t (x, y) :=

1

γX
[
−∂xU(x, y) + fXt (x, y)

]
pt(x, y)−

kBT

γX
∂xpt(x, y), (6.31)

JY
t (x, y) :=

1

γY
[
−∂yU(x, y) + fYt (x, y)

]
pt(x, y)−

kBT

γY
∂ypt(x, y). (6.32)

3In the second line, we have used the following useful relation, which holds for any nonanticipating
function gt(x) [80, 198]:

⟨gt(xt) ◦ ẋt⟩ =
〈
gt(xt)

[
1

γ
(−∂xU(x, λt) + ft(x))

]〉
+

〈
gt(xt) ·

√
2kBT

γ
ξt

〉
+

〈
kBT

γ
∂xgt(xt)

〉
= ⟨gt(xt)νt(xt)⟩, (6.26)

where the symbol · denotes multiplication in the sense of Ito (see Appendix 6.4), and νt(x) := Jt(x)/pt(x)
denotes the local mean velocity.
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6.3.1 First law of information thermodynamics

We here consider the first law of thermodynamics for each subsystem. We first identify
increment in work applied to X as

ˆ̇WX = fXt (xt, yt) ◦ ẋt. (6.33)

As in the previous section, we also identify heat absorbed by X as

ˆ̇QX =
[
−γX ẋt +

√
2γXkBTξ

X
t

]
◦ ẋt

= −
[
−∂xU(xt, yt) + fXt (xt, yt)

]
◦ ẋt. (6.34)

We next define work from X to Y by regarding x as an external control parameter driving
Y [235,236]:

ˆ̇WX→Y := ∂xU(xt, yt) ◦ ẋt. (6.35)

Similarly, we can define ˆ̇W Y , ˆ̇QY , and ˆ̇W Y→X . Then, the first law for each subsystem can
be expressed as follows:

ˆ̇WX→Y = ˆ̇WX + ˆ̇QX , (6.36)
ˆ̇W Y→X = ˆ̇W Y + ˆ̇QY . (6.37)

6.3.2 Second law of information thermodynamics

We here derive the second law of information thermodynamics. To this end, we first
formulate the standard second law of thermodynamics for this case. As in the previous
section, we identify increase in entropy of the environment as

Ṡenv = − Q̇X

kBT
− Q̇Y

kBT

=: ṠX
env + ṠY

env, (6.38)

where Q̇X := 〈 ˆ̇QX〉 and Q̇Y := 〈 ˆ̇QY 〉. Note that there are two contributions ṠX
env and

ṠY
env to the medium entropy production. Similarly, we identify the whole system entropy

with the Shannon entropy S[Xt, Yt]. From the bipartite property, the time derivative of
S[Xt, Yt] can be decomposed into two parts:

d

dt
S[Xt, Yt] = −

∫
dxdy∂tpt(x, y) ln pt(x, y)−

∫
dxdy∂tpt(x, y)

= −
∫
dxdyJX

t (x, y)∂x ln pt(x, y)−
∫
dxdyJY

t (x, y)∂y ln pt(x, y)

=: ṠX [Xt, Yt] + ṠY [Xt, Yt], (6.39)

where ṠX [Xt, Yt] and ṠY [Xt, Yt] denote the contribution to the system entropy change due
to the probability current of X and Y , respectively. Then, the total entropy production
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rate can be expressed as
d

dt
S[Xt, Yt] + Ṡenv = ṠX [Xt, Yt] + ṠY [Xt, Yt]

+
1

kBT

〈[
−∂xU(xt, yt) + fXt (xt, yt)

]
◦ ẋt

〉
+

1

kBT

〈[
−∂yU(xt, yt) + fYt (xt, yt)

]
◦ ẏt
〉

= −
∫
dxdyJX

t (x, y)∂x ln pt(x, y)−
∫
dxdyJY

t (x, y)∂y ln pt(x, y)

+
1

kBT

∫
dxdy

[
−∂xU(x, y) + fXt (x, y)

]
JX
t (x, y)

+
1

kBT

∫
dxdy

[
−∂yU(x, y) + fYt (x, y)

]
JY
t (x, y)

=
γX

kBT

∫
dxdy

|JX
t (x, y)|2

pt(x, y)
+

γY

kBT

∫
dxdy

|JY
t (x, y)|2

pt(x, y)
≥ 0. (6.40)

As is clear from the above calculation, the second-law-type inequality holds even for
each subsystem due to the bipartite property: e.g., for X, we obtain

ṠX [Xt, Yt] + ṠX
env =

γX

kBT

∫
dxdy

|JX
t (x, y)|2

pt(x, y)
≥ 0. (6.41)

We note that the left-hand side of (6.41) is an example of the so-called partial entropy
production [237]. From this relation, we can derive the second law of information thermo-
dynamics. We first note that the learning rate lX(t) can be expressed as follows:4

lX(t) = lim
dt→0+

I[Xt+dt :Yt]− I[Xt :Yt]

dt

=

∫
dxdyJX

t (x, y)∂x ln
pt(x, y)

pXt (x)pYt (y)

= −
∫
dxdyJX

t (x, y)∂x ln p
X
t (x) +

∫
dxdyJX

t (x, y)∂x ln pt(x, y)

=
d

dt
S[Xt]− ṠX [Xt, Yt]. (6.44)

4The second line can be obtained as follows:

lX(t) = lim
h→0+

1

h

(∫
dxdy′p(x, t+ h; y′, t) ln

p(x, t+ h; y′, t)

pXt+h(x)p
Y
t (y′)

−
∫

dx′dy′pt(x
′, y′) ln

pt(x
′, y′)

pXt (x′)pYt (y′)

)
=

∫
dxdydx′dy′ d

dh
p(x, y, t+ h|x′, y′, t)

∣∣∣∣
h=0+

pt(x
′, y′) ln

pt(x, y
′)

pXt (x)pYt (y′)

=

∫
dxdy

(
−∂xJ

X
t (x, y)

)
ln

pt(x, y)

pXt (x)pYt (y)
. (6.42)

Here, p(x, t + h; y′, t) denotes the two-point probability distribution with p(x, t; y, t) = pt(x, y), and
p(x, y, t + h|x′, y′, t) = p(x, y, t + h;x′, y′, t)/pt(x

′, y′) denotes the transition probability, which obeys
the Fokker-Planck equation (6.30) with p(x, y, t|x′, y′, t) = δ(x − x′)δ(y − y′). The second line of
(6.44) can also be obtained by noting that the time derivative of the stochastic mutual information
Ît(xt, yt) := ln(pt(xt, yt)/p

X
t (xt)p

Y
t (yt)) reads dtÎt(xt, yt) = l̂Xt (xt, yt) + l̂Yt (xt, yt), where l̂Xt (xt, yt) de-

notes the stochastic learning rate with lX(t) = ⟨l̂Xt (xt, yt)⟩:

l̂Xt (xt, yt) = ẋt ◦ ∂x ln
pt(xt, yt)

pXt (xt)pYt (yt)
− 1

pt(xt, yt)
∂xJ

X
t (xt, yt) +

1

pXt (xt)
∂xJ̄

X
t (xt), (6.43)

where J̄X
t (x) :=

∫
dyJX

t (x, y).
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By substituting this expression into (6.41), we obtain the second law of information ther-
modynamics:

d

dt
S[Xt] + ṠX

env ≥ lX(t). (6.45)

Similarly, we can obtain

d

dt
S[Yt] + ṠY

env ≥ lY (t). (6.46)

The left-hand sides of (6.45) and (6.46) can be interpreted as the entropy production rate
associated with X and Y , respectively. If X and Y are independent, then (6.45) and (6.46)
corresponds to the standard second law of thermodynamics, because lX(t) = lY (t) = 0.
The appearance of the learning rate on the right-hand sides of (6.45) and (6.46) allows
the negative entropy production. In other words, when the learning rate is negative, the
subsystem can behave in a way that seemingly violates the second law of thermodynamics.
We emphasize that even in that case, the total system satisfies the standard second law
(6.40).

6.3.3 Information-thermodynamic efficiency

We here introduce the information-thermodynamic efficiency. Note that in the steady
state, (6.45) and (6.46) become

ṠX
env ≥ lX , (6.47)

ṠY
env ≥ lY , (6.48)

with lX = −lY . Suppose that Y acts as a sensor, or Y is “learning” about X, so that
lY = −lX > 0. In this case, we can introduce the information-thermodynamic efficiency
ηY (0 ≤ ηY ≤ 1) as

ηY :=
lY

ṠY
env

. (6.49)

This efficiency quantifies how efficiently Y gains information about X relative to the en-
ergy dissipation. In addition, if ṠX

env is negative, then we can introduce the information-
thermodynamic efficiency for X (see Fig. 6.2):

ηX :=
|ṠX

env|
|lX |

, (6.50)

Fig. 6.2: Schematic of the case where ṠX
env < 0 and lY = −lX > 0.
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which satisfies 0 ≤ ηX ≤ 1. This efficiency quantifies how efficientlyX converts information
into negative entropy production.

Fig. 6.3: Schematic of the case where ẆY > 0 and ẆX ≤ 0.

By using the work introduced in Section 6.3.1, we can introduce another efficiencies.
In the steady state, we first note that ẆX→Y = −Ẇ Y→X , where ẆX→Y := 〈 ˆ̇WX→Y 〉
and Ẇ Y→X := 〈 ˆ̇W Y→X〉. Then, the second law of information thermodynamics can be
expressed in terms of ẆX := 〈 ˆ̇WX〉, Ẇ Y := 〈 ˆ̇W Y 〉, and ẆX→Y = −Ẇ Y→X as

βẆX − βẆX→Y − lX ≥ 0, (6.51)

βẆ Y − βẆ Y→X − lY ≥ 0, (6.52)

where β = (kBT )
−1. Suppose that Ẇ Y > 0 and ẆX ≤ 0 (see Fig. 6.3). In this case, Y

drives X with nonnegative transduced capacity −βẆX→Y − lX = βẆ Y→X + lY ≥ 0 [238],
and we can introduce the following efficiency (0 ≤ η̃X ≤ 1 and 0 ≤ η̃Y ≤ 1):

η̃X :=
|βẆX |

|βẆX→Y + lX |
, (6.53)

η̃Y :=
βẆ Y→X + lY

βẆ Y
. (6.54)

Here, η̃X quantifies how efficiently X converts transduced capacity into output work. Sim-
ilarly, η̃Y quantifies how efficiently Y converts applied work into transduced capacity.

6.3.4 Example

As an example, we consider the following coupled overdamped Langevin equations [239]:

ṡt = −ωSst + ωSXxt +
√
2DSξSt , (6.55)

ẋt = ωXSst − ωXxt +
√
2DXξXt , (6.56)

where ξαt (α = S,X) is a zero-mean white Gaussian noise that satisfies 〈ξαt ξα
′

t′ 〉 = δαα′δ(t−
t′), and Dα denotes the noise intensity. Here, st can be regarded as the input signal, which
relaxes exponentially with decay rate ωS > 0 and is affected by the fluctuation of the
output signal xt with rate ωSX . The output signal xt also relaxes exponentially with rate
ωX > 0 and detects the input st with the differential gain ωXS . We assume that

ωXωS − ωXSωSX > 0 (6.57)
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to ensure that the system reaches a steady state [198]. The corresponding Fokker-Planck
equation reads

∂tpt(s, x) = −∂sJS
t (s, x)− ∂xJ

X
t (s, x), (6.58)

where

JS
t (s, x) := (−ωSs+ ωSXx)pt(s, x)−DS∂spt(s, x), (6.59)

JX
t (s, x) := (ωXSs− ωXx)pt(s, x)−DX∂xpt(s, x). (6.60)

Fast relaxation limit of S

Hereafter, we focus on the typical case where the input signal st is a fast variable and
regulates the output xt. In other words, we assume a time-scale separation, ϵ := ωX/ωS �
1. In this case, we can derive the effective dynamics for X, e.g., by using the singular
perturbation technique [231]. We introduce a dimensionless time τ := ωSt and noise
intensity D̄S := DS/ωS and D̄X := DX/ωX . We also write ω̄XS := ωXS/ωX and ω̄SX :=
ωSX/ωS . Then, the Fokker-Planck equation can be expressed as

∂τpτ (s, x) = −∂s
[(
−s+ ω̄SXx

)
pτ (s, x)− D̄S∂spτ (s, x)

]
− ϵ∂x

[(
ω̄XSs− x

)
pτ (s, x)− D̄X∂xpτ (s, x)

]
=: (LS + ϵLX)pτ (s, x). (6.61)

The form of this equation implies that the system first relaxes toward the slow manifold
characterized by LS on the fast time scale τ ∼ 1 and then evolves slowly on the slow
manifold. The motion on the slow manifold is characterized by the following equation for
the reduced probability pXτ (x) =

∫
dspτ (s, x):

∂τp
X
τ (x) = −ϵ∂x

[
ω̄XS

∫
dsspτ (s, x)− xpXτ (x)− D̄X∂xp

X
τ (x)

]
. (6.62)

Because pXτ evolves slowly, secular terms arise in the naive perturbation expansion pτ =

p
(0)
τ + ϵp

(1)
τ + · · · . Therefore, to describe the dynamics on the slow manifold, we assume

that the τ -dependence of pτ is expressed in terms of the τ -dependent operator Mτ that
acts on pXτ :

Mτ [p
X
τ ](s, x) := pτ (s, x). (6.63)

From this functional ansatz, we can decompose the τ -dependence of pτ into its explicit and
implicit part through pXτ . Correspondingly, we introduce Ωτ as the τ -dependent operator
that represent the slow dynamics:

Ωτ [p
X
τ ](x) := −ϵ∂x

[
ω̄XS

∫
dssMτ [p

X
τ ](s, x)− xpXτ (x)− D̄X∂xp

X
τ (x)

]
. (6.64)

In terms of Mτ and Ωτ , (6.61) can be expressed as

∂τMτ [p
X
τ ](s, x) +

∫
dx′

δMτ [p
X
τ ]

δpXτ (x′)
Ωτ [p

X
τ ](x′) = (LS + ϵLX)Mτ [p

X
τ ](s, x). (6.65)
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We now assume that Mτ and Ωτ have asymptotic expansions in terms of the asymptotic
sequences {ϵn}∞n=0 as ϵ→ 0:

Mτ =M (0)
τ + ϵM (1)

τ + · · · , (6.66)

Ωτ = ϵΩ(1)
τ + ϵ2Ω(2)

τ + · · · . (6.67)

The leading order of (6.65) gives

∂τM
(0)
τ [pXτ ] = LS [M (0)

τ [pXτ ]]. (6.68)

From this equation, it follows that

M (0)
τ [pXτ ](s, x) ' pXτ (x)πss(s|x) for τ � 1, (6.69)

where πss(s|x) denotes the stationary distribution that satisfies LS [πss(s|x)] = 0, i.e.,

πss(s|x) =
1√

2πD̄S
exp

[
− 1

2D̄S

(
s− ω̄SXx

)2]
. (6.70)

Here, we have imposed the condition pXτ (x) =
∫
dsM

(0)
τ [pXτ ](s, x). By substituting (6.69)

into (6.64), we obtain

Ω(1)
τ [pXτ ](x) ' −∂x

[(
ω̄XSω̄SX − 1

)
xpXτ (x)− D̄X∂xp

X
τ (x)

]
. (6.71)

Therefore, the effective dynamics for X is given by

∂τp
X
τ (x) ' −ϵ∂x

[(
ω̄XSω̄SX − 1

)
xpXτ (x)− D̄X∂xp

X
τ (x)

]
. (6.72)

Then, the stationary distribution for X reads

pXss (x) =

√
1− ω̄XSω̄SX

2πD̄X
exp

[
− 1

2D̄X

(
1− ω̄XSω̄SX

)
x2
]
. (6.73)

From the stationary distributions (6.70) and (6.73), we find that 〈xt〉ss = 〈st〉ss = 0
and

〈s2t 〉ss =
(
ω̄SX

)2 D̄X

1− ω̄XSω̄SX
+ D̄S , (6.74)

〈x2t 〉ss =
D̄X

1− ω̄XSω̄SX
, (6.75)

〈stxt〉ss = ω̄SX D̄X

1− ω̄XSω̄SX
. (6.76)

Information thermodynamic efficiency

Here, we investigate the information-thermodynamic efficiency for this system. We note
that the externally applied work ˆ̇WS and ˆ̇WX are zero in this model. Therefore, we only
consider the efficiency defined by (6.49) and (6.50). We first calculate the medium entropy
production rate in the steady state. From (6.74)-(6.76), we obtain5

ṠX
env =

1

DX
〈(ωXSst − ωXxt) ◦ ẋt〉ss

=
ωXSωSX

ωS

(
ωXSDS

ωSXDX
− 1

)
. (6.77)

5We note that ṠX
env is induced by the fast variable st, which does not appear in the effective dynamics

(6.72). Indeed, the (coarse-grained) medium entropy production rate corresponding to the effective dy-
namics is zero. Thus, ṠX

env is an entropy production invisible from the effective dynamics, which is called
hidden entropy [240,241].
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Thus, ṠX
env becomes negative when ωXSDS < ωSXDX . Note that the detailed balance

condition is satisfied when ωXSDS = ωSXDX .
We next calculate the learning rate in the steady state. By noting that pss(s, x) '

pXss (x)πss(s|x) in the fast relaxation limit of S, we obtain

lX =

∫
dsdxJX

ss (s, x)∂x ln
pss(s, x)

pXss (x)p
S
ss(s)

=

∫
dsdx

[
(ωXSs− ωXx)pss(s, x)−DX∂xpss(s, x)

]
∂x lnπss(s|x)

=
ωSX

ωSD̄S

[〈
(ωXSs− ωXx)

(
s− ωSX

ωS
x

)〉
ss

− ωSXDX

ωS

]
=

(ωSX)2DX

ωSDS

(
ωXSDS

ωSXDX
− 1

)
=
ωSXDX

ωXSDS
ṠX
env. (6.78)

Thus, the learning rate is proportional to ṠX
env, and the tight-coupling condition is satisfied.

We now consider the case where ωXSDS ≤ ωSXDX . In this case, both ṠX
env and lX are

negative. By combining (6.77) and (6.78), the information-thermodynamic efficiency can
be expressed as

ηX =
|ṠX

env|
|lX |

=
ωXSDS

ωSXDX
≤ 1. (6.79)

Thus, ηX = 1 is achieved when ωXSDS = ωSXDX . Note that both ṠX
env and lX vanish

in this case. Indeed, we can show that there are trade-offs between the information-
thermodynamic efficiency and ṠX

env or lX [242]. On the contrary, if ωXSDS ≥ ωSXDX , then
both ṠX

env and lX are positive. The corresponding information-thermodynamic efficiency
reads

ηX =
lX

ṠX
env

=
ωSXDX

ωXSDS
. (6.80)

6.4 Appendix: Stochastic calculus

In this section, we provide a brief introduction to stochastic differential equations. For
more exhaustive and pedagogical reviews, see, e.g., [198,243,244].

First, we consider a Langevin equation of the form

ẋt = ft(xt) + σt(xt)ξt, (6.81)

where ξt is the zero-mean white Gaussian noise that satisfies 〈ξtξs〉 = δ(t − s). We note
that ξt is formally interpreted as the “derivative” of the Wiener process Wt, which is not
differentiable anywhere with probability one. In other words, (6.81) is mathematically the
following stochastic differential equation (SDE):

dxt = ft(xt)dt+ σt(xt)dWt, (6.82)
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which is a shorthand notation of the stochastic integral equation

xt = x0 +

∫ t

0
fs(xs)ds+

∫ t

0
σs(xs)dWs. (6.83)

The important point here is that the last term on the right-hand side of (6.83) cannot be
defined as a Riemann-Stieltjes integral, because Wt is not of bounded variation.6 Thus,
different Riemann-Stieltjes sums lead to different values.

Now, we define stochastic integrals of the form∫ t

0
Gs(xs)dWs, (6.87)

where Gs(xs) is an arbitrary sufficiently regular function. Let 0 = t0 < t1 < t2 < · · · <
tN = t be a partition of the interval [0, t]. We introduce a parameter α ∈ [0, 1] such that

t̄n := αtn+1 + (1− α)tn (6.88)

for n = 0, 1, · · · , N − 1. We define the stochastic integral as the mean square limit of the
Riemann-Stieltjes sum∫ t

0
Gs(xs)

α
⊗ dWs := lim

∥∆∥→0

N−1∑
n=0

Gt̄n (x̄n)∆Wn, (6.89)

where ‖∆‖ := max |tn+1 − tn|, x̄n := αxtn+1 +(1−α)xtn , and ∆Wn :=Wtn+1 −Wtn . Here,

the symbol
α
⊗ is used to indicate that this integral depends on the choice of α. When

α = 0, the integral is called the Ito integral∫ t

0
Gs(xs) · dWs :=

∫ t

0
Gs(xs)

α=0
⊗ dWs. (6.90)

Importantly, for nonanticipating function Gs(xs), where Gs(xs) is statistically independent
of the increment Wt −Ws for t > s, we have 〈Gs(xs) · dWs〉 = 〈Gs(xs)〉〈dWs〉 = 0. When
α = 1/2, the integral is called the Stratonovich integral∫ t

0
Gs(xs) ◦ dWs :=

∫ t

0
Gs(xs)

α=1/2
⊗ dWs. (6.91)

6(Riemann-Stieltjes integral). Let f and g be two functions on [0, t], where g is of bounded variation,
i.e., the total variation of g is finite:

V t
0 (g) := sup

N−1∑
n=0

|g(tn+1)− g(tn)| < ∞, (6.84)

where 0 = t0 < t1 < t2 < · · · < tN = t is a partition of the interval [0, t], and the supremum is taken over
all partitions of the interval. We consider the Riemann-Stieltjes sum

N−1∑
n=0

f(t̄n)[g(tn+1)− g(tn)], (6.85)

where t̄n ∈ [tn, tn+1]. If the sum approaches a limit independent of the choice of the partition {tn} and t̄n
as ∥∆∥ := max |tn+1 − tn| → 0, this limit is called the Riemann-Stieltjes integral of f with respect to g,
which is denoted by ∫ t

0

f(s)dg(s) := lim
∥∆∥→0

N−1∑
n=0

f(t̄n)[g(tn+1)− g(tn)]. (6.86)

For more details, see, e.g., [115].
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In contrast to the Ito integral, we have 〈Gs(xs) ◦ dWs〉 6= 0 in general. Furthermore, the
Stratonovich integral satisfies ordinary calculus, such as dG(xt) = ∂xG(xt) ◦ dxt. If the
integrand Gs(xs) depends on Ws through xs that is a solution of the SDE (6.83), there is
a relation between Ito and Stratonovich integrals:∫ t

0
Gs(xs) ◦ dWs =

∫ t

0
Gs(xs) · dWs +

1

2

∫ t

0
σs(xs)∂xGs(xs)ds, (6.92)

where we have used the rule (dWt)
2 = dt and dtdWt = 0, which is valid in the mean square

limit. Thus, the SDE interpreted in the Stratonovich sense

dxt = ft(xt)dt+ σt(xt) ◦ dWt (6.93)

is equivalent to the following SDE in the Ito sense

dxt =

(
ft(xt) +

1

2
σt(xt)∂xσt(xt)

)
dt+ σt(xt) · dWt. (6.94)





Chapter 7

Information flow in turbulence

As we emphasized in Chapter 5, turbulence can be regarded as a nonequilibrium cooper-
ative phenomenon that emerges from extremely complicated nonlinear interactions. The
most prominent property that distinguishes fluid turbulence from other nonequilibrium
cooperative phenomena is its extremely strong fluctuations observed over a wide range
of scales, as exemplified by intermittency. While the existence of universality seems to
suggest that small-scale turbulent fluctuations behave independently of large-scale fluctu-
ations, it is known that they exhibit some cooperative behavior. Specifically, along with
the energy cascade, fluctuations of small-scale quantities (e.g., the energy dissipation rate)
follow those of large-scale quantities (e.g., the energy injection rate) with a time delay that
corresponds to the large-eddy turnover time [71–73]. Moreover, the energy cascade induces
chaos synchronization of small-scale motions, where small-scale velocity field is slaved to
the chaotic dynamics of large-scale velocity field [74–78]. These phenomena suggest that
information of large-scale turbulent fluctuations is transferred to small scales.

These observations motivate us to explore the nature of the information transfer across
scales associated with turbulent cascade. Revealing the details of the information trans-
fer process in turbulence may not only provide insights into the generation mechanism of
turbulent fluctuations leading to intermittency, but also allow comparative studies with
other information processing systems. While turbulence has been studied in various con-
texts from such an information-theoretic viewpoint over recent decades [213, 245–255], no
previous studies have theoretically shown that information flows across scales along with
turbulent cascade.

Here, we aim to elucidate the nature of information flow in fully developed three-
dimensional fluid turbulence. To this end, we employ information thermodynamics, intro-
duced in Chapter 6, by explicitly accounting for the thermal fluctuations inherent in fluid.
From the second law of information thermodynamics, we can obtain universal constraints
on information flow. Furthermore, this approach enables us to investigate the effects of
thermal fluctuations on information transfer, which can affect the turbulence dynamics sig-
nificantly [20, 256–261]. While our approach can be applied to various turbulence models,
here we use the stochastic Sabra shell model, which is a simplified caricature of the fluc-
tuating Navier–Stokes equation in wave number space [23, 187]. This model has recently
been used to investigate the effects of thermal fluctuations on turbulence [20,258].

In this chapter, we prove that information of turbulent fluctuations is transferred from
large to small scales along with the energy cascade. Our main result, (7.12) and (7.13),
can be regarded as one of the few exact and universal results in the field of turbulence
research. We numerically illustrate our findings and show that the rate of information

97
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transfer is characterized by the large-eddy turnover time. Furthermore, our numerical
simulations suggest that the corresponding information-thermodynamic efficiency is quite
low compared to other typical information processing systems such as Maxwell’s demon.
This implies that transferring information from large to small scales involves enormous
thermodynamic costs, indicating the poor performance of turbulence as an information
processing system.

This chapter is organized as follows. In the next section, we introduce the Sabra
shell model with thermal noise. Its basic properties are described in Section 7.2. In
Section 7.3, we introduce important information-theoretic quantities that quantify the
directional information flow across scales. In Section 7.4, we describe our main result and
its derivation. We also introduce the information-thermodynamic efficiency for the shell
model. In Section 7.5, we numerically illustrate the main result. We further show that
the information-thermodynamic efficiency is quite low and that the information transfer
is characterized by the large-eddy turnover time. Concluding remarks are provided in
Section 7.6.

7.1 Setup

We consider the Sabra shell model with thermal noise [20, 258, 262]. Let un(t) ∈ C be the
“velocity” at time t with the wave number kn = k02

n (n = 0, 1, · · · , N). The time evolution
of the complex shell variables u := {un} is given by the following Langevin equation:

u̇n = Bn(u, u
∗)− νk2nun +

√
2νk2nkBT

ρ
ξn + fn (7.1)

with the scale-local nonlinear interactions given by

Bn(u, u
∗) := i

(
kn+1un+2u

∗
n+1 −

1

2
knun+1u

∗
n−1 +

1

2
kn−1un−1un−2

)
. (7.2)

Here, ν > 0 represents the kinematic viscosity, and fn ∈ C denotes the external body
force that acts only at large scales, i.e., fn = 0 for n > nf . The third term on the
right-hand side of (7.1), ξn ∈ C is the zero-mean white Gaussian noise that satisfies
〈ξn(t)ξ∗n′(t′)〉 = 2δnn′δ(t − t′). The specific form of the thermal noise term satisfies the
fluctuation-dissipation relation of the second kind, where T denotes the absolute temper-
ature, kB the Boltzmann constant, and ρ the mass “density”.1

7.2 Basic properties

The nonlinear term Bn(u, u
∗) satisfies the following relation:

N∑
n=0

(Bn(u, u
∗)u∗n +B∗

n(u, u
∗)un) = 0. (7.3)

Hence, the energy balance equation reads

d

dt

N∑
n=0

1

2
〈|un|2〉 = −

N∑
n=0

νk2n〈|un|2〉+
N∑

n=0

2νk2nkBT

ρ
+ ε, (7.4)

1Note that the mass “density” ρ has units of mass.
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where ε :=
∑nf

n=0〈unf∗n + u∗nfn〉/2 denotes the energy injection rate. In the steady state,
the energy injection rate balances the dissipation rate as follows:

ε '
N∑

n=0

νk2n〈|un|2〉ss. (7.5)

Here, we have ignored the energy injection due to the thermal noise by noting that the
kinetic energy is much larger than the thermal energy over a wide range of scales in
turbulence [20,258].

Shell models are known to exhibit rich temporal and multiscale statistics that are similar
to those observed in real turbulent flow [263]. Most importantly, the model exhibits energy
cascade. To see this, we consider the time evolution of the large-scale energy at the scales
kn ≤ K := knK with nK ∈ {nf , · · · , N},

d

dt

nK∑
n=0

1

2
〈|un|2〉 = −〈ΠK〉+ ε−

nK∑
n=0

νk2n〈|un|2〉+
nK∑
n=0

2νk2nkBT

ρ
, (7.6)

where ΠK denotes the scale-to-scale energy flux from the large scales kn ≤ K to the small
scales kn > K:

ΠK := −1

2

nK∑
n=0

(Bn(u, u
∗)u∗n +B∗

n(u, u
∗)un). (7.7)

Because the viscous dissipation is negligible at scales much larger than the Kolmogorov
dissipation scale η ≡ k−1

ν := ν3/4ε−1/4, the last two terms on the right-hand side of (7.6)
can be ignored within the inertial range kf � K � kν , where kf := knf

. Hence, in the
steady state, we obtain

〈ΠK〉ss = ε for kf � K � kν . (7.8)

The energy is thus transferred conservatively from large to small scales within the inertial
range. Note that while the condition kf < K instead of kf � K is sufficient, we use the
conventional definition for the inertial range.

7.3 Information-theoretic quantities

To quantify the information transfer among the shell variables, we use the information-
theoretic quantities introduced in the previous chapter. We first define the large-scale and
small-scale shell variables as U<

K := {un, u∗n|n ≤ nK} and U>
K := {u, u∗}\U<

K , respectively
(see Fig. 7.1). The strength of the correlation between U<

K and U>
K is quantified by the

mutual information (MI) [227]:

I[U<
K :U>

K ] :=

〈
ln

pt(U
<
K ,U

>
K)

p<t (U
<
K)p>t (U

>
K)

〉
, (7.9)

where 〈·〉 denotes the average with respect to the joint probability distribution pt(U<
K ,U

>
K),

and p<t (U
<
K) and p>t (U

>
K) are the marginal distributions. Note that the MI is nonnegative

and is equal to zero if and only if U<
K and U>

K are independent.
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"learning"

destruction

Energy cascade

Fig. 7.1: Schematic of information flow in the energy cascade.

We quantify the directional information flow across scales by using learning rate (LR) [221,
224,228,264]. The LR that characterizes the rate at which U<

K acquires information about
U>

K is defined as

l<K := lim
dt→0+

I[U<
K(t+ dt) :U>

K(t)]− I[U<
K(t) :U>

K(t)]

dt
. (7.10)

Similarly, the LR associated with U>
K is defined by

l>K := lim
dt→0+

I[U<
K(t) :U>

K(t+ dt)]− I[U<
K(t) :U>

K(t)]

dt
. (7.11)

Note that, since dtI[U<
K :U>

K ] = l<K + l>K , the two LRs have opposite signs in the steady
state l<K = −l>K . If l<K > 0 at time t, for example, then U<

K acquires information about
the instantaneous state U>

K(t). In this sense, U<
K is “learning” about or measuring U>

K .
In contrast, if l<K < 0, then the correlation between U<

K(t) and U>
K(t) is destroyed or

consumed.

7.4 Main result

7.4.1 Main result

In the steady state, for any K within the inertial range kf � K � kν , the LRs l<K and l>K
satisfy the following inequalities:

0 ≥ l<K ≥ − ρε

kBT
, (7.12)

ρε

kBT
≥ l>K ≥ 0. (7.13)

These inequalities are the main result of this chapter, which will be derived below. The
inequality (7.12) implies that the large-scale shell variables U<

K are destroying information
about the small-scale variables U>

K while transferring kinetic energy to small scales. In
contrast, (7.13) states that the small-scale shell variables U>

K are “learning” about U<
K while

receiving the kinetic energy from large scales (see Fig. 7.1). In particular, the maximum
LR is given by ρε/kBT .
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7.4.2 Derivation of the main result

The main result is a direct consequence of the second law of information thermodynamics
for bipartite systems [218]. Specifically, we first formulate the second law of information
thermodynamics for (7.1) by dividing the shell variables {u, u∗} into the two groups U<

K

and U>
K , and then we take the inviscid limit ν → 0.

Let S[U<
K ] be the Shannon entropy of the large-scale shell variables, which is defined by

S[U<
K ] := −

∫
dU<

Kp
<
t (U

<
K) ln p<t (U

<
K). The entropy increase in the heat bath associated

with U<
K is given by the sum of the contributions of each shell [219,265]:

Ṡ<
env = −

nK∑
n=0

ρ

2kBT

〈
u∗n ◦

−νk2nun +

√
2νk2nkBT

ρ
ξn

+ c.c.

〉

=

nK∑
n=0

ρ

2kBT
〈u∗n ◦ (Bn(u, u

∗) + fn − u̇n) + c.c.〉, (7.14)

where c.c. denotes the complex conjugate, and ◦ denotes the multiplication in the sense
of Stratonovich [198]. Similarly, let S[U>

K ] and Ṡ>
env be the Shannon entropy and entropy

increase in the heat bath associated with the small-scale shell variables U>
K , respectively.

The second law of information thermodynamics is then given by

d

dt
S[U<

K ] + Ṡ<
env ≥ l<K , (7.15)

d

dt
S[U>

K ] + Ṡ>
env ≥ l>K . (7.16)

See Appendix 7.7.1 for the derivation of the second law of information thermodynamics
for the shell model. If U<

K and U>
K are independent, then l<K = l>K = 0 and the standard

second law of thermodynamics follows. In contrast, if they are correlated, then l<K and l>K
can be either positive or negative.

We now assume that the system is in the steady state and set K to be within the
inertial range kf � K � kν . Then, Ṡ<

env and Ṡ>
env can be expressed in terms of the energy

flux (7.7) as

Ṡ<
env =

ρ

kBT
(ε− 〈ΠK〉ss) , (7.17)

Ṡ>
env =

ρ

kBT
〈ΠK〉ss, (7.18)

where we have used ΠkN = 0, which follows from the property of the nonlinear term
Bn(u, u

∗) (7.3). By substituting these expressions into (7.15) and (7.16) and by noting
that 〈ΠK〉ss → ε as K/kν → 0 and l<K + l>K = 0 in the steady state, we arrive at the main
result (7.12) and (7.13).

7.4.3 Remark: information-thermodynamic efficiency

Here, we introduce the information-thermodynamic efficiency associated with the energy
cascade. We consider the steady state and suppose that K is within the inertial range.
Since l>K ≥ 0 from the main result (7.13), we can introduce the following information-
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thermodynamic efficiency for the small-scale shell variables (see Section 6.3.3):

η>K :=
l>K
Ṡ>
env

=
l>K

ρε/kBT
. (7.19)

This efficiency quantifies how efficiently the small-scale eddies gain information about
the large-scale eddies relative to the energy dissipation. We note that the information-
thermodynamic efficiency for the large-scale shell variables defined as η<K := |Ṡ<

env|/|l<K | is
zero if l<K < 0 because Ṡ<

env = 0 in the inertial range (7.17). This is obvious because the shell
model does not act as an information engine that converts information into output work.
We remark that we can define another type of information-thermodynamic efficiencies by
formulating the first law of information thermodynamics for the shell model, as in the
previous chapter (see Appendix 7.7.2).

7.5 Numerical simulation

7.5.1 Setup

We here numerically illustrate the main result by estimating the LR. We set N = 22 and
nf = 1 to ensure that the external force acts only on 0th and 1st shells of the total 23 shells.
The values of the external force and the other parameters are chosen following [20,258] so
that the achieved Reynolds number (Re) and the ratio of the thermal energy to the kinetic
energy at the Kolmogorov dissipation scale are both comparable to the typical values in
the atmospheric boundary layer, i.e., Re ∼ 106 with kBT/ρu2η ∼ 10−8, where uη := (εν)1/4

denotes the characteristic velocity at the Kolmogorov dissipation scale. To investigate the
Reynolds number dependence of the LR, we have also performed a simulation for a low
Reynolds number, Re ∼ 105, by setting N = 19. For both N = 19 and 22 cases, we have
used Nsamp = 3 × 105 samples in the following averaging and estimation. Further details
of the numerical simulation are given in Appendix 7.7.3.

7.5.2 Energy spectrum

Figure 7.2(a) shows the energy spectrum En := 〈|un|2〉ss/2 in the steady state. The
achieved Reynolds numbers are Re ' 9.25× 104 and 1.46× 106 for the two cases N = 19
and 22, respectively. From this figure, we can see that the spectrum is consistent with the
Kolmogorov spectrum in the inertial range, En ∝ k

−2/3
n , while it exhibits the equipartition

of energy in the dissipation range, En = kBT/ρ.

7.5.3 Mutual information

We now estimate the LR defined by (7.10) and (7.11). To this end, we first estimate the
MI. Note that the naive binning approach is not feasible in this case because it requires
estimation of the 2(N + 1)-dimensional probability density pt(U<

K ,U
>
K). Instead, we use

the so-called Kraskov-Stögbauer-Grassberger (KSG) estimator [266–268] (for the details of
the KSG estimator, see Appendix 7.7.3), which has the advantage that it does not require
estimation of the underlying probability density. The KSG estimator uses the distances to
the k-th nearest neighbors of the sample points in the data to detect the structures of the
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underlying probability distribution. While we set k = 4 here, following [266], essentially
the same result can be obtained for other values of k. Because the KSG estimator is
based on the local uniformity assumption of the probability density, the estimated value
approaches the true value as Nsamp → ∞ when this assumption is satisfied.

Figure 7.2(b) shows the estimated MI Î(k)KSG[U
<
K(t) :U>

K(t)]. Its standard deviation is
also estimated to be ∼ 10−3 by subsampling [268], which lies within the marker size.
Notably, the MI is almost independent of K in the inertial range, while it takes relatively
large and small values in the injection and dissipation scales, respectively. This result
reflects the dynamics that is scale-invariant in the inertial range while affected by external
forces and thermal fluctuations in the injection and dissipation scales.

7.5.4 Learning rate

The LR can be estimated by substituting Î(k)KSG into (7.10) or (7.11). Note that this proce-
dure requires high accuracy in the estimation of the MI because the LR is defined through
increments in the MI. Because it is not feasible to increase the number of samples, we
instead take the approach of using the largest possible time increment ∆t. Correspond-
ingly, we focus only on l<K , because l>K is defined through increments in the small-scale
shell variables U>

K , which are fast variables relative to U<
K . We therefore estimate l<K , as

defined by (7.10), using

l̂<K :=
Î
(k)
KSG[U

<
K(t+∆t) :U>

K(t)]− Î
(k)
KSG[U

<
K(t) :U>

K(t)]

∆t
. (7.20)

Because we are interested in K within the inertial range, we choose ∆t such that it is
smaller than the smallest time scale in the inertial range. Therefore, we set ∆t = 0.1τη,
where τη := η/uη denotes the typical time scale at the Kolmogorov dissipation scale. Note
that ∆t is different from the time step δt := 10−5τη used in solving (7.1) numerically.

In Fig. 7.2(c), we show the estimated LR l̂<K in units of the inverse of the large-
eddy turnover time τL := 1/k0urms, where u2rms :=

∑N
n=0〈|un|2〉ss. For Re ' 105, we

find that τL ' 181τη, while for Re ' 106, we find that τL ' 734τη. From this figure,
we can see that the LR takes negative values for K within the inertial range. Because
(ρε/kBT )τL ' 7.79× 109 for Re ' 105 and 3.15× 1010 for Re ' 106, (7.12) is indeed sat-
isfied. Interestingly, the lower bound of (7.12) is a loose bound. By noting that l<K = −l>K
in the steady state, this result states that the information-thermodynamic efficiency η>K
is quite low [218]. In other words, the small-scale eddies acquire information about the
large-scale eddies at a relatively high thermodynamic cost. This property is in contrast to
other typical information processing systems such as Maxwell’s demon [218, 224, 228] and
thus characterizes turbulence dynamics.

Furthermore, Fig. 7.2(c) suggests that the LR can be scaled as l<K ∼ C/τL in the inertial
range, where C denotes a Re-independent dimensionless constant. By noting that τL can
be interpreted as the characteristic time scale for the largest eddies to be stretched into
smaller eddies, this result implies that the information of large-scale eddies is transferred
to small scales by this stretching process.
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Fig. 7.2: (a) Scale dependence of the energy spectrum En = ⟨|un|2⟩ss/2. The dash-dotted line represents
ε2/3k

−2/3
n . The solid line represents the thermal equipartition value kBT/ρ. (b) Scale dependence of the

estimated MI Î
(k)
KSG[U

<
K (t) :U>

K (t)] with k = 4. The error bars are within the marker size. (c) Scale
dependence of the estimated LR l̂<K . Note that it is plotted in units of the inverse of τL. In all panels,
the dotted and dashed lines represent the Kolmogorov dissipation scale kν = 1/η and injection scale kf ,
respectively.
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7.6 Concluding remarks

We have investigated the nature of information flow in turbulence from an information-
thermodynamic viewpoint. Thermal fluctuations are crucial in deriving the universal re-
lation (7.12) and (7.13) for information flow. On the other hand, it should be noted that
the information flow itself is mainly governed by the large-scale dynamics rather than by
the thermal fluctuations. In fact, the LR in the deterministic case (T = 0) is found to be
almost the same as in the noisy case (T > 0) in the inertial range (see Appendix 7.7.3).
This result is consistent with the fact that the LR can be scaled as l<K ∼ C/τL in the
inertial range.

We now provide some technical remarks on estimation of the LR. Although the KSG
estimator used here is asymptotically unbiased for Nsamp → ∞, there are a sample-size-
dependent bias and a k-dependent bias for a finite Nsamp in general [268]. In our case, as
shown in Appendix 7.7.3, we have found that the magnitude of Î(k)KSG[U

<
K :U>

K ] depends
on k. This may be because the probability distribution pt(U

<
K ,U

>
K) is skewed and has

heavy tails, thus violating the local uniformity condition [268]. Nevertheless, we have also
confirmed that the sign of l̂<K does not depend on the choice of k. It should also be noted
that the number of samples Nsamp used here is not sufficient for high accurate estimation of
the LR because the standard deviation of the estimated MI is comparable to its increment.
In other words, if we naively estimate the error bar of the LR l̂<K by using the estimated
standard deviation of the MI, it is of the same order as l̂<K itself. It is therefore desirable to
perform the numerical calculations with higher accuracy while taking the bias into account.

Although we have focused on the Sabra shell model, similar results to those presented
here would hold for other turbulence models, including the fluctuating Navier–Stokes equa-
tion [23, 187]. Because turbulent cascade is a ubiquitous phenomenon as shown in the
previous chapters, it would be interesting to investigate the nature of the information flow
in these various systems.

7.7 Appendix

Here, we first provide the detailed derivation of the second law of information thermody-
namics (Section 7.7.1). We then formulate the first law of information thermodynamics
for the shell model and investigate another type of information-thermodynamic efficiency
(Section 7.7.2). Finally, we describe the details of the numerical simulation (Section 7.7.3).
In particular, we provide the result for the deterministic case at the end of this section.

7.7.1 Derivation of the second law of information thermodynamics

In this section, we explain the derivation of the second law of information thermodynamics
for the stochastic Sabra shell model.

Formulation of the second law of thermodynamics

First, we formulate the standard second law of thermodynamics. Let S[u, u∗] be the system
entropy defined by

S[u, u∗] := −
∫
dudu∗pt(u, u

∗) ln pt(u, u
∗), (7.21)
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where dudu∗ :=
∏

n dRe[un]dIm[un], and pt(u, u
∗) denotes the probability distribution

function. Here, we use the notation S[u, u∗] to indicate the relevant random variables
(u, u∗) although S[u, u∗] is not a function of (u, u∗). The time evolution of pt(u, u∗) is
governed by the following Fokker-Planck equation [269]:

∂tpt(u, u
∗) =

N∑
n=0

[
− ∂

∂un
(An(u, u

∗)pt(u, u
∗))− ∂

∂u∗n
(A∗

n(u, u
∗)pt(u, u

∗))

+
4νk2nkBT

ρ

∂2

∂un∂u∗n
pt(u, u

∗)

]
=

N∑
n=0

[
− ∂

∂un
Jn(u, u

∗)− ∂

∂u∗n
J∗
n(u, u

∗)

]
, (7.22)

where

An(u, u
∗) := Bn(u, u

∗)− νk2nun + fn, (7.23)

and Jn(u, u∗) denotes the probability current,

Jn(u, u
∗) := An(u, u

∗)pt(u, u
∗)− 2νk2nkBT

ρ

∂

∂u∗n
pt(u, u

∗). (7.24)

Therefore, the average rate of change of the system entropy is given by

d

dt
S[u, u∗] = − d

dt

∫
dudu∗pt(u, u

∗) ln pt(u, u
∗)

= −
∫
dudu∗(∂tpt(u, u

∗)) ln pt(u, u
∗)−

∫
dudu∗∂tpt(u, u

∗)

=

∫
dudu∗

N∑
n=0

[
∂

∂un
Jn(u, u

∗) +
∂

∂u∗n
J∗
n(u, u

∗)

]
ln pt(u, u

∗)− d

dt

∫
dudu∗pt(u, u

∗)

=

N∑
n=0

Ṡn[u, u
∗]. (7.25)

In the last line, we have introduced Ṡn[u, u∗], which is given by

Ṡn[u, u
∗] := −

∫
dudu∗

[
Jn(u, u

∗)
∂

∂un
ln pt(u, u

∗) + J∗
n(u, u

∗)
∂

∂u∗n
ln pt(u, u

∗)

]
, (7.26)

where the over-dot denotes the rates of change of observables that are not a time derivative
of a state function.

Let ∆senv be the stochastic medium entropy production in an infinitesimal time interval
[t, t+ dt]. To identify ∆senv, we impose the local detailed balance condition [234,270]:

∆senv = ln
p(u′, u′∗, t+ dt|u, u∗, t)

p(−u,−u∗, t+ dt| − u′,−u′∗, t)
. (7.27)

Here, the transition probability density p(u′, u′∗, t + dt|u, u∗, t) is given by, in the Ito
scheme, [269]

p(u′, u′∗, t+ dt|u, u∗, t) =
N∏

n=0

ρ

4πνk2nkBTdt
exp

(
− ρ

4νk2nkBTdt
|dun −An(u, u

∗)dt|2
)
,

(7.28)
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where du := u′−u with u(t) = u and u(t+dt) = u′. Similarly, p(−u,−u∗, t+dt|−u′,−u′∗, t)
is given by

p(−u,−u∗, t+ dt| − u′,−u′∗, t)

=
N∏

n=0

ρ

4πνk2nkBTdt
exp

(
− ρ

4νk2nkBTdt

∣∣dun −
[
−Air

n(u, u
∗) +Arev

n (u, u∗)
]
dt
∣∣2

−
[
∂

∂un
Air

n(u, u
∗) +

∂

∂u∗n
Air∗

n (u, u∗)− ∂

∂un
Arev

n (u, u∗)− ∂

∂u∗n
Arev∗

n (u, u∗)

]
dt

)
,

(7.29)

where Air
n(u, u

∗) and Arev
n (u, u∗) denote the irreversible and reversible parts of An(u, u

∗),
respectively:

Air
n(u, u

∗) :=
1

2
[An(u, u

∗)−An(−u,−u∗)]

= −νk2nun, (7.30)

Arev
n (u, u∗) :=

1

2
[An(u, u

∗) +An(−u,−u∗)]

= Bn(u, u
∗) + fn. (7.31)

By substituting (7.28) and (7.29) into (7.27), we obtain

∆senv =
N∑

n=0

∆senvn , (7.32)

where

∆senvn :=
ρ

2νk2nkBT

[
Air

n(u, u
∗)du∗n −Air

n(u, u
∗)Arev∗

n (u, u∗)dt
]

+

[
∂

∂un
Air

n(u, u
∗)− ∂

∂un
Arev

n (u, u∗)

]
dt+ c.c.. (7.33)

Note that, by using the Stratonovich product [198], this expression can be simply rewritten
as

∆senvn =
ρ

2kBT

{
u∗n ◦

[
(Bn(u, u

∗) + fn)dt− dun
]
+ un ◦

[
(B∗

n(u, u
∗) + f∗n)dt− du∗n

]}
.

(7.34)

The average medium entropy production can be calculated as

〈∆senv〉 =
∫
dudu∗pt(u, u

∗)〈∆senv|u, u∗〉, (7.35)

where the conditional average 〈∆senv|u, u∗〉 can be evaluated by replacing dun (resp. du∗n)
with An(u, u

∗)dt (resp. A∗
n(u, u

∗)dt) in ∆senv. Then, the medium entropy production rate
reads

〈∆senv〉
dt

=
N∑

n=0

Ṡenv
n , (7.36)
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where Ṡenv
n denotes the contribution from the n-th shell:

Ṡenv
n :=

〈∆senvn 〉
dt

=

∫
dudu∗pt(u, u

∗)

{
ρ

νk2nkBT
|Air

n(u, u
∗)|2 +

[
∂

∂un
Air

n(u, u
∗)− ∂

∂un
Arev

n (u, u∗) + c.c.

]}
(7.37)

By combining (7.25) and (7.36), the second law of thermodynamics can be expressed
as

d

dt
S[u, u∗] +

〈∆senv〉
dt

=
N∑

n=0

∫
dudu∗

ρ

νk2nkBT

|J ir
n (u, u

∗)|2

pt(u, u∗)

≥ 0, (7.38)

where J ir
n (u, u

∗) denotes the irreversible current given by

J ir
n (u, u

∗) =
1

2
[Jn(u, u

∗)− Jn(−u,−u∗)]

= Air
n(u, u

∗)pt(u, u
∗)− 2νk2nkBT

ρ

∂

∂u∗n
pt(u, u

∗). (7.39)

Furthermore, since the total system {u, u∗} can be considered as a N + 1 multipartite
systems, i.e., each shell variable (un, u

∗
n) experiences independent noise, it follows that the

second law holds for each shell variable individually [265]:

Ṡn[u, u
∗] + Ṡenv

n =

∫
dudu∗

ρ

νk2nkBT

|J ir
n (u, u

∗)|2

pt(u, u∗)

≥ 0. (7.40)

Derivation of the second law of information thermodynamics

We now derive the second law of information thermodynamics for the bipartite systems
U<

K and U>
K [218,265]. First, we rewrite Ṡn[u, u∗] for n ≤ nK as

Ṡn[u, u
∗] = −

∫
dudu∗

[
Jn(u, u

∗)
∂

∂un
ln pt(U

<
K |U>

K) + J∗
n(u, u

∗)
∂

∂u∗n
ln pt(U

<
K |U>

K)

]
= Ṡn[U

<
K |U>

K ], (7.41)

where we have used pt(u, u
∗) = pt(U

<
K ,U

>
K) and ∂pt(U

>
K)/∂un = ∂pt(U

>
K)/∂u∗n = 0 for

n ≤ nK . Note that Ṡn[U<
K |U>

K ] is related to the learning rate through the following
relation:

l<K :=
I[U<

K(t+ dt) :U>
K(t)]− I[U<

K(t) :U>
K(t)]

dt

=
1

dt

(
S[U<

K(t+ dt)]− S[U<
K(t+ dt)|U>

K(t)]− S[U<
K(t)] + S[U<

K(t)|U>
K(t)]

)
=

d

dt
S[U<

K ]−
nK∑
n=0

Ṡn[U
<
K |U>

K ]. (7.42)
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From (7.40)-(7.42), we obtain the second law of information thermodynamics for U<
K ,

d

dt
S[U<

K ] + Ṡ<
env ≥ l<K , (7.43)

where

Ṡ<
env :=

nK∑
n=0

Ṡenv
n . (7.44)

Similarly, we can derive the second law of information thermodynamics for U>
K :

d

dt
S[U>

K ] + Ṡ>
env ≥ l>K , (7.45)

where

Ṡ>
env :=

N∑
n=nK+1

Ṡenv
n . (7.46)

7.7.2 First law of information thermodynamics

Here, we formulate the first law of information thermodynamics, following Chapter 6. We
identify heat absorbed by the large-scale shell variables as

ˆ̇Q<
K =

nK∑
n=0

ρ

2

u∗n ◦

−νk2nun +

√
2νk2nkBT

ρ
ξn

+ c.c.


= −

nK∑
n=0

ρ

2
[u∗n ◦ (Bn(u, u

∗) + fn − u̇n) + c.c.] , (7.47)

which is consistent with the medium entropy production rate (7.14). Similarly, externally
applied work to the large-scale shell variables is identified with

ˆ̇W<
K =

nK∑
n=0

ρ

2
[u∗nfn + c.c.] . (7.48)

By combining these two expressions, we obtain

d

dt

(
nK∑
n=0

1

2
ρ|un|2

)
+ ρΠK = ˆ̇W<

K + ˆ̇Q<
K . (7.49)

Similarly, for the small-scale shell variables, we obtain

d

dt

(
N∑

n=nK+1

1

2
ρ|un|2

)
− ρΠK = ˆ̇W>

K + ˆ̇Q>
K . (7.50)

By comparing (7.49) and (7.50) with (6.36) and (6.37) for the overdamped Langevin case,
the term ρΠK can be interpreted as work from the large-scale to small-scale shell variables.

As in Section 6.3.3, we can also introduce another type of information-thermodynamic
efficiencies by using the first law of information thermodynamics. We first note that in
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the steady state, the second law of information thermodynamics (7.15) and (7.16) can be
expressed in terms of Ẇ<

K := 〈 ˆ̇W<
K 〉 and Ẇ>

K := 〈 ˆ̇W>
K 〉 as

βẆ<
K − βρ〈ΠK〉ss − l<K ≥ 0, (7.51)

βẆ>
K + βρ〈ΠK〉ss − l>K ≥ 0. (7.52)

Since Ẇ<
K = ρε and Ẇ>

K = 0 in the inertial range, the transduced capacity βρ〈ΠK〉ss − l>K
is nonnegative. Then, as in Section 6.3.3, we can introduce the following information-
thermodynamic efficiency:

η̃<K :=
βρ〈ΠK〉ss + l<K

βẆ<
K

= 1−
|l<K |

ρε/kBT

= 1− η>K , (7.53)

where we have used 〈ΠK〉ss = ε and the main result (7.12), and

η̃>K :=
|βẆ>

K |
βρ〈ΠK〉ss − l>K

, (7.54)

which is zero if βρ〈ΠK〉ss − l>K 6= 0. The efficiency (7.53) quantifies how efficiently the
large-scale eddies converts applied work into transduced capacity. Interestingly, there is a
trade-off between η>K and η̃<K . For example, if η̃<K approaches 1, then η>K must go to zero.
Note that this result is specific to turbulence because it is based on the relation 〈ΠK〉ss = ε.

The numerical estimation of the LR described in Section 7.5.4 implies that η̃<K ' 1.
That is, the large-scale eddies operate with high efficiency, while almost all the externally
applied work is converted into work from large-scale to small-scale eddies rather than
information transfer.

7.7.3 Details of the numerical simulation

In this section, we explain the details of the numerical simulation. After describing the
setup, the details of the KSG estimator are explained. In particular, we provide a detailed
explanation of the method used to estimate the variance and bias of the KSG estimator.
We also present the result in the deterministic case (T = 0).

Setup

To evaluate the inertial range straightforwardly, we first nondimensionalize the equation
(7.1) with the Kolmogorov dissipation scale η and the velocity scale uη := (εν)1/4 by setting

ûn := un/uη, k̂n := ηkn, t̂ := t/τη, ξ̂n := (uη/η)
−1/2ξn, f̂n := fn/F, (7.55)

where τη := η/uη denotes the typical time scale at the Kolmogorov dissipation scale, and
F denotes the typical magnitude of the force per mass. The nondimensionalized equation
(7.1) reads

˙̂un = B̂n(û, û
∗)− k̂2nûn + (2θη)

1/2k̂nξ̂n + Fηf̂n, (7.56)
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where

B̂n(û, û
∗) := i

(
k̂n+1ûn+2û

∗
n+1 −

1

2
k̂nûn+1û

∗
n−1 +

1

2
k̂n−1ûn−1ûn−2

)
. (7.57)

Here, θη := kBT/ρu
2
η denotes the ratio of the thermal energy to the kinetic energy at

the Kolmogorov dissipation scale, and Fη := Fη/u2η denotes the nondimensionalized mag-
nitude of the force. Correspondingly, we set the shell index to be n = M, · · · , R with
M = −[(3/4) log2(Re)] and R = N −M , so that k0 = 1 corresponds to the Kolmogorov
dissipation scale.

We use a slaved 3/2-strong-order Ito-Taylor scheme [271] with the time-step δt̂ := 10−5,
which is smaller than the viscous time scale at the highest wavenumber τ̂vis := 1/k̂2R ∼ 10−4.
The parameter values are set to the same values used in [20,258], which are consistent with
the typical values in the atmospheric boundary layer (ABL). Specifically, the range of shell
numbers is chosen as n = −15, · · · , 7 so that the achieved Reynolds number is comparable
to the typical value in the ABL of Re ∼ 106. To investigate the Re dependence of the LR,
we also perform the numerical simulation for Re ∼ 105 by setting n = −12, · · · , 7. In both
cases, the dimensionless temperature is chosen as θη := 2.328 × 10−8, and the external
force acts only on the first two shells, i.e., nf = −14 for Re ∼ 106 and −11 for Re ∼ 105.

The values of the external forces are adjusted such that ûrms :=
√∑R

n=M 〈|ûn|2〉 ∼ 102

and ε̂ :=
∑R

n=M k̂2n〈|ûn|2〉 ' 1 [20, 258]: for Re ∼ 106,

Fηf̂−15 = −0.008900918232183095− 0.0305497603210104i,

Fηf̂−14 = 0.005116337459331228− 0.018175040700335127i, (7.58)

while for Re ∼ 105,

Fηf̂−12 = −0.017415685046854878− 0.05977417049893835i,

Fηf̂−11 = 0.010010711194151034− 0.03556158772544649i. (7.59)

In the averaging of the energy spectrum and the estimation of the MI, we use Nsamp =
3 × 105 samples. For the case of Re ∼ 106, these samples are obtained by sampling 100
snapshots at time t̂ = 1000i (i = 1, 2, · · · , 100) for each of the 3000 noise realizations.
That is, for each of the 3000 independent runs, we sample 100 snapshots. Here, the time
interval of the sampling, 1000, is chosen to be larger than one large-eddy turnover time
τL/τη ' 734 < 1000. Similarly, for the case of Re ∼ 105, Nsamp = 3 × 105 samples are
obtained by sampling 100 snapshots at time t̂ = 500i (i = 1, 2, · · · , 100) for each of the 3000
noise realizations, where the time interval, 500, is chosen to be larger than one large-eddy
turnover time τL/τη ' 181 < 500.

The KSG estimator

The KSG estimator for the mutual information I[X : Y ] (either or both of the random
variables X and Y can be multidimensional) is defined as follows [266]:

Î
(k)
KSG[X :Y ] := ψ(k)− 1/k + ψ(Nsamp)−

1

Nsamp

Nsamp∑
i=1

[ψ(nx(i)) + ψ(ny(i))] , (7.60)

where k ∈ N denotes the parameter of the KSG estimator, ψ is the digamma function,
Nsamp denotes the total number of samples, and n(k)α (i) (α = x, y) is the number of samples
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such that ‖αj − αi‖ ≤ ε
(k)
α (i)/2. Here, ε(k)α (i) denotes the α extent of the smallest hyper-

rectangle in the (x, y) space centered at the i-th sample (xi, yi) that contains k of its
neighboring samples. While any norms can be used for ‖αj − αi‖, we use the standard
Euclidean norm here.

Note that k is the only free parameter of the KSG estimator. By varying k, we can de-
tect the structure of the underlying probability distribution in different spatial resolutions.
To choose the optimal k (if it exists), we must estimate both the standard deviation and
the bias of the KSG estimator [268].

Estimation of the variance of the KSG estimator

In this section, we explain the method used to estimate of the variance of the KSG estimator
based on the subsampling approach proposed by Holmes and Nemenman [268]. This
method is based on the fact that the variance of any function that is an average of N i.i.d.
random variables scales as 1/N . Therefore, we write the variance of the KSG estimator as

VarNsamp [Î
(k)
KSG] =

B(k)

Nsamp
. (7.61)

We estimate B(k) via a subsampling approach. Specifically, we first partition the Nsamp =

N samples into n nonoverlapping subsets of equal size as much as possible. Let Î(k)KSG,i(N/n)

be the i-th realization of Î(k)KSG[X : Y ] with Nsamp = N/n (i = 1, 2, · · · , n). Then, we
calculate the unbiased sample variance of these n values of Î(k)KSG,i(N/n):

σ2k,N/n :=
1

n− 1

n∑
i=1

(
Î
(k)
KSG,i(N/n)−

1

n

n∑
i=1

Î
(k)
KSG,i(N/n)

)2

. (7.62)

This is our estimate of VarN/n[Î
(k)
KSG] = nB(k)/N . Finally, we estimate B(k) by using

maximum likelihood estimation. In doing so, we first calculate σ2k,N/nℓ
for various nℓ

(ℓ = 1, 2, · · · , L). Then, from Cochran’s theorem, (nℓ − 1)σ2k,N/nℓ
/VarN/nℓ

[Î
(k)
KSG] follows

the χ2-distribution with nℓ − 1 degrees of freedom:

P
(χ2)
nℓ−1(x) :=

1

2(nℓ−1)/2Γ(nℓ−1
2 )

x
nℓ−1

2
−1e−x/2. (7.63)

By assuming independence of {σ2k,N/nℓ
}Lℓ=1, a likelihood function for B(k) is

L∏
ℓ=1

P
(χ2)
nℓ−1

(
N(nℓ − 1)σ2k,N/nℓ

B(k)nℓ

)
. (7.64)

We then obtain the maximum likelihood estimator:

B̂(k) := arg max
B(k)

L∏
ℓ=1

P
(χ2)
nℓ−1

(
N(nℓ − 1)σ2k,N/nℓ

B(k)nℓ

)

=

∑L
ℓ=1

nℓ−1
nℓ

Nσ2k,N/nℓ∑L
ℓ=1(nℓ − 3)

. (7.65)

By combining (7.61) and (7.65), we can estimate the variance of the KSG estimator to be
B̂(k)/Nsamp.
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Estimation bias of the KSG estimator

Although the KSG estimator is asymptotically unbiased for sufficiently regular probabil-
ity distributions as Nsamp → ∞, both sample-size-dependent bias and k-dependent bias
generally exist for a finite Nsamp [268]. The sample-size-dependent (resp. k-dependent)
bias can be detected by comparing the sample-size-dependence (resp. k-dependence) of
the estimated MI with its standard deviation. If the sample-size-dependence (resp. k-
dependence) of the estimated MI is much larger than its standard deviation, then a sample-
size-dependent (resp. k-dependent) bias may be present.

Note that k is related to the spatial resolution in detecting the structure of the under-
lying probability distribution. For large k, because the fine structure of the probability
distribution cannot be detected, we would expect the MI to be underestimated. At the
same time, because nx(i) and ny(i) both increase with increasing k, the standard devia-
tion of the estimated MI will be smaller for large k. If there is no k-dependent bias, we
can choose the optimal k such that there is no sample-size-dependence compared to the
standard deviation and the standard deviation is the smallest.
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Fig. 7.3: Bias of the KSG estimator Î
(k)
KSG[U

<
K (t) :U>

K (t)] as a function of 1/Nsamp = n/N with n =
2, 3, · · · , 10 and N = 105. K = k10 (left) and K = k15 (right).

Figure 7.3 shows bias of the KSG estimator Î
(k)
KSG[U

<
K(t) :U>

K(t)] as a function of
1/Nsamp = n/N with N = 105 in the case of Re ∼ 106. Here, we use n = 2, 3, · · · , 10,
following [268]. The wave number K is within the inertial range, K = k10 (left), and
at the Kolmogorov dissipation scale, K = k15 (right). The error bars are estimated by
using the unbiased sample variance (7.62). From (7.61) and (7.65), the standard deviation
of Î(k)KSG[U

<
K(t) :U>

K(t)] is estimated to be ∼ 10−3 for Nsamp ∼ 105. It can be seen from
Fig. 7.3 that, while there is no significant sample-size-dependent bias, a k-dependent bias
does exist. In particular, the estimated MI is underestimated as k is increased.

Figure 7.4 shows the scale dependences of the estimated MI and LR for k = 4, 10, 20, 50
with Nsamp = 2 × 105 in the case of Re ∼ 106. Here, k = 4 is chosen because k = 2, 3, 4
are recommended in [266]. This results clearly show that the estimated MI and LR are
underestimated as k is increased. Therefore, it is difficult to choose the optimal k in this
case. The important point here is that the estimated LR is negative for K within the
inertial range for all k. As mentioned in the main text, we remark that the error bar of
the LR l̂<K is of the same order as l̂<K itself if we naively estimate it by using the estimated
standard deviation of the MI.
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Fig. 7.4: Scale dependences of the estimated MI Î
(k)
KSG[U

<
K (t) :U>

K (t)] (top) and LR l̂<K (bottom). Note
that the LR is plotted in units of the inverse of τL.

Deterministic case

Here, we present the result in the deterministic case (T = 0). We calculate the deterministic
case by setting θη = 0 in the Ito-Taylor scheme. Other parameters are the same as in the
noisy case with N = 22. As independent initial-data, we use the snapshots in the noisy
case at time t̂ = 105. We have used Nsamp = 2 × 105 samples in the following averaging
and estimation. These samples are obtained by sampling 100 snapshots at time t̂ = 1000i
(i = 1, 2, · · · , 100) for each of the 2000 independent runs.

Figure 7.5(a) shows the energy spectrum En := 〈|un|2〉ss/2 in the steady state. The
achieved Reynolds number in the deterministic case is Re ' 1.46 × 106. In the inertial
range, both the deterministic and noisy cases exhibit the Kolmogorov spectrum. In the
dissipation range, in contrast, the deterministic case shows a rapid exponential decay.

Figure 7.5(b) shows the estimated MI Î(k)KSG[U
<
K(t) :U>

K(t)] with k = 4. Its standard
deviation is also estimated to be ∼ 10−3 by subsampling, which lies within the marker size.
While the deterministic case is almost the same as the noisy case in the inertial range, it
takes a finite value even in the dissipation range. In other words, the correlation between
large and small scales is not destroyed because of the absence of thermal fluctuations.

In Fig. 7.5(c), we show the estimated LR l̂<K in units of the inverse of the large-eddy
turnover time τL. In the deterministic case, we find that τL ' 732τη. From this figure, we
can see that the LR in the deterministic case takes almost the same value as in the noisy
case in the inertial range. This result implies that the information flow itself is mainly
governed by the large-scale dynamics rather than by the thermal fluctuations. In contrast,
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it takes finite negative value in the dissipation range. In other words, in the absence of
thermal fluctuations, the information flow reaches the far dissipation range.
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Fig. 7.5: (a) Scale dependence of the energy spectrum En = ⟨|un|2⟩ss/2. The dash-dotted line represents
ε2/3k

−2/3
n . The solid line represents the thermal equipartition value kBT/ρ. (b) Scale dependence of the

estimated MI Î
(k)
KSG[U

<
K (t) :U>

K (t)] with k = 4. The error bars are within the marker size. (c) Scale
dependence of the estimated LR l̂<K . Note that it is plotted in units of the inverse of τL. In all panels,
the dotted and dashed lines represent the Kolmogorov dissipation scale kν = 1/η and injection scale kf ,
respectively. The noisy case is the same as the one presented in the main text (cyan line in Fig. 7.2).





Chapter 8

Conclusions and future perspectives

Cascade transfer lies at the core of turbulence. It is widely observed in various systems,
not limited to ordinary fluids, and underlies the universality in those systems. In this
thesis, we have investigated such universal aspects of cascade transfer from the viewpoint
of statistical physics. Specifically, in Part I, we aim to establish the concept of “universality
class” for cascade transfer. As a first step toward this end, we have explored novel types of
cascade phenomena by considering (i) fluid quite different from ordinary fluid, (ii) ordinary
fluid under extreme conditions, and (iii) a simple model different from a fluid model:

(i) We have investigated the similarity and difference between quantum and classical tur-
bulence in Chapter 3. By using a phenomenological argument based on the Onsager
“ideal turbulence” theory, we have shown that the compressibility effects can induce
a novel energy cascade, which we call quantum stress cascade, at scales smaller than
the mean intervortex distance.

(ii) We have explored a novel type of energy cascade by focusing on supercritical tur-
bulence near a gas-liquid critical point in Chapter 4. By using a similar argument
developed in Chapter 3, we have shown that it exhibits a novel type of energy cascade,
which we call van der Waals cascade, at “microscopic length scales” smaller than the
correlation length of equilibrium density fluctuations. Interestingly, the mechanism
of this novel cascade is analogous to that of the quantum stress cascade in quantum
turbulence.

(iii) In Chapter 5, we have proposed a simple model representing one universality class
for cascade transfer without paying much attention to its relevance to real systems.
The constructed model can be regarded as a modified XY model where the amplitude
fluctuates. We have shown that an inverse energy cascade with a non-Kolmogorov
energy spectrum E(k) ∝ k−3 emerges from spatially local interactions. Interest-
ingly, the behavior of this model is similar to that observed in spin turbulence and
atmospheric turbulence.

To summarize, we have found various types of cascade transfer in systems quite different
from ordinary fluids. From these results, we propose a tentative and naive classification
of various cascade transfer phenomena, which is summarized in Fig. 8.1. While these
results are still far from our ultimate goal of establishing the concept of “universality class,”
the author believes that these findings provide a novel phenomenological perspective on
turbulence.
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ü (3D) fluid turbulence

Kolmogorov class

Van der Waals subclass

ü Pure quantum turbulence

ü Van der Waals turbulence

Modified XY model class

ü Modified XY model

ü Atmospheric turbulence (?)

ü Spin turbulence

ü Wave turbulence, etc.

Fig. 8.1: Naive classification of various cascade transfer phenomena.

In Part II, we aim to elucidate the nature of information flow associated with cascade
transfer in ordinary fluid turbulence. Specifically, we have investigated how information
flows in the shell model with thermal noise from an information-thermodynamic view-
point. We have shown that information of turbulent fluctuations flows from large to small
scales along with the energy cascade. Furthermore, our numerical simulations suggest
that transferring information from large to small scales involves enormous thermodynamic
costs. While turbulence has been studied in various contexts from an information-theoretic
viewpoint over recent decades, this is the first theoretical study to show the unidirectional
information transfer across scales. Because this study is in the early-stage research, there
are still many unsettled issues concerning information flow in turbulence. In the following,
we list some topics for future work.

• Universality and information flow
At the end of Section 1.3, we mentioned a common intuitive picture of the origin of
universality that small-scale turbulent fluctuations “forget” the details of large scales
because of the chaotic nature of the stepwise cascade process. This picture is some-
what contrary to the fact that information of turbulent fluctuations is transferred
from large to small scales. However, the coexistence of information transfer and
universality is not logically inconsistent. We conjecture that the coexistence can be
explained by the stepwise “information cascade” process where “irrelevant informa-
tion” is “deamplified” as the cascade develops. This cascade picture is analogous to
that proposed by Wilson in the context of critical phenomena [272]. As a first step
to establish this picture, simple models in information and communication theory
would provide a useful starting point.

• Tighter bound on information flow
In Chapter 7, we have found that the information-thermodynamic efficiency η>K is
quite low compared to other typical information processing systems. In other words,
the bound on information flow based on the second law of information thermody-
namics, ρε

kBT
≥ l>K , is a loose bound. In recent years, the thermodynamic uncertainty

relation (TUR) has been intensively investigated, which gives a lower bound on the
entropy production via experimentally accessible quantities [273, 274]. In systems
with time-reversal symmetry, this relation can be extended to bipartite systems and
gives a bound on learning rate [242]. Thus, we conjecture that even in turbulence,
where time-reversal symmetry is broken, there are tighter bounds on the learning
rate than the second law of information thermodynamics.

• Intermittency and information flow
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Intermittency remains the central enigma of turbulence. As we mentioned in Sec-
tion 1.1, intermittency implies that the statistical property of the small-scale turbu-
lent fluctuations depends on the injection scale L. In other words, the small-scale
turbulent fluctuations “remember” the number of “cascade steps.” From this obser-
vation, we naively expect that intermittency can be understood from the viewpoint
of information flow. For example, by exploring universal relations that connect infor-
mation flow with the higher-order longitudinal structure function, it would become
possible to obtain universal bounds on the scaling exponent ζp.

• Information flow in other systems
As we briefly mentioned at the end of Section 7.6, we conjecture that, even in other
cascade transfer phenomena, information is transferred across scales along with the
cascade transfer. Indeed, for two-dimensional fluid turbulence, we can show that
information of turbulent fluctuations is transferred from small to large scales along
with the inverse energy cascade. It would be interesting to investigate the nature of
information flow in various systems, such as quantum fluids, supercritical fluids near
a gas-liquid critical point, spin systems, and elastic bodies. Furthermore, such an
information-theoretic viewpoint may provide a fresh perspective on the mechanism of
the laminar-turbulence transition. It is known that the two characteristic collective
modes, called zonal flow and turbulent puffs, govern the laminar-turbulence transi-
tion. Interestingly, their dynamics can be mapped to the stochastic predator-prey
model, and fluctuations of zonal flows follow those of turbulent puffs with a time de-
lay [275–277]. Thus, we conjecture that there is an information flow from turbulent
puffs to zonal flows.

We hope that these studies open up a new research area, “information hydrodynamics,”
which would provide a theoretical framework to elucidate and control the dynamics of
complicated systems, such as the Earth system and biochemical reaction networks.
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