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Abstract

Recent remarkable developments of experimental techniques, such as microfabrication and
quantum sensing with diamond nitrogen-vacancy centers, have opened up a new non-
equilibrium regime of electronic dynamics in solids, dubbed the hydrodynamic regime.
It is believed to be realized in clean metals/semiconductors with high conductivity and
strong electronic correlations, where the electronic dynamics is described in the framework
of electron hydrodynamics. Interestingly, in the novel regime, electron systems exhibit a
variety of fascinating and unconventional transport phenomena, such as the Gurzhi effect,
negative nonlocal resistance, preturblent-induced current fluctuation, and negative mag-
netoresistance. Since these phenomena originate from the nonlocality due to the electron
viscosity and the nonlinearlity of the fluid dynamics, they are considered to characterize
electron dynamics in the hydrodynamic regime.

In recent years, hydrodynamic signatures mentioned above have been confirmed through
transport experiments in various clean materials, including GaAs quantum wells, 2D mono-
valent layered metal PdCoO2, monolayer/bilayer graphene, and Weyl semimetal WP2.
Furthermore, because the hydrodynamic approach gives us clear and intuitive understad-
ing of the cross-interaction between various quasiparticles, such as magnons and phonons,
and nonlocal/nonlinear optical response, its applications to the field of spintronics and
plasmonics has also begun to be discussed. For these reasons, electron hydrodynamics has
been attracting much interest in recent years and is quickly growing into a mature field of
condensed matter physics.

More recently, symmetry of crystals and quantum geometry give a new twist to the
concept of electron hydrodynamics. These aspects are irrelavant to usual fluids such as
water, and thus clearly highlight the difference between electron fluids in crystals and
conventional fluids. In fact, enthusiastic researches in the last few years have clarified rich
and novel hydrodynamic phenomena, such as anisotropic viscosity effects and anomalous
collective modes.

In this thesis, we focus on electron fluids in noncentrosymmetric crystals and clarify a
variety of hydrodynamic phenomena peculiar to the systems. Our main purpose in this
thesis can be summarized as follows:

1. Formulation of an electron hydrodynamic theory in noncentrosymmetric
crystals.

2. Proposal of novel hydrodynamic phenomena peculiar to noncentrosym-
metric systems and observables with existing experimental technologies.

3. Application of the obtained hydrodynamic theories to novel plasmonic
devices.

Specifically, this thesis includes some brief introductions to the topics required to un-
derstand our work, including electron hydrodynamics and plasmonics, and the following
research results:
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Formulation of an anomalous hydrodynamic theory in nocentrosymmetric systems (Chap-
ter 3) —— Focusing on the crystal symmetry (especially inversion symmetry) and the ge-
ometrical properties of the Bloch electrons, we have investigated what roles these factors
play in hydrodynamic transport in noncentrosymmetric materials. To this end, we have
formulated an anomalous hydrodynamic theory for noncentrosymmetric electron fluids,
starting from the Boltzmann equation and the semiclassical equations. In the obtained
theory, quantum geometrical effects appear as anomalous driving forces on electron flu-
ids, leading to various anomalous transport phenomena. Based on this framework, we
have proposed a novel type of hydrodynamic flows, dubbed asymmetric Poiseuille flow
and anomalous edge current, which would be detectable with state-of-the-art experimen-
tal techniques. Moreover, we have provided group-theoretic analyses to classify the classes
of electron fluids, and we have specified experimental setups where novel anomalous hy-
drodynamic flow mentioned above can be realized.

Analysis of plasmonically-driven geometical photocurrent in plasmonic devices (Chap-
ter 4) —— We have investigated an interplay between quantum geometrical effects and
surface plasmons through surface plasmonic structures, based on an anomalous hydro-
dynamic theory formulated in Chap. 3. Specifically, we have discussed how plasmonic
resonances modulate photogalvanic effects originating from quantum geometrical effects.
As a result, we have clarified that the quantum nonlinear Hall effect can be dramatically
enhanced over a very broad range of frequency by utilizing plasmonic resonances and
near-field effects of grating gates. We have further clarified a universal relation between
the optical absorption and the amplitude of photocurrent induced by the Berry curvature
dipole. This relation is essential for computational material design of long-wavelength
photodetectors. Moreover, We have discussed a novel type of geometrical photocurrent
driven by oscillating magnetic fields, which is related with the orbital magnetic moment
of Bloch wavepackets. These findings might provide us with a promising route toward a
novel type of highly sensitive, broadband terahertz photodetectors.
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Chapter 1

Electron Hydrodynamics

In this chapter, we introduce the concept of electron hydrodynamics, which is the main
topic throughout this thesis, and provide a brief review of its historical background and
current studies for this issue. First, in Sec. 1.1, we mention the diversity of nonequi-
librium phenomena in solids, and point out that they can be roughly divided into three
nonequilibrium regime. Especially, through this discussion, we can clarify the importance
of electron hydrodynamics. In the next section (Sec. 1.2), we explain what materials real-
ize the hydrodynamic regime and what novel phenomena are observable in such materials,
overviewing recent experiments. Furthermore, in Sec. 1.3, we also give a overview of re-
cent theoretical developments in this context. Finally, in Sec. 1.4, we suggest several open
problems in electron hydrodynamics, and present our goals in this thesis.

1.1 Hierarchical structure in electron dynamics

Non-equilibrium phenomena in solids have ever been fascinating a lot of condensed mat-
ter physicists. In the past decades, we have been witnessed remarkably rapid progress
in the context, which ranges from amazing discoveries in the 20th century, such as su-
perconductivity, Anderson localization, the Kondo effect, the quantum Hall effect, and
photo-induced phase transitions, to modern topics including quantum chaos, many-body
localization, high harmonic generation, photo-induced superconductivity. These researches
privide us with not only deep insights into quantum properties, such as topology, entan-
glement, and quantum coherence, but also a variety of novel functional devices such as
optics, spintronics, and valleytronics.

Now a natural question is why non-equilibrium phenomena in solids are so diverse and
complex. Of course, we do not know the complete answer to the question, since it will
strongly depend on problems at hand, but an important clue to it might be found in the
temporospatial hierarchical structure in the microscopic dynamics, which is created by the
interplay between the various indepedent degrees of freedom. To illustrate this, in Fig 1.1,
we shows the momentum flow in a solid accompanied with various scattering processes. In
general, quasi-particles in solids, such as electrons and phonons, are constantly exposed to
various scattering processes. Each of these scattering processes has its own characteristic
time and length scale, and especially, the shortest one, i.e., the most dominant scattering
process, plays an important role in providing an effective description of electron dynamics.
As easily imagined, it is generally a very difficult problem to determine which scattering
processes are the major contributors to the phenomena at hand. However, as long as
we blindly analyze the dynamics of all the degrees of freedom, we can never reveal the
universal description of non-equilibrium phenomena in solids.

For example, we can understannd most of transport phenomena in conventional metals

9



10 CHAPTER 1. ELECTRON HYDRODYNAMICS

(a) Momentum flow in general (b) Momentum flow in the hydrodynamic regime

Figure 1.1: Schematic diagram of momentum flow in solids. We have shown typical scat-
tering processes and associated momentum flows in solids. In particular, the scattering
process shown in black is a process that conserves the crystal momentum of the entire
system. In reality, these scattering processes are further subdivided into some processes
depending on the degrees of freedom (valley, spin, orbital) of the electron systems and
the characters of phonon modes. (b) Schematic diagram of the momentum flow in the
hydrodynamic regime. In the hydrodynamic regime, normal electron-electron scattering
is the most dominant, and the momentum of the electron system is regarded as an ap-
proximately conserved quantity. In the Poiseuille flow, the boudary scatterings are the
main origin of the momentum dissipation.

or semiconductors by using a quite simplified approximation where we ignore the contribu-
tions of electron-electron scattering and finite-size effects, and treat momentum-relaxing
scattering processes, such as electron-impurity scattering and electron-phonon scattering,
within the relaxation-time approximation. Such a prescription is allowed (at least in a
qualitative level) for many bulk materials, and actually have ever had a lot of success [1, 2].
In the intuitive picture of electron dynamics, we regard an electron wave packet in a solid
as a ball and scatterers as a pinball, as shown in the left of Fig. 1.2. In the simplest case,
this problem is described by the Drude theory [1], and we refer to such a non-equilibrium
region as the Ohmic region in this thesis.

On the other hand, mesoscopic physics, represented by various quatnum trasnport such
as the Aharanov-Bohm effect, weak localization, and universal conductivity fluctuation,
usually focus on another non-equilibrium regime where decoherent scattering processes, in-
cluding electron-electron scattering and phonon scattering, are small enough to be ignored.
Such a regime is realized in ultra-clean systems micro-fabricated in the nm-scale [3]. In this
case, we should regard electrons as quantum “waves” rather than as “particles (balls)”.
The nonequilibrium regime described here is often referred to as the ballistic regime.

Based on similar arguments so far, we could find another universal behavior of elec-
trons, assuming an extreme situation where (normal) electron-electron scattering is most
dominant in the all scattering processes. Such a regime is closely related to the main theme
of this thesis, namely electron Hydrodynamics, and the idea of scale separation is crucially
important to understand it. In the above situation, a large scale separation occurs be-
tween the characteristic scales τmc, lmc for momentum-conserving scattering (i.e., normal
electron-electron scattering) and τmr, lmr for momentum-dissipating scattering (i.e. any
scattering other than normal electron-electron scattering), as well as characteristic scales
L, T of external perturbations, leading to the following inequality:

τmc ≪ τmr, T, lmc ≪ lmr, L. (1.1)

Under these conditions, first the electron system quickly forms a local equilibrium state
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Figure 1.2: Difference of the intuitive pictures in electron transport. Blue and orange
spheres denote electrons and phonons respectively, and gray boxes denote impurity scat-
terers. (Left) In conventional metals or semiconductors (lmr ≪ lmc), we can understand
an electron wave packet in a solid as a ball, and scatterers as a pinball. (Right) In the
hydrodynamic regime (lmr ≫ lmc), electron systems form a viscous fluids through strong
electron-electron scattering processes, and show a peculiar collective dynamics. In this
case, we can often regard the scatterers as obstacles damming the flow of water.

at each point in space through electron-electron scattering. Therefore, it is no longer
important to track each electron’s dynamics individually, and the macroscopic electron
state at each spatial point can be described by several hydrodynamic variables, such as
the density of conserved quantity, order paramters, and temperature. In particular, since
momentum relaxation scattering occurs in a time scale sufficiently slower than momentum-
conserving scattering, the total momentum and energy of electrons can be considered as
an approximate conserved quantity, and thus should be treated as a part of the dynamical
variables characterizing the local equilibrium state of the system. In this case, the electron
system exhibits collective dynamics which behaves as a kind of viscous fluid, and whose
time evolution is described by hydrodynamic equations such as the Navier-Stokes equation
(see also Fig. 1.2). In the hydrodynamic picture, impurity scatterings occur in slower time
scales, and then act as an obstruction to the flow of electron fluids. As a result, the
electron dynamics in the hydrodynamic regime shows completely different dynamics from
either the conventional Drude regime or the ballistic regime. In particular, it is well-known
today that nonlocality due to viscosity and nonlinearity due to mode couplings give rise
to a variety of unconventional transport phenomena unique to the hydrodynamic regime
(For the details, see the following sections).

Some researchers maybe feel it strange at first glance that electronic systems in solids,
which exhibit various exotic and “quantum” phenomena than usual fluids like water, can
be described by such a classical description as hydrodynamics. However, looking back to
the history of theoretical physics, we will notice that such an hydrodynamic approach is
traditionally applied to various problems in the condesed matter physics. For example,
it is well-known that the two-fluid model plays an essential role in understanding the
superfluid phase of liquid helium. Such a phenomenological description in a macroscopic
scale is still applied to various problems of superfluidity, and it is very useful for intuitive
understanding of the phenomena of superconductivity and superfluidity. Furthermore,
hydrodynamic theory also provides a very powerful analytical tool to describe extremely
complex quantum systems with ”strong interactions”, such as the Quark-Gluon plasma.
Various fascinating phenomena in these fluids, such as the chiral vortical effect [4] and
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the chiral magnetic effect [5], can be understood from a hydrodynamic description, and it
plays a very important role in explaining experimental results in heavy ion collisions [6].
Thus, strongly correlated quantum systems and fluid dynamics are not unrelated, but
rather, fluid dynamics is widely used as an extreme theoretical method to intuitively and
concisely understand complex strongly correlated quantum systems from a macroscopic
viewpoint, which may be difficult to attack based microscopic descriptions.

Then, is it actually possible to realize materials that satisfy the hierarchical conditions
for electron hydrodynamics (1.1)? One naively expects that, in priciple, if we can prepare
a sufficiently clean metal (to avoid impurity scattering) and cools it to a sufficiently low
temperature (to prevent phonon scattering), one could realize the hydrodynamic behavior
of electron systems as described above. Nevetheless, in reality, hydrodynamic regime had
never been realized for a long time, despite many experimental efforts. However, very
recently, such a situation has completely changed. A lot of hydrodynamic signatures in
electron trasnport have been reported since 2016 in various ultraclean metals such as
graphene [7, 8, 9, 10, 11, 12, 13, 14], PdCoO2 [15], GaAs quantum wells [16, 17, 18,
19, 20, 21, 22], Weyl semimetal WP2 [23], and WTe2 [24, 25, 26]. Nowadays, electron
hydrodynamics is rapidly growing up into a mature field of condensed matter physics.

In the following subsections, to give a overview, we briefly describe the details of the
experimental backgrounds and recent developments in electron hydrodynamics. Based on
this overview, I would like to conclude this chapter by mentioning in the last section what
kind of problems remain to be solved in the study of electron hydrodynamics.

1.2 Experimental realization

Here we briefly discuss the historical background of electron hydrodynamics and essential
difficulties in realizing the hydrodynamic regime in realistic materials. The following
explanation is partially based on Ref. [27].

Gurzhi effect —— Electron hydrodynamics traces its origins to a paper submitted
by the Soviet theoretical physicist Radii Gurzhi in 1963 [28]. He postulated an imaginary
metal with a cylindrical shape that would satisfy the hierarchical conditions (1.1) (see
also Fig. 1.3), and he predicted that, when an electric field is applied to the metal, the
electrical resistance scales as

ρ ∝ lee ∝ T−2, (1.2)

where lee is the mean free path of the (normal) electron-electron scatterings and it is
essentially equivalent to the paramter lmc introduced in the previous subsection.

This phenomenon is in contrast to the standard understanding of metallic transport
(electrical resistance increases with temperature due to the enhancement of phonon scat-
terings), and the result might seem to be very strange. However, this result can be
intuitively understood by regarding the electron system as a viscous fluid: First, when a
viscous fluid flows in a sample with a finite width, its resistance is proportional to the
magnitude of the electric viscosity ν against the sample boundaries (ρ ∝ ν). On the other
hand, viscosity itself is known to be proportional to the mean free path of electron-electron
scattering lee from microscopic arguments. Since lee scales with temperature as 1/T 2 from
the basic Fermi liquid theory, we can conclude that the resistivity behaves as shown in
Eq. (1.2). Nowadays, this phenomenon is known as the Gurzhi effect and several recent
experiments have reported the observations [10, 18, 20, 29]. More generally, in realistic
materials, we can observe the crossover from the ballistic regime to the hydrodynamic
regime and then to the Ohmic regime. This was also discussed by R. Gurzhi and the main
points are summarized in the caption of Fig. 1.3.
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(a) (b)

Figure 1.3: (a) Experimental setup for the Gurzhi effect [28]. (b) R. Gurzhi discussed
the temperature dependence of electric resistivity ρ(T ) in the crossover from the ballistic
regime to the hydrodynamic regime and then to Ohmic regime [28]. Each characteris-
tic temperature T1, T2, T3 is defined to satisfy lee(T1) ∼ L, lmr(T2) ∼ L2/lee(T2), and
lp(T3) ∼ limp respectively. Here lp and limp are the mean free paths of electron-phonon
scatterings and impurity scatterings respectively. In the temperature range of T ≤ T1,
since lee surpass the sample size L, the effective mean free path for the resistivity, leff, is
completely determined by the sample size L: leff ∝ L. As a result, the resistivity does
not depend on the temperature. In the temperature range of T1 ≤ T ≤ T2, the electron
system satisfies the hydrodynamic conditions (1.1) and it behaves obeying electron hy-
drodynamics. Consequently, the effective mean free path leff is proprtional to the inverse
of the electron viscosity, which is usually proportional to the electron-electron mean free
path lee. Since lee scales as 1/T

2 in Fermi liquids, the resistivity decreases as temperature
increases. This is the origin of so-called the Gurzhi effect. In the temperature range of
T2 ≤ T ≤ T3, the electron viscosity becomes too small and the impurity scattering domi-
nates as the orgin of the electric resistance. In the temperature range of T ≥ T3, the rate
of electron-phonon scatterings surpasses that of impurity scatterings, leading to positive
differential resistivity.
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Figure 1.4: The schematic of the vicinity geometry for nonlocal resistance measurements
in Ref. [7]. Yellow dashed line represents the flow lines of electric currents. In the hydro-
dynamic regime, the system exhibits a eddy current pattern (or viscous backflow) near
the current injector because of nonlocal forces due to the electron viscosity, leading to sign
changes of nonlocal resistances from those in the Ohmic regime.

Difficulties in realizing the hydrodynamic regime —— Unfortunately, after
decades of experimental efforts, it had become gradually clear that, in reality, it was not
feasible to realize a sample that satisfies the requirements of electron hydrodynamics with
the experimental techniques of the time. The reasons are as follows: First, in order to keep
the impurity scattering length limp sufficiently small, it is required to prepare extremely
clean metallic samples. On the other hand, to increase the electron-phonon scattering
length lp, the system must be cooled sufficiently to strongly suppress the thermal excitation
of phonons. However, according to the Fermi liquid theory, the electron-electron scattering
length lee (= lmc) also increases with cooling according to the scaling 1/T 2. Therefore,
the hydrodynamic regime is actually realized only in a very limited temperature range
satisfying lee(T ) ≪ limp, lp(T ). Especially for usual three-dimensional metals, the above
restrictions are quite severe because lp scales as T−3 and decays much faster than lee as
the temperature increases 1.

Promising candidate —— One turning point to overcome these difficulties was the
appearance of graphene technology. At the time of the Nobel Prize for it, the impurity
scattering length of graphene barely exceeded 100 nm, and it was far from the realization
of the hydrodynamic regime. However, encapsulation techniques with hexagonal boron
nitride (hBN) made it possible to achieve an unprecedented level of high mobility, and the
hydrodynamic regime became increasingly likely to realize.

In particular, in contrast to 3D metals, the electron-phonon scattering length in 2D
materials shows a slow decrease accompaning with increasing temperature, which scale as
lp/T

−1. Especially in graphene, due to the stiffness of its lattice, it has a large amplitude
of the scaling coefficient. This temperature dependence is sufficiently slower than that for
lee ∝ T−2, so that it is possible to satisfy lee ≪ lp above a certain temperature T ∗.

Realization of the hydrodynamic regime and negative nonlocal resistance
—— Eventually, in 2016, the hydrodynamic behavior in graphene was experimentally
reported in Ref. [7, 30] (At the same time, hydrodynamic behavior in PdCoO2 was also

1In practice, it is also important to consider another momentum relaxation process due to the Umkrapp
scattering. The Umkrapp scattering is strongly dependent on the shape of the Fermi surface, and it is
completely forbidden in the limit where the Fermi surface is sufficiently small. Therefore, in systems
with sufficiently small Fermi surfaces such as graphene, Dirac/Weyl semimetals, and semiconductors, the
contribution of such momentum relaxation is considered negligible, and in fact most of materials that
realize the hydrodynamic regime belong to these classes of materials.
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reported) In Ref. [7], the authors have observed negative nonlocal resistance due to vis-
cosity in graphene samples with a special geometry called ”vicinity geometry”. First, they
injected an electric current I into the graphene sample with width W under the geome-
try shown in Fig. 1.4, and they measured the electric potential at two different points at
various temperatures and carrier densities to estimate the nonlocal resistance. Accord-
ing to the theoretical calculations [31], systems in the Ohmic regime exhibit simple local
electrical transport in accordance with the Ohm’s law, resulting in a positive nonlocal
resistance as naively expected. In contrast, in the hydrodynamic regime, unconventional
nonlocal transport is realized due to the electron viscosity, leading to the breakdown of the
Ohm’s law or negative nonlocal resistance. Such a current distribution is realized because
of the large gradient of velocity fields around the contact into which the current flows.
The big stream of electrons from the contact drags electron fluid around the contact with
viscous forces, creating an unconventional electron flow that goes against the potential
gradient. This eventually generates an eddy current distribution, leading to a negative
nonlocal resistance. In actual experiments, the crossover between the Ohmic regime and
the hydrodynamic regime is also observed as the temperature of the system changes.

Electric Poiseuille flow —— As just described above, in order to observe viscous
fluid-like behavior of electron systems, it may be a good strategy to prepare ultraclean
samples microfabricated in the µm-scale, and let the current profile due to the viscosity
manifest in the electron transport under some specific geometry. In fact, a similar strategy
has been employed in many other papers to detect hydrodynamic signatures in electron
flows [9, 11, 18, 19, 20, 32, 33, 34, 35, 36, 37]. For example, in experiments using the
delafossite metals PdCoO2 [15] and the Weyl semimetal WP2 [23], they prepared an elon-
gated channel with a finite width W as shown in Fig. 1.3 (a) and observed the so-called
Poiseuille flow. In particular, the experimental results for WP2 are shown in Fig. 1.3.
When a sufficiently large momentum relaxation free path lmr(≫ lmc,W ) realizes in a met-
all sample with such an elongated structure, the electric resistance of the system is no
longer determined by scattering by impurities, but by the viscous force generated near the
boundary. In this case, the electron fluid will exhibit a nearly parabolic profile of electric
current, which is well-known as the Poiseuille flow, and the electrical resistance will show
a scaling as follows (see also the appendix for this chapter):

ρ ∝ η, W−2. (1.3)

Here η is the sheer viscosity of electron fluids. In both experiments in PdCoO2 and WP2,
width-dependence like Eq. (1.3) is indeed observed in a certain temperature regime (Fig-
ure 1.4 (d)), and therefore, we believe that the hydrodynamic regime is realized in these
materials in the certain window of temperature (Fig. 1.4 (f)). In addition, Refs. [15, 23]
have reported a remarkable negative magnetoresistane in each system (Figure 1.4 (e)).
Actually, this phenomena can be understood from the fact that the magnetic field depen-
dence of the shear viscosity η(B), which determines the electric resistance, is obtained in
the following form [38]:

η(B) ∝ η(0)

1 + (2τmcωc)2
(ωc ≡ eB/m). (1.4)

In this way, just by investigating the Poiseuille flow, various unconventional phenomena
due to viscosity can be found in hydrodynamic systems, and thus transport experiments
in some special geometries, such as Fig. 1.3 (a) and Fig. 1.4, will be a good touchstone for
detecting the hydrodynamic regime.
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1.3 Recent developments

Here we briefly summarize recent theoretical and experimental developments in the context
of electron hydrodynamics. They provide us with various experimental probes for the
hydrodynamic flow, as well as novel hydrodynamic phenomena which might characterize
electron fluids in solids.

Breaking of the Wiedemann-Franz law —— Breaking of the Wiedemann-Franz
law — a universal relation between electric conductivity σ and thermal conductivity κ
in typical Fermi liquid systems — has been reported in several semi-metallic materials
such as graphene [8, 30, 39, 40], bulk antimony [41], MoP [42], ZrTe5 [43] and WP2 [44],
as indirect evidence for the realization of electron hydrodynamics. Similar discussion can
also be found in the studies of magnon fluids [45]. For example, in Ref. [30], the authors
have suggested that this violation can be attributed to non-Fermi liquid nature of the
Dirac fluid originating from frequent electron-hole scatterings, which leads to an emergent
friction between electron and hole flows. Under a temperature bias, both of these carriers
flow in the same direction, and thus the friction between them never causes an additional
thermal resistance. On the other hand, under an electric field, these carriers flow in the
opposite directions, and thus additional electric resistance arises due to the friction between
the opposite flows. This leads to the strong enhancement of the Wiedemann-Franz ratio
L = κ/σT , compared to the standard value in Fermi liquids.

However, very recent work [46] has performed a further quantitative analysis using the
Boltzmann transport theory which is based on the Fermi liquid considerations, and they
have concluded that experimental results in Ref [30] may not actually have anything to
do with Dirac fluid hydrodynamics, but relates to finite-temperature low-density bipolar
diffusive transport by electrons and holes in the presence of short- and long-range disorder,
and phonons. In this way, it is still controversial whether the breaking of Wiedemann-
Franz law is related with the appearance of the hydrodynamic behavior, and thus further
discussions are needed for this problem.

Visualization of electron flow —— Modern developments of magnetic sensors with
diamond nitrogen-vacancy (NV) centers, enable us even to visualize the nonuniform hy-
drodynamic flow directly with high spatial resolution [24, 33, 47, 48]. In these experiments,
the authors have performed scanning measurement of the spatial profile of magnetic fields
that originates from the local electric current. Then, by performing a proper transfor-
mation, they have reconstructed the original profile of electric current from the obtained
data. As a result, it has been verified well that there are clear differences between current
profile in the Ohmic and the hydrodynamic regime. Similar experiments for imaging hy-
drodynamic flow has also been reported with another type of scanning techniques based on
single-electron transistor (SET) [49, 50], scanning gate microscopy (SGM) [21], or super-
conducting quantum interference device (SQUID) [51]. On the other hand, in Ref. [25], the
authors have performed a measurement using polarization-sensitive laser microscopy, and
they have demonstrated the emergence of anomalous sign-alternating patterns in charge
density in multilayer WTe2 at room temperature, which is visually similar to that pre-
dicted from electron hydrodynamics. However, they have also indicated that this material
does not exhibit true electronic hydrodynamics, but pseudo-hydrodynamic behavior due
to a subtle interplay between the diffusive transport of electrons and holes. These obser-
vations imply that we might need to have more careful discussion when we try to detect
the hydrodynamic regime via these scanning techniques.

Nonlinear hydrodynamic flow —— Nonlinearity in electron flows, which may
lead to turbulant or unsteady current dynamics, is also a fascinating aspect of the hy-
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drodynamic regime. As is well known in conventional hydrodynamic theory, the relative
important of nonlinearity is evaluated well by the so-called Reynolds number R, which is
defined as the ratio of inertial forces to viscous forces:

(inertial force)

(viscous force)
∼ |(u ·∇)u|

|ν∆u|
∼ LV

ν
≡ R, (1.5)

where L and V are characteristic scales of length and velocity in the flow at hand, and
ν is kinematic viscosity. Generally, at low Reynolds numbers (R ≪ 1), viscous forces
dominate the fluid dynamics and the flows tend to be smooth, stable, sheet-like, and
constant (or periodic) in time. Such a flow is often refered to as laminar flow. On the
other hand, at high Reynolds numbers (R ≫ 1), inertial forces (nolinearity) dominate the
fluid dynamics, and the flows tend to be unstable and produce many chaotic eddies, which
are the so-called turbulances. Although there is no clear difinition of them, well-developed
turbulences are known to be characterized by chaotic behavior, high diffusivity, energy
cascades from small-scales to large-scales, universal power law of energy spectrum. For
typical examples, steady laminar flow becomes unstable around R ∼ 10 - 100 and exhibits
the preturbulent flow such as the so-called vortex shedding. Then, at R > 103 - 104,
hydrodynamic flows reach the turbulent regime.

In electron hydrodynamics, whether turbulence can occur in realistic experimental
setups is an important issue of great interest. For example, by using the typical parameters
in Ref. [7], we can estimate the Reynolds number as R ∼ 10−3 (≪ 1). Here we have
assumed that I ∼ 0.1 µA, n = 1012 cm−2, L = 1 µm, and ν = 103 cm2/s, where I is an
apllied electric current and n is the carrier density of graphene2. Clearly, this value is too
small to realize a turbulent electron flow, and thus we need further ingenuity to realize
the turbulent electron flow in actual experiments.

One possible strategy to improve the Reynolds number is seeking for novel hydrody-
namic materials with a sufficiently small kinematic viscosity since the Reynolds number
becomes large as kinematic viscosity decreases. For example, Ref. [52] has analyzed the
shear viscosity of graphene at the charge neutral point (CNP), and shown that the ratio
η/s of shear viscosity η to the entropy density s comes close to a lower bound conjectured
by the AdS-CFT correspondence [53]:

η

s
≤ 1

4π

ℏ
kB

, (1.6)

where s is the entropy density. This bound is called the Kovtun-Son-Starinets (KSS)
bound, after the name of the authors of Ref. [53]. Especially for graphene near the CNP,
the Reynolds number should be modified as

R =
LV

νeff
, νeff =

c2η

Ts
, (1.7)

due to the relativistic nature, and these values are estimated asR ∼ 100 and νeff ∼ 5×10−3

m2/s respectively, assuming that η/s ∼ 0.2ℏ/kB, T = 300 K, u ∼ 105 m/s, and L = 5
µm [54]. More recent work [55] has performed ab-initio calculations for scandium Herbert-
smithite ScCu3(OH)6Cl2, which is a two-dimensional Dirac semimetal with a small Fermi
velocity. As a result, it has been suggested that this material has sufficiently suppressed
electron-phonon coupling below 80 K and much smaller viscosity than that of graphene at
the CNP, which corresponds to the Reynolds number 63 - 156 times larger than graphene.
In this way, these fine-tuned materials might enable us to realize turbulent electron flows
experimentally in the near future.

2This setup corresponds to the amplitude of velocity fields aroud u ∼ 102 m/s.



18 CHAPTER 1. ELECTRON HYDRODYNAMICS

Detailed theoretical analyses for preturbulent flow have already been obtained, assum-
ing realistic experimental setups, in several works [54, 56]. For example, inspired by these
results, Ref. [54] has performed numerical simulations of relativistic hydrodynamic equa-
tions for Dirac fluids around a micron-sized constriction geometry, which is implementable
with modern experimental techniques. They have numerically cofirmed that constriction
geometry leads Dirac fluids to the preturbulent regime at Reynolds number as small as
R ∼ 25. Such a preturbulent electron flow might be detectable through weak current
fluctuation with a broad spectrum in the range of several hundred MHz. Further detailed
analyses have been provided in Ref. [56]. They have assumed that applied elctric currents
are within the range between 10−3 mA and 1 mA, and account for electrostatic inter-
actions and momentum-relaxing processes. As a consequence, they have concluded that
preturbulence is predicted to occur at experimentally attainable values of the Reynolds
number between 10 and 50, leading to time-series fluctuation of electrochemical potential
over a broad spectrum of frequencies between 10 and 100 GHz.

Moreover, dynamical instability of electron fluids is also an interesting phenomenon
in electron hydrodynamics. M. Dyakonov and M. Shur have revealed in their seminal
work [57] that, above a certain threshold of applied vias, electron flows become unstable
in plasmonic cavity with an specific boundary conditions (often refered to as Dyakonov-
Shur boundary conditions) and show a spontaneous current oscillation without dynamical
perturbations. This instability orginates from the plasma wave amplification due to the
reflection from the device boundaries, and thus, long lifetime of plasmons is essential for
the realization. Nowadays, this phenomenon is known as the Dyakonov-Shur instability,
and regarded as a promising mechanism of the generation of coherent THz radiations.
More detailed numerical simulations have also been performed beyond the linear response
theory in several recent works [58, 59, 60, 61]. Furthermore, Ref. [62] has generalized
the concept of hydrodynamic instabilities driven by a direct current into Dirac and Weyl
semimetals. This paper has clarified that, these materials exhibit a new type of instability
dubbed entropy wave instability, in addition to the conventional Dyakonov–Shur instabil-
ity for plasmons. On the other hand, Ref. [63] has developed a magnetohydrodynamic
theory for Weyl semimetals and discussed their Dynamo instability, which is a well-known
astrophysical phenomenon and believed to be responsible for generating and sustaining
magnetic fields in galaxies, stars, and planets, including the Sun and Earth [64, 65, 66]. The
authors have formulated a magnetohydrodynamic theory for Weyl electron-hole plasma,
taking chiral anomaly terms into account, and discussed the scaling of (magnetic) Renolds
number for Weyl fluids. As a result, they has suggested that chiral anomaly term plays
an important role to reduce the threshold magnetic Reynolds number for the dynamo
instability, and Weyl semimetals might serve as a novel platform to observe the dynamo
effect due to the relatively large Reynolds number.

In addition, Ref. [67] has discussed how to observe nonlinear electron flows in acutual
experiments, as a alternative approach to nonlocal transport measurements for detecting
the hydrodynamic regime. Based on the conventional Navier-Stokes equation, they have
proposed how to realize some of nonlinear phenomena well-known in classical fluids, in-
cluding the electronic Bernoulli effect, Eckart streaming, and Rayleigh streaming. Then,
they have concluded that these phenomena are within reach of graphene-based devices
with realistic paramter values.

1.4 Questions and our goals

At the end of this chapter, we would like to mention open questions in the context of
electron hydrodynamics, and show our goals in this thesis. For more detailed techniques
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used in this work, we give an overview in the following several sections.

First, as already mentioned, most of previous studies on electron hydrodynamics, ex-
cept for recent challenging works, usually assume that electron fluids have unrealistic high
symmetries such as spatial isotropy and the Galilean symmetry, and they have not taken
into account the effects of crystal symmetries. At the same time, this also leads to ignor-
ing the geometrical effects of the Bloch wavefunction, which is described by such terms
as the Berry curvature and the anomalous velocity, in the transport response. As a re-
sult, these studies might have overlooked so far a lot of facinating phenomena peculiar
to electron fluids in solids. More notable is that some of recent experiments have re-
ported the realization of the hydrodynamic regime in noncentrosymmetric materials, such
as MoP [42], WP2 [23], WTe2 [24, 25, 26], bilayer-graphene [7, 68, 69, 70], and GaAs
quantum wells [16, 17, 19, 20, 21]. In these materials, we know that the inversion sym-
metry breaking and the resulting quantum geometrical effects play an important role to
understand their anomalous transport or optical phenomena.

Second, it is well-known that electron hydrodynamics provides us with a powerful tool
to analyze collective modes and nonlocal responses of electron systems in an intuitive man-
ner, since it provides us with a macroscopic description of slow variables’ dynamics. For
these reasons, hydrodynamic approach itself has long been used to describe the plasmon
dynamics in the context of plasmonics. Our question is whether we can develop a new type
of plasmonic devices that utilize quantum geometrical effects in the noncentrosymmetric
hydrodynamic systems discussed above.

Based on these backgrounds and motivations, we have conducted the following re-
search:

Formulation of an anomalous hydrodynamic theory in nocentrosymmetric
systems (Chapter 3) —— Focusing on the crystal symmetry (especially inversion symme-
try) and the geometrical properties of the Bloch electrons, we have investigated what roles
these factors play in hydrodynamic transport in noncentrosymmetric materials. For this
purpose, we have formulated an anomalous hydrodynamic theory for noncentrosymmetric
electron fluids, and we have proposed unconventional hydrodynamic transport phenemena
that will be detectable by state-of-the-art experimental techniques.

Analysis of plasmonically-driven geometical photocurrent in plasmonic de-
vices (Chapter 4) —— We have investigated an interplay between quantum geometrical
effects and surface plasmons through surface plasmonic structures, based on an anomalous
hydrodynamic theory we proposed. First we have discussed how resonant excitation of
surface plasmons and near-field effects influence photogalvanic effects due to the quantum
geometrical effects. Next we have clarified a universal relation between the optical ab-
sorption and the amplitude of photocurrent induced by the Berry curvature dipole. This
work might provide us with a promising route toward a novel type of highly sensitive,
broadband terahertz photodetectors.

1.5 Appendix for this chapter

Here we briefly show how to obtain the scaling in Eq. (1.3). In the hydrodynamic regime,
we assume that electron dynamics can be described by the usual hydrodynamic theory,
i.e. the Navier-Stokes equation:

∂u

∂t
+ (u ·∇)u+

∇P

ρ
− ν∆u+

e

m
E = − u

τmr
, (1.8)
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where ν = η/ρ is the kinetic viscosity, ρ is the particle density, P is the pressure, m is
the mass of electric carriers. Here we have introduced the friction term −u/τmr due to
the momentum-relaxing scattering processes. Assuming the setup for the Poiseuille flow,
where the systems has finite width W in the x-direction and an electric field is applied in
y-direction, the above equation is simplified for u = (0, uy(x), 0) as follows:

∂uy
∂t

− ν
∂2uy
∂x2

+
e

m
E = − u

τmr
. (1.9)

This equation can be solved easily, and we obtain the following solution for the velocity
field:

uy(x) =
eτmrE

m

[
1− cosh(x/l)

cosh(W/2l)

]
, (1.10)

where −W/2 ≤ x ≤ W/2 and l ≡ √
ντmr. The total electric current is calculated by

integrating the current density jy(x) = −enuy(x) over the channel width. Finally, we
obtain the following form of electric resistivity:

ρ =
m

e2nτmr

1

1− tanh(W/2l)/(W/2l)
(1.11)

Compared to the Drude resistivity m
enτmr

, this result can be interpreted as the mean free
time τmr is replaced by the effective mean free time

τeff = τmr

(
1− tanh(W/2l)

(W/2l)

)
(1.12)

Especially in the case of w ≪ l, the effective mean free time reduces to the form

τeff =
W 2

12ν
+O

(
(W/l)5

)
, (1.13)

which corresponds to the desired scaling rule shown in Eq. (1.3).



Chapter 2

Nonlocality and Plasmonics

In this chapter, to provide background knowledge about our studies in Chap. 3 and
Chap. 4, we briefly discuss the importance of nonlocality in electric responses and previous
applications of electron hydrodynamics in plasmonics. Moreover, since terahertz applica-
tions are one of the main concerns of our research as well as plasmonics, we also give a
brief overview of this area.

2.1 Nonlocality in responses

In this section, we discuss the importance of nonlocality in electromagnetic responses of
solids. First, we introduce the concept of “local” response and implicit assumptions to
make it valid. Next we clarify the cases where the assumptions are broken, which include
the plasmonic systems and ultra-clean metals in the hydrodynamic regime. Then, relating
them with some symmetry considerations, we explain that nolocality in responses provoke
various fascinating phenomena such as nonreciprocal directional dichroism and plasmonic
resonances.

Local responses —— When discussing electromagnetic responses of matters, we
often assume that the responses of the systems A(r, t), such as electric current and electric
polarization, are determined only by the value of the electromagnetic perurbation B(r, t)
at the same point r, though taking the delay in time into account. This assumption can
be expressed formally in the following form:

A(r, t) =

∫
dτχ(t− τ)B(r, τ). (2.1)

By performing a Fourier transformation, this formula can be rewritten in another familiar
form,

A(r, ω) = χ(ω)B(r, ω). (2.2)

For example, the Drude theory, which is one of the most simpified models of electric
conduction, leads to the famous relation between electric currents j and optical electric
fields E, i.e., the so-called Drude formula,

j(r, ω) = σ(ω)E(r, ω), σ(ω) =
σ0

1− iωτ
(2.3)

where τ is the momentum-relaxing time, n is the carrier density, and σ0 = ne2τ/m.
Especially in the limit of ω → 0, this leads to the familiar (local) Ohm’s law: j(r) =
σ0E(r). In usual dirty or hot metals, such a naive assumption is guaranteed by large
separation of length scales between the wavelength of incident lights and characteristic

21
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length in the microscopic level, which typically corresponds to the mean free path of
impurity scatterings or electron-phonon scatterings.

Nonlocal responses —— However, the above assumption is sometimes broken when
we consider some physical systems that have a characteristic length scale comparable to the
scale of its microstructure or the wavelength of incident lights. For example, we encounter
these situations when treating such objects as ultra-clean metals [27], polaritons [71],
photonic crystals or metamaterials [72, 73, 74, 75, 76, 77], and other nanostructured de-
vices [78, 79]. In particular, polaritons have a finite momentum, and thus we have to
achieve a momentum matching between the polaritons and the incident free lights to res-
onantly excite these collective modes. In addition, polaritons have an interesting property
to trap and confine incident lights into a small space, leading to a strong enhancement
of nonlocal effects [71, 80]. For these reasons, to discuss the interplay between polaritons
and optical responses, nonlocality can never be ignored, but rather plays a central role in
understanding the polariton physics.

Nonlocality in electron hydrodynamics —— Nonlocality in responses is also one
of important aspects of electron hydrodynamics, where viscous effects and boundary fric-
tions become nonnegligible to undestand the transport and optical properties of electron
systems. As already mentioned, in the hydrodynamic regime, the (local) Ohm’s low is
broken down and the nonlocality due to electron viscosity dominates electric transport in
microfabricated devices, leading to strange eddy flows and negative nonlocal resistance.
These unique behaviors are essentially attributed to the scale separation, lmc ≪ L ≪ lmr,
which realizes in the hydrodynamic regime. Here, L is the characteristic length scale of
the responses at hand. Since hydrodynamic formalism provides a clear description of col-
lective motion of electrons under non-uniform perturbations, it has ever been applied to
describe electronic collective modes [81, 82, 83, 84, 85, 86, 87, 88, 89] and nonlocality of
optical responses [79, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105],
as well as nonlocal transport phenomena with non-uniform current profiles in structured
channels [38, 95, 106, 107, 108, 109, 110, 111, 112, 113, 114] and the resulting electron
preturbulence [54, 56].

Onsager reciprocal theorem —— From the symmetry viewpoint, we find that
nonlocality is also an important source of nonreciprocity in responses. According to the
Onsager reciprocal relations [115, 116], electric conductivity σij must satisfy the following
constraint:

σij(q, ω,B) = σji(−q, ω,−B), (2.4)

where q and ω are the wavevector and the frequency of the external electric fields, and
B is an applied magnetic field or other perturbations that break the time-reversal sym-
metry. As can be easily understood from this equation, nonlocality (finite wavevector)
and magnetic fields play essentially similar roles in the constraint of conductivity tensor.
For example, applying external magnetic field yields a finite anti-symmetric component of
electric conductivity, which leads to the Hall current in transport experiments, or the Kerr
and Faraday effect in optical experiments. On the other hand, the finite wavevector of an
incident light also yields a component with the same commutativity, which causes natural
optical activity, i.e., a rotation of the polarization plane (natural optical gyrotropy) and
differential absorption between different helicities (natural circular dichroism).

Directional dichroism—— Although the latter case (i.e., natural optical activity) is
quite similar to the former case (i.e., Kerr and Faraday effect), there is a crucial difference
between them. For a demonstration, let us assume that the magnetic field is sufficiently
small and the external perturbation varies much more smoothly than the microscopic
length scale that the system has. Then we can expand the conductivity tensor up to the
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first order in B and k as follows:

σij(q, ω,B) ≃ σij(ω) + qk
∂σij
∂qk

(ω) +Bk
∂σij
∂Bk

(ω) + qkBl
∂σij

∂qk∂Bl
(ω) + · · · . (2.5)

Here we note that each component satisfies the following relation in accordance with the
Onsager’s reciprocal theorem:

σij = σji,
∂σij
∂qk

= −∂σji
∂qk

,
∂σij
∂Bk

= −∂σji
∂Bk

,
∂σij

∂qk∂Bl
=

∂σji
∂qk∂Bl

, (2.6)

which means that
∂σij

∂qk
and

∂σij

∂Bk
are anti-symmetric in comutation of (i, j), and the others

are symmetric. Especially in optical responses, the second and third terms in the right
side correspond to the natural optical activity and the Kerr (or Faraday) effect respec-
tively. Since the wavevector q changes the sign when the direction of light is reversed, we
notice that these terms have different dependences on the direction of light. Such light
direction-dependent optical response is often referred to as directional dichroism or direc-
tional birefringence. From the same arguments, we find that the last term in Eq. (2.5)
describes various directional dichroic responses. For example, nonreciprocal phenomena
related to this term include the so-called magnetochiral effect [115, 117, 118], nonrecip-
rocal magnon [119, 120, 121, 122], and noreciprocal plasmon with and without magnetic
fields [123, 124, 125, 126]. Interestingly, especially in bulk crystals, these nonreciprocal
phenomena are often related with geometrical structures of Bloch electrons in the Brillouin
zone [124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135], which provide us with a deep
insight to the band structure of crystals through optical responses.

Relation with inversion symmetry —— Since electric currents, electric fields,
and wavevectors are all odd under inversion symmetry,

∂σij

∂qk
and

∂σij

∂qk∂Bl
always vahish in

centrosymmetric materials, except for the responses on the surface. This is the reason
why we usually consider chiral or other noncentrosymmetric materials when discussing
nonreciprocal phenomena. In a similar sense, nonlocality also plays an important role in
optical rectification or, more generally, second order optical responses. This is because
the output quantities such as electric currents are odd under inversion symmetry while
the second order term of electric field always even under inversion symmetry. Therefore,
in centrosymmetric materials, surface contributions and intrinsic nonlocal contributions
become dominant sources of the second order optical responses, and the latter is also often
closely related to the quantum geometrical effects [136].

In this way, nonlocality often plays an important role in understanding some classes
of optical phenomena in both of centrosymmetric and noncentrosymmetric materials. In
Chap. 3, focusing on the hydrodynamic regime, we will discuss anomalous nonlocal trans-
port phenomena due to inversion symmetry breaking.

2.2 Introduction to plasmonics

Plamonics is an active research area that explores the interaction between free lights and
surface plasmons on structured metallic surfaces to achieve highly efficient generation,
detection, and manipulation of lights [137, 138, 139]. It enables us to break the diffraction
limit of free lights and acquire strong field enhancements by utilizing a peculiar property of
plasmons to confine the light locally. These features are fascinating to realize nanophotonic
devices such as waveguide circuit [140, 141, 142], highly-sensitive photodetectors [143, 144],
and sollar cells [145, 146, 147]. Furthermore, surface plasmons inherent in two-dimensional
(2D) layered systems, such as graphene, have remarkably long lifetimes and electrically-
tunable dispersions in the terahertz or mid-infrared region [71, 148, 149]. These properties
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are particularly ideal for developing novel tunable terahertz to mid-infrared plasmonic
devices [139, 143, 150, 151].

In what follows, we give a brief overview of plasmonics, mentioning to its relation with
electron hydrodynamics. First we introduce the concept of the mid-infrared and terahertz
technology, which is one of the main concerns in plasmonics, and explain its practical
importance and its major challenges. Next, we explain several promising applications of
plasmonics and how to excite and control surface plasmons. Finally, taking plasmonic
ratchet effect and Dyakonov-Shur theory as examples, we demonstrate how powerful elec-
tron hydrodynamics is in describing various plasmonic phenomena.

2.2.1 Terahertz technology

The terahertz regime is widely considered as a next frontier between electronics and optics,
and it promises a lot of cutting-edge applications, including imaging, wireless communi-
cations, ultrafast computing, quality control of food and agricultural products, homeland
security, molecular exploration, and biomedical sensing [152]. In a nutshell, the poten-
tial for these applications would be attributed to the following characteristics of terahertz
waves:

1. High permitivity through many materials

2. Operation in a non-destructive manner

3. Resonant coupling to various collective modes in solids or molecules

4. Spatiotemporal resolution higher than microwaves

In particular, collective modes resonant to terahertz waves, such as surface plasmons, are
crucially important to understand the mechanism of various THz techniques, since they
not only act as a trigger for imaging and driving of materials [153, 154], but also enhance
or expand the functionality of terahertz technologies as in plasmonics [71, 139, 155].

According to the review article, Ref. [156], the central problems that might hinder
future developments of terahertz technology can be summarised as follows; (1) the lack of
intense THz sources and sensitive THz detector, (2) the lack of commercial optical compo-
nents and instrumentations that operate in the terahertz regime, (3) strong water vapour
absorption that prohibits sensing and imaging of water-rich targets, as well as limiting the
range of THz wave propagation for remote applications. In what follows, we give more
detailed explanation of these dificulties, and introduce several possible applications of THz
technology in bio-chemistry, condensed matter physics, and wireless communications.

Terminology and terahertz gap —— Although there exist some diffrent defi-
nitions, the terminology “terahertz (THz) regime” usually denotes the frequency region
between the infrared and microwaves, typically referred to as the frequencies from 300
GHz to 3 THz (or 30 THz). Electromagnetic waves in this regime have photon energies
smaller than the band-gap energy of typical narrow-gap semiconductors1, but larger than
the energy scales corresponding to clock frequencies of typical central processing units
(CPUs), which are around several GHz. Consequently, our conventional techniques to
contol electromagnetic waves, that is, electronics and optics, are typically inaccessible to
the terahertz regime. Nowadays, this issue is referred to as the terahertz “gap”, and the
word “gap” means that our THz technology is still in infancy to achieve mass production

1For example, the band-gap energies of narrow-gap semiconductors InAs and SnTe are around 350 meV
and 180 meV. These are comparable to the photon energy in the mid-infrared regime.
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of THz devices and its operation at room temperature [150, 152] (As for the current sta-
tus of THz technology, for example, please refer to Ref. [156, 157] for THz sources, and
Refs. [151, 158] for THz detectors). Therefore, to promote THz science into real applica-
tions, we still need to develop novel THz sources, detectors, modulators, and waveguide
of high efficiency, which work even at room temperature. On the other hand, the termi-
nology “mid-infrared (MIR) regime” usually refers to the frequencies window between 30
THz and 100 THz2.

THz imaging in biochemistry and medicine —— Radiations with terahertz
to mid-infrared frequncy have various physical meanings in diffrent reasearch areas. For
example, in biochemistry and medicine, terahertz spectroscopy plays a crucial role in
biological or medical imaging. In this case, most important is the fact that character-
istic frequencies of vibrational modes in macromolecules, such as proteins, typically lie
in terahertz to mid-infrared frequencies [153]. Since the energy scale of thermal fluctu-
ation at room temperature is also around several terahertz, these collective modes are
believed to relate closely to the mechanism of conformational changes and biological func-
tions of biological polymers [159]. By applying THz lights onto chemical or biological
systems, we can excite a specific vibrational mode of some molecule coherently, leading to
the detection or imaging of target molecules without destroying the electron structure of
molecules [160, 161, 162]. Moreover, THz waves can penetrate into many materials that
is not transparent in visible light region, and give much higher spatiotemporal resolution
than the conventional microwave imaging technology. These properties enable us to utilize
the terahertz waves, for example, to develop skin-cancer diagnosis in vivo or other non-
destructive biological imaging [163, 164]. Furthermore, the spatial resolution of such THz
imaging can be dramatically improved by using metamaterial or plasmonic devices, which
can confine THz lights into a small space beyond the diffraction limit [165, 166, 167, 168].

Moreover, the light absorption by water also becomes very strong in the terahertz
regime, whose spectrum has a broad peak centred at 5.6 THz due to the resonant stretch-
ing of the hydrogen bond between water molecules [169]. As a result, the absorption
spectrum in THz regime is highly sensitive to water concentration, which leads to clear
contrasts between muscle and adipose tissue [170] and between tumour and normal tis-
sue [171]. These properties are also utilized as an indicator to evaluate the solubility of
crystalline drugs in living organisms [169]. Moreover, THz spectroscopy techniques also
can be utilized to characterize crystallinity in pharmaceutical drugs, estimate the thick-
ness of tablet coatings, and identify their chemical composition [172]. In this way, THz
technologies have promising applications even in the pharmaceutical industry.

THz wireless commnucation —— Furthermore, THz wireless commnucation is
also a promising application of terahertz technologies [173, 174, 175]. Accompanied with
rapidly growing demand for data communication load and the remarkable speed-up of
fiber-optic networks, unoccupied and unregulated communication band is eagerly de-
manded to construct novel wireless communication, which naturally require the exten-
sion of operation frequencies toward the sub-terahertz regime. Fortunately, even though
electromagnetic absorption by the atmosphere, or atmosperic attenuation, becomes re-
markable at frequencies above 100 GHz, it is known from experiments and numerical
simulations that there are certain frequency windows3 where light attenuation becomes
relatively small [176, 177, 178]. Moreover, it is also noteworthy that the antennas with
a fixed physical size becomes more directional and gets more gain quadratically as the
frequency becomes higher, and the Friis transmission equation suggests that the received

2Photon energies of terahertz and mid-infrared radiations range in the energy window 1 - 10 meV and
100 - 400 meV.

3Such windows are located at 120 GHz, 300GHz, 350 GHz, 410 GHz, 670 GHz and 850 GHz.
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power is proportional to the gain of receiving and transmitting antennas and the inverse
of the square of frequency [179]. Therefore, theoretically, the path loss in free space de-
creases quadratically as the frequency increases, if the antenna size remains constant over
frequency at both link ends [175, 180, 181, 182]. Therefore, the common statement that
electromagnetic waves with higher frequency surffer from a greater loss is not nocessarily
true, and the transmission distance achievable in THz communication crucially depends
on the choice of antenna designs and frequency band. One of the major challenges in cur-
rent terahertz technology is to establish wireless communication techniques in the above
frequency windows.

Compared to the conventional wireless communication using radio or millimeter waves,
THz wireless communication has a great advantage of ultra-high-speed data transmission.
According to the Shannon–Hartley theorem, the maximum rate at which information is
transmitted over a noisy communication channel with a certain bandwidth is obtained as

C = B log2(1 + S/N). (2.7)

Here C is the channel capacity, i.e, the tight upper bound on the rate at which informa-
tion can be reliably transmitted over the communication channel, B is the bandwidth of
the channel in Hz, S/N is the signal-to-noise ratio of the communication signals. This
means that the channel capacity is proportional to the bandwidth, and thus a higher fre-
quency regime is favorable to achieve high-speed wireless communication. Actually, THz
wireless communication is expected to achieve data communication rates of 100 Gbps or
higher [175, 183], while the current communication system (5G) typically achieves only
several Gbit/s (Gbps) using millimeter waves at several GHz4. For example, if 100 Gbps
wireless communications are realized, movies in a Blu-ray disc with 25 GB can be down-
loaded in just two seconds, and uncompressed 4K/8K videos can be transmitted in wireless
communications [173, 184].

Furthermore, while THz waves might be disadvantageous in long-distance telecommu-
nication due to inevitable atmosperic attenuation, they have some unique characteristics
such as the high directivity and extremely small antennas, in addition to the ultra-high-
speed data transmission. High directivity is beneficial in a sense that it reduces spatial
interference with other communication systems, even though it makes difficult to con-
struct non-line-of-sight communications and requires an alignment of ransmitter/receiver.
Therefore, simultaneous communication between multiple devices are achieved in THz
communication by separating high-speed communications spatially, whereas the conven-
tional radio wave communication makes it possible by dividing frequencies into several
narrow bands radiate signals even under spatial interferences of signals. Considering the
above features, THz communication will have a great potential especially in indoor wire-
less LAN, device-to-device/intra-device communications, and fixed wireless link in outdoor
environment [173, 185]. Moreover, Ref. [175] has discussed the possibility of THz mobile
communication by using highly directional steerable antennas.

THz physics in condensed matter physics —— In condensed matter physics,
it is well-known that optical phonon modes typically lie in the mid-infrared regime [154],
while there exist various collective modes, such as electromagnons in multiferroics [186],
magnons in antiferromagnets [187, 188], and the Higgs modes in superconductor [189] in
the terahertz regime. Interestingly, the recent developments of high-power light sources
in teraherz frequencies enable us to make a high-speed control of the solid states by
exciting coherent optical phonon modes [154]. The most prominent example is light-
induced superconductivity [190, 191, 192], where the crystal lattice was distorted by a

4On the other hand, Wired communications with fiber optic, such as Ethernet and passive optical
network (PON), are now reaching data rates of several hundreds Gbps and tens Gbps, respectively [173].
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mid-infrared pump pulse, driving the electron systems to nonequilibrium phases, and
then superconductor-like behavior, such as Josephson plasma resonances, was observed in
the spectrum of the optical conductivity by time-resolved THz spectroscopy. As another
example, nonadiabatic excitations of the Higgs mode in superconductors has also been
reported by using Terahertz pump pulse, and the temporal evolution is observed via the
change of the intensity of transmitted probe THz pulses [193]. Furthermore, Refs. [194,
195] have also reported that a resonance between the optical field and the pumped Higgs
modes provokes a remarkably large terahertz third-harmonic generation.

Similarly, polaritons in two-dimensional layered systems typically reside in terahertz
to mid-infrared region [71, 139]. Here polariton is a quasiparticle originating from the
coupling between electromagnetic waves and some excitation with an electric dipole such
as optical phonon and plasmon. For these modes, most remarkable is that they have very
long lifetimes and their dispersion is highly controllable by gating, doping, photoexcitation,
and dielectric environment, leading to electric or optical tunability of light-matter cou-
pling. Furthermore, these collective modes typically have one or two orders of magnitude
smaller wavelength than that of free-lights. This property enables us to achieve a strong
light confinement and field enhancement for high-resolution imaging or nano-photonic de-
vices, but at the same time, makes it difficult to couple the polariton modes to lights in
free space. As explained latter for plasmonics, by taking advantage of these features, we
can attain various novel functionalities [71, 196], including electro-optical modulation or
switching [197, 198, 199], subdiffractional focusing and imaging [165, 166, 200, 201], polari-
ton laser [202, 203], strong enhancement of light-matter interaction and optical nonlinear-
ities [204, 205, 206], quantum information processing [207, 208, 209], and nano-photonic
waveguides or circuits [210, 211].

2.2.2 Plasmonics

Plasmonics is an active subfield of photonics that utilize surface plasmon-polaritons, which
are collective modes resulting from the coupling between electromagnetic waves and charge
excitation of electrons, to develop unconventional optoelectronic devices. As with other
polaritons, surface plasmon provides a strong light-matter coupling effect, which sup-
ports various sensing, imaging, or energy harvesting technology [137, 138, 139, 145, 146,
147, 165, 166], and leads to strong confinement of light and enhancement of local near
field, which are favorable for developing nano-photonic devices such as plasmonic nano-
waveguides [140, 141, 142]. Moreover, it is noteworthy that the scope of plasmonic ap-
plications covers a remarkably broad range of frequency from sub-terahertz to ultraviolet
waves. This is attributed to the plasmon’s property that the dispersion relation of sur-
face plasmon drastically changes depending on the composition of host materials (Au,
Ag, Al, graphene, etc.), their dimensionality (bulk, thin film, nanoribbon, nanoparticle,
etc.), the gate voltage, and their dielectric enviroment (dielectric composition, spacer
thickness from metallic back-gate, plasmonic lattice). In particular, in the past decade,
graphene plasmonics and its hybridization with other 2D nanomaterials are attracting
much interest as a new frontier of plasmonics that is suitable for terahertz to mid-infrared
applications [137, 138, 139, 149, 212].

Noble metal plasmonics —— The early stage of plasmonics has focused on mainly
the surface plasmons on noble metals, such as gold and silver. In the late 1990s, several
seminal works have demonstrated extraordinary performance of plasmonic devices over
conventional dielectric photonics, which includes one-dimensional optical waveguides with
nanometer diameter [213], surface enhanced Raman spectroscopy for single molecule de-
tection [214, 215], extraordinary optical transmission through metal films with nanoscale
hole arrays [216], and optical superlens with simple thin slab of silver [217]. Then, these
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Figure 2.1: Dispersion relations of two-dimensional surface plasmons in ungated and gated
cases. The light line in vacuum has also depicted with dotted yellow line.

astonishing discoveries open the way to explosive growth of plasmonics field. The term
“plasmonics” was originally coined in 1999 for a promising new device technology that
deal with optical properties of metallic nanostructures and aims to achieve routing and
active manipulation of light at the nanoscale [140]. Nowadays, noble metal plasmon-
ics deals with various form of plasmonic systems that include metallic nanoparticles and
their arrays [218], nanorods, nanoantennas, nanoring resonators [219], plasmonic metama-
terial and metasurfaces [220], and chiral plasmonic structures [221]. These plasmonic
systems have broad-ranging applications in the visible to near-infrared frequency re-
gion, and their promising aplications include nanophotonic devices aiming for integrated
photonic systems [222, 223, 224], metamaterials with unusual electromagnetic proper-
ties [220, 225, 226, 227, 228], biosensing with metallic nanostructures [229, 230, 231, 232],
plasmonic sollar cells [145, 146, 147], and single photon transistors for quantum comput-
ing [233, 234, 235]. However, although noble metals are the best choice of plasmonic
systems among bulk materials, they are lacking in tunability and always suffer from large
Ohmic losses, which limit their applicability as plasmonic devices.

graphene plasmonics—— In this context, graphene has emerged as a novel 2D plas-
monic material alternative to conventional noble metallic systems [137, 138, 139, 149, 212].
Graphene plasmon exhibits an remarkably long lifetime and extremely strong light confine-
ment, and it has some unusual properties due to the linear band structure of graphene. Its
further appealing property is its high tunability by gating, doping, and chemical means.
This enable us to control optical properties of plasmonic devices, such as resonant fre-
quency of surface plasmons, even after the fabrication of the device. Another fascinating
point of graphene plasmonics is that the resonances of graphene plasmons typically reside
in terahertz to mid-infrared region, which enables new and discriminatory plasmonic appli-
cation from conventional metal plasmonics. As already mentioned in previous subsection,
the terahertz regime has a wide variety of applications from biological imaging to ultra-
fast wireless communication, and at the same time, it has a lot of difficulties in developing
highly efficient THz detectors and sources. Graphene plasmonics and its hybridizaion with
other 2D material devices might overcome these difficulties, and are expected to enable
the development of highly tunable, compact, and broadband THz devices.

Plasmon coupler —— To explore the utilization of surface plasmons, we have to
consider how we can excite and detect surface plasmons. In both cases of noble metal plas-
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Figure 2.2: Typical examples of plasmonic coupler.

monics and graphene plasmonics, the key concept to solve this problem is the momentum
matching between surface plsmons and light in free space. For example, in two-dimensional
cases, the dispersion relations of surface plasmons are described as in Fig. 2.1 for ungated
and gated cases [150, 236]. From the figures, we readily notice that the dispersion of sur-
face plasmons is decoupled from the light line, and never satisfy the momentum matching
without structuring the material’s surface. In traditional methods in plasmonics, there are
roughly two types of approaches to excite surface plasmons [155]. First one is the atten-
uated total reflection method (Fig. 2.1 (a)), which utilizes the property of an evanescent
wave resulting from the total reflection on interface. For example, in the Kretschmann
configuration, the metallic thin film is evaporated onto the glass block. The incident light
from glass sides is reflected on the interface between the metal and the glass, and an
evanescent wave penetrates through the metal film. This penetrated electric fields excite
the surface plasmons at the outer side of the metallic film.

On the other hand, approaches depicted in Fig. 2.1 (b-f) are based on the sub-
wavelength microstructures on the surface or at the edge, such as grating lattices and
plasmonic antennas. These microstructures break the continuous translational symmetry
on the surface, and relax the strict constraint from momentum matching. Interestingly,
recent developments of scanning near-field optical microscopy have enabled us to locally
excite the surface plasmons and track the time evolution through real-space imaging of
plasmon fields [237, 238].

2.2.3 Electron hydrodynamics in plasmonics

Electron hydrodynamic theory often plays a crucial role to describe the dynamics of plas-
mon modes and the related optical phenomena [57, 219, 239, 240, 241, 242]. This is mainly
because the plasmonics usually focuses on ultra-clean systems with high mobility, where a
long lifetime of plasmons is guaranteed and the hydrodynamic conditions are also maybe
satisfied, and hydrodynamic theory deals with the macroscopic slow dynamics of con-
served quantities and order perameters, which gives a clear description of particle density
oscillations, i.e., plasmons and their strong nonlocality/nonlinearity.

Actually, as mentioned in the previous sections, some important plasmonic systems,
including two dimensional electron gas in GaAs quantum well [16, 17, 18, 19, 20, 21, 22]
and graphene [7, 8, 9, 10, 11, 12, 13, 14], have been reported to realize the hydrodyamic
regime via nonlocal transport measurements recently. These astonishing discoveries have
encouraged many researchers to study nonlinear and nonlocal optical properties in the
novel transport regime. For example, recent theoretical works have investigated the
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hydrodynamic-to-ballistic crossover of the plasmon’s dispersion, and showed that plas-
mons could exhibits a phase velocity lower than the Fermi velocity vF (but greater than
vF /

√
2) in the hydrodynamic regime [85, 243, 244], while the free-particle models predict

that the phase velocity of plasmons always lies above the Fermi velocity [245, 246, 247].
In a series of works [82, 86, 87], the authors have developed an anomalous hydrodynamic
theory for Weyl semimetals, and predicted the appearance of novel collective modes such
as chiral magnetic plasmons and transverse anomalous Hall waves. More recent work [126]
has developed the “nonreciprocal hydrodynamic theory”, which describes the magneto-
hydrodynamic dynamics of electrons in noncentrosymmetric 2D metals under magnetic
fields and treats the quantum geometrical properties of the Bloch electrons, and analyzed
the enhancement of the directional dichroism in optical reflectance due to the resonant
excitation of nonreciprocal magnetoplasmons.

Especially in the context of plasmonics, there are two types of important concepts,
the Dyaknov-Shur instability (and related photovoltaic phenomena) [57, 248] and the
(plasmonic) ratchet effect [249, 250, 251, 252, 253], both of which are considered as a
promising mechanism to develop highly-efficient and tunable plasmonic THz photodetec-
tors or sources. In what follows, we demonstrate how electron hydrodynamic theories are
apllied to describe these plasmonic phenomena.

Dyakonov-Shur instability —— Under specific boundary conditions, surface plas-
mons in ballistic field effect transistors are known to get unstable by applying a dc current,
leading to a spontaneous radiation of THz waves of a few mW for a single device and much
higher for device arrays [254, 255, 256, 257]. This instability is called as the Dyakonov-
Shur instability, and originates from the plasma wave amplification due to the reflection at
the device boundaries. This mechanism is somewhat similar to that of sound production
in musical instruments, such as organ pipes and flutes [258], which make a beautiful sound
by utilizing the sound wave instability under steady flows.

The authors of Ref. [57] have originally predicted the Dyakonov-Shur instability based
on a simple hydrodynamic model, which has a form analogous to those for shallow wa-
ter [259]. Assuming 2D electron systems in a ballistic field effect transistor, their macro-
scopic dynamics in the hydrodynamic regime can be described with the Euler equation

∂u

∂t
+ u

∂u

∂x
= − e

m

∂U

∂x
, (2.8)

and the contuity equation for the electron density

∂U

∂t
+

∂Uu

∂x
= 0, (2.9)

where u is the velocity fields of electron fluids, m is the electron mass, U is the local gate-
to-channel voltage. Here, we have assumed that the local electron density n is proportional
to the local gate-to-channel voltage U as follows:

n = CU/e. (2.10)

This approximation is known as the gradual channel approximation. If we consider a
static voltage U = U0 and no current bias, we can easily obtain the dispersion relation
of surface plasmons ω(k) = ±sk (s =

√
eU0/m) by performing a Fourier transformation

of the above equations. On the other hand, if we assume the existence of finite electric
current J0 = nu0, we can predict the Doppler effect of surface plasmons, which have
dispersion relations ω(k) = (u0 ± s)k.

To accomplish the analysis of plasmon’s steady dynamics, we have to solve a boundary
value problem under some appropriate boundary conditions. In Ref. [57], M. Dyakonov
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and M. Shur have assumed the situation when the source and drain are connected to a
current source, and the gate and source are connected to a voltage source. This setup
leads to the following boundary conditions:

J(x = L) = J0 = nu0, U(x = 0) = U0, (2.11)

where the source is located at x = 0 and the drain is located at x = L. Under these
boundary conditions (sometimes called the Dyakonov-Shur boundary conditions), we need
to determine the coefficients A and B for the plasmonic modes that move in another
direction in the following equations:

U = U0 + U1, U1(x, t) =
U0

s
(Aeik+x −Be−ik−x)e−iωt, (2.12)

u = u0 + u1, u1(x, t) = (Aeik+x +Be−ik−x)e−iωt, (2.13)

where k± = ω
u0±s This problem can be readily solved as in common exercises in one-

dimentional quantum mechanics, and finally, we obtain the following expressions for the
real and imaginary parts of the ω = ω′ + iω′′:

ω′ =
|s2 − u20|

2Ls
πn, ω′′ =

s2 − u20
2Ls

ln

∣∣∣∣s+ u0
s− u0

∣∣∣∣ (2.14)

where n is an odd integer for |u0| < s and an even integer for |u0| > s. As easily
understood by plotting the curve of ω′′ against the Mach number M = u0/s, we notice
that the imaginary part ω′′ becomes positive when u0 < −s or 0 < u0 < s. This means that
infinitesimal positive current make plasma waves unstable, leading to their spontaneous
excitation. Taking the momentum relaxing processes into consideration, the formula for
the imaginary part ω′′ is modified as follows:

ω′′ =
s2 − u20
2Ls

ln

∣∣∣∣s+ u0
s− u0

∣∣∣∣− 1

2τmr
. (2.15)

This means that plasma waves in realistic clean materials become unstable under finite
current bias larger than a specific threshold.

Ratchet effect

In the context of optics or plasmonics, the term “ratchet effect” is used to refer to radiation-
induced direct currents in 2DEGs with spatially periodic noncentrosymmetric lateral po-
tential on the surfaces [249, 250, 251, 252, 253]. From a symmetry viewpoint, such a current
can be understood to originate from the inversion breaking by built-in asymmetry. On the
other hand, the original idea of ratchet effect itself is actively discussed in the context of
statistical physics, chemistry and biology, where researchers focus on physical targets such
as the Brownian motions and molecular motors [260, 261, 262]. In this context, Ratchet
effects in a broad sense means some directed particle transport originating from simulta-
neous breaking of both thermal equilibrium and spatial inversion symmetry [250]. In this
broad sense, any photogalvanic effect might be considered to relate with the ratchet effect,
but in the context of plasmonics, the terminology seems to be used only when we refer to
the photocurrent due to some artificial noncentrosymmetric lateral potential.

The hydrodynamic formulation of plasmonically-enhanced ratchet effect is also com-
posed of the Euler equation and the continuity equation of particle density [251]:

∂n′

∂t
+

∂ux
∂x

= −∂n′ux
∂x

, (2.16)
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∂ux
∂t

+
ux
τmr

+ s2
∂n′

∂x
= Fx − ux

∂nux
∂x

, (2.17)

∂uy
∂t

+
uy
τmr

= Fy − ux
∂n′uy
∂x

, (2.18)

where n′ = (n − n0)/n0, n0 is the static electron density, and F = −(e/m)(E − ∇V ),
V is a static spatially periodic in-plane potential. In a simplified model of asymmetrical
grating gate structures, we can describe the static in-plane potential

V (x) = V0 cos(qx), (2.19)

and the incident electric field is spatially modulated by a grating lattice with the same
wavenumber q:

E(t, x) = [1 + ĥ cos(qx+ ϕ)]E0(t), (2.20)

where Ex(t) = E0x cosωt and Ey(t) = E0y cos(ωt+ θ). By solving the above equations
perturbatively in the following form,

n = n(0,1) + n(1,0) + · · · , u = u(0,1) + u(1,0) + · · · , (2.21)

we can obtain the nonvanishing correction to the dc current in the order (2, 1) as j
(2,1)
x ∝〈

n(1,0)u(1,1)
〉
. Here the two indices (a, b) (a, b = 0, 1, · · · ) denote the order of the pertur-

bation with regard to Ẽ0 and V0. By performing the detailed perturbative analyses, we
obtain the final results for the plasmonically-enhanced ratchcet current as follows [251]:

jx = j0x
2ω5

qτ

(1 + ω2τ2)[(ω2 − ω2
q )

2 + ω2/τ2]
, (2.22)

jy = j0y
ω3
q [(ω

2 − ω2
q )τ cos θ + ω sin θ]

(ω2 − ω2
q )

2 + ω2/τ2
. (2.23)

Here j0x = e4V0N0E
2
0xhx sinϕ/(4m

3s3ω2
q ) and j0y = −e4V0N0E0xE0yhy sinϕ/(4m

3s3ω2
q ).

As easily understood, these direct currents have a sharp peak at the plasmonic resonance
(ω = ωq) under the resonant condition ωqτ ≫ 1.



Chapter 3

Formulation of anomalous
hydrodynamic theory

In this chapter, focusing on crystal symmetries (in particular, spatial inversion symmetry
breaking) and the geometry structure of the Bloch wavefunctions, we clarify how they
modify hydrodynamic behaviors of electron fluids. This is mainly motivated by the re-
cent observations of hydrodynamic signatures in various noncentrosymmetric conductive
materials, including bilayer-graphene, WP2, and GaAs quantum wells. As a result of this
study, we have shown that there is an interesting analogy between electron fluids in non-
centrosymmetric materials and chiral fluids, which are believed to be realized in systems
with chiral anomalies such as quark gluon plasma. In other words, this means that a new
class of electron fluids (”anomalous electron fluids”) is realized in these materials, which
has not been pointed out so far to our knowledge. At the same time, we have also revealed
that such a novel fluid exhibits a variety of fascinating non-linear or non-local phenomena
such as generalized vortical effect, asymmetric Poiseuille flow, anomalous edge current,
quantum nonlinear Hall effect.

In what follows, we first clarify the motivation of this work in more details (Sec. 3.1).
Then, we formulate the generalized Euler equation that incorporates the quantum geomet-
rical effect into the conventional hydrodynamic equation (Sec. 3.2). Next, based on the
obtained theory, we predict several unconventional anomalous transport phenomena men-
tioned above (Sec. 3.3). It also includes hydrodynamic generalization of already-known
phenomena such as the Quantum nonlinear Hall effect and the Magnus Hall effect. Our
formulation provides us with a simpler and more unified picture of these phenomena. In
Sec. 3.4, we give group-theoretic considerations to classify the universal classes of electron
fluids, and we specify experimental setups where novel anomalous transport phemonena
mentioned above can be realized. In Sec. 3.5, we also show a quantitative estimation as
for the asymmetric Poiseuille flow, based on a strained graphene model with a sublattice
potential. In addition, we give a brief comment on the recent studies that follows our
work in this chapter (Sec. 3.6). Finally, in Sec. 3.7, we summarize this study with some
prospects for future researches.

3.1 Motivation

First, in what follows, let us clarify the main concerns in this chapter. In the indro-
duction, we have already mentioned various fascinaing transport/optical phenomena and
their intuitive intepretation in the hydrodynamic regime, which includes negative nonlocal
resistance, violation of the Widemann-Frantz law, and giant negative magnetoresistance.
As a conclusion, we have found that these phenomena essentially originate from (i) nonlo-

33
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cality due to the viscosity, (ii) nonlinearlity of hydrodynamics, (iii) non-Fermi liquid-like
nature due to the quasiparticle scatterings, most of which can be understood by using the
conventional hydrodynamic theory (i.e. the Navier-Stokes equation) or its naive extension.
In other words, many of these phenomena can also be realized in conventional fluids such
as water and plasma, and are not necessarily unique to electron fluids in solids.

Then, what is the essential difference between an electron fluid in a solid and a usual
fluid in free space, and what characterizes the former more clearly? Possible answers to
these questions might be found when considering the symmetry of electron fluids1. Unlike
fluids in free space, such as water or plasma, electron fluids in solids always exist under
the background of a crystal lattice, and hydrodynamic dynamics of the fluids reflects its
discrete crystal symmetry. In particular, such a symmetry lowering will lead to novel
anisotropic and non-galilean hydrodynamic flows and viscous effects, creating a new class
of fluid that cannot be realized in a fluid in free space. From these viewpoints, it seems
to be very important challenges to incorporate the effect of symmetry lowerings due to
crystal structures into electron fluid dynamics, which would clarify the phenomena unique
to electron fluids ”in solids”.

In particular, electrons in noncentrosymmetric crystals exhibit anomalous transport
due to the finite Berry curvature in k-space, which reflects the nontrivial geometrical
structure of their Bloch wavefunctions. From a macroscopic viewpoint, such geometri-
cal effects will lead to anomalous nonlinear and nonlocal hydrodynamic flow, enabling a
new class of electron fluid (”anomalous electron fluid”) to realize. Remarkably, recent
experiments in the past few years have reported the realization of hydrodynamic regimes
in metals without inversion symmetry, such as MoP, WP2, WTe2, bilayer-graphene, and
GaAs quantum wells. Consequently it is an urgent problem to clarify how such non-
centrosymmetric electron fluids differ from conventional ones and what kind of dynamics
they exhibit. Recalling that the Berry curvature essentially represents the inter-band na-
ture under an electromagnetic field, these points might highlight multi-band nature of
Bloch electrons in electron hydrodynamics in solids, which is also one of the essential
differences between electron fluid in solids and usual fluids in free space.

Motivated by the above viewpoints, in the following, we formulate the hydrodynamic
theory for time-reversal-symmetry (TRS) preserved noncentrosymmetric metals, which is
correct up to the second order in electric fields. Then, we aim to propose novel hydrody-
namic phenomena observable in these materials with modern experimental techniques.

3.2 Formulation of anomalous electron hydrodynamics

In this section, we formulate the electron hydrodynamic theory for time-reversal symmetric
and noncentrosymmetric metals. First, starting from the Boltzmann and the semi-classical
equations, we derive the continuity equations for each conserved quantity, and give the
microscopic expressions for the fluxes of the conserved quantities. Then, assuming the
nonequilibrium distribution function can be approximated by a local equilibrium distri-
bution due to the strong electron-electron scatterings, we give hydrodynamic descriptions
for these fluxes. In particular, we obtain the generalized Euler equation from the hydro-
dynamic form of continuity equation of electron momentum. Interestingly, this equation
clearly describes the role of crystal symmetry and geometric effects in electron hydro-

1Cross-interaction between many internal degrees of freedom (such as spin, orbital, and valley) and var-
ious quasiparticles (such as phonons and magnons) is also one of the important features of fluid dynamics
in solids. Actually, very recent studies have proposed several frameworks for the spin and valley hydro-
dynamics [81, 83, 113, 263, 264, 265, 266, 267, 268], or electron-phonon fluids [269, 270], and predicted a
variety of unconventional hydrodynamic transport.
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dynamics. We also formulate the relations between electric current and hydrodynamic
variables such as velocity fields.

3.2.1 Theoretical setups

The first step to derive the hydrodynamic equations is to formulate the continuity equation
for (approximately) conserved quantities, such as momentum and particle number [271,
272], by starting with the Boltzmann equation and the so-called semiclassical quation [2].
For electrons in crystals, their dynamics can be described by the following set of equations:

Our starting point for the derivation

Boltzmann equation :
∂fα
∂t

+ ṙ
∂fα
∂r

+ k̇
∂fα
∂k

= C[fα]. (3.1)

Semi-classical equations : ℏk̇α = −eE, ṙα =
1

ℏ
∂εα(k)

∂k
− k̇α ×Ωα(k). (3.2)

Here α is a valley index, fα(t, r,k) is the nonequilibrium distribution function, −e is the
electron charge, εα is the energy dispersion for the α band, and Ωα is the Berry curvature
of Bloch electrons, defined as Ωα ≡ ∇k × Aα with Bloch wave functions uαk and the
Berry connection Aα ≡ i ⟨uαk|∇kuαk⟩. The last term in the second equation in Eq. (3.2)
is known as the anomalous velocity, which is the origin of various anomalous transport
phenomena, such as the anomalous Hall effect and the valley Hall effect. It should be
noted in particular that the Berry curvature only appears when the systems break the
time-reversal or spatial inversion symmetry. Consequently, in time-reversal symmetric
systems (i.e. non-magnetic systems), the inversion symmetry should be broken for the
systems to exhibit an anomalous hydrodynamic flow due to the Berry curvature.

The right side of Eq. (3.1) is the so-called scattering term. In general, we can de-
compose it into two different processes, momentum-conserving scattering process and
momentum-relaxing scattering process as follows:

C[fα] = Cmr[fα] + Cmc[fα]. (3.3)

Specifically, the latter term corresponds to normal electron-electron scattering processes,
and the former term corresponds to any other scattering processes such as impurity scatter-
ings, electron-phonon scatterings, Umklapp elecron-electron scatterings. Especially when
applying the relaxation time approximation to the momentum-relaxing term, we can ex-
press it as

Cmr[fα] = −fα − f0α
τmr

, (3.4)

where we have introduced the momentum-relaxing time τmr and the local Fermi distri-
bution function : f0α(x,p, t) ≡ [1 + e−β(εα(p)−µ)]−1. Here, for the latter discussion, we
note that the momentum integral of the product of some scattering term and its conserved
quantity under process is exactly zero [271, 272]. Particularly, this means that momentum
integral of Cmc[fα] always vanishes:∫

[dp]piCmc[fα] = 0, (3.5)

where we have used the notation
∫
[dp] ≡

∫
dp/(2πℏ)d.
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In the following discussion, the relaxation time approximation is needed only when
deriving the continuity equation for electron momentum. On the other hand, for the con-
tinuity equation for the particle number, we can treat any scattering terms exactly, since
the number of particles is conserved in arbitrary scattering processes. In the following,
the Boltzmann equation under the relaxation time approximation is used as our starting
point to derive anomalous hydrodynamic equations:

Boltzmann equation under the relaxation time approximation

∂fα
∂t

+

(
1

ℏ
∂εα(k)

∂k
+

e

ℏ
E ×Ωα(k)

)
∂fα
∂r

− eE
∂fα
∂k

= −fα − f0α
τmr

+ Cmc[fα]. (3.6)

3.2.2 Derivation of continuity equations

Following the standard approach [271, 272], we can derive the continuity equations for each
conserved quantity, such as momentum, particle numbers and energy. First we multiply
the both sides of the Boltzmann equation by the conserved quantity. Then, we integrate
it over all the momentum space, which leads to the desired equations. Let us check these
procedures below.

(1) Case of particle number

First let us integrate the both sides of the Boltzmann equation, Eq. (3.1), over all the
momentum space. Since any scattering process conserves the particle number, the right
side of Eq. (3.1) satisfies ∫

C[f ]
dp

(2πℏ)d
= 0, (3.7)

and then we obtain the continuity equation for particle number:

Continuity equation for particle number

∂n

∂t
+∇ · Jn = 0. (3.8)

Here we have defined the particle density n(r, t) and the particle flux Jn(t, r) as follows:

n(t, r) =
∑
α

nα(t, r) =
∑
α

∫
fα(t, r,p)

dp

(2πℏ)d
, (3.9)

Jn(t, r) =
∑
α

∫
[dp]

(
∂εα
∂p

+
eE

ℏ
×Ωα

)
fα. (3.10)

In particular, under the parabolic approximation ∂εα(p)
∂p = p

mα
for each valley α, the above

formulas reduce to more explicit form:

Jn(t, r) =
∑
α

⟨vα⟩ =
∑
α

[
1

mα
P α(t, r) +

e

ℏ
E × Ω̃α(t, r)

]
,

where we have defined the momentum density P α and the Berry curvature fields Ω̃α as
follows:

P α(t, r) ≡
∫

pfα(t, r,p)
dp

(2πℏ)d
,
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Ω̃α(t, r) ≡
∫

Ωα(p)fα(t, r,p)
dp

(2πℏ)d
.

(2) Case of momentum

Next let us integrate the both sides of the Boltzmann equation after multiplying them by
crystal momentum p. In this case, the scattering terms lead to∫

p · Cmc[f ]
dp

(2πℏ)d
= 0, (3.11)

∫
p · Cmr[f ]

dp

(2πℏ)d
≃ −

∑
α

∫
p · fα(t,x)− f0α(t,x)

τmr

dp

(2πℏ)d
= − P

τmr
. (3.12)

Here we have introduced P =
∑

αP α. Combining these results, we obtain the continuity
equation for momentum under the relaxation time approximation as follows:

Continuity equation for crystal momentum

∂Pi

∂t
+

∂Πij

∂xj
+ enEi = − Pi

τmr
. (3.13)

Here P are the momentum density of electrons, Πij are the momentum flux, which are
described microscopically as

Πij ≡
∑
α

∫
[dp] pi

(
∂εα
∂pj

+
e

ℏ
εjklEkΩα,l

)
fα. (3.14)

Compared to the case of particle number, we notice that the momentum dissipation term
and the driving force term have appeared due to the violation of the conservation law of
crystal momentum. Under the parabolic approximation, momentum flux can be described
as

Π̂(t, r) ≃
∑
α

[
1

mα

∫
(p⊗ p)fα(t, r,p)

dp

(2πℏ)d
+

∫
p⊗

(
eE

ℏ
× Ωα(p)

)
fα(t, r,p)

dp

(2πℏ)d

]
=
∑
α

[
1

mα
⟨p⊗ p⟩α +

〈
p⊗

(
eE

ℏ
× Ωα(p)

)〉
α

]
(3.15)

and the first term in the last line can be decomposed as follows:

⟨p⊗ p⟩α =
1

nα
⟨p⟩α ⊗ ⟨p⟩α + ⟨δp⊗ δp⟩α

=
1

nα
P α ⊗ P α + ⟨δp⊗ δp⟩α ,

(3.16)

where we have introduced ⟨· · ·⟩α ≡
∫
[dp](· · · )fα and δp = p − ⟨p⟩α /nα. This means

that the first term of momentum flux can be decomposed into the advection term (macro-
scopic momentum flow) and dissipative term due to momentum fluctuation (microscopic
momentum flow).
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3.2.3 Local equilibrium approximation

In the hydrodynamic regime, the most essential assumption is that we can describe the
distribution functions with the perturbation theory from the following local equilibrium
function [271, 272]

fuα(x,p, t) ≡
1

1 + eβ(εα(p)−u·p−µ)
. (3.17)

Here, β, µ and u are the spatiotemporal functions specifying the hydrodynamic variables:
(inverse) temperature, chemical potential and velocity. In the following discussion, we
further assume that each band structure can be approximated by an isotropic parabolic
dispersion with the same effective mass m around some valleys: εα(p) ≃ p2/2m, where p
is defined as a deviation from the valley. For example, when considering graphene with
inversion breaking or typical ML-TMDs such as MoS2, the centers of valleys correspond
to K and K ′ point in the Brillouin zone and the above condition is satisfied. On the other
hand, hydrodynamic materials with linear dispersion, such as WP2, do not satisfy this
condition for the dispersion. In particular, WP2 is considered as a Weyl semimetal, and
thus it could show a peculiar hydrodynamic flow due to the chiral anomaly. However, we
believe that the anomalous hydrodynamic flows predicted by our theory will capture the
nature of hydrodynamics in these materials partially, since some of following analyses rely
on symmetry consideration of the hydrodynamic materials. Of course, to clarify the role
of the linear dispersion or the chiral anomaly at the microscopic level, further discussions
beyond our theory will be needed.

Under the above assumptions, for example, we can estimate the momentum density in
the zeroth-order approximation for the distribution function as

P ≡
∑
α

∫
[dp]pfα ≃

∑
α

∫
[dp]pfuα

=
∑
α

∫
[dp](p+mu)f0α(p) +O(u3)

= mnu+O(u3),

(3.18)

where we have performed a variable transformation p → p+mu in the second line and used
the fact that fuα(p+mu) = f0α(p)+O(u3) due to the parabolic dispersion. Consequently,
the first of the particle flux (3.10) can be described in terms of the velocity field as∑

α

∫
[dp]

∂εα
∂p

fα(p)

≃ 1

m

∑
α

∫
[dp]pfuα(p) =

P

m
= nu+O(u3).

(3.19)

On the other hand, the second term of the particle flux are calculated as follows:∑
α

∫
[dp]

e

ℏ
εijkEjΩα,kfα

≃
∑
α

∫
[dp]

e

ℏ
εijkEjΩα,kfuα

=
∑
α

∫
[dp]

e

ℏ
εijkEjΩα,k(p+mu)f0α +O(E3)

=
em

ℏ
∑
α

εijkEjul

∫
[dp]

∂Ωα,k

∂pl
f0α +O(E3),

(3.20)
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where, in the third line, we have used the transformation p → p+mu and the fact that the
dispersion can be approximated as a parabolic one. Furthermore, in the final line, we have
expanded the Berry curvature in powers of mu and used the fact that the Berry curvature
is an odd function of momentum around the Γ point due to the TRS, which means that
the sum of the integral of Ωα at each valley always becomes zero:

∑
α

∫
[dp]Ωαfα = 0.

Moreover, in the both lines, we assume that the velocity field u is driven by an electric
field E and drop the terms with more than third order in u and E. Finally, we end up
with the hydrodynamic expression of the particle flux, which is correct up to the second
order in u and E, as follows:

Hydrodynamic expression of the particle flux

Jn = nu+
em

ℏ
E × tD̂u. (3.21)

where the symbol t denotes the transpose of a matrix and Dil is a geometrical coefficient,
so-called Berry curvature dipole, defined as

Dil =
∑
α

Dα
il, Dα

il ≡ −
∫
[dp]Ωα,l

∂f0α
∂pi

, (3.22)

As for the momentum flux (3.14), by performing similar procedures, we can obtain the
hydrodynamic expression. First, as already mentioned, we can decompose the first term
of Eq. (3.14) into two terms as∑

α

∫
[dp] pi

∂εα
∂pj

fα =
1

m

∑
α

∫
[dp] pipjfα

=
1

m

∑
α

[
1

nα
⟨pi⟩α ⟨pj⟩α + ⟨δpiδpj⟩α

]
,

(3.23)

where ⟨· · ·⟩α ≡
∫
[dp](· · · )fα, nα ≡

∫
[dp]fα and δp ≡ p−⟨p⟩α /nα. From the calculation in

Eq. (3.18), we obtain ⟨p⟩α = mnαu and thus, the first term of Eq. (3.23) can be described
in terms of the velocity field as

1

m

∑
α

1

nα
⟨pi⟩α ⟨pj⟩α . = mnuiuj (3.24)

Next, we estimate the the second term of Eq. (3.23) can be estimated as follows. As can
be easily seen, the off-diagonal term of ⟨δpiδpj⟩α is always zero due to the isotropy of the
band around each valley: ⟨δpiδpj⟩α = 0 (i ̸= j). On the other hand, the diagonal terms of
⟨δpiδpj⟩α are calculated as follows:

1

m

∑
α

⟨δpiδpi⟩α =
1

m

∑
α

∫
[dp](pi −mαui)

2fuα(t, r,p)

=
1

m

∑
α

∫
[dp]p2i f0α(t, r,p)

=
1

m

∑
α

1

d

∫
[dp]p2f0α(t, r,p)

=
1

m

∑
α

2m

d

∫
[dp]εα(p)f0α(t, r,p)

=
2

d
ε(r, t) = P

(3.25)
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where, in the first line, we have used the relation δp ≡ p − ⟨p⟩α /nα = p − mu and, in
the second line, we have performed the transformation p → p+mu. Furthermore, in the
final equality, we have applied the familiar formula between the energy density ε and the
pressure P for the Fermi gas system: P = 2ε/d [273].

Next, we estimate the second term of Eq. (3.14). Performing the usual transformation
p → p+mu, this term can be transformed as

e

ℏ
εjklEk

∑
α

∫
[dp]Ωα,l(p)fα(p)

=
e

ℏ
ϵjklEk

∑
α

∫
[dp](pi +mαui)Ωα,l(p+mαu)f0α(p).

(3.26)

As with the procedure in Eq. (3.20), by expanding this term in powers of u, we can
approximate it within the second order in u and E as follows:

=
e

ℏ
ϵjklEk

∑
α

∫
[dp](pi +mαui)

×
(
Ωα,l +mαun

∂Ωα,l

∂pn

)
f0α(p) +O(E3)

=
e

ℏ
ϵjklEk

∑
α

∫
[dp]piΩα,lf0α(p) +O(E3)

=
e

ℏ
ϵjklCilEk +O(E3),

(3.27)

where Cil is the second geometrical coefficient, defined as

Cil =
∑
α

Cα
il , Cα

il ≡
∫
[dp] piΩα,lf0α. (3.28)

In the second line, we have used the fact that the Berry curvature is an odd function
of momentum around the Γ point due to the TRS and, in addition, dropped the term
proportional to Ekuiun since it is in the order of E3.

Finally, substituting Eqs. (3.23)-(3.27) into Eq. (3.14), we end up with the hydrody-
namic expression of the momentum flux, which are correct up to the second order in u
and E:

Hydrodynamic expression of the momentum flux

Πij = mnuiuj + Pδij +
e

ℏ
ϵjklCilEk. (3.29)

We note that, at least in our assumption for band dispersions, it is shown that the
trace component of Ĉ always vanishes because the Berry curvature is divergence free. This
can be easily seen as follows:

C ≡ Tr[Ĉ] =

∫
[dp]piΩα,if0α

∝
∫

[dp]
∂ε

∂pi
Ωα,if0α

=

∫
dεf0α(ε)

∮
εα(k)=ε

(dS · Ωα(k))

= 0.

(3.30)
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Here, at the third line, we have performed the variable transformation dk = dSdk⊥ =
dS

|∇kε|dε, where dS is the area element on the isoenergy surface with εα(k) = ε. Further-
more, at the final equation, we have used the fact that the Berry curvature is divergence
free.

3.2.4 Hydrodynamic equations

Substituting the above expression into the continuity equations (3.13) and (3.8), we obtain
the desired hydrodynamic equations for noncentrosymmetric metals, in the approximation
up to the second order in u and E:

∂n

∂t
+∇ · (nu) + em

ℏ
∇ ·

(
E × tD̂u

)
= 0, (3.31)

∂ui
∂t

+ (u ·∇)ui +
1

ρ

∂p

∂xi
+

e

mnℏ
ϵjkl

[
Cil

∂Ek

∂xj
+

∂Cil

∂xj
Ek

]
+

e

m
Ei = − ui

τmr
.

(3.32)

Furthermore, the derivative of the coefficient Cα
il can be estimated explicitly as

∂Cα
il

∂xj
=

∫
[dp]piΩα,l

∂

∂xj
f0(t, r,p)

=

∫
[dp]piΩα,l

[
− 1

T 2

∂T

∂xj

∂f0α
∂β

+
∂µ

∂xj

∂f0α
∂µ

]
=

mFα
il

T

∂T

∂xj
+mDα

il

∂µ

∂xj

(3.33)

where we have defined the third geometrical coefficients as

Fα
il ≡ −

∫
[dp]piεαΩα,l

∂f0α
∂ε

. (3.34)

Substituting this formula into Eq. (3.32), we reach the generalized Euler equation as
follows, which is one of our main results:

Generalized Euler equation for noncentrosymmetric electron fluids

∂u

∂t
+ (u ·∇)u+

∇P

ρ
+

e

nℏ

[
1

m
Ĉ(∇×E)

+F̂

(
E × ∇T

T

)
+ D̂(E ×∇µ)

]
+

e

m
E = − u

τmr
.

(3.35)

This result indicates that the symmetry lowering of the crystal leads to the emergence
of novel anomalous forces in the conventional Euler equation and, as seen below, these
forces drive an unusual electric flow accompanied by non-uniformity of hydrodynamic
variables. In the later parts of this chapter, we will give a further analysis on the relation
between the equation and the crystal symmetry.

Here it is also remarkable that, even though our fluids have no chiral anomaly, the
obtained equation has a quite similar form to that of inviscid chiral fluids, which is believed
to realize in quark-gluon plasmas [4, 274]. This fact is expected to pave the way for the
realization of the anomalous nonlinear transport analogous to that in chiral fluids, even
in condensed matter systems without chiral anomaly.
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3.2.5 Hydrodynamic expression for the transport current

Next, we move on to the derivation of the hydrodynamic expression for the transport
current. To relate the hydrodynamic theory with an observable current, we further need to
describe the so-called “transport current” [275] in terms of velocity field u. Generally, the
current is known to be described with orbital magnetization M in the following form [275,
276]:

J = −eJn +∇×
(∑

α

∫
[dp]mαfα

)
−∇×M , (3.36)

where mα(p) is the angular momentum of the wave packet. Especially in the equilibrium
state, the orbital magnetization M is expressed as

M =
∑
α

∫
[dp] mαfα +

∑
α

1

β

×
∫
[dp]

e

ℏ
Ωα · log

(
1 + e−β(εα−µ)

)
.

(3.37)

In this study, to estimate the orbital magnetization in the local-equilibrium state, we
phenomenologically assume that the microscopic expression is obtained by replacing the
exponent εα in Eq. (3.37) with εα−u ·p. Although this prescription is kind of phenomeno-
logical, the resulting formula obtained below seems to support the validity, because it
guarantees the equivalence between the external electric field E and statistical force ∇µ
for the transport current.

Under this assumption, we can express the transport current as

j = −e
∑
α

∫
ṙαfα(t, r,p)

dp

(2πℏ)d

−
∑
α

∇× 1

β

∫
[dp]

e

ℏ
Ωα(p) · log

(
1 + e−β(εα−u·p−µ)

)
.

(3.38)

For the integration in the second term, we can estimate it up to the second order in u:

1

β

∫
[dp]

e

ℏ
Ωα(p) · log

(
1 + e−β(εα−u·p−µ)

)
=

∫
[dp]

e

ℏ
Ωα(p)(u · p)f0(t, r,p) +O(u3)

≃ e

ℏ
tĈα(r)u(r),

(3.39)

where we have used the fact that the Berry curvature is an odd function of the momentum
around the Γ point due to the TRS. Finally, using the formula (3.33), we reach the
hydrodynamic expression for the transport current as follows:

Relation between electric currents and velocity fields

J =− enu− e

ℏ

[
m(eE +∇µ)× (tD̂u)

+∇×
(
tĈu

)
+m(∇T/T )× (tF̂u)

]
,

(3.40)

where the first term is the conventional part appearing in the familiar hydrodynamics,
and the others are anomalous parts reflecting the symmetry lowering of the fluids. Here,
we note that ∇ does not act on Ĉ. Remarkably, the second term in the bracket denotes
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a generalization of chiral vortical effect in chiral fluids [4], because the term includes an
anomalous current induced by the vorticity fields, which supports the above analogy. This
phenomenon can be intuitively understood as the correction due to a magnetization current
induced by the inhomogeneous velocity fields through the orbital Edelstein effect [277, 278].
In the following, we refer to this effect as generalized vortical effect (GVE).

Here, we note that the above expression of the current does not include the full intrinsic
contributions with the first-order of spacial gradient. This is because, in the derivation
of Eq. (3.40), we drop the contribution of the first-order deviation of the non-equilibrium
distribution function from Eq. (3.17). Consequently, to recover the dropped contributions
such as the Fourier’s law for thermal gradient, we must proceed to the calculation of the
next order perturbation, which is roughly proportional to the electron-electron scattering
time τee and thus negligible in the strong correlation limit (τee → 0).

On the other hand, in optical experiments or scanning magnetic microscopy, we should
consider the so-called local current, rather than transport current. For this case, as
shown in Ref. [126], we can obtain a similar hydrodynamic formula, which is equivalent
to Eq. (3.40) with geometrical coefficient C replaced by another geometrical coefficient,

M̂ =
∑
α

M̂α, Mα
ij ≡

∫
[dp]

∂mα
j

∂pi
f0α. (3.41)

3.2.6 Summary of derivations

Summarizing the discussions so far, we have obtained two important hydrodynamic equa-
tions for noncentrosymmetric metals: Generalized Euler equation (3.35) and the hydro-
dynamic expression of transport current (3.40). By solving the former equation, we can
analyze the dynamics of velocity field or momentum density. Then, by substituting the
solutions into the hydrodynamic relation (3.40), we can estimate the observable dynamics
of electric current.

Summary of our hydrodynamic theory

Generalized Euler equation:

∂u

∂t
+ (u ·∇)u+

∇P

ρ
+

e

nℏ

[
1

m
Ĉ(∇×E)

+F̂

(
E × ∇T

T

)
+ D̂(E ×∇µ)

]
+

e

m
E = − u

τmr
,

(3.42)

Hydrodynamic description of transport current:

J =− enu− e

ℏ

[
m(eE +∇µ)× (tD̂u)

+∇×
(
tĈu

)
+m(∇T/T )× (tF̂u)

]
.

(3.43)

In the following, we will demonstrate how to use our hydrodynamic theory to describe
various transport or optical phenomena, and give a further analysis on the relation between
the equation and the crystal symmetry, based on the group theoretical method.
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3.3 Results for Anomalous transport

In this section, we give several demonstrations of our hydrodynamic theory, which include
nonlinear optical or thermal responses and finite size effects in the fluids. From the sym-
metry viewpoint, it is noteworthy that linear and local anomalous responses, such as the
anomalous (thermal) Hall effect, are prohibited by TRS, so that nonlocal or nonlinear
anomalous responses play a key role in our fluids.

First, in Sec. 3.3.1, we explain how to describe linear and nonlinear optical responses
within our framework, and check the consistency with familiar results from the Drude the-
ory or usual kinetic approaches. Next, we briefly discuss the responses to thermal gradient
∇T and chemical potential gradient ∇µ in Sec. 3.3.2. Finally, we discuss unconventional
hydrodynamic flow in narrow channels, dubbed anomalous edge current and asymmet-
ric Poiseuille flow. These phenomena clearly characterize the electron hydrodynamics in
noncentrosymmetric metals, and are believed to be observable through cutting edge tech-
nology of scanning magnetic microscope based on diamond NV centors [24, 33, 47, 48].

3.3.1 Linear and nonlinear optical responses

First, for the simplest problem, let us consider the first- and second- responses to a uniform
electric field. In this case, we can express electric fields as E = Re[Ẽeiωt] with Ẽ ∈ C, and
the electric current is denoted in the form Ji = Re[J0

i + Jω
i e

iωt + J2ω
i e2iωt]. Substituting

the solution of Eq. (3.35) to Eq. (3.40), we easily reach the following expression of the
linear and nonlinear conductivity tensor:

Drude conductivity and quantum nonlinear Hall susceptibility

σ(1) =
σD

1 + iωτmr
, σ

(2)
ijk = −εilk

e3τmr

2(1 + iωτmr)
Djl, (3.44)

where Jω
i = σ(1)Ẽi, J

0
i = σ

(2)
ijkẼjẼ

∗
k , J

2ω
i = σ

(2)
ijkẼjẼk and σD = ne2τmr/m. The linear

one is so-called Drude conductivity, and the nonlinear one agrees with the results of the
quantum nonlinear Hall effect (QNHE) [279]. Under TRS, the QNHE gives a leading
anomalous current, which has already been observed in several materials including hydro-
dynamic materials such as GaAs quantum well [249, 280, 281] and BL-graphene [282]. This
result indicates that our theory can correctly reproduce the known results for the uniform
electric responses formulated so far in the momentum-dissipative or ballistic regimes, but
not in the hydrodynamic regime.

3.3.2 Anomalous thermoelectric responses

Furthermore, our hydrodynamic theory elucidates the anomalous nonlinear/nonlocal re-
sponses under non-uniform hydrodynamic variables. Let us start with the nonlinear ther-
moelectric transport induced by the coupling between ∇T and E. Imposing a uniform
thermal gradient and electric field on the fluids, we obtain the following anomalous con-
tribution proportional to the product of ∇T and E:

J ′ =
e2

ℏT
τmr

1 + iωτmr

[
F̂ (Ẽ ×∇T ) +∇T × (tF̂ Ẽ)

]
. (3.45)

Under TRS, this contribution gives a leading anomalous current under the thermal gra-
dient. Interestingly, the second term is always perpendicular to ∇T , whereas the other is
directed only by the tensor F̂ , whose form is determined by the crystal symmetry as shown
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Figure 3.1: Right: Schematic picture of the asymmetric Poiseuille flow (red) and anoma-
lous edge current (yellow) induced by the GVE in a 3D sample with finite width w in
the x-direction. Left: Spatial profile of velocity field near the boundary of the sample.
In Poiseuille flow, electron fluids have large velocity gradients and resulting vorticity field
localized near the boudary, leading to anomalous surface currents.

below. These features enable us to control or switch the current direction by changing ei-
ther direction of ∇T or E without changing the other. Similar responses are also discussed
in dissipative (ohmic) regime in Ref. [283]. Similarly, from our theory, we can calculate
an anomalous current under chemical potential bias, which is proportional to the product
of E and ∇µ and described by the Berry curvature dipole as in the case of QNHE. This
phenomenon is in contrast to the Magnus Hall effect, which has been formulated in the
ballistic regime [284] and describes the Hall current responding to E ∥ ∇µ. We note that
our result is qualitatively different from that in Ref. [284], since the former describes the
transport in the hydrodynamic regime and includes an anomalous response to E ⊥ ∇µ
as well as the correction due to the magnetization current.

3.3.3 Asymmetric Poiseuille flow and anomalous edge current

The most significant consequence of our theory is that the combination of the GVE and
the viscosity effect gives rise to an unprecedented current flow in finite size systems, which
is unexplored so far. For the demonstration, we consider the Poiseuille flow in 3D samples
with finite width w in the x-direction (Fig. 3.1), which most clearly characterizes the hy-
drodynamic transport in noncentrosymmetric metals. Here, to estimate boundary effects,
we introduce the viscosity term ν∆u into the Euler equation (3.35) [285]. When we apply
an electric field in the y-direction, the electron fluids form the Poiseuille flow as in Fig. 3.1
and the velocity profile is given by

uy(x) =
eτmrE

m

[
1− cosh(x/l)

cosh(w/2l)

]
, (3.46)

and the vorticity is also calculated as

ωz(x) =
∂uy
∂x

=
eτmrE

ml

sinh(x/l)

cosh(w/2l)
, (3.47)

where −w/2 ≤ x ≤ w/2 and l ≡ √
ντmr. The expression (3.47) indicates that the vorticity

distributes over a width of l from the boundaries. Using Eq. (3.40), the electric current is
obtained as
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(a) (b)

(c) (d)

Figure 3.2: Plot of the normalized current profiles j′y(x) and j′z(x) in the x-range
[−w/2, w/2] [286]. (a), (c) : w = 50 µm and (b), (d) : w =10 µm. We use the parameters;
ν = 3.8 × 10−2 m2/s, τmr = 5 × 10−10 s, m = 1.2me, Cyy = Czy = 8.0 × 10−19 kg/s,
where me is the bare electron mass. Here, the dotted lines in (a) and (b) show the usual
Poiseuille flow realized in centrosymmetric metals (Czy = 0).

Asymmetric Poiseuille flow and anomalous edge current

Jy = −enuy + (e/ℏ)Cyzωz, Jz = −(e/ℏ)Cyyωz. (3.48)

These results demonstrate the realization of two unprecedented phenomena : anoma-
lous edge currents and asymmetric Poiseuille flow. Firstly, the second equation indi-
cates that, through the diagonal component Cyy, the vorticity fields induce the z-directed
anomalous current localized over a width of l from the boundaries (Fig. 3.1), which is
directed oppositely at two sides. Secondly, the first equation means that the off-diagonal
component Cyz causes an antisymmetric current distribution in the x-direction, which
leads to the realization of an asymmetric x-distribution of the total current, i.e. asymmet-
ric Poiseuille flow. In particular, it is noteworthy that, in the anomalous flow, there arises
a backflow of electric current at one side, which is directed against the electric field. For
example, as we discuss below, these phenomena could be realized in the hydrodynamic
material such as WP2, where we can estimate the length l as w = 4 µm, using the typical
values ν = 3.8× 10−2 m2/s, τmr = 5× 10−10 s in the experiments at 4K [23]. In Fig. 3.2,
we plot the current profile for width w = 50 µm and w = 10 µm with the above values of
the parameters. Another possibility to detect the GVE is the measurement of the nonlocal
resistivity in the so-called vicinity geometry [7, 31]. In this case, a large velocity gradient
(especially, whirlpool) is formed around a narrow current injector, and thereby, the GVE
is expected to give a finite contribution to the nonlocal resistivity.

Finally, we give a comment on the relation between our results and experiments with
scanning magnetic microscopy. As mentioned in Sec. 1, modern development of scanning
magnetic microscopy has enabled us to visualize an electric Poiseuille flow with high spatial
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resolution. Asymmetric Poiseuille flow and anomalous surface current are also detectable
through such a scanning technique, by replacing the coefficient Ĉ to M̂ . In the recent
experiment in WTe2 [24], which has low symmetry enough to exhibit asymmetric Poiseuille
flow, the authors has reported an asymmetric profile of spatial current profile obtained by
scanning magnetic microscopy, and they have suggested that the source of this asymmetry
is currently unknown. This experimental results might be explained well by our proposals
discussed here.

3.4 Symmetry consideration

Here, we provide a symmetry consideration on our hydrodynamic theory for two-dimensional
(2D) and three-dimensional (3D) systems. The coefficients D̂, Ĉ, and F̂ are second rank
pseudo-tensors with the same symmetry, and known to become finite in the materials
characterized by the so-called natural optical activity [64, 287, 288]. Based on the group
theory, in the following, we give the symmetry classification and discuss how we can realize
anomalous transport in the existing hydrodynamic materials. The results are summarized
in Table 3.1.

(i) For 3D systems: As for the antisymmetric part of Â (referred to as Â−), we can
represent it in terms of the dual polar vector ai ≡ ϵijkA

−
jk/2. This vector is allowed to be

finite only in the polar point group {Cn, Cnv}, with n = 1, 2, 3, 4, 6, and oriented along the
polar axis. With this vector representation, for example, we can rewrite the second term
in the bracket of Eq. (3.35) as

F̂− (E ×∇T/T ) = −f × (E ×∇T/T ) , (3.49)

and the transport current (3.40) as

J− = − e

ℏ
[m(eE +∇µ)× (d× u) + (c(∇ · u)

−(c ·∇)u) +m(∇T/T )× (f × u)] .
(3.50)

In particular, the asymmetric Poiseuille flow is realized through this asymmetric contri-
bution. As for the existing hydrodynamic materials, WP2, which belongs to the polar
point group C2v [289], can take a finite value of a. On the other hand, the other 3D
hydrodynamic materials PtSn4 and MoP are prohibited to have finite a, each of which
belongs to the point group D2h and D3h [42, 290].

Meanwhile, the symmetric part of Â is allowed in any chiral groups {O, T,C1, Cn, Dn},
with n = 2, 3, 4, 6, and specific non-chiral groups {Cs, C2v, D2d, S4}, and it induces the
anomalous edge current (3.48) in the Poiseuille flow. Especially the scalar component
C ≡ Tr[Ĉ] contributes to the GVE term in Eq. (3.40) in the form Cω (ω ≡ ∇×u), which
causes phenomena similar to the CVE in chiral fluids. However, although such a trace
component is allowed to be finite in the chiral point group from a symmetry perspective,
we can easily show that C is always zero under our approximation of parabolic dispersion.

(ii) For 2D systems: Next we consider 2D materials including the existing hydrody-
namic materials such as mono/bi-layer graphene and GaAs quantum well. In this case,
since the Berry curvature behaves as a pseudo-scalar, the coefficients Â behave as pseudo-
vectors constrained in the 2D plane: Aij = Aiδjz. The symmetry constraints force the
vector A to be orthogonal to the mirror lines, and thus, A is allowed only in the crystals
with less than two mirror lines in the plane. With this vector representation, we can
rewrite the second terms in the bracket of Eq. (3.35) as

F̂ (E ×∇T/T ) = (E ×∇T/T )z F , (3.51)
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Table 3.1: Symmetry constraints on the candidates for hydrodynamic materials. For
comparison, we also refer to some TMD materials. Here, m and Â represent the vector
perpendicular to a mirror plane and either of D̂, Ĉ, and F̂ . The line “operations” denotes
the operations needed to make Â finite. For the symmetry consideration on BL-graphene
and ML-MoS2, implicitly, we also take into account the polar effect of the substrate:
D3h → C3v.

Material point group components operations

MoP D3h NO —
WP2 C2v Axy, Ayx —
PdCoO2 D3d NO —

(110)-GaAs Cs A ∥ m —
ML-Graphene D6h NO —
BL-Graphene D3h → Cs A ∥ m uniaxial strain
ML-WTe2 Cs A ∥ m —
ML-MoS2 D3h → Cs A ∥ m uniaxial strain

and the transport current (3.40) as

J = −enu− e

ℏ
[m(D · u) · (eE +∇µ)× êz

+∇× [(C · u)êz] +m(F · u) · (∇T/T )× êz] .
(3.52)

As for the existing hydrodynamic materials, GaAs quantum well satisfies the above con-
ditions. In fact, (110)-asymmetric quantum well in GaAs possesses a crystal structure
in the point group Cs and it is believed that the circular photogalvanic effect, which is
characterized by D, has already been observed in the system [281]. On the other hand,
A is not allowed in either of ML or BL graphene, both of which have three mirror lines
in the plane. However, if we apply a uniaxial strain on the (AB-stacked) BL-graphene,
we can realize finite A since the operation reduces the mirror lines from three to one. In
fact, very recently, similar strategy has been executed in the system for the observation of
QNHE [282]. Moreover, at least from the symmetry viewpoint, monolayer transition metal
dichalcogenides (ML-TMDs) could be promising candidates for electron hydrodynamics
with finite A (see also the table 3.1).

3.5 Model for quantitative estimation

Finally, let us consider a simple model for strained TMDs or graphene with a staggered
sublattice potential [291, 292] to estimate the quantitative behavior ofA. As is well-known,
the Hamiltonian around the valleys K and K ′ is given by [279]

Hα = vpxσy − αvpyσx + αspy1l + ∆σz, (3.53)

where α = ±1 denotes the valley index at P± = 2πℏ
a (±2/3, 0). ∆ is the mass gap and

s denotes the strain parameter. This Hamiltonian has a mirror symmetry My and thus
the hydrodynamic coefficients A must be directed in the y-direction. By diagonalizing
the Hamiltonian, we can easily obtain the expression of the energy dispersion εα(p) =
αspy + sgn(µ)(∆2 + v2p2)1/2 and the Berry curvature

Ωα =
sgn(µ)

2

αv2ℏ2∆
(∆2 + v2p2)3/2

, (3.54)
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where µ > 0 (µ < 0) for the conduction (valence) band. Especially in the low carrier
and week strain limit, we can approximate the dispersion with an isotropic parabolic form
: εα(p) ≃ ∆ + (p + pα)

2/2m + O(s/v)2 where m = ∆/v2 and pα = (0, αs∆/v2). As
for the Berry curvature dipole D̂, the analytical formula at zero temperature has already
been obtained in Ref. [279]. On the other hand, the other coefficient Ĉ can also be
easily calculated in the above limit, and finally we obtain the following analytic formula:
cx = Cxz = 0 and

cy = Cyz =
s∆2

2πv2

[
2

∆
− 2∆2 + 3(vpF )

2

(∆2 + (vpF )2)3/2

]
+O(s/v)2 (3.55)

where pF =
√
2m|µ−∆| is the radius of the Fermi surface and, when pF = 0, cy becomes

zero. We can estimate a typical scale of cy for ML-TMDs as 1.9 × 10−28 kg·m/s, using
the parameter v ∼ 4.5 × 105 m/s, ∆ ≃ 1.5 eV, s/v = 0.1 [279], and µ/∆ = 0.1, which
corresponds to n ≃ 8× 1013 cm−2. Using these values and l ∼ 1 µm, we can estimate the
anomalous (normalized) current in the asymmetric Poiseuille flow as J ′

y ≡ Jy/EyσD = 0.02
at x = w/2 (w = 10 µm), which is large enough to detect in experiments.

3.6 Comments on further developments

After the paper [286], which includes the results in this chapter, was published, several
researchers have generalized our formulation to the case where the effect of artificial electric
fields is taken into consideration [293] and the case under static magnetic field [126] or
with spataneous time-reversal breaking [294]. For example, in the case of Ref. [126], our
formulas of hydrodynamic variables, such as the momentum flux, are modified by adding
correction terms due to external magnetic field B as follows:

N = n+
meB

ℏ
(D +N) · u+O(B2), P = mnu+

eB

ℏ
(C +M), (3.56)

Jn = nu+
me

ℏ
(D · u+ Y B) · (E × êz), (3.57)

Πij = mnuiuj + pδij +
e

ℏ
ϵjkEkCi +mB [(M · u)δij +Miuj ] +O(B2), (3.58)

F = −en(E + u×B), Γ = −mnu/τ. (3.59)

Then, substituting these relations into the continuity equations, we end up with the foll-
wing hydrodynamic equation for noncentrosymmetric electron fluids under external mag-
netic fields:

Anomalous magnetohydrodynamic equation

mn0
∂ui
∂t

+mn0(u · ∇)ui + ∂ip+ en0(Ei + ϵiklukBl)

+
e

ℏ
Mij

∂Bj

∂t
+

e

ℏ
Bk [Mlk∂iul +Mik∂juj +Oil∂kul] = −mn0ui

τ
,

where we have neglected the contributions of ∇T and ∇µ for simplicity. Interestingly,
this equation can be utilized to describe the nonreciprocal surface plasmon modes and the
enhancement of directional dicrhoism due to the resonance of the modes [126].
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3.7 Conclusions and outlook of this chapter

Here, we conclude this chapter and provide possible future directions. In this chapter,
we have developed a basic framework of electron hydrodynamics in noncentrosymmetric
metals, which is composed of a generalized Euler equation (3.35) and the hydrodynamic
expression of electric current (3.40). The obtained equation uncovers the analogy between
electron fluids in crystals and chiral fluids in vacuum, and predicts various novel transport
phenomena beyond linear and local responses. In particular, the generalized vortical effect,
which highlights the above analogy, gives rise to unprecedented hydrodynamic transport,
that is, the asymmetric Poiseuille flow and the anomalous edge current. We have confirmed
that these phenomena can be found in various existing hydrodynamic materials such as
WP2, BL-graphene (under strain) and GaAs quantum well, with local current probes.

Although our formulation is based on the Fermi liquid theory, the obtained hydrody-
namic theory itself might be applicable even to the strongly correlated systems beyond
quasi-particle picture, since the equation is essentially no more than the continuity equa-
tion of electron momentum, which is valid irrespective of the correlation strength. It
remains an intriguing problem to study what anomalous or critical behaviors the elec-
tron fluids show in noncentrosymmetric hydrodynamic materials beyond the Fermi liquid
description.

Moreover, our furmulation in this chapter has based on parabolic approximation for
electron’s band dispersion. To treat more generic materials including Weyl semimetals
more precicely, we need to relax such a condition and improve our formulation to be
applicable to any complex band structures. In addition, we have not treated the electron
viscosity directly in this work. Viscosity itself is a key ingredient to characterize electron
fluids, and thus it would be an interesting problem to clarify how the geometrical structure
of Bloch electrons affect the electron viscosity in crystals. These issues seem to be a difficult
but challenging problem to be solved in the future.



Chapter 4

Plasmonically-driven geometical
photocurrent

In this chapter, we aim to bridge two different research areas, plasmonics and anomalous
transport driven by the quantum geometry. For this purpose, we focus on the geometrical
photocurrent in two dimensional systems with plasmonic grating gates, and discuss how
plasmonic resonances affect these phenomena. As a result, we clarify that the quantum
nonlinear Hall effect can be dramatically enhanced over a very broad range of frequency
by utilizing plasmonic resonances and near-field effects of grating gates. Especially under
the resonant condition, the enhancement becomes several orders of magnitude larger than
the case without the nanostructures, while the peaks of high-harmonic plasmons expand
broadly and emerge under the off-resonant condition, leading to a remarkably broad spec-
trum. Furthermore, we clarify a universal relation between the photocurrent induced by
the Berry curvature dipole and the optical absorption, which is essential for computational
material design of long-wavelength photodetectors. Next we discuss a novel mechanism of
geometrical photocurrent, which originates from an anomalous force induced by oscillat-
ing magnetic fields and is described by the dipole moment of orbital magnetic moments of
Bloch electrons in the momentum space. Our theory is relevant to 2D quantum materials
such as layered WTe2 and twisted bilayer graphene, thereby providing a promising route
toward a novel type of highly sensitive, broadband terahertz photodetectors.

In what follows, first we make clear the motivation of this work by overviewing the pre-
vious researches in both contexts of plasmonics and quantum geometry (Sec. 4.1). Then,
we specify our experimental setup, which we refer to as a periodic plasmonic grating model,
and a hydrodynamic flamework to analyze the impact of surface plasmons on the geomet-
rical photocurrent (Sec. 4.2). Next, by solving hydrodynamic equations perturbatively,
we obtain the geometrical photocurrent under the resonances of surface plasmons 4.3. In
Sec. 4.4 and Sec. 4.6, we exhaustively treat the different two mechanisms of geometrical
photocurrent, i.e. the plasmonic quantum nonlinear Hall current and the magnetically-
driven plasmonic photocurrent, respectively. Especially, in Sec. 4.5, we show a universal
relation between the photocurrent induced by the Berry curvature dipole and the optical
absorption rate. Next, in Sec. 4.7, we give a brief comment on the effects of the electron
viscosity on the plasmonic photocurrent. Moreover, we specify promising candidates to
realize the plasmonic photocurrent obtained in this work (Sec. 4.8). Finally, in Sec. 4.9,
we summarize this study with some prospects for future researches.

51
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Figure 4.1: Schematic picture of spectrum of quantum nonlinear Hall current or optical
absorption. Both of them have a Lorentzian peak at ω = 0 and rapidly decrease over
the threshold 1/τ . In particular, when we attempt to improve the amplitudes of optical
absorption or photocurrent, we have to increase the relaxation time of samples. But, if the
relaxation time is improved to be very high, the peak of QNLH effect becomes very sharp,
and it cannnot access to THz region. This is the trade-off between the susceptibility and
broadbandness of the responses.

4.1 Motivation

In the past decades, quantum geometry plays a crucial role in the linear/nonlinear optical
responses of bulk crystals, as exemplified by natural optical activity [127, 128, 129, 130,
131, 132, 133, 134], bulk photovoltaic effect [295, 296, 297, 298, 299], and geometric photon
drag [136]. These phenomena provide us with not only a deep insight into the band
structure of crystals, but also a variety of functional optical devices, such as solar cells [300,
301] and infrared/terahertz photodetectors [302, 303, 304].

Very recently, Ref. [304] suggests that the QNLH effect has small noise-equivalent
power and remarkably high intenal responsivity which is constant over a broad range of
frequency. However, since its spectrum has a Lorentzian shape located at ω = 0 with
the half width 1/τ and the peak values propprtional to τ , its external responsivity, i.e.
its gain per incident power, rapidly decreases as ω−2 at frequencies ω ≫ 1/τ (Fig. 4.1),
while the internal responsivity keeps a good value independent on the frequencies. In this
way, the QNLH effect invariably suffers from the tradeoff between the bandwidth and the
amplitude of the responses. For this reason, to make the QNLH effects work well even at
moderately high frequency, we need to give it a twist to improve the external responsivity
of the QNLH effect at the frequency over 1/τ .

On the other hand, plasmonic nanostructures also provide us with another type of
efficient and electrically-tunable optical devices [139, 146, 220, 221, 305]. Such a plas-
monic nanodevice achieves its remarkable performance by utilizing the nonlocality and
the plasmonic enhancement triggered by the nanostructures. In particular, surface plas-
mons inherent in two-dimensional (2D) layered systems, such as graphene, are known
to have remarkably long lifetimes and electrically-tunable dispersions in the terahertz or
mid-infrared region [71, 148, 149]. These properties are ideal for plasmonic devices, and
thus a lot of papers have been devoted to investigating the applications such as tunable
terahertz photodetectors [29, 97, 102, 143] and broadband absorbers [306, 307, 308].

Notably, as far as we know, these research topics mentioned above, quantum geometry
and plasmonics, are usually discussed separately so far, except for several exceptional
studies [82, 83, 124, 125, 309]. However, our hydrodynamic formalisms developed in the
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Figure 4.2: Basic idea of the plasmonic QNLH effect. By utilizing surface plasmons with
the frequency near the THz regime, we will be able to dramatically enhance the QNLH
effect, beyond the threshold of usual intraband responses.

previous chapter give us a powerful tool to investigate an interplay between quantum
geometrical effects and surface plasmons through surface plasmonic structures. Actually,
as mentioned in Sec. 2, hydrodynamic theory is often used to describe electronic collective
modes [81, 82, 83, 84, 85, 86, 87, 88, 89] and nonlocality of optical responses [79, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. With these backgrounds, we
arrive at the following important questions:

our questions in this chapter

1. How do surface plasmons affect geometrical photocurrent under resonant con-
ditions?

2. Can we improve the QNLH effect beyond the the frequency threshold 1/τ by
utilizing the physics of the surface plasmons?

3. Does high internal responsivity of the QNLH effect remain intact even in
plasmonic resonances or not?

In this chapter, we tackle these problems based on the anomalous hydrodynamic theory
formulated in the previous chapter and Ref. [126]. As a result, we will show that the
QNLH effect is enhanced dramatically by plasmonic resonances and near-field effects of
grating gates, which is dubbed the plasmonic QNLH effect (see also Fig. 4.2). It features
multiple sharp peaks near the plasma frequencies, and could be enhanced by several orders
of magnitude over a very broad range of frequency. Furthermore, assuming more generic
situations, we uncover a universal relation between the photocurrent induced by the Berry
curvature dipole and the optical absorption, which is essential for computational mate-
rial design of long-wavelength photodetectors. Finally we discuss another type of novel
geometrical photocurrent, the magnetically-driven plasmonic photogalvanic effect. This
is a spatially dispersive contribution to the total photocurrent and originates from the
anomalous driving force on electron fluids, which is described by the dipole moment of
orbital magnetic moments in the momentum space.
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4.2 Model

In this section, we will specify our model to describe the interplay between plasmonic
resonances and quantum geometrial effects. First, we explain our experimental setup
to discuss the plasmonic geometrical photocurrent, which is dubbed periodic plasmonic
grating model. It is composed of a back gate to control the plasmon dispersion and a
periodic grating gate to enable incident lights to couple with surface plasmons by breaking
the macroscopic translational symmetry. Next we introduce anomalous hydrodynamic
equations to describe electron dynamics under plasmonic gatings. As mentioned below,
the equations can be quite simplified since we are interested only in spatially uniform
responses.

4.2.1 Periodic plasmonic grating model

First let us specify our experimetal setup to describe noncentrosymmetric layered systems
with plasmonic grating gates (see Fig. 4.3). We assume that the grating gate spatially
modulates the normally incident light E0(t) = Re[Ẽ0e

iωt], leading to the spatially disper-
sive electric field in 2D electron systems [70, 251]:

Ein(t, x) =
[
1 + ĥ cos(qx+ ϕ)

]
E0(t), (4.1)

where the diagonal matrix ĥ = diag{hx, hy} is a phenomenological parameter to determine
the direction of the modulated electric field. Although here we have neglected the high-
harmonic modulations [310, 311, 312] for simplicity, we will give a consideration on them
in the following. As also noted in Ref. [251], the field amplitude Ẽ should be smaller
than the amplitude of the incident field due to the screening by the gates in reality.
Moreover, in general, the grating parameter ĥ strongly depends on frequencies [252, 312].
Nevertheless, we believe that our simplified model captures the key physics of the problem
and is sufficient for clarifying the interplay between plasmonic nanostructures and quantum
geometrical effects.

Especially when hy is finite, the Faraday’s law results in the presence of an out-of-plane
magnetic field,

B(t, x) =
qhy
ω

sin(qx+ ϕ)Re[−iẼ0ye
iωt]. (4.2)

Since the grating gate strongly confines the incident light into the x-y plane with a fixed
small wavelength, this magnetic field has non-negligible contributions especially in the
low frequency limit, leading to a novel mechanism of the photovoltaic effect as discussed
below.

When the gate electrode is separated from the channel by an insulator thin film
with thickness d and gate-to-channel capacity C = ε/4πd, the 2D electron concentra-
tion n(r, t) is approximately determined by the local gate-to-channel voltage U(r, t):
n(r, t) = C

e U(r, t). Such an approximation is often referred to as a gradual channel
approximation [57, 314], which is valid for smooth perturbation with qd ≪ 1. In sum-
mary, the total electric field is given by the sum of the incident light Ein and the field
coming from the density perturbation: E = Ein + (e/C)∇n.

Finally we briefly comment on the role of grating gate to couple incident lights in free
space with surface plasmons (see also Fig. 4.4). As also mentioned in Chap. 2, surface
plasmons are usually decoupled from free-space lights due to the momentum mismatching,
unless the surface has some artificial structure such as the Kretschmann configuration
and grating structures [71, 155]. For the case of grating structures discussed above, these
nanostructures break the spatial translational symmetry, leading to relaxation of the severe
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Figure 4.3: Our setup for plasmonically-driven geometrical photocurrent in noncentrosym-
metric layerded systems with periodic grating gate [313]. Other types of experimental
setups, such as plasmonic cavity or antenna, would be relevant to this work.

conditions for the conservation of photon momentum. More precisely, we can understand
that, due to the symmetry reduction from the continuous translational symmetry to the
discrete one, the grating gate enables surface plasmons to couple to free space photons
with in-plane wavenumber different from that of plasmons by integer multiple of q = 2π/L,
where L is the lattice constant of periodic grating gates:

kphoton ≡ kplasmon (mod q). (4.3)

Here kphoton and kplasmon are the wavenumbers of photon and surface plasmon respectively.
This discussion is quite analogous to the band folding in the Bloch theory. In particular,
kphoton equals to zero in our paper, since the free-space light is normally incident to
the surface. For this reason, excited surface plasmons must have a wavenumber in the
form kplasmon = mq (m = ±1,±2, · · · ). Actually, this matching condition appears as the
multiple peaks in the spectrum of geometrical photocurrent obtained below.

4.2.2 Hydrodynamic equations

Next let us consider the dynamics of electron fluids in noncentrosymmetric crystals with
time-reversal symmetry. In this study, we focus on the hydrodynamic regime, where
the rate of electron-electron scatterings 1/τe exceeds that of other momentum-relaxing
scatterings 1/τ , and thereby the total electron momentum can be regarded as a long-lived
quantity (For details, please see Chap. 1). Under these conditions, the electron dynamics
is described by an emergent hydrodynamic theory, whose form crucially depends on the
symmetry of the systems.

In general, the continuity equations for electron momentum and particle density are
obtained in the relaxation-time approximation as follows [126, 286]:

∂tN +∇ · Jn = 0, (4.4)

∂tPi + ∂jΠij = Fi + Γi, (4.5)

where N and Pi are respectively the density of electron momentum and particle number,
J and Πij are the flux of them, F is the external force due to the applied electromagnetic
fields, Γ is the disipative force due to the momentum relaxing scatterings. As mentioned
briefly in the previous chapter, Ref. [126] has formulated an anomalous hydrodynamic
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Figure 4.4: Schematic pictures of plasmon’s dispersions with and without periodic plas-
monic grating gate. Surface plasmons without external decorations are usually decoupled
from free-space lights due to the momentum mismatching. On the other hand, by im-
plementing periodic grating gate on the 2DEG, surface plasmons can couple to free-space
photons with in-plane wavenumber different from that of plasmons by integer multiple of
q = 2π/L.

theory for 2D noncentrosymmetric electron fluids with parabolic dispersion near some val-
leys, taking the effects of magnetic fields into account. According to the paper, the above
quantities appearing in the continuity equations can be described with some hydrodynamic
variables, such as velocity fields u, as

N = n+
meB

ℏ
(D +N) · u+O(B2), P = mnu+

eB

ℏ
(C +M),

Jn = nu+
me

ℏ
(D · u+ Y B) · (E × êz),

Πij = mnuiuj + pδij +
e

ℏ
ϵjkEkCi +mB [(M · u)δij +Miuj ] +O(B2),

F = −en(E + u×B), Γ = −mnu/τ,

(4.6)

where E is an applied in-plane electric field, B = (0, 0, B) is an applied out-of-plane
magnetic field, n is the particle density without the correction due to magnetic fields. C,
D, M , and N are the geometrical pseudovectors originating from the Berry curvature
Ωα
z or the magnetic moment of the Bloch wavepackets mα

z , which are defined as follows
respectively 1:

C =
∑
α

∫
[dp]pΩα,zf0α, D =

∑
α

∫
[dp]

∂Ωα,z

∂p
f0α, (4.7)

M =
∑
α

∫
[dp]

∂mα
z

∂p
f0α, N = −ℏ

e

∑
α

∫
[dp]

∂mα
z

∂p

∂f0α
∂ϵ

, (4.8)

where α is a valley index, f0α = [1 + e−β(εα(p)−µ)]−1 is the Fermi distribution function at
the valley α, and we have introduced the notation

∫
[dp] ≡

∫
dp/(2πℏ)d. In particular,

the geometrical coefficient D is called as the so-called Berry curvature dipole (BCD) in

1Our definition of M is defferent from the one in Ref. [126] by a constant factor mℏ/e.
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previous literatures [279]. Here we note that Eqs (4.6) are correct up to the second order
of the external perturbations, and O(B2) terms in n and Πij are not explicitly shown
in Eq. (4.6), since they never contribute to the results in this work. For example, in
the analysis of the photocurrent, they always appear in the form of the time or spatial
derivative, ∂t,x(O(B2)), and thus do not contribute to the spatially and temporally uni-
form currents. For the same reason, we do not need to consider the terms in the form
∂t,x(O(E2, BE,B2)) in the following analyses. Furthermore, we note that, although geo-
metrical pseudovectors, such as C and D, depend on time t and spatial position r through
chemical potential µ(t, r) or temperature T (t, r), we can neglect higher-order corrections
due to this dependence for the above reason.

Combining Eqs. (4.4) - (4.6), we obtain the following hydrodynamic equations for
noncentrosymmetric electron fluids with parabolic dispersion:

Hydrodynamic equations for noncentrosymmetric metals

∂u

∂t
+ (u ·∇)u+

∇P

mn
+

e

m
(E + u×B) +

M

n

(
∂B

∂t

)
+ · · · = −u

τ
,

∂n

∂t
+∇ · (nu) + · · · = 0,

(4.9)

where “· · · ” denotes the negligible terms in the form ∂t,x(O(E2, BE,B2)). The last term
on the left-hand side is first derived in Ref [126], and represents a geometrical anomalous
force due to oscillating magnetic fields, which is closely related with the so-called gyrotropic
magnetic effect [130, 132, 133, 134].

Especially in our periodic plasmonic grating model, the 2D electron concentration
n(r, t) is determined by the local gate-to-channel voltage U(r, t), and the total electric
field is described as E = Ein+(e/C)∇n. Therefore, Eqs. (4.9) can be rewritten in a more
explicit form:

∂u

∂t
+ (u ·∇)u+

e

m
(Ein + u×B)

+
s2

n0
∇δn+

M

n0

(
1− δn

n0

)(
∂B

∂t

)
+ · · · = −u

τ
,

(4.10)

∂δn

∂t
+ n0∇u+ · · · = 0, (4.11)

where s =
√
n0(e2/mC + nv/mν) is the group velocity of the plasmon, ν = m/2πℏ2 is

the density of states per valley, nv is the number of valleys, n0 is the uniform particle
density without perturbations, and then we introduced the notation δn ≡ n − n0. In
the derivation, we have used the formula P ≃ nvn

2/2ν+nvνT
2π2/6 in the 2D degenerate

electrons with parabolic dispersion and neglect the thermoelectrical force Fth ∝ ∇T 2 since
it can be estimated as Fth ∝ ∇u2 ∝ ∂t,x(O(E2, BE,B2)) discussed in Ref. [251].

Here it is notable that the velocity field itself is not an observable quantity, as in the
case of the previous chapter. According to the Ref. [126], we have to relate the velocity
field u with the observable electric current by using the following formula:

Relation between electric currents and velocity fields under electromagnetic fields

j = −enu− me2

ℏ
(D · u+ Y B) · (E × êz) + · · · , (4.12)
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where Y is a geometrical scalar coefficient, defined as

Y =
∑
α

Y α, Y α = − 1

m

∫
[dp]Ωα

zm
α
z ∂ϵf0(ϵ0). (4.13)

The first term in Eq. (4.12) is a familiar part known in conventional hydrodynamic theory,
and the others are geometrical contributions due to the symmetry lowering of the fluids.
In particular, the term proportional to the coefficient D describes the contribution of the
so-called quantum nonlinear Hall (QNLH) effect [279, 286]. Here, we note that “· · · ”
in Eq. (4.12) denotes the rotational currents, which cause several remarkable phenomena
such as voriticity-induced anomalous currents [286], but does not contribute to the analysis
in this work since rotational components never contribute to spatially uniform currents.
We can calculate the electric current density j(x, t) by solving the above hydrodynamic
equations under external fields, and substituting the obtained solution u(x, t) and n(x, t)
to the above hydrodynamic formula of eletctric current. Most important is that crystal
symmetry imposes strong restrictions on the geometical pseudovectors M and D, and
thus we have to break any rotational symmetry and reduce the number of mirror lines to
be less than two for these vectors to be finite.

4.3 Derivation of plasmonically-enhanced photocurrent

In the following, we perform a perturbative calculation to analyze plasmonically-enhanced
photocurrents in noncetrosymmetric electron fluids. For this purpose, we perturbatively
expand the velocity field u, particle density n, and the total electric field E with respect
to Ẽ0 as follows:

u = u1 + u2 + · · · , n = n0 + δn = n0 + δn1 + δn2 + · · · ,
E = E1 +E2 + · · · , B = B1.

(4.14)

With these notations, from Eq. (4.12), the leading photocurrent can be written as a sum
of several contributions:

jDC = −e ⟨δn1u1 + n0u2⟩t,x −
me2

ℏ
⟨(D · u1 + Y B1) · (E1 × êz)⟩t,x , (4.15)

where ⟨· · ·⟩t,x denotes the time and space averaging over the periods.
The first order contributions can be easily calculated from Eq (4.10) and we obtain

u1,x = Re

[
eiωt

ω2 − ω2
q − iω/τ

(
ieω

m
(hxẼ0x) cos(qx+ ϕ)

+
iωq

n0
(hyẼ0y)Mx sin(qx+ ϕ)

)
− e

m

eiωt

iω + 1/τ
Ẽ0x

]
,

u1,y = Re

[
− eiωt

iω + 1/τ

( e

m
(hyẼ0y) cos(qx+ ϕ)

+
q

n0
(hyẼ0y)My sin(qx+ ϕ)

)
− e

m

eiωt

iω + 1/τ
Ẽ0y

]
,

δn1 = Re

[
eiωt

ω2 − ω2
q − iω/τ

(en0q

m
(hxẼ0x) sin(qx+ ϕ)− (hyẼ0yq

2)Mx cos(qx+ ϕ)
)]

.

(4.16)
These results mean that the spatial modulation by the grating gate (h ̸= 0) causes a
plasmonic resonance denoted by the prefactor (ω2 − ω2

q − iω/τ)−1, whose imaginary part
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has a strong peak with the half width 1/τ near the plasmon frequency ω ∼ ωq under the
resonant condition.

Next let us consider the contributions in the second order of perturbations. From
Eq. (4.10), the second order term of the velocity fields u2 satisfies

∂u2

∂t
+ (u1 ·∇)u1 +

e

m
(u1 ×B1) +

s2

n0
∇δn2 +

M

n0

(
δn1

n0

)(
∂B1

∂t

)
+ · · · = −u2

τ
. (4.17)

Focusing on the time and space average of the velocity fields u2, this equation leads to
the relation

⟨u2⟩t,x = −τ

〈
(u1 ·∇)u1 +

e

m
(u1 ×B1) +

M

n0

(
δn1

n0

)(
∂B1

∂t

)〉
t,x

, (4.18)

and each term can be calculated as follows:

⟨(u1 ·∇)u1⟩t,x =
eq2

4mn0

ω2hxhy
(ω2 − ω2

q )
2 + (ω/τ)2

Re
[
E0xE

∗
0y

]
(Mxêx)

+
eq2

4mn0
Re

[
iω

(ω2 − ω2
q − iω/τ)(iω − 1/τ)

× ((hxẼ0x)(hyẼ
∗
0y)My + |hyẼ0y|2Mx)

]
êy,〈 e

m
(u1 ×B1)

〉
t,x

=
eq2

4mn0
Re

[
1

ω2 − ω2
q − iω/τ

|hyẼ0y|2
]
Mxêy

− eq2

4mn0
Re

[
1

ω2 − iω/τ
|hyẼ0y|2

]
Myêx〈

M

n0

(
δn1

n0

)(
∂B1

∂t

)〉
t,x

=
eq2

4mn0
Re

[
1

ω2 − ω2
q − iω/τ

(hxẼ0x)(hyẼ
∗
0y)M

]
,

(4.19)

where êi is a unit vector in the direction of i-axis.
Substituting these results into Eq. (4.15), we obtain the total photocurrent jDC as the

sum of the contributions arising from different mechanisms as follows:

jDC = jBCD
DC + jMPP

DC , (4.20)

where jBCD
DC is the BCD-induced photocurrent,

jBCD
DC =

e3

2ℏ
Re

[
1

iω + 1/τ
(D · Ẽ0) · (Ẽ

∗
0 × êz)

+
1

2

(
− iω

ω2 − ω2
q − iω/τ

DxhxẼ0x +
1

iω + 1/τ
DyhyẼ0y

)
(ĥẼ

∗
0 × êz)

]
− e5n0q

2

4ℏmC
Re

[
1

(iω + 1/τ)(ω2 − ω2
q + iω/τ)

×

(
(hyẼ0y)(hxẼ

∗
0x) +

(
mq

en0

)2

My|hyẼ0y|2
)]

(Dyêy).

(4.21)
On the other hand, jMPP

DC is a magnetically-driven plasmonic photocurrent, which is pro-
portional to the geometirical pseudovector M , and obtained as the sum of contributions of
several nolinear terms in the hydrodynamic equations or anomalous currents proportional
to the geometrical scalar Y ,

jMPP
DC = jdensityDC + jinertiaDC + jLorentzDC ++jYDC , (4.22)
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where

jdensityDC =
e2q2

4m
Re

[
τ

ω2 − ω2
q − iω/τ

(hxẼ0x)(hyẼ
∗
0y)M

]
+

e2q2

4m

ω

(ω2 − ω2
q )

2 + (ω/τ)2
Re
[
i(hxẼ0x)(hyẼ

∗
0y)− i(hyẼ0y)(hxẼ

∗
0x)
]
(Mxêx)

+
e2q2

4m
Re

[
i

(iω − 1/τ)(ω2 − ω2
q − iω/τ)

(
|hyẼ0y|2Mx − (hyẼ0x)(hxẼ

∗
0y)My

)]
êy,

(4.23)

jinertiaDC =
e2q2

4m

τω2hxhy
(ω2 − ω2

q )
2 + (ω/τ)2

Re
[
E0xE

∗
0y

]
(Mxêx)

+
e2q2

4m
Re

[
iωτ

(iω − 1/τ)(ω2 − ω2
q − iω/τ)

((hxẼ0x)(hyẼ
∗
0y)My + |hyẼ0y|2Mx)

]
êy,

(4.24)

jLorentzDC =
e2q2

4m
Re

[
τ

ω2 − ω2
q − iω/τ

|hyẼ0y|2
]
Mxêy

− e2q2

4m
Re

[
τ

ω2 − iω/τ
|hyẼ0y|2

]
Myêx,

(4.25)

jYDC =
me3q4Y

4ℏC
Re

[
i/ω

ω2 − ω2
q + iω/τ

Mx|hyẼ0y|2êx
]
. (4.26)

Here jdensityDC is the photocurrent related with the first order spatial modulation of particle
density δn1, j

inertia
DC is the one arising from the inertia term (u ·∇)u, jLorentzDC is the one

arising from the Lorentz force term, jYDC is the one related with the geometrical scalar
coefficient Y . Although these formulas have quite complicated forms, we have easily found
that each geometrical photocurrent is strongly enhanced near the plasmonic frequency
ω = ωq. In the following sections, we will give more detailed analyses of jBCD

DC and jMPP
DC

respectively. Especially for the term jBCD
DC , we will show its universal relation with the

optical absorption.

By introducing the notation

Ẽ0iẼ
∗
0j = Re

[
Ẽ0iẼ

∗
0j

]
+ i Im

[
Ẽ0iẼ

∗
0j

]
= Lij − iϵijkFk, (4.27)

we can describe the polarization dependence of each term more clearly. Here we have

defined Lij = Re
[
Ẽ0iẼ

∗
0j

]
and F = i

2Ẽ×Ẽ
∗
, each of which represents the contribution of

linearly-polarized light and circularly-polarized light respectively [299]. In particular, the
trace of Lij , denoted as I = 1

2

∑
i Lii, is proportional to the intensity of an incident light.

For example, when the incident light is a linearly-polarized light, such as Ẽ0 = Ẽ0(1,±1, 0),
these indicators satisfy I = |Ẽ0|2, Lxy = ±|Ẽ0|2 and F = 0. On the other hand, when the
incident light is a circularly-polarized light, i.e., Ẽ0 = Ẽ0(1,±i, 0), these indicators satisfy
I = |Ẽ0|2, Lij = 0 and F = ±|Ẽ0|2êz. Using these notations, we can rewrite the above
results as
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jBCD
DC,i =

e3

2ℏ

 τ

1 + (ωτ)2

∑
j

(
1 +

ω2(1 + (ωτ)2)hxhj
2τ2[(ω2 − ω2

q )
2 + (ω/τ)2]

)
ϵijDxLxj

+
τ

1 + (ωτ)2

∑
j

(1 + hyhj)ϵijDyLyj

+
ωτ2

1 + (ωτ)2

(
1−

ω(ω2 − ω2
q )(1 + (ωτ)2)hxhy

2τ [(ω2 − ω2
q )

2 + (ω/τ)2]

)
FzDxδix

+
ωτ2

1 + (ωτ)2
(1 + hxhy)FzDyδiy

]

+
e5n0q

2

4ℏmC

1

(1 + (ωτ)2)((ω2 − ω2
q )

2 + (ω/τ)2)

[
τω2

qhxhyLxy

− ω(1 + τ2(ω2 − ω2
q ))hxhyFz + τω2

q

(
mq

en0

)2

Myh
2
yLyy

]
Dyδiy,

(4.28)

jdensityDC =
e2q2

4m

[
τ(ω2 − ω2

q )hxhy

(ω2 − ω2
q )

2 + (ω/τ)2
Lxy +

ωhxhy
(ω2 − ω2

q )
2 + (ω/τ)2

Fz

]
M

+
e2q2

2m

ωhxhy
(ω2 − ω2

q )
2 + (ω/τ)2

FzMxêx

+
e2q2

4m

1

(1 + (ωτ)2)((ω2 − ω2
q )

2 + (ω/τ)2)

×
[
ω(1 + τ2(ω2 − ω2

q ))(h
2
yLyyMx − hxhyLxyMy)− τω2

qhxhyFzMx

]
êy,
(4.29)

jinertiaDC =
e2q2

4m

ω2τhxhy
(ω2 − ω2

q )
2 + (ω/τ)2

LxyMxêx

+
e2q2

4m

ωτ

(1 + (ωτ)2)((ω2 − ω2
q )

2 + (ω/τ)2)

×
[
ω(1 + τ2(ω2 − ω2

q ))(h
2
yLyyMx + hxhyLxyMy) + τω2

qhxhyFzMy

]
êy,
(4.30)

jLorentzDC =
e2q2

4m

τ(ω2 − ω2
q )h

2
y

(ω2 − ω2
q )

2 + (ω/τ)2
LyyMxêy −

e2q2

4m

τ3h2y
1 + (ωτ)2

LyyMyêx, (4.31)

jYDC =
me3q4Y

4ℏC
1/τ

(ω2 − ω2
q )

2 + (ω/τ)2
LyyMxêx.

(4.32)

4.4 Plasmonic quantum nonlinear Hall effect

In what follows, we will answer the question raised in Sec. 4.1, i.e., to what extent the
plasmonic resonces improve the susceptivility of the QNLH effect in the frequency regime
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over the threshold 1/τ . Here, for simplicity, let us consider x-polarized incident light
Ẽ0 = (Ẽ0x, 0, 0). In this case, by substituting Lxx = |Ẽ0x|2 and Lxy = Lyy = Fz = 0 into
Eqs. (4.28) - (4.32), we find that the total photocurrent is exactly attributed only to the
contribution of the QNLH term jBCD

DC and it is described by a simple beautiful form as
follows:

Plasmonic QNLH current under x-polarized light

jDC = jBCD
DC = − e3

2ℏ
τβω

1 + (ωτ)2
Dx|Ẽ0x|2êy, (4.33)

where êy is a unit vector in the y-direction, βω is an amplification factor due to the
plasmonic resonance,

Amplification factor in plasmonic QNLH effect

βω = 1 +
ω̃2(1 + τ̃2ω̃2)h2x

2[τ̃2(ω̃2 − 1)2 + ω̃2]
, (4.34)

and we have introduced two dimensionless paramters: τ̃ = ωqτ and ω̃ = ω/ωq. Here ωq is
the plasmon frequency ωq = sq, and s is the group velocity of the plasmon. This is one of
our main results in this work, and we refer to it as the plasmonic QNLH effect. In Fig. 4.5
(a), we have plotted the spectrum of βω for various values of τ̃ .

In the low-frequency limit (ω̃ → 0), the amplification factor βω approaches one and
Eq. (4.33) becomes equivalent to that in Ref. [279], which means that the original peak
of the QNLH effect at ω = 0 remains intact regardless of the existence of the grating
gate. On the other hand, at the plasmon frequency ω = ωq, it features another sharp peak
with a width ∆ω ∼ 1/τ in the resonant regime (τ̃ ≫ 1), and the amplitude of the QNLH
current is strongly enhanced by the dimensionless factor |βωq | ∼ |hxτ̃ |2/2, compared to
the case without grating gate. In particular, by utilizing near-field enhancement of gold
grating gates, it is possible for the grating factor hx to be compareble to or much larger
than one (hx ≫ 1) [252, 312, 315]. This means that the QNLH current could be enhanced
by several orders of magnitude under the resonant condition (τ̃ ≫ 1).

In the discussion so far, we have focused on a specific harmonic mode with the
wavenumber q in Eq. (4.1) for simplicity. However, we note that, in general, the grating
gate creates high-harmonic modulations of in-plane electric fields with the wavenumbers
2q, 3q, · · · , Nq [310, 311, 316, 317], which can be described as

Ein,i(t, x) =

[
1 +

∞∑
m=1

ĥ
(m)
i cos

(
mqx+ ϕ

(m)
i

)]
E0i(t). (4.35)

These modulations result in multiple plasmonic resonant peaks at ω = ωnq (n = 1, 2, · · · ),
leading to a remarkably broadband photocurrent spectrum. In particular, since the result

in Eq. (4.33) does not depend on the phases ϕ
(m)
i and the signs of h

(m)
x , all the contributions

of high-harmonic plasmons flow in the same direction, and thereby strongly enhance the
total photocurrent. This is in sharp contrast to the case of the so-called ratchet effect [251,
317], which is strongly dependent on these parameters, and thus, each plasma mode often
cancels each other. In conclusion, the enhancement factor (4.34) is modified by high-
harmonic plasmons as follows:

βω = 1 +
∞∑

m=1

ω̃2(1 + τ̃2ω̃2)(h
(m)
x )2

2[m2τ̃2(ω̃2 −m2)2 + ω̃2]
. (4.36)
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(a) (b)

(c) (d)

Figure 4.5: Frequency dependence of the enhancement factor βω and the plasmonic QNLH
current jDC = jBCD

DC [313]. (a) We plot the enhancement factor, Eq. (4.34), which comes
from only one plasmonic peak, with hx = 4 and various values of τ̃ = ωqτ . (b-d) Con-
sidering the enhancement factor, Eq. (4.36), due to high-harmonic plasmons, we plot the
plasmonic QNLH current, Eq. (4.33), normalized by j0DC ≡ jDC(ω = 0). We set the
paramter τ̃ = ωqτ as (b) ωqτ = 5, (c) ωqτ = 1, and (d) ωqτ = 0.2 and, for demonstration

purposes, assume phenomenologically that (h
(1)
x , h

(2)
x , h

(3)
x , h

(4)
x , h

(5)
x , h

(6)
x ) = (2, 3, 4, 3, 2, 1)

and h(i) = 0 (i ≥ 7). For comparison, we also plot the spectrum of the usual QNLH
current with a red dotted line.
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In Fig. 4.5 (b-d), We have plotted the spectrum of the plasmonic QNLH current (blue line),
and campared it with that of the normal QNLH effect. From these figures, we find that the
QNLH current is dramatically enhanced by several orders of amplitude, over a very broad
range of frequency above the original frequency threshold 1/τ . Similar enhancement effects
due to high-harmonic plasma modes have ever been discussed in the context of terahertz
light absorption [92, 310, 318, 319] and plasmonic ratchet effect [252, 312].

4.5 Universal internal responsivity

Here, assuming more general situations, we elucidate a universal relation between the
photocurrent induced by the BCD and the light absorption by 2D electron systems. First,
in general, the BCD-induced photocurrent is obtained from Eq. (4.12) in the following
form,

jBCD
DC = −me2

ℏ
⟨(D · u(r, t))(E(r, t)× êz)⟩t,r , (4.37)

where ⟨· · ·⟩t,r denotes the time and space averaging over the periods. Especially for x-

polarized incident light, it leads to jBCD
DC = me2

ℏ Dx ⟨uxEx⟩t,r êy. On the other hand, the
optical power absorbed by 2D electron systems can be calculated as P = S ⟨jxEx⟩t,r, where
S = LxLy is the area of our system and Li is the sample’s size in the i-direction. In the
linear order of external perturbations, the electric current is related with the velocity field
as jx = −en0ux from Eq. (4.12), where n0 is the equilibrium particle density. Combining
these formulas, we reach the desired universal relation between jBCD

DC and P as follows:

jBCD
DC = −emDxP

ℏn0S
êy. (4.38)

This relation means that the plasmonic QNLH effect discussed above comes from the
plasmonic enhancement of the total optical absorption by grating gate. As understood
from the derivation, Eq. (4.38) will be satisfied in more generic situations beyond our 2D
grating model, such as plasmonic cavities [320, 321, 322, 323] or antennas [29, 324], as far
as the frequency is low enough for interband transitions to be negligible.

Here we note that, in the case of y-polarized incident light, additional Hall currents
induced by the oscillating magnetic field, which causes spatially dispersive terms such as
jLorentzDC , slightly breaks this relation. Similarly, Eq. (4.38) does not hold for the circular
photogalvanic current induced by the BCD. Furthermore, since we use the fact that the
particle density n is spatially uniform in equilibrium to take it outside of ⟨· · ·⟩t,r, this
relation will break in the case where strong static built-in fields is applied on the 2D
electron systems by periodic doping gate as investigated in Ref. [251, 317].

From Eq. (4.38), we can immediately obtain the internal current responsivity of the
BCD-induced Hall photocurrent, which is one of the most important figures of merit
quantifying the performance of THz detectors [143] and defined as the current gain per
absorbed light power,

RI ≡ Iy
P

=
emDx

ℏn0Ly
. (Iy = jBCD

DC,yLx) (4.39)

This is another important result in this chapter. Eq. (4.39) states that the responsivity
is entirely determined by the band structure (and the carrier density) of electron sytems,
and completely independent on incident frequencies and their environment such as grating
or cavity structures. Clearly, this peroperty is very beneficial for computational material
design toword terahertz-infrared photodetectors. To realize a high-performance photode-
tector utilizing the BCD-induced photocurrent, first we should search quantum materials
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with a collossal effective mass m and BCD by performing ab-initio calculations or ex-
periments, and then, improve their optical absorption by decorating or designing those
promising materials with some plasmonic or cavity structures.

For the latter purpose, 2D layered materials, which are very flexible to various device
designs, seem to be more advantageous than 3D bulk materials. Recent experiments [325]
have reported that the external voltage responsivity of bilayer WTe2 reaches a value of
2× 104 V/W−1 around ω ≃ 100 Hz at T = 10 K, which is notably large and comparable
to the best values in existing rectifiers [325, 326]. Furthermore, Ref. [327] has theoretically
suggested that strained twisted bilayer graphene achieves a further large responsivity that
is 20 times larger than the above values. However, since these materials work well only at
low temperature, further investigations of promising materials, which show a remarkably
large value of the BCD, will be needed to realize terahertz photodetectors working at room
temperature.

4.6 Magnetically-driven plasmonic photogalvanic effect

Next let us consider a novel type of photocurrent, jMPP
DC , obtained in Eq. (4.22), which

is regarded as a spatially dispersive correction to the total photocurrent and proportional
to q2 or q4. For this reason, this effect is peculiar to spatially structured systems like our
grating model, and does not appear in spatially uniform cases.

As shown in detail in the supplemental materials, the MPP effect originates from an
anomalous driving force induced by oscillating magnetic fields (∝ M(∂B/∂t)) in Eq. (4.9),
and thus, they are described by the geometrical pseudovector, M , i.e., the dipole moment
of orbital magnetic moments of Bloch electrons in the momentum space (for the detailed
derivation and expression, see the supplemental materials). In particular, at plasmon
frequencies, the MPP current also has a sharp peak, as in the case of the plasmonic
QNLH effect, and the peak amplitude is obtained under the resonant condition (τ̃ ≫ 1)
as follows 2:

jMPP
DC (ω = ωq) =

e2τ

4ms2
[τ̃hxhyFz(M + 2Mxêx)

+ τ̃2hxhyLxyMxêx] +O(τ̃0).

(4.40)

Here we have introduced Fz = i
2(Ẽ0xẼ

∗
0y − Ẽ0yẼ

∗
0x) and Lxy = 1

2(Ẽ0xẼ
∗
0y + Ẽ0yẼ

∗
0x),

each of which represents a circular photogalvanic effect and a linear photogalvanic effect.
Focusing on its circular photogalvanic effect in the x-direction, the value of MPP current
is around 0.01 nA/W with typical values of parameters, m ∼ me, s ∼ 1 × 106 m/s,
τ ∼ 1×10−12 s and an estimated value of Mx obtained in Ref. [126] for strained graphene,
Mx ∼ 3 × 1017 s·A/kg·m, assuming the resonant case |τ̃hxhy| ∼ 10. Although this is
much smaller than the measured value of QNLH current (∼ 100 nA/W) in monolayer
WTe2 [328] around ω ≃ 30 THz at 150 K, we might be able to improve the MPP current
furthermore by seeking materials with a much larger value of M . In such a situation,
since the plasmonic term of the BCD-induced circular photocurrent is proportional to
ω2 − ω2

q and thus vanishes at the plasmon frequency, the MPP effect will dominate the
total photocurrent. This might be one of good optical probes for the geometical strctures
of Bloch electrons in 2D quantum systems.

2Here we have neglected the term proportional to geometrical scalar Y for simplicity, since it is a
higher-order spatially disperive term, which is proportional to q4, and thus much smaller than other terms
for typical values of q.
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4.7 Comment on the viscous effect

In the hydrodynamic regime, viscosity is one of key ingredients to characterize electron
fluids. Actually, a lot of recent works have ever been devoted to measurements of the
signature of viscosity in nonlocal transport phenomena [7, 11, 15, 18, 19, 20, 23]. The hy-
drodynamic equations obtained in Ref. [126, 286] do not include explicitly the contribution
of the viscosity since they focus on the formulation in the limit of (ωτe)

−1 → 0, while the
viscosity is a correction term in the first order of τ−1

e . Here ω is the characteristic scale of
the frequency we discuss. However, the viscous effects on our results are worth discussing
by introducing viscosity terms into the theory phenomenologically. In what follows, we
briefly discuss the viscous effects especially at the level of linear responses, which is enough
to consider the modification of the QNLH term jBCD

DC .

First we can incorporate the viscous effects into our theory by adding the terms ν∆u+
ζ∇(∇ · u) to the right side of Eq. (4.10). Here ν is the kinematic viscosity, and ζ is the
bulk viscosity (devided by the mass density mn). As easily checked, we can modify
the results in Eq. (4.16) by replacing the dissipation rate 1/τ appearing in the prefactor
(ω2 − ω2

q − iω/τ)−1 with 1/τ + (ν + ζ)q2 for the case of longitudinal waves (E0 ∥ êx).
Clearly, this means that the viscosity of electron fluids gives rise to a spatial dispersive
contribution in the lifetime of plasmons. When we assume that τ = 1 × 10−12 s−1 and
ν = 1× 10−1 m2s−1 [7], the viscosity effect becomes comparable or superior to that of the
momentum relaxing scattering rate 1/τ under the condition that 2π/q ≲ 1 µm.

In particular, focusing on the enhancement factor βω, the electron viscosity modifies
the factor as

βω = 1− ω̃2(1 + τ̃2ω̃2)h2x
2[τ̃2(ω̃2 − 1)2 + ω̃2]

−→ 1− ω̃2(1 + τ̃2ω̃2)(τ̃v/τ̃)h
2
x

2[τ̃2v (ω̃
2 − 1)2 + ω̃2]

, (4.41)

leading to the broadening of the peak width 1/τ̃ → 1/τ̃v under the resonant condition,
and the suppression of the peak amplitude |βωq | ≃ |hxτ̃ |2/2 → h2xτ̃ τ̃v/2. Here we have
introduced a new dimensionless parameter τ̃v = ωq(1/τ + (ν + ζ)q2)−1 (< τ̃). This means
that, for typical values of parameters τ = 1 × 10−12 [s−1] and ν = 1 × 10−1 [m2s−1] [7],
the viscosity causes non-negligible contributions to the plasmon lifetime when the cycle
length L = 2π/q becomes µm-order or less. Consequently, it might be possible to optically
probe mysterious aspects of strongly correlated electron systems such as twisted bilayer
graphene [329, 330, 331, 332], through the peculiar temperature dependence of plasmon
lifetime, since the electron viscosity behaves as ν ∼ vF lee ∝ 1/T 2 in Fermi liquids [23, 38,
333], while ν ∝ 1/T in typical non-Fermi liquids [23, 53, 334, 335].

4.8 Candidates for our theory

Here we briefly discuss possible candidates to observe the novel types of plasmonic pho-
tocurrents obtained in this work. In the past few years, many pieces of evidence for hydro-
dynamic electron flow have been reported in various materials, including monolayer/bilayer
graphene [7, 9, 10, 11, 13, 30], GaAs quantum wells [16, 17, 18, 19, 20, 21], 2D monovalent
layered metal PdCoO2 [15], Weyl semimetal WP2 [23], and WTe2 [24, 25, 26]. Among
these materials, promising candidates for our work are graphene with some deformation
and layered transition metal dichalcogenide WTe2. These materials have crystal symme-
tries low enough to exhibit intriguing optical phenomena, such as the QNLH effect [279],
which is required for the geometrical pseudovectors D and M to be finite. As a matter of
fact, the QNLH effect itself has already been observed in layered WTe2 [325, 328, 336, 337]
and artificially corrugated bilayer graphene [338]. In particular, bilayer WTe2 is reported



4.9. CONCLUSIONS AND OUTLOOK OF THIS CHAPTER 67

to show remarkably high responsivity [325] as already mentioned, and further dramatic
enhancement of the BCD is suggested by twisting the two layers in Ref. [339].

Another possible candidate is (110) quantum well in GaAs, since it also has crystal
symmetries low enough to show the QNLH effect [249, 280, 281, 340] and another type
of GaAs quantum well has already shown various hydrodynamic signatures [16, 17, 19,
20, 21? ]. Furthermore, twisted bilayer graphene, a novel layered system attracting
great interest recently, might also be a candidate for our work, since this material is
theoretically suggested to realize the hydrodynamic regime [341] and to show a remarkably
high responsivity of the QNLH effect [327].

4.9 Conclusions and outlook of this chapter

In summary, based on an electron hydrodynamic theory, we have formulated plasmonically-
driven geometrical photocurrents in nocentrosymmetric 2D layered systems with periodic
grating gates. As a result, we have clarified that the quantum nonlinear Hall effect can
be dramatically enhanced over a very broad range of frequency by utilizing plasmonic
resonances and near-field effects of grating gates. This plasmonic QNLH effect is closely
related with the optical absorption rate of the systems in general, and this property is
crucially important to design the novel THz photodetectors using the QNLH effect.

Finally, we briefly give a future perspective of this work. First, our framework could
be generalized to various types of problems in plasmonics, such as plasmonic responses
of 1D vdW materials [342, 343] and gate-controlled optical activity [344], plasmon-to-
current converters (plasmon detectors) [106, 345, 346]. For example, various microstruc-
tured graphene devices, such as graphene microdiscs [347] and graphene micro-ribbon
arrays [148], have been enthusiastically discussed so far in the context of plasmonics.
These devices achieve a strong THz absorption and the spectra are highly controllable
by changing the sample size, gate voltage, and the layer number. By applying our for-
mulation to these plasmonic systems, we can maybe obtain more efficient and tunable
THz photodetectors that utilize the plasmonic QNLH effect. Moreover, although we have
mainly focused on the two-dimensional systems, the universal relation between optical
absorption and the BCD-induced photocurrent holds even in three-dimensional systems.
In particular, as shown in Refs. [304, 348], Weyl semimetals have relatively large BCD due
to the divergence of the Berry curvature near the Weyl nodes, and the (surface) plasmons
have several unique features since they are essentially electron-hole liquids with linear
dispersion and chiral anomaly [82, 349, 350, 351]. Generalizing our framework to include
these materials might be an interesting problem from both theoretical and experimental
perspectives.

Furthermore, the scope of applications of our formulation is not restricted to photo-
galvanic responses, but includes other various optical phenomena such as gate-controlled
optical activity and plasmon-to-current conversion. For example, optical activities in two-
dimensional systems without nanostructures, which are often described by geometrical
quantities [127, 128, 129, 130, 131, 132, 133, 134], are typically small in the low frequency
regime, due to the scale separation between the wavelength of incident lights and the mi-
croscopic length scale of electron systems. By utilizing the plasmonic resonance, we might
be able to enhance these phenomena, leading to compact and electrically-controllable THz
modulators.

We believe that these results provide us with a new way to investigate the role of
quantum geometry in plasmonics, leading to a promising route toward a novel type of
highly sensitive, broadband and electrically-controllable terahertz plasmonic devices.
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Chapter 5

Conclusion

In this thesis, we have focused on anomalous electron hydrodynamics in noncentrosymmet-
ric metals and its application to novel Thz photodetectors. As introduced in Chapter 1,
although electron hydrodynamics is rapidly growing into a mature research area in the
condensed matter physics in the last few years, there still remain many open problems
related to the crystal symmetries and the geometrical structure of Bloch electrons. In
particular, motivated by recent discovery of hydrodynamic materials without inversion
symmetry, we have aimed to clarify the role of inversion symmetry breaking in electron
hydrodynamics, and answer how we cam utilize these novel materials to develop practical
optical devices.

In Chap. 3, we have formulated an anomalous hydrodynamic theory that can de-
scribe the quantum geometrical effects as anomalous driving forces. By using this frame-
work, we can predict novel types of hydrodynamic flows, i.e. anomalous edge current and
asymmetric Poiseuille flow. These phenomena are expected to be observable by using
state-of-the-art experimental techniques, such as scanning magnetosensors with diamond
nitrogen-vacancy center. We have also provided a group theoretical classification of elec-
tron fluids, and specified which existing hydrodynamic materials can exhibit anomalous
hydrodynamic flows mentioned above.

In Chapter 4, we have investigated the interplay between quantum geometrical effects
and surface plasmons, assuming the two-dimensional electron systems with surface plas-
monic nanostructures, which is referred to as the periodic plasmonic grating model. As
a result, we have clarified that the surface plasmon resonance plays an important role in
enhancing the quantum nonlinear Hall (QNLH) effect in the frequency regime beyond its
characteristic threshold. We have also proven a universal relation between the photocur-
rent induced by the Berry curvature dipole and the optical absorption rate of the electron
systems. This relation is crucially important for the computational design of novel THz
photodetectors that utilize the QNLH effect, and gives us a helpful roadmap to improve
the external and internal responsivity of the photodetectors.

We believe that, through these works, we have opened up a new frontier of research
that bridges several different research areas, inculuding electron hydrodynamics, quantum
geometry, and plasmonics, which have been usually studied separately. In particular,
incorporating plasmon physics into quantum geometrical physics is not only interesting
from theoretical viewpoints, but also practically important problems, and it will lead to
developing novel functional devices using novel quantum materials such as topological
semimetals and van der Waals layered materials.
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[6] R. Pasechnik and M. Šumbera, Universe 3 (2017), 10.3390/universe3010007.

[7] D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom, A. Tomadin, A. Principi,
G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko,
A. K. Geim, and M. Polini, 351, 1055 (2016).

[8] F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys.
Rev. Lett. 116, 136802 (2016).

[9] R. K. Kumar, D. Bandurin, F. Pellegrino, Y. Cao, A. Principi, H. Guo, G. Auton,
M. B. Shalom, L. A. Ponomarenko, G. Falkovich, et al., Nature Physics 13, 1182
(2017).

[10] D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Kumar, A. I. Berdyugin,
M. Ben Shalom, I. V. Grigorieva, A. K. Geim, and G. Falkovich, Nature Com-
munications 9, 4533 (2018).

[11] A. I. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. Krishna Kumar, A. Prin-
cipi, I. Torre, M. Ben Shalom, T. Taniguchi, K. Watanabe, I. V. Grigorieva,
M. Polini, A. K. Geim, and D. A. Bandurin, Science 364, 162 (2019),
https://science.sciencemag.org/content/364/6436/162.full.pdf .

[12] C. Tan, D. Y. H. Ho, L. Wang, J. I. A. Li, I. Yudhistira, D. A. Rhodes, T. Taniguchi,
K. Watanabe, K. Shepard, P. L. McEuen, C. R. Dean, S. Adam, and J. Hone,
“Realization of a universal hydrodynamic semiconductor in ultra-clean dual-gated
bilayer graphene,” (2019), arXiv:1908.10921 .

[13] J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J. Perello, D. Dutta, M. Ben-
Shalom, T. Taniguchi, K. Watanabe, T. Holder, R. Queiroz, A. Principi, A. Stern,
T. Scaffidi, A. K. Geim, and S. Ilani, Nature 576, 75 (2019).

71

http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1007/978-94-015-8839-3_1
http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.3390/universe3010007
http://dx.doi.org/10.1126/science.aad0201
http://dx.doi.org/ 10.1103/PhysRevLett.116.136802
http://dx.doi.org/ 10.1103/PhysRevLett.116.136802
http://dx.doi.org/ 10.1038/s41467-018-07004-4
http://dx.doi.org/ 10.1038/s41467-018-07004-4
http://dx.doi.org/10.1126/science.aau0685
http://arxiv.org/abs/https://science.sciencemag.org/content/364/6436/162.full.pdf
http://arxiv.org/abs/arXiv:1908.10921
http://dx.doi.org/10.1038/s41586-019-1788-9


72 REFERENCES

[14] P. Gallagher, C.-S. Yang, T. Lyu, F. Tian, R. Kou, H. Zhang,
K. Watanabe, T. Taniguchi, and F. Wang, Science 364, 158 (2019),
https://science.sciencemag.org/content/364/6436/158.full.pdf .

[15] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P. Mackenzie, Science
351, 1061 (2016), http://science.sciencemag.org/content/351/6277/1061.full.pdf .

[16] L. W. Molenkamp and M. J. M. de Jong, Phys. Rev. B 49, 5038 (1994).

[17] M. J. M. de Jong and L. W. Molenkamp, Phys. Rev. B 51, 13389 (1995).

[18] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, AIP Advances 8,
025318 (2018), https://doi.org/10.1063/1.5020763 .

[19] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov, Phys. Rev. B 98,
161303 (2018).

[20] A. D. Levin, G. M. Gusev, E. V. Levinson, Z. D. Kvon, and A. K. Bakarov, Phys.
Rev. B 97, 245308 (2018).

[21] B. A. Braem, F. M. D. Pellegrino, A. Principi, M. Röösli, C. Gold, S. Hennel, J. V.
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