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Abstract

Recent progress in ultracold atoms has enabled control of dissipation and single-atom measurement
at ultimate resolution as well as flexible tuning of physical parameters. When extracting informa-
tion of quantum systems by measurement of the system, observers play a role as an environment,
and their backaction induces a change in the quantum states of the system. In particular, when we
deal with physics at ultimate resolution in ultracold atoms, backaction caused by measurement of
the system becomes significant. Motivated by such backgrounds, a lot of studies have been done in
recent years by using dissipation such as particle loss, dephasing, and measurement backaction, and
it is reported both theoretically and experimentally that dissipation can realize unique nonequi-
librium phenomena in open quantum systems. On the other hand, many-body effects, which are
known to bring about rich phenomena induced by correlation, have not been fully understood yet
in nonequilibrium quantum systems subject to dissipation.

In this thesis, we investigate several representative quantum many-body phenomena in ultracold
atoms with dissipation. First, motivated by recent experimental advances in ultracold atoms, we
analyze a non-Hermitian (NH) BCS Hamiltonian with a complex-valued interaction arising from
inelastic scattering between fermions. We develop a mean-field theory to obtain a NH gap equation
for order parameters, which are different from the standard BCS ones due to the inequivalence of
left and right eigenstates in the NH physics. We find unconventional phase transitions unique to
NH systems: Superfluidity shows reentrant behavior with increasing dissipation as a consequence of
non-diagonalizable exceptional points, lines, and surfaces in the quasiparticle Hamiltonian for weak
attractive interactions. For strong attractive interactions, the superfluid gap never collapses but is
enhanced by dissipation due to an interplay between the BCS-BEC crossover and the continuous
quantum Zeno effect. Our results lay the groundwork for studies of fermionic superfluidity subject
to inelastic collisions.

Next, going beyond the NH framework, we predict a new mechanism to induce collective ex-
citations and a nonequilibrium phase transition of fermionic superfluids via a sudden switch-on
of two-body loss, for which we extend the BCS theory to fully incorporate a change in particle
number. We find that a sudden switch-on of dissipation induces an amplitude oscillation of the
superfluid order parameter accompanied by a chirped phase rotation as a consequence of particle
loss. We demonstrate that when dissipation is introduced to one of the two superfluids coupled via
a Josephson junction, it gives rise to a nonequilibrium dynamical phase transition characterized by
the vanishing dc Josephson current. The dissipation-induced collective modes and nonequilibrium
phase transition can be realized with ultracold fermionic atoms subject to inelastic collisions.

Furthermore, we study how translationally invariant couplings of many-particle systems and
nonequilibrium baths can be used to rectify particle currents, for which we consider minimal setups
to realize bath-induced currents in nonequilibrium steady states of one-dimensional (1D) open
fermionic systems. We first analyze dissipative dynamics associated with a nonreciprocal Lindblad
operator and identify a class of Lindblad operators that are sufficient to acquire a unidirectional
current. We show that unidirectional particle transport can in general occur when a Lindblad
operator is reciprocal provided that the inversion symmetry and the time-reversal symmetry of
the microscopic Hamiltonian are broken. We demonstrate this mechanism on the basis of both
analytical and numerical approaches including the Rashba spin-orbit coupling and the Zeeman
magnetic field.

Finally, we demonstrate the universal properties of dissipative Tomonaga-Luttinger (TL) liquids
by calculating correlation functions and performing finite-size scaling analysis of a NH XXZ spin
chain as a prototypical model in 1D open quantum many-body systems. Our analytic calculation
is based on effective field theory with bosonization, finite-size scaling approach in CFT, and the
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Bethe-ansatz (BA) solution. Our numerical analysis is based on the density-matrix renormalization
group generalized to NH systems (NH-DMRG). We uncover that the model in the massless regime
with weak dissipation belongs to the universality class characterized by the complex-valued TL
parameter, which is related to the complex generalization of the c = 1 CFT. As the dissipation
strength increases, the values of the TL parameter obtained by the NH-DMRG begin to deviate
from those obtained by the BA analysis, indicating that the model becomes massive for strong
dissipation. Our results can be tested with the two-component Bose-Hubbard system of ultracold
atoms subject to two-body loss.
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Chapter 1

Introduction and background

1.1 Overview of this thesis

First of all, we explain the organization of this theses. This thesis consists of six chapters, including
our results in Chaps. 2, 3, 4, and 5. In this chapter, we give an introduction to understand quantum
many-body physics in ultracold atoms subject to dissipation. In Sec. 1.2, we give an introduction
about open quantum systems and non-Hermitian (NH) quantum systems, which naturally appear
in atomic, molecular, and optical (AMO) systems coupled to Markovian environments. Sec. 1.3
is devoted to the explanation of analytical and numerical methods which are beneficial to analyze
open quantum systems. In Sec. 1.4, we review the basics of quantum many-body phenomena,
which is helpful to understand our results in the subsequent chapters.

In Chap. 2, we demonstrate how fermionic superfluidity in ultracold atoms is affected by inelas-
tic collisions. This chapter gives a generalized property of fermionic superfluids without dissipation
discussed in Sec. 1.4.1. Our approach is based on the generalization of the standard Bardeen-
Cooper-Schrieffer (BCS) theory to a situation in which fermions interact with each other via a
complex-valued attraction. As a result, we find that non-Hermiticity leads to unique reentrant
quantum phase transitions in superfluids.

In Chap. 3, we theoretically investigate nonequilibrium dynamics followed by a sudden switch-on
of two-particle loss due to inelastic collisions between atoms. Based on closed-time-contour (CTC)
path integrals discussed in Sec. 1.3.1, we formulate a dissipative BCS theory that fully incorporates
a change in particle number, which is included via quantum jump terms in the Lindblad equation.
As an experimentally relevant model, we propose introducing a particle loss in one of two coupled
superfluids, and find a nonequilibrium phase transition characterized by the vanishing dc Josephson
current.

In Chap. 4, we study a unidirectional particle transport in nonequilibrium steady states (NESSs)
of one-dimensional (1D) open fermionic systems subject to homogeneous dissipation, based on
the time-dependent generalized Gibbs ensemble (tGGE) approach discussed in Sec. 1.3.2. We
demonstrate both reciprocal and nonreciprocal dissipation can be used to induce nonreciprocal
transport in NESSs.

In Chap. 5, we study the NH XXZ spin chain by starting from an experimentally relevant two-
component Bose-Hubbard model with two-body loss and applying a quantum trajectory method
to the Lindblad master equation. We derive correlation functions by using the effective field
theory, and obtain the energy spectrum in a finite system consistent with the finite-size scaling
formula generalized to NH Tomonaga-Luttinger (TL) liquids. Based on the NH density-matrix
renormalization group (DMRG) algorithm discussed in Sec. 1.3.3, we also report the numerical
demonstration of the analytically obtained results for the NH XXZ spin chain.

Finally, in Chap. 6, we conclude this thesis.

1.2 Ultracold atoms with dissipation

In this section, we review the basics of ultracold atoms subject to dissipation. First, we introduce
open quantum systems, and then explain NH quantum systems, which are effective description of
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12 CHAPTER 1. INTRODUCTION AND BACKGROUND

open quantum systems.

1.2.1 Open quantum systems

In recent years, open quantum systems have been actively studied both experimentally and theo-
retically [1–3]. In many cases, coupling to the environment causes decoherence of quantum states
and it is often detrimental to their control. Remarkably, dissipation can also be instrumental in
the preparation of novel states in open quantum systems. To date, a number of theoretical stud-
ies have shown that dissipation drastically alters various aspects of quantum many-body physics
[4–15]. In particular, the interplay between unitary many-body dynamics and nonunitary state
evolution due to dissipation leads to various unconventional phenomena such as dissipative quan-
tum phase transitions [16–18], and measurement-induced entanglement transitions [19–30]. It is
worth noting that high controllability of ultracold atoms has enabled studies and observations of
novel quantum phases unique to open quantum systems [31–39], e.g., continuous quantum Zeno
effect (QZE) [40–42], loss-induced Dicke state [43], and fermionic superfluidity in ultracold atoms
undergoing inelastic collisions [44–52]. In this subsection, we first derive the Lindblad master equa-
tion that describes the Markovian dynamics in open quantum systems, and explain QZE, which is
a prototypical dissipation-induced phenomenon.

Lindblad master equation

In dissipative open quantum systems, the dynamics, after environmental degrees of freedom are
traced out, is nonunitary and described by a completely positive and trace-preserving map [2,
53]. Such nonunitary dynamics is described by the Lindblad master equation, and is relevant for
AMO systems. We here derive the Lindblad equation by taking an ensemble average of quantum
trajectories, which are the stochastic process followed by dissipative dynamics. At t = 0, we assume
that the system is in the initial state given by the density operator

ρ(t = 0) = |φ(t = 0)〉〈φ(t = 0)|. (1.1)

The dynamics of the density operator gives the quantum master equation. Here, we consider the
following two types of stochastic process:

• The system follows the nonunitary dynamics described by the NH Hamiltonian Heff . This
dynamics does not change the particle number of the system

• The particle number of the system changes as a result of dissipation. This dynamics is
described by the jump operator (Lindblad operator).

The resulting Lindblad master equation is calculated as follows.

First, we consider that the system evolves according to the NH Hamiltonian Heff . By approx-
imating the dynamics up to the first order with respect to δt, the quantum state after time δt is
given by

|φ′(t+ δt)〉 = (1− iHeffδt) |φ(t)〉 (1.2)

Here, we have to pay careful atttention to the fact that the dynamics of the system does not
follow the unitary evolution as a result of the non-Hermiticity in Heff . Then, this quantum state is
realized with the probability that is smaller than 1, and should be normalized by the norm. The
square of this norm gives the probability where the normalized state is realized after time δt. This
probability is given by

〈φ′(t+ δt)|φ′(t+ δt)〉 =〈φ(t)|(1 + iH†effδt)(1− iHeffδt)|φ(t)〉

'1− i〈φ(t)|(Heff −H†eff)|φ(t)〉δt
=1− δp

=1−
∑
i

δpi. (1.3)
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Here, the subscript i stands for the label such as coordinates or wave numbers. We obtain the
normalized state |φ1(t+ δt)〉 as

|φ1(t+ δt)〉 =
|φ′(t+ δt)〉√

1− δp
=

(1− iHeffδt) |φ(t)〉√
1− δp

. (1.4)

As in the same way, we can treat the jump process which changes the particle number of
the system. Due to the conservation of the probability, the total probability of the non-unitary
dynamics described by Heff and the jump process should be 1. Then, from Eq. (1.3), we see that
the probability δp gives the jump process, and we can introduce the jump operator (Lindblad
operator) Li, which is defined by

L†iLi ≡ i(Heff −H†eff). (1.5)

As δpi is given by ∑
i

δpi = 〈φ(t)|i(Heff −H†eff)|φ(t)〉δt (1.6)

=
∑
i

〈φ(t)|L†iLi|φ(t)〉δt, (1.7)

the quantum state after time δt corresponding to the jump process is given by (the state is nor-
malized)

|φ2i(t+ δt)〉 =
Li|φ(t)〉

√
δt√

δpi
=
Li|φ(t)〉√
δpi/δt

. (1.8)

As a result, by introducing the density operator at time t as

ρ(t) = |φ(t)〉〈φ(t)|, (1.9)

we obtain the ensemble average of the trajectory dynamics at time t+ δt as

ρ(t+ δt) = (1− δp)|φ1(t+ δt)〉〈φ1(t+ δt)|+
∑
i

δpi|φ2i(t+ δt)〉〈φ2i(t+ δt)|

= ρ(t)− iδt(Heffρ(t)− ρ(t)H†eff) + δt
∑
i

Liρ(t)L†i . (1.10)

Equation (1.10) holds regardless of whether ρ(t) is a pure state or not. Finally, by dividing
Eq. (1.10) by δt, we obtain the Lindblad master equation:

ρ̇ = Lρ

= −i(Heffρ− ρH†eff) +
∑
i

LiρL
†
i

= −i[H, ρ]− 1

2

∑
i

(
L†iLiρ+ ρL†iLi − 2LiρL

†
i

)
. (1.11)

Here, we note that H is the Hermitian Hamiltonian of the system, and

Heff = H − i

2

∑
i

L†iLi. (1.12)

Thus, we see that the nonunitary dynamics described by the NH Hamiltonian Heff corresponds to
the one between quantum jumps in a single quantum trajectory, and thus the NH dynamics does
not change the particle number of the system though it feels the effect of dissipation. It depends
on the system how long such NH dynamics is realized in real experiments.
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Figure 1.1: Schematic figure of Rabi oscillations in two-level systems

Continuous quantum Zeno effect

One of the prototypical loss-induced phenomena in open quantum systems is QZE, which arises
for strong dissipation (two-body loss) regime. Intuitively, when dissipation rate is large, particles
seem to be lost into the surrounding environment as a result of inelastic collisions, and it seems
that the observed loss increases too. However, in real experiments, observed loss decreases for
strong dissipation, and such counterintuitive phenomena are called QZE.

We explain the detailed mechanism in the following. We consider the Rabi oscillation in two-
level systems shown in Fig. 1.1 [2]. In Fig. 1.1, the state |1〉 has one particle in each site, the state
|2〉 has two particles in one site, and the state |3〉 has no particles. Here, Ω is the Rabi frequency,
∆ is the detuning, and Γ is the decay rate from the state |2〉 to the state |3〉. Then, the effective
Hamiltonian of the systems is given by

Heff = −Ω

2
σx −∆σ+σ− − i

Γ

2
σ+σ−, (1.13)

where σi is the Pauli matrix defined by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.14)

and we have introduced

σ+ =

(
0 1
0 0

)
, σ− = σ†+. (1.15)

We set the basis of the matrix representation to be (|1〉, |2〉). We see that the last term in the
effective Hamiltonian (1.13) denotes the effect of dissipation.

Then, we calculate the observed decay rate of the state |1〉, which we define as Γeff . That is, we
want to know how the initial state |1〉 is affected by dissipation when the decay rate Γ is increased.
We consider the second-order perturbative process with Heff between the states |1〉 and |2〉, and
study how particles are affected by dissipation as a result of the NH Hamiltonian Heff . Here, we
assume that the Rabi frequency Ω is sufficiently smaller than the detuning ∆ or the decay rate Γ.
Then, by using the perturbative approach with respect to

H1 = −Ω

2
σx, (1.16)

the energy shift for the state |1〉 is calculated up to the second order as follows:

E1 =
〈1|H1 |2〉 〈2|H1 |1〉

∆ + iΓ/2
=

Ω2

4∆2 + Γ2
(∆− iΓ/2). (1.17)

As E1 denotes the energy shift including the effect of dissipation, the time evolution of the state
|1〉 described by the energy E1 is given by

exp (−iE1t) |1〉 = exp

[
−i Ω2

4∆2 + Γ2

(
∆− iΓ

2

)
t

]
|1〉 . (1.18)
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The decay of the state |1〉 is obtained by the squared norm of Eq. (1.18) as

Ploss = exp

[
− Ω2

4∆2 + Γ2
Γt

]
. (1.19)

Thus, the effective decay rate of the state |1〉, that is, Γeff , is calculated as

Γeff =
Ω2

4∆2 + Γ2
Γ. (1.20)

In Eq. (1.20), for small Γ, we see that Γeff increases as we increase the dissipation rate Γ.
This is an intuitive result. However, for large Γ, we see from (1.20) that the observed loss rate
Γeff decreases as we increase Γ. This is QZE, which shows that the system tends to freeze in its
initial state for large dissipation rate Γ, and thereby observed loss decreases. Though QZE was
first suggested in mathematics [54], it is observed in many experiments, and the first observation
in ultracold atoms was in 2008 [40], in which spinless bosons of 1D 87Rb Bose-Einstein condensate
(BEC) were used.

At the end of this subsection, we explain how to calculate dissipative dynamics of the particle
number in the system. For simplicity, we consider the Lieb-Liniger model [12, 55] given by

H = − 1

2m

∑
i

∂2

∂x2
i

+ g
∑
i<j

δ(xi − xj) (1.21)

= − 1

2m

∫
dxΨ†(x)

d2

dx2
Ψ(x) +

Re(g)

2

∫
dxΨ†2(x)Ψ2(x). (1.22)

When the system is subject to two-body losses of bosons, the system dynamics is given by the
Lindblad master equation dρ/dt = −i[H, ρ] + D(ρ), where D(ρ) describes the coupling to the
environments, and is given by

D(ρ) =
Im(g)

2

∫
dx
(
2Ψ2(x)ρΨ†2(x)−Ψ†2(x)Ψ2(x)ρ− ρΨ†2(x)Ψ2(x)

)
. (1.23)

In experiments, the loss coefficient is determined by the time-evolution of the particle number in
the system, which is easily obtained as follows. We use the fact that expectation values are given
by

Tr(ρA) = Tr(ρA†) = [Tr(ρA)]∗ ∈ R (A: Hermitian). (1.24)

By multiplying the particle number operator n to the Lindblad master equation (1.11) and taking
the trace, we obtain

d〈n〉
dt

= −iTr [n [H, ρ]] + Tr [nD(ρ)]

= Tr [nD(ρ)]

=
Im(g)

2

∫
dxTr[2Ψ†3(x)Ψ3(x)ρ−Ψ†(x)Ψ(x)Ψ†2(x)Ψ2(x)ρ

−Ψ†2(x)Ψ2(x)Ψ†(x)Ψ(x)ρ]

=
Im(g)

2

∫
dxTr[2Ψ†3(x)Ψ3(x)ρ−Ψ†(x)(1 + Ψ†(x)Ψ(x))Ψ†(x)Ψ2(x)ρ

−Ψ†2(x)Ψ(x)(1 + Ψ†(x)Ψ(x))Ψ(x)ρ]

=
Im(g)

2

∫
dxTr

[
2Ψ†3(x)Ψ3(x)ρ− 2Ψ†2(x)Ψ2(x)ρ− 2Ψ†2(x)Ψ(x)Ψ†(x)Ψ2(x)ρ

]
= −2Im(g)

∫
dxTr

[
Ψ†2(x)Ψ2(x)ρ

]
= −2Im(g)g(2)〈n〉2, (1.25)

where g(2) is given by

g(2) =
〈Ψ†2Ψ2〉
〈n〉2

. (1.26)

We note that g(2) becomes 1 in the limit of no correlation.
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1.2.2 Non-Hermitian quantum systems

In recent years, NH quantum systems, which are effective descriptions of open quantum systems,
have been actively studied both experimentally and theoretically [56]. NH quantum systems arise
when the system undergoes dissipation to an environment [2, 57]. It has been revealed that
non-Hermiticity drastically alters the properties of a number of quantum phenomena that have
been established in the Hermitian physics, such as quantum phase transitions [58–62], quantum
critical behavior [63–68], topological phases [69–80], and magnetism [81, 82]. Such theoretical
predictions have been confirmed experimentally by using optical systems and ultracold atoms [83–
92]. However, since most of the previous studies dealt with single-particle physics, exploration of
many-body physics in NH systems is still in its infancy [63, 64, 66, 67].

In general, for the realization of NH quantum many-body systems, postselection of measurement
outcomes by means of quantum-gas microscopy can be utilized [56, 63, 64, 82, 93], and such
experimental progress has facilitated investigations of NH quantum systems. NH quantum systems
have a lot of unique properties that have not been obtained in conventional Hermitian systems.
For example, the energy spectrum in a closed system is always real as a result of Hermiticity of the
system Hamiltonian. However, NH Hamiltonian gives complex-valued energy spectra as a result
of dissipation, and the imaginary part of the energy gives decay rates of the eigenstates. This is
easily understood as the time evolution of the system is described by the Schrödinger equation
i∂t|ψ〉 = Heff |ψ〉, where Heff is the NH Hamiltonian of the system. Thus, eigenstates differ from
right ones to left ones (ket vectors to bra vectors), and the definition of expectation values in
general becomes nontrivial.

To understand the property of NH Hamiltonian in detail, we give an example of the NH XY
model [81]. We consider a 1D XY Hamiltonian described by

H =
∑
n

(Jxσ
x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1), (1.27)

where σin is the Pauli matrix. By considering a decay event of up spins, the effective NH Hamilto-
nian of the system is given by

Heff = H − iγ

4

∑
n

(σzn + 1) (1.28)

=
∑
n

[
2J(σ+

n σ
−
n+1 + σ−n σ

+
n+1) + 2J ′(σ+

n σ
+
n+1 + σ−n σ

−
n+1)− iγ

4
(σzn + 1)

]
, (1.29)

where we have introduced J =
Jx+Jy

2 and J ′ =
Jx−Jy

2 .
In the case of two atoms, the eigenvalues and eigenstates of the effective Hamiltonian are simply

written down as

λ±1 = −iγ
2
± 1

2

√
64J ′2 − γ2, λ±2 = −iγ

2
± 4J (1.30)

∣∣u±1 〉 =
1

N


−iγ±
√

64J′2−γ2

8J′

0
0
1

 ,
∣∣u±2 〉 =


0
±1√

2
1√
2

0

 . (1.31)

We see that the eigenvalues λ±1 have a unique property in NH quantum systems. First, λ±1 are
complex conjugate to each other, and this property only arises in NH quantum mechanics. More-
over, the eigenvalues λ±1 become degenerate when J ′ = γ/8, and this point is called the exceptional
point, which has obtained tremendous interest in NH quantum systems.

1.3 Analytical and numerical methods in open quantum sys-
tems

Open quantum systems offer a new opportunity to investigate nonequilibrium phenomena, where
couplings to the environment play a central role. However, dissipation makes the system compli-
cated, and in general, it becomes more difficult to deal with quantum states in dissipative systems
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Figure 1.2: Schematic figure of CTC for pure states

than those in closed systems. In this section, we introduce several useful techniques to approach
dissipative phenomena both analytically and numerically.

1.3.1 Closed-time-contour path integrals for Lindblad equations

We here explain the philosophy of CTC path integrals (so-called Keldysh path integrals) for the
Lindblad master equation (1.11) [3]. Figure 1.2 shows the idea of CTC path integrals for pure
states. As the Lindblad operator is a superoperator, it acts both on the bra vector and the ket
vector of the density matrix. By denoting the time evolution of the ket side U |ψ〉 as a forward
path, and that of the bra side 〈ψ|U† as a backward path, respectively, we obtain CTC as shown
in Fig. 1.2. We note that, in a closed system, we only have to deal with the forward path as we
assume adiabatic process in equilibrium. However, in open quantum systems, we have to consider
both forward and backward paths as adiabatic approximation generally breaks down.

We then go on to the details of how to construct CTC path integral. For simplicity, we consider
bosonic cases. We start with a generating functional given by

Ztf ,t0 = Trρ(tf ) = Tre(tf−t0)Lρ(t0), (1.32)

where we note that time evolution of the density matrix is given by

ρ(t) = e(t−t0)Lρ(t0) ≡ lim
N→∞

(1 + δtL)Nρ(t0). (1.33)

As in the case of conventional path integrals in a closed system, we follow a procedure to decompose
the time evolution into small time steps.

It is then useful to introduce a bosonic coherent state, which is defined as

|ψ〉 = exp(ψb†)|0〉, (1.34)

b|ψ〉 = ψ|ψ〉, (1.35)

where |0〉 is the vacuum in Fock space. Then, we obtain several useful equations of coherent states
such as

〈ψ|b† = 〈ψ|ψ∗, (1.36)

〈ψ|φ〉 = eψ
∗φ. (1.37)

We note that the completeness condition is given by

1 =

∫
dψdψ∗

π
e−ψ

∗ψ|ψ〉〈ψ|. (1.38)
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By using the time step tn ≡ t0 +δtn and the completeness condition, we can write down the density
matrix ρn at time tn as

ρn+1 = eδtLρn ' (1 + δtL)ρn, (1.39)

ρn =

∫
dψ+,ndψ

∗
+,n

π

dψ−,ndψ
∗
−,n

π
e−ψ

∗
+,nψ+,n−ψ∗−,nψ−,n〈ψ+,n|ρn|ψ−,n〉|ψ+,n〉〈ψ−,n|. (1.40)

Then, we easily obtain

〈ψ+,n+1|ρn+1|ψ−,n+1〉 =

∫
dψ+,ndψ

∗
+,n

π

dψ−,ndψ
∗
−,n

π
eiδt(−ψ+,ni∂tψ

∗
+,n−ψ

∗
−,ni∂tψ−,n−iL)〈ψ+,n|ρn|ψ−,n〉,

(1.41)

where we have assumed normal ordering of the Hamiltonian, introduced the eigenvalue of the
Liouvillian L as

L =
〈ψ+,n+1|L(|ψ+,n〉〈ψ−,n|)|ψ−,n+1〉
〈ψ+,n+1|ψ+,n〉〈ψ−,n|ψ−,n+1〉

, (1.42)

and used the following equations

〈ψ+,n+1|ψ+,n〉 = eψ
∗
+,n+1ψ+,n , (1.43)

(ψ∗+,n+1 − ψ∗+,n)ψ+,n = δtψ+,n∂tψ
∗
+,n. (1.44)

Finally, by taking the limit δt → 0 (N →∞), t0 → −∞, tf →∞, and ignoring the boundary term
〈ψ+(t0)|ρ(t0)|ψ−(t0)〉, we arrive at the final form of CTC path integrals as

Z =

∫
D[ψ+, ψ

∗
+, ψ−, ψ

∗
−]eiS = 1, (1.45)

D = [ψ+, ψ
∗
+, ψ−, ψ

∗
−] lim

N→∞

N∏
n=0

dψ+,ndψ
∗
+,n

π

dψ−,ndψ
∗
−,n

π
, (1.46)

S =

∫ ∞
−∞

dt(ψ∗+i∂tψ+ − ψ∗−i∂tψ− − iL(ψ∗+, ψ+, ψ
∗
−ψ−)), (1.47)

L(ψ∗+, ψ+, ψ
∗
−ψ−) = −i(H+ −H−) +

∑
α

γα[Lα,+L
∗
α,− −

1

2
(L∗α,+Lα,+ + L∗α,−Lα,−)], (1.48)

which we frequently employ by generalizing the formalism to fermionic systems in Sec. 3.

1.3.2 Time-dependent generalized Gibbs ensemble

NESSs are unique quantum phases, which are obtained as a result of couplings to environments.
Though several studies have been done to approach many-body phenomena in NESSs [2, 5, 94, 95],
there still lacks of general description to describe many-body physics in NESSs of open quantum
systems. In this subsection, we explain how the dynamics of the system that is weakly driven by
Markovian baths is determined based on the methods considered in Refs. [96–98], which make an
approach to NESSs from the perspective of noneqilibrium statistical mechanics.

We consider a situation that the integrable system described by a Hamiltonian H0 with con-
servation laws Ii (i = 0, 1, . . . , N) is weakly perturbed by Markovian baths, thus breaking the
integrability. Such a system is described by the Lindblad master equation by using a small di-
mensionless parameter ε as ∂tρ = L0ρ+ L1ρ, L0ρ = −i[H0, ρ], L1ρ = εD(ρ), where the dissipator
D(ρ) is given by D(ρ) =

∑
m

(
LmρL

†
m − 1

2

{
L†mLm, ρ

})
. Below, we take a perturbative approach

to NESSs. If there is no perturbation by the environments, it is extensively shown that steady
states of the integrable models approach to that described by a generalized Gibbs ensemble

ρ0 =
e−

∑
i λiIi

Tr[e−
∑
i λiIi ]

. (1.49)
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Then, we track the changes of the Lagrange parameters by weak driving of the baths. We split
the density operator ρ(t) into zeroth-order approximation ρGGE(t) and corrections δρ(t) as

ρ(t) = ρGGE(t) + δρ(t), (1.50)

where ρGGE(t) is the tGGE

ρGGE(t) =
e−

∑
i λi(t)Ii

Tr[e−
∑
i λi(t)Ii ]

. (1.51)

and δρ should be small in the limit ε→ 0. As L0ρGGE(t) = 0 by definition, the condition of NESSs
Lρ = 0 ensures that the correction δρ of order of ε (and larger) is given by

δρ = −L−1L1ρGGE. (1.52)

To obtain the dynamics of Lagrange parameters λi(t) that determines ρGGE of order of ε0, it is
convenient to introduce the superoperator P

PX ≡ −
∑
ij

∂ρGGE

∂λi
(χ−1)ijtr[IjX], (1.53)

χij(t) = 〈IiIj〉GGE − 〈Ii〉GGE〈Ij〉GGE, (1.54)

which projects the density matrix onto the space tangential to the GGE manifold spanned by
∂ρGGE(t)/∂λi. Here, we note that PρGGE 6= ρGGE because P is not a projector onto the space of
GGE matrix. By using

P ρ̇ = ρ̇GGE + Pδρ̇ (1.55)

and demanding that Pδρ̇ ∼ O(ε2), we obtain

P ρ̇ ' ρ̇GGE =
∑
i

∂ρGGE

∂λi

∂λi
∂t

(1.56)

Since 〈Ii〉 is calculated as

〈İi〉 = tr[IiLρ]

= tr[IiL1ρGGE] + tr[IiL1δρ]

' tr[IiL1ρGGE] (1.57)

(we have used tr[IiL0δρ] = 0 because L†0Ii = i[H0, Ii] = 0, where the adjoint of the Liouvillian is
defined by tr[ALρ] = tr[(L†A)ρ]), we finally obtain the dynamics of the Lagrange parameters up
to the order of ε from Eqs. (1.53) and (1.56) as

λ̇i = −
∑
j

(χ(t)−1)ijtr [IjL1ρGGE(t)] . (1.58)

Equation (1.58) is used to determine the steady-state properties of NESSs in approximately in-
tegrable open quantum systems instead of fully calculating the Lindblad equation. For higher
order corrections of the perturbation theory and numerical evidence of the validity of tGGE, see
Refs. [97, 98]. We will use tGGE in Sec. 4 to study dissipation-induced transport of fermions in
NESSs.

1.3.3 Non-Hermitian density-matrix renormalization group

The DMRG analysis is one of the most powerful tools to analyze 1D systems [100–105]. The
principle of DMRG is the variational ansatz, in which the state is optimized by truncating the
eigenstates of the density matrix according to the magnitude of the corresponding eigenvalues.
However, in NH systems, the variational principle usually breaks down and an important question
arises concerning the choice of the density matrix. This is because the right and left eigenvectors of
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Table 1.1: Algorithm for NH-DMRG

1. Compute the matrix representation of the spin operators and make the Hamiltonian matrix
for four initial blocks (the superblock consists of a block, two sites, and another block).

2. Calculate the right and left ground states of the superblock Hamiltonian by using the Lanzcos method.
The ground state is defined by the lowest real part of the eigenspectrum.

3. Use the right and left ground states ψR(L) to create the reduced density matrix of the system block as
ρi1i2,i′1i′2 = 1

2

∑
i3i4

(ψRi1i2i3i4ψ
R∗
i′1i
′
2i3i4

+ ψLi1i2i3i4ψ
L∗
i′1i
′
2i3i4

).

We emphasize that the validity of this density matrix was confirmed numerically in Ref. [99],
and we do not use the traditional variational ansatz to minimize the energy.
The density matrix ρi1i2,i′1i′2 is Hermitian and has real eigenvalues.

4. Diagonalize the density matrix ρi1i2,i′1i′2 to find a set of eigenvalues and eigenvectors.
Discard all but the largest m eigenvalues and associated eigenvectors.

5. Form a new block by changing the bases to the new m states.
6. Repeat the processes 2-5 to enlarge the system by following the standard infinite-system algorithm.
7. Sweep the superblock by following the standard finite-system algorithm.

Eigenstate prediction is conducted for the right and left eigenstates by the same transformation.

the Hamiltonian are different due to the non-Hermiticity [106] and complex eigenvalues can appear
in the density matrix. In the previous studies, this problem was tackled by comparing the usage
of various types of the density matrix and successful numerical results have been obtained in, e.g.,
quantum Hall effects [107], reaction-diffusion processes [99], NH TL liquids [108, 109], and out-of-
equilibrium classical systems [110, 111]. We note that these situations are essentially different from
those of equilibrium quantum systems at a nonzero temperature, where a non-symmetric transfer
matrix is generated by applying a Trotter decomposition along the imaginary-time axis [112]. In
the latter situations, a similar problem occurs and the non-symmetric density matrix has been
used for the truncation of DMRG. However, to the best of our knowledge, no complex eigenvalues
stemming from the non-Hermiticity of the transfer matrix have appeared numerically. In this
sense, DMRG in NH systems offers intrinsically different situations from those in the equilibrium
systems. We apply the NH-DMRG algorithm, in which complex eigenvalues occur as a result of
the non-Hermiticity of the Hamiltonian, to NH quantum many-body systems. Such DMRG in NH
quantum many-body systems has yet to be fully explored [108, 109, 113]. We use the algorithm
detailed in Ref. [99], and we give a brief summary of the NH-DMRG algorithm in Table 1.1. We
will use NH-DMRG in Sec. 5 to study ground state properties of NH XXZ spin chain.

1.4 Basics of quantum many-body phenomena

In this section, we review several prototypical quantum many-body phenomena in condensed matter
physics (with no dissipation).

1.4.1 Fermionic superfluids in ultracold atoms

In this subsection, we briefly review the progress of fermionic superfluids in ultracold atoms. As
is well known, fermionic superfluidity of 3He is a famous example which was predicted about 50
years ago, but that in ultracold atoms has been realized in the early 2000s. This discovery has
started by the observations of molecular BEC in 2003 [114–116]. These experiments have treated
lower-magnetic field regions compared to the unitary regimes of BCS-BEC crossovers, and higher-
magnetic field regions than the unitary regimes, that is, BCS regimes have not been realized at this
point. BCS-BEC crossover has been observed in 2004, and celebrated BCS fermionic superfluidity
has been realized in ultracold atoms [117–119].

There has been great advancement in experimental techniques of fermionic superfluidity in these
20 years. For example, Refs [117, 118] directly observed the condensation rate of molecular pairs,
and observations of superfluid gaps and excitation spectra have been reported in Refs. [119, 120] by
using radio-frequency spectroscopy. We note that s-wave fermionic superfluidity is also observed
in lattice systems [121], and p-wave fermionic superfluidity has not been experimentally reported
so far, mainly because of the significant problem of particle losses.
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Figure 1.3: Schematic figure of the Feshbach resonance in 40K

We then summarize the Feshbach resonance, which is an important experimental protocol in
ultracold atoms. Feshbach resonance is the experimental technique to control interactions between
atoms by using external magnetic fields. Figure 1.3 shows the schematic figure of the Feshbach
resonance, and two potentials are shown with respect to two kinds of spin states, where we have
used 40K as an example. One is called the open channel that cannot make a bound state, and
the other is called the closed channel which can make a bound state, but becomes unstable as
the distance r is increased. Then, atomic interactions in the open channel are controlled via the
resonance with the closed channel. As these two channels have different magnetic moments in
general, atomic interactions in the open channel is controlled by using the Zeeman splitting with
external magnetic fields.

Recently, another experiment to tune interactions called orbital Feshbach resonance has been
actively studied in ultracold alkaline-earth-like atoms such as Yb and Sr [45]. The philosophy of the
Feshbach resonance is to control interactions by using magnetic moments in the ground state 1S0.
However, in ultracold alkaline-earth-like atoms, the ground state 1S0 has no magnetic moment, and
it is difficult to use the conventional Feshbach resonance. Then, it is suggested in Ref. [45] that
another way to realize the Feshbach resonance with the use of the metastable state 3P0 and the
ground state 1S0 focusing on the difference of the magnetic moment of nuclear spin states. Orbital
Feshbach resonance has been experimentally realized [49, 50] soon after the theoretical suggestion,
and observations of molecular bosons have been reported [51]. Though fermionic superfluidity by
using the orbital Feshbach resonance has not been reported so far, it is expected that ultracold
alkaline-earth fermions are to be used for realizing novel quantum many-body phenomena by using
the orbital Feshbach resonance.

1.4.2 One-dimensional spin systems

One dimensional quantum systems have been widely studied in condensed matter physics, and
one of the most important understanding is the TL liquid, which gives universal properties of
1D quantum critical phenomena. In this subsection, we treat the (Hermitian) XXZ model as a
prototypical example of 1D strongly correlated many-body systems. The Hamiltonian is given by

H = J
∑
j

(Sxj+1S
x
j + Syj+1S

y
j ) + J∆

∑
j

Szj+1S
z
j

=
J

2

∑
j

(S+
j+1S

−
j + S−j+1S

+
j ) + J∆

∑
j

Szj+1S
z
j , (1.59)

which we generalize to dissipative systems in Sec. 5. In the following, we summarize the well-
known property of this model, by deriving the sine-Gordon model with the use of bosonization and
Hermitian DMRG.
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Figure 1.4: Local bond strength and correlation functions obtained by DMRG with respect to xy
and z directions. The parameters are set to L = 60, m = 64, J = 1, and Jz = 3.
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We first explain the details of the bosonization procedure for the XXZ model (1.59) [122].
Bosonization is conducted in terms of the fields

φ(x) =− (NR +NL)
πx

L

− iπ

L

∑
k 6=0

(
L|k|
2π

) 1
2 1

k
e−α|k|/2−ikx(b†k + b−k), (1.60)

and

θ(x) =(NR −NL)
πx

L

+
iπ

L

∑
k 6=0

(
L|k|
2π

) 1
2 1

|k|
e−α|k|/2−ikx(b†k − b−k). (1.61)

These fields obey the commutation relations

[φ(x1), θ(x2)] =
∑
k 6=0

π

Lk
exp[ik(x2 − x1)− α|k|]

= i
π

2
sgn(x2 − x1), (1.62)

and

[φ(x1),∇θ(x2)] = iπδ(x2 − x1). (1.63)

Here, bk (b†k) is the annihilation (creation) operator of bosons, the subscript r = R (L) denotes
the right- (left-) going particles, Nr is the number of fermions above the Dirac sea in the r branch,
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Table 1.2: Ground state property of the XXZ spin chain

∆ Energy gap Ground state Correlation functions

∆ > 1 Ising, gapped AF, double degeneracy
AF long-range order in z direction

exponential decay in xy plane
∆ = 1 Heisenberg, gapless no magnetic order, no degeneracy power law × log correction
∆ < 1 TL liquid, gapless no magnetic order, no degeneracy power law

L is the system size, and α is a short-distance cutoff. The fields φ(x) and θ(x) are related to the
fermion operator as

ψr(x) =Ur lim
α→0

1√
2πα

ei(εrkF−
π
L )xe−i(εrφ(x)−θ(x)), (1.64)

where Ur is the Klein factor [122], εR = +1, and εL = −1.
By using these bosonization dictionaries, we rewrite the XXZ Hamiltonian (1.59) and obtain

the sine-Gordon Hamiltonian

H =HTL −
2g3

(2πα)2

∫
dx cos(4φ(x)), (1.65)

where g3 = aJ∆, and

HTL =
1

2π

∫
dx
[
uK(∇θ(x))2 +

u

K
(∇φ(x))2

]
, (1.66)

with

uK = vF = Ja sin(kFa), (1.67)

u

K
= vF

(
1 +

2J∆a

πvF
(1− cos(2kFa))

)
. (1.68)

Here, we have assumed the half-filling condition kF = π/2a which corresponds to the zero-
magnetization sector of the XXZ model. We note that the above derivation is valid only up
to the first order of ∆. If the cosine term in the sine-Gordon Hamiltonian (1.59) is irrelevant, the
model reduces to the TL Hamiltonian in Eq. (1.66). This is realized for the anisotropy parameter
∆ < 1.

In 1D systems, DMRG is one of the most powerful numerical methods [100, 101]. We plot
local bond strength and correlation functions for ∆ > 1 with open boundary conditions in Fig. 1.4.
We see that the system shows antiferromagnetic long-range order in z direction as a result of the
gapped ground state, and the correlation in xy direction shows exponential decay. On the other
hand, Fig. 1.5 shows the DMRG results for ∆ < 1. We see that the correlation function shows
power-law decay as a result of the gapless ground state in the thermodynamics limit. Finally, we
summarize the ground-state property of the XXZ model (1.59) as shown in Table 1.2.
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Chapter 2

Non-Hermitian fermionic
superfluidity

2.1 Introduction

Fermionic superfuidity is one of the most striking quantum many-body phenomena, which has
been a subject of intensive investigation in condensed matter physics [123]. More recently, ultracold
atomic systems have opened a new arena to study fermionic superfluidity [117, 118, 124], where they
are subject to losses due to inelastic collisions. For example, if we consider a superfluid mediated
by the orbital Feshbach resonance [45–48], which controls an interaction between the ground state
and an excited state of an atom [49–52], loss inevitably occurs due to inelastic processes between
different orbitals. Such inelastic two-body losses cause the decay of eigenstates of the Hamiltonian
and may be described by complex-valued interactions, thus providing an ideal platform to study
NH fermionic superfluids. Despite its growing importance, however, theory for NH fermionic
superfluidity has not been established yet [125–127].

In this chapter, we demonstrate how fermionic superfluidity in ultracold atoms is modified under
inelastic collisions, by generalizing the standard BCS theory to a situation in which fermions inter-
act with each other via a complex-valued attraction [128]. We elucidate that the non-Hermiticity
alters several fundamental properties of superfluidity; for example, the order parameters of par-
ticles and holes are not necessarily complex conjugate to each other in the NH physics, and the
Bogoliubov quasiparticles obey neither Fermi nor Bose statistics since eigenstates are, in general,
not orthogonal to each other.

Furthermore, we find that the non-Hermiticity leads to unique quantum phase transitions
in superfluids. For a weak interaction, the real part of the superfluid gap is first suppressed
and then quenched with increasing dissipation. Remarkably, superfluidity is restored beyond a
certain strength of dissipation and the superfluid gap is even enhanced afterwards with increasing
dissipation. We show that these phase transitions emerge from exceptional points, lines and surfaces
that are unique to the NH physics, where the Hamiltonian cannot be diagonalized [129, 130]. For
a strong interaction, superfluidity is not suppressed and never breaks down because fermions are
paired to form molecules on each site, thereby avoiding intersite decoherence. Our finding can
experimentally be tested in various ultracold atomic species under inelastic collisions such as 173Yb,
40K, and 6Li [51, 52, 119–121, 131, 132].

2.2 Setup

We consider ultracold fermionic atoms with an attractive interaction in a three-dimensional optical
lattice. When atoms undergo inelastic collisions, the scattered atoms are lost from the system since
a large internal energy is converted to the kinetic energy. An atomic gas undergoing two-body losses
due to inelastic collisions is described by a quantum master equation

ρ̇ = −i(Heffρ− ρH†eff) + γ
∑
i

LiρL
†
i , (2.1)

25
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where Li is a Lindblad operator that describes a loss at site i with rate γ, and ρ is the density matrix
of the atomic gas. When the quantum-jump term, which is the last term in the Lindblad equation,
is negligible, the system is described by an effective NH Hamiltonian Heff = H − i

2γ
∑
i L
†
iLi.

Such a situation is realized when we consider the dynamics over a sufficiently short time compared
with the inverse loss rate 1/γ [12], which characterizes the timescale where the effect of quantum
jumps becomes significant. In this case, the lowest real part of the eigenspectrum gives the effective
ground state, and the imaginary part of energy corresponds to a decay rate of each eigenstate. The
two-body loss is described by Li = ci↓ci↑, giving a NH BCS Hamiltonian [128]

Heff =
∑
kσ

ξkc
†
kσckσ − U

∑
i

c†i↑c
†
i↓ci↓ci↑, (2.2)

with a complex-valued interaction U = U1 + iγ/2, where U1, γ > 0. Here, ξk ≡ εk − µ, εk is the
energy dispersion, µ is the chemical potential, and ckσ and ciσ denote annihilation operators of
a spin-σ fermion with momentum k and at site i, respectively. In this chapter, we formulate a
mean-field theory from Heff and elucidate how unconventional properties of superfluidity emerge
in NH BCS systems.

2.3 Non-Hermitian BCS theory

In this section, we formulate a NH mean-field theory from two perspectives: a path-integral for-
malism and an operator formalism.

2.3.1 Path-integral formalism

We first clarify how the standard BCS mean-field theory is changed due to non-Hermiticity by
formulating it with a path-integral approach. We start with a partition function defined as

Z =
∑
n

e−βEn =
∑
n

L〈En|e−βHeff |En〉R. (2.3)

Here, L〈En| and |En〉R are left and right eigenstates of Heff with eigenenergy En, and they satisfy
an orthonormal relation L〈En|Em〉R = δnm [133]. We note that, as temperature is not well defined
in generic open quantum systems, we only consider the infinite limit of β to elucidate the physics of
the ground state and calculate the excitation spectrum. Thus, β is a parameter used to formulate a
path integral and should not be regarded as the temperature of the system. We use a path-integral
representation of the partition function (2.3) to perform the Hubbard-Stratonovich transformation
with auxiliary fields ∆, ∆̄ and then integrate out the fermionic degrees of freedom to obtain
Z =

∫
D∆̄D∆e−Seff (∆,∆̄). The partition function is written in the path-integral representation as

Z =

∫
Dc̄Dc exp{−S(c̄, c)},

S(c̄, c) =

∫ β

0

dτ

(∑
kσ

c̄kσ(τ)(∂τ + ξk)ckσ(τ)− U
∑
i

c̄i↑(τ)c̄i↓(τ)ci↓(τ)ci↑(τ)

)
, (2.4)

where c and c̄ are Grassmann variables, and τ is the imaginary time. After performing the Hubbard-
Stratonovich transformation, the partition function is rewritten as

Z =

∫
Dc̄DcD∆̄D∆e−S(∆̄,∆,c̄,c), (2.5)

S(∆̄,∆, c̄, c) =

∫ β

0

dτ

[∑
kσ

c̄kσ(τ)(∂τ + ξk)ckσ(τ)

+
∑
i

(
∆̄i(τ)∆i(τ)

U
+ ∆̄i(τ)ci↓(τ)ci↑(τ) + ∆i(τ)c̄i↑(τ)c̄i↓(τ)

)]
, (2.6)
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where ∆̄i(τ) and ∆i(τ) are auxiliary bosonic fields, which are not necessarily complex conjugate to
each other in the saddle-point approximation. Substituting ciσ(τ) = 1√

βN

∑
k,ωn

ei(ri·k−ωnτ)ckσ(ωn),

c̄iσ(τ) = 1√
βN

∑
k,ωn

e−i(ri·k−ωnτ)c̄kσ(ωn), ∆i(τ) = 1√
βN

∑
k,Ωl

ei(ri·k−Ωlτ)∆k(Ωl) and ∆̄i(τ) =
1√
βN

∑
k,Ωl

e−i(ri·k−Ωlτ)∆̄k(Ωl) into Eq. (2.6), we have

S(∆̄,∆, c̄, c) =
1

U

∑
k,Ωl

∆̄k(Ωl)∆k(Ωl) +
∑

k,ωn,σ

c̄kσ(ωn)(−iωn + ξk)ckσ(ωn)

+
∑

k,k′′,ωn,Ωl

1√
βN

∆̄k′′(Ωl)ck′′−k↓(Ωl − ωn)ck↑(ωn)

+
∑

k,k′′,ωn,Ωl

1√
βN

∆k′′(Ωl)c̄k↑(ωn)c̄k′′−k↓(Ωl − ωn), (2.7)

where N denotes the number of lattice sites, ωn and Ωl are the Matsubara frequencies for fermions
and bosons, respectively. In the mean-field theory, we ignore the spatial and temporal fluctuations
of ∆k′′(Ωl) and ∆̄k′′(Ωl) and thus set k′′ = 0 and Ωl = 0. Then the action is described as

S(c̄, c, ∆̄,∆) =
βN

U
∆̄∆ +

∑
k,ωn

(
c̄k↑(ωn) c−k↓(−ωn)

)(−iωn + ξk ∆
∆̄ −iωn − ξk

)(
ck↑(ωn)

c̄−k↓(−ωn)

)
,

(2.8)

where ∆ = 1√
βN

∆k=0(0) and ∆̄ = 1√
βN

∆̄k=0(0). Integrating out the fermionic degrees of freedom

by using the formula
∫

exp
[
−
∑
i,j c̄iAijcj

]∏n
i=1Dc̄iDci = detA, we obtain

Z =

∫
D∆̄D∆e−Seff (∆,∆̄), (2.9)

where

Seff(∆̄,∆) =
βN

U
∆̄∆−

∑
ωn,k

ln

{
−det

(
−iωn + ξk ∆

∆̄ −iωn − ξk

)}
= −

∑
ωn,k

ln(ω2
n + ξ2

k + ∆̄∆) +
βN

U
∆̄∆, (2.10)

is the effective action. Finally, the saddle point condition for the partition function, ∂Seff/∂∆ =
∂Seff/∂∆̄ = 0, yields the NH gap equation

N

U
=
∑
k

1

2
√
ξ2
k + ∆̄∆

tanh
β
√
ξ2
k + ∆̄∆

2
, (2.11)

if there exists a nontrivial solution other than ∆ = ∆̄ = 0, where we set β to infinity to obtain an
effective ground state. The chemical potential µ is determined so that the mean particle number
in the NH ensemble (2.3) is equal to the particle number of the density-matrix sector of interest
(see Appendix for this chapter).

In NH physics, four distinct types of order parameters can be defined according to whether left
and right eigenstates are assigned to the bra or ket vectors in the expectation value. Importantly,
the expectation value of an operator A calculated from the NH ensemble (2.3) should correspond to

L〈A〉R ≡
∑
n L〈En|A|En〉Re−βEn/Z. Thus, the order parameters corresponding to the superfluid

gap are given by differentiating

e−Seff (∆,∆̄) =

∫
Dc̄Dce−S(∆̄,∆,c̄,c) (2.12)

with respect to ∆ and ∆̄ and using the saddle point condition ∂Seff/∂∆ = ∂Seff/∂∆̄ = 0 as

∆ = −U
N

∑
k

L〈c−k↓ck↑〉R, (2.13)

∆̄ = −U
N

∑
k

L〈c†k↑c
†
−k↓〉R, (2.14)
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indicating that ∆̄ 6= ∆∗ since |En〉L 6= |En〉R. Here, we have used the expectation values defined
as ∑

k

L〈c−k↓ck↑〉R =

∫
Dc̄Dc

∑
k,ωn

c−k↓(−ωn)ck↑(ωn)e−S∫
Dc̄Dce−S

,

∑
k

L〈c†k↑c
†
−k↓〉R =

∫
Dc̄Dc

∑
k,ωn

c̄k↑(ωn)c̄−k↓(−ωn)e−S∫
Dc̄Dce−S

. (2.15)

As discussed Sec. 2.4, this leads to various intriguing consequences on the properties of a NH
superfluid.

2.3.2 Operator formalism

To elucidate the effect of non-Hermiticity, let us apply the mean-field decoupling to the NH BCS
Hamiltonian with the simplest s-wave pairing interaction

Heff =
∑
kσ

ξkc
†
kσckσ −

U

N

∑
kk′

c†k↑c
†
−k↓c−k′↓ck′↑. (2.16)

Substituting c†k↑c
†
−k↓ = L〈c†k↑c

†
−k↓〉R + δ(c†k↑c

†
−k↓) and c−k↓ck↑ = L〈c−k↓ck↑〉R + δ(c−k↓ck↑) into

Eq. (2.16) and neglecting the second-order terms in δ, we obtain the mean-field Hamiltonian as

HMF =
∑
k

(
c†k↑ c−k↓

)(
ξk ∆
∆̄ −ξk

)(
ck↑
c†−k↓

)
=
∑
k

(
γ̄k↑ γ−k↓

)(Ek 0
0 −Ek

)(
γk↑
γ̄−k↓

)
, (2.17)

where the quasiparticle operators are given by

γ̄k↑ = ukc
†
k↑ − v̄kc−k↓,

γ̄−k↓ = v̄kck↑ + ukc
†
−k↓,

γk↑ = ukck↑ − vkc†−k↓,

γ−k↓ = vkc
†
k↑ + ukc−k↓, (2.18)

and the coefficients are given by

uk =

√
Ek + ξk

2Ek
, vk = −

√
(Ek − ξk)

2Ek

√
∆√
∆̄
, v̄k = −

√
(Ek − ξk)

2Ek

√
∆̄√
∆
. (2.19)

We note that the quasiparticle energy Ek is given by Ek =
√
ξ2
k + ∆̄∆, and the coefficients satisfy

u2
k+vkv̄k = 1. In the Hermitian limit, γ̄kσ and v̄k respectively reduce to γ†kσ and v∗k which describe

the Bogoliubov quaiparticles. Here, we note that the mean-field Hamiltonian is NH since ∆∗ 6= ∆̄,
and the quasiparticle operators γkσ and γ̄kσ are not Hermitian conjugate to each other. Therefore,
the Hamiltonian cannot be diagonalized via a unitary transformation.

As a result, the right and left ground states are defined by γkσ|BCS〉R = 0 and γ̄†kσ|BCS〉L = 0,
respectively, where

|BCS〉R =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 , (2.20)

|BCS〉L =
∏
k

(
u∗k + v̄∗kc

†
k↑c
†
−k↓

)
|0〉 , (2.21)

and |0〉 is the vacuum for fermions. They satisfy L〈BCS|BCS〉R = 1 and reproduce the ordinary
BCS ground state in the Hermitian limit. We thus obtain Hγ̄kσ|BCS〉R = Ekγ̄kσ|BCS〉R and

H†γ†kσ|BCS〉L = E∗kγ
†
kσ|BCS〉L, which imply that γ̄kσ and γ†kσ create the right and left eigenstates,

respectively, when acted on the ground state. Here, we have shifted the ground state energy to zero.
Using Eqs. (2.13), (2.14), (2.20), and (2.21), we obtain the β → ∞ limit of the NH gap equation
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as N/U =
∑

k 1/2Ek, which is solved self-consistently. We note that the quasiparticle operators
satisfy an anticommutation relation {γkσ, γ̄k′σ′} = δkk′δσσ′ , although these quasiparticles obey

neither Fermi nor Bose statistics due to γ†kσ 6= γ̄kσ, reflecting non-Hermiticity of the mean-field
Hamiltonian.

Here, we point out an important relation between the order parameters ∆ and ∆̄. In the
Hermitian case, they are complex conjugate to each other and we can choose a gauge where ∆
is real without loss of generality. This is equivalent to requiring H†MF = H∗MF in the matrix
representation in the Fock-state basis in the Hilbert space. Now we consider the NH case. As
in the Hermitian case, the NH BCS Hamiltonian (2.16) satisfies a symmetry relation H† = H∗

under the matrix representation in terms of Fock states, indicating that the left eigenstates are
obtained through complex conjugation of the right ones. The NH BCS Hamiltonian has the U(1)
symmetry as in the Hermitian case and this is not affected by the complex nature of the interaction.
Then, when a superfluid is formed, its ground states become degenerate due to spontaneous U(1)
symmetry breaking. The BCS ground states (2.20) and (2.21) are consistent with these properties
if

∆(θ) = ∆0e
iθ,

∆̄(θ) = ∆0e
−iθ, (2.22)

where ∆0 ∈ C and θ is the U(1) phase. By choosing a special gauge for which H†MF = H∗MF

is satisfied, we have ∆ = ∆̄. Here, we note that the relation (2.22) is specific to the NH BCS
Hamiltonian (2.16) and may be changed depending on symmetry of a NH Hamiltonian.

2.4 Quantum phase transition of Non-Hermitian superflu-
ids

In this section, we elucidate how unconventional phase transitions emerge by solving the gap
equation (2.11).

2.4.1 Reentrant superfluidity

We solve the gap equation at β →∞ numerically. Figure 2.1 shows the superfluid order parameter
∆0. Here, for simplicity, we consider a system with particle-hole symmetry, and set the chemical
potential measured from the Fermi energy to zero (see Appendix for this chapter). For small U1,
Re∆0 is suppressed by dissipation γ and then vanishes, indicating a breakdown of superfluidity.
Remarkably, as γ increases, the superfluid solution reappears, and the gap size Re∆0 is enhanced
due to dissipation, eventually exceeding the value in the Hermitian limit. On the other hand, for
strong attractive interaction, Re∆0 is not suppressed, but rather enhanced due to dissipation.

The qualitative difference between the cases of weak and strong attractions is explained by
an interplay between the BCS-BEC crossover [134–137] and dissipation. In the strong-dissipation
limit, the behavior of the system is governed by QZE [40–42, 138–140], which suppresses tunnel-
ing to neighboring sites, leading to localization of particles. In the case of weak attraction, the
inter-site coherence of Cooper pairs is suppressed by dissipation and the superfluidity is destroyed.
However, localization due to the QZE facilitates formation of on-site molecules of fermions for
strong dissipation and consequently superfluidity reappears. In fact, the solution of the gap equa-
tion approaches ∆0 = U/2 in the strong-dissipation limit, as shown by the dashed lines in Fig. 2.1.
This is consistent with the fact that the physics is dominated by the on-site interaction under the
QZE, supporting our mean-field analysis. On the other hand, under strong attraction, fermions
form bosonic molecules almost at single sites and thus the molecules can survive under dissipation.
In this case, the effect of dissipation is to give rise to an effective one-body loss of molecules and
the remaining molecules can undergo BEC.

We have also conducted numerical calculations for an intermediate strength of the interaction
U1/t = 2.5 as shown in Fig. 2.2. We see from Fig. 2.2 that the real part of the superfluid gap
is suppressed by dissipation but does not vanish. Moreover, it is even enhanced and eventually
exceeds the value of the Hermitian limit as the dissipation increases, which is attributed to the
confinement of Cooper pairs to individual sites due to the QZE. While the superfluid does not
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(a) (b)

Figure 2.1: Numerical solution of ∆0 as a function of γ/t obtained from the NH gap equation
(2.11) at β → ∞ and µ = 0 for (a) U1/t = 1.8 and (b) U1/t = 10. We assume a cubic lattice
with energy dispersion εk = −2t(cos kx + cos ky + cos kz), where t is the hopping amplitude. The
dashed lines denote the asymptotic behavior in the strong-dissipation limit. The insets show (a)
an enlarged view near the origin (weak dissipation) and (b) that of the real part.
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Figure 2.2: Superfluid gap obtained from the NH gap equation at β → ∞ for U1 = 2.5. The
chemical potential measured from the Fermi energy is set to zero and a cubic lattice is assumed as
in Fig. 2.1. The dashed lines show the asymptotic behavior in the strong-dissipation limit.

exhibit an unconventional phase transition with exceptional points in this case, a remnant of the
phase transition in a weak attraction can be seen as the minimum of Re∆0 in Fig. 2.2.

2.4.2 Emergence of exceptional manifolds

We here point out that the breakdown and restoration of superfluidity present clear signatures of
the emergence of exceptional points, where the Hamiltonian cannot be diagonalized [129, 130]. In
fact, when Re∆0 = 0, the mean-field Hamiltonian HMF cannot be diagonalized for ξk = ±Im∆0.
Figure 2.3(a) shows the real part of the energy spectrum of quasiparticles in two dimensions. The
regions where the orange and blue surfaces merge form exceptional points, lines (Fig. 2.3(c)), and
surfaces (Fig. 2.3(d)) in one-, two-, and three-dimensional systems, respectively. Such characteristic
behavior has its origin in a parity-particle-hole (CP ) symmetry of the mean-field Hamiltonian
HMF(k) = εkσz+ iIm∆0σx. In fact, as a function of the momentum, HMF(k) exhibits spontaneous
breaking of the CP symmetry at the exceptional points, whose dimensionality is indeed protected
by the symmetry constraint.

We here explain the details. At the breakdown and restoration points of the superfluid gap, the
gap is pure imaginary and the mean-field Hamiltonian HMF(k) satisfies the following CP symmetry
[141]

CPHMF(k)(CP )−1 = −HMF(k), (2.23)

where CP = σxK, σx,z are the Pauli matrices, and K is complex conjugation [141–144]. This is
similar to parity-time (PT ) symmetry [58, 59], which is expressed for a general Hamiltonian H(k)
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(a) (b)

(c) (d)

Figure 2.3: (a) Real and (b) imaginary parts of the quasiparticle energy spectrum Ek = ±
√
ε2k + ∆2

0

(orange for positive sign, blue for negative sign) at critical points. (c) Exceptional lines in two
dimensions. (d) Exceptional surfaces in three dimensions. The energy dispersion is for a square
lattice εk = −2(cos kx+cos ky) in (a), (b) and (c), and for a cubic lattice εk = −2(cos kx+cos ky +
cos kz) in (d). The gap is set to ∆0 = 0.19i for (a), (b) and (c), and ∆0 = 0.4i for (d).

as

PT H(k)(PT )−1 = H(k), (2.24)

and they are indeed equivalent to each other as can be seen if we multiply the Hamiltonian by
i [77]. Consequently, as the PT symmetry dictates that the eigenspectrum of the Hamiltonian
appears as real or complex-conjugate pairs [59], the CP symmetry dictates that the eigenspectrum
appears as pure imaginary or anti-complex-conjugate pairs (Fig. 2.4). One can easily confirm that
the CP symmetry is unbroken if the eigenspectrum is pure imaginary; otherwise it is spontaneously
broken.

A generic two-band Hamiltonian with the CP symmetry can be written as

H(k) = ia(k)σ0 + bz(k)σz + idx(k)σx + idy(k)σy, (2.25)

where a(k), bz(k), dx(k), dy(k) ∈ R (σ0 is the 2×2 identity matrix). Since its eigenvalues are given

by ia(k)±
√
bz(k)2 − dx(k)2 − dy(k)2, the spontaneous CP -symmetry-breaking transition occurs

when

bz(k)2 − dx(k)2 − dy(k)2 = 0, (2.26)

which is accompanied by the emergence of exceptional points. We note that only a single condition
(2.26) is needed for the exceptional point, while two conditions are needed for an exceptional
point in a system without any symmetry [141–144]. Because of this symmetry constraint, the
exceptional points form a (d − 1)-dimensional surface in d-dimensional systems. In our case, we
have a(k) = dy(k) = 0, bz(k) = ξk, and dx(k) = Im∆0 from the mean-field Hamiltonian HMF(k).
The quasiparticle energy spectra and exceptional points depicted in Fig. 2.3 are consistent with
the above general argument.

Thus, the quantum phase transitions of the NH superfluid cannot be classified into the con-
ventional first- or second-order phase transitions in Hermitian systems, but are attributed to the
emergence of exceptional points unique to non-Hermiticity. We note here that the two exceptional
points corresponding to the breakdown and restoration of superfluidity merge and disappear as
the strength of attraction increases. Furthermore, the emergence of exceptional manifolds leads
to some intriguing dynamics in the NH superfluid. In Fig. 2.3(b), the imaginary part of the
quasiparticle energy takes a positive finite value only in between the exceptional lines or surfaces,
amplifying quasiparticle distribution in the particular region of the Brillouin zone through the time
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𝒫𝒯 symmetry CP symmetry

unbroken brokenunbroken broken

Figure 2.4: Schematic diagrams for the eigenspectrum of a Hamiltonian that has PT symmetry
(left) or CP symmetry (right). The dashed lines indicate the points of spontaneous symmetry
breaking.

evolution. The characteristic structure in Fig. 2.3(b), which can be used as a smoking gun of the
non-Hermiticity, can be observed as long as Im∆0 > 0 even in a region away from the breakdown
and restoration points.

2.4.3 Phase diagram

We note that the nontrivial solution of the NH gap equation may give a metastable superfluid,
which corresponds to a local minimum of the real part of the energy. Whether the superfluid is
metastable or not is decided from comparison of ground-state energies between the superfluid state
and the normal state, as detailed in the following. Using Eq. (2.10), the condensation energy is
given by the difference in energy between the superfluid and normal states as

E =
1

β

(
Seff(∆0e

iθ,∆0e
−iθ)− Seff(0, 0)

)
=
N

U
∆2

0 +
1

β

∑
ωnk

{
log(iωn + |ξk|) + log(−iωn + |ξk|)

− log(iωn +
√
ξ2
k + ∆2

0)− log(−iωn +
√
ξ2
k + ∆2

0)

}

=
N

U
∆2

0 −
1

β

∑
ωn,k

log

(
1 +

∆2
0

ω2
n + ξ2

k

)
. (2.27)

Using the integration contour in Fig. 2.5, we can calculate the sum over the Matsubara frequency
as

E =
N

U
∆2

0 +
1

2πi

∑
k

∮
C2

dz log

(
1 +

∆2
0

−z2 + ξ2
k

)
f(z), (2.28)

where f(z) = (eβz + 1)−1 is the Fermi distribution function. We here note that the integrand in
Eq. (2.28) has a branch cut on the lines connecting the branch points of Eq. (2.27) as shown in
Fig. 2.5. We thus obtain

E =
N

U
∆2

0 −
∑
k

∫ √ξ2k+∆2
0

|ξk|
dz tanh

βz

2
. (2.29)

In the β →∞ limit, the condensation energy is given by

E =
N

U
∆2

0 −
∑
k

(
√
ξ2
k + ∆2

0 − |ξk|). (2.30)
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Figure 2.5: Integration contour in the calculation of the condensation energy.
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Figure 2.6: Condensation energy (2.30) as a function of γ/t. We here assume the cubic lattice, and
the interaction and the chemical potential are set to the same values as in Fig. 2.1, respectively.
The dashed lines show the asymptotic behavior in the strong-dissipation limit. The inset in (a)
shows an enlarged view of the weak-dissipation regime.

Figure 2.6 shows the condensation energy for the parameters corresponding to those in Fig. 2.1.
For U1/t = 1.8, we find that the superfluid state is energetically stable only in the weak-dissipation
region. For a region where the real part of the condensation energy is positive, the nontrivial
solution of the NH gap equation gives a local minimum of the real part of energy, leading to a
metastable superfluid solution. We also find that the nontrivial solution of the gap equation in the
strong-dissipation regime gives a metastable state because the energy is higher than that of the
trivial solution. On the other hand, for U1/t = 10, the superfluid is always energetically stable,
and we can observe the steady enhancement of the superfluid gap.

We have also calculated the condensation energy for the intermediate regime. From Fig. 2.7,
the superfluid state under sufficiently strong dissipation becomes metastable due to the positive
condensation energy.

From these results, we obtain a phase diagram of the NH BCS model as shown in Fig. 2.8. In the
blue region, the superfluid state is an effective ground state of the NH BCS Hamiltonian. When the
dissipation is increased, the superfluid state remains stable if the attraction is sufficiently strong.
When the system enters the red region, the superfluid state becomes metastable with respect to the
real part of the energy. The metastable superfluid undergoes an unconventional quantum phase
transition due to exceptional points in the case of weak attractions, leading to the disappearance of
the superfluid state in the yellow region. Here we remark that a similar phase diagram is obtained
from an exact solution of a 1D NH Hubbard model [15]. Although a similar formulation to obtain
the gap equation can be made for a continuum system, the reentrant superfluidity is unique to
the lattice system since the localization due to the QZE cannot occur without a lattice. On the
other hand, the breakdown of the superfluidity and the related phase transitions can occur in the
continuum system.
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Figure 2.7: Condensation energy (2.30) for U1 = 2.5. The chemical potential measured from the
Fermi energy is set to zero and a cubic lattice is assumed as in Fig. 2.1. The dashed lines show
the asymptotic behavior in the strong-dissipation limit. The inset shows an enlarged view in the
weak-dissipation regime.
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Figure 2.8: Phase diagram of the NH BCS model at β → ∞ and µ = 0. The yellow region
corresponds to the normal state. The red region shows the metastable superfluid state for which
a nontrivial solution of the gap equation gives a local energy minimum. The blue region shows
the superfluid state corresponding to a nontrivial solution of the gap equation that gives an ef-
fective ground state. A region with small U1 is not shown because of the limitation of numerical
calculations.

2.4.4 Analytical calculation at a constant density of states

We here explain that a similar phase diagram is obtained by assuming a constant density of states.
The gap equation (2.11) can be solved analytically if the density of states ρ0 is constant. Under
this assumption, the gap equation in the β →∞ limit reads

log

∣∣∣∣∣
√
ω2
D + ∆2

0 + ωD
∆0

∣∣∣∣∣+ iArg

√
ω2
D + ∆2

0 + ωD
∆0

=
1

ρ0

(
U1

|U |2
− i γ

2|U |2

)
, (2.31)

where ωD = 1/2ρ0 is the energy cutoff. Here, we set a branch cut of
√
z and log z to z ∈ (−∞, 0)

and assume that Re∆0 is positive without loss of generality. Results obtained below do not depend

on the choice of the branch cut. Then, the argument is restricted to Arg

√
ω2
D+∆2

0+ωD
∆0

∈ (−π2 ,
π
2 )

and the gap equation has nontrivial solutions if and only if U1 satisfies ρ0U1 <
1
π and γ satisfies

0 ≤ γ ≤ γc1 or γ ≥ γc2 , where γc1 and γc2 are determined from (ρ0πU1)2 + (ρ0πγ/2− 1)2 = 1 as

γc1 =
2

ρ0π
(1−

√
1− (ρ0πU1)2), (2.32)

γc2 =
2

ρ0π
(1 +

√
1− (ρ0πU1)2). (2.33)
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Figure 2.9: Phase diagram obtained from Eqs. (2.34) and (2.35). The yellow region corresponds to
the normal state where the gap equation has only a trivial solution ∆0 = 0. The red region indicates
a metastable superfluid state which corresponds to nontrivial solutions of the gap equation but is
not an effective ground state. The blue region corresponds to a superfluid phase where a nontrivial
solution of the gap equation gives an effective ground state.

Under the above conditions, the nontrivial solution of the gap equation at β →∞ is given by

∆0 =
ωD

sinh
(

1
ρ0U

) . (2.34)

This gives the behavior consistent with Fig. 2.1.
Next, we calculate the condensation energy (2.30) for a constant density of states. In this case,

Eq. (2.30) can be rewritten as

E

N
=

∆2
0

U
− 1

2
ρ0ω

2
D

(
−2 + 2

√
1 + α2 − α2

(
Logα2 − 2Log(1 +

√
1 + α2)

))
, (2.35)

where α = ∆0

ωD
. This gives the behavior consistent with Fig. 2.6.

Finally, we show a phase diagram in Fig. 2.9 obtained from the analytical solutions of the gap
equation with a constant density of states. In Fig. 2.9, the yellow region corresponds to the normal
state, where the gap equation has only a trivial solution ∆0 = 0. This phase is surrounded by
the red region, where the gap equation has the nontrivial solution (2.34) which corresponds to the
metastable superfluid state, since the nontrivial solution gives a local minimum of the real part of
energy due to a positive condensation energy. When the attractive interaction U1 is sufficiently
strong, the system is in the superfluid phase (blue region in Fig. 2.9), where the nontrivial solution
of the gap equation gives an effective ground state. The phase diagram is qualitatively consistent
with the numerical results obtained in Fig. 2.8.

2.5 Towards experimental realization

The NH quantum phase transitions can be observed by controlling a two-body loss rate. Since
the superfluid is metastable in the red region, it can be realized by slowly increasing dissipation
from the blue region. For weak attraction U1, the superfluid undergoes an unconventional phase
transition to the normal state due to the exceptional points. To observe the reappearance of the
superfluidity under large γ, we may first prepare a metastable superfluid at large U1 and γ, and
then decrease U1. Finally, the metastablity of the superfluid can be confirmed through comparison
of the results between fast and slow increases of the dissipation from γ = 0.

Here we discuss the detailed experimental setup for probing the NH superfluidity by taking
into account the relevant timescale in cold atom experiments. As mentioned in Sec. 2.2, the NH
dynamics is realized when we neglect the quantum-jump term in the master equation. To fulfill this
condition, the loss rate γ should be much smaller than the energy scale that governs the timescale
for relaxation towards a quasi-equilibrium state. In superfluid states, the thermalization proceeds
in a timescale of hopping of atoms to neighboring sites [121]. Thus, for a BCS superfluid in which
γ, U1 � t is satisfied, the NH breakdown of superfluid may be observed. We note that, as inferred
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Figure 2.10: Experimental protocol for observing the reentrant superfluidity. We first prepare on-
site pairing superfluidity for large attraction U1 (A) and then introduce large dissipation γ using a
sudden application of photoassocitiation (B). The system will reach the reentrant superfluid region
by decreasing U1 (C).

from Figs. 2.8 and 2.9, the breakdown of superfluid due to exceptional points can be induced by
small dissipation in the BCS regime, which justifies the NH dynamics. On the other hand, for
the reentrant superfluidity, which is another unique phenomenon in the NH superfluid, dissipation
larger than the hopping is required (see Figs. 2.8 and 2.9). This seems to invalidate the assumption
for the ignorance of the quantum-jump term. However, as mentioned in Sec. 2.4, the physics behind
the reentrant superfluidity is the QZE, which suppresses the hopping and facilitates the formation
of on-site molecules. The manifestation of the QZE can be observed by using the following protocol.
Hence, a large dissipation is not incompatible with the ignorance of the quantum-jump term.

The experimental protocol is illustrated in Fig. 2.10. We first prepare a superfluid state for
large attraction U1, where atom pairs are confined to each lattice site. Then, we introduce large
dissipation γ/t ∼ 5 using photoassociation techniques [42]. Finally, we decrease the attraction U1

by tuning the magnetic field for a Feshbach resonance, which can be operated fast on the order
of few 10µs [121]. If we do not have dissipation, atoms in the on-site molecular pairs tunnel to
neighboring sites at a hopping rate t, which gives a timescale of the order of 100 µs [121]. However,
under a large dissipation in the quantum Zeno regime, the tunneling of atoms is suppressed by
the QZE and thus the dissociation of molecules after ramping down the attraction U1 is delayed.
Consequently, even after a timescale of 1/t, atoms surviving in the system will still form on-
site molecules. Such QZE-assisted molecules can be regarded as a signature of the reentrant
superfluidity. In ultracold atoms, molecules (double occupancy) can be detected by measuring
binding energies. For the region of the reentrant superfluidity, the above methods can be used to
determine the phase boundaries due to exceptional points.

Finally, we note that the NH dynamics is faithfully realized when we perform a quantum-gas-
microscopy measurement of an atom number and then postselect the measurement outcome which
does not contain any atom loss [63, 64]. Since the quantum-gas microscopy for the attractive
Hubbard model was already realized [132], this method can also be used for an unambiguous
observation of NH superfluidity. These NH superfluids are expected to be realized with ultracold
atoms under inelastic collisions. For example, a superfluid of 173Yb atoms with an orbital Feshbach
resonance [45] offers one such candidate since it is inevitably accompanied by two-body losses
as observed experimentally [49–51]. The effect of non-Hermiticity on the superfluid gap can be
observed by spectroscopy with Raman transitions between hyperfine levels or a clock transition
[51, 52]. Furthermore, concerning the control of two-body loss rates, introducing dissipation with
photoassociation techniques [42] may also enable the realization of NH superfluids with 40K and 6Li
[119–121, 131, 132]. Although the strength of dissipation is usually fixed by scattering properties
of atoms, dissipation engineering using photoassociation techniques will be a feasible method for
realizing the NH fermionic superfluidity.
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2.6 Summary of this chapter

In this chapter, we have investigated how the BCS superfluidity is extended to NH quantum sys-
tems under inelastic interactions. We have elucidated some remarkable features unique to the NH
fermionic superfluidity, such as exotic Bogoliubov quasiparticles which belong to neither fermions
nor bosons and found unconventional quantum phase transitions unique to non-Hermiticity. In
particular, for weak attraction, it has been revealed that the superfluidity breaks down with in-
creasing dissipation but shows reentrant behavior as dissipation is further increased. Remarkably,
these phase transitions are accompanied by distinctive features of the non-Hermiticity, i.e. the
emergence of exceptional points, lines and surfaces in the quasiparticle Hamiltonian for one-, two-
and three-dimensions. These characteristic features will play a decisive role in detecting NH phase
transitions in experiments. On the other hand, for strong attraction, the superfluid state is not
suppressed but enhanced due to the confinement of molecules to single sites via the QZE. While
we have focused on a conventional s-wave superfluid, p-wave, d-wave and other exotic superfluids
in NH systems will also be relevant for experiments, and merit future investigation.

2.7 Appendix for this chapter

Chemical potential in non-Hermitian systems

Here we clarify how the chemical potential is determined in NH quantum systems. A density
matrix ρ of an atomic gas is decomposed into sectors, each of which has a definite particle number
M as

ρ =
∑
M

ρ(M). (2.36)

In the short-time dynamics of the atomic gas, the time evolution of the density matrix ρ(M) is
described by the NH Hamiltonian Heff restricted to the M -particle Hilbert space [12]. An effective
energy spectrum in the M -particle Hilbert space can be extracted by tuning the chemical potential
so that the mean particle number in the NH ensemble (2.3) is

M =
1

Z

∑
n

L〈En|N̂e−βHeff |En〉R, (2.37)

where N̂ =
∑

k,σ c
†
kσckσ is the particle-number operator. In the β → ∞ limit, Eq. (2.37) is

calculated as

M = L〈BCS|N̂ |BCS〉R =
∑
k

(
1− ξk

Ek

)
, (2.38)

where the BCS ground states (2.20) and (2.21) are used. For a cubic or square lattice, a half-filling
condition M = N is achieved by setting µ = 0 in Eq. (2.38).

We note that the expectation value of particle numbers taken by the right BCS eigenstates
does not coincide with Eq. (2.38):

R〈BCS|N̂ |BCS〉R
R〈BCS|BCS〉R

=
∑
k

2|vk|2

|uk|2 + |vk|2

= 2
∑
k

∣∣∣1− ξk
Ek

∣∣∣∣∣∣1 + ξk
Ek

∣∣∣+
∣∣∣1− ξk

Ek

∣∣∣ , (2.39)

since the BCS states do not conserve the particle number. However, this is not a contradiction
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since in the M -particle Hilbert space, the number-conserving states

|ΨM 〉R ≡
1

N

(∑
k

αkc
†
k↑c
†
−k↓

)M/2

|0〉

∝
∫ 2π

0

dθe−iMθ/2
∏
k

(uk + vk(θ)c†k↑c
†
−k↓) |0〉 , (2.40)

|ΨM 〉L ≡
1

N

(∑
k

α∗kc
†
k↑c
†
−k↓

)M/2

|0〉

∝
∫ 2π

0

dθe−iMθ/2
∏
k

(u∗k + v̄∗k(θ)c†k↑c
†
−k↓) |0〉 , (2.41)

are realized instead of the BCS states [145, 146]. Here, αk ≡ uk/vk(θ = 0). For these states, the
particle number does not depend on the choice of an expectation value:

L〈ΨM |N̂ |ΨM 〉R
L〈ΨM |ΨM 〉R

=
R〈ΨM |N̂ |ΨM 〉R
R〈ΨM |ΨM 〉R

= M. (2.42)



Chapter 3

Nonequilibrium dynamics of
dissipative fermionic superfluids

3.1 Introduction

Collective excitations of superconductors and superfluids have been widely studied in condensed
matter physics [147–166]. Recent experimental progress in ultracold atoms has enabled studies of
out-of-equilibrium dynamics of superfluids [167–170]. For example, a periodic modulation of the
amplitude of the order parameter excites the Higgs amplitude mode, which has been observed with
ultracold fermions [169] and in solid-state systems by light illumination on BCS superconductors
[171–179]. As for collective phase modes, the Nambu-Goldstone mode exists in neutral superfluids,
and the relative-phase Leggett mode has been predicted for multiband superfluids [148, 179–184].
In particular, ultracold atoms allow for a dynamical control of various system parameters, offering
an ideal playground to investigate collective modes. However, they suffer from atom loss due to
inelastic scattering, which has received little attention in literature. The effect of particle loss in
fermionic superfluids has been studied in the framework of the NH BCS theory in the previous
chapter [128]; however, it ignores a significant change in particle number due to quantum jumps.
It is crucially important to go beyond the NH framework to describe the long-time dynamics of a
superfluid and associated collective modes of order parameters.

In this chapter, we theoretically investigate collective excitations and a nonequilibrium phase
transition of fermionic superfluids driven by a sudden switch-on of two-particle loss due to inelastic
collisions between atoms [185]. By formulating a dissipative BCS theory that fully incorporates
a change in particle number, we find that dissipation fundamentally alters the superfluid order
parameter and induces collective oscillations in its amplitude and phase. In particular, we elucidate
that a coupling between the order parameter and dissipation leads to a chirped phase rotation, in
sharp contrast to the case of an interaction quench in closed systems [see Fig. 3.1(a)].

To experimentally observe the collective phenomena induced by dissipation, we propose in-
troducing a particle loss in one of two coupled superfluids to induce a relative-phase oscillation
analogous to the Leggett mode [148, 179–184] [see Fig. 3.1(b)]. The phase mode causes an oscilla-
tion of a Josephson current around a nonvanishing dc component. Remarkably, when dissipation
becomes strong, the coupled system undergoes a nonequilibrium phase transition characterized by
the vanishing dc Josephson current, which can be regarded as a generalization of a dynamical phase
transition [157, 158, 186, 187] to dissipative quantum systems. Our findings can experimentally
be tested with ultracold atoms through introduction of dissipation via a photoassociation process
[42, 92].

39
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Figure 3.1: (a) Schematic illustration of the amplitude and phase modes in a Mexican-hat free-
energy potential as a function of the complex order parameter ∆, when either the interaction UR or
the dissipation γ is suddenly switched on. A sudden quench of the interaction UR and that of the
dissipation γ kick ∆ in a direction parallel and perpendicular to the radial direction, respectively.
Note that a finite change of γ excites both the phase and amplitude modes. (b) Two superfluids
coupled via a Josephson junction, where one superfluid (system 2) is subject to two-body loss.

3.2 Setup

We consider ultracold fermionic atoms described by the three-dimensional attractive Hubbard
model

H =
∑
kσ

εkc
†
kσckσ − UR

∑
i

c†i↑c
†
i↓ci↓ci↑, (3.1)

where UR > 0, εk is the single-particle energy dispersion, and ckσ (ciσ) denotes the annihilation
operator of a spin-σ fermion with momentum k (at site i). When the system is subject to inelastic
collisions, scattered atoms are lost to a surrounding environment, resulting in dissipative dynamics
as observed experimentally [37, 42, 43, 188]. Here, we study the time evolution of the density
matrix ρ which is described by the Lindblad equation [2, 53]

dρ/dt = Lρ = −i[H, ρ]− γ

2

∑
i

({L†iLi, ρ} − 2LiρL
†
i ), (3.2)

where Li = ci↓ci↑ is a Lindblad operator that describes two-body loss with loss rate γ > 0. We
note that the kinetic energy of lost atoms is large because of large internal energy of atoms before
inelastic collisions. Under such situations, atoms after inelastic collisions are quickly lost into the
surrounding environment and the Born-Markov approximation is justified [11, 12, 40].

3.3 Dissipative BCS theory

In this section, we develop a dissipative BCS theory that fully incorporates the effect of quantum
jumps in the Lindblad master equation.

3.3.1 Path-integral formalism

We first study how the standard BCS theory is generalized in open dissipative systems by formu-
lating a time-dependent mean-field theory in terms of CTC path integrals [3, 189]. We start with
a generating functional defined as

Z = trρ =

∫
D[c−, c̄−, c+, c̄+]eiS = 1, (3.3)

with an action

S =

∫ ∞
−∞

dt
[∑

kσ

(c̄kσ+i∂tckσ+ − c̄kσ−i∂tckσ−)−H+

+H− +
iγ

2

∑
i

(L̄i+Li+ + L̄i−Li− − 2Li+L̄i−)
]
, (3.4)
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where the subscripts + and − denote forward and backward paths, Hα =
∑

kσ εkc̄kσαckσα −
UR

∑
i c̄i↑αc̄i↓αci↓αci↑α, Liα = ci↓αci↑α, and L̄iα = c̄i↑αc̄i↓α (α = +,−). Note that the action has

U(1) symmetry under ciσα → eiθciσα though the particle number is not conserved [190, 191]. The
action (3.4) is rewritten as

S =

∫ ∞
−∞

dt
[∑

kσ

(
c̄kσ+(i∂t − εk)ckσ+ − c̄kσ−(i∂t − εk)ckσ−

)
+
∑
kk′

(Uc̄k↑+c̄−k↓+c−k′↓+ck′↑+ − U∗c̄k↑−c̄−k↓−c−k′↓−ck′↑− − iγc−k↓+ck↑+c̄k′↑−c̄−k′↓−)
]
,

(3.5)

where U = UR + iγ/2 is an effective complex coupling constant including a contribution from the
atom loss [128]. Then, we can perform the Hubbard-Stratonovich transformation for each term in
the second line of Eq. (3.5) with auxiliary fields ∆α (α = +, −, ±) as

iUc̄k↑+c̄−k↓+c−k′↓+ck′↑+ → −i∆+c̄k↑+c̄−k↓+ − i∆̄+c−k↓+ck↑+ +
∆̄+∆+

iU
, (3.6)

−iU∗c̄k↑−c̄−k↓−c−k′↓−ck′↑− → i∆−c̄k↑−c̄−k↓− + i∆̄−c−k↓−ck↑− −
∆̄−∆−
iU∗

, (3.7)

γc−k↓+ck↑+c̄k′↑−c̄−k′↓− → −∆±c̄k↑−c̄−k↓− − ∆̄±c−k↓+ck↑+ −
∆̄±∆±
γ

, (3.8)

which yield

S =

∫
dt

{∑
k

[
ψ̄tk+

(
i∂t − εk −∆+

−∆̄+ + i∆̄± −i∂t + εk

)
ψk+ − ψ̄tk−

(
i∂t − εk −∆− − i∆±
−∆̄− −i∂t + εk

)
ψk−

]

+
∆̄+∆+

iU
− ∆̄−∆−

iU∗
− ∆̄±∆±

γ

}
,

(3.9)

where ψ̄kα =
(
c̄k↑α, c−k↓α

)t
and ψkα =

(
ck↑α, c̄−k↓α

)t
(α = +,−). From the saddle-point

condition 〈∂S/∂∆α〉 =
〈
∂S/∂∆̄α

〉
= 0 (α = +, −, ±), we obtain

∆+ = − U

N0

∑
k

〈c−k↓+ck↑+〉, ∆̄+ = − U

N0

∑
k

〈c†k↑+c
†
−k↓+〉, (3.10)

∆− = −U
∗

N0

∑
k

〈c−k↓−ck↑−〉, ∆̄− = −U
∗

N0

∑
k

〈c†k↑−c
†
−k↓−〉, (3.11)

∆± =
γ∆+

U
, ∆̄± =

γ∆̄−
U∗

, (3.12)

where N0 is the number of lattice sites and 〈· · · 〉 is the expectation value for fixed ∆α and ∆̄α.
Then, we can reduce the number of the auxiliary fields by using 〈c−k↓αck↑α〉 = tr(c−k↓ck↑ρ)
(α = +,−) and tr(A†ρ) = [tr(Aρ)]∗ [189], giving

∆+ = ∆̄∗−, (3.13)

∆− = ∆̄∗+. (3.14)

Finally, the action (3.9) is rewritten in a quadratic form of fermionic Grassmann fields [128] as

S =

∫
dt
∑
k

{
ψ̄tk+

(
i∂t − εk −∆
−∆∗ −i∂t + εk

)
ψk+ − ψ̄tk−

(
i∂t − εk −∆
−∆∗ −i∂t + εk

)
ψk−

}
, (3.15)

where the superfluid order parameter of the system is given by

∆ = − U

N0

∑
k

tr(c−k↓ck↑ρ) ≡ − U

N0

∑
k

〈c−k↓ck↑〉. (3.16)

Importantly, the order parameter includes the loss rate γ, which leads to dissipation-induced
collective modes as discussed below.
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3.3.2 Operator formalism

Here, we explain the operator formalism of the BCS theory for a dissipative superfluid. First, we
note that an operator |ψ+〉 〈ψ−| acting on the Hilbert space of the system can be mapped to a
tensor-product state |ψ+〉 ⊗ |ψ−〉 in the doubled Hilbert space H+ ⊗ H− [192, 193]. Using this
mapping, we can rewrite the Liouvillian as

iL = H+ −H− + i
∑
i

γi(Li+L
†
i− −

1

2
L†i+Li+ −

1

2
L†i−Li−)

= H+ −H∗− + iγ
∑
kk′

c−k↓+ck↑+c
†
k′↑−c

†
−k′↓−, (3.17)

where Liα = ci↓αci↑α, and ciσα (ckσα) with α = +,− is the fermion annihilation operator in the
real (momentum) space that acts on the Hilbert space Hα. The fermion operator with subscript +
(−) corresponds to the fermion field in the forward (backward) path in the path-integral formalism.
The BCS Hamiltonian equivalent to Eq. (3.1) is given by

Hα =
∑
kσ

εkc
†
kσαckσα − UR

∑
kk′

c†k↑αc
†
−k↓αc−k′↓αck′↑α, (3.18)

and Hα is defined as

Hα = Hα −
1

2
iγ
∑
i

L†iαLiα

=
∑
kσ

εkc
†
kσαckσα − U

∑
kk′

c†k↑αc
†
−k↓αc−k′↓αck′↑α. (3.19)

By applying the mean-field approximation to L, we obtain the mean-field Liouvillian as

iLMF =
∑
kσ

εkc
†
kσ+ckσ+ + ∆+

∑
k

c†k↑+c
†
−k↓+ + (∆̄+ −

iγ

U∗
∆̄−)

∑
k

c−k↓+ck↑+

−
∑
kσ

εkc
†
kσ−ckσ− − (∆− +

iγ

U
∆+)

∑
k

c†k↑−c
†
−k↓− − ∆̄−

∑
k

c−k↓−ck↑−

=
∑
k

Ψ†k+

(
εk ∆+

∆̄+ − iγ
U∗ ∆̄− −εk

)
Ψk+ −

∑
k

Ψ†k−

(
εk ∆− + iγ

U ∆+

∆̄− −εk

)
Ψk−, (3.20)

where Ψk =
(
ck↑, c†−k↓

)t
is the Nambu spinor. As we see from Eq. (3.17) and Eq. (3.19),

the Liouvillian is invariant under the U(1) gauge transformations ckσ+ → eiθckσ+ and ckσ− →
eiθckσ−. Moreover, under the exchange of forward and backward operators, Pckσ+P

−1 = ckσ−
and Pc†kσ+P

−1 = c†kσ− with P 2 = 1, the Liouvillian has the following symmetry

P (iL)†P−1 = −iL. (3.21)

By imposing the same symmetry on the mean-field Liouvillian as P (iLMF)†P−1 = −iLMF, we
obtain the relations for the order parameters as ∆∗+ = ∆̄−, and ∆∗− = ∆̄+, which coincide with
those obtained in the path-integral formalism [see Eqs. (3.13) and (3.14)]. Finally, by rewriting
the superfluid order parameter ∆+ as ∆, which is defined in Eq. (3.16), we obtain the equations
for the density matrix as

ρ̇ = −i[Heff , ρ], (3.22)

Heff =
∑
k

Ψ†k

(
εk ∆
∆∗ −εk

)
Ψk. (3.23)

In subsection 3.3.4, we show that Eq. (3.22) can be also derived from the time-dependent
Bogoliubov-de Gennes analysis. We will also see that, while Eq. (3.22) appears to describe uni-
tary evolution, it is consistent with the original Lindblad equation as a consequence of the time-
dependent BCS ansatz.
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3.3.3 Anderson’s pseudospin representation

We use Anderson’s pseudospin representation [147, 153–158, 160, 178] defined by σk = 1
2Ψ†k ·τ ·Ψk

and Heff = 2
∑

k bk · σk, where τ = (τx, τy, τz) is the vector of the Pauli matrices. The

pseudospins satisfy the commutation relations [σjk, σ
k
k] = iεjklσ

l
k. For simplicity of notation, we

omit the bracket and regard σk as the expectation value of the pseudospin operator. By using the
commutation relation of the pseudospins, Eq. (3.22) is mapped to the Bloch equation:

dσk

dt
= 2bk × σk, (3.24)

bk = (Re∆, −Im∆, εk). (3.25)

Equation (3.24) shows that the superfluid dynamics is characterized by precession of a pseudospin
in an effective magnetic field bk. Here, the order parameter is determined self-consistently from
the pseudospin expectation value as

∆ = |∆|eiθ = − U

N0

∑
k

(σxk − iσ
y
k). (3.26)

It is noteworthy that the norm of the pseudospin is conserved by the Bloch equation (3.24). The
time evolution of the particle number due to particle loss is obtained from Eq. (3.22) as

1

N0

dN

dt
= −2γ|∆|2

|U |2
, (3.27)

which reflects the dynamics of the order parameter.

3.3.4 Generalization of the Bogoliubov-de Gennes analysis with a time-
dependent BCS state

We here explain that Eq. (3.22) (Eq. (3.24) in the psedouspin representation) is equivalent to the
Bogoliubov-de Gennes equation with a time-dependent BCS state [149, 155], which describes the
unitary evolution of the density matrix.

We introduce the time-dependent BCS state of the effective HamiltonianHeff =
∑

k Ψ†k

(
εk ∆
∆∗ −εk

)
Ψk

as follows:

|ΨBCS(t)〉 =
∏
k

(uk(t) + vk(t)c†k↑c
†
−k↓)|0〉, (3.28)

|uk|2 + |vk|2 = 1, (3.29)

where |0〉 is the vacuum of fermions. Here, the superfluid order parameter ∆ is rewritten as

∆ = − U

N0

∑
k

〈c−k↓ck↑〉 = − U

N0

∑
k

u∗k(t)vk(t). (3.30)

Suppose that the density matrix is given by

ρ(t) = |ΨBCS(t)〉 〈ΨBCS(t)| . (3.31)

Then, the time-evolution equation (3.22) is equivalent to the Bogoliubov-de Gennes equation with
the time-dependent BCS state

i∂t

(
uk
vk

)
=

(
−εk ∆∗

∆ εk

)(
uk
vk

)
. (3.32)

By defining fk(t) and gk(t) as

fk = u∗kvk, (3.33)

gk =
1

2
(|uk|2 − |vk|2), (3.34)
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Eq. (3.32) is rewritten as

dfk
dt

= −2iεkfk − 2i∆gk, (3.35)

dgk
dt

= i∆f∗k − i∆∗fk. (3.36)

These equations take the same forms as those for closed systems [149, 155]. Finally, by defining
the psedouspins as

fk = σxk − iσ
y
k, (3.37)

gk = −σzk, (3.38)

we obtain the same Bloch equation as discussed in the previous subsection: dσk/dt = 2bk × σk,
and bk =

(
Re∆, −Im∆, εk

)
. We note that the dynamics described by Eq. (3.22) conserves the

purity tr[ρ2] as

dtr[ρ2]

dt
= 2tr

[
ρ
dρ

dt

]
= −2itr(ρ[Heff , ρ]) = 0. (3.39)

In general, the purity should decrease during the time evolution described by the quantum
master equation. This fact is consistent with the time-dependent BCS ansatz (3.28) as follows.
Since |ΨBCS(t)〉 can be expanded in terms of N -particle states

|ΨN 〉 =
∑

k1···kN/2

ak1
· · · akN/2c

†
k1↑c

†
−k1↓ · · · c

†
kN/2↑c

†
−kN/2↓|0〉 (3.40)

as

|ΨBCS(t)〉 =
∑
N

cN |ΨN 〉, (3.41)

the density matrix is written as

ρ = |ΨBCS(t)〉〈ΨBCS(t)|

=
∑
N

|cN |2|ΨN 〉〈ΨN |+
∑
N 6=N ′

c∗N ′cN |ΨN 〉〈ΨN ′ |. (3.42)

Then, for a gauge-invariant observable O, its expectation value is given by

〈O〉 ≡ tr[Oρ] =
∑
N

|cN |2〈ΨN |O|ΨN 〉 = tr[Oρ′], (3.43)

where

ρ′ =
∑
N

|cN |2|ΨN 〉〈ΨN | (3.44)

is a mixed state of different particle numbers. Therefore, concerning gauge-invariant observables,
the time-dependent BCS state (3.31) is indistinguishable from the mixed state (3.44) with tr[ρ′2] <
1. Since any physically observable quantity should be gauge invariant, the time-dependent BCS
ansatz (3.28) can describe the time evolution of the density matrix consistently with the quantum
master equation.

3.4 Collective excitations: phase and amplitude modes

In this section, we numerically solve the Bloch equation (3.24) self-consistently under the condi-
tion (3.26). As an initial state, we prepare a BCS ground state with γ = 0, whose pseudospin
representation is given by σxk(0) = −∆0/

√
εk2 + ∆2

0, σyk(0) = 0 and σzk(0) = −εk/
√
εk2 + ∆2

0 with
∆0 ∈ R. The single-particle energy εk is measured from the Fermi energy of the initial state. The
bandwidth W is defined by the energy difference between the upper and lower edges of the energy
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(a) (b)

𝑡∆! 𝑡∆!

U/Δ0=12.16, γ/Δ0=2.807

Figure 3.2: Dynamics of a superfluid after the atom loss with γ = 2.81∆0 is switched on for
the initial state with UR = 12.2∆0 and bandwidth W = 46.8∆0, where ∆0 is the superfluid order
parameter in the absence of the atom loss. (a) Real parts (light green), imaginary parts (blue), and
the amplitude (violet) of the order parameter. (b) Angular velocity (pink) and particle number
(yellow) plotted against time. The figures indicate a chirped phase rotation and an amplitude
oscillation of ∆.

spectrum with a constant density of states. We then switch on the atom loss γ at t = 0. The
results shown in Fig. 3.2 are obtained by the second-order Runge-Kutta method. In the long-time
limit, the amplitude of the superfluid order parameter ∆ is suppressed due to dissipation, indi-
cating a decay of superfluidity [see Fig. 3.2(a)]. We note that the order parameter decays in the
long-time limit due to a decrease of the particle number [see Fig. 3.2(b)], and such behavior has
no counterpart in the quench in isolated systems [156, 157]. Remarkably, after the dissipation γ
is introduced, the U(1) phase of the order parameter rotates and shows chirping, i.e., its angular
velocity increases with time [see Fig. 3.2(a), (b)]. The chirping behavior is distinct from the usual
dynamics in isolated systems where the U(1) phase stays constant [156–158], and is caused by the
dynamical shift of the Fermi surface as detailed below.

The physical origin of the chirping of the U(1) phase can be understood from the pseudospin
picture. As shown in Fig. 3.3, when the sign of σzk changes from positive to negative, the magnitudes
of σxk and σyk increase due to the norm conservation of pseudospins. This indicates that the Cooper-
pair amplitude at specific momenta rapidly changes when atoms at those momenta are lost from
the system. Since Cooper pairs are formed near the Fermi surface, a loss of Cooper pairs leads to
a downward shift of the Fermi level.

To see the effect of the dynamics of pseudospins on the collective phase mode, we calculate
the angular velocity of the order parameter. From Eq. (3.26), the real and imaginary parts of the
order parameter are written as

|∆| cos θ = Re∆ = −U1

∑
k

σxk −
γ

2

∑
k

σyk, (3.45)

|∆| sin θ = Im∆ = −γ
2

∑
k

σxk + U1

∑
k

σyk. (3.46)

By differentiating Eqs. (3.45) and (3.46) with respect to time, we obtain

|∆|2 dθ
dt

=
(
U1Im∆− γ

2
Re∆

)∑
k

dσxk
dt

+
(γ

2
Im∆ + U1Re∆

)∑
k

dσyk
dt

. (3.47)

Then, by substituting the Bloch equation (3.24) into Eq. (3.47), we arrive at

dθ

dt
= UR(1− N

N0
)− 2|U |2

|∆|2N2
0

∑
kk′
α=x,y

σαk · εk′σαk′ , (3.48)

in which the last term increases due to the shift of the Fermi level, leading to chirping of the U(1)
phase. Here, we note that the first term on the right-hand side of Eq. (3.48) also increases as the
particle number decreases; however, it is much smaller than the second term.

On the other hand, the phase rotation is understood from an initial-state free energy as a
function of ∆ [see Fig. 3.1(a)]. When dissipation is introduced, the sudden quench of the imaginary
part of U in Eq. (3.26) pushes the order parameter towards the direction perpendicular to the
radial direction irrespective of the initial choice of the gauge. Another way to understand the
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𝜀 = −18.7Δ0 𝜀 = −9.35Δ0 𝜀 = 0

𝝈 𝒌

𝑡∆" 𝑡∆" 𝑡∆"

Figure 3.3: Dynamics of pseudospins [σxk (light green), σyk (blue), σzk (orange), |σk| (violet)] after
the atom loss with γ = 2.81∆0 is switched on for the initial state with UR = 12.2∆0 and the Fermi
energy εF = 0 for ε = −18.7∆0 (left), −9.35∆0 (center), and 0 (right), where ε is the single-particle
energy in the band −23.4∆0 ≤ ε ≤ 23.4∆0.

(a)

(b) (d)

(c)

Figure 3.4: Dynamics of a superfluid after the interaction and the atom loss are suddenly changed.
(a) Real parts (light green) and imaginary parts (blue) of the order parameter. The amplitudes
of the order parameter are shown as violet curves in both figures. (c) The particle number of
the system normalized by the initial particle number N0 (red) and the rate of change in particle
number (yellow). (d) An enlarged view of the particle number near t = 0. The parameters are
suddenly changed from UR = 8.4∆0 to U = (16.8 + 0.45i)∆0 at t = 0 and the bandwidth is set to
W = 28∆0.

phase rotation is to introduce an effective chemical potential as ∆(t) = exp(−2i
∫ t

0
µeff(t)dt)Ω(t)

(Ω ∈ R). By performing a global gauge transformation from ∆ to Ω, the Bloch equation is written
in the Larmor frame on which the energy dispersion is given by ξk(t) = εk − µeff(t). This gauge
transformation indicates that the phase rotation corresponds to a decrease of the effective chemical
potential, which is consistent with the behaviors of θ̇ and N in Fig. 3.2(b). This result can naturally
be understood since the phase and the particle number are conjugate variables.

Importantly, we also find amplitude oscillations in |∆| as shown in Fig. 3.2(a). The mechanism
behind the oscillations is that the quench of the imaginary part of U changes the absolute value
of ∆ [see Fig. 3.1(a)]. The frequency of the amplitude oscillation is close to 2∆0 at an early stage,
and increases as time evolves. This behavior is distinct from that of an isolated system, where the
amplitude mode is characterized by the constant frequency. Such behavior can be observed from
the measurement of the time-dependent particle number via Eq. (3.27).

We note that the amplitude oscillations are more pronounced when the interaction and the
dissipation are simultaneously quenched. Figure 3.4 shows the dynamics after the dissipation γ
is introduced at t = 0 and the interaction strength is simultaneously changed from UR = 8.4∆0

to UR = 16.8∆0. In Figs. 3.4(a) and (b), we see an amplitude oscillation larger than that in
the loss quench dynamics shown in Figs. 3.2(a) and (b). This behavior is due to the fact that a
change in the real part of U causes a large initial shift of the amplitude of the order parameter
[see Fig. 3.1(a)]. As shown in Figs. 3.4(c) and (d), the amplitude of the particle-number oscillation
is a few percent of the initial particle number, which can be detected with current experimental
techniques [194].
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(a1)

(b1)

(c1)

(d1)

θ_2-θ_1 light blue, ¥dot N_1 pink, leggett black UR/Δ0=3.063, γ/Δ0=0.030, V/Δ0=0.020

(a2)

(b2)

(c2)

(d2)

θ_2-θ_1 light blue, ¥dot N_1 pink UR/Δ0=3.063, γ/Δ0=0.061, V/Δ0=0.020

Figure 3.5: Dynamics of two fermionic superfluids after the switch-on of the atom loss γ and the
tunnel coupling V = 0.02∆0 with UR = 3.06∆0 and bandwidth W = 5.11∆0, where γ = 0.03∆0

for (a1)-(d1) and γ = 0.06∆0 for (a2)-(d2). (a), (b) Real parts (light green), imaginary parts
(blue), and amplitudes (violet) of the order parameter for systems 1 and 2. (c) Particle numbers of
system 1 (red) and system 2 (yellow), and their difference [green, in (c1)]. (d) Josephson current
(pink) and phase difference (light blue) between the two systems. The black curve in (d1) shows
an oscillation at frequency ωL for comparison.

3.5 Josephson junctions

As we have seen in the previous section, U(1) phase rotation highlights dissipative fermionic su-
perfluids, but can be gauged out by going into the Larmor frame. To overcome this problem, in
this section, we consider Josephson junctions to observe gauge-invariant physical quantities.

3.5.1 Collective excitations: Leggett mode

To observe the chirped phase rotation of the superfluid order parameter that is a unique feature of
dissipative superfluids, we propose that the phase rotation induced by dissipation can be detected
when two superfluids are connected via a Josephson junction, which has been realized in ultracold
atoms [194–198]. As the phase difference in the two superfluid order parameters is gauge-invariant,
it leads to an observable Josephson current. We introduce dissipation to one of the two superflu-
ids as schematically illustrated in Fig. 3.1(b) and assume that they are coupled via a tunneling
Hamiltonian [148, 184]

Htun = − V

N0

∑
kk′

(c†1k↑c
†
1−k↓c2−k′↓c2k′↑ + H.c.), (3.49)

where V > 0 is the amplitude of Cooper-pair tunneling between system 1 without dissipation
and system 2 with two-particle loss. By performing a mean-field analysis, we can write the
system Hamiltonian as Hsys = H1 + H2 + Htun = H ′1 + H ′2, where Hi ≡

∑
kσ εkc

†
ikσcikσ +∑

k(∆ic
†
ik↑c

†
i−k↓ + H.c.) (i = 1, 2) is the mean-field Hamiltonian of system i and H ′i ≡ Hi −

V/N0

∑
kk′(〈cj−k′↓cjk′↑〉c

†
ik↑c

†
i−k↓ + H.c.) [(i, j) = (1, 2) or (2, 1)]. In the pseudospin respre-

sentation, the Hamiltonian is written as H ′i = 2
∑

k bik · σik with an effective magnetic field
bik = (Re∆′i, −Im∆′i, εik), which yields the Bloch equation dσik/dt = 2bik × σik. The self-

consistent conditions for the order parameters read ∆1 = |∆1|eiθ1 = −UR

N0

∑
k(σx1k − iσ

y
1k) and

∆2 = |∆2|eiθ2 = − U
N0

∑
k(σx2k − iσ

y
2k), where N0 is the number of sites of each system. Here, the

relations ∆′i = ∆i−V/N0

∑
k(σxjk−iσ

y
jk) [(i, j) = (1, 2) or (2, 1)] are satisfied. Then, the Josephson

current between the two superfluids is given by the rate of change in the particle number of system
1:

1

N0

dN1

dt
= −4V |∆1||∆2|

UR|U |
sin (θ2 − θ1 + δ) , (3.50)

where δ = tan−1(−γ/2UR) is the phase shift due to the sudden switch-on of the atom loss.
We numerically solve the coupled Bloch equations for σik. We assume that dissipation γ and

tunneling V are turned on at t = 0 for the BCS ground state. The numerical results for weak
dissipation are shown in Fig. 3.5(a1)-(d1). In Figs. 3.5(a1) and (b1), the dynamics of two superfluids
almost synchronize with each other because the time scale of particle loss is comparable with the
inverse tunneling rate. In the pseudospin picture, the dynamics of particle numbers shown in
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𝑡! = 97.9/Δ"(a) (b)

Figure 3.6: (a) DC component of the Josephson oscillation defined by
(max0≤t≤tf{sin (θ2(t)− θ1(t) + δ)} + min0≤t≤tf{sin (θ2(t)− θ1(t) + δ)})/2 with tf = 97.9/∆0.
(b) Phase difference between the two systems (blue) and particle numbers of system 1 (red)
and system 2 (yellow) after a sufficiently long time (tf = 97.9/∆0). The parameters used are
UR = 3.06∆0, V = 0.02∆0, and W = 5.11∆0.

Fig. 3.5(c1) can be interpreted as the nutation of pseudospins. Importantly, we see that, although
the particle number of the system decreases in time, the corresponding amplitude of the order
parameter stays almost constant. This implies that the condensate fraction against the total
particle number becomes larger than that of the initial state. As inferred from Fig. 3.5(d1), the
Josephson current oscillates around its dc component. Such behavior is reminiscent of Shapiro steps
in a Josephson junction under irradiation of a microwave [199]; however, in the present case, the
Josephson current oscillate spontaneously without any external field. Moreover, from Fig. 3.5(d1),
the frequency of the oscillation of the phase difference between the two systems is close to that
of the relative-phase mode known as the Leggett mode [148, 184] whose dispersion relation is
given by ωL = 2

√
(λ12 + λ21)|∆1||∆2|/detλ, where λ11 = λ22 = UR/W , λ12 = λ21 = V/W and

detλ = λ11λ22−λ12λ21. We note that ωL includes the effect of loss through the order parameters.
The Leggett mode with frequency ωL has been discussed in the context of a collective mode in a
multiband superconductor irradiated by light [184]. The agreement between the frequencies of the
relative-phase modes in very different situations can be understood as follows. When dissipation
is weak, the time evolution of an order parameter is given by ∆i(t) = exp(−2i

∫ t
0
dtµieff(t))|∆i(t)|

with an effective chemical potentials µieff . Then, by performing a global gauge transformation
from cikσ to cikσ exp(i

∫ t
0

∑
i µieffdt/2), we can linearize the Bloch equation with respect to the

relative phase difference between ∆i’s by following Ref. [184].

3.5.2 Nonequilibrium dynamical phase transition

In the presence of strong dissipation, the order parameter of system 2 oscillates faster than that
of system 1 [see Fig. 3.5(a2), (b2)] and the phase difference monotonically increases in time [see
Fig. 3.5(d2)]. This is because the dissipation rate larger than the tunneling rate makes system 1
fail to follow the decay of system 2, resulting in the dynamics similar to that of a single superfluid
shown in Fig. 3.2. In particular, the chirped phase rotation of the superfluid order parameter of
system 2 can be detected from the Josephson current [Fig. 3.5(d2)]. As the superfluidity of system
2 is suppressed, the Josephson current also decays, and the particle number of system 1 settles
to a constant after some transient time [see Fig. 3.5(c2)]. The latter behavior is attributed to
QZE [11, 13, 40, 41, 128, 140], which states that strong dissipation prevents tunneling and inhibits
loss in system 1. In fact, an effective decay rate of system 1 is given by γeff ≡ |Veff |2/γ with an
effective tunneling rate Veff = V∆2/UR from Eq. (3.49), leading to suppression of decay γeff → 0
for |∆2|2/γ → 0.

The two dynamically distinct regimes of superfluid behaviors suggest the existence of dynamical
phases of matter [186, 187] in dissipative superfluids. The qualitative change in the superfluid be-
haviors with respect to the dissipation strength highlights a dynamical phase transition character-
ized by the vanishing dc Josephson current [Fig. 3.6(a)], where the dc component of the Josephson
oscillation is defined by (max0≤t≤tf{sin (θ2(t)− θ1(t) + δ)}+ min0≤t≤tf{sin (θ2(t)− θ1(t) + δ)})/2
[see Eq. (3.50)] after a sufficiently long time evolution with tf = 97.9/∆0. We emphasize that the
dynamical phase transition in dissipative superfluids is essentially distinct from the phase transi-
tion between ground states in a NH BCS superfluid [128]. The former is caused by a change in
particle number in the long-time dynamics, whereas the latter is caused by an exceptional point
of a NH BCS Hamiltonian, which is relevant to the short-time dynamics during which the number
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of particles does not change [200]. From Fig. 3.6(b), we see that the phase difference θ2 − θ1

starts to increase monotonically at the critical point and that the difference in particle number
(N2 − N1)/N0 becomes much larger. The behavior of the phase difference is reminiscent of the
localization-diffusion transition of a quantum-mechanical particle moving in a washboard potential
in the presence of frictional force [201–203]. However, the origin of the transition shown in Fig. 3.6
is essentially different from frictional force, since it cannot change the particle number. Moreover,
as the steady state is a vacuum due to the particle loss, the dynamical phase transition is observed
only in the transient dynamics, and thus distinct from steady-state transitions.

Finally, we see that the dynamical phase transition in Fig. 3.6 is triggered by the competition
between the Josephson coupling and particle loss, by considering a simplified model for Josephson
junctions. We consider two fermionic superfuids coupled via a Josephson junction, where two-body
loss is introduced to one of them, as shown in Fig. 3.1(b). The Josephson current flowing between
the two systems is given by

I =
1

N0

dN1

dt
= −I0 sin(∆θ), (3.51)

where, from Eq. (3.50), ∆θ = θ2 − θ1, I0 = 4V |∆1||∆2|/UR|U |, and we have neglected the phase
shift δ because δ � ∆θ. Taking into account the particle loss in Eq. (3.27), we obtain the rate of
change in the particle number of system 1 and that of system 2 as

1

N0

dN1

dt
= −I0 sin(∆θ), (3.52)

1

N0

dN2

dt
= I0 sin(∆θ)− 2γ|∆2|2

|U |2
. (3.53)

We assume that the time evolution of the phase difference ∆θ is given by the effective chemical-
potential difference ∆µeff between the two systems as

d∆θ

dt
= −2∆µeff = −W

N0
(N2 −N1), (3.54)

where W is a bandwidth and we assume a constant density of states for simplicity (we can also
understand this equation from the phenomenological time-dependent Ginzburg-Landau (GL) the-
ory, which is explained in the appendix for this chapter). We obtain the equation of motion for
∆θ by using Eqs. (3.52), (3.53), and (3.54) as

d2∆θ

dt2
= −2WI0 sin(∆θ) +

2γW |∆2|2

|U |2
. (3.55)

This system is regarded as a Josephson junction with shunt resistance R = +∞, capacitance
C = 1/2W and an external force F = γ|∆2|2/|U |2, which is described as

C
d2∆θ

dt2
+

1

R

d∆θ

dt
+ I0 sin(∆θ) = F. (3.56)

That is, the time evolution of ∆θ is equivalent to that of a particle moving in a washboard potential

Vwash = −2WI0 cos(∆θ)− 2γW |∆2|2∆θ

|U |2
. (3.57)

The condition for the extremum of Vwash is given by dVwash/d∆θ = 0, giving

sin(∆θ) =
γ|∆2|2

I0|U |2
. (3.58)

The solution to this equation does not exist for γ|∆2|2/I0|U |2 > 1 and the time evolution of ∆θ
becomes unstable. If we assume |∆1| ' |∆2| when the time evolution is sufficiently slow, we obtain
the critical strength of the atom loss as

γc ' 4V, (3.59)
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Figure 3.7: Numerical solution of N1/N0 (red), N2/N0 (yellow), and ∆θ (light blue) in Eqs. (3.60),
(3.61), and (3.62) with W = 5.11∆0 and I0 = 0.009∆0. The loss rate κ2 is set to κ2 = 0.006∆0 in
(a1) and (b1), and κ2 = 0.02∆0 in (a2) and (b2).

which is of the same order of magnitude as that in Fig. 3.6 (γc ' 3V ). Thus, the system exhibits
a dynamical phase transition from the state in which ∆θ oscillates around an extremum of Vwash

for γ < γc to the state in which ∆θ slips down the washboard potential for γ > γc. Thus, the
dynamical phase transition caused by the particle loss is the one between a trapped state and a
running state. We note that the particle loss γ acts as an external force F rather than friction
R in Eq. (3.56). The loss-induced dynamical phase transition occurs spontaneously without any
external fields, and has an essentially different origin from the localization-delocalization transition
induced by friction R [201–203].

These features are also obtained from a phenomenological introduction of two-body loss [11, 40],
under which the rate of change in the particle number of system 1 and that of system 2 are given
by

1

N0

dN1

dt
= −I0 sin(∆θ), (3.60)

1

N0

dN2

dt
= I0 sin(∆θ)− κ2

(
N2

N0

)2

, (3.61)

where κ2 is the two-body loss rate. By using Eqs. (3.54), (3.60), and (3.61), we obtain the equation
of motion for ∆θ as

d2∆θ

dt2
= −2WI0 sin(∆θ) +Wκ2

(
N2

N0

)2

. (3.62)

This system is regarded as a Josephson junction with resistance R = +∞, capacitance C = 1/2W

and an external force F = κ2

2

(
N2

N0

)2

. As the system has the washboard potential

Vwash = −2WI0 cos(∆θ)−Wκ2

(
N2

N0

)2

∆θ, (3.63)

the condition for the extremal of Vwash is given by

sin(∆θ) =
κ2

2I0

(
N2

N0

)2

. (3.64)

If we assume that the variation of the parameters is sufficiently slow and approximate them as
constant, the critical strength of the loss rate where the solution of ∆θ becomes unstable is given
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by

κ2c ' 2I0. (3.65)

We can numerically solve Eq. (3.60), (3.61), and (3.62), and the results are shown in Fig. 3.7. We
see that the results shown in Fig. 3.7(a1) and (b1) [Fig. 3.7(a2) and (b2)] are qualitatively the
same as those in Fig. 3.5(c1) and (d1) [Fig. 3.5(c2) and (d2)], respectively.

3.6 Summary of this chapter

We have investigated the loss-quench dynamics of fermionic superfluids, and have demonstrated
that the dynamics exhibits amplitude and phase modes with chirped oscillations, the latter of
which is a salient feature of a dissipative superfluid. To observe the chirped phase rotation, we
have proposed a Josephson junction comprised of dissipative and nondissipative superfluids. We
have shown that the relative-phase Leggett mode can be detected from the Josephson current
for weak dissipation. Remarkably, when dissipation becomes strong, the superfluids exhibit the
unique nonequilibrium phase transition triggered by particle loss. Our prediction can be tested
with ultracold atomic systems of 6Li [194, 196], for example, by introducing dissipation using pho-
toassociation processes [42, 92]. It is of interest to explore how the dimensionality or confinement
by a trap potential affects the dynamics and associated collective modes [161–164].

3.7 Appendix for this chapter

Difficulties in the time-dependent Ginzburg-Landau theory

The time-evolution equation of the phase [Eq. (3.54)] can be understood as a consequence of the

gauge transformation (∆i(t) = exp(−2i
∫ t

0
dtµieff(t))|∆i(t)|), which reflects the conjugate nature

of the particle number and the phase. From a more phenomenological point of view, Eq. (3.51)
can be understood using the time-dependent GL theory. Here we note that, strictly speaking,
the GL theory cannot be applied to zero-temperature superfluids considered in our study, since
the Taylor expansion of the free energy requires that the system should be close to the transition
temperature. In nonequilibrium situations, the time-dependent GL theory cannot be applied to
gapped superfluids and nonadiabatic regimes, since the time scale of the order-parameter dynam-
ics becomes shorter than the lifetime of quasiparticles and quasiparticle contributions cannot be
neglected [154, 178]. Moreover, for the application of the time-dependent GL theory, it is required
that the deviation from equilibrium is sufficiently small, which cannot be satisfied in our dissipative
superfluids which are driven far from equilibrium. However, we assume below that the GL theory
could be phenomenologically used to investigate the dynamics of the dissipative superfluids. We
start from the phenomenological GL equation of the superfluid condensate, which is expanded in
a series of the order parameter

−Γ

(
∂∆

∂t
+

2ieϕ

~
∆

)
= a∆ + b|∆|2∆, (3.66)

where Γ is a positive constant, ϕ is the scalar potential, e is the charge, and we have assumed that
the order parameter is spatially uniform. Here, we have introduced complex-valued coefficients a
and b, which might describe the effect of the atom loss. However, we remark on the validity of
this treatment below. In our study, the scalar potential does not exist. Instead, we introduce an
effective chemical potential µeff that is determined from the total particle number of the system
as follows:

−Γ

(
∂∆

∂t
+ 2iµeff∆

)
= a∆ + b|∆|2∆. (3.67)

By rewriting the equation in terms of the phase θ and the amplitude |∆| of the order parameter
(the latter is proportional to the square root of the superfluid density), we obtain the equation of
motion for the phase as

∂θ

∂t
= −2µeff −

Im(a) + Im(b)|∆|2

Γ
. (3.68)
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For two superfluids connected via a Josephson junction, we similarly obtain

∂(θ2 − θ1)

∂t
= −2(µ2eff − µ1eff)− Im(a2) + Im(b2)|∆2|2

Γ2
, (3.69)

where the subscript 1 and 2 label the two superfluids, and we have introduced the effect of loss
to superfluid 2. If the coefficients a and b are real, we arrive at Eq. (3.54): ∂∆θ/∂t = −2∆µeff .
We note, however, that Eqs. (3.52) and (3.53) cannot be obtained from the GL theory, since N1

and N2 are the total particle numbers of the two superfluids, which are not directly related to the
amplitude of the order parameter for dissipative superfluids. In the case of complex coefficients
a and b, one might at first sight think that the effect of loss can be described by regarding the
second term in Eq. (3.69) as an effective change in the chemical potential, which reads ∆µ '
W (N − N0)/N0 ∝ |∆|2 − |∆0|2. However, this result of the phenomenological treatment of the
time-dependent GL theory has a serious problem. To see this, let us differentiate this equation
with respect to time as dN/dt ∝ |∆|d|∆|/dt. As the amplitude of the order parameter oscillates as
shown in Fig. 3.2(a), the equation dN/dt ∝ |∆|d|∆|/dt indicates that the total particle number of
the system can increase since the oscillating part d|∆|/dt can take a positive value. Such an increase
of the particle number is unphysical since our system has no particle gain. As the correct equation
obtained from the microscopic theory is dN/dt ∝ −|∆|2 [see Eq. (3.27)], which indicates that the
total particle number of the system monotonically decreases, Eq. (3.69) does not correctly describe
the dynamics associated with the loss in the total particle number. Thus, it is highly nontrivial to
consistently describe the dynamic evolution of the order parameter, collective excitations, and the
dynamical phase transition caused by the particle loss in dissipative fermionic superfluids on the
basis of the phenomenological GL theory.

If we wish to derive the time-dependent GL equation from the formalism based on CTC path
integrals, we should start from a generating functional like Eq. (3.3), and introduce the order
parameter by performing the Hubbard-Stratonovich transformation. Then, by integrating out the
fermionic degrees of freedom, we arrive at the action with respect to the order parameter. By
expanding the exact action S(∆,∆∗) around its extremal value S(∆0,∆

∗
0), where ∆0 is usually

the equilibrium value that satisfies the BCS gap equation, the time-dependent GL equation is
obtained from a saddle-point equation ∂S(∆,∆∗)/∂∆∗(r, t) = 0 [204]. However, we have to pay
careful attention to the condition that is assumed in the standard derivation: the deviation of the
order parameter ∆ around its extremal value ∆0 should be small enough for the Taylor expansion
to be justified. We also note that the standard derivation assumes that the total particle number
of the system does not change. In contrast, as the particle number significantly changes in our
system, the phase of the order parameter rotates and largely deviates from the stationary value
as shown in Fig. 3.2(b). Thus, a time-dependent GL theory that fully incorporates the change in
particle number needs highly nontrivial consideration, which deserves further study.



Chapter 4

Rectification in open quantum
systems

4.1 Introduction

Nonreciprocal phenomena, which have been a long-standing problem in condensed matter physics
and nonequilibrium statistical mechanics, play a vital role in a variety of areas, including solid-state
physics [205–211], photonics [212–216], acoustics [217–222], and active matter [223–226]. While p-n
junctions are nonreciprocal devices of commercial success, there is significant interest in exploring
alternative mechanisms, and recent discoveries have shed light on generating nonreciprocal flows
without any temperature biases [226–231]. While dissipation has been recognized as a key ingredi-
ent to control transport properties, Onsager’s reciprocal theorem [232, 233] prohibits rectification
by equilibrium baths and thus it is of central importance to introduce nonequilibrium baths.

In open quantum systems, one common way to introduce rectification is to couple a system
with two different baths at boundaries and use temperature gradients as exemplified by thermal
diodes [234–240]. Indeed, many of the previous studies have focused on inhomogeneous setups
such as by introducing boundary driving [241–253]. On the other hand, experimental advances in
controlling dissipation have allowed one to study nonequilibrium and NH phenomena in trapped
ions [254, 255], photonics [256, 257], ultracold atoms [31, 32, 36, 37, 42, 43, 92], and exciton-
polariton systems [258–263]. These remarkable developments have offered new opportunities for
exploring intriguing phenomena unique to open quantum systems in homogeneous setups in contrast
to boundary-driven systems [264]. Despite these experimental advances, rectification induced by
homogeneous dissipation of nonequilibrium baths has scarcely been explored. To our knowledge,
there are so far only a few studies in this direction, where nonreciprocal photon transmissions
[265–267] and rectified heat currents in spin chains [97] are discussed. Thus, it is still unclear
how translationally invariant homogeneous dissipation of nonequilibrium baths can be harnessed
to realize unidirectional fermionic transports.

In this chapter, we propose minimal setups to obtain a unidirectional particle transport in
NESSs of 1D open fermionic systems, where a nonequilibrium bath is uniformly coupled to the
system and gives rise to homogeneous dissipation (see Fig. 4.1) [268]. We first consider a nonre-
ciprocal Lindblad operator, which is translationally invariant and conserves the particle number
of the system, and elucidate a general condition to acquire a nonreciprocal particle transport in
NESSs. We numerically calculate the current by considering a specific dissipator that can be real-
ized in ultracold atoms [5, 94]. Then, we demonstrate that a reciprocal Lindblad operator can also
induce unidirectional particle transport in NESSs provided that the inversion symmetry and the
time-reversal symmetry of the Hamiltonian are broken. We consider spin-dependent dephasing as a
reciprocal Lindblad operator and evaluate the current by analytical and numerical methods in the
presence of the Rashba spin-orbit coupling and the Zeeman magnetic field [269]. Our results should
be tested by using ultracold atoms or semiconductor quantum dots, where the master-equation
description can be used [270].

53



54 CHAPTER 4. RECTIFICATION IN OPEN QUANTUM SYSTEMS

Equilibrium Heat Bath β

Nonequilibrium Bath

𝛾!"

𝛾#!"

𝐼

Figure 4.1: Schematic illustration of our setup. Fermions are trapped in a 1D lattice and uniformly
coupled to a nonequilibrium bath, which gives rise to translationally invariant dissipation. An
equilibrium heat bath with the inverse temperature β is also coupled to the system to ensure that
the system reaches to the Gibbs state in the absence of nonequilibrium driving. The coupling
strength to each bath is given by γeq and γneq = 1−γeq, respectively. Unidirectional current I can
arise in NESSs only when the system is driven out of equilibrium.

4.2 Setup

We consider a 1D lattice model coupled to both an equilibrium heat bath and a nonequilibrium
Markovian bath. Such a situation is described by the Lindblad master equation

∂tρ = −i[H0, ρ] + L1ρ, (4.1)

L1ρ = ε(γeqDeq(ρ) + γneqDneq(ρ)), (4.2)

with dissipators

D(i)(ρ) =
∑
m

(
L(i)
m ρL(i)†

m − 1

2

{
L(i)†
m L(i)

m , ρ
})

, (4.3)

where H0 is a noninteracting Hamiltonian governing the internal dynamics, Lm is a so-called Lind-
blad operator, γeq and γneq = 1 − γeq denote the relative coupling strengths between two baths,
γeq ∈ [0, 1]. We assume that the baths are weakly coupled to the system with a small dimensionless
parameter ε. Here and henceforth, we set ~ = 1. In AMO systems, the approximations involved in
deriving the Lindblad master equation are typically well-satisfied to many orders of magnitudes,
and a lot of experimental studies have revealed that these approximations are indeed applicable
to various situations [2]. The Lindblad equation can be derived from a fully microscopic Hamilto-
nian of the system, the system-bath coupling, and the bath after tracing out the bath degrees of
freedom with the Born approximation, Markov approximation, and rotating-wave approximation.
We remark that the present model is an intrinsically interacting many-body problem because the
dissipator cannot in general be expressed in terms of quadratic annihilation/creation operators as
detailed below.

When the integrability of the translationally invariant internal system is weakly broken due
to the coupling with the reservoir, the time evolution of the system can be described by a tGGE
[96–98, 271] (see Sec. 1.3.2), which is justified for times t of the order of 1/ε and larger,

ρGGE(t) =
e−

∑
q λq(t)Iq

Tr[e−
∑
q λq(t)Iq ]

, (4.4)

where Iq is an approximately conserved quantity as a consequence of weak driving. Previous studies
[96–98] have shown that, by applying a linear-order perturbation theory to the Lindblad equation,
one can obtain a differential equation that determines the dynamics of Lagrange parameters

λ̇q = −
∑
p

(χ(t)−1)qptr [IpL1ρGGE(t)] , (4.5)

χqp(t) = 〈IqIp〉GGE − 〈Iq〉GGE〈Ip〉GGE, (4.6)

where 〈· · · 〉GGE = tr[· · · ρGGE(t)].
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We note that λq and 〈Iq〉GGE are of the order of ε0 in NESSs, and this fact causes large current
responses at arbitrarily weak system-bath coupling as shown below. The validity of these equations
has been shown in Ref. [97] by comparing the results obtained from tGGE with those from the
exact diagonalization, as also seen from Fig. 4.2 below.

4.3 Rectification in nonequilibrium steady states

In the following, we evaluate the current in NESSs by using tGGE approach with Eqs. (4.4)–(4.6)
at arbitrarily weak system-bath coupling. We propose two minimal setups for rectifying the current
in NESSs both for nonreciprocal dissipator and reciprocal dissipator.

4.3.1 Rectification by nonreciprocal dissipator

We first consider the 1D tight-binding model

H0 = −J
L−1∑
j=0

(c†j+1cj + H.c.) =
∑

−π≤k<π

εkc
†
kck, (4.7)

where J is the hopping amplitude and εk = −2J cos(k) is the eigenspectrum. We focus on the
homogeneous couplings with nonequilibrium baths of infinite system sizes and assume that the
system is subject to periodic boundary conditions and periodic dissipation of length L. Here, we
note that a realistic system is sometimes affected by a particle source and sink at the edges, but
we ignore such effects for simplicity. Then, Iq in Eq. (4.4) is given by the local number operator
in the momentum space Iq = c†qcq.

The Lindblad operators corresponding to the equilibrium heat bath satisfy [Lm, H0] = ζmLm
with ζm = εk − εl, m = (k, l) ∈ {−π,−π + 2π/N, ..., π − 2π/N} to ensure the detailed balance

condition L†kl = Llke
−β(εk−εl)/2 [95, 272, 273] in such a way that, without nonequilibrium driving,

the system goes to the Gibbs state ρcan = e−βH0/tr(e−βH0) irrespective of the initial state [see
Figs. 4.2 and 4.3(a)]. For the sake of simplicity, we here employ the following Lindblad operator
corresponding to the equilibrium heat bath

Leq
lk =

√
J

L
c†l cke

β(εk−εl)/4. (4.8)

To realize current rectification in NESSs, we consider a nonreciprocal Lindblad operator corre-
sponding to the nonequilibrium bath and assume that it is translationally invariant and conserves
the particle number of the system. In this case, the Lindblad operator can in general be labeled
by a wave number with coefficients ∆kq as

Lneq
q =

√
J

L

∑
−π≤k<π

∆kqc
†
k−qck. (4.9)

Using Eq. (4.5) and Lindblad operators (4.8) and (4.9), we obtain the rate equation that governs
the dynamics of the system (see Appendix 4.5 for detailed derivations)

λ̇q = −εJ
L

1 + e−λq

e−λq
(γeqF

eq
q + γneqF

neq
q ), (4.10)

where

F eq
q =

∑
−π≤k<π

eβ(εk−εq)/2−λk − eβ(εq−εk)/2−λq

1 + e−λk
, (4.11)

F neq
q =

∑
−π≤k<π

|∆k,k−q|2e−λk − |∆q,q−k|2e−λq
1 + e−λk

. (4.12)

We numerically solve the rate equation (4.10) to obtain the dynamics of Lagrange parameters
and their steady-state values. We first verify that Lagrange parameters go to the Gibbs state
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Figure 4.2: Dynamics of Langrange parameters λq without nonequilibrium driving obtained from
Eq. (4.10), which satisfies the detailed balance condition Eq. (4.8) with γeq = 1. The system goes
to the Gibbs state (dashed lines) after sufficiently long-time evolution of the order of 1/ε. The
initial state is set to infinite temperature. The parameters are set to β = 2/J and ε = 0.05.
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Figure 4.3: (a) Lagrange parameters in NESSs that are driven out of equilibrium as the nonequilib-
rium dissipation rate γneq is increased. The grey dashed line denotes the Gibbs state. (b) Current
I in NESSs as a function of γneq with Lindblad operators (4.8) and (4.15). The parameters are set
to β = 2/J , ε = 0.05, δ = 1 + i, and δ′ = 1 + 0.5i.

in NESSs if there is no nonequilibrium driving. Figure 4.2 shows the relaxation dynamics of
Lagrange parameters, which obey Eq. (4.10) with γeq = 1 satisfying the detailed balance condition
Eq. (4.8). We see that the system goes to the Gibbs state (grey dashed lines) after sufficiently long
time evolution. Then, we calculate steady-state values of Lagrange parameters following the rate
equation (4.10). We see that Lagrange parameters depart from the Gibbs state when the system is
driven out of equilibrium as the nonequilibrium dissipation rate γneq is increased [see Fig. 4.3(a)].

We now derive a general condition to realize a nonzero nonreciprocal current in NESSs. The
current I generally consists of two terms including Hamiltonian current and dissipative current
of order ε. For such a small ε that justifies the tGGE approach, the dissipative current can be
ignored, which is consistent with a general description of the current in open quantum systems
[274, 275]. We obtain the current from the continuity equation for the density matrix as I =

2/L
∑
j Im〈c†jcj−1(H0)j,j−1〉GGE [276, 277], where (H0)j,j−1 denotes the coefficient of c†jcj−1 in

H0. In the present model, the current, which is the order of ε0, is given by

I =
iJ

L

L−1∑
j=0

〈c†j+1cj −H.c.〉GGE

=
2J

L

∑
−π≤q<π

sin(q)
e−λq

1 + e−λq
. (4.13)

Thus, to obtain a nonreciprocal current, the Lagrange parameter λq must not be an even function
of q. More specifically, as inferred from Eq. (4.12), this condition requires a set of (k, q) ∈ [−π, π)
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to satisfy (at least) one of the following conditions:

|∆q,k+q| 6= |∆−q,k−q|, |∆k,k−q| 6= |∆k,k+q|. (4.14)

We note that the time-reversal symmetry of the internal Hamiltonian is not broken, and an even
function λq prohibits the rectification of the current even when the dissipative current of order ε
is included.

Let us apply the condition (4.14) for obtaining the nonreciprocal current to a specific example.
We introduce a phenomenological dissipator which is proposed in ultracold atoms in an optical
lattice illuminated by Raman laser [5, 94],

Lneq
j =

√
J(c†j + δc†j+1)(cj − δ′cj+1), (4.15)

where the subscript j denotes the lattice site. This type of Lindblad operator causes the enhance-
ment or suppression of the atomic phases in two adjacent lattice sites and it is not obvious how such
type of superposition of the atomic phases leads to the transport of atoms. We rewrite Eq. (4.15)
as

Lneq
q =

√
J

L

∑
k

(1 + δe−i(k−q))(1− δ′eik)c†k−qck, (4.16)

where we set the lattice constant a = 1. From Eq. (4.14), the Lindblad operator (4.16) should give
rise to a nonreciprocal current when either δ or δ′ has the imaginary part. This is demonstrated in
Fig. 4.3(b), where the current in NESSs is plotted as a function of γneq for δ = 1 + i, δ′ = 1 + 0.5i.
We see that a large current is built up on a timescale of 1/ε as it is driven out of equilibrium
though it exactly vanishes in equilibrium (γneq = 0).

4.3.2 Rectification by reciprocal dissipator

We next discuss how to realize a nonzero nonreciprocal current by a reciprocal Lindblad operator
at the expense of the broken inversion and time-reversal symmetries of the internal Hamiltonian.
To be concrete, we include the Rashba spin-orbit coupling and the Zeeman magnetic field into the
1D tight-binding model [269]

H0 =− J
∑
jσ

(c†j+1σcjσ + H.c.) + h

L−1∑
j=0

(nj↑ − nj↓)

− αz
∑
jσσ′

(c†j+1σ(iσy)σσ′cjσ′ + H.c.)

+ αy
∑
jσσ′

(c†j+1σ(iσz)σσ′cjσ′ + H.c.)

=
∑

−π≤k<π

∑
ν=±

εkνη
†
kνηkν , (4.17)

where h denotes the Zeeman splitting, σy,z are the Pauli matrices, αy,z denote the Rashba hopping
with spin flips, σ =↑↓ and ν = ± label spin and band indices, respectively, and the system is
subject to periodic boundary conditions and periodic dissipation of length L. The Rashba spin-
orbit coupling and the Zeeman magnetic field break the inversion symmetry and the time-reversal
symmetry of the Hamiltonian, respectively (see Fig. 4.4). The Hamiltonian is diagonalized with

eigenvalues εk± = −2J cos(k)±
√

(2αy sin(k) + h)2 + 4α2
z sin2(k) and quasiparticle operators ηk±,

which are given by a unitary transformation as ckσ =
∑
ν uσν(k)ηkν and obey the anticommutation

relation {ηkµ, η†k′ν} = δkk′δµν (see Appendix 4.5 for details). In this case, local conservation laws
of few-body observables are given by the number operators of quasiparticles Iqν = η†qνηqν [cf.
Eq. (4.4)].

To identify the Lindblad operators Leq
m that satisfy the detailed balance condition, we consider

µ(ν) dependence for the energy bands of quasiparticles in addition to Eq. (4.8):

Leq
lµ,kν =

√
J

L
η†lµηkνe

β(εkν−εlµ)/4. (4.18)
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Figure 4.4: Schematic illustration of the energy spectrum of the tight-binding Hamiltonian with
Rashba spin-orbit coupling Eq. (4.17). The time-reversal symmetry (TR) of the Hamiltonian is
broken when the Zeeman magnetic field is applied to the system.

The relaxation dynamics of Lagrange parameters, which follow the detailed balance condition
(4.18), is qualitatively the same as that in Fig. 4.2 except the fact that the degrees of freedom
are doubled. As the reciprocal Lindblad operator of the nonequilibrium bath, we consider the
spin-dependent dephasing given by

Lneq
jσ =

√
Jγσc

†
jσcjσ, (4.19)

where j labels the lattice site and the dissipation rates of up and down spins satisfy γ↑ + γ↓ = 1.
We calculate the rate equation for the Lagrange parameters (4.5) with Lindblad operators (4.18)
and (4.19), which is given by (see Appendix 4.5 for detailed calculations)

λ̇qν = −εJ
L

1 + e−λqν

e−λqν
(γeqF

eq
qν + γneqF

neq
qν ) (4.20)

with the force

F eq
qν =

∑
kµ

eβ(εkµ−εqν)/2−λkµ − eβ(εqν−εkµ)/2−λqν

1 + e−λkµ
, (4.21)

F neq
qν =

∑
kµσ

γσ|uσν(q)|2|uσµ(k)|2 e
−λkµ − e−λqν
1 + e−λkµ

. (4.22)

We see from Eq. (4.22) that the system goes to the infinite temperature state, i.e., λq = 0 for all q,
without equilibrium heat bath. Nevertheless, the current can rectify if the system couples to both
equilibrium and nonequilibrium baths.

When the dynamics is determined from the rate equation (4.20), the current which is the order
of ε0 can be obtained from the continuity equation for the density matrix as

I =
∑
σ=↑↓

Iσ, (4.23)

where the spin-resolved current Iσ, is given by (see Appendix 4.5 for details)

Iσ =− i

L

[
− J

∑
j

〈c†j+1σcjσ −H.c.〉GGE

− αz
∑
jσ′

〈c†j+1σ(iσy)σσ′cjσ′ −H.c.〉GGE

+ αy
∑
jσ′

〈c†j+1σ(iσz)σσ′cjσ′ −H.c.〉GGE

]
. (4.24)

We have confirmed that, by numerical calculations using Eq. (4.23), the current I is nonzero
only when both the Zeeman magnetic field and the Rashba spin-orbit coupling exist. This can
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Figure 4.5: (a,b) NESSs current and its spin dependence as a function of γneq in the presence of the
Zeeman magnetic field and the Rashba spin-orbit coupling. Dephasing is applied to up spins in (a),
and to both up and down spins with equal rates in (b). (c) Distribution of the upper band (blue)
and the lower band (red) in NESSs for the equilibrium Gibbs state (left) and the nonequilibrium
state where dephasing is applied to up spins (right). Population changes are enhanced near the
Fermi surface due to dephasing (marked by grey dotted circles). The parameters are set to β = 2/J ,
ε = 0.05, αy = 1.1J , αz = 0.9J , and h = J . The initial state is at infinite temperature.

be understood as follows. Since dissipation by an equilibrium bath does not rectify the current,
one must resort to a nonequilibrium bath for obtaining a nonzero nonreciprocal current. From
Eq. (4.22), we see that nonreciprocity of the distribution of Lagrange parameters is determined
from the property of the unitary transformation of quasiparticles, namely, the symmetry of the
internal Hamiltonian H0. In fact, due to the structure of the matrix component uσν(k) (see
Appendix 4.5), dephasing by the nonequilibrium bath in Eq. (4.22) contributes to the Lagrange
parameters as an even function with respect to q if either one of the Zeeman magnetic field or the
Rashba spin-orbit coupling is absent. Because of this inversion-symmetric distribution of Lagrange
parameters, the current does not rectify even if dissipative correction of the order of ε is included.

Figures 4.5(a) and (b) show the currents in NESSs in the presence of the Rashba spin-orbit
coupling and the Zeeman magnetic field. As shown in Fig. 4.5(a), the dephasing applied to up
spins leads to a large nonreciprocal current I in NESSs after a time evolution set by 1/ε, and it
becomes larger as the system is driven out of equilibrium. We recall that the system goes to the
Gibbs state for γneq = 0 and the infinite temperature state for γneq = 1, both of which do not
rectify the total current I. When the dephasing is applied to both up and down spins with equal
rates [see Fig. 4.5(b)], the total current I vanishes irrespective of the dissipation rate γneq, as up
spins and down spins contribute to the current in the opposite directions and cancel out. Here, we
note that the sharp peak of the current in Fig. 4.5(a) comes from the sudden heating up to the
infinite temperature due to the nonequilibrium bath and the peak position can be controlled by
the system parameters, e.g., the Zeeman magnetic field h.

Physically, rectification of the current in NESSs can be understood from the change of spin
distribution near the Fermi surface. As shown in the left panel of Fig. 4.5(c), the spin distribution
forms an effective Fermi surface in the steady state [see also the right panel in Fig. 4.4], reflecting
the half-filled initial state. When dephasing is applied to up spins [see the right panel in Fig. 4.5(c)],
they heat up and spins near the Fermi surface are most likely to move to the other eigenstates.
As a result, the number of particles near the Fermi surface where up spins exist decreases, thereby
contributing to the current in the positive direction [see also Eqs. (4.36) and (4.37) in Appendix 4.5].
However, as shown in Fig. 4, the main contribution to the current originates from down spins
where dephasing is not applied, because up spins heated up by dephasing move to cancel out the
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Figure 4.6: (a) Current in NESSs and its spin dependence as a function of γneq in the presence
of the Zeeman magnetic field and the Rashba spin-orbit coupling, where dephasing is applied to
down spins. (b) Distribution of the upper band (blue) and the lower band (red) in NESSs for the
equilibrium Gibbs state (left) and the nonequilibrium state (right) corresponding to (a). Change
of population near the Fermi surface where dephasing is applied becomes large (marked by grey
dotted circles). The parameters are set to β = 2/J , αy = 1.1J , αz = 0.9J , and h = J for the
initial state at infinite temperature.

contribution to the current.

We also give the numerical results of the current in NESSs when dephasing is applied to
down spins. From Fig. 4.6(a), we see that the current rectifies in the opposite direction and
the total current I has the reversed value of that in Fig. 4.5(a). As shown in Fig. 4.6(b), the
change of population near the Fermi surface where dephasing is applied becomes large (grey dotted
circles) compared to the Gibbs state, which contributes to the current in the negative direction
[see Eqs. (4.36) and (4.37)].

4.4 Summary of this chapter

We demonstrate arbitrarily weak translationally invariant system-bath coupling can induce large
rectification in homogeneous open quantum systems, which arises from the interplay between
nonequilibrium dissipator and internal Hamiltonian dynamics. This contrasts with conventional
setups in, e.g., solids, where there are a less variety of nonreciprocal phenomena in linear response
regimes than nonlinear ones due to the need of breaking the time-reversal symmetry. Our finding is
distinct from most of the previous studies in open quantum systems that focused on inhomogeneous
setups, where a system is coupled to different baths at its boundaries, thus relying on temperature
biases or boundary driving. Our open-system formulation is not a response to external electric
fields, but allows for featuring direct current generation. In particular, this provides a different
framework, for instance, magnetochiral anisotropy, i.e., unidirectional nonlinear resistivity under
the magnetic field and electric field for chiral conductors [278–280], or transmissions of an electron
current in the presence of a potential barrier [269, 281]. From an experimental perspective, our
results can be tested in ultracold atoms; the use of Raman-type spin-orbit coupling is also promiss-
ing to break the inversion symmetry. One can also consider semiconductor quantum dots in GaAs
as possible experimental candidates [270, 282–284], where the spin relaxation time is very long;
spin-resolved dephasing should be realized by using the Zeeman shift.

To summarize, we have proposed minimal setups to realize a nonreciprocal current in open
many-body systems. In contrast to conventional approaches in open quantum systems, our finding
provides a unique avenue for rectification, namely, the current is neither generated by temperature
gradients nor boundary driving, but via the translationally invariant couplings to nonequilibrium
baths. We have demonstrated that a nonreciprocal Lindblad operator in general rectifies the
current in NESSs. We have also revealed that a reciprocal Lindblad operator can be used to
rectify the current when the inversion symmetry and the time-reversal symmetry of the internal
Hamiltonian are broken. The present analysis opens up various avenues of possible future research
such as current rectification in higher dimensions or changes on transport properties by strong
integrability breaking.
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4.5 Appendix for this chapter

Detailed calculations of rate equations for Lagrange parameters

We here explain the detailed calculations to obtain the rate equations for Lagrange parameters.
For the Hamiltonian in Eq. (4.7), the local conservation laws of few-body observables are given by
Iq = c†qcq. Thus, χqp in Eq. (4.6) is nonzero only for the diagonal components, given by

χqq(t) = 〈c†qcqc†qcq〉 − 〈c†qcq〉2 = 〈c†qcq〉〈cqc†q〉 =
e−λq

(1 + e−λq )2
, (4.25)

where we have omitted the subscript 〈· · · 〉GGE and the same applies hereafter. Then, we calculate
〈İq〉 = tr [IqL1ρGGE] on the right hand side of the rate equation (4.5) for the Lindblad operator
(4.8) as

〈İq〉eq =
εγeq

L
tr

[
Iq
∑
kl

(
Leq
klρGGEL

eq†
kl −

1

2

{
Leq†
kl L

eq
kl , ρGGE

})]

=
εγeqJ

L
tr

[∑
kl

eβ(εl−εk)/2c†qcq

(
c†kclρGGEc

†
l ck −

1

2

{
c†l ckc

†
kcl, ρGGE

})]

=
εγeqJ

L

∑
kl

eβ(εl−εk)/2

〈
c†l ckc

†
qcqc

†
kcl −

1

2
(c†qcqc

†
l ckc

†
kcl + c†l ckc

†
kclc

†
qcq)

〉
=
εγeqJ

L

∑
k 6=q

[
eβ(εk−εq)/2

(
〈c†kck〉〈cqc

†
q〉〈c†qcq〉+ 〈c†kck〉〈cqc

†
q〉2
)

− eβ(εq−εk)/2
(
〈c†qcq〉2〈ckc

†
k〉+ 〈c†qcq〉〈cqc†q〉〈ckc

†
k〉
)]

=
εγeqJ

L

∑
k

1

(1 + e−λk)(1 + e−λq )

(
eβ(εk−εq)/2−λk − eβ(εq−εk)/2−λq

)
, (4.26)

where we used Wick’s theorem. Here, we note that the terms that do not include q in
∑
kl becomes

zero because such terms correspond to flows k → l or l → k (k, l 6= q) and do not contribute to
the dynamics of Iq. In the same way, we calculate 〈İq〉 on the right hand side of the rate equation
(4.5) for the Lindblad operator (4.9) as

〈İq〉neq =
εγneqJ

L

∑
q′kk′

∆kq′∆
∗
k′q′

〈
c†k′ck′−q′c

†
qcqc

†
k−q′ck −

1

2
(c†qcqc

†
k′ck′−q′c

†
k−q′ck + c†k′ck′−q′c

†
k−q′ckc

†
qcq)

〉
=
εγneqJ

L

∑
k

(
−|∆qk|2〈c†qcq〉〈cq−kc

†
q−k〉+ |∆q+k,k|2〈c†q+kcq+k〉〈cqc

†
q〉
)

=
εγneqJ

L

∑
k

[
− |∆q,q−k|2

e−λq

(1 + e−λk)(1 + e−λq )
+ |∆k,k−q|2

e−λk

(1 + e−λk)(1 + e−λq )

]
.

(4.27)

By using Eqs. (4.25)–(4.27), we obtain the rate equation (4.10) for the Hamiltonian in Eq. (4.5).

For the Hamiltonian in Eq. (4.17), we can calculate the rate equation almost in the same way
as discussed above. As the local conservation law is given by Iqν = η†qνηqν (ν = ±), χqν,pµ in
Eq. (4.6) is zero for the off-diagonal components and the diagonal component is calculated as

χqν,qν(t) = 〈η†qνηqνη†qνηqν〉 −
[
〈η†qνηqν〉

]2
= 〈η†qνηqν〉〈ηqνη†qν〉 =

e−λqν

(1 + e−λqν )2
. (4.28)

We see from Eq. (4.28) that the degrees of freedom in momentum space are doubled by upper and
lower energy bands compared to Eq. (4.25). Then, 〈İqν〉 on the right hand side of the rate equation
(4.5) for the Lindblad operator (4.18) is calculated by doubling the momentum space as [see also
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Eq. (4.26)]

〈İqν〉eq =
εγeqJ

L

∑
kl

∑
µ,κ=±

eβ(εlκ−εkµ)/2

〈
η†lκηkµη

†
qνηqνη

†
kµηlκ −

1

2
(η†qνηqνη

†
lκηkµη

†
kµηlκ + η†lκηkµη

†
kµηlκη

†
qνηqν)

〉
=
εγeqJ

L

∑
kµ

1

(1 + e−λkµ)(1 + e−λqν )

(
eβ(εkµ−εqν)/2−λkµ − eβ(εqν−εkµ)/2−λqν

)
. (4.29)

The contribution from the nonequilibrium bath, denoted as 〈İqν〉neq, can also be simplified by
using the expression of the Lindblad operator (4.19):

〈İqν〉neq =
εγneqJ

L

∑
kk′q′,σ=↑↓

γσ

〈
c†kσck−q′,ση

†
qνηqνc

†
k′−q′,σck′σ −

1

2
η†qνηqνc

†
kσck−q′,σc

†
k′−q′,σck′σ

− 1

2
c†kσck−q′,σc

†
k′−q′,σck′ση

†
qνηqν

〉
.

(4.30)

To use Wick’s theorem, we substitute the Bogoliubov transformation ckσ = uσν(k)ηkν in Eq. (4.30)
(for the detailed form of uσν(k), see the next subsection). We note that, though we have to calculate
24 times as many terms as Eq. (4.30) as a result of the substitution, many of which become zero
since tGGE ensemble is defined by local conservation quantities. Then, we obtain

〈İqν〉neq =
εγneqJ

L

∑
k

∑
µ=±

∑
σ=↑↓

γσ|uσν(q)|2|uσµ(k)|2 e−λkµ − e−λqν
(1 + e−λkµ)(1 + e−λqν )

. (4.31)

Finally, Eq. (4.20) follows from Eqs. (4.28)–(4.31).

Detailed derivation of the quasiparticle operators

Here, we explain the detailed derivation of the quasiparticle operators for the Hamiltonian in
Eq. (4.17). Equation (4.17) is diagonalized as

H0 =− J
∑
jσ

(c†j+1σcjσ + H.c.) + h
∑
j

(nj↑ − nj↓)

− αz
∑
jσσ′

(c†j+1σ(iσy)σσ′cjσ′ + H.c.) + αy
∑
jσσ′

(c†j+1σ(iσz)σσ′cjσ′ + H.c.)

=
∑
k

(
c†k↑ c†k↓

)(−2J cos k + 2αy sin k + h 2iαz sin k
−2iαz sin k −2J cos k − 2αy sin k − h

)(
ck↑
ck↓

)
=
∑
k,ν=±

εkνη
†
kνηkν , (4.32)

with eigenvalues

εk± = −2J cos(k)±
√

(2αy sin(k) + h)2 + 4α2
z sin2(k), (4.33)

and quasiparticles, which are given by the unitary transformation,(
ck↑
ck↓

)
= U(k)

(
ηk+

ηk−

)
, (4.34)

U(k) =

(
u↑+(k) u↑−(k)
u↓+(k) u↓−(k)

)

=
1√
2

 −i
√

2αy sin k+h√
(2αy sin k+h)2+4α2

z sin2 k
+ 1 −i

√
−2αy sin k−h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1

− sin(k)
| sin(k)|

√
−2αy sin k−h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1 sin(k)
| sin(k)|

√
2αy sin k+h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1

 .

(4.35)
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We see from Eq. (4.22) and Eq. (4.35) that the contribution to Lagrange parameters from the
nonequilibrium bath is inversion symmetric with respect to q if either one of the Zeeman magnetic
field or the Rashba spin-orbit coupling is absent, which does not rectify the current. As a result,
we need to break both the inversion symmetry and the time-reversal symmetry of the Hamiltonian
to obtain the nonreciprocal current in NESSs. We can also calculate the current (4.24) in the main
text by using these quasiparticle operators as

I↑ =
2J

L

∑
q

sin(q)〈c†q↑cq↑〉+
2αy
L

∑
q

cos(q)〈c†q↑cq↑〉+
2iαz
L

∑
q

cos(q)〈c†q↑cq↓〉

=
1

L

∑
q

(J sin(q) + αy cos(q))

〈 2αy sin(q) + h√
(2αy sin q + h)2 + 4α2

z sin2 q
+ 1

 η†q+ηq+

+

 −2αy sin(q)− h√
(2αy sin q + h)2 + 4α2

z sin2 q
+ 1

 η†q−ηq−

〉

+
2α2

z

L

∑
q

cos(q) sin(q)

〈
η†q+ηq+ − η

†
q−ηq−√

(2αy sin q + h)2 + 4α2
z sin2 q

〉
(4.36)

I↓ =
2J

L

∑
q

sin(q)〈c†q↓cq↓〉 −
2αy
L

∑
q

cos(q)〈c†q↓cq↓〉 −
2iαz
L

∑
q

cos(q)〈c†q↓cq↑

=
1

L

∑
q

(J sin(q)− αy cos(q))

〈 −2αy sin(q)− h√
(2αy sin k + h)2 + 4α2

z sin2 k
+ 1

 η†k+ηk+

+

 2αy sin(q) + h√
(2αy sin q + h)2 + 4α2

z sin2 q
+ 1

 η†q−ηq−

〉

+
2α2

z

L

∑
q

cos(q) sin(q)

〈
η†q+ηq+ − η

†
q−ηq−√

(2αy sin q + h)2 + 4α2
z sin2 q

〉
. (4.37)
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Chapter 5

Universal properties of dissipative
Tomonaga-Luttinger liquids

5.1 Introduction

In 1D NH quantum many-body systems, one of the most intriguing phenomena is the dissipation-
induced quantum criticality [285–287]. For example, the emergence of exceptional points accom-
panied by the divergence of the correlation length is reported [15], a quantum critical point in an
interacting Bose gas is shifted by measurement backaction [63], and anomalous enhancement of the
superfluid correlation occurs as a result of a semicircular renormalization-group flow [64]. These
studies have demonstrated that dissipation fundamentally alters the critical properties which have
been studied in Hermitian quantum systems. Thus, a natural question arises about the universality
of the unusual quantum critical phenomena. However, the universal properties of 1D NH quantum
many-body systems are still elusive [288–290].

One-dimensional quantum systems in equilibrium have widely been explored in condensed
matter physics. Examples include various spin chains [291] and the Hubbard model [292–295].
They show rich critical phenomena and universality emerging from quantum fluctuations in low-
dimensional systems [296–299]. Importantly, 1D strongly correlated systems realize the TL liquid,
where the low-energy physics is described by massless collective modes [296–303]. A unified de-
scription of 1D quantum critical systems is given by the conformal field theory (CFT) [304–309],
where the TL liquid is characterized by the massless boson theory with the central charge c = 1.
For identifying the universality class of 1D critical systems, a useful fact is that the conformal
dimensions are obtained from the energy gap due to a finite-size effect in the spectrum of the crit-
ical Hamiltonian. The efficient method to evaluate the conformal dimensions is finite-size scaling
[310–319]. However, it is highly nontrivial how to identify the unconventional universality class of
NH quantum many-body systems from the finite-size scaling [289].

In this chapter, we demonstrate the universal properties of dissipative TL liquids by calcu-
lating correlation functions and performing a finite-size scaling analysis of a NH XXZ spin chain
[320]. We first employ an effective field theory with bosonization to elucidate the long-distance
properties of dissipative TL liquids, calculating two types of correlation functions called right-
state correlation functions and biorthogonal correlation functions according to whether the right
or left eigenstate is assigned to the bra vector in the expectation value. We then determine the
parameters of the field theory from the exact Bethe ansatz (BA) solution of the NH XXZ chain
with the help of the finite-size scaling in CFT. We find that the NH XXZ spin chain belongs to
the universality class characterized by the complex-valued TL parameter K̃, which is related to
the complex generalization of the c = 1 CFT. Finally, we give strong numerical evidence of the
universal scaling with K̃ by calculating the energy spectrum and the correlation functions with the
DMRG analysis generalized to NH systems. The results show that the model is described by the
nonunitary massless Gaussian theory for weak dissipation. On the other hand, when dissipation is
increased, both the TL parameter and the velocity of excitations obtained by NH-DMRG start to
deviate from those obtained by the BA solution. This deviation indicates a significant finite-size
effect and that the ground state can be gapped for strong dissipation. Our results can be tested
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with the two-component Bose-Hubbard system of ultracold atoms subject to two-body loss [42].

5.2 Setup

In this section, we first derive the NH XXZ model as an effective model of a two-component Bose-
Hubbard system subject to two-body loss. Then, we bosonize the Hamiltonian to analyze the
TL-liquid properties, and obtain an effective TL Hamiltonian.

5.2.1 Non-Hermitian XXZ model

Non-Hermitian spin models in the presence of dissipation have been proposed as prototypical
dissipative quantum systems relevant to experiments in ultracold atoms [10, 81, 82, 321]. However,
NH many-body phenomena in dissipative spin systems are less explored [10, 82, 321], compared
with the other dissipative spin models that can be mapped to noninteracting NH systems or to
those in the master equation frameworks [81, 322–324]. Here we follow Ref. [82] to derive a NH
XXZ spin chain from a dissipative two-component Bose-Hubbard model of ultracold atoms. The
unitary dynamics of the system without loss is governed by the two-component Bose-Hubbard
model

H =− th
∑

j,σ=↑,↓

(b†j+1σbjσ + H.c.) +
∑
j

U↑↓nj↑nj↓

+
∑
j,σ

Uσσ
2
njσ(njσ − 1), (5.1)

where bjσ is the annihilation operator of a boson with spin σ at site j, njσ = b†jσbjσ, and th > 0 is
the hopping amplitude, which we assume to be the same for every site and spin state. We assume
that the on-site interaction is repulsive: Uσσ′ > 0. When the system is subject to two-body particle
loss, the dynamics is described by the Lindblad master equation [53]

dρ

dt
= −i[H, ρ]− 1

2

∑
jσσ′

({L†jσσ′Ljσσ′ , ρ} − 2Ljσσ′ρL
†
jσσ′)

= −i(Heffρ− ρH†eff) +
∑
jσσ′

Ljσσ′ρL
†
jσσ′ , (5.2)

where ρ is the density matrix of the system, Ljσσ′ =
√
γσσ′bjσbjσ′ is the Lindblad operator that

describes two-body loss with rate γσσ′ > 0 [11, 12, 14, 15, 37, 40–43, 82, 128, 185, 325–327]. In
this case, the effective Hamiltonian Heff is given by

Heff =− th
∑
jσ

(b†j+1σbjσ + H.c.) +
∑
j

(U↑↓ − iγ↑↓)nj↑nj↓

+
∑
jσ

Uσσ − iγσσ
2

njσ(njσ − 1), (5.3)

where we have used Heff = H − i
2

∑
jσσ′ L

†
jσσ′Ljσσ′ [2] and γ↑↓ = γ↓↑. In ultracold atoms,

the approximations involved in deriving the Lindblad master equation are typically satisfied to
sufficient precision [2]. We note that Eq. (5.3) gives a negative imaginary part of the energy and
its eigenstates decay due to atom loss. As discussed below, we consider the longest-surviving state
which is given by the largest imaginary part of the energy (smallest absolute value of the negative
imaginary part of the energy) in Eq. (5.3).

We invoke unraveling of the dynamics of the density matrix into quantum trajectories [2], each of
which obeys the Schrödinger evolution with the effective Hamiltonian Heff interrupted by quantum
jumps described by the jump operators Ljσσ′ . We consider a strongly correlated regime Uσσ′ � th
and assume that each site is occupied on average by one particle so that a Mott insulating state is
realized as an initial state. For simplicity, we assume U↑↑ = U↓↓ ≡ U and γ↑↑ = γ↓↓ ≡ γ. Then, the
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second-order perturbation theory with respect to th reduces the effective NH Hamiltonian (5.3) to
the NH XXZ model [82, 328]

Heff =(J⊥eff + iΓ⊥)
∑
j

(Sxj+1S
x
j + Syj+1S

y
j )

+ (Jzeff + iΓz)
∑
j

Szj+1S
z
j

=(J⊥eff + iΓ⊥)
∑
j

(Sxj+1S
x
j + Syj+1S

y
j + ∆γS

z
j+1S

z
j ), (5.4)

where Sαj (α = x, y, z) are the spin-1/2 operators, J⊥eff = −4t2hU↑↓/(U
2
↑↓+γ

2
↑↓), Γ⊥ = −4t2hγ↑↓/(U

2
↑↓+

γ2
↑↓), J

z
eff = −J⊥eff − 8t2hU/(U

2 + γ2), Γz = −Γ⊥ − 8t2hγ/(U
2 + γ2), and we have ignored a con-

stant term. We note that, since the energy spectrum of the original effective Hamiltonian (5.3)
always has a negative imaginary part, the imaginary part of the energy of the NH XXZ model
(5.4) should be negative if we include the ignored constant term. As the constant term does not
change the structure of the energy spectrum, the eigenstate with the smallest decay rate of the
effective Hamiltonian (5.4) is given by the one with the energy having the largest imaginary part,
which corresponds to the smallest absolute value of the negative imaginary part of the energy in
the original effective Hamiltonian (5.3). Here, the anisotropy parameter

∆γ ≡
Jzeff + iΓz

J⊥eff + iΓ⊥

= 2
U↑↓U + γ↑↓γ

U2 + γ2
− 1 + 2i

U↑↓γ − Uγ↑↓
U2 + γ2

, (5.5)

becomes complex in general, and its imaginary part can be either positive or negative. However,
in the case where U = γ ≡ G and U↑↓ = γ↑↓ ≡ G↑↓, the anisotropy parameter becomes ∆γ =
2G↑↓/G − 1 ∈ R. Thus, we have to pay attention to the fact that the anisotropy parameter ∆γ

can be real even in the presence of dissipation.
In the case of ∆γ ∈ R, the complex coefficients only appear as an overall constant and the

eigenstates are the same as those of the Hermitian XXZ model [82]. As J⊥eff and Γ⊥ have the
same sign (J⊥eff ,Γ

⊥ < 0), higher energy states (i.e., states with a larger real part of the energy)
have smaller decay rates. Thus, after a sufficiently long time, only the high-energy spin states can
survive in the Schrödinger evolution under Heff . In particular, the system approaches the ground
state of the following XXZ model in the long-time limit:

HXXZ
eff =

J

2

∑
j

(S+
j+1S

−
j + S−j+1S

+
j ) + J∆γ

∑
j

Szj+1S
z
j , (5.6)

where S±j = Sxj ± iS
y
j and J > 0. Note that sgn[J ] = −sgn[J⊥eff ].

When ∆γ ∈ C, the eigenstates of the effective NH Hamiltonian (5.4) are not equivalent to those
of the Hermitian Hamiltonian and therefore unusual quantum critical phenomena may take place
due to non-Hermiticity. In this case, the longest-surviving state with the largest imaginary part of
the eigenenergy of the effective NH Hamiltonian (5.4) is given by the ground state with the lowest
real part of the eigenenergy in the NH XXZ model (5.6), if the imaginary part of ∆γ is sufficiently
small so that no level crossing occurs. Therefore, for convenience of calculations, we hereafter focus
on the ground state of the NH XXZ model (5.6).

The dynamics under the NH effective Hamiltonian (5.4) is realized when we measure the particle
number with quantum-gas microscopy and postselect measurement outcomes in which the particle
number is equal to that of the initial state. In Ref. [82], it was shown that the highest energy
state in Eq. (5.4) is obtained even in quantum trajectories which involve quantum jumps, if the
spin correlation is measured only at the sites that are occupied by single particles. This is a
consequence of the spin-charge separation in 1D systems [122], where the spin degrees of freedom
are decoupled from holes created by quantum jumps. Thus, by postselecting the occupied sites
with quantum-gas microscopy, the spin correlations after a sufficiently long time are expected to
be described by those of the ground state of Eq. (5.6). Here, we note that the steady state of the
Lindblad master equation (5.2) is the vacuum. However, as the dynamics under the NH effective
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Hamiltonian (5.4) is obtained by postselecting special measurement outcomes in which there are
no loss events, it realizes a nontrivial steady state, which is different from the state obtained under
the Lindblad master equation (5.2) [82]. In this chapter, we analyze the NH XXZ model (5.6) and
elucidate how unconventional universal properties of TL liquids emerge in NH spin chains.

5.2.2 Non-Hermitian Tomonaga-Luttinger model

In order to elucidate the long-distance behavior of dissipative TL liquids, we bosonize the NH XXZ
Hamiltonian (5.6). We use the standard boson mapping as detailed in Sec. 1.4.2 [122], and take
the continuum limit by introducing S+(x) = S+

j /
√
a, Sz(x) = Szj /a, where a is the lattice spacing.

After the bosonization procedure, the spin operators in the continuum limit are written as

Sz(x) = − 1

π
∇φ(x) +

(−1)x

πα
cos(2φ(x)), (5.7)

S+(x) =
e−iθ(x)

√
2πα

((−1)x + cos(2φ(x))) , (5.8)

where x is related to the lattice coordinate as x = aj with a = 1, α is a cutoff, and the bosonic
fields φ(x) and θ(x) satisfy the commutation relation [φ(x1),∇θ(x2)] = iπδ(x2 − x1). Then, we
obtain the NH sine-Gordon Hamiltonian

HsG
eff = HTL

eff −
2g̃3

(2πα)2

∫
dx cos(4φ(x)), (5.9)

where g̃3 is a complex-valued coefficient that depends on ∆γ , and

HTL
eff =

1

2π

∫
dx
[
ũK̃(∇θ(x))2 +

ũ

K̃
(∇φ(x))2

]
. (5.10)

Here, K̃ is the complex-valued TL parameter and ũ is the complex-valued velocity of excitations.
We obtain the exact solutions of K̃ and ũ by using the BA method generalized to NH systems in
Sec. 5.4. Here and henceforth, we use the symbol Ã with a tilde to emphasize that a quantity Ã
is complex. In Sec. 5.3, we consider the situation where the model is in the massless regime, and
we analyze the NH TL model HTL

eff .

5.3 Correlation functions

In NH systems, a right eigenstate, which is defined by HTL
eff |ΨR〉 = E|ΨR〉, and a left eigenstate,

which is defined by HTL†
eff |ΨL〉 = E∗|ΨL〉, are different from each other. Therefore, two types of

correlation functions can emerge according to whether the right or left eigenstate is assigned to the
bra vector in the expectation value. The first type is defined by L〈· · · 〉R ≡ 〈ΨL

0 | · · · |ΨR
0 〉/〈ΨL

0 |ΨR
0 〉,

where |ΨL
0 〉 and |ΨR

0 〉 are the left and right ground states (in the sense of the real part of the energy)
of HTL

eff , respectively. This type of correlation functions is calculated through path integrals [128].
The second type is defined by R〈· · · 〉R ≡ 〈ΨR

0 | · · · |ΨR
0 〉/〈ΨR

0 |ΨR
0 〉, which is calculated by the wave

functional approach [63, 329]. Here, we note that the subscripts L and R for the bra and ket vectors
stand for the left and right eigenstates of the NH Hamiltonian (5.10), and they are not related to
the left and right branches of the TL model. We call the correlation functions L〈· · · 〉R and R〈· · · 〉R
the biorthogonal correlation function and the right-state correlation function, respectively.

In the postselected sector with no loss events, the dynamics of the system is described by
the Schrödinger equation i∂t|ψ〉 = Heff |ψ〉, which gives the right ground state of the NH XXZ
Hamiltonian (6) in the long-time limit. Then, the right-state correlation function is obtained as a
standard quantum-mechanical expectation value for the state |ψ(t→∞)〉 = |ΨR

0 〉 and corresponds
to an experimentally measured physical quantity. On the other hand, the biorthogonal correlation
function gives a natural extension of the correlation function that can be calculated with a field-
theoretical method in NH systems. We also emphasize that the biorthogonal correlation functions
are directly related to the complex extension of the c = 1 CFT as detailed in Sec. 5.4. We calculate
both correlation functions in this section.
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5.3.1 Biorthogonal correlation functions

In this subsection, we discuss the biorthogonal correlation functions. We first calculate the corre-
lation functions of the fields φ and θ, and use them to obtain the correlation functions of the spin
operators. An important point is that a convergence problem of the Gaussian integration occurs
due to the complex nature of ũ and K̃. Our calculation is based on the path integral formalism
[128].

Path-integral formalism and correlation functions of φ and θ

We start with the partition function defined by

Z = Tr[e−βH
TL
eff ] =

∫
DφDΠe−S , (5.11)

S = −
∫ β

0

dτ

∫ ∞
−∞

dx[iΠ∂τφ−HTL
eff (φ,Π)], (5.12)

where Π(x, τ) = ∇θ(x, τ)/π. We note that, as temperature is not well defined in generic open
quantum systems, we only consider the limit of infinite β to elucidate the physics of the ground
state, which is defined by the eigenstate that has the lowest real part of the eigenspectrum
[63, 128]. Thus, β is a parameter used to formulate a path integral and should not be re-
garded as the temperature of the system. In the following, we calculate the equal-time corre-
lation function L〈[φ(x1, 0) − φ(x2, 0)]2〉R. It is rewritten by using the Fourier transformation
φ(x, τ) = 1

βL

∑
q e

i(xq−ωnτ)φ(q) as

L〈[φ(x1, 0)− φ(x2, 0)]2〉R =
1

(βL)2

∑
q1,q2

×
[
L〈φ(q1)φ(q2)〉R(eik1x1 − eik1x2)(eik2x1 − eik2x2)

]
, (5.13)

where q = (k, ωn/ũ), ωn = 2πn/β is the Matsubara frequency of bosons, and L is the length of
the lattice. The action is calculated as

S =

∫ β

0

dτ

∫ ∞
−∞

dx

[
− i 1

π
∇θ(x, τ)∂τφ(x, τ)

+
1

2π

(
ũK̃(∇θ(x, τ))2 +

ũ

K̃
(∇φ(x, τ))2

)]

=
1

2βL

∑
q

(θ∗(q), φ∗(q))M

(
θ(q)
φ(q)

)
, (5.14)

where the matrix M is given by

M =

(
k2 ũK̃

π
ikωn
π

ikωn
π k2 ũ

K̃π

)
. (5.15)

In the Hermitian case, the Gaussian integration with the action (5.14) always converges. However,
in the NH case, the Gaussian integration can be divergent because the velocity ũ of excitations and
the TL parameter K̃ become complex. To ensure the convergence of the Gaussian integration, the
Hermitian part of the matrix M should be positive definite, i.e., Re(ũK̃) > 0 and Re(ũ/K̃) > 0.
These conditions are equivalent to those that ensure the energy spectrum of the NH TL liquids
to be bounded from below (see Sec. 5.4.3). Thus, if these conditions are not satisfied, the NH TL
liquids become unstable. With these conditions, we can conduct further calculations and obtain

L〈φ(q1)φ(q2)〉R =
1

Zφ

∫
Dφe−Sφφ(q1)φ(q2)

=
πK̃δq1,−q2

Lβ
ω2
n

ũ + ũk2
1

, (5.16)
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where

Zφ =

∫
Dφe−Sφ , (5.17)

Sφ =
1

βL

∑
q

1

2πK̃

(
ω2
n

ũ
+ ũk2

)
φ∗(q)φ(q). (5.18)

Then, we arrive at

L〈[φ(x, 0)− φ(0, 0)]2〉R =
1

βL

∑
q

πK̃
ω2
n

ũ + ũk2
(2− 2 cos kx)

=
K̃

2
log

(
x2 + α2

α2

)
, (5.19)

where we have introduced a cutoff α and taken the limit β →∞. We note that the limit β →∞ is
safely taken under the condition Re(ũK̃) > 0 and Re(ũ/K̃) > 0. We can apply a similar procedure
to L〈[θ(x, 0)− θ(0, 0)]2〉R by replacing K̃ with 1/K̃, and obtain

L〈[θ(x, 0)− θ(0, 0)]2〉R =
1

2K̃
log

(
x2 + α2

α2

)
. (5.20)

Finally, by using the formula

L

〈
exp[i

∑
j

(Ajφ(xj , 0) +Bjθ(xj , 0))]
〉
R

= exp
[
− 1

2
L

〈
[
∑
j

(Ajφ(xj , 0) +Bjθ(xj , 0))]2
〉
R

]
, (5.21)

and Eqs. (5.19) and (5.20), we arrive at

L〈ei(2φ(x,0)−2φ(0,0))〉R =
(α
x

)2K̃

, (5.22)

L〈ei(2θ(x,0)−2θ(0,0))〉R =
(α
x

) 2
K̃
. (5.23)

We see that the correlation functions of the fields φ and θ are characterized by the complex-valued
TL parameter K̃. This fact is related to the complex generalization of the c = 1 CFT, which is
discussed in Sec. 5.4.

Correlation function of the spin operators

We here calculate the correlation functions of the spin operators defined in Eqs. (5.7) and (5.8).
For the correlation function of Sz, we obtain the free-fermion-like correlation 1/x2 and the power
law characterized by K̃ by performing the Gaussian integration with Eq. (5.22) as

L〈Sz(x, 0)Sz(0, 0)〉R =
1

π2 L
〈∇φ(x, 0)∇φ(0, 0)〉R

+
(−1)x

(2πα)2 L
〈ei2(φ(x,0)−φ(0,0)) + H.c.〉R

= − K̃

2π2

1

x2
+ C̃2(−1)x

(
1

x

)2K̃

, (5.24)

where C̃2 is a complex-valued nonuniversal amplitude. Here, we note that x is defined on the
lattice x = aj, where we set a = 1. For the x-y component of the correlation function, we obtain
the power law characterized by 1/K̃ and the linear combination of K̃ and 1/K̃ by using Eqs. (5.22)
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and (5.23) as

L〈S+(x, 0)S−(0, 0)〉R =
1

2πα
L〈e−i(θ(x,0)−θ(0,0))[(−1)x

+
1

4
(e2i(φ(x,0)−φ(0,0)) + H.c.)]〉R

= C̃3

(
1

x

)2K̃+ 1
2K̃

+ C̃4(−1)x
(

1

x

) 1
2K̃

, (5.25)

where the off-diagonal terms with respect to the fields φ and θ such as L〈θ(x, 0)φ(0, 0)〉R only
contribute to the sign, and we have used the fact that L〈exp[i

∑
j(Ajφ(xj , 0) +Bjθ(xj , 0))]〉R = 0

when
∑
iAi 6= 0 or

∑
iBi 6= 0. Here, C̃3 and C̃4 are nonuniversal complex-valued amplitudes, which

satisfy C̃3 < 0 in the Hermitian limit. Thus, we see that the power law decay of the biorthogonal
correlation functions of the spin operators is universally characterized by the complex-valued TL
parameter K̃.

5.3.2 Right-state correlation functions

In this subsection, we study the right-state correlation functions. We first calculate the correlation
functions of the fields φ and θ, and then obtain the correlation functions of the spin operators
by using them. Our calculation is based on the generalization of the harmonic oscillator to NH
systems [63, 329].

Ground-state wave function and correlation functions of φ and θ

We start with the NH TL Hamiltonian (5.10), which is rewritten as

HTL
eff =

1

2π

∫
dx
[
vJe
−iδJ (∇θ(x))2 + vNe

−iδN (∇φ(x))2
]
, (5.26)

where vJ > 0, vN > 0, and δJ , δN ∈ R.
The case with δJ = 0 was analyzed in Ref. [63]. Since eiδJHTL

eff reduces to this case, the energy
eigenspectrum and the ground state in the present case can be obtained by a straightforward
extension of the results in Ref. [63]. The wave function of the ground state is given by

〈{φk}|ΨR
0 〉 =

1√
N

exp

(
−e
−i(δN−δJ )/2

K ′

∑
k>0

k|φk|2
)
, (5.27)

where N is a normalization constant, K ′ =
√
vJ/vN ∈ R, and |{φk}〉 is an eigenstate of φ(x)

defined by

φ(x)|{φk}〉 =

√
π

L

∑
k>0

(φke
ikx + φ∗ke

−ikx)|{φk}〉. (5.28)

The field θ(x) induces the shift of the eigenstate |{φk}〉 as follows:

e2iθ(x)|{φk}〉 =

∣∣∣∣{φk − 2i

k

√
π

L
e−ikx

}〉
. (5.29)

The eigenenergies are given by

E = v′e−i(δN+δJ )/2
∑
k>0

k(n+
k + n−k + 1), (5.30)

where v′ =
√
vJvN , and n+

k and n−k are nonnegative integers. By using the ground-state wave
function (5.27), the correlation functions of the fields φ and θ are calculated as [63]

R〈e2iφ(x)e−2iφ(0)〉R =
(α
x

)2Kφ
, (5.31)

R〈e2iθ(x)e−2iθ(0)〉R =
(α
x

) 2
Kθ , (5.32)
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where a cutoff α is introduced, and the critical exponents are defined by Kφ = K ′/ cos((δN−δJ)/2)
and Kθ = K ′ cos((δN − δJ)/2).

Here, we have to pay attention to the fact that the wave function (5.27) should be normalizable
and the real part of the eigenvalues (5.30) should be bounded from below. For the model in Ref. [63],
these conditions are equivalent to each other. However, in our model, these two conditions are
inequivalent due to the phase factor e−iδJ in the eigenspectrum (5.30). In order that the wave
function (5.27) and that of the zero mode can be normalized, δN and δJ should satisfy −π/2 <
δN − δJ < π/2. For the eigenenergies, in order for the real part of the eigenspectrum including the
zero-mode contribution to be bounded from below, δN and δJ should satisfy −π/2 < δN < π/2
and −π/2 < δJ < π/2. Further discussions on the condition for realizing NH TL liquids are given
in Sec. 5.4.

Importantly, the right-state correlation functions of the NH TL liquid are characterized by the
two critical exponents Kφ and Kθ, though they coincide in the Hermitian limit [63]. Since we can

rewrite the complex-valued TL parameter as K̃ = K ′ei(δN−δJ )/2 by comparing Eqs. (5.10) and
(5.26), the two critical exponents Kφ = K ′/ cos((δN − δJ)/2) and Kθ = K ′ cos((δN − δJ)/2) can
be compactly written down as

1

Kφ
= Re

1

K̃
, (5.33)

Kθ = ReK̃. (5.34)

We see that the critical exponents for the fields φ and θ are related to each other through Eqs. (5.33)
and (5.34), and both are defined by the complex-valued TL parameter K̃. Thus, we conclude that
all the universal properties of the biorthogonal and right-state correlation functions are encoded in
the complex-valued TL parameter K̃, which is related to the NH generalization of the c = 1 CFT
as discussed in Sec. 5.4.

Correlation functions of the spin operators

We now calculate the correlation functions of the spin operators (5.7) and (5.8). By performing
the Gaussian integration and using Eq. (5.31), we obtain the correlation function of Sz as

R〈Sz(x)Sz(0)〉R =
1

π2R
〈∇φ(x)∇φ(0)〉R

+
(−1)x

(2πα)2R
〈ei2φ(x)−i2φ(0) + H.c.〉R

= −Kφ

2π2

1

x2
+ C2(−1)x

(
1

x

)2Kφ

, (5.35)

where C2 is a nonuniversal real correlation amplitude. We note that x = aj is defined on the
lattice and that we set a = 1. We see that the correlation function of Sz has the free-fermion-like
correlation 1/x2 and anomalous power-law decay characterized by Kφ. Next, we go on to calculate
the x-y component of the correlation function. The x-y component of the correlation function is
rewritten as

R〈S+(x)S−(0)〉R =
1

2πα
R〈e−i(θ(x)−θ(0))[(−1)x

+
1

4
(e2i(φ(x)−φ(0)) + H.c.)]〉R. (5.36)

To proceed further with calculations, we consider the condition in which a general expectation
value,

R〈e−i(θ(x)−θ(0))ei(Aφ(x)+Bφ(0))〉R, (5.37)



5.4. EXACT RESULTS 73

becomes nonzero. By inserting the completeness condition for |{φk}〉, Eq. (5.37) reads

R〈e−i(θ(x)−θ(0))ei(Aφ(x)+Bφ(0))〉R

=
1

N

∫
DφDφ∗ exp

{∑
k>0

[
− k

K ′

(
e
i(δN−δJ )

2

∣∣∣φk +
i

k

√
π

L
e−ikx

∣∣∣2 + e−
i(δN−δJ )

2

∣∣∣φk +
i

k

√
π

L

∣∣∣2)
+ i

√
π

L

(
A(φ′ke

ikx + φ′∗k e
−ikx) +B(φ′k + φ′∗k )

) ]}
= exp

{∑
k>0

[
− 1

K ′ cos((δN − δJ)/2)

π

2kL
(2− eikx − e−ikx)− K ′

cos((δN − δJ)/2)

π

2kL
((A+B)2 + 2AB(cos(kx)− 1))

+
π(eikx − e−ikx)

kL

(
Ae−i(δN−δJ )/2 −Bei(δN−δJ )/2

2 cos((δN − δJ)/2)
−A

)]}
, (5.38)

where φ′k = φk + i
k

√
π
L . The second term in the exponent in Eq. (5.38) diverges to the negative

infinity if A + B 6= 0. Thus, the expectation value (5.37) is nonzero only when A + B = 0. By
substituting (A, B) = (±2, ∓2) in Eq. (5.37), we obtain

R〈e−i(θ(x)−θ(0))ei(±2φ(x)∓2φ(0))〉R =
(α
x

)2Kφ+ 1
2Kθ . (5.39)

Finally, by using Eqs. (5.32) and (5.39), we arrive at

R〈S+(x)S−(0)〉R = C3

(
1

x

)2Kφ+ 1
2Kθ

+ C4(−1)x
(

1

x

) 1
2Kθ

, (5.40)

where C3 < 0 and C4 are nonuniversal real correlation amplitudes. We see that the correlation
function (5.40) is characterized by the anomalous power-law decay with two critical exponents Kφ

and Kθ. Here, we emphasize that as the critical exponents Kφ and Kθ are written in terms of the

real part of 1/K̃ and that of K̃, respectively [see Eqs. (5.33) and (5.34)], the universal properties
of the right-state spin correlation functions as well as the biorthogonal correlation functions are
characterized by the complex-valued TL parameter K̃.

5.4 Exact results

The parameters ũ and K̃ of the NH TL liquid theory (5.10) can be read off from the low-energy
spectrum (in the sense of the real part of the energy) of the original lattice Hamiltonian. In
this section, we exactly solve the NH XXZ model (5.6) by using the Bethe ansatz method and
obtain the finite-size energy spectrum of the NH XXZ model (5.6), demonstrating that the model
is described by the complex generalization of the c = 1 CFT. We also calculate the complex-valued
TL parameter from the exchange coupling J and the anisotropy parameter ∆γ . Finally, we discuss
the stability conditions to realize the NH TL liquids.

5.4.1 Bethe-ansatz solution

We consider the NH XXZ model (5.6) with length L. Here we employ the twisted boundary
condition S+

L+1 = eiΦS+
1 for later convenience. Thanks to the U(1) symmetry of the Hamiltonian,

energy eigenstates can be labeled by the number M of down spins. Then, the Bethe equations of
the XXZ model are given by [330–332]

eikjL−iΦ = (−1)M−1
∏
l 6=j

1 + ei(kj+kl) + 2∆γe
ikj

1 + ei(kj+kl) + 2∆γeikl
, (5.41)

where kj (j = 1, · · · ,M) are quasimomenta and ∆γ ∈ C. An energy eigenvalue EL is calculated
from the solution of the Bethe equations as

EL(Φ) = −J
M∑
j=1

(cos kj + ∆γ) +
J∆γ

4
L. (5.42)
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We note that the derivation of the Bethe equations (5.41) still holds for complex ∆γ and therefore
the NH XXZ model (5.6) is exactly solvable.

The Bethe equations (5.41) are rewritten as(
sinh µ

2 (λj + i)

sinh µ
2 (λj − i)

)L
= eiΦ

∏
l 6=j

sinh µ
2 (λj − λl + 2i)

sinh µ
2 (λj − λl − 2i)

, (5.43)

where

eikj = −
sinh µ

2 (λj + i)

sinh µ
2 (λj − i)

, (5.44)

and µ = arccos∆γ . By taking the logarithm of Eq. (5.43), we have

2L arctan

[
tanh(µλj/2)

tan(µ/2)

]
=2πIj + Φ +

M∑
l=1

2 arctan

[
tanh µ

2 (λj − λl)
tanµ

]
, (5.45)

where we set the quantum numbers

Ij = −M + 1

2
+ j (j = 1, · · · ,M) (5.46)

to obtain the ground state.
In the infinite-size limit with M/L being fixed, the spin rapidities λj (j = 1, · · · ,M) are

densely distributed along a path C in the complex plane (see also other cases of NH integrable
models [15, 66, 321, 333]). In this limit, the Bethe equations (5.45) reduce to the following integral
equation for the distribution function σ∞(λ) = limL→∞ σL(λ, 0) of spin rapidities [see Eq. (5.77)
in Appendix 5.7 for its precise definition]:

σ∞(λ) = a1(λ)−
∫
C
dλ′a2(λ− λ′)σ∞(λ′), (5.47)

where

an(λ) ≡ 1

2π

µ sin(nµ)

cosh(µλ)− cos(nµ)
. (5.48)

In Fig. 5.1, we show the distribution of spin rapidities obtained from a numerical solution of the
Bethe equations (5.45). In the Hermitian limit (∆γ ∈ R) with M/L = 1/2, the spin rapidities are
distributed from −∞ to +∞ along the real axis. Here, we consider the case in which the path
C can continuously be deformed onto the real axis without crossing the poles of the integrand of
Eq. (5.47). Hence, by using the Fourier transformation, we obtain the solution of the integral
equation (5.47) for M/L = 1/2 and Φ = 0 in the same form of that for the ground state in the
Hermitian limit as [332]

σ∞(λ) =
1

4 cosh(πλ/2)
, (5.49)

and the energy density eL(Φ) ≡ EL(Φ)/L of the ground state is given by

e∞(0) =
J∆γ

4
− 2πJ sinµ

µ

∫
C
dλa1(λ)σ∞(λ)

=
J∆γ

4
− J sinµ

µ

∫ ∞
−∞

dω
sinh

(
π
µ − 1

)
ω

2 coshω sinh(πω/µ)
. (5.50)

The low-energy excitation spectrum is calculated in a similar way. Here we consider a solution
with Φ = 0 in the M = L/2− 1 sector and set the quantum numbers as

Ij =
L

4
,
L

4
− 1, · · · , L

4
− r + 1,

L

4
− r − 1,

· · · , L
4
− s+ 1,

L

4
− s− 1, · · · ,−L

4
, (5.51)
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Figure 5.1: Numerical solution of the Bethe equations [Eq. (5.45)] for the ground state of the NH
XXZ model with L = 2M = 250 and Φ = 0. The model parameter is set to ∆γ = 0.8−0.3i. Green
dots show spin rapidities λj (j = 1, · · · ,M).

where 0 ≤ r < s ≤ L/4. Then, the excitation energy ∆E from the ground state with M = L/2 is
given by

∆E =
Jπ sinµ

2µ
(sin qr + sin qs), (5.52)

where qr = 2πr/L and qs = 2πs/L are the momenta of spinon excitations.
To calculate the finite-size energy spectrum of the NH XXZ model, we generalize the Wiener-

Hopf method [332] to the NH model. As detailed in Appendix 5.7, the leading part of the energy
spectrum is given by

eL(Φ)− e∞(0) = − πũ

6L2
+

2S2

χ̃L2
+
D̃sΦ

2

2L2
+ o(1/L2), (5.53)

where S = L/2−M is the magnetization,

ũ =
Jπ sinµ

2µ

=
Jπ

2 arccos ∆γ
sin(arccos ∆γ) (5.54)

is the complex-valued velocity of excitations,

χ̃ =
4µ

Jπ(π − µ) sinµ
(5.55)

is the generalized susceptibility, and

D̃s =
π

4

J sinµ

µ(π − µ)
(5.56)

is the generalized spin stiffness. Equations (5.53)-(5.56) provide a NH counterpart of the energy
spectrum of the XXZ model [316–318, 332, 334–337].

The first term in the right-hand side of Eq. (5.53) gives the finite-size correction to the ground-
state energy, which is related to the central charge c = 1 of the CFT [314, 315, 319]. This result
suggests that a finite-size scaling based on the formula

EL(0) = Le∞(0)− πũc

6L
(5.57)

is still valid for the NH model, while the algebraic characterization of the central charge c is
nontrivial in the complex extension of the CFT.

5.4.2 Finite-size spectrum and the Tomonaga-Luttinger parameter

The finite-size spectrum of the excitation energies in TL liquids was obtained in Refs. [297, 299].
We generalize it to NH TL liquids [320, 338]. We first employ the mode expansion with the



76CHAPTER 5. UNIVERSAL PROPERTIES OF DISSIPATIVE TOMONAGA-LUTTINGER LIQUIDS

bosonization procedure. By rescaling the fields φ and θ [see Eqs. (1.60) and (1.61) for their precise
definitions] with K ′ =

√
vJ/vN ∈ R and substituting them into the NH TL Hamiltonian (5.10), it

is rewritten as

HTL
eff =

v′e−iδJ

4

∑
k 6=0

|k|
{

(e−i(δN−δJ ) + 1)(b†kbk + b−kb
†
−k)

+ (e−i(δN−δJ ) − 1)(b†kb
†
−k + b−kbk)

}
+

π

2L
(ṽN (N −N0)2 + ṽJJ

2
curt), (5.58)

where the zero mode is explicitly written, v′ =
√
vJvN , ṽN = vNe

−iδN , ṽJ = vJe
−iδJ , N0 = L/2 at

half-filling, N −N0 is the change in particle number, and Jcurt is the number of particles that are
transferred from the left Fermi point to the right one. Then, we diagonalize Eq. (5.58) as follows:

HTL
eff = ũ

∑
k 6=0

|k|ākak +
π

2L
(ṽN (N −N0)2 + ṽJJ

2
curt). (5.59)

Importantly, the quasiparticle operators ak = bk cos((δN − δJ)/4) − ib†−k sin((δN − δJ)/4) and

āk = b†k cos((δN − δJ)/4)− ib−k sin((δN − δJ)/4) satisfy the commutation relation [ak, āk′ ] = δk,k′

though āk 6= a†k [128]. As this transformation is given by the similarity transformation as ak =

S(η)bkS(−η), āk = S(η)b†kS(−η) with S(η) = exp( iη2
∑
k 6=0(b†kb

†
−k − b−kbk)) and η = (δN − δJ)/4,

it does not change the conformal-tower structure from the Hermitian limit with the central charge
c = 1. Here, we note that the complex-valued velocities ũ, ṽN , and ṽJ are not independent but
related by ũ =

√
ṽN ṽJ , and the first term in Eq. (5.59) gives the eigenenergy in Eq. (5.30). Hence,

we obtain the excitation energy in a finite system under the periodic boundary condition as

∆EPBC =
2πũ

L

[
1

4K̃
(∆N)2 + K̃(∆D)2 + n+ + n−

]
, (5.60)

where ∆N = N −N0 ∈ Z, ∆D = Jcurt/2 ∈ Z, n+ and n− are nonnegative integers characterizing
particle-hole excitations, and +(−) corresponds to the holomorphic (antiholomorphic) part in CFT.
In Eq. (5.60), the complex-valued nature of K̃ and ũ gives the complex energy spectrum and leads
to dissipation of the system. We see that Eq. (5.60) is an extension of the finite-size scaling formula
in c = 1 CFT of the Hermitian TL liquids to the NH TL liquids. Equation (5.60) is to be compared
with the BA results [Eq. (5.53)] below. From Eq. (5.60), we obtain the conformal dimensions as
follows:

∆±CFT =
1

2

(
∆N

2
√
K̃
±∆D

√
K̃

)2

+ n±, (5.61)

which gives the critical exponents of the correlation functions in the infinite system. For NH TL
liquids with open boundary conditions (chiral NH TL liquids) [339, 340], they do not convey the
current, and the excitation energy in a finite system reads

∆EOBC =
πũ

L

(
1

2K̃
(∆N)2 + n

)
, (5.62)

where n is a nonnegative integer. Equation (5.62) is relevant to the NH-DMRG calculation in
Sec. 5.5. The corresponding conformal dimension reads

∆CFT =
1

2K̃
(∆N)2 + n. (5.63)

Thus, the conformal dimensions belong to the universality class characterized by the complex-
valued TL parameter K̃.

We now obtain the TL parameter K̃. The quantum numbers of the particle number and the
current in Eq. (5.60) are identified as ∆N = S and ∆D = Φ/(2π). By comparing Eqs. (5.53) and
(5.60), the TL parameter reads

K̃ =
π

2(π − arccos ∆γ)
. (5.64)
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Figure 5.2: Ratio between the critical exponents Kφ and Kθ calculated from the exact result (5.64)
on the NH XXZ model.

We note that, since the quantum numbers n± of particle-hole excitations in Eq. (5.60) characterize
the spinon excitations in Eq. (5.52), we obtain ũ in Eq. (5.54). In Fig. 5.2, we plot the ratio
between the two critical exponents Kφ and Kθ [see Eqs. (5.33) and (5.34)] calculated from the
exact result (5.64). Since the two critical exponents coincide in the Hermitian case, the deviation
of the ratio from unity quantifies how the universality class of the NH XXZ model deviates from
the standard Hermitian TL liquid theory.

Next, we discuss how the complex-valued TL parameter K̃ and the velocity ũ of excitations
are obtained from numerical calculations of the finite-size spectrum of the excitation energy. As
we consider open boundary conditions in the NH-DMRG calculation in Sec. 5.5, we here assume
the excitation energy with open boundary conditions given by Eq. (5.62). The parameters K̃ and
ũ are calculated through the following two types of energy gaps in a finite system

∆Espectral = ∆EOBC(∆N = 0, n = 1) =
πũ

L
, (5.65)

∆Espin = ∆EOBC(∆N = 1, n = 0) =
πũ

L

1

2K̃
, (5.66)

which we call the spectral gap and the spin gap, respectively. In the Hermitian case, the spectral
gap and the spin gap coalesce in the Heisenberg limit. From Eqs. (5.65) and (5.66), we obtain

K̃ =
∆Espectral

2∆Espin
, (5.67)

ũ =
L∆Espectral

π
. (5.68)

We use Eqs. (5.67) and (5.68) in the NH-DMRG analysis in Sec. 5.5.

5.4.3 Stability conditions for realizing the non-Hermitian Tomonaga-
Luttinger liquids

In contrast to Hermitian TL liquids, the velocity ũ of excitations and the TL parameter K̃ become
complex in NH TL liquids. In order for the NH TL liquids to be stable, the real part of the energy
spectrum should be bounded from below and the ground state should be normalizable. From
Eq. (5.60), the energy spectrum is bounded from below when the coefficients satisfy the conditions

Re

[
ũ

K̃

]
> 0, (5.69)

Re
[
ũK̃
]
> 0. (5.70)

We note that the stability condition Re[ũ] > 0 for the energy spectrum corresponding to the
particle-hole excitations is satisfied if the conditions (5.69) and (5.70) hold. The conditions (5.69)
and (5.70) are equivalent to those for ensuring the convergence of the Gaussian integration in the
path integrals discussed in Sec. 5.3. Moreover, as discussed in Sec. 5.3, the condition −π/2 < δN −
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δJ < π/2 should be satisfied in order for the ground-state wave function (5.27) to be normalizable.
This is equivalent to the following condition:

Re
[
K̃2
]
> 0. (5.71)

As we have obtained the exact solutions for ũ and K̃ in Eqs. (5.54) and (5.64), we have to choose
appropriate ∆γ so that the three conditions (5.69), (5.70), and (5.71) are satisfied in order to
realize the NH TL liquids. If one of Eqs. (5.69), (5.70), and (5.71) is not satisfied, the dissipation
causes the instability of the NH TL liquids. The nature of the ground state after the instability is
an interesting problem but is left for future studies.

Finally, we explain the physical meaning of the critical exponents in the correlation functions
obtained in Sec. 5.3. As the operator eiθ makes a kink in φ, it results in a change in the particle
number, thus causing an excitation in the second term in Eq. (5.10) or equivalently in the first term
in Eq. (5.60). Such an excitation leads to the correlation functions for the field θ in Eqs. (5.23)
and (5.32). Similarly, as the operator eiφ creates a current, it causes an excitation in the first term
in Eq. (5.10) or equivalently in the second term in Eq. (5.60). Such an excitation leads to the
correlation functions for the field φ in Eqs. (5.22) and (5.31).

5.5 Non-Hermitian density-matrix renormalization group anal-
ysis

We conduct numerical calculations based on the DMRG generalized to NH systems [100–105]. We
compare the NH-DMRG results for the lattice Hamiltonian HXXZ

eff [Eq. (5.6)] and the analytical
results obtained by the effective field theory and the Bethe ansatz discussed in Secs. 5.3 and 5.4,
thereby demonstrating that the quantum critical phenomena of the model are well described by
the NH TL liquid theory.

The algorithm for NH-DMRG is summarized in Sec. 1.3.3. The main idea of NH-DMRG is to
use the following form of the density matrix for truncation of eigenstates [106]:

ρi =
1

2
T̂r {|ψi〉LL〈ψi|+ |ψi〉RR〈ψi|} , (5.72)

where T̂r describes the partial trace on the system block in the DMRG sweep, and |ψi〉R(L) de-
notes the right (left) eigenvector corresponding to the ith eigenvalue of the NH XXZ Hamiltonian
(5.6). This type of density matrix was used in Refs. [99, 107–109], and its validity was confirmed
numerically by comparing the NH-DMRG results with exact results and analytical calculations.
We emphasize that, in NH-DMRG, we do not use the traditional variational ansatz to minimize
the energy, but we use the numerically accurate density matrix to truncate the eigenstates. In
particular, in Ref. [99], Eq. (5.72) was shown to be superior to the other choices of the density

matrix such as ρi = T̂r {|ψi〉RR〈ψi|}. By using Eq. (5.72), we can avoid all problems related to
the possibility of complex eigenvalues. To test the accuracy of the NH-DMRG algorithms, we have
compared the ground-state energy obtained from NH-DMRG with that obtained from the exact
diagonalization for the number of kept states m = 40 and the system size L = 14. We find the
numerical error between them is small enough (the maximum numerical error is of the order of
10−9) so that it does not affect the results obtained below for NH TL liquids. We note that we
use the double-precision floating-point numbers for NH-DMRG and the exact diagonalization. We
have also calculated the ground-state energy by using the exact diagonalization with quadruple-
precision numbers for system sizes L = 10, 12, and 14, and the numerical error between the double
precision and the quadruple precision is small enough (the maximum numerical error is of the order
of 10−9).

Below, we assume open boundary conditions, where the numerical accuracy is in general guar-
anteed to be better than the case with periodic boundary conditions. We assume Im∆γ < 0
without loss of generality, because the spectrum for Im∆γ > 0 is obtained by taking complex con-
jugation to that for Im∆γ < 0, and the right-state correlation functions discussed below are not
affected by the sign of Im∆γ . In the following calculations, we have confirmed that all parameters
satisfy the stability conditions (5.69), (5.70), and (5.71).
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(a)

(c)

(b)

(d)

Figure 5.3: Numerical results (solid lines) obtained by the NH-DMRG and exact results (dotted
lines) by the BA solution. (a), (b) Critical exponents Kφ and Kθ. (c), (d) Velocity of excitations
as a function of dissipation −Im∆γ . Color plots show the data for Re∆γ = 0.1, 0.2, 0.3, · · · , 0.9
from top to bottom in (a) and (b), and from bottom to top in (c) and (d). The system size is set
to L = 130 and up to 200 states are kept during the NH-DMRG sweep.

By calculating the energy gaps in a finite system (see Appendix 5.7 for detailed results), we
perform a finite-size scaling analysis to extract the critical exponents and the velocity of excita-
tions with Eqs. (5.33), (5.34), (5.67) and (5.68). The results are shown in Fig. 5.3, where the
exact solutions obtained by Eqs. (5.33), (5.34), (5.54) and (5.64) are also shown for comparison.
In Fig. 5.3(a) and (b), we see that the critical exponents Kφ and Kθ obtained by NH-DMRG
(solid lines) agree quite well with those obtained from the exact solutions (dotted lines) for small
|∆γ |. Though their difference increases for large |∆γ |, we have conducted further calculations by
changing the system size L and conclude that this is a finite-size effect, which may vanish in the
thermodynamic limit. For the velocity ũ of excitations shown in Figs. 5.3(c) and (d), the results
obtained by NH-DMRG (solid lines) agree well with the exact solutions (dotted lines) for small
|∆γ |. Though their discrepancy becomes singnificant for large |∆γ |, these features have also been
reported in Hermitian cases [341, 342]. This is because the finite-size effect becomes significant as
the model approaches the transition point, at which the cosine term of the NH sine-Gordon model
(5.9) becomes relevant.

We note that these results are consistent with the renormalization group calculation of the NH
sine-Gordon model [26]. In Ref. [26], measurement-induced phase transitions of Dirac fermions
were studied in the framework of the replica Keldysh field theory, which gives the NH sine-Gordon
Hamiltonian with complex-valued coefficients similar to Eq. (5.9). In Ref. [26], by studying the
renormalization group flow of the NH sine-Gordon model, it is pointed out that the model for large
|g̃3| is governed by the strong-coupling fixed point, where the cosine term in the NH sine-Gordon
model becomes relevant. As the finite-size effect is known to become significant when the system
approaches the transition point [341, 342], the renormalization group analysis is consistent with
our NH-DMRG calculation.

It is worth noting that the dependence of Kφ and Kθ on dissipation in the NH XXZ model
shows interesting behaviors qualitatively different from a model studied before [63]. In Ref. [63], the
effect of dissipation on the critical exponents was studied in the NH Lieb-Liniger model [55, 343],
where the translational invariance ensures that the phase stiffness [ũK̃ in our model (5.10)] does
not change due to dissipation. In the NH Lieb-Liniger model, both critical exponents Kφ and Kθ

are suppressed by dissipation due to QZE. Thus, the enhancement of Kφ and Kθ in our model
[see Fig. 5.3(a) and (b)] is qualitatively different from the behavior studied in Ref. [63]. As this
difference is seen in the regime where |∆γ | is large and the system approaches the transition point,
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(a)

(b)

Figure 5.4: Numerical results of correlation functions versus |i − j| for (a) Re∆γ = 0.3 and (b)
Re∆γ = 0.9 obtained by NH-DMRG. The correlation functions are calculated with i = (L−r+1)/2
and j = (L + r + 1)/2 for odd r and i = (L − r + 2)/2 and j = (L + r + 2)/2 for even r. The
system size is set to L = 100 and up to 170 states are kept during the NH-DMRG sweep.

the Umklapp scattering due to the absence of the continuous translational symmetry in the lattice
model affects the behavior of the critical exponents.

Next, by using NH-DMRG, we calculate the experimentally observable correlation functions,
that is, the right-state correlation functions (5.35) and (5.40). The results are shown in Fig. 5.4. We
estimate the maximum numerical error due to truncation to be of the order of 10−6 for R〈Szi Szj 〉R
and of the order of 10−5 for R〈S+

i S
−
j 〉R. These numerical errors are of the same orders as those

in the Hermitian XXZ model [344], but a much more number of states need to be kept during the
NH-DMRG sweep because the convergence problem is severe in the NH case (the number m of
kept states is m = 170 for L = 100 in the NH case compared with m = 80 for L = 200 in the
Hermitian case [344]). We have also confirmed that the numerical error in the imaginary part of
the right-state correlation functions is very small and can be ignored.

In Fig. 5.4(a), the x-y and z components of the correlation functions with Re∆γ = 0.3 are
plotted. We see that dissipation suppresses the correlation at long distances compared with that of
the Hermitian limit for both R〈Szi Szj 〉R and R〈S+

i S
−
j 〉R. For Re∆γ = 0.3, Fig. 5.3(a) and (b) show

that Kφ increases with increasing dissipation, and that Kθ decreases with increasing dissipation.
From Eqs. (5.35) and (5.40), these changes in the critical exponents indicate that both correlation
functions are suppressed at long distances by dissipation. This is consistent with the NH-DMRG
results shown in Fig. 5.4(a). In Fig. 5.4(b), the correlation functions for Re∆γ = 0.9 obtained by
NH-DMRG are displayed. We see that both correlation functions R〈Szi Szj 〉R and R〈S+

i S
−
j 〉R are

suppressed by dissipation at long distances, and the difference between the NH (∆γ = 0.9− 0.5i)
and the Hermitian (∆γ = 0.9) cases is smaller for R〈S+

i S
−
j 〉R and larger for R〈Szi Szj 〉R than the

results for Re∆γ = 0.3. For Re∆γ = 0.9, the exact solutions shown in Fig. 5.3(a) and (b) indicate
that both Kφ and Kθ increase with increasing dissipation. From the results obtained by the
field theory in Eqs. (5.35) and (5.40), the exact solution states that R〈Szi Szj 〉R is suppressed, but

R〈S+
i S
−
j 〉R is enhanced at long distances by dissipation. For R〈Szi Szj 〉R, this result is consistent

with the NH-DMRG results shown in Fig. 5.4(b), but the behavior of R〈S+
i S
−
j 〉R seems to be

inconsistent. We attribute this inconsistency to the finite-size effect as the model becomes massive
for large |∆γ |. We also note that the behavior of R〈S+

i S
−
j 〉R with ∆γ = 0.9 − 0.5i obtained by

NH-DMRG seems to be affected by the exponential decay of the correlation functions in the gapped
regime, where the model becomes massive.

To further explore the behavior of the correlation functions obtained by NH-DMRG, we perform
a two-parameter fitting for C2 and Kφ in R〈Szi Szj 〉R [see Eq. (5.35)]. In NH cases, it has not been
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Figure 5.5: Numerical results (solid lines) obtained by the fitting of correlation functions with
NH-DMRG and exact results (dotted lines) obtained by the BA solution of the critical exponent
Kφ as a function of dissipation −Im∆γ . Color plots show the data for Re∆γ = 0.1, 0.2, 0.3, · · · , 0.9
from top to bottom. The system size is set to L = 100 and up to 170 states are kept during the
NH-DMRG sweep.

explored how the correlation amplitudes and the critical exponents behave in a finite system, and
we deal with both the correlation amplitudes and the critical exponents as variables. The details
of the fitting procedure are as follows. Since we deal with open boundary conditions, we have
removed 11 sites from both ends of the spin chain (that is, i = 1, 2, · · · , 11 and i = 90, 91, · · · , 100
for L = 100) to exclude the effect of the edges as much as possible. We have also removed
correlation functions at distances less than 10 sites (that is, |i − j| = 1, 2, · · · , 9) to avoid the
higher-order contributions in the correlation functions. We have performed the fitting for the
correlation functions at an odd distance and an even distance separately, and confirmed that the
parameters obtained by the correlation functions at an odd distance converge faster to those in an
infinite system. While we have also performed a fitting for R〈S+

i S
−
j 〉R, there are too many fitting

parameters in Eq. (5.40) and therefore the results do not converge with sufficient accuracy. We note
that, as the biorthogonal correlation functions and the fitting parameters become complex, it is
difficult to perform a fitting for the biorthogonal correlation functions with sufficient accuracy. The
critical exponent Kφ obtained by the fitting of R〈Szi Szj 〉R at an odd distance is shown in Fig. 5.5.
We see that the fitting results show the behavior qualitatively consistent with that of the exact
solutions for small |∆γ |. We have also confirmed that the fitting results for C2 agree qualitatively
well with the exact results of an infinite system in the Hermitian limit [344] (exact results of C2

for the NH cases are not known). Large difference between the fitting results and the exact results
for large |∆γ | is due to a finite-size effect as the model approaches the transition point, where the
cosine term in the NH sine-Gordon model (5.9) becomes relevant. Though the fitting accuracy is
low compared to the results obtained by the finite-size scaling analysis in Fig. 5.3(a) due to the
effect of the edges, the results shown in Fig. 5.5 give qualitatively the same behavior as those in
Fig. 5.3(a). The NH-DMRG results obtained in this section strongly support the analytical results
obtained in Secs. 5.3 and 5.4.

5.6 Summary of this chapter

We have demonstrated the universal properties of dissipative TL liquids by taking the NH XXZ
spin chain as a prototypical model in 1D open quantum many-body systems. First, using the
field theory with bosonization, we have calculated two types of correlation functions. Then, we
have employed a finite-size scaling approach in CFT and the Bethe ansatz, and obtained exact
solutions for the complex-valued TL parameter K̃ and the velocity ũ of excitations. Importantly,
we have demonstrated that the model belongs to the universality class characterized by K̃, which
is related to the complex generalization of the c = 1 CFT. Moreover, we have confirmed that
these analytical results are consistent with the numerical results obtained by NH-DMRG for the
lattice Hamiltonian in the massless regime with weak dissipation. On the other hand, the NH-
DMRG results and the exact solutions start to deviate from each other as the dissipation strength
increases. This deviation indicates that the model can be massive for strong dissipation, and this
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fact is consistent with the renormalization group analysis obtained in Ref. [26]. The NH XXZ spin
chain can be derived from the two-component Bose-Hubbard model with two-body loss, which
can be realized with long-lived excited states of ytterbium atoms [37, 43]. As a useful tool for
controlling dissipation, artificial two-body loss processes with photoassociation techniques [42] can
be utilized to observe the NH TL liquids.

The Bethe ansatz solution of the NH XXZ model for a general complex parameter ∆γ merits
further study. As the integrability of the NH XXZ model holds for arbitrary ∆γ ∈ C, it is
worthwhile to investigate the possible instability of the NH TL liquid on the basis of exact solutions.
Moreover, if the integration path C in Eq. (5.47) touches a pole of the integrand, the analytic
continuation of the solution from the Hermitian limit breaks down and novel criticality may arise
at an exceptional point [15]. The exploration of the entire phase diagram of the NH XXZ model
remains an interesting research subject.

It is of interest to explore applications of CFT to NH quantum many-body systems. While we
have found that the NH TL liquids are successfully described by a complex extension of the c = 1
CFT, detailed investigation of the Virasoro algebra behind them remains for future studies. An-
other important question arises concerning a finite-size scaling of entanglement entropy in nonuni-
tary conformal field theories [345–350]. As a generalization of their frameworks to the biorthogonal
bases unique to NH systems has been actively investigated in recent years [290, 351, 352], it is an
interesting problem to apply our formalism to the finite-size scaling of entanglement entropy. In
view of the fact that CFT in measurement-induced dynamics is investigated in recent years [353–
356], it is interesting to investigate how the CFT in NH quantum many-body systems is related to
the one in the measurement-induced dynamics.

Dissipation breaks the unitarity of the theory and the entire spectrum of the NH XXZ model
can be complicated. However, low-energy physics shows universal properties, which lead to uncon-
ventional quantum critical phenomena characterized by the complex extension of the c = 1 CFT.
It is our hope that the our study facilitates further investigations on dissipative TL liquids in open
quantum systems [285–287, 357–361].

5.7 Appendix for this chapter

Wiener-Hopf method for a NH integrable model

In this Appendix, we generalize the Wiener-Hopf method [318, 332, 334] to calculate the finite-
size correction to the ground-state energy of the NH XXZ model. A major difference from the
Hermitian case is that spin rapidities are not aligned on the real axis but distributed on the complex
plane (see Fig. 5.1).

We consider the Bethe equations (5.45) for a large but finite L. We define the counting function
by

zL(λ,Φ) ≡− Φ

L
+ 2 arctan

[
tanh(µλ/2)

tan(µ/2)

]
− 1

L

M∑
l=1

2 arctan

[
tanh µ

2 (λ− λl(Φ))

tanµ

]
. (5.73)

The spin rapidities λj(Φ) (j = 1, · · · ,M) are determined from the condition

zL(λj(Φ),Φ) =
2πIj
L

=
2π

L

(
−M + 1

2
+ j

)
. (5.74)

Since zL(λ,−Φ) = −zL(−λ,Φ) and IM+1−j = −Ij , the spin rapidities satisfy

λj(−Φ) = −λM+1−j(Φ), (5.75)

and thus the energy eigenvalue

EL(Φ) =
J∆γ

4
− J

M∑
j=1

sin2 µ

cosh(µλj(Φ))− cosµ
(5.76)
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satisfies EL(−Φ) = EL(Φ).
The distribution function is defined by

σL(λ,Φ) ≡ 1

2π

dzL(λ,Φ)

dλ
, (5.77)

and satisfies

σL(λ,Φ) =a1(λ)− 1

L

M∑
j=1

a2(λ− λj(Φ))

=a1(λ)−
∫
C′(Φ)

dλ′a2(λ− λ′)σL(λ′,Φ)

−
∫
C′(Φ)

dλ′a2(λ− λ′)SL(λ′,Φ), (5.78)

where

an(λ) ≡ 1

2π

µ sin(nµ)

cosh(µλ)− cos(nµ)
, (5.79)

and

SL(λ,Φ) ≡ 1

L

M∑
j=1

δC′(λ− λj(Φ))− σL(λ,Φ). (5.80)

Here, we have introduced a path C′(Φ) = C+(Φ)∪C(Φ)∪C−(Φ). The path C(Φ) smoothly connects
the spin rapidities {λj(Φ)}Mj=1 from Q−(Φ) ≡ λ1(Φ) to Q+(Φ) ≡ λM (Φ). The endpoints Q±(Φ)
are not located on the real axis in the case of the NH XXZ model. The other two paths C+(Φ) ≡
{Q+(Φ) + x;x ∈ [0,∞)} and C−(Φ) ≡ {Q−(Φ) + x;x ∈ (−∞, 0]} are half lines parallel to the real
axis. The delta function δC′(λ− λj(Φ)) is defined by∫

C′(Φ)

dλF (λ)δC′(λ− λj(Φ)) = F (λj(Φ)) (5.81)

for an arbitrary function F (λ) defined on C′(Φ).
Since the path C′(Φ) in the second term on the right-hand side of Eq. (5.78) can be deformed

onto the real axis, we have

(1 + â2(ω))σ̂L(ω,Φ)

=â1(ω)−
∫
C′(Φ)

dλ′eiωλ
′
â2(ω)SL(λ′,Φ), (5.82)

where the Fourier transformation of a function f(λ) is denoted by

f̂(ω) ≡
∫ ∞
−∞

dλf(λ)eiωλ. (5.83)

From Eq. (5.82), we have

σL(λ,Φ) = σ∞(λ)−
∫
C′(Φ)

dλ′R(λ− λ′)SL(λ′,Φ), (5.84)

where σ∞(λ) is the distribution function in the infinite system-size limit with Φ = 0 [see Eqs. (5.47)
and (5.49)], and

R(λ) ≡ 1

2π

∫ ∞
−∞

dωe−iωλ
â2(ω)

1 + â2(ω)

=
1

2π

∫ ∞
−∞

dωe−iωλ
sinh

(
π
µ − 2

)
ω

2 sinh
(
π
µ − 1

)
ω coshω

. (5.85)
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Using the Euler-Maclaurin formula

1

L

M∑
j=1

F (λj(Φ))

'
∫
C(Φ)

F (λ)σL(λ,Φ)dλ+
F (Q+(Φ)) + F (Q−(Φ))

2L

+
1

12L2

[
F ′(Q+(Φ))

σL(Q+(Φ),Φ)
− F ′(Q−(Φ))

σL(Q−(Φ),Φ)

]
, (5.86)

we evaluate the integral in Eq. (5.84) and obtain

σL(λ,Φ) =σ∞(λ) +

∫
C+(Φ)∪C−(Φ)

dλ′R(λ− λ′)σL(λ′,Φ)

− R(λ−Q+(Φ)) +R(λ−Q−(Φ))

2L

+
1

12L2

[
R′(λ−Q+(Φ))

σL(Q+(Φ),Φ)
− R′(λ−Q−(Φ))

σL(Q−(Φ),Φ)

]
. (5.87)

To apply the Wiener-Hopf method, we introduce the functions

g(x,Φ) ≡ σL(x+Q+(Φ),Φ)

= g+(x,Φ) + g−(x,Φ), (5.88)

and

g±(x,Φ) ≡ Θ(±x)σL(x+Q+(Φ),Φ), (5.89)

for x ∈ R, where Θ(x) is the Heaviside unit-step function. Then, using σL(λ,−Φ) = σL(−λ,Φ)
and Q+(−Φ) = −Q−(Φ), we rewrite Eq. (5.87) as

g(x,Φ) +
R(x) +R(x+Q+(Φ)−Q−(Φ))

2L
− 1

12L2

[
R′(x)

σL(Q+(Φ),Φ)
− R′(x+Q+(Φ)−Q−(Φ))

σL(Q−(Φ),Φ)

]
=σ∞(x+Q+(Φ)) +

∫
C+(Φ)∪C−(Φ)

dλ′R(x+Q+(Φ)− λ′)σL(λ′,Φ)

=σ∞(x+Q+(Φ)) +

∫ ∞
0

dx′R(x− x′)g(x′,Φ) +

∫ ∞
0

dx′R(x+ x′ +Q+(Φ)−Q−(Φ))σL(−x′ +Q−(Φ),Φ)

=σ∞(x+Q+(Φ)) +

∫ ∞
−∞

dx′R(x− x′)g+(x′,Φ) +

∫ ∞
−∞

dx′R(x+ x′ +Q+(Φ)−Q−(Φ))g+(x′,−Φ).

(5.90)

Since R(x+Q) ' −iRes(R̂;−iπ/2) exp[−π2 (x+Q)] for large Re[Q] (Res(f ; z0) denotes the residue
of a function f(z) at z = z0), the leading part of Eq. (5.90) is

g(x,Φ) 'σ∞(x+Q+(Φ)) +

∫ ∞
−∞

dx′R(x− x′)g+(x′,Φ)

− 1

2L
R(x) +

1

12L2

R′(x)

σL(Q+(Φ),Φ)
, (5.91)

and its Fourier transformation reads

ĝ+(ω,Φ) + ĝ−(ω,Φ) =σ̂∞(ω)e−iωQ+(Φ) + R̂(ω)ĝ+(ω,Φ)

− 1

2L
R̂(ω)− 1

12L2

iωR̂(ω)

σL(Q+(Φ),Φ)
. (5.92)

Here we use the decomposition

1− R̂(ω) =
1

G+(ω)G−(ω)
, (5.93)
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where

G+(ω) ≡

√
2(π − µ)Γ

(
1− iω

µ

)
Γ
(

1
2 −

iω
π

)
Γ
(

1− iω π−µπµ

)

(
π
µ − 1

)π
µ−1

(
π
µ

)π
µ


− iωπ

(5.94)

[G−(ω) ≡ G+(−ω)] is analytic in the upper (lower) half plane [332, 337]. Then, we have

ĝ+(ω,Φ)− C(ω,Φ)

G+(ω)
− [G−(ω)σ̂∞(ω)e−iωQ+(Φ)]+

=−G−(ω)ĝ−(ω) + [G−(ω)σ̂∞(ω)e−iωQ+(Φ)]−

−G−(ω)C(ω,Φ)

=P (ω,Φ), (5.95)

where

C(ω,Φ) ≡ 1

2L
+

1

12L2

iω

σL(Q+(Φ),Φ)
, (5.96)

P (ω,Φ) is an entire function of ω, and

F (ω) =[F (ω)]+ + [F (ω)]−, (5.97)

[F (ω)]± ≡
±i
2π

∫ ∞
−∞

dω′
F (ω′)

ω − ω′ ± i0
(5.98)

is the decomposition of F (ω) into [F (ω)]+ and [F (ω)]− which are analytic in the upper and lower
complex planes, respectively [334]. Thus, the solution of Eq. (5.92) is given by

ĝ+(ω,Φ) =C(ω,Φ) +G+(ω)P (ω,Φ)

+G+(ω)[G−(ω)σ̂∞(ω)e−iωQ+(Φ)]+

'C(ω,Φ) +G+(ω)P (ω,Φ)

+
i

2

G+(ω)G−(−iπ/2)

ω + iπ/2
e−

π
2Q+(Φ), (5.99)

where we have evaluated the lowest-order contribution to [G−(ω)σ̂∞(ω)e−iωQ+(Φ)]+ using the pole
ω = −iπ/2 of σ̂∞(ω).

The entire function P (ω,Φ) is determined from its asymptotic behavior [334]. From limω→∞ ĝ+(ω,Φ) =
0, limω→∞ σ̂∞(ω) = 0, and

G+(ω) = 1 +
g1

ω
+

g2
1

2ω2
+O

(
1

ω3

)
, (5.100)

we get

P (ω,Φ) = −C(ω,Φ) +
1

12L2

ig1

σL(Q+(Φ),Φ)
. (5.101)

From Eqs. (5.99), (5.100), and (5.101), the distribution function at the endpoint satisfies

σL(Q+(Φ),Φ) =g(0,Φ)

=− lim
ω→∞

iωĝ+(ω,Φ)

=
ig1

2L
+

g2
1

24L2σL(Q+(Φ),Φ)

+
1

2
G−

(
− iπ

2

)
e−

π
2Q+(Φ). (5.102)
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From Eq. (5.84) and∫ ∞
−∞

dλa1(λ)R(λ− λ′) =

∫ ∞
−∞

dλa1(λ)R(λ′ − λ)

=
1

2π

∫ ∞
−∞

dωe−iωλ
′ â1(ω)â2(ω)

1 + â2(ω)

=

∫ ∞
−∞

dλa2(λ′ − λ)σ∞(λ)

=a1(λ′)− σ∞(λ′), (5.103)

the difference of the energy density eL(Φ) = EL(Φ)/L is given by

eL(Φ)− e∞(0)

A
=−

∫
C′(Φ)

dλa1(λ)

× [SL(λ,Φ) + σL(λ,Φ)− σ∞(λ)]

=−
∫
C′(Φ)

dλa1(λ)
[
SL(λ,Φ)

−
∫
C′(Φ)

dλ′R(λ− λ′)SL(λ′,Φ)
]

=−
∫
C′(Φ)

dλσ∞(λ)SL(λ,Φ), (5.104)

where A = 2πJ sinµ/µ. Using the Euler-Maclaurin formula (5.86) and σ∞(λ+Q) ' 1
2 exp[−π2 (λ+

Q)] for large Re[Q], we evaluate the energy difference as

eL(Φ)− e∞(0)

A
'
∫ ∞
−∞
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+
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. (5.105)

On the other hand, since Re[µ] > 0, we have

ĝ+(0,Φ) =

∫ ∞
−∞

dxg+(x,Φ)

=

∫
C+(Φ)

dλσL(λ,Φ)

=
1

2π

[
lim
x→∞

zL(Q+(Φ) + x,Φ)− zL(λM ,Φ)
]

=
(π − µ)S

πL
+

1

2L
− Φ

2πL
, (5.106)

where S = L/2−M is the magnetization. From Eqs. (5.99) and (5.106), we obtain

1

π
G+

(
iπ

2

)
e−

π
2Q+(Φ) =− P (0,Φ) +

B(Φ)

G+(0)
, (5.107)
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Figure 5.6: NH-DMRG results of energy gaps in a finite system as a function of dissipation −Im∆γ .
Color plots show the data for Re∆γ = 0.1, 0.2, 0.3, · · · , 0.9 from bottom to top in (a), (c), and (d),
and from top to bottom in (b). The system size is set to L = 130, and up to 200 states are kept
during the NH-DMRG sweep.

where B(Φ) = (π−µ)S
πL − Φ

2πL . Substituting Eq. (5.107) into Eq. (5.102), we have

σL(Q+(Φ),Φ) =
2ig1 + π

4L
+

g2
1 − iπg1

24L2σL(Q+(Φ),Φ)

+
πB(Φ)

2G+(0)
. (5.108)

Finally, by substituting Eq. (5.107) into Eq. (5.105) and using Eq. (5.108), we arrive at

eL(Φ)− e∞(0)

A

'− π

24L2
+

(π − µ)2S2

2π[G+(0)]2L2
+

Φ2

8π[G+(0)]2L2

=− π

24L2
+

(π − µ)S2

4L2
+

Φ2

16(π − µ)L2
, (5.109)

which is equivalent to Eq. (5.53).

Detailed results for the energy gaps in a finite system

We show the details of the NH-DMRG results for the energy gap in a finite system of the NH
XXZ spin chain. The results are shown in Fig. 5.6. We estimate the maximum numerical error
due to truncation to be of the order of 10−8 for the ground-state energy. When dissipation is
increased, the real part of the spin gap shown in Fig. 5.6(a) gradually decreases, while the real
part of the spectral gap shown in Fig. 5.6(c) gradually increases. This result shows that the real
part of the spectral gap is always larger than that of the spin gap in the weak dissipation regime
shown in Fig. 5.6. As for the imaginary part, the spin gap shown in Fig. 5.6(b) gradually decreases
as dissipation increases, while the imaginary part of the spectral gap shown in Fig. 5.6(d) seems to
increase with increasing dissipation for large Re∆γ . To check whether this behavior persists or not
in the thermodynamic limit, we have conducted further calculations by changing the system size
L (not shown). According to them, we conclude that the increase of Im[∆Espectral/J ] shown in
Fig. 5.6(d) is a finite-size effect as a result of the higher-order correction to Eqs. (5.65) and (5.66)
with respect to 1/L. We observe that the finite-size effect becomes significant for large |∆γ |.
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Figure 5.7: Comparison of the energy gaps obtained by NH-DMRG (solid lines and broken lines)
and the exact diagonalization (dotted lines). As the ground states for Re∆γ > 1 are doubly
degenerate in an infinite system, spin gaps for the two lowest states are plotted. The system size
is set to L = 14, Re∆γ = 1.5, and up to 40 states are kept during the NH-DMRG sweep. We use
the double-precision data for both NH-DMRG and the exact diagonalization (see text).

NH-DMRG results for the gapped regime in the NH XXZ spin chain

We have also conducted a NH-DMRG calculation for the gapped regime, that is, for Re∆γ > 1.
However, we have encountered the energy-level crossing problem [362] which leads to the breakdown
of the NH-DMRG algorithm. We here explain the problem of NH-DMRG in the gapped regime
Re∆γ > 1 in the NH XXZ spin chain. We note that, in this appendix, the gapped regime stands
for the regime where the system shows an Ising order with double degeneracy. In the NH-DMRG
calculation for the massless regime, the energy levels do not merge with each other as dissipation
increases (at least for sufficiently weak dissipation considered in our study). In this regime, we
have not encountered the energy-level crossing problem as we increase the system size during the
infinite-system algorithm of NH-DMRG, and the NH-DMRG algorithm works well. However, in
the gapped regime, the energy levels are nearly degenerate and cross with each other in the complex
plane as dissipation increases [362]. One of these points corresponds to exceptional points at which
the Hamiltonian cannot be diagonalized. Around such dissipation-induced (exceptional) critical
points unique to NH systems, we have found an energy-level crossing problem as we increase
the size of the system block during the infinite- and finite-system algorithm of NH-DMRG. In
this case, the NH-DMRG algorithm usually breaks down. This is explained as follows. The
main procedure in the NH-DMRG algorithm is discarding all but the largest m eigenvalues and
associated eigenvectors. In this process, m states sufficient to describe the ground state are kept
during NH-DMRG. However, when the energy levels cross and the ground state is changed as we
increase the size of the system block, the m kept states no longer describe the ground state of the
superblock Hamiltonian in the next iteration. Thus, the m kept states do not describe the ground
state with sufficient accuracy and the NH-DMRG algorithm breaks down.

In spite of the above problems, we have systematically conducted the NH-DMRG calculation
and compared the results with the exact diagonalization by using the double-precision numbers as
shown in Fig. 5.7. We see that the results obtained by NH-DMRG and the exact diagonalization
agree quite well. However, we find that the results are very sensitive to the number of kept
states, and in general, the NH-DMRG results are not trustworthy without comparison with those
obtained by the exact diagonalization. Moreover, we have performed the exact diagonalization
by using quadruple precision for system sizes L = 10, 12, and 14. By comparing the quadruple-
precision data and the double-precision data of the ground-state energy obtained from the exact
diagonalization, we have found that the numerical error between them increases for large −Im∆γ .
Thus, we have to pay attention to the precision of the data for large dissipation in the gapped
regime. It seems of interest to generalize the NH-DMRG algorithm to gapped regimes in order
to explore the ground-state properties. For example, it may be useful to keep all states that are
related to the energy-level crossing. This problem is left for future studies.



Chapter 6

Conclusion

In this thesis, we have focused on nonequilibrium quantum many-body phenomena with dissipation,
motivated by recent experimental and theoretical progress of open quantum systems. In Chap. 1,
we have reviewed several important properties of open quantum systems, by focusing on Markovian
environments, which produce Lindblad master equations and NH Hamiltonians. We have also
explained the basics of quantum many-body phenomena taking fermionic superfluidity and 1D
spin chains as examples.

In Chap. 2, we have investigated NH BCS superfluidity by introducing inelastic collisions be-
tween atoms as dissipation. We have elucidated that exotic Bogoliubov quasiparticles which belong
to neither fermions nor bosons emerge, and found unconventional reentrant superfluidity induced
by non-Hermiticity. Remarkably, this phase transition is accompanied by distinctive features of
the non-Hermiticity, i.e. the emergence of exceptional manifolds. We have also discussed possible
experimental setups by using QZE, which will play a decisive role in detecting NH phase transitions
in experiments. While we have focused on a conventional s-wave superfluid, there seem to be a
lot of NH generalizations of other exotic superfluids that have been proposed in condensed matter
physics, and this issue merits future investigation.

In Chap. 3, we have investigated the loss-quench dynamics of fermionic superfluids, which is
a dissipative counterpart of conventional interaction-quench dynamics of BCS superconductivity.
We have demonstrated that the dynamics exhibits both amplitude and phase modes with chirped
oscillations, the latter of which is a salient feature of a dissipative superfluid. To observe the char-
acteristic phase mode in dissipative fermionic superfluids, we have proposed a Josephson junction
comprised of dissipative and nondissipative superfluids. We have shown that the relative-phase
Leggett mode can be detected from the Josephson current for weak dissipation. Importantly,
we have elucidated that superfluids exhibit unique nonequilibrium phase transitions triggered by
particle loss in Josephson junctions. Our prediction can be tested with ultracold atomic systems
of degenerate fermionic gases, and introducing dissipation by using photoassociation laser can be
a useful candidate. It is of interest to explore how the dimensionality affects the dynamics and
associated collective modes.

In Chap. 4, we have proposed minimal setups to realize a nonreciprocal current in open many-
body systems in NESSs. In contrast to conventional approaches in open quantum systems, our
finding provides a unique avenue for rectification, namely, the current is neither generated by
temperature gradients nor boundary driving, but via homogeneous dissipation by nonequilibrium
baths. We have demonstrated that a nonreciprocal Lindblad operator in general rectifies the
current in NESSs. We have also revealed that a reciprocal Lindblad operator can be used to
rectify the current when the internal symmetry of the Hamiltonian is broken. Though our current
model mainly focuses on ultracold atoms, it is of interest to study the regime in solid state systems
where Lindblad master equations are relevant.

In Chap. 5, we have demonstrated the universal properties of dissipative TL liquids by taking
the NH XXZ spin chain, which is experimentally realized by introducing two-body loss into the
two-component Bose-Hubbard model. First, using bosonization techniques with path integrals,
we have calculated two types of correlation functions, which in general occur in NH quantum
systems. Then, we have employed the finite-size scaling analysis in CFT, and obtained exact
solutions for the complex-valued TL parameter K̃ by using the Bethe ansatz. Importantly, we
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have demonstrated that the model belongs to the universality class characterized by K̃, which
is related to the complex generalization of the c = 1 CFT. Moreover, we have confirmed these
analytical results by employing NH-DMRG for the lattice Hamiltonian in the massless regime
with weak dissipation. On the other hand, the NH-DMRG results and the exact solutions start
to deviate from each other as the dissipation strength increases. This deviation indicates that
the model can be massive for strong dissipation. The current study offers the opportunity to
investigate strongly-correlated NH phenomena by using various analytical and numerical methods,
in particular, NH-DMRG and CFT can be strong theoretical tools in open quantum systems.
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[10] Berislav Buča, Cameron Booker, Marko Medenjak, and Dieter Jaksch. Bethe ansatz approach
for dissipation: exact solutions of quantum many-body dynamics under loss. New J. Phys.,
22(12):123040, 2020.
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[35] Henrik P. Lüschen, Pranjal Bordia, Sean S. Hodgman, Michael Schreiber, Saubhik Sarkar,
Andrew J. Daley, Mark H. Fischer, Ehud Altman, Immanuel Bloch, and Ulrich Schneider.
Signatures of Many-Body Localization in a Controlled Open Quantum System. Phys. Rev.
X, 7:011034, Mar 2017. doi: 10.1103/PhysRevX.7.011034. URL https://link.aps.org/

doi/10.1103/PhysRevX.7.011034.
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[285] Balázs Dóra and C. P. Moca. Quantum Quench in PT -Symmetric Luttinger Liquid. Phys.
Rev. Lett., 124:136802, Mar 2020. doi: 10.1103/PhysRevLett.124.136802. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.124.136802.
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