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Abstract

Black hole-neutron star mergers are one of the main targets of ground-based gravitational
wave detectors, and two events GW200105 and GW200115 were detected in 2020. Unlike
the binary neutron star merger event GW170817, no electromagnetic counterparts were
detected in these events because the binary parameters were in the range that the neutron
star does not experience disruption by the tidal force of the companion black hole before
the merger. However, depending on the parameters of the binary, the neutron star could be
tidally disrupted, leading to mass ejections and the formation of the accretion disk around
the remaining black hole. In such a case there is a high expectation for the electromagnetic
counterparts to be detected. In the neutron-rich ejected matter, r-process nucleosynthesis
synthesizes the heavy radioactive elements. Radioactive decay of such elements generates
thermal energy and the ejecta shines as kilonovae. If the remaining system after the
merger is a highly magnetized accretion disk surrounding a rapidly rotating black hole, the
magnetically driven ultrarelativistic jet could be launched and drive short-hard gamma-ray
bursts.

Black hole-neutron star mergers are expected to be a promising source for multi-
messenger astronomy. In order to analyze the observational signals and extract scientific
information on the merger events, creating the theoretical evolution model of the system
is essential. Based on this motivation, we performed numerical-relativity simulations of
seconds-long black hole-neutron star mergers incorporating neutrino-radiation transport
and magnetohydrodynamics and obtained a self-consistent evolution picture of the in-
spiral, merger, and post-merger stages. In addition, we also performed simulations for
various initial and computational setups and found that the obtained evolution picture is
qualitatively universal irrespective of the setups.

The universal evolution processes of the black hole-neutron star merger and the subse-
quent black hole-accretion disk system are as follows: As the tidal force of the black hole
exceeds the self-gravitating force of the neutron star, the neutron star is tidally disrupted;
Then the dynamical mass ejection and the formation of the accretion disk take place within
the timescale of ∼ 10ms; The dynamical ejecta has an electron fraction lower than 0.1 and
a velocity up to ∼ 0.4c; Subsequently, the magnetic field in the accretion disk is amplified
by the magnetic winding, Kelvin-Helmholtz instability, and magnetorotational instabil-
ity, which induce the turbulent state and enhance the turbulent effective viscosity which
results in the angular momentum transport; The combination of the above magnetohydro-
dynamics effects and magnetic buoyancy activate the MRI dynamo; The post-merger mass
ejection driven by the magnetically-induced viscous heating sets in at ∼ 300–500ms after
the merger as the maximum temperature of the disk drops below ∼ 3MeV and neutrino
luminosity drops below ∼ 1051–1051.5 erg/s, and continues for several hundred ms; The
post-merger ejecta has mildly-neutron rich properties with electron fraction ranging from
0.1 to 0.4 and a velocity lower than 0.1c; If one end of the magnetic field line falls into the
black hole by accretion and the other end ascends from the disk by magnetic buoyancy,
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the magnetosphere along the black hole rotation axis is developed by the magnetic tower
effect; The magnetosphere is collimated with an opening angle of ≲ 10◦ by the funnel wall
supported by the geometrically-thick accretion disk, and the strong Poynting flux with
the typical maximum isotropic-equivalent luminosity of ∼ 3 × 1049–1050 erg/s is gener-
ated; Then the Poynting flux starts to decrease after ∼ 0.5–2 s. We found three possible
mechanisms that terminate the strong Poynting-luminosity stage. One is the widening in
the opening angle of the magnetosphere due to the post-merger mass ejection. Another
is the polarity flip of the magnetic field in the magnetosphere, which is caused by the
dynamo activity. The last is the tilt of the disk and the magnetosphere induced by the
anisotropic post-merger ejection. Despite the difference in those mechanisms, what they
have in common is that the evolution of the accretion disk determines the evolution of the
magnetosphere and determines the timescale of the strong Poynting-luminosity stage.
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Chapter 1

Introduction

The first direct detection of gravitational waves from a binary black hole merger, referred
to as GW150914 [1], opened the era of gravitational-wave astronomy. To date, advanced
LIGO and advanced Virgo have observed ∼ 80 binary black hole merger events [2, 3].
Several neutron-star merger events have also been observed in addition to the binary
black hole mergers. A remarkable event is GW170817 [4], the first binary neutron star
merger event. Associated with this event, a wide variety of electromagnetic counterparts
such as kilonova and short-hard gamma-ray burst were successfully observed [5, 6], and
provided us with invaluable information for understanding the processes of the neutron-
star merger and its post-merger evolution. The electromagnetic observations also opened
the era of multi-messenger astronomy including gravitational-wave observation.

In the latest observational run (O3b), gravitational waves from black hole-neutron star
binaries, referred to as GW200105 and GW200115 [7], were observed.1 Figure 1.1 shows
the probability distribution of the component masses. These events surely indicate that
black hole-neutron star binaries exist in nature. Although no electromagnetic counterpart
is observed for them, it is natural to expect that electromagnetic counterparts will be
observed in future events, if the binary parameters are suitable for inducing tidal disruption
of neutron stars. A number of numerical-relativity simulations for black hole-neutron
star binaries predict that the neutron star could be disrupted by the tidal force of the
companion black hole if the black-hole mass is relatively small and/or the black-hole spin
is high (e.g., Refs. [8, 9]). The tidal disruption is accompanied by disk formation and mass
ejection, which will result in the r-process nucleosynthesis for synthesizing heavy neutron-
rich elements [10, 11]. Powered by thermal energy generated by the radioactive decay
of synthesized heavy neutron-rich elements, the ejecta will shine with high luminosity as
kilonovae [12, 13]. Kilonovae are expected to be a promising electromagnetic counterpart
of gravitational-wave events to make follow-up observations. This is because the velocity
of the ejecta is shown to be subrelativistic by numerical simulations, and the emission
would be quasi-isotropic. The time scale of the emission is expected to be 1–10 days, and
it may be suitable for making associations with detection. Also, most of its emission is
expected to be around optical and near-infrared, and thus the existing optical telescopes
could be used for the follow-up observation. If the remnant black hole is rapidly spinning
and surrounded by a massive magnetized disk or torus, an ultra-relativistic jet could be
launched and drive a short-hard gamma-ray burst [11, 14, 15]. The short-hard gamma-
ray burst is the brightest transient in the universe with its typical maximum isotropic-
equivalent luminosity of ∼ 1050–1052 erg/s in the gamma-ray and its time scale of ≲ 2 s.

1We note that for the event GW200105, a probability of astrophysical origin is less than 0.5 and treated
as a marginal candidate in Ref. [3].
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The highly relativistic jet with Lorentz factor larger than ∼ 30 and its collimation of ∼ 10◦

is thought to power the short-hard gamma-ray burst. Ref. [16] proposed that the black
hole-accretion disk system formed after the merger of the black hole-neutron star binary
and the binary neutron star could be the progenitor.

The sensitivity of the gravitational-wave detectors is being improved for the forthcom-
ing observational runs (O4 and O5) [17]. Also, large-scale telescopes such as JWST and
Vera Rubin telescopes will be in operation during such runs [18, 19]. It is quite natural
to expect simultaneous detection of gravitational waves and electromagnetic counterparts
from black hole-neutron star mergers if the source is within a distance of several hundred
Mpc from the earth. This implies that black hole-neutron star mergers are among the
most promising sources for multi-messenger astronomy in the near future. In view of this
situation, it is urgent to theoretically develop the entire evolution scenario from the merger
to the post-merger stages, in order to predict observable signals and to make a reliable
model for the interpretation of the forthcoming observational data.

In the last 16 years, a variety of numerical-relativity simulations for black hole-neutron
star mergers have been performed [20–55]. By improving the input physics and grid reso-
lution, the previous studies have extensively explored the process of the tidal disruption,
accretion disk formation, dynamical mass ejection, gravitational-wave emission, and neu-
trino emission. However, most of the previous works have focused only on the evolution
from the inspiral to early post-merger stages; the evolution was followed at longest for
a few hundred ms after the merger. Hence, the long-term seconds-long evolution of the
system has not been explored deeply. In order to compensate for this deficiency, i.e., to
explore the entire post-merger evolution processes, many long-term numerical simulations
for black hole-accretion disk systems have also been performed, including viscous hydro-
dynamics or magnetohydrodynamics effects [56–71]. These simulations have qualitatively
clarified the evolution processes in the post-merger stage such as the post-merger mass
ejection and jet launch. For example, it is now widely accepted that the post-merger mass
ejection is likely to be driven by an effective viscous effect induced by the magnetohydro-
dynamics turbulence. The jet outflow is also likely to be powered by the Blandford-Znajek
mechanism [72] by magnetic fields penetrating a rapidly spinning black hole. However,
it is not clear whether the initial condition given in such simulations are appropriate for
exploring the post-merger evolution of the black hole-neutron star merger. During the
merger stage, the neutron-star matter is spread non-axisymmetrically around the rem-
nant black hole, and the non-axisymmetric fall-back matter suppresses the system from
being axisymmetric. Such non-axisymmetrical structure of the accretion disk could also
have a significant effect on the magnetic field amplification and its structure. Therefore,
the quantitative details of the post-merger process are yet to be discovered.

In order to acquire the full understanding of the black hole-neutron star mergers and
associated mass ejection processes, we need to perform a self-consistent simulation start-
ing from an inspiral stage throughout the post-merger stage. Specifically, the post-merger
evolution has to be followed at least for a few seconds, because the post-merger mass
ejection takes place spending the timescale of ≳ 1 s. Furthermore, to explore the genera-
tion mechanism of short-hard gamma-ray bursts, a simulation with the duration of ≳ 1 s
is needed because their typical duration is ∼ 1 s with the longest duration of ∼ 2 s [14,
15]. Keeping in mind these timescales, in this thesis, we tackle this problem by per-
forming numerical-relativity simulations of black hole-neutron star mergers incorporated
with neutrino-radiation and magnetohydrodynamics for ≈ 1–6 s. We performed a total
of eleven simulations in different setups. We adopt two different grid resolutions to find
out the convergence of the simulation. We also adopt three different initial magnetic field
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1. Introduction

Figure 1.1: Probability distribution of the component masses for the gravitational wave
events GW200105 (orange) and GW200115 (blue). The Colored shading and solid curves
indicate the results with the high-spin prior, while the dashed curves represent those
with the low-spin prior. The results for event GW190814 and the marginal candidate
GW190426 152155 are also shown in gray. This figure is taken from Ref. [7]
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amplitudes confined in the neutron star ranging over an order of magnitude, in order to
clarify whether, at least qualitatively, the universal evolution picture is obtained. The de-
pendence on the initial magnetic field configuration is explored by adopting the poloidal
and toroidal magnetic fields in the neutron star. We also perform several simulations to
find out the dependence on the binary parameters; We adopt two different mass ratios and
two different equations of state. And finally, we investigate the influence of the presence
or absence of equatorial symmetry on the evolution of the system.

The thesis is organized as follows. In Chapter 2, we review the evolution picture of
the black hole-neutron star merger discovered by the previous studies. In Chapter 3,
we describe the formulation and the computational method of the numerical-relativistic
neutrino-radiation magnetohydrodynamics simulation. In Chapter 4, we show the result
of the simulations that focused mainly on the dependence on binary mass-ratio and grid
resolution. In Chapter 5, we show the result of the simulations that focused mainly on
the dependence on initial magnetic field strength, configuration, neutron-star equation of
state, and equatorial-plane symmetry. Finally, we summarize this thesis in Chapter 6.
Throughout this thesis, we use the geometrical units in which G = c = 1, where G and c
are the gravitational constant and the speed of light, respectively.
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Chapter 2

Black hole-neutron star merger: A
review

Black hole-neutron star binaries are one of the most promising targets of the ground-
based gravitational-wave detectors, and indeed the gravitational wave events GW200105
and GW200115, whose sources are considered to be black hole-neutron star mergers, are
detected [7]. Also, black hole-neutron star binaries could play a major role in elucidating
several unsolved problems. First, the gravitational wave from binaries carries information
about the neutron star such as its mass and radius. It can be used to constrain the equation
of state (EOS) of the high-density neutron star matter. Second, the merger could be the
origin of the heavy elements. During the merger and the post-merger stage, the system
could eject neutron-rich matter, and r-process nucleosynthesis proceeds in the ejecta. The
synthesized r-process heavy elements could be a fraction to explain the heavy element
abundance of the solar system. Third, the black hole-accretion disk system formed after
the merger could be the origin of the short-hard gamma-ray burst. If a short-hard gamma-
ray burst is simultaneously detected with a gravitational wave event, its origin may be
confirmed to be the merger. In addition, we may be able to model the central engine of
the short-hard gamma-ray burst by modeling the merger and the post-merger evolution
processes.

In the binary, a black hole and a neutron star are inspiraling around each other, and
due to the gravitational wave emission, the binary loses energy and angular momentum.
As a result, the orbiting radius decreases eventually leading to the merger. In this chapter,
we review the previous studies on the black hole neutron star merger. We review the mass-
shedding limit mainly based on the analytical approach, which can approximately estimate
how the merger proceeds depending on the parameters of the binary [73]. And then, we
review the various studies based on numerical simulations that focused on the merger and
the post-merger stages.

2.1 Tidal disruption and merger stage

The fate of the black hole-neutron star binary is roughly divided into two cases. One
case is the “plunge”, in which almost all the neutron star matter falls into the black hole
during the merger stage. In this case, there is no significant mass ejection or accretion
disk formation. Therefore, the remaining system after the merger is only a stationary
black hole. The electromagnetic counterparts are not expected in this case. The other
case is the “tidal disruption”, in which the neutron star is tidally disrupted by the black
hole before the merger. In this case, there could be a mass ejection or an accretion disk
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2.1. Tidal disruption and merger stage

formation, and they could power electromagnetic counterparts such as kilonova/macronova
and short-hard gamma-ray bursts during the post-merger stage.

During the late-inspiral stage to the merger stage of the black hole-neutron star merger,
the neutron star could be disrupted by the tidal force of the black hole. This is the phe-
nomenon called tidal disruption, which occurs when the tidal force of the black hole
exceeds the self-gravitating force of the neutron star and the neutron star could not main-
tain its structure. The condition for the tidal disruption to occur depends on the mass
ratio of the black hole and the neutron star, the black-hole spin, and the neutron-star
compactness. Here we discuss the condition for the tidal disruption based on Ref. [73].
The mass-shedding limit is a necessary condition for the tidal disruption. It is the limit
for the neutron star matter to be stripped away from its surface due to the tidal force of
the black hole. Based on Newtonian gravity, it is written as

2
MBH (cRRNS)

r3
>

MNS

(cRRNS)
2 , (2.1)

where MBH, MNS, RNS, and r show the black hole mass, the neutron star mass, the
neutron star radius, and the binary separation. cR ∼ O(1) shows the contribution from
the tidal deformation of the neutron star. This can be rewritten as a condition for orbital
frequency as

MtotΩ = Mtot

√
Mtot

r3

> c
−3/2
R C3/2(1 +Q)(1 +Q−1)1/2, (2.2)

where Mtot = MBH+MNS is the total mass of the system and Q = MBH/MNS is the mass
ratio. C is the compactness of the neutron star defined by C = MNS/RNS. In order to
have the matter remaining outside the remnant black hole after the merger, the neutron
star has to be tidally disrupted outside the innermost stable circular orbit (ISCO) of the
black hole. By considering this situation the condition is written as

MtotΩISCO > c
−3/2
R C3/2(1 +Q)(1 +Q−1)1/2 (2.3)

where ΩISCO is the orbital angular frequency at the ISCO. ΩISCO depends on the black-
hole spin χBH, and as χBH becomes large ΩISCO can become large. This condition shows
that the tidal disruption is likely to occur when

• the compactness of the neutron star C is small.

• the mass ratio of the binary Q is small.

• the black-hole spin χBH is large.

Precise and realistic conditions are obtained only by numerical relativity simulations.
Ref. [74] derived a fitting formula for ΩISCO in the assumption of a non-spinning black
hole, and a value of cR for polytropic neutron-star EOS. Then they obtained the following
condition:

0.270C3/2(1 +Q)
(
1 +Q−1

)1/2
< 0.0680

[
1− 0.444

Q0.25

(
1− 3.54C1/3

)]
. (2.4)

Also, the full numerical relativity simulations focusing on the inspiral stage to the
merger stage were performed [20–26, 29–31, 35–37, 42, 51]. In these works, they found not
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2. Black hole-neutron star merger: A review

only whether the neutron star experiences the tidal disruption, but also the disk mass and
the ejecta mass. In these simulations, they solved the time evolution of the gravitational
field and hydrodynamics for various initial binary parameters. As a result, they found the
qualitative conditions for the tidal disruption. The mass of the matter remaining outside
the apparent horizon after the merger is used to determine whether the tidal disruption
occurred or not. Figure 2.1 summarizes the conditions of the tidal disruption depending
on the binary mass ratio, the neutron-star compactness, and the black-hole dimensionless
spin parameter [8]. The qualitative dependence on those parameters is consistent with the
analytical discussion on the mass-shedding limit and ISCO above.

They also evaluated the mass of the dynamical ejecta, which is the unbound matter
dynamically ejected by the tidal force during the merger for the cases with tidal disruption.
The dependence of the ejecta mass on binary parameters is consistent with the condition
of tidal disruption. The mass of the dynamical ejecta is at most ∼ 0.1M⊙ and its averaged
velocity is subrelativistic with ∼ 0.2–0.3c. The dynamical mass ejection is driven primarily
by tidal force and its morphology is anisotropic; The dynamical ejecta concentrate around
the orbital plane, and often have a crescent-like shape when its mass is large. We note,
however, that for the binaries with the near-equal-mass regime, the dynamical ejecta mass
decreases as the mass ratio Q decreases [49, 51].

Another important aspect of these numerical relativity simulations was to obtain grav-
itational waveforms. The waveforms obtained in the simulations are used to create tem-
plates that play an essential role in gravitational-wave detection. Figures. 2.2 and 2.3 show
the gravitational waveforms and gravitational-wave spectra from black hole-neutron star
mergers. The figures are taken from Ref. [30]. The models adopted in this example are
Q = 4, MNS = 1.35M⊙, and χBH = 0.75. The neutron star is modeled by the EOS called
2H, H, HB, and B, where its radius is 15.53, 12.27, 11.61, and 10.96 km respectively. All
the models show a similar chirp waveform during the inspiral stage. For the model with
the largest compactness (labeled with B-Q4M135a75), tidal disruption does not occur.
In this case, the neutron star is not tidally disrupted and swallowed by the black hole.
Therefore, the quasi-normal modes of the remnant black hole are excited and ring-down
gravitational waves are emitted. However, for the model with the smallest compactness
(labeled with 2H-Q4M135a75), tidal disruption takes place. In this case, the chirp wave-
form is truncated at the disruption, and ring-down is not observed. This is because, as
the neutron star is tidally disrupted, the neutron star matter spreads around the black
hole and the system no longer behaves as a binary. After the tidal disruption, the matter
forms the accretion disk around the remnant black hole, and the matter accretion onto the
black hole proceeds, but the accretion is relatively axisymmetric and thus the quasi-normal
modes of the remnant black hole are not excited. The existence of the tidal disruption can
also be seen in the spectra of gravitational waves. The spectra in Fig. 2.3 show that the
cutoff frequency becomes low as the compactness of the neutron star becomes small. The
cutoff frequency in the spectra reflects the frequency at which the gravitational waveform
is truncated and is thus related to the orbital frequency at which the tidal disruption
occurs. Therefore the cutoff frequency has the information of the neutron-star EOS. If the
cutoff frequency is observationally determined then we could impose a new constraint on
the EOS.

In addition to the mass ratio, the neutron-star compactness, and the black-hole spin,
Ref. [31, 37, 42] also performed numerical-relativity simulations for the case that the black-
hole spin is not aligned with the orbital angular momentum of the binary and discussed
the dependence on the misalignment. The orbital precessions are seen in these simulations
and the tidal disruption is significantly affected by this misalignment. Qualitatively, the
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2.1. Tidal disruption and merger stage

Figure 2.1: The condition of the tidal disruption on the plane of neutron star compact
ness C and mass ratio Q for the black-hole spin 0.75 (top left panel), 0.5 (top right panel),
0.0 (bottom left panel), and -0.5 (bottom right panel), respectively. We note that the
black-hole spin is aligned (positive value) or antialigned (negative value) with the orbital
axis. The diamond, circle, and square show the models whose rest mass of the matter
remaining outside the apparent horizon is > 10 %, 1–10 %, and < 1 % of the total rest
mass before the merger. These models are the cases in which the tidal disruption occurs,
while the models shown by crosses are the cases in which the tidal disruption does not
occur and the remnant mass is less than 0.1 % of the total rest mass. This figure is taken
from Ref. [8]
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2. Black hole-neutron star merger: A review

Figure 2.2: Gravitational waveforms for the model with binary parameter Q = 4, MNS =
1.35M⊙, and χBH = 0.75. The EOSs adopted are 2H, H, HB, and B, where a neutron star
with 2H has the smallest compactness (the largest radius) while a neutron star with B has
the largest compactness (the smallest radius). The waveforms are shown for an observer
located along the axis of rotation and plotted as a function of a retarded time. This figure
is taken from Ref. [30]

tidal disruption is suppressed and the rest mass of the matter remaining outside the black
hole after the merger monotonically decreases as the misalignment angle increases.

2.2 Post-merger stage

The numerical-relativity simulations for the black hole-neutron star mergers mentioned in
the previous section were done by solving the evolution of the gravitational field and hy-
drodynamics. Such simulations focused mainly on the inspiral to the merger stage. What
they found in those simulations were gravitational waveforms, the mass and the spin of the
remnant black hole, the disk mass, and the mass of the dynamical ejecta. However, such
numerical simulations are not sufficient to understand the evolution of the system after
the merger in the presence of tidal disruption. Magnetohydrodynamics, neutrino-radiation
transport, and microphysics are other essential factors for the post-merger evolution. Var-
ious numerical-relativity simulations were done by improving such input physics step by
step. Note, that the inspiral and the merger process do not significantly change even in
the presence of improved physics for the realistic initial setup.

Some works took into account nuclear-theory-based neutron-star EOSs [28, 35, 36, 39,
40, 42–46, 48–50], neutrino cooling [39, 40, 44–46, 49, 50], and neutrino heating [45]. In
these simulations they discovered that the hot accretion disk with its typical temperature
of ∼ 10 MeV is formed shortly after the tidal disruption and emits neutrinos with the peak
total luminosity ∼ 1053 erg/s. Also, they found the chemical composition of the dynamical
ejecta should be very neutron-rich because it is ejected mainly by the tidal force and does
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2.2. Post-merger stage

Figure 2.3: Gravitational-wave spectra for the model with binary parameter Q = 4,
MNS = 1.35M⊙, and χBH = 0.75. The EOSs adopted are 2H, H, HB, and B. This
figure is taken from Ref. [30]
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2. Black hole-neutron star merger: A review

not experience thermal processes, such as shock heating, significantly. Therefore, the
chemical composition of the dynamical ejecta does not change from the neutrinoless beta-
equilibrium value at zero temperature of the initial neutron star. We note that they did
not find the neutrino-driven mass ejection from the remnant disk.

Other works took into account the effect of the magnetic field [27, 33, 34, 41, 43,
47]. Ref. [43] performed high-resolution numerical-relativity simulation for the merger of
a black hole-magnetized neutron star binary. The poloidal magnetic field confined in the
neutron star with its maximum field strength of 1015G is assumed for the initial condition.
The amplitude is chosen so that the wavelength of the fastest growing mode of the non-
axisymmetric magnetorotational instability is sufficiently resolved for the remnant disk.
Figure 2.4 shows the two-dimensional snapshots on the meridional plane. They showed
that due to the magnetorotational instability [75, 76], the turbulent state is established in
the accretion disk formed after the tidal disruption. Then, the turbulence viscosity drives
the mass accretion and converts the accretion energy to thermal energy. As a result, ther-
mally driven post-merger ejection is launched in the form of disk wind at ∼ 10ms after the
merger. In addition, they found the Poynting luminosity driven by the Blandford-Znajek
mechanism [72] is as high as ∼ 1050 erg/s on the apparent horizon. The luminosity is
consistent with typical short-hard gamma-ray bursts, but the magnetic pressure could not
completely dominate over the gas pressure and neither the aligned global magnetic field
nor the jet-like collimated outflow was observed in this work.

On the other hand, Refs. [41, 47] showed that a mildly relativistic collimated outflow
could be launched after the merger if the neutron star is endowed with a dipole magnetic
field that extends from the interior to the exterior of the neutron star. The black hole
with its dimensionless spin parameter larger than 0.5 was also required. In addition, the
dipole magnetic field is needed to be aligned to the black-hole spin for the launch of the
outflow. Figure 2.5 shows the three-dimensional snapshots obtained in Ref. [47]. In these
simulations, the magnetically dominated area extends from the region near the black hole
to the direction of the rotational axis of the black hole. The Poynting flux generated by
the Blandford-Znajek mechanism is transported outward in this area, and the outflow is
launched as the flux is transformed into the kinetic energy of the fluid. The Poynting flux
evaluated at ∼ 500 km from the black hole is ∼ 1051 erg/s, which is also consistent with
the luminosity of short-hard gamma-ray bursts. We note, however, that the initial dipolar
magnetic field assumed in these simulations was ∼ 6×1015G on the surface of the neutron
star and maximum of ∼ 1017G inside the neutron star. This leads to the formation of the
global magnetic field penetrating the remnant black hole with its amplitude ≳ 1015G near
the surface right after the merger. It is not clear whether such a strong global magnetic
field penetrating the remnant black hole could be formed in the realistic case for which a
dipolar magnetic field has its field strength weaker than ∼ 1012G initially.

Ref. [55] is the first study that performed the numerical-relativity simulation for
the black hole-neutron star mergers incorporating magnetohydrodynamics and neutrino-
radiation transport. Nearly equal-mass black hole-neutron star mergers with confined
initial poloidal magnetic fields were simulated for 350ms after the merger. They focused
on giving an analysis of the fluid and the magnetic-field properties of accretion disks,
while they did not find post-merger mass ejection nor the magnetically driven outflow.
In comparison with Ref. [43], this work implied that disk cooling by neutrino radiation
plays a role in delaying or suppressing the post-merger mass ejection. Although they did
not observe the launching of a jet, they did find that the region with low-plasma β is
gradually expanding from the region near the black hole to the direction of the black-
hole spin. Including Ref. [55], all of the numerical simulations of black hole-neutron star
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2.2. Post-merger stage

Figure 2.4: Snapshots of rest-mass density with velocity fields (top left panel), plasma β
(top right panel), the thermal component of specific internal energy (bottom left panel),
and the sum of the Maxwell and Reynolds stress (bottom right panel) on the meridional
plane. Black lines in all panels are the boundaries between bound and unbound matter.
This figure is taken from Ref. [43].
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2. Black hole-neutron star merger: A review

Figure 2.5: Three-dimensional snapshots of rest-mass density (volume rendering), mag-
netic field line (white lines), and the fluid velocity (green arrows) for the model with
neutron star endowed with the global dipolar magnetic field initially. The apparent hori-
zon is shown as a black sphere. Here, M = 2.5× 10−2ms = 7.58 km. This figure is taken
from Ref. [47].
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merger focused only on the early post-merger stage and evolved the system at most for a
few hundred ms. The longer simulation was required to acquire a self-consistent evolution
picture of both the post-merger mass ejection and jet-like collimated outflow.

In order to obtain the entire post-merger evolution process, long-term numerical sim-
ulations incorporated with viscous hydrodynamics or magnetohydrodynamics effects for
black hole-accretion disk systems have also been performed [56–71]. These simulations
have qualitatively clarified the evolution processes in the post-merger stage. For example,
Refs. [66, 67, 70] performed numerical-relativity simulation including viscous neutrino-
radiation hydrodynamics. They evolved the system for several seconds and found that
10%–30% of the disk mass is ejected as disk wind, which can be understood as post-
merger ejecta. In an early phase in which the disk is compact, the temperature of the
disk is as high as ∼ 5–10Mev due to the viscous heating, and the luminosity of neutrinos
emitted from the system are ∼ 1053 erg/s. In such a situation the free energy generated
by the viscous heating is consumed by the neutrino emission and cannot be used to drive
disk wind in contrast to the result of the simulation only with magnetohydrodynamics
in Ref. [43]. However, the disk evolves due to the viscous effect, and the matter located
at the inner part of the disk accretes onto the black hole as it loses angular momentum,
while the matter located at the outer part of the disk expands as it receives the angular
momentum. As the disk expands, the temperature of the disk decreases, and the neutrino
luminosity decreases. When the maximum temperature of the disk drops below ∼ 3MeV
the neutrino emission becomes inefficient and the free energy generated by the viscous
heating can then be used for mass ejection. The specific entropy at the inner edge of
the disk increases and convective motion is triggered. This convective motion transports
the free energy from the inner to the outer part of the disk, and as the matter obtains
sufficient energy it becomes unbound and ejected from the system. The typical timescale
for this mass ejection is determined by the viscous timescale in the disk as

τvis ∼
R2

ανcsH
∼ 1s

( αν

0.05

)−1 ( cs
0.05c

)−1
(

H

30km

)−1( R

150km

)2

. (2.5)

Here, R and H are the radius and the height of the disk, respectively, and cs denotes the
sound speed. αν is the dimensionless viscous coefficient [77]. They also discovered that the
electron fraction or the ratio of electrons to baryons of the ejecta is ≈ 0.30–0.35 typically.
They suggest that not heavy r-process elements but light trans-iron elements would be
synthesized in the ejected matter.

Refs. [61, 62, 64] performed the general-relativistic neutrino-radiation magnetohydro-
dynamics simulation for the black hole-accretion disk system. They found the launch of
the disk wind powered by magnetohydrodynamical effective viscous heating. The time
evolution of this viscous-driven disk wind is consistent with viscous neutrino-radiation hy-
drodynamics simulations. They also found the launch of the magnetically driven outflow
perpendicular to the disk as the system becomes magnetically-arrested disk [78]. In the
magnetically-arrested disk, the magnetic field penetrating the black hole becomes dynam-
ically important and obstructs the accretion of the gas from the disk. The magnetic field
penetrating a black hole is aligned and extends globally to the direction perpendicular
to the disk which forms the magnetically dominated area. The Poynting flux of ∼ 1050–
1051 erg/s are generated by the Blandford-Znajek mechanism and transferred outward in
the magnetically dominated area. Ref. [64] also showed that the polarity of the magnetic
field in the magnetically dominated area could be flipped. They suggested that the MRI
dynamo activated in the disk played a role in the polarity flip. MRI dynamo in the black
hole-accretion disk is observed in several magnetohydrodynamical simulations [61, 79] as
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2. Black hole-neutron star merger: A review

Figure 2.6: Snapshots for the rest-mass density, temperature, specific entropy per baryon,
and electron fraction for numerical-relativity simulation of black hole-accretion disk in-
cluding viscous neutrino-radiation hydrodynamics. This figure is taken from Ref. [66].
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2.2. Post-merger stage

Figure 2.7: The time-toroidal magnetic field diagram for the black hole-accretion disk
simulation. This figure is taken from Ref. [61].

the so-called butterfly structure in the time-toroidal magnetic field diagram. Figure 2.7
shows that the polarity of the toroidal magnetic field flips in a quasi-periodic manner
and the magnetic field ascends from the equatorial plane to the surface of the accretion
disk. MRI dynamo is activated as a result of the combination of several magnetohydrody-
namical processes: magnetorotational instability that produces the radial field, magnetic
field winding that produces the toroidal field, and magnetic buoyancy that produces the
toroidal field.

Those works on simulations for the black hole-accretion disk system have played an
important role in understanding the post-merger stage. However, it is not clear whether
the initial conditions adopted in those simulations are appropriate for the black hole-
neutron star merger case. The merger is a highly non-axisymmetric phenomenon and
thus the resulting accretion disk formed after the merger is highly non-axisymmetric.
The fall-back matter associated with the failed dynamical ejecta could have a significant
effect on the evolution of the disk. The magnetic field properties and configuration in the
disk after the merger are also unknown. Non-axisymmetric remnant matter could have
a significant effect on the magnetic field amplification and its structure. It is difficult
to create initial conditions that reproduce the properties of the accretion disk and its
surrounding environment. Therefore the conclusive and quantitative details of the post-
merger stage have not been fully understood yet.
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Chapter 3

Methods

To acquire full understanding of the evolution picture of the black hole-neutron star merger
starting from the inspiral stage throughout the post-merger stage, we solve the evolu-
tion of the gravitational field, magnetohydrodynamics, and neutrino-radiation transfer
self-consistently. In this chapter, we review the basic equations and numerical schemes
implemented in the code which we used in the simulations.

3.1 Einstein’s equation

The dynamical evolution of the gravitational field is an essential factor particularly in the
inspiral, merger, and early post-merger stages. In such stages, solving Einstein’s equa-
tion is inevitable for obtaining the accurate evolution of the system. For numerically
solving Einstein’s equation, we adopt the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism[80–84], incorporating a Z4c-type constraint-propagation prescription [42, 85].
This BSSN formalism is based on the 3+1 decomposition, which decomposes the four-
dimensional spacetime into three-dimensional space and one-dimensional time. The dy-
namical variables for the 3+1 decomposition are the induced metric γµν and extrinsic
curvature Kµν defined as follows.

γµν := gµν + nµnν , (3.1)

Kµν := −γρµγ
σ
ν∇ρnσ = −1

2
Lnγµν . (3.2)

Here, gµν and nµ are the four-dimensional spacetime metric and the unit normal vector
of the three-dimensional hypersurface parameterized by the time, respectively. ∇µ and
Ln are the covariant derivative and Lie derivative with respect to unit normal vector nµ,
respectively. The line element is written as

ds2 = −αdt2 + γij(dx
i + βidt)(dxj + βjdt), (3.3)

where α and βi are the lapse function and the shift vector, respectively. The lapse function
and the shift vector are not the dynamical variables of the gravitational field and they
describe the gauge degree of freedom. Determining the lapse function corresponds to
defining the time slice, and determining the shift vector corresponds to defining the spacial
coordinate on the time slice. By considering Einstein’s equation, the following constraints
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and evolution equations for 3+1 decomposition are obtained.

R−KijK
ij +K2 = 16πρh, (3.4)

DjK
j
i −DiK = 8πJi, (3.5)

(∂t − βk∂k)γij = 2αKij +Diβj +Djβi (3.6)

(∂t − βk∂k)Kij = αRij − 8πα

[
Sij −

1

2
γij(S

k
k − ρh)

]
+ α(−2KikK

k
j +KKij)

−DiDjα+ βkDkKij +KikDjβ
k +KjkDiβ

k (3.7)

The first and second equations are the Hamiltonian and the momentum constraints, re-
spectively. The third and fourth equations are the evolution equation of the induced metric
and the extrinsic curvature. Here, Di, Rij , and R are the covariant derivative, the Ricci
tensor, and the Ricci scalar associated with the induced metric. ρh, Ji, and Sij are the
projected components of the energy-momentum tensor of matter defined by

Tµν = ρhnµnν + Jµnν + Jνnµ + Sµν , (3.8)

ρh := Tµνn
νnµ, (3.9)

Jµ := −Tνρn
ργµ

ν , (3.10)

Sµν := Tρσγ
ρ
µγ

σ
ν . (3.11)

Though we obtained the evolution equations for the dynamical variables in 3+1 de-
composition formalism, i.e. induced metric and extrinsic curvature, it is known that
this formulation is not suitable for numerical simulations because the equations are not
strongly hyperbolic. The truncation error is unavoidable due to the discretization of field
equations. In this formalism, the error does not propagate away but accumulates locally,
and thus calculation becomes numerically unstable. The BSSN formalism is one of the
most successful formalism that provides strongly hyperbolic equations and hence can solve
Einstein’s equation stably [80, 81].

In the BSSN formalism, the dynamical variables are decomposed by conformal decom-
position as

γ̃ij := W 2γij , (3.12)

Ãij := W 2

(
Kij −

1

3
Kγij

)
, (3.13)

W := γ−1/6, (3.14)

K := γijKij , (3.15)

where γ is the determinant of γij . This decomposition introduces the additional two
variables, but it is not the physical freedom and the following two corresponding constraints
are introduced:

γ̃ = 1, (3.16)

γ̃ijÃij = 0. (3.17)

Furthermore, the original BSSN formalism, which we adopt in the present simulations,
introduces an auxiliary variable

Fi := δjk∂kγ̃ij (3.18)
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and evolve it as an independent variable [80]. This is the key point in the BSSN formalism
and make it possible to solve Einstein’s equation stably. Using the conformally decomposed
variables and the auxiliary variable, the evolution equations are written as(

∂t − βk∂k

)
W =

1

3

(
αK − ∂kβ

k
)
W, (3.19)(

∂t − βk∂k

)
γ̃ij = −2αÃij + γ̃ik∂jβ

k + γ̃jk∂iβ
k − 2

3
γ̃ij∂kβ

k (3.20)(
∂t − βk∂k

)
K = −DkDkα+ α

[
ÃijÃ

ij +
1

3
K2

]
+ 4πα (ρh + S) , (3.21)(

∂t − βk∂k

)
Ãij = αW 2

(
Rij −

1

3
γ̃ijR

)
−
(
W 2DiDjα− 1

3
γ̃ijD

kDkα

)
+α

(
KÃij − 2ÃikÃ

k
j

)
+ Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k

−8πα

(
W 2Sij −

1

3
γ̃ijS

)
, (3.22)(

∂t − βk∂k

)
Fi = −16παJi

+2α

(
fkj∂jÃik + Ãik∂jf

kj − 1

2
Ãjl∂ihjl − 3Ãk

i ∂k lnW − 2

3
∂iK

)
+δjk

{
−2Ãij∂kα+

(
∂kβ

l
)
∂lhij

+∂k

(
γ̃il∂jβ

l + γ̃jl∂iβ
l − 2

3
γ̃ij∂lβ

l

)}
, (3.23)

where f ij = γ̃ij − δij .
As a gauge condition, we adopt the dynamical slicing for the lapse function [86, 87]

and dynamical-shift equation for the shift vector [88]:(
∂t − βk∂k

)
α = −2Kα, (3.24)

∂tβ
i =

3

4
γ̃ij (Fj +∆t∂tFj) , (3.25)

where ∆t is the numerical time step.
The fourth-order finite differencing in space and fourth-order Runge-Kutta time inte-

gration are applied in solving the evolution equations numerically. The advection term is
treated with fourth-order upwind scheme.

3.2 3+1 decomposition for the matter field

In addition to the gravitational field, we have to solve the evolution of the matter field in
the presence of the neutron star or accretion disk. We apply 3+1 decomposition onto the
matter field in order to solve the general relativistic equation of motion. Here we define
S0 := W−3ρh and Si := W−3Ji, and derive the evolution equations for these variables
from

∇µT
µ
ν = 0. (3.26)

By taking the spacial projection of Eq. (3.26) we obtain the evolution equation of Si as

∂0Sk + ∂i
(
α
√
γSi

k − βiSk

)
= −S0∂kα+ Si∂kβ

i − 1

2
α
√
γSij∂kγ

ij . (3.27)
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This is the equation of motion for the matter field. By taking the time projection of
Eq. (3.26) we obtain the evolution equation of S0 as

∂0S0 + ∂i
(
−S0β

i + αSi
)
= α

√
γSijKij − SiD

iα. (3.28)

This is the energy equation for the matter field.

3.3 Magnetohydrodynamics

3.3.1 GRMHD equations

The fundamental variables in the hydrodynamics are rest-mass density ρ, specific internal
energy ε, specific internal pressure P , and four velocity uµ. We also define the following
variables from the fundamental variables:

ρ∗ := ρwW−3, (3.29)

vi :=
dxi

dt
=

ui

ut
= −βi + γij

uj
ut

, (3.30)

h := 1 + ε+
P

ρ
, (3.31)

w := αut. (3.32)

Here, ρ∗ is the conservative baryon rest-mass density, vi is the three velocity, h is the
specific enthalpy and w is the Lorentz factor measured by a normal observer. The fun-
damental variable in ideal magnetohydrodynamics is the magnetic field in the comoving
frame bµ. The electric field in the comoving frame Eµ := Fµνuν is zero under the assump-
tion of zero electrical resistivity, where Fµν is the electromagnetic tensor. The current jµ

does not appear in the evolution equation explicitly. The magnetic field bµ is defined by

bµ := −F ∗
µνu

ν = −1

2
ϵµναβu

νFαβ, (3.33)

where F ∗
µν is the dual tensor of Fµν , and ϵµναβ is the Livi-Civita tensor with ϵ0123 =

√−g
and ϵ0123 = 1/

√−g. For evolving the magnetic field in the 3+1 decomposed formalism,
we define the three-magnetic field measured in the inertia frame as follows.

Bi := W−3γijF
∗jµnµ

:= W−3Bi

= W−3(wbi − αbtui). (3.34)

Here, B0 = 0, and Bi satisfies Bi = γijBj . The relation between bµ and Bi is as

b0 =
W 3Biui

α
, and bi =

W 3

w
(Bi + Bjujui), (3.35)

and thus,

b2 = bµb
µ =

W 3(B2 + (Biui)
2

w2
, (3.36)

where B2 = BiBi. The energy-momentum tensor of the ideal magnetohydrodynamical
fluid is

TMHD
µν = TFluid

µν + TEM
µν , (3.37)
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where TFluid
µν and TEM

µν are the fluid and electromagnetic parts of the energy-momentum
tensor defined by

TFluid
µν := (ρ+ ρε+ P )uµuν + Pgµν

= ρhuµuν + Pgµν , (3.38)

TEM
µν :=

1

4π

(
FµαF

α
ν − 1

4
gµνFαβF

αβ

)
=

1

4π

{(
1

2
gµν + uµuν

)
b2 − bµbν

}
. (3.39)

The 3+1 decomposition of TMHD
µν derives the S0, Si, and Sij for the ideal magnetohydro-

dynamical fluid as

S0 = ρ∗hw − PW−3 +
W 3

4π

(
B2 − 1

2w2

[
B2 + (Biui)

2
])

, (3.40)

Si = ρ∗hui +
W 3

4πw

[
B2ui − (Bjuj)Bi

]
, (3.41)

Sij =

(
ρh+

b2

4π

)
uiuj +

(
P +

b2

8π

)
γij −

1

4π
bibj . (3.42)

If we do not take the neutrino radiation effect into account, the conservation of the energy-
momentum tensor takes the following form: ∇µT

MHDµ
ν = 0. By substituting Eqs. (3.40)–

(3.42) into Eqs. (3.27) and (3.28) we obtain the explicit form of the evolution equation for
S0 and Si as

∂0Si + ∂j

(
Siv

j + αW−3

(
P +

b2

8π

)
δji −

αW 3

4πw2
Bj [Bi + (Bkuk)ui]

)
= −S0∂iα+ Sk∂iβ

k − αW−4Sk
k∂iW − 1

2
αW−1Sjk∂iγ̃

jk, (3.43)

∂0S0 + ∂j

(
S0v

j +W−3

(
P +

b2

8π

)
(vj + βj)− αW 3

4πw
(Bkuk)Bj

)
=

α

3
W−3KSk

k + αW−1ŜklÃ
kl − SkD

kα. (3.44)

In addition to the equation of motion and energy equation, the continuity equation is
another component of the hydrodynamics equations. The continuity equation is written
as

∇µ(ρu
µ) = 0, (3.45)

and by using ρ∗ and vi, it is rewritten as

∂0ρ∗ + ∂i(ρ∗v
i) = 0. (3.46)

The evolution of the magnetic field in the ideal magnetohydrodynamics is obtained
from

∇µF
∗µ

ν = 0. (3.47)

The spacial projection of Eq. (3.47) leads to the induction equation:

∂0Bi = ∂j(Bjvi − Bivj), (3.48)

and the time projection leads to the no-monopole constraint:

∂iBi = 0. (3.49)

The no-monopole constraint is imposed when we give an initial condition of the magnetic
field, and the induction equation is solved for evolving the magnetic field.
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3.3. Magnetohydrodynamics

3.3.2 Numerical scheme

Magnetohydrodynamics equations are solved in a high-resolution shock capturing scheme
[89–91] together with the second-order constrained-transport scheme [92] and Balsara’s
flux-preserving mesh refinement scheme [93].

The evolution equations can schematically be written as

∂0(UA) + ∂i(F
i
A) = SA, (3.50)

where A ∈ [0, 7] and

UA = (ρ∗, Si, S0,Bi)T , (3.51)

F j
A =



ρ∗v
j

Siv
j + αW−3

(
P +

b2

8π

)
δji −

αW 3

4πw2
Bj [Bi + (Bkuk)ui]

S0v
j +W−3

(
P +

b2

8π

)
(vj + βj)− αW 3

4πw
(Bkuk)Bj

Bivj − Bjvi

 , (3.52)

SA =


0

−S0∂iα+ Sk∂iβ
k − αW−4Sk

k∂iW − 1

2
αW−1Sjk∂iγ̃

jk

α

3
W−3KSk

k + αW−1ŜklÃ
kl − SkD

kα

0

 . (3.53)

These equations are in the conservation form. We adopt Kurganov-Tadmor high-resolution
central difference scheme for solving this system [94]. In order to evaluate F j

A, we calculate
the quantities at the cell surface by a piecewise parabolic interpolation from the cell center.
The quantities at the right- and left-hand side of each cell surface are interpolated as

Q(L) = Qi +
Φ(r+i−1)∆i−1

6
+

Φ(r−i )∆i

3
, (3.54)

Q(R) = Qi+1 −
Φ(r+i )∆i

6
− Φ(r−i+1)∆i+1

3
, (3.55)

(3.56)

where ∆i+1 = Qi+1 −Qi. Φ is a limiter function defined by

Φ(r) = minmod(1, br) (3.57)

(1 ≤ b ≤ 4 for total variation diminishing condition),

minmod(1, x) =


1 if x > 1
x if 1 > x > 0
0 if x < 0

. (3.58)

The parameter b is chosen to be 2 in this work. From the interpolated value at the cell
surface, we obtain the fluxes F(L) and F(R), and the maximum wave speed cL and cR at
the left- and right-hand sides of each cell surface. Then we calculate the flux as

F =
1

2
[FL + FR − cmax(UR − UL)], (3.59)

cmax = max (cL, cR). (3.60)
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Note that superscript j and subscript A for the flux F j
A are abbreviated here. In order to

evaluate the wave speed at the cell surface, the eigenvalues for the Jacobi matrix ∂F/∂U
are required. Three of the seven solutions for the eigenvalues in the xi direction are

λ = vi,
bi ± ui

√
ρh+ b2

bt ± ut
√

ρh+ b2
, (3.61)

and the other four solutions are obtained by solving the following equation [95]

(
ut
)4

(λ− vi)4(1− ζ) +

[
c2s

(
bi − λbt

)2
ρh+ b2

−
(
ut
)2 (

λ− vi
)2(

γii − βi + λ

α2

)
ζ

]
= 0,

(3.62)

where cs is the sound velocity. ζ and the Alfvén velocity vA are defined, respectively, by

ζ = v2A + c2s − v2Ac
2
s, (3.63)

vA =
b2

4πρh+ b2
. (3.64)

In the Kurganov-Tadmor scheme, the maximum characteristic speed is only required. For
simplicity and saving computational cost, we use the prescription [96] that replaces the
fourth-order equation to approximately by a second-order equation as

(
ut
)2 (

λ− vi
)2

(1− ζ)− ζ

(
γii − βi + λ

α2

)
= 0. (3.65)

The solution for this equation is

λ =
1

α2 − VkV kζ

×
[
viα2(1− ζ)− βiζ

(
α2 − V 2

)
± α

√
ζ
√
(α2 − V 2) {γii (α2 − V 2ζ)− (1− ζ)V iV i}

]
,

(3.66)

where V i = vi + βi and V 2 = γijV
iV j .

To solve the induction equation, we must adopt the scheme that the no-monopole
constraint is not violated, or otherwise, such violation accumulates and could result in
a nonreliable solution. Therefore, we adopt a constrained-transport scheme [92]. In this
scheme, we define a cell for numerical computation with geometrical and fluid variables
at the center and magnetic field variables at the surface of the cell. In addition, electric
field variables, which are related to the flux for the evolution of the magnetic field,

Ex = −vyBz + vzBy, (3.67)

Ey = −vzBx + vxBz, (3.68)

Ez = −vxBy + vyBx, (3.69)

are placed at the edge of the cell. When we label the grid at the cell as (i, j, k), the magnetic
field variables Bx, By, and Bz are defined at (i, j + 1/2, k+ 1/2), (i+ 1/2, j, k+ 1/2), and
(i+1/2, j+1/2, k), respectively, and the electric field variables Ex, Ey, and Ez are defined
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3.4. Neutrino radiation transport

at (i+1/2, j, k), (i, j+1/2, k), and (i, j, k+1/2), respectively. Then the induction equation
is discretized as

∂0 (Bx)i,j+ 1
2
k+ 1

2
= −

(Ez)i,j+1,k+ 1
2
− (Ez)ij,k+ 1

2

∆y
+

(Ey)i,j+ 1
2
k+1 − (Ey)i,j+ 1

2
k

∆z
, (3.70)

∂0 (By)i+ 1
2
j,k+ 1

2
= −

(Ex)i+ 1
2
j,k+1 − (Ex)i+ 1

2
j,k

∆z
+

(Ez)i+1,j,k+ 1
2
− (Ez)i,j,k+ 1

2

∆x
, (3.71)

∂0 (Bz)i+ 1
2
,j+ 1

2
,k = −

(Ey)i+1,j+ 1
2
k − (Ey)i,j+ 1

2
k

∆x
+

(Ex)i+ 1
2
j+1,k − (Ex)i+ 1

2
j,k

∆y
, (3.72)

where (∆x,∆y,∆z) are the grid spacing. In order to evaluate the electric field, the mag-
netic field defined at the cell surface has to be interpolated to the cell edge using piecewise
parabolic interpolation. We adopt the scheme [97] that writes the flux as

Ex =
(Ex)LL + (Ex)LR + (Ex)RL + (Ex)RR

4
+

cy
2
(Bz

R − Bz
L)−

cz
2

(
By
R − By

L

)
, (3.73)

at (i + 1/2, j, k). Here (Ex)LR is the flux defined at the left-hand side in the y direction
and right-hand side in the z direction. The other fluxes (Ex)LL, (Ex)RL, and (Ex)RR are
defined in the similar way. cy and cz are the characteristic speed for the prescription of
an upwind flux construction and are calculated by simple average:

(cy)i+ 1
2
,j,k =

(vy)i,j,k + (vy)i+1,j,k

2
, (3.74)

(cz)i+ 1
2
,j,k =

(vz)i,j,k + (vz)i+1,j,k

2
. (3.75)

The expression for Ey and Ez are written in a similar way by permutation of the indices.

3.4 Neutrino radiation transport

Neutrino transfer is handled using a leakage-based scheme [98] together with a truncated
moment formalism using a closure relation for the free-streaming component [99, 100].
Neutrino heating and absorption on free nucleons are incorporated using the updated
numerical procedure [101].

3.4.1 Energy-momentum conservation equations

The energy-momentum conservation for the general-relativistic magnetohydrodynamics
with neutrino radiation transfer is written as

∇αT
(Total)α

β = ∇α

[
T (MHD)α

β + T (ν)α
β

]
= 0, (3.76)

where T (Total)α
β is the total energy-momentum tensor and T (ν)α

β is the energy-momentum
tensor for neutrinos. It can be decomposed into the magnetohydrodynamics part and
neutrino radiation transport part as

∇αT
(MHD)α

β = −Qβ, (3.77)

∇αT
(ν)α

β = Qβ, (3.78)

(3.79)
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where Qβ is the interaction term. However, the timescale of this interaction between fluid
and neutrino is much shorter than the dynamical timescale in hot dense matters. If we are
to numerically solve this interaction explicitly, a very short time step is required, which
makes the computational cost very expensive. To overcome this problem, we adopt the
formulation that phenomenologically decomposes the neutrino part into the “trapped”
and “streaming” parts as

T (ν)α
β = T (ν,T)α

β + T (ν,S)α
β, (3.80)

where T (ν,T)α
β and T (ν,S)α

β are the energy-momentum tensor of the “trapped” and “stream-
ing” neutrinos respectively. Here, the “trapped” part represents neutrinos that interact
with matter sufficiently frequently and can be treated as a part of the fluid. The “stream-
ing” part represents neutrinos that do not interact with fluid frequently and freely stream
out from the system. Also, we assume that some of the “trapped” neutrinos “leak out”

and become “streaming” neutrinos at a leakage rate of Q
(leak)
β . Then, Eq. (3.76) can be

decomposed as

∇αT
(MHD+ν,T)α

β = ∇α

[
T (MHD)α

β + T (ν,T)α
β

]
= −Q(leak)

β, (3.81)

∇αT
(ν,S)α

β = Q(leak)
β. (3.82)

The energy-momentum tensor of the fluid, electromagnetic field and trapped neutrinos
T (MHD+ν,T)α

β are treated in the form of Eqs. (3.37)–(3.39). The specific internal energy
and the pressure are written as

ε = εB + εe + εph + εν , (3.83)

P = PB + Pe + Pph + Pν , (3.84)

where the subscript B, e, ph, and ν represent the contribution from baryons, electrons and
photons, and neutrinos. ε and P are obtained through an EOS. By adding the leakage

rate Q
(leak)
β to the source term of Eqs. (3.43) and (3.44), we acquire the equation of motion

and energy equation as

∂0Si + ∂j

(
Siv

j + αW−3

(
P +

b2

8π

)
δji −

αW 3

4πw2
Bj [Bi + (Bkuk)ui]

)
= −S0∂iα+ Sk∂iβ

k − αW−4Sk
k∂iW − 1

2
αW−1Sjk∂iγ̃

jk − αW−3Q(leak)βγβi,

(3.85)

∂0S0 + ∂j

(
S0v

j +W−3

(
P +

b2

8π

)
(vj + βj)− αW 3

4πw
(Bkuk)Bj

)
=

α

3
W−3KSk

k + αW−1ŜklÃ
kl − SkD

kα+ αW−3Q(leak)βnβ. (3.86)

For the streaming neutrinos, the energy-momentum tensor is written as

T
(ν,S)
αβ = Enαnβ + Fαnβ + Fβnα + Pαβ. (3.87)

Here E = T
(ν,S)
αβ nαnβ, Fα = T

(ν,S)
σβ γσαn

β, and Pαβ = T
(ν,S)
ρσ γραγσβ are the energy density, the

energy flux, and the spacial stress tensor of the streaming neutrinos respectively. Also,
they are the zeroth-, first-, and second-rank moments for the distribution function of
the radiation field respectively [99]. In this work, we obtain the approximate solution
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3.4. Neutrino radiation transport

of the radiation by solving the evolution equation for zeroth- and first-rank moments.
The higher-rank moments are determined from the zeroth- and first-rank moments by
closure relations. This is truncated momentum formalism [100] and it significantly reduces
the computational cost by reducing a six-dimensional problem into a four-dimensional
problem. Fα and Pαβ satisfy Fαn

α = 0 and Pαβn
α = 0. By considering Eqs. (3.27) and

(3.28), the evolution equations for E and Fi are explicitly written as,

∂0Ẽ + ∂k

(
αF̃ k − βkẼ

)
= αP̃ klKkl − F̃ k∂kα− αW−3Q(leak)βnβ, (3.88)

∂0F̃i + ∂k

(
αP̃ k

i − βkF̃i

)
= −Ẽ∂iα+ F̃k∂iβ

k +
α

2
P̃ kl∂iγkl + αW−3Q(leak)βγβi,

(3.89)

where Ẽ = W−3E, F̃k = W−3Fk, and P̃kl = W−3Pkl. In this formalism, we need to
determine P kl from E and F k. We adopt the M1-closure relation for this [102, 103].
Specifically, the spacial stress tensor P kl is written as

P ij =
3χ− 1

2

(
P ij

)
thin

+
3(1− χ)

2

(
P ij

)
thick

, (3.90)(
P ij

)
thin

= E
F iF j

γklF kF l
, (3.91)(

P ij
)
thick

=
E

2w2 + 1

[(
2w2 − 1

)
γij − 4V iV j

]
+

1

w

[
F iV j + F jV i

]
+

2F kuk
w (2w2 + 1)

[
−w2γij + V iV j

]
, (3.92)

where V i = γijuj . χ is the so-called variable Eddington factor which is chosen to be [102]

χ =
3 + 4f2

5 + 2
√
4− 3f2

, (3.93)

f =

√
hαβHαHβ

J
. (3.94)

Here, J = T
(ν,S)
αβ uαuβ and Hα = T

(ν,S)
σβ hσαu

β are the energy density and the energy flux of
streaming neutrino measured in the fluid rest frame, respectively. A projection operator
is defined by hαβ = gαβ + uαuβ.

3.4.2 Baryon- and lepton-number conservation equations

In addition to the continuity equation for baryon described in Eqs. (3.45) and (3.46), we
need to solve the conservation equations of the lepton fractions written as

∂0(ρ∗Ye) + ∂k(ρ∗Yev
k) = αW−3ρ(−γlocalνe + γlocalν̄e ), (3.95)

∂0(ρ∗Yνe) + ∂k(ρ∗Yνev
k) = αW−3ρ(γlocalνe − γleakνe ), (3.96)

∂0(ρ∗Yν̄e) + ∂k(ρ∗Yν̄ev
k) = αW−3ρ(γlocalν̄e − γleakν̄e ), (3.97)

∂0(ρ∗Yνx) + ∂k(ρ∗Yνxv
k) = αW−3ρ(γlocalνx − γleakνx ). (3.98)

Here, Ye, Yνe , Yν̄e , and Yνx is the fraction per baryon number for electrons, electron
neutrinos, electron anti-neutrinos, and the other neutrinos, i.e. the total of µ and τ
neutrinos and anti-neutrinos. γlocal and γleak are the local production rate and leakage
rate for each neutrino, respectively. For the local cooling process, we consider electron
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3. Methods

capture, positron capture, electron–positron pair annihilation, plasmon decay, and the
bremsstrahlung radiation of pair neutrinos, and for the local heating process, we consider
the electron neutrino and electron anti-neutrino absorption processes. The local processes
have timescales characterized by the weak-interaction, which is much shorter than the
dynamical time scale of the system. In order to solve the equations with a usual time
step (∆t ≈ O(0.1)µs) we adopt the following procedure. First, we consider the following
conservation equation for the total lepton fraction:

∂0(ρ∗Yl) + ∂k(ρ∗Ylv
k) = αW−3ρ(−γleakνe + γleakν̄e ), (3.99)

where Yl = Ye + Yνe − Yν̄e . The time scale of the source term is that of the leakage and
thus it can be solved explicitly. Here, we solve Eq. (3.99) together with Eqs. (3.46), (3.85),
(3.86), (3.88), (3.89), (3.98), under the the assumption of the β-equilibrium. We obtain the

lepton fractions in the “hypothetical” β-equilibrium (Y β
e , Y β

νe , and Y β
ν̄e) from the evolved

Yl. Second, we solve the entire evolution equation including the conservation equation for
each lepton fraction. Here, we limit the source term for the local processes as

γlocalve = min
[
γlocalve , γlocalve,max

]
, (3.100)

γlocalv̄e = min
[
γlocalv̄e , γlocalv̄e,max

]
, (3.101)

Qlocal
ve = min

[
Qlocal

ve , Qlocal
ve

(
γlocalve,max/γ

local
ve

)]
, (3.102)

Qlocal
v̄e = min

[
Qlocal

v̄e , Qlocal
v̄e

(
γlocalv̄e,max/γ

local
v̄e

)]
, (3.103)

where γlocalve,max and γlocalv̄e,max are the maximum local production rates under the assumption

that Y β
νe , and Y β

ν̄e are the maximum neutrino fractions allowed for the next time step.
Third, we check the condition,

µp + µe < µn + µνe , (3.104)

µn − µe < µp + µν̄e , (3.105)

where µp, µn, µe, µve , and µv̄e are the chemical potentials of protons, neutrons, electrons,
electron neutrinos, and electron anti-neutrinos, respectively. When both conditions are
satisfied, we regard that the β-equilibrium is achieved, and we reset the lepton fractions
for the next timestep to be Y β

e , Y β
ve , and Y β

v̄e .

3.5 Microphysics

3.5.1 Equation of state

For the EOS, we adpot DD2 [104] and SFHo [105] for a high-density range and Helmholtz
EOS [106] for a low-density range. These EOSs are tabulated in terms of rest-mass density
ρ, temperature T , and electron fraction Ye (for non-β-equilibrium case) or total lepton frac-
tion Yl (for β-equilibrium case). These EOSs include baryons (free protons, free neutrons,
α-particles, and heavy nuclei), leptons (electrons, positrons, and trapped neutrinos), and
photons to the specific internal energy and the pressure. For the DD2 and SFHo EOSs,
the circumferential radius of the isolated spherical neutron star of mass 1.3–1.4M⊙ is
≈ 13.2 km and ≈ 11.9 km, respectively. These EOSs satisfy constraints imposed by the
observation of gravitational waves for GW170817 [4] and by the X-ray observation by
NICER [107].
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3.5. Microphysics

3.5.2 Weak-interaction and leakage rates

The leakage rates are phenomenologically defined by

Qleak
α =

∑
(ν)

Qleak
(ν) uα =

∑
(v)

[(
1− e−bτ(ν)

)
Qdiff

(ν) + e−bτ(ν)Qlocal
(ν)

]
uα, (3.106)

γleak(ν) =
(
1− e−bτ(ν)

)
γdiff(ν) + e−bτ(ν)γlocal(ν) , (3.107)

where τ(ν) is the optical depth for neutrinos and b is a constant parameter that is set

to be b−1 = 2/3. Qleak
(ν) is regarded as the emissivity of neutrinos measured in the fluid

rest frame. The subscript (ν) is the abbreviation for each species of neutrinos νe, ν̄e, and
νx. The superscript diff and local correspond to the diffusion [108] and local production.
As a local production reaction, we consider electron and positron capture [109], electron-
positron annihilation [110], plasmon decay [111, 112], and nucleon-nucleon bremsstrahlung
process [113]. We also consider electron neutrino and electron anti-neutrino absorption
processes [114] for the local heating process.

The optical depth is calculated by

τ(ν) = min
[
τx(ν), τ

y
(ν), τ

z
(ν)

]
, (3.108)

where τx(ν), τ
y
(ν), and τ z(ν) are the optical depths along x, y, and z direction respectively.

For example, τx(ν) is obtained by integrating the opacity of the neutrinos as

τx(v)(x, y, z) = E(ν)(x, y, z)
2τ̃x(ν)(x, y, z), (3.109)

τ̃x(ν)(x, y, z) =

∫ xout

x
κ̃(ν)

(
x′, y, z

)
dx′, (3.110)

κ̃(ν) = κ(ν)/E
2
(ν), (3.111)

where xout is the outer boundary of the computational domain in the x direction, and
κ(ν) is an opacity. The neutrino energy E(ν) is obtained by solving the following algebraic
equation

E(ν) =
(
1− e−τ(v)/a

)
Ediff

(ν) + e−τ(ν)/aElocal
(ν)

=
(
1− e−E(ν)

2τ̃(v)/a
)
Ediff

(ν) + e−E(ν)
2τ̃(ν)/aElocal

(ν) , (3.112)

by the Newton-Raphson method. Here, the constant parameter a is set to be 5. Ediff
(ν) and

Elocal
(ν) are the average diffusion and local production energy, which are given respectively

by

Ediff
(ν) = kBT

F3

(
µ(ν)/kBT

)
F2

(
µ(ν)/kBT

) (3.113)

Elocal
(ν) =

mu

ρ

Qlocal
(ν)

γlocal(ν)

(3.114)

where Fk(x) is the Fermi-Dirac integral and mu is the atomic mass unit.
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3.6 Primitive recovery

The numerical calculations for primitive recovery are performed based on Ref. [90, 115]
The quantities numerically evolved are the conservation quantities ρ∗, Si, S0, Bi, ρ∗Ye or
ρ∗Yl and geometrical variables. From these quantities, we need to obtain the primitive
quantities ρ, T , and Ye or Yl which are the argument variables of the EOS table, together
with w. Note that Ye or Yl can be directly calculated from the conserved variables.
For obtaining primitive variables, we first consider normalization condition for uµ in the
following form:

s2 = ρ−2
∗ γijSiSj =

(
B2 + hw

)2 (
1− w−2

)
−D2(hw)−2

(
B2 + 2hw

)
, (3.115)

where

B2 = W 3 BiBi

4πρ∗
, and D2 = W 3 (BiSi)

2

4πρ∗
. (3.116)

This can be regarded as the equation of hw and w−2 for the given data set of s2, B2, and
D2. We next consider the definition S0 and obtain

S0

ρ∗
= hw − PW−3

ρ∗
+B2 − 1

2

[
B2w−2 +D2(hw)−2

]
. (3.117)

This can also be regarded as the equation of hw and w−2 for the given data set of ρ∗, S0,
B2, and D2. In order to determine primitive variables using Eqs. (3.115), (3.117), and
tabulated EOS, we need the following iteration procedure. First, we give a trial value ŵ
for w, then we obtain the trial value of the rest-mass density ρ̂ = ρ∗W

3/ŵ. Second, we
obtain the trial value for the temperature T̂ by solving Eq. (3.117) in the form of

S0 − ρ∗B
2 +

1

2
ρ∗

[
B2w−2 +D2(hw)−2

]
−
∑
(ν)

S0,(ν)(ρ̂, Y(ν), T̂ ) = S0,EOS(ρ̂, Ye, T̂ ).

(3.118)

Here, S0,EOS(ρ̂, Ye, T̂ ) is evaluated from the tabulated EOS that does not include the

contributions from the trapped neutrinos, and S0,(ν)(ρ̂, Y(ν), T̂ ) is the contributions from
trapped neutrinos. Note that the one-dimensional search over the EOS table is required
to obtain T̂ . Third, we calculate the next trial value ŵ from ρ̂ and T̂ . For this, we solve
Eq. (3.115) for w by the Newton-Raphson method. By repeating these three steps until
the solution converges, we obtain primitive variables ρ, T , and w. Until here, we have
described the recovery procedure for the non-β-equilibrium case.

For the case that β-equilibrium is archived we need a slight modification. First, we
need to prepare the β-equilibrium EOS. Then the Eq. (3.118) is modified in to

S0 − ρ∗B
2 +

1

2
ρ∗

[
B2w−2 +D2(hw)−2

]
= Sβ

0,EOS(ρ̂, Yl, T̂ ), (3.119)

where Sβ
0,EOS(ρ̂, Ye, T̂ ) is evaluated from the β-equilibrium EOS. Note that β-equilibrium

EOS includes the contributions from the trapped neutrinos. After ρ and T are obtained,
we calculate the electron fraction Ye = Ye(ρ, Yl, T ) using the β-equilibrium EOS.
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3.7. Fixed-mesh refinement algorithm

3.7 Fixed-mesh refinement algorithm

The simulation is performed using a fixed-mesh refinement (FMR) algorithm. This algo-
rithm enable us to simultaneously resolve the compact objects and cover a large spatial
region. The computational domains consist of imax = 9–11 cuboids depending on models,
centered at an approximate center of mass of the system. The i-th refinement level covers a
half or full cubic box of [−Li : Li]×[−Li : Li]×[0 : Li] or [−Li : Li]×[−Li : Li]×[−Li : Li],
where Li = N∆xi and ∆xi is the grid spacing for the i-th level. For the half-cubic box case,
the plane-symmetric boundary condition on the z = 0 plane (equatorial plane) is imposed.
The grid spacing for each level is determined by ∆xi = 2∆xi+1 (i = 1, 2, · · · , imax − 1).
For the DD2 EOS models, ∆ximax is chosen to be ∆ximax = 400m,and 270m for low- and
high-resolution models respectively. For SFHo EOS model, ∆ximax = 250m is adopted.
The values of the N is chosen to be 170–282 depending on models. The detailed values of
imax, ∆ximax , and N for each models will be described in the later chapters.

3.8 Prescription for shift vector

During the merger stage, the black hole is kicked mainly by the back reaction of the
dynamical mass ejection in our present setting (see Chapter 4 and 5) and the resulting
velocity is vkick = 200–400 km/s (which is estimated by mejvej/MBH with mej dynamical
ejecta mass, vej(∼ 0.2c) its absolute average velocity, and MBH the remnant black hole
mass). Thus, the black hole moves toward a refinement boundary of the finest FMR level
with time and eventually escapes from the highest-resolution level in the absence of any
prescription. To keep the black hole in the highest-resolution level, we control the shift
vector by modifying Eq. 3.25 in the following prescription:

∂tβ
i =

3

4
γ̃ij (Fj + ∂tFj∆t)− viBH

Trelax

for Tsta < t < Tsta + Trelax, (3.120)

∂tβ
i =

3

4
γ̃ij (Fj + ∂tFj∆t)

for other cases, (3.121)

where viBH, Trelax, and Tsta are constants that we determine appropriately based on the
numerical result. viBH is the coordinate velocity of the black-hole center (the location
of the puncture) just before modifying the shift vector, which is of order 10−3c as we
already mentioned. Trelax is the relaxation time, which we choose Trelax = 40 ms. Tsta

is the starting time of this prescription, and it is set to be Tsta ≈ 100–200 ms to satisfy
vkick(Tsta + Trelax) ≲ Limax/2.

3.9 Initial setups

As initial data, we prepare black hole-neutron star binaries in a quasi-equilibrium state
assuming the neutrinoless beta-equilibrium cold state [45]. The initial gravitational mass
of the neutron star is set to be MNS = 1.35M⊙ following Ref. [45]. For the initial black-
hole mass, we choose MBH,0 = 5.4M⊙ or 8.1M⊙; the mass ratio of the black hole to the
neutron star is Q := MBH,0/MNS = 4 or 6. The initial dimensionless spin parameter of
the black hole is set to be 0.75. With such a spin, tidal disruption of the neutron star with
MNS = 1.35M⊙ takes place for a wide range of Q. The initial orbital angular velocity Ω0

is set to be m0Ω0 = 0.056 for Q = 4 and 0.064 for Q = 6, where m0 is the sum of the
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initial black-hole mass and neutron-star mass, i.e., m0 = MBH,0 +MNS = 1.35(Q+1)M⊙.
In this initial setup, the binary merges after about three orbits.

We initially superimpose a poloidal or toroidal magnetic field confined in the neutron
star. For the poloidal field case, following the previous work [43], the magnetic field is
given in terms of the vector potential as

Aj = {−yNSδ
x

j + xNSδ
y

j }
×Abmax(P/Pmax − 10−3, 0)2. (3.122)

For the toroidal field case, the vector potential is given as

Aj = {(xNS(z
2
NS −R2

NS))δ
x

j + (yNS(z
2
NS −R2

NS))δ
y

j

−(zNS(x
2
NS + y2NS −R2

NS))δ
z

j }
×Ab(1 + cos(rNS/0.95RNS))

(rNS < 0.95RNS). (3.123)

Here, (xNS, yNS, zNS) denote the coordinates with respect to the neutron-star center (loca-
tion of the maximum rest-mass density), rNS is the radius with respect to the neutron-star
center, and RNS is the coordinate radius of the neutron-star. P is the pressure, Pmax is
the maximum pressure, and j = x, y, and z. Ab is a constant and is chosen so that the
initial maximum magnetic-field strength b0,max is 3 × 1015 G, 3 × 1016 G, or 5 × 1016 G.
These values are chosen to obtain a strong magnetic field in the remnant disk formed after
tidal disruption of the neutron star in a short timescale after the merger. The strong
magnetic field is required to resolve the fastest growing mode of the magnetorotational
instability (MRI) [75, 76] in the accretion disk with the limited grid resolution, because
its wavelength is proportional to the magnetic-field strength. Although such strong fields
are not realistic in orbiting neutron stars, the resulting turbulent state in the accretion
disk established by the MRI is not likely to depend strongly on the initial magnetic-field
strength.1 Thus, it would be reasonable to suppose that the resulting strong magnetic
field and turbulent state will be established even for the case that we start a simulation
from a much weaker magnetic-field strength in the presence of a sufficient grid resolution.
We also note that even with b0,max = 5 × 1016G, the electromagnetic energy (of order
1049 erg) is much smaller than the internal energy and gravitational potential energy (of
order 1053 erg) of the neutron star.

We only consider the magnetic field confined in the neutron star initially, and do not
consider a pulsar-like dipole magnetic field extending to the outside of the neutron star.
This is because only the magnetic field confined in the neutron star has a significant effect
on the subsequent evolution of the system. In terms of the accretion disk evolution includ-
ing the post-merger mass ejection, only the magnetic field in the disk, which originates
from the magnetic field inside the neutron star, plays an important role. In terms of the
magnetosphere formation, a dipolar magnetic field initially located outside the neutron
star may be amplified linearly due to winding. However in the disk, the magnetic field is
amplified exponentially by the MRI, and the amplified magnetic field flux is ejected from
the disk to the polar region by the MRI dynamo and subsequently forms the magneto-
sphere of a high field strength. For the realistic initial magnetic-field strength lower than
1012G, the magnetic field amplified by the MRI should dominantly come into play.

1That is, we implicitly assume that the magnetic-field strength would be increased by the MRI and a
turbulent state would be eventually established even if we started a simulation from low magnetic-field
strengths (as is often done in this research field). This is just an assumption, but the result of a simulation,
which is started with a low magnetic-field strength, illustrates that this is likely to be indeed the case (see
Chapter 5).
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3.9. Initial setups

We do not consider the effect of the neutrino viscosity to the MRI supposing that the
magnetic-field strength could be enhanced to be ≳ 1014G due to the rapid winding in the
main region of the accretion disk (see Sec. 4.2) even if the early growth of the MRI is
suppressed [116, 117].
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Chapter 4

Result1: The overall evolution of
the entire merger and post-merger
stages

In this chapter, we describe the result of the seconds-long numerical-relativistic neutrino-
radiation magnetohydrodynamics simulations for black hole-neutron star mergers. We
clarified the entire merger process starting from the inspiral stage throughout the post-
merger stage for the cases with the tidal disruption.

In this first attempt we perform 7 simulations changing the black-hole mass, value of
b0,max, and grid resolution. DD2 EOS is adopted to model the neutron star. The poloidal
magnetic field configuration is assumed in the neutron star initially. The parameters and
quantities for the 7 models employed in this chapter are summarized in Table 4.1. Nu-
merical simulations with the low-resolution setting are always performed for the duration
of ≥ 1 s. In particular, for Q = 4 models, the low-resolution simulations are performed
for ≳ 2 s. On the other hand, the high-resolution simulations are performed only for ≲ 1 s
because such simulations require an extremely high computational cost. However, as we
show below, the results for the low-resolution runs are quantitatively similar to those for
the corresponding high-resolution runs, and hence, we consider that a fair convergence is
achieved even with the low-resolution runs.

4.1 Overview of the evolution

First, we summarize the entire merger process found in a seconds-long simulation pre-
senting the result for model Q4B5L for which the system was evolved up to ∼ 2.1 s.
Figure 4.1 displays the snapshot for the rest-mass density, absolute value of the magnetic-
field strength, electron fraction Ye, and temperature T , respectively, on the x-z plane.
The magnetic-field strength is defined by b = (bµb

µ)1/2 and the temperature is shown by
multiplying the Boltzmann’s constant k and in units of MeV.

In the present choice of the dimensionless spin parameter for the black hole and the
fairly large radius of the neutron star, the neutron star is tidally disrupted by the black
hole before the binary reaches the innermost stable circular orbit both for Q = 4 and 6.
During the tidal disruption process, the neutron-star matter located in the black-hole side
falls into the black hole. Specifically, ∼ 80% of the neutron-star matter falls into the black
hole in a short timescale of a few ms. On the other hand, the neutron-star matter located
distant from the black hole forms a one-armed spiral structure. Due to the subsequent
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4.1. Overview of the evolution

Table 4.1: Key parameters and quantities for the initial conditions together with the
parameters of grid setup for our numerical simulations. MBH,0: the initial black-hole
mass, b0,max: the initial maximum magnetic-field strength, Ω0: the initial orbital angular
velocity, MADM,0: the initial ADM mass, ∆ximax : the grid spacing for the finest refinement
level, L1: the location of the outer boundaries along each axis, and the values of N and
imax. For all the models, the neutron-star mass is 1.35M⊙ and the initial dimensionless
black-hole spin is 0.75. Note that MADM,0 is by ∼ 1% smaller than m0 = (6.75 and
9.45M⊙ for Q = 4 and 6) because of the presence of the gravitational binding energy.

model

name

MBH,0

[M⊙]

b0,max

[G]
m0Ω0

MADM,0

[M⊙]

∆ximax

[m]

L1

[km]
N imax

Q4B5H 5.400 5× 1016 0.056 6.679 270 1.62× 104 234 9

Q4B5L 5.400 5× 1016 0.056 6.679 400 1.74× 104 170 9

Q4B3L 5.400 3× 1016 0.056 6.679 400 1.74× 104 170 9

Q6B5H 8.100 5× 1016 0.064 9.368 270 3.90× 104 282 10

Q6B5L 8.100 5× 1016 0.064 9.368 400 3.97× 104 194 10

Q6B3H 8.100 3× 1016 0.064 9.368 270 3.90× 104 282 10

Q6B3L 8.100 3× 1016 0.064 9.368 400 3.97× 104 194 10

Table 4.2: The mass MBH and the dimensionless spin parameter χBH of the remnant
black hole evaluated at t = 100 ms together with the gravitational-wave and neutrino
energy emitted before t = 100ms, EGW and Eν , and the rest mass of the matter located
outside the black hole at t = 100ms, M>AH,0.1. All the quantities related to the mass or
energy are described in units of M⊙ and M⊙c

2.

model MBH χBH EGW Eν M>AH,0.1

Q4B5H 6.466 0.856 0.069 0.008 0.129

Q4B5L 6.400 0.838 0.066 0.008 0.135

Q4B3L 6.396 0.838 0.066 0.008 0.138

Q6B5H 9.145 0.837 0.117 0.007 0.097

Q6B5L 9.138 0.832 0.112 0.007 0.104

Q6B3H 9.145 0.838 0.117 0.007 0.097

Q6B3L 9.136 0.833 0.112 0.007 0.106
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4. Result1: The overall evolution of the entire merger and post-merger stages

Figure 4.1: The snapshot for the rest-mass density ρ (g/cm3), magnetic-field strength
b =

√
bµbµ (G), electron fraction Ye, and temperature T (kT in units of MeV) on the

x-z plane with [−2000 km : 2000 km] for both x and z at t ≈ 0.1, 0.3, 1.0, 1.5, and
2.0 s for model Q4B5L. Note that the green region in Ye found in the left side at the first
and second rows shows the dynamical ejecta and fall-back matter. See also an animation:
https://www2.yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5L-2000a.mp4.
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4.1. Overview of the evolution

Figure 4.2: The profile of the average toroidal magnetic field along the polar direction (θ)
at r ≈ 50 km as a function of time for models Q4B5L (top panel) and Q4B5H (bottom
panel).
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4. Result1: The overall evolution of the entire merger and post-merger stages

angular-momentum transport inside the spiral arm and the dynamical evolution of the
black-hole spacetime resulting from the matter infall into it, a part of the matter in the
outer part of the spiral arm gains specific energy and angular momentum. The matter
which gains sufficient specific energy eventually becomes dynamical ejecta, while the other
part in the spiral arm which is bound to the remnant black hole forms an accretion disk.
The timescale of this stage is ≲ 10ms (see the first row of Fig. 4.1 for the resulting state).
All these processes have been studied by a number of previous numerical-relativity work
(see e.g. Ref. [9] for a review) and our present result on the tidal disruption and disk
formation processes is essentially the same as the previous findings.

The mass, MBH, and the dimensionless spin parameter, χBH, of the remnant black holes
evaluated at t = 100 ms are summarized in Table 4.2. Irrespective of the runs, the black-
hole mass and dimensionless spin are increased by ≈ 1.05M⊙ and ∼ 0.1, respectively, due
to the matter infall. The black-hole mass is by ∼ 0.3M⊙ smaller than the initial Arnowitt-
Deser-Misner (ADM) mass. The reason for this is that a part of the neutron-star matter
forms an accretion disk and ejecta, and in addition, gravitational waves and neutrinos
carry away the energy (see Tables 4.1 and 4.2) in the inspiral and early merger stages.

We also list the total gravitational-wave and neutrino energy emitted before t = 100ms,
EGW and Eν , and the rest mass of the matter located outside the apparent horizon at t =
100ms, M>AH,0.1, in Table 4.2. By comparing MBH and MADM,0−EGW−Eν −M>AH,0.1,
we can assess how good (or bad) the energy conservation is satisfied in our simulation. It
is found that for Q = 4, the energy conservation is satisfied with about 0.1% and 1.1%
error for high- and low-resolution runs of Q = 4 model, and with ≪ 0.1% and about
0.1% error for high- and low-resolution runs of Q = 6 model, respectively. The reason
that the accuracy depends strongly on the grid resolution for Q = 4 (i.e., for the smaller
black-hole mass) is that the accuracy for resolving the black hole depends strongly on it.
This is found by taking a look at the value of the black-hole mass for Q = 4: For the
low-resolution runs, the black-hole mass is underestimated. However, the error of ≲ 1% at
t = 100ms is still in an acceptable level, indicating the reliability of the numerical results.

After the spiral arm winds around the black hole, a compact accretion disk is formed.
The orbital period at the innermost region of the accretion disk is 1–2 ms. During the tidal
disruption process, the neutron-star matter which eventually forms an accretion disk expe-
riences a strong differential rotation stage in the spiral arm, and then, a toroidal magnetic
field is developed from the initially poloidal magnetic field by winding. After the forma-
tion of the accretion disk, the winding continues to enhance the toroidal magnetic-field
strength, in particular in the innermost region of the accretion disk. After the sufficient
amplification of the magnetic-field strength, an outward expansion of the matter is driven
toward the polar direction due to the enhanced magnetic pressure, and as a result, poloidal
fields for which the strength is comparable to that of the toroidal fields are also generated.
With these strong magnetic fields, the wavelength for the fastest growing mode of the
axisymmetric MRI becomes

λMRI =
bz√

4πρh+ bµbµ

2π

Ω
(4.1)

∼ 10 km

(
bz

3× 1014 G

)(
ρ

1011 g/cm3

)−1/2( Ω

2× 103rad/s

)−1

, (4.2)

and can be numerically resolved. Here, Ω denotes the local angular velocity and z-direction
is the direction of the rotation axis. Then, a turbulent state associated with the MRI is
developed, and eventually, an MRI dynamo is activated in the accretion disk. This can
be also observed from a spacetime diagram of the toroidal-field strength. In Fig. 4.2,
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4.1. Overview of the evolution

we plot the average value of the toroidal field as a function of time and polar angle
θ = tan−1(

√
x2 + y2/z) for models Q4B5L and Q4B5H. Here, x, y, and z are defined with

respect to the black-hole center. The toroidal field is defined by bφ̄ = (xby−ybx)/
√
x2 + y2.

The average is performed with respect to the azimuthal angle φ = tan−1(y/x) at the
selected radius of r :=

√
x2 + y2 + z2 ≈ 50 km. From Fig. 4.2, we find the so-called

butterfly structure [118] irrespective of the grid resolution: The polarity of the toroidal
magnetic field is reversed due to the turbulent motion in a periodic manner with the
period of ∼ 20 local orbital periods (≈ 2.5ms).1 It is also found that strong magnetic-field
regions move from the accretion disk to the polar region in the early stage, producing a
global magnetic-field structure (see also the magnetic-field strength in the second row of
Fig. 4.1).

During this turbulent stage, the angular momentum is transported from the inner
to the outer region of the accretion disk due to the effective viscosity induced by the
turbulence. In addition to this effectively viscous process, magnetohydrodynamics effects
such as the magneto-centrifugal effect [119] which results from a global magnetic field
could play an important role for expelling the matter from the central region. Due to these
effects, the matter near the innermost stable circular orbit loses its angular momentum
and falls into the black hole, while the matter in the outer part of the disk receives the
angular momentum and expands gradually. As a result, the rest-mass density and the
temperature in the disk decrease in the viscous timescale of order 100ms to 1 s (see the
third to fifth rows of Fig. 4.1).

In addition to the disk expansion toward the equatorial direction, the matter expands
toward the direction perpendicular to the orbital plane (see the entire panels of Fig. 4.1).
Our interpretation for this expansion is that the magnetic tower effect plays a role: During
the evolution of the accretion disk, the toroidal magnetic-field strength is enhanced by the
MRI and winding. As a result, the magnetic pressure is enhanced to be high enough for
the accretion disk to expand toward the direction perpendicular to the orbital plane (and
thus the disk becomes a torus), while the serious baryon contamination in the vicinity of
the rotational axis is prevented by the centrifugal force of the matter. This effect produces
a funnel structure around the rotational axis (see the second to fifth rows of Fig. 4.1).2

In spite of the enhanced magnetic-field strength, we do not find appreciable early-post-
merger mass ejection associated with this enhancement within 100–200ms after the onset
of the merger. The absence of the clear early post-merger mass ejection agrees with some
of the results found in Ref. [64] in which the initial magnetic-field profile is chosen to be
toroidal or weakly poloidal. Only in several previous magnetohydrodynamics studies [61,
62, 64, 65] in which a strong poloidal magnetic field is given, the early post-merger mass
ejection was found. In our simulations, the magnetic-field profile in the early stage of the
post-merger evolution is primarily toroidal. Thus, we consider that the early post-merger
mass ejection takes place only for the case that a strong poloidal field is present in the
disk at the formation of the remnant disk, although our result indicates that such strong
poloidal fields are not likely to be formed soon after the merger of black hole-neutron star
binaries.

Not only the magnetohydrodynamics effect but also the neutrino cooling plays an

1After the post-merger mass ejection sets in at t ∼ 400ms (cf. Sec. 4.2), the periodic butterfly diagram
is not clearly observed. However, it is still seen that the polarity of the magnetic field changes with time
due to the presence of the turbulent motion. The decrease of the toroidal magnetic-field strength is due
to the disk expansion.

2In the late stage with t ≳ 1.5 s, the funnel has an asymmetric structure. This is caused by the fall-back
of the matter in the tidal tail that is formed predominantly for the negative x direction at tidal disruption.
This fall-back also lowers the electron fraction near the black hole in the late phase.
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4. Result1: The overall evolution of the entire merger and post-merger stages

important role for the evolution of the accretion disk [56]. In the early stage of the accretion
disk, the maximum density is ≳ 1012 g/cm3 and the maximum temperature is several MeV.
In addition to the high density and high temperature, the disk is massive with the mass
≳ 0.1M⊙ in the early stage. In such a stage, neutrino luminosity becomes higher than
1053 erg/s which is comparable to or higher than the viscous heating rate for a compact
disk with a high viscous parameter [66]. During the stage that the neutrino luminosity
is as high as the rate of the viscous heating (and the shock heating associated with the
magnetohydrodynamical activity in the present context), the matter in the accretion disk
is not affected significantly by the heating effect, although the accretion disk gradually
expands due to the viscous/magnetohydrodynamics angular-momentum transport and
magnetic pressure resulting from the enhanced magnetic-field strength. However, with the
expansion, the density and temperature of the accretion disk decrease, and consequently,
the neutrino luminosity sharply decreases because the neutrino emissivity is approximately
proportional to T 6 [109]. As the neutrino luminosity drops below the heating rate due
to the viscous and magnetohydrodynamics activities, neutrinos cannot efficiently carry
away the thermal energy from the accretion disk and the thermal energy generated by
the viscous/magnetohydrodynamics effect influences the evolution of the accretion disk.
Specifically, convective motion of the matter at the innermost region of the disk, in which
the viscous heating and shock heating are most efficient, is excited and blobs of the matter
heated in the vicinity of the black hole are moved toward the outer region of the disk along
the surface of the disk.3 As a result, the matter in the outer part of the disk obtains the
thermal energy and the heated matter eventually becomes unbound from the system to
be the post-merger ejecta (cf. the second and third rows of Fig. 4.1). This mechanism is
the same as that found in the previous viscous hydrodynamics simulations [56–58, 66] (see
also Ref. [120]). This post-merger mass ejection continues from 0.2–0.3 s to ∼ 1 s after
the merger (i.e., after the formation of the accretion disk). We note that in addition to
this convective effect, purely magnetohydrodynamical effects such as magneto-centrifugal
effect [119] could also play a role for the mass ejection.

In parallel with the accretion-disk evolution, a magnetosphere is developed in the
low-density region near the rotational axis (see Fig. 4.1). For the merger of black hole-
neutron star binaries that experience tidal disruption, such a low-density region is naturally
developed because the matter is ejected primarily toward the equatorial direction. During
the magnetohydrodynamics evolution of the accretion disk, a mass outflow toward the
direction perpendicular to the equatorial plane is also driven by the activity of the accretion
disk. However, the density in the vicinity of the rotation axis is still preserved to be low
because of the presence of the centrifugal force on the injected matter. Thus the accretion
of the matter into the black hole proceeds primarily from the innermost region of the disk.
In ideal magnetohydrodynamics, the accretion of the matter accompanies the infall of the
magnetic flux into the black hole. Although the magnetic field comoving with the infalling
matter falls together into the black hole, the magnetic-field line located outside the black
hole can expand toward the outer direction in particular along the rotational axis which
has low matter density and low gas pressure (see Sec. 4.3). Such magnetic fields eventually
develop a magnetosphere for which the magnetic-field lines are helical and nearly aligned
with the rotational axis (except for the vicinity of the black hole). The magnetic pressure
in such a region is lower than the gas pressure of the surrounding thick torus which is
formed after the activity of the accretion disk is enhanced (see the second to fifth rows of

3See the following animation for the entropy per baryon (s/k) and for the convective activity:
https://www2.yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5L-2000a.mp4, and https://www2.yukawa.

kyoto-u.ac.jp/~kota.hayashi/Q4B5L_sent.mp4.
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4.2. The evolution of the accretion disk and post-merger mass ejection

Fig. 4.1). In other word, the size of the magnetosphere is determined by the structure of
the thick torus.

The magnetic-field lines penetrate the black hole spinning rapidly with the dimen-
sionless spin ≳ 0.8, and thus, the system can be subject to the Blandford-Znajek mech-
anism [72] by which the rotational kinetic energy of the black hole is converted to the
outgoing Poynting flux. In the presence of the matter for which the rest-mass energy
density is comparable to or larger than the electromagnetic energy density, the Poynting
flux cannot propagate away efficiently. However, the density in the polar region decreases
with time because the matter in the vicinity of the black hole falls into the black hole
and a part of the matter is expelled by the magnetic pressure. Hence, eventually, elec-
tromagnetic waves generated by the Blandford-Znajek effect can propagate away (cf. the
second to fifth rows of Fig. 4.1). If an efficient conversion of the electromagnetic energy
to the kinetic energy of the matter occurs during the subsequent propagation, a gamma-
ray burst jet may be launched. Since the magnetic field has a collimated structure, the
electromagnetic emission is also collimated. This collimated emission continues as far as
the gas pressure of the thick and dense torus confines the magnetosphere (see Sec. 4.3 for
a discussion).

We note that the evolution processes described above are qualitatively universal ir-
respective of the black-hole mass, initial magnetic-field strength, and grid resolution em-
ployed. In the following subsections, we describe the quantitative details about the accre-
tion disk evolution, mass ejection, and generation of strong Poynting flux in the magne-
tosphere separately.

4.2 The evolution of the accretion disk and post-merger
mass ejection

4.2.1 Disk evolution and ejecta

In this subsection, we present the quantitative details on the evolution of the accretion disk
and on the mass ejection. Figure 4.3 shows the rest mass of the matter located outside the
apparent horizon M>AH (dashed curves) and the accretion disk mass Mdisk (solid curves)
as functions of time. Figure 4.4 shows the rest mass of the unbound matter (ejecta) Meje

as a function of time. These quantities are defined by

M>AH :=

∫
r>rAH

ρ∗d
3x+Mesc, (4.3)

Meje :=

∫
−hut>hmin,r>rAH

ρ∗d
3x+Mesc, (4.4)

Mdisk := M>AH −Meje, (4.5)

where rAH denotes the coordinate radius of the apparent horizon with the respect to the
black-hole puncture. Mesc denotes the rest mass escaping from the computational domain,
which is calculated from

Ṁesc :=

∮
ρ
√−guidSi, (4.6)

Mesc :=

∫ t

Ṁescdt. (4.7)

The surface integral is performed near the outer boundaries of the computational domain.
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Figure 4.3: The time evolution of the rest mass of the matter located outside the apparent
horizon (dashed curves) and the accretion-disk mass (solid curves) for all the runs with
Q = 4 (top panel) and Q = 6 (bottom panel).
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Figure 4.4: The time evolution of the rest mass of the unbound matter (ejecta) for all the
runs with Q = 4 (top panel) and Q = 6 (bottom panel).
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Figure 4.5: The time evolution of the maximum rest-mass density of the bound matter
located outside the apparent horizon for all the runs with Q = 4 (top panel) and Q = 6
(bottom panel).
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Figure 4.6: The time evolution of the total neutrino luminosity (sum of the luminosity for
all the neutrino species) for all the runs with Q = 4 (top panel) and Q = 6 (bottom panel).
The post-merger mass ejection sets in at t − tmerger ∼ 300–500ms at which Lν ∼ 1050–
1051.5 erg/s.
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Figure 4.7: The time evolution of the rest-mass accretion rate calculated from −dM>AH/dt
(top panel), and the neutrino emission efficiency Lν/(−dM>AH/dt) (bottom panel) for all
the runs with Q = 4.
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The ejecta component is identified by considering the Bernoulli criterion; i.e., we re-
gard the matter located outside the apparent horizon that satisfies hut < −hmin as the
unbound component. Here, ut(< 0) is the lower time component of the four velocity and h
is the specific enthalpy. hmin is the minimum specific enthalpy for a given electron fraction
Ye and it is obtained from the tabulated EOS employed. The value of M>AH for t ≲ 20ms
is in approximate agreement with that in Ref. [45] in which magnetohydrodynamics and
resulting viscous effects were absent. In the present simulation, by contrast to the one in
Ref. [45], for t ≳ 20ms, M>AH continuously decreases due to the matter accretion onto
the black hole induced by the angular-momentum transport resulting from the magneto-
hydrodynamics effects as already mentioned in Sec. 4.1. We note that the curves of M>AH

depend only weakly on the initial magnetic-field strength and grid resolution.

The value of Meje steeply increases at two characteristic moments. The first increase is
found right after the tidal disruption, and the steep increase continues only for a few ms,
comparable to the dynamical timescale of the system. Thus, this mass ejection component
is the dynamical ejecta. The rest mass for this component is ≈ 0.05M⊙ and ≈ 0.04M⊙
for models with Q = 4 and 6, respectively. The result for Q = 4 is in good agreement
with the previous radiation-hydrodynamics result [45] because the magnetic-field strength
is still weak at the tidal disruption, and hence, the magnetohydrodynamics effects play
essentially no role in the dynamical mass ejection. After the steep increase, the value
of Meje remains approximately constant for the next few hundreds ms, reflecting that
an efficient mass ejection activity is quiescent during this time. In this quiescent stage,
however, the accretion disk is actively evolved due to the MRI and associated turbulent
motion, and the density and temperature of the disk decrease (see, e.g., Fig. 4.5 for the
rest-mass density) due to the expansion of the disk resulting from the angular-momentum
transport process and enhanced magnetic pressure. As a result of the decrease in tem-
perature, the neutrino luminosity eventually drops below the heating rate associated with
the turbulent motion (cf. Fig. 4.6), and then, the post-merger mass ejection driven by
the heating associated with the MRI turbulence sets in. Thus, the second steep increase
of Meje that starts at t ∼ 300–500ms is triggered by the quick damping of the neutrino
luminosity (see Fig. 4.6). We emphasize here that even in the presence of pure magnetohy-
drodynamics process (not effectively viscous process resulting from the MRI turbulence),
the post-merger mass ejection appreciably occurs only after these onset time, and that,
since the post-merger mass ejection continues for several hundred ms, simulations with
the duration shorter than ∼ 500ms cannot clarify this ejection process.

The rest mass of the post-merger ejecta is ≈ 0.035M⊙ and ≈ 0.020M⊙ for models with
Q = 4 and 6, respectively, and these values are about 10% of the disk mass at its formation
(at t ∼ 10ms). For both Q = 4 and 6, the dynamical ejecta is the primary component of
the ejecta in the present setting, and this tendency is stronger for the larger mass ratio,
as discussed, e.g., in Refs. [36, 121]. The onset time of t ∼ 300–500ms for the post-
merger mass ejection depends on the initial magnetic-field strength and grid resolution
by 100–200ms. Our interpretation for this difference is that the magnetohydrodynamics
turbulence is a stochastic process, and hence, the angular-momentum transport process
can depend on the difference in the initial-field strength and grid resolution. However, the
total ejecta mass and the properties of the post-merger ejecta do not depend strongly on
them (see below for the electron fraction and velocity of the ejecta).

Figures 4.5 and 4.6 display the time evolution of the maximum rest-mass density ρmax

and the total neutrino luminosity Lν , respectively. For generating Fig. 4.6, we define the
merger time tmerger as the time at which the rest-mass density reaches its local minimum
value for the first time; i.e., t ≈ 10 and 13ms for Q = 4 and 6, respectively. These figures
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4. Result1: The overall evolution of the entire merger and post-merger stages

indeed show that the density and neutrino luminosity steeply decrease at t ≈ 300–500ms.
This simultaneous decrease clearly elucidates that the evolution of the accretion disk and
the timing of the post-merger mass ejection are controlled by the neutrino cooling. We
also note that after the onset of the post-merger mass ejection, the accretion rate of the
matter onto the black hole also decreases steeply with time: see the left panel of Fig. 4.7.

One interesting point is that the curve of Lν well reflects the evolution of the accretion
disk. From t − tmerger ≈ 1ms to ∼ 20ms, Lν increases by orders of magnitude both for
Q = 4 and 6. This reflects the temperature increase during the formation of the accretion
disk (e.g., due to the compressional heating and shock heating) and the subsequent en-
hancement of the turbulent state in the accretion disk due to the MRI (see, e.g., Fig. 4.8,
which shows the increases of the electromagnetic energy in this stage). Subsequently, Lν

monotonically decreases for t − tmerger ≳ 20ms, because in this stage, the accretion disk
expands due to the angular-momentum transport process and enhanced magnetic pres-
sure, and the density and temperature decrease gradually. However, the thermal energy
generated by the heating associated with the MRI turbulence is consumed primarily by
neutrino cooling prior to the onset of the post-merger mass ejection. Hence, the expansion
of the accretion disk does not rapidly proceed, and thus, the mass ejection due to the ther-
mally generated energy is suppressed. It is found that Lν decreases approximately as t−1.6

in this stage, and the decrease is fairly mild. However, after Lν decreases below ≈ 1051–
1051.5 erg/s as a result of the disk expansion and resulting decrease of the temperature, the
neutrino emission rate becomes smaller than the thermal energy generation rate due to the
MRI turbulence. Then, the turbulent heating is used for the outward expansion of the disk
efficiently, in particular through the convective motion from the inner to outer region, and
the post-merger mass ejection is driven. (We note that the critical neutrino luminosity,
which is ∼ 1051–1051.5 erg/s in the present case, should depend on the disk mass because
the luminosity should be approximately proportional to it.) Subsequently, the neutrino
luminosity exponentially drops at t ≈ 300–500ms irrespective of the binary mass ratio
and the initial choice of the magnetic-field strength. Specifically, this post-merger mass
ejection sets in when the temperature for most of the disk matter decreases below ∼ 3MeV
(cf. the top panel of Fig. 4.11 for a mass distribution with respect to the temperature as a
function of time). This critical temperature at the onset of the post-merger mass ejection
is quantitatively the same as that found in general relativistic neutrino-radiation viscous
hydrodynamics simulations of black hole-torus systems [66, 67]. However, the time at the
onset of the post-merger mass ejection is earlier than that in the viscous hydrodynamics
result for the similar black-hole mass cases [67]. As indicated in Refs. [58, 64, 71], the in-
herent magnetohydrodynamics effects such as magento-centrifugal effect [119] are likely to
accelerate the mass ejection from the disk. The neutrino luminosity of ≈ 1051–1051.5 erg/s
at the onset of the post-merger mass ejection which we find is indeed similar to that found
in the recent magnetohydrodynamics study [71].

Figure 4.7 plots the rest-mass accretion rate onto the black hole calculated by−dM>AH/dt
and a neutrino emission efficiency defined by Lν/(−dM>AH/dt). After the early matter
infall associated with the onset of the merger, the mass accretion rate has a peak at
t − tmerger ∼ 10ms. This is due to the fact that the magnetic-field strength is amplified
in the accretion disk and the mass accretion rate is enhanced (cf. Fig. 4.8). After the
peak, the mass accretion rate decreases monotonically with time approximately as ∝ t−2

for t − tmerger ≲ 50ms and as ∝ t−1 in the subsequent stage before the onset of the
post-merger mass ejection. After the onset of the post-merger mass ejection, the mass
accretion rate drops more steeply. Broadly speaking, the curve of the neutrino emission
efficiency reflects that of Lν . However, the peak comes at t − tmerger ∼ 40–50ms, which
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4.2. The evolution of the accretion disk and post-merger mass ejection

is slightly later than the peak time of the neutrino luminosity and mass accretion rate.
The reason for this is that Lν ∝ t−1.6 while −dM>AH/dt ∝ t−2 for t − tmerger ≲ 50ms
and subsequently −dM>AH/dt ∝ t−1, and thus, the peak is shifted at t− tmerger ∼ 50ms.
The maximum neutrino emission efficiency is ∼ 8%–10%. Keeping the difference in the
disk mass in mind, this value agrees broadly with those found in the previous viscous
hydrodynamics simulations for similar black-hole mass (MBH = 6M⊙) and dimensionless
spin (χBH = 0.8) [67].

4.2.2 Magnetic-field evolution

Figures 4.8 and 4.9 show the time evolution of the electromagnetic energy, EB, and the
ratio of the electromagnetic energy to the internal energy, Eint, respectively. Here, EB and
Eint are defined, respectively, by

EB :=
1

8π

∫
r>rAH

ut
√−g bµb

µd3x, (4.8)

Eint :=

∫
r>rAH

ρ∗εd
3x, (4.9)

and ε denotes the specific internal energy. Here we note that the energy-momentum tensor
in the ideal magnetohydrodynamics is written as

Tµν = ρhuµuν + Pgµν

+
1

4π

(
bαbαuµuν +

1

2
bαbαgµν − bµbν

)
, (4.10)

and with h = c2 + ε+ P/ρ, we have

ut
√−gTµνu

µuν = ρ∗(c
2 + ε) +

1

8π
ut
√−g bµbµ. (4.11)

Here we recover c to clarify the physical units. Thus, the choice of Eint and EB stems
from Eq. (4.11).

During the merger stage, the magnetic-field strength in the accretion disk is amplified
quickly in a short timescale of a few ms. This is initially induced by the magnetic winding
associated with the differential rotation in the accretion disk. In the Keplerian disk with
the presence of the poloidal magnetic field of the cylindrically radial component Bϖ, the
strength of the toriodal magnetic field BT increases approximately linearly with time until
a saturation as (e.g., Ref. [122])

BT ≈ 3

2
BϖΩt, (4.12)

where Ω denotes the local angular velocity. For a black hole with the dimensionless spin
of 0.8, the angular velocity at the innermost stable circular orbit of the black hole is
ΩISCO ≈ 0.174M−1

BH ≈ 5.43 × 103(MBH/6.5M⊙)
−1 rad/s [123]. Thus for the models of

Q = 4 and Q = 6, the matter near the innermost stable circular orbit rotates with the
orbital period of ≈ 1.2 and 1.6ms, respectively. This implies that in the first ∼ 10ms, the
toroidal field strength can be ∼ 60–80 times of Bϖ, the maximum of which is ∼ 1014G at
the formation of the accretion disk (i.e., much weaker than the field strength in the neutron
star initially given) in the present simulations. This is the reason that the initial steep
amplification to EB > 1050 erg is found in our present simulations. Because the winding
timescale is quite short, the magnetic-field amplification by ∼ 3 orders of magnitude in
≲ 100ms is possible even in the absence of other instabilities such as MRI: Even for the
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Figure 4.8: The time evolution of the electromagnetic energy evaluated for the outside of
the apparent horizon for all the runs with Q = 4 (top panel) and Q = 6 (bottom panel)
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Figure 4.9: The time evolution of the ratio of the electromagnetic energy to the internal
energy evaluated for the outside of the apparent horizon for all the runs with Q = 4 (top
panel) and Q = 6 (bottom panel).
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Figure 4.10: The snapshots of the MRI quality factor (color profile) together with the
rest-mass density (contour) on the x-z plane at t ≈ 300 and 1000ms for model Q4B5L.
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initial value of Bϖ = 1012G, the toroidal field can be amplified to ∼ 1015G in ∼ 100ms.
After the sufficient amplification of the toroidal magnetic field, an outward expansion
of the accretion disk is driven toward the polar direction due to the enhanced magnetic
pressure and a poloidal field with its strength comparable to that of the toroidal field is
also generated. In addition to the winding, the Kelvin-Helmholtz instability induced by
the shear motion at the contact surfaces of the spiral arms also amplifies the magnetic-field
strength.

After the initial amplification of the magnetic-field strength, the ratio of EB/Eint

reaches ∼ 0.05–0.1. Then, the magnetic-field growth is saturated. The electromagnetic
energy at the saturation, EB,sat, is smaller for the smaller value of the initial magnetic-field
strength. However, the relative difference in the saturated electromagnetic energy between
models with different initial magnetic-field strengths is not as large as that in the initial
electromagnetic energy. Furthermore, the electromagnetic energy for t ≳ 30ms depends
only weakly on the initial condition (as well as on the grid resolution). Thus, we infer that
the amplification and saturation of the magnetic-field strength take place in a universal
manner irrespective of the initial magnetic-field strength.

When reaching the saturation, the typical magnetic-field strength is 1015G (cf. Fig. 4.2)
and the maximum rest-mass density is ∼ 1011–1012 g/cm3 in the innermost region. Thus
the Alfvén velocity is ≈ b/

√
4πρ ≈ 9 × 108 cm/s (b/1015G)(ρ/1011 g cm−3)−1/2 and the

wavelength of the fastest growing mode of the MRI is typically ∼ 10 km [76]. As a result,
the wavelength of this unstable mode is covered by tens of grid points in our setting,
and hence, the effect of the MRI comes into play subsequently. With the evolution of
the disk, the typical magnetic-field strength and rest-mass density decrease, but in the
equipartition stage (see below), the Alfvén velocity is always of order

√
EB/Eint(∼ 10%)

of the sound speed, which changes weakly with time. Thus, the wavelength of the fastest
growing mode of the MRI is always covered by tens of grid points in the present setting.
Figure 4.10 shows the snapshots of the MRI quality factor defined by λMRI/∆x on the
x-z plane for model Q4B5L. We note that for other time slices, the similar feature is also
found. Figure 4.10 shows that the fastest growing mode is covered by more than 20 grid
points in the large portion of the disk even for the low-resolution run (λMRI ∼ 10 km in
the inner region of the disk), and thus, we consider that the fastest growing mode of the
MRI is resolved with a reasonable accuracy in the present work.

As a result of the viscous angular-momentum transport, the matter in the inner re-
gion of the accretion disk falls into the black hole while the matter in the outer part
expands outward. Because of the matter infall into the black hole, the rest mass of the
accretion disk decreases (see Fig. 4.3), and associated with the decrease in the rest mass,
the electromagnetic energy decreases with time although the ratio of EB/Eint = O(10−2)
is preserved. Thus, for t ≳ 100ms, the accretion disk is in a quasi-steady equipartition
state; the magnetic-field energy relaxes to ∼ 1% of the internal energy irrespective of the
mass and internal energy of the accretion disk. It is interesting to point out that the
electromagnetic energy decreases approximately in proportion to t−1. All these features
are found both for the models of Q = 4 and Q = 6 irrespective of the initial magnetic-field
strength and grid resolution.

4.2.3 Property of ejecta

Now we turn our attention to the properties of the ejecta. The bottom panel of Fig. 4.11
displays the mass distribution of the remnant matter with respect to the electron fraction
Ye for model Q4B5H. This shows that there are two characteristic peaks of Ye at the
regions around 0.05 and of 0.25–0.35, respectively. The former peak is associated primarily
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Figure 4.11: Time evolution of the mass histograms with respect to the temperature
(upper panel) and electron fraction (lower panel) for model Q4B5H. The post-merger
mass ejection sets in when the temperature for most of the matter decreases below 3 MeV
at t ∼ 400ms for this model. Note that the matter only in the computational domain
is taken into account for plotting this figure, and thus, the matter which has escaped
from the computational domain is neglected in the late stages. Thus, for t ≳ 300 ms, the
dynamical ejecta mass decreases with time.
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Figure 4.12: Mass histogram as functions of the electron fraction (left panels) and the
velocity (right panels) of ejecta for the models with the simulation duration longer than
1 s (models Q4B5H, Q4B5L, Q4B3L, Q6B5L, and Q6B3L). Models with Q = 4 and Q = 6
are displayed in the upper and lower panels, respectively.
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with the dynamical ejecta and the latter is with the accretion disk for t ≲ 400ms and
post-merger ejecta for t ≳ 400ms. This figure clearly shows that the dynamical ejecta
component with Ye = 0.03–0.07 comes directly from the neutron star, because the values
are unchanged from the beginning. That is, this dynamical ejecta component is not
essentially affected by thermal or weak-interaction processes in the merger and post-merger
stages.

By contrast, the electron fraction of the post-merger ejecta is found to be determined by
the evolution process of the accretion disk, in which the typical electron fraction increases
from ∼ 0.05 to ∼ 0.25 for 0 < t ≲ 200ms. As already mentioned, in this stage, the
accretion disk gradually expands due to the viscous and magnetohydrodynamical angular-
momentum transport and magnetic pressure by the amplified magnetic-field strength, and
its rest-mass density and temperature monotonically decrease. In the disk with its optical
depth to neutrinos ≲ 1, the electron fraction is determined predominantly by the reaction
equilibrium between electron/positron capture reactions if the temperature is high enough
(typically kT ≳ 2–3MeV; see Refs. [67, 70, 124]) for their timescale to be shorter than
that of the disk expansion. Due to the disk expansion, the electron degeneracy becomes
weak, and as a result, the electron fraction is shifted to higher values in the reaction
equilibrium state. With the decrease of the temperature, the neutrino luminosity decreases
approximately in proportion to T 6. As already mentioned, the post-merger mass ejection
sets in when the neutrino luminosity drops below ∼ 1051–1051.5 erg/s, which occurs for
t ≳ 300ms. The typical value of Ye for the post-merger ejecta is determined around this
timing, resulting in Ye ≈ 0.25± 0.10.

Figure 4.12 displays the rest-mass histogram as functions of the electron fraction and
velocity for the ejecta component for the models for which the simulation duration is
longer than 1 s. The mass histogram is derived for the ejecta component outgoing from
the radius of ≈ 104 km. As described in the previous paragraphs, there are two distinct Ye
components for the ejecta, and this feature is clearly observed in Fig. 4.12. The dynamical
ejecta component always has Ye ≈ 0.03–0.07 irrespective of the black-hole mass. By
contrast, the distribution of Ye for the post-merger ejecta component depends on the
black-hole mass in the present results. Specifically, for larger black-hole mass, the value
of Ye tends to be larger. As a result, the peak of Ye changes from ∼ 0.25 for Q = 4 to
∼ 0.31 for Q = 6. This tendency is in agreement with previous viscous hydrodynamics
studies [67] (see also Refs. [69, 70]), and the reason is as follows: In the condition that
the disk mass has an approximately identical value, the density of the disk can be higher
for the lower black-hole mass (the lower mass ratio, Q, in the present context), because
the tidally disrupted matter can have a more compact orbit around the black hole due
to the smaller radius of its innermost stable circular orbit. Associated with this effect,
the temperature is enhanced due to the compression and stronger shock heating, resulting
in the higher neutrino emissivity and reducing the entropy per baryon of the matter in
the accretion disk (cf. Fig. 4.6). With the lower entropy per baryon, the degree of the
electron degeneracy becomes higher and the neutron-richness is enhanced. Therefore, for
the lower black-hole mass, the electron fraction of the post-merger ejecta becomes slightly
lower. Figure 4.12 shows that this effect is found irrespective of the initial-magnetic field
strength and grid resolution (thus it is physical).

The right panels of Fig. 4.12 present the rest-mass histogram as a function of the ejecta
velocity. The ejecta velocity v is defined by

v :=

√
1− Γ−2

∞ ,

Γ∞ := −hut/hmin, (4.13)
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where Γ∞ is interpreted as the terminal Lorentz factor under the assumption that the
internal energy is converted completely to the kinetic energy of the ejecta in the far region.
Again, there are two components. Here, the low-velocity component with v/c ≲ 0.08 stems
primarily from the post-merger ejecta, while the high-velocity component stems from the
dynamical ejecta. We note that the velocity distribution for the dynamical ejecta is in
good agreement with that in the previous study [45], and the typical velocity of the post-
merger ejecta agrees approximately with that found in viscous hydrodynamics simulations
(e.g., Refs. [66, 67]). As we reported in Ref. [36], the velocity of the dynamical ejecta is
at highest ∼ 0.4c. This is in contrast to the case of binary neutron star mergers in which
the maximum ejecta velocity can be ≳ 0.8c [125, 126].

Our present results confirm that there are two distinct ejecta components, low-Ye
and high-velocity component, and relatively-high-Ye and low-velocity component, as many
previous numerical work have suggested. By our self-consistent simulations, the distinction
of two components emerges clearly. The former (dynamical ejecta) synthesizes heavy r-
process elements, while the latter (post-merger ejecta) synthesizes relatively light r-process
elements as well as heavy ones (e.g., Refs. [127]). Then, the former component is likely
to shine as a red kilonova while the latter one is likely to contribute to a blue-kilonova
component [57]. However, the detailed light curve and spectrum are determined by a non-
trivial radiation transfer effect [128]. It is also likely that the light curve depends on the
mass ratio Q. Thus, radiation transfer simulation is a topic to be explored as follow-up
work.

4.3 Magnetic field in the funnel region and the relation to
short gamma-ray bursts

In addition to aforementioned ejected matter (dynamical and post-merger ejecta), we
find a launch of an outflow of the matter and Poynting flux in the narrow funnel region
established near the rotational axis of the black hole (see Fig. 4.13). In particular, the
isotropic-equivalent Poynting luminosity estimated for most of the runs is comparable to
the typical luminosity of short-hard gamma-ray bursts [14, 15]. In this subsection, we
discuss the quantitative details on this result.

Irrespective of the black-hole mass, initial magnetic-field strength, and grid resolution,
tidal disruption of the neutron star takes place in our present setting and a magnetized
accretion disk is formed around the central black hole. As already mentioned in the
previous sections, the magnetic-field strength in the accretion disk is increased by the
winding and MRI, and then, a turbulent state is established at ∼ 30–40ms after the tidal
disruption. Subsequently, the accretion disk evolves primarily due to the viscous effect
stemming from the MRI turbulence. As already mentioned in the previous section, the
magnetic-field strength is determined by an equipartition state, i.e., by the internal energy
of the matter, which is typically ρc2s where cs is the sound speed of order 109 cm/s in the
dense region of the disk. Since EB/Eint is of O(10−2), the magnetic-field strength can
be approximated as ∼ 0.1

√
8πρc2s ∼ 5× 1014(ρ/1012 g cm−3)1/2(cs/10

9 cm s−1)G near the
inner edge of the accretion disk. The order of this field strength is indeed found in the
accretion disk (see, e.g., Fig. 4.2). By the angular-momentum transport, the matter in
the innermost part of the accretion disk falls continuously into the black hole, and in
this infall, the magnetic fluxes also fall in. As a result, the poloidal magnetic-field lines
for which the field strength is ≳ 1014G at the horizon penetrate the black hole. Here,
the infall magnetic fluxes do not have aligned polarity because the accretion process is
determined by the turbulence in the accretion disk, and hence, the magnetic-field strength
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Figure 4.13: Snapshots of the rest-mass density profile (blue and green contours) with the
magnetic-field lines (pink curves), unbound matter (white color) and its velocity (green
arrow) for model Q4B5L at t = 300ms. Magnetic-field lines penetrating the black-hole
horizon are displayed. See also the following link for the time evolution: https://www2.
yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5L-3D.mp4
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4.3. Magnetic field in the funnel region and the relation to short gamma-ray bursts

Figure 4.14: The snapshots of the outgoing Poynting flux per steradian (color profile)
together with poloidal magnetic-field lines (white curves) near the apparent horizon on
the x–z plane at t ≈ 500 and 1000ms for model Q4B5L. The apparent horizon is shown
with the black circle.

65



4. Result1: The overall evolution of the entire merger and post-merger stages

1047

1048

1049

1050

1051

500 1000 1500 2000

L
is
o	
[e
rg
/
s]

t		[ms]

Q4B5H
Q4B5L
Q4B3L

1047

1048

1049

1050

1051

500 1000 1500 2000

L
is
o	
[e
rg
/s
]

t		[ms]

Q6B5H
Q6B5L
Q6B3H
Q6B3L

Figure 4.15: Liso as a function of time for all the runs with Q = 4 (top panel) and 6
(bottom panel). The Poynting luminosity is evaluated at r ≈ 1500 km for all the runs.
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on the horizon does not monotonically increase. On the other hand, the poloidal magnetic
fields in the polar region are twisted by the black-hole spin, and hence, the field strength
could be larger than that for the accretion disk in the presence of a rapidly spinning black
hole. Due to the twisting associated with the black-hole spin, the toroidal magnetic-field
strength dominates over the poloidal one in the vicinity of the black hole (cf. Fig. 4.13).

However, such amplified magnetic fields do not immediately form a global magneto-
sphere. The reason for this is that at tidal disruption, a dense atmosphere (ρ ∼ 107 g/cm3)
is formed in the polar region by the matter expelled by shocks generated during the wind-
ing and shock heating in the spiral arm. The matter also comes from the accretion disk
due to its turbulent activity. Although a part of the matter in the polar region near the
black hole eventually falls into the black hole, a certain fraction of the matter has to be ex-
pelled by the magnetic force to form a low-density magnetosphere. For this, the toroidal
magnetic field amplified by the twisting due to the black-hole spin plays an important
role, because a tower-like outflow is driven from the neighborhood of the black hole by
this magnetic effect [47]. Hence, eventually, the matter energy density decreases below the
magnetic energy density of b2/8π in the polar region of the black hole. This is satisfied
for ρ < b2/8πc2 = 4.4 × 105(b/1014G)2 g/cm3. Then, the magnetic pressure pushes the
matter toward the outward direction along the rotation axis, establishing a low-density
region near the rotational axis. During this process, the magnetic-field lines also expand
outwardly, and a large-scale magnetosphere near the rotational axis is formed. In this
region, the poloidal field is dominant (see Fig. 4.13). As a result, the rest-mass density
decreases in the black-hole polar region, leading to the formation of the so-called funnel
structure. At the funnel wall, the magnetic pressure is lower than the gas pressure of the
surrounding thick torus and envelope, and hence, the magnetosphere is sustained by the
surrounding matter.

Inside the funnel wall, the electromagnetic energy dominates over the rest-mass energy,
and thus, an approximately force-free magnetosphere is formed. Here, the typical ratio
of the electromagnetic energy density to the rest-mass energy density is 10–100. In such
a region, the rotational kinetic energy of the black hole is extracted by the Blandford-
Znajek mechanism [72] and transformed into the Poynting flux which propagates outward.
Figure 4.14 shows the snapshots for an outgoing Poynting flux per steradian near the
apparent horizon defined by −T (EM) r

t

√−g/ sin θ. Along the poloidal magnetic-field line,
the outgoing Poynting flux is distributed from the apparent horizon to the mangnetosphere
around the rotational axis of the black hole. This indicates that energy is extracted from
the black hole through the magnetic field, and thus, we can interpret that the Blandford-
Znajek mechanism is in operation. In addition, we find that the total Poynting luminosity
on the apparent horizon is ∼ 1049 erg/s. This value is consistent with the luminosity
expected from the formula for the Blandford-Znajek mechanism [72] for the resultant
values of the magnetic-field strength, black-hole mass, and spin.

Figure 4.15 shows the time evolution of Liso: an isotropic-equivalent Poynting lumi-
nosity, which we define using the Poynting luminosity for θ < 10◦ and r ≈ 1500 km as

Liso :=
2

1− cos(10◦)
Lθ<10◦,r≈1500 km, (4.14)

where

Lθ<10◦,r≈1500 km := −
∫
θ<10◦,r≈1500 km

T (EM) r

t

√−gdSr.

(4.15)
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4. Result1: The overall evolution of the entire merger and post-merger stages

Figure 4.16: The snapshot of the toroidal magnetic field (color profile) together with the
poloidal magnetic-field lines (curves) on the x-z plane at selected time slices for model
Q4B5L. See also the following link for an animation: https://www2.yukawa.kyoto-u.

ac.jp/~kota.hayashi/Q4B5L-mf.mp4
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4.3. Magnetic field in the funnel region and the relation to short gamma-ray bursts

Figure 4.17: The angular distribution of the Poynting flux per steradian on a sphere of
r ≈ 1500 km for model Q4B5L at selected time slices. The bright color displayed in the
polar region stems from the Blandford-Znajek effect, while for other regions, the magnetic
fields accompanying with the outflowing matter contribute mainly to the Poynting flux.
The opening angle of the Poynting flux in the polar region is shown to increase with time.
See the following link for an animation: https://www2.yukawa.kyoto-u.ac.jp/~kota.
hayashi/Q4B5L-f3D.mp4

69

https://www2.yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5L-f3D.mp4
https://www2.yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5L-f3D.mp4


4. Result1: The overall evolution of the entire merger and post-merger stages

T
(EM)
µν denotes the electromagnetic part of the energy-momentum tensor. We here choose

a particular value (10◦) for the surface integral because the opening angle of the funnel
region is initially as narrow as ∼ 10◦ (see Figs. 4.16 and 4.17). We always assume an
observer located along the z-axis for evaluating Liso.

Figure 4.15 shows that the typical maximum value of Liso is of order 1050 erg/s and
Liso varies with time irrespective of the black-hole mass and initial magnetic-field strength.
This varying isotropic-equivalent luminosity together with the opening angle of θ ∼ 10◦

(cf. Fig. 4.17) is in a fair agreement with those for short-hard gamma-ray bursts in the
assumption that the conversion efficiency of the Poynting flux to the gamma-ray radiation
is sufficiently high (i.e., close to unity) [14, 15].4

The stage with a high value of Liso ≳ 1050 erg/s continues broadly for ∼ 1 s. Subse-
quently, the isotropic-equivalent luminosity starts decreasing. This is due to the fact that
the opening angle of the funnel region increases and the magnetic-flux density is reduced.
Remember that the funnel region is determined by the gas pressure of the thick torus at the
funnel wall. In the long-term evolution of the accretion torus, the rest-mass density and
associated gas pressure around the funnel wall decrease with time due to the post-merger
mass ejection. On the other hand, the total magnetic flux penetrating the black hole does
not significantly decrease in the ideal magnetohydrodynamics, and thus, the decrease in
the magnetic pressure is not as significant as the gas pressure at the funnel wall. As the
rest-mass density decreases, thus, the magnetic pressure exceeds the gas pressure at the
original position of the funnel wall, and as a result, the funnel wall expands gradually.

Figure 4.16 displays the snapshot of the toroidal magnetic field together with the
poloidal magnetic-field lines on the x-z plane at selected time slices. This indeed shows
that the configuration of the magnetic-field lines changes from an aligned collimated one
near the rotational axis to a more spread one for late time with t ≳ 1 s.

Since the collimation of the poloidal magnetic-field lines is loosened, the Poynting
flux in the vicinity of the rotational axis also decreases gradually. Figure 4.17 shows
that the opening angle of the strong Poynting-flux (−T (EM) r

t

√−g) region increases from
≲ 10◦ to ∼ 20◦ and the intensity of the Poynting flux becomes weak with time. The
reason that the peak of the Poynting flux is located near the funnel wall is that the
magnetic-field lines near the funnel wall penetrate the equatorial regions of the spinning
black hole, and hence, the Blandford-Znajek effect can be more efficient. If the Poynting
flux indeed determines the luminosity of short-hard gamma-ray bursts, its brightness also
should decrease for t ≳ 1 s. This mechanism could be interpreted as a reason that the
timescales of short-hard gamma-ray bursts are less than 2 s with the typical timescale of
∼ 1 s. Specifically, our numerical results propose that the timescale of ∼ 1 s is determined
by the evolution timescale of the accretion disk (torus), which is determined by the neutrino
cooling and magnetohydrodynamics turbulence (effectively viscous process) that control
the post-merger mass ejection. See also Sec. 5.2.3 for other mechanism by which Liso is
decreased.

A word of the caution is appropriate here. First, the turbulence and dynamo activated
by the MRI in the accretion disk are stochastic processes. This implies that the poloidal
magnetic-field flux penetrating the black hole could not be precisely predicted. For ex-
ample, by the accretion of the magnetic fields with a random polarity, the magnetic flux
that penetrates the black hole may be smaller than that in the accretion disk. Hence, it
is reasonable that the magnetic-field strength could not be always as strong as the one
necessary for explaining typical short-hard gamma-ray bursts. Indeed, for model Q6B3H,

4In the magnetohydrodynamics simulation, the flow with low values of ρ/b2 cannot be accurately
computed. Therefore, it is not possible to reproduce the high Lorentz factor flow in these simulations.
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4.3. Magnetic field in the funnel region and the relation to short gamma-ray bursts

the Poynting luminosity is by one order of magnitude lower than those for other models.
In this case, the magnetic-field strength on the black-hole horizon is about 1/3 of those for
other models. Therefore, broadly speaking, there are two possible cases: (1) A magneto-
sphere with strong poloidal magnetic fields is formed near the rotational axis of a spinning
black hole. In this case, the maximum isotropic-equivalent Poynting luminosity of 1050–
1051 erg/s consistent with typical short-hard gamma-ray bursts can be generated; (2) Due
to the stochastic process of the MRI-induced turbulent motion, poloidal magnetic fluxes
falling from the disk are not aligned well, and the poloidal magnetic field formed around
the black hole is not strong enough to appreciably form a magnetically supported funnel
structure (force-free magnetosphere). In such a case, the isotropic-equivalent Poynting
luminosity may not be high enough to be consistent with typical short-hard gamma-ray
bursts, although a weak Poynting luminosity can be generated as in model Q6B3H. For
more detailed understanding on this problem, a larger number of higher-resolution simu-
lations will be necessary.
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Chapter 5

Result2: The dependence on
initial magnetic field strength,
configuration, neutron-star
equation of state, and
equatorial-plane symmetry

In this chapter, we give results on the simulations with different initial magnetic field
strengths, configurations, neutron-star EOSs, and equatorial-plane symmetry and describe
the qualitative and quantitative dependence of the evolution processes. We perform 4
simulations with the parameters and quantities summarized in Table 5.1. We discovered
that the essential part of the evolution is qualitatively universal irrespective of the setups.
Figures. 5.1, 5.2, and 5.3 displays three-dimensional snapshots, two-dimensional snapshots
on the y–z plane, and two-dimensional snapshots on the x–y plane. The model shown in
these figures is Q4B5tn, for which we do not impose the equatorial-plane symmetry and
provide a confined toroidal magnetic field initially with its maximum strength at the
center of the neutron star of 5× 1016G. The overall evolution process in the merger and
the post-merger stages are qualitatively the same as that described in Sec.4.1.

However, we find some differences in the post-merger mass ejection and the evolution
of the magnetosphere. Due to the absence of the equatorial-plane symmetry, the post-
merger ejecta does not have the symmetry. We also observe that the accretion disk and the
magnetosphere tilt. In addition, another model with no equatorial-plane symmetry shows
that magnetic-field polarity in the magnetosphere reverses. These differences are likely
due to the fact that the post-merger evolution is determined by the stochastic turbulence
in the disk. The properties of the magnetosphere denoted here play a role in the decrease
of the isotropic-equivalent Poynting luminosity.

In addition, we give a more detailed analysis of the system. We analyze the quality
factor of the MRI and discussed the dependence on the initial magnetic field strength.
The anisotropic part of the Maxwell and the Reynolds stresses are evaluated to discuss
the qualitative aspect of the effective viscosity induced by the magnetohydrodynamic
turbulence. We also propose a new method to assess whether the black hole has the
ability to form a magnetosphere and launch a jet by evaluating magnetohydrodynamic
properties near the horizon.

72



Figure 5.1: The three-dimensional snapshots for model Q4B5tn with the length scale of
∼ 104 km at t ≈ 150, 1200, 1700, and 2900ms. For each time, the left panel shows the
ejecta, which is colored for the electron fraction Ye; the middle panel shows the rest-mass
density ρ (g/cm3) (contours) with magnetic-field lines (pink lines), unbound outflow (white
color) and its velocity (green arrows); the right panel shows the magnetic-field strength
b =

√
bµbµ (G). See also the following link for the animation: https://www2.yukawa.

kyoto-u.ac.jp/~kota.hayashi/Q4B5tn-3D.mp4.
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5. Result2: The dependence on initial magnetic field strength, configuration,
neutron-star equation of state, and equatorial-plane symmetry

Figure 5.2: The 2D snapshots for model Q4B5tn on the y-z plane with a region of
[−2000 km : 2000 km] for both y and z at t ≈ 150, 350, 550, 800, and 1700ms. For each
time, the first, second, third, and fourth panels show the rest-mass density ρ (g/cm3), the
electron fraction Ye, the entropy per baryon s, and −hut−hmin, respectively. In the fourth
panel, unbound matter is (non-black) colored and bound matter is colored by black. See
also the following link for the animation: https://www2.yukawa.kyoto-u.ac.jp/~kota.
hayashi/Q4B5tn-2Dyz.mp4.
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Figure 5.3: The 2D snapshots for model Q4B5tn on the x-y plane with [−200 km :
200 km] for both x and y at t ≈ 30ms, and with [−2000 km : 2000 km] at t ≈ 250,
and 800ms. For each time, the first, second, third, and fourth panels show the rest-mass
density ρ (g/cm3), the electron fraction Ye, the entropy per baryon s, and the inverse
of the plasma beta b2/4πP , respectively. See also the following link for the animation:
https://www2.yukawa.kyoto-u.ac.jp/~kota.hayashi/Q4B5tn-2Dxy.mp4.
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5. Result2: The dependence on initial magnetic field strength, configuration,
neutron-star equation of state, and equatorial-plane symmetry

Table 5.1: Key parameters and quantities for the initial conditions together with the
parameters of grid setup for our numerical simulations. b0,max: the initial maximum
magnetic-field strength, ∆ximax : the grid spacing for the finest refinement level, L1: the
location of the outer boundaries along each axis, and the values of N and imax. For all
the models, the neutron-star mass is 1.35M⊙, the initial black-hole mass is 5.4M⊙, the
initial dimensionless spin of the black hole is 0.75, and the initial ADM mass MADM,0 is
6.679M⊙ ≈ 0.9894m0. The models from the previous chapter (Q4B5L and Q4B5H) are
also shown for comparison.

model

name
EOS

b0,max

[G]

b0

config.

plane

sym.

∆ximax

[m]

L1

[km]
N imax

Q4B3e15 DD2 3× 1015 poloidal yes 400 6.98× 104 170 11

Q4B5tn DD2 5× 1016 toroidal no 400 6.98× 104 170 11

Q4B5n DD2 5× 1016 poloidal no 400 6.98× 104 170 11

SFHoQ4B5 SFHo 5× 1016 poloidal yes 250 3.10× 104 243 10

Q4B5L DD2 5× 1016 poloidal yes 400 1.74× 104 170 9

Q4B5H DD2 5× 1016 poloidal yes 270 1.62× 104 234 9

Table 5.2: The dynamical ejecta mass evaluated at t = 20ms: Meje,dyn, and the lower
bound of the post-merger ejecta mass: Meje,pm in units of M⊙. Since the mass of the
post-merger ejecta is still increasing at the termination of all the runs, we here list the
lower bound for it.

model name Meje,dyn Meje,pm

Q4B3e15 0.045 ≥0.030

Q4B5tn 0.045 ≥0.030

Q4B5n 0.046 ≥0.033

SFHoQ4B5 0.013 ≥0.019

Q4B5L 0.046 ≥0.035

Q4B5H 0.046 ≥0.028

5.1 The evolution of the accretion disk and post-merger
mass ejection

5.1.1 Disk evolution and ejecta

In this subsection, we present quantitative details on the evolution of the accretion disk
and on the post-merger mass ejection. Figure 5.4 shows the time evolution of the rest
mass of the matter located outside the apparent horizon M>AH (dashed curves) and the
accretion disk mass Mdisk (solid curves). Figure 5.5 shows the time evolution of the rest
mass of the unbound matter (ejecta) Meje. The definition of M>AH, Mdisk, and Meje are
the same as Eqs. (4.3)–(4.7). Table 5.2 shows the rest mass of the dynamical ejecta and
the post-merger ejecta.

The results for M>AH, Mdisk, and Meje show that the dependence of these quantities
on the initial magnetic field setup and equatorial symmetry imposed is weak. Also, the
results for the SFHo EOS model are qualitatively similar to those for the DD2 model,
although for the SFHo model, M>AH, Mdisk, and Meje are smaller than those for the DD2
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5.1. The evolution of the accretion disk and post-merger mass ejection
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Figure 5.4: The time evolution of the rest mass of the matter located outside the apparent
horizon (dotted curves) and the accretion-disk mass (solid curves) for models Q4B3e15 (top
panel), Q4B5n and Q4B5tn (middle panel), and SFHoQ4B5 (bottom panel). The results
for models Q4B5L and Q4B5H of the previous chapter are also shown for comparison.
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5. Result2: The dependence on initial magnetic field strength, configuration,
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Figure 5.5: The same as Fig. 5.4 but for the time evolution of the rest mass of the unbound
matter.
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5.1. The evolution of the accretion disk and post-merger mass ejection
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Figure 5.6: The same as Fig. 5.4 but for the time evolution of the total neutrino luminosity.
The post-merger mass ejection sets in at t ∼ 300–500ms at which Lν ∼ 1051–1051.5 erg/s.
The results for models Q4B5L and Q4B5H of the previous chapter are also shown for
comparison.
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5. Result2: The dependence on initial magnetic field strength, configuration,
neutron-star equation of state, and equatorial-plane symmetry

model reflecting the smaller neutron-star radius for the SFHo model.

M>AH decreases steeply at ∼ 10ms at which the merger occurs and the majority
of the neutron-star matter plunges into the black hole. After that, M>AH continues to
decrease gradually due to the matter accretion into the black hole induced by the angular-
momentum transport from the magnetohydrodynamics effect. Mdisk right after the merger
is Mdisk,0 ≈ 0.28M⊙ and ≈ 0.22M⊙ for the DD2 and SFHo models, respectively.

The evolution of Meje clearly shows that two distinct components of the ejecta exist.
One is the dynamical ejecta, for which the mass steeply increases right after the merger
spending only for a few ms. The rest mass for this component is ≈ 0.046M⊙ and ≈
0.013M⊙ for DD2 and SFHo models, respectively. After this increase by the dynamical
mass ejection, Meje remains approximately constant for several hundred ms. Then, Meje

starts increasing again at t ∼ 300–600ms. This component is the post-merger ejecta driven
by the heating associated with MRI turbulence after the neutrino luminosity decreases
below the heating rate (see Fig. 5.6), i.e., Lν decreases below 1051–1051.5 erg/s. The rest
mass for this component is ≈ 0.030M⊙ and ≈ 0.019M⊙ for the DD2 and SFHo models at
the termination of the simulations, respectively. 1 These values are about 10% of Mdisk,0.
The result for the DD2 model shows good agreement with the result of the previous
chapter.

The only significant quantitative difference is found in the onset time of the post-
merger mass ejection. For example, for model Q4B3e15 which has the low initial magnetic
field strength, the onset time of the post-merger mass ejection is t ∼ 600ms, i.e., ∼ 200ms
behind a high initial magnetic-field strength model Q4B5L. The reason for this is that for
the model with the low initial field strength it takes a longer time until the magnetic-field
strength is enhanced enough for the disk to be in the equipartition state and for numerical
computation to resolve the fastest growing mode of the MRI. It results in the delay of the
development of the MRI-induced turbulence in the accretion disk. Note, however, that
this delay may not be present in the realistic case, in which the MRI is resolved even for
the weak fields. Besides this difference, the process leading up to the post-merger mass
ejection is qualitatively the same as that found the previous chapter.

5.1.2 Magnetic-field evolution

Figures 5.7 and 5.8 show the time evolution of the electromagnetic energy, EB, and the
ratio of the electromagnetic energy to the internal energy, Eint, respectively. Here, EB and
Eint are defined, respectively, by Eqs. (4.8), and (4.9). The evolution feature of EB and
EB/Eint is qualitatively the same as described in the previous chapter.

A quantitative difference is found for models Q4B3e15 and Q4B5nt at t ≲ 100ms,
which corresponds to the stage where the disk is not yet in the equipartition state. For
model Q4B3e15, the initial magnetic field is weak and the magnetic-field amplification by
winding during the merger stage is insufficient to reach the saturation. For this case, the
magnetic-field energy keeps increasing until t ∼ 60 ms at which the disk settles eventually
into an equipartition state, and thus, the magnetic-field amplification saturates. The main
contributor to this amplification is clearly understood to be the magnetic winding because
EB increases in proportion to t2 approximately for t ≈ 20–60ms. In this model, the MRI
is not well resolved until t ∼ 200ms because of the insufficient grid resolution and/or
the insufficient magnetic-field strength (see below), so that we can only find the effect

1Strictly speaking we can provide only the lower bound of the post-merger ejecta mass because at
the termination of the simulations, the mass is still increasing slightly. Note, however, that the possible
additional increase is less than 0.01M⊙ because the disk mass at the termination of the simulation is less
than 0.01M⊙.
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Figure 5.7: The time evolution of the electromagnetic energy evaluated for models
Q4B3e15 (top panel), Q4B5n and Q4B5tn (middle panel), and SFHoQ4B5 (bottom panel).
The results for models Q4B5L and Q4B5H of the previous chapter are also shown for com-
parison.

81



5. Result2: The dependence on initial magnetic field strength, configuration,
neutron-star equation of state, and equatorial-plane symmetry

10-5

10-4

10-3

10-2

10-1

100

 10  100  1000

E
 B
 /

 E
 in

t 

t [ms]

Q4B5L
Q4B3e15

10-5

10-4

10-3

10-2

10-1

100

 10  100  1000

E
 B
 /

 E
 in

t 

t [ms]

Q4B5L
Q4B5tn
Q4B5n

10-5

10-4

10-3

10-2

10-1

100

 10  100  1000

E
 B
 /

 E
 in

t 

t [ms]

Q4B5H
SFHoQ4B5

Figure 5.8: The same as Fig. 5.7 but for the time evolution of the ratio of the electromag-
netic energy to the internal energy evaluated for the outside of the apparent horizon.
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5.1. The evolution of the accretion disk and post-merger mass ejection

of winding in the magnetic-field amplification. However, for a real system (or in an ideal
computation with an infinite grid resolution), the MRI should take place significantly from
an earlier stage after the merger. In such realistic cases, we expect that the disk would
achieve the equipartition state earlier.

For model Q4B5tn, we find another remarkable behavior right after the merger: During
the merger stage EB is amplified up to ∼ 4×1051 erg/s, but it rapidly drops by an order of
magnitude to∼ 4×1050 erg/s. We do not see this drop for other models. Our interpretation
for this drop is that the magnetic-field dissipation by reconnection near the equatorial plane
occurs. For this model, we initially embed a strong magnetic field with opposite polarities
across the equatorial plane. This magnetic-field configuration causes the magnetic-field
reconnection. After this drop, EB starts increasing again by winding, although we do not
find the clear power law proportional to t2 because the magnetic-field energy is close to
saturation. At t ≈ 40ms EB reaches saturation and starts decreasing again. After the
saturation, EB/Eint approaches asymptotically ∼ 10−2 as in other models.

The evolution process after the magnetic field saturates is qualitatively identical ir-
respective of the initial magnetic-field strength, configuration, neutron-star EOS, and
equatorial-plane symmetry. Thus, we conclude that the evolution process shown here
is the universal one for black hole-neutron star mergers that experience tidal disruption
of neutron stars.

Figure 5.9 shows the evolution of an MRI quality factor, defined by

Qz := ⟨|λMRI/∆x|⟩ave , (5.1)

where λMRI is the wavelength for the fastest growing mode of the axisymmetric MRI
defined by Eq. (4.1), and ⟨· · · ⟩ave denotes the spatial average with the weight of the rest-
mass density for the region with ρ ≥ 106 g/cm3. For Qz > 10, we interpret that the MRI
is numerically well-resolved. It is found that for most of the models, Qz > 10 is achieved
for t ≳ 20–50ms, while for model Q4B3e15, Qz > 10 is achieved only for t ≳ 250ms.2

This illustrates that for the model with lower initial magnetic-field strengths, it takes
a longer time until the fastest growing mode of the MRI can be well resolved. As we
already remarked, this is an artifact due to the insufficient grid resolution in numerical
computation, and hence, in real systems, the MRI turbulence would be developed from
an earlier stage.

5.1.3 Effective viscosity

Associated with the development of the MRI turbulence and dynamo, effective viscosity is
enhanced in the accretion disk. We here analyze an effective viscosity tensor by evaluating
the ratio of the magnetohydrodynamical anisotropic stress to the pressure, which is defined
by

αij :=

〈∣∣∣∣ 1P
(
ρhûiûj −

1

4π
bibj

)∣∣∣∣〉
ave

. (5.2)

We also evaluate the ratio of the Maxwell stress to the pressure defined by

αM
ij :=

〈∣∣∣∣ 1P
(
− 1

4π
bibj

)∣∣∣∣〉
ave

. (5.3)

2A steep increase of Qz takes place at t ∼ 200ms, and thus, the MRI activity is also partly visible
already for t ≳ 200ms in this model.
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Figure 5.9: The time evolution of the MRI quality factor for models Q4B3e16 (left panel)
and Q4B5n and Q4B5tn (right panel). The results for model Q4B5L of the previous
chapter are also shown for comparison.
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Figure 5.10: The time evolution of the ratio of the magnetohydrodynamical anisotropic
stress (left) and Maxwell stress (right) to the pressure, αij and αM

ij , respectively. The
results for rφ, xy, xz, and yz components are shown. The top two panels show the results
for model Q4B3e15, and the bottom two panels show the results for models Q4B5n and
Q4B5tn.
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Here, i ̸= j (i, j = x, y, z) and ⟨· · · ⟩ave denotes the spatial average with the weight of the
rest-mass density for the region with ρ ≥ 107 g/cm3. ûi is defined by ui − ⟨ui⟩t,ave where
⟨ui⟩t,ave denotes the local time average of ui. The time average needs to be subtracted from
ui to eliminate the contribution of coherent motion (not random motion) for evaluating
the anisotropic stress associated with the turbulent motion.

Figure 5.10 plots the time evolution of the off-diagonal components of αij and αM
ij . This

shows that for t ≲ 100ms αij > O(0.1), but we interpret that this is not a physical value,
nor associated with the magnetohydrodynamics effect: The remnant matter shows the
non-axisymmetric structure for ≲ 100ms after the merger, and in such a case, the value
of αij , specifically the contribution from the Reynolds stress part, cannot be evaluated
properly. Thus we focus only on the stage for t ≳ 100ms for which the non-axisymmetric
structure is not very appreciable and the MRI turbulence is developed.

When the disk is in a MRI turbulent stage, we find that the rφ and xy components
are ≈ 0.05–0.1, and xz and yz components are ≈ 0.02–0.05. Hence, the order of the
magnitude of αij agrees with the often-used value of the alpha viscous parameter for the
accretion disk [77], although the magnitude for each component of αij has anisotropy. Our
interpretation for this anisotropy is that not only the MRI turbulence but also the effects
by the global magnetic fields such as magneto-centrifugal effects [119] contribute to the
angular momentum transport because αij for rφ and xy components are larger than the
others. We also note that the dominant part of αij stems from the Maxwell stress; the
contribution of the Reynolds stress, which originates from the fluid turbulent motion, is
∼ 0.01 irrespective of the model and component. This trend is universally found for all
the models.

The previous subsection showed that the typical timescale of this disk evolution is
several hundredms. Considering the rφ component of the effective viscosity tensor αrφ ≈
0.05, we evaluate the timescale of the effectively vicious process to be

τvis ∼
R2

αrφcsH
∼ 660ms

( αrφ

0.05

)−1
(

cs
109cm/s

)−1

×
(

H

3× 106cm

)−1( R

107cm

)2

, (5.4)

which is consistent with the timescale of the disk evolution. Here, R and H are the radius
and the height of the disk, respectively, and cs denotes the sound speed.

Model Q4B3e15, which has a low initial magnetic-field strength, shows a factor of
∼ 2 smaller value than for the other models, but this is relatively minor compared to the
difference in the initial magnetic field strength (the initial magnetic field is smaller than
the other models by a factor of ∼ 17). This result suggests that for this model, the fastest
growing mode of the MRI might be only partly resolved. Indeed, for this model, a delay
with ∼ 200ms in the magnetic-field amplification as well as in all the processes of the disk
evolution is found. This indicates that the disk expansion due to the angular momentum
transport is delayed due to the weaker turbulence viscosity. As a result of this delay, the
drop of the disk temperature and neutrino luminosity delays, and thus, the post-merger
mass ejection is delayed by ∼ 200ms. Note, however, that the delay could be the artifact
due to the insufficient grid resolution.

5.1.4 Property of ejecta

Now, we turn our attention to the properties of the ejecta. Figures 5.11 and 5.12 show the
rest-mass histogram as a function of the electron fraction Ye and velocity v for the ejecta
component, respectively.
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Figure 5.11: Mass histogram as a function of the electron fraction of the ejecta for models
Q4B3e15 (top panel), Q4B5n and Q4B5tn (middle panel), and SFHoQ4B5 (bottom panel).
The results for models Q4B5L and Q4B5H of the previous chapter are also shown for
comparison. Note that the vertical axis is normalized by the total ejecta mass.
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Figure 5.12: The same as Fig. 5.11 but for the mass histogram as a function of the velocity
of the ejecta.
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There are two distinctive Ye components for the ejecta as found in previous chapter.
One is the dynamical ejecta for which Ye ≈ 0.03–0.07 irrespective of the simulation setups.
However, the range of Ye for the dynamical ejecta depends slightly on the EOS: For model
SFHoQ4B5, Ye ≈ 0.03–0.06, while for model Q4B5H with DD2 EOS, Ye ≈ 0.03–0.07 [45].
The electron fraction of the dynamical ejecta directly reflects the neutron richness of the
neutron star because the dynamical ejecta is affected only weakly by the thermal and
weak-interaction process in the merger and post-merger stages. Thus, the difference in
the distribution of Ye for the dynamical ejecta between models SFHoQ4B5 and Q4B5H
comes directly from the difference in the neutron star EOSs.

For the post-merger ejecta, the electron fraction is higher as 0.1 ≲ Ye ≲ 0.4 and has
a peak at Ye ∼ 0.25 for the models with the DD2 EOS and Ye ∼ 0.3 for the model
with the SFHo EOS. We note that irrespective of the initial magnetic-field setups and
equatorial-plane symmetry, approximately the same distribution is found for the DD2
models. However, the difference in the EOS makes a quantitative difference. Comparing
the high-resolution models SFHoQ4B5 and Q4B5H, we find that model SFHoQ4B5 has
a distribution with higher Ye values. In our interpretation, this is due to the fact that
the neutron star modeled by the SFHo EOS is tidally disrupted at an orbit closer to
the black hole because it has a smaller neutron-star radius. Then the matter that forms
the one-armed structure right after the merger and subsequently forms an accretion disk
experiences stronger compression and shock heating between the inner and the outer spiral
arms. As a result, the disk temperature is enhanced right after the tidal disruption and
the value of Ye is also enhanced (see also Ref. [45]).

There are also two components in the mass histogram as a function of the velocity of the
ejecta (see Fig. 5.12). The high-velocity component with v/c ≳ 0.1 stems primarily from
the dynamical ejecta, while the low-velocity component stems primarily from the post-
merger ejecta. For the DD2 models, the velocity histogram has approximately identical
distributions irrespective of the setups, and it also agrees with the result of the previous
chapter. For the SFHo model, the low-velocity component has a higher fraction than that
for the DD2 models, because the dynamical ejecta mass is smaller while the post-merger
ejecta mass is comparable with that of the DD2 models.

5.2 Magnetic field in the funnel region and the relation to
the short-hard gamma-ray burst

5.2.1 Poynting luminosity and magnetic field in the funnel

Figure 5.13 shows the time evolution of Liso,which is defined by Eqs. (4.14), and (4.15).
For models Q4B5n, and Q4B5tn, the typical maximum value of Liso is O(1050) erg/s. The
high-Poynting luminosity stage, which is designated by Liso ≳ 3×1049 erg/s in this chapter,
is identified for t ≈ 300–2500ms for model Q4B5n. For model Q4B5tn, the high-Poynting
luminosity stage for the upper and lower hemispheres is identified for t ∼ 500–1500ms
and ∼ 1000–1600ms, respectively. During the high-Poynting luminosity stage, Liso varies
with time by more than an order of magnitude for these models, reflecting the variation
of the magnetic-field strength and configuration. The reason for this variability is that
the magnetic fields with high field strengths are often provided from the disk to the black
hole by the MRI dynamo activity. Figure 5.14 shows the average value of the toroidal field
bφ̄,ave as a function of time and polar angle θ for models Q4B3e15, Q4B5n, and Q4B5tn.
Here, x, y, and z are defined with respect to the black-hole center (the location of the
puncture). The toroidal field is defined by bφ̄ = (xby − ybx)/

√
x2 + y2. The average is
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Figure 5.13: The time evolution of isotropic-equivalent Poynting luminosity Liso for mod-
els Q4B3e15 (top panel), Q4B5n and Q4B5tn (middle panel), and SFHoQ4B5 (bottom
panel). The results for models Q4B5L and Q4B5H of the previous chapter is also shown
for comparison. The characters “u” and “l” denote the upper and lower hemispheres,
respectively.
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Figure 5.14: The profile of the average toroidal magnetic field along the polar direction
(θ) at r ≈ 150 km as a function of time for models Q4B3e15 (top panel), Q4B5n (middle),
and Q4B5tn (bottom).
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Figure 5.15: The snapshot of the toroidal magnetic field (color profile) together with the
poloidal magnetic-field lines (curves) on the x-z plane at selected time slices for model
Q4B5n. See also the following link for an animation: https://www2.yukawa.kyoto-u.

ac.jp/~kota.hayashi/Q4B5n-mf.mp4.
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5.2. Magnetic field in the funnel region and the relation to the short-hard gamma-ray
burst

performed with respect to the azimuthal angle φ = tan−1(y/x) at the selected radius
of r :=

√
x2 + y2 + z2 ≈ 150 km. Figure 5.14 displays the butterfly structure [118]; the

polarity of the toroidal magnetic field flips in a quasi-periodic manner with the period of
∼ 20 local orbital periods. Also, the strong magnetic-field fluxes continuously ascend from
the equatorial plane to the surface of the accretion disk.

Although this butterfly structure induced by the MRI dynamo was already found in the
models of the previous chapter, we find an interesting new feature in our current model;
the MRI dynamo activity in the accretion disk determines the magnetic-field structure
in the magnetosphere. In the dynamo activity, the magnetic fields often ascend from the
disk to the vertical and polar regions. For most of the cases, they do not cancel out or
alternate the fields originally stayed there, and thus, the polarity of the magnetosphere is
unchanged. However, for exceptional cases, the inversion of the polarity is achieved. For
model Q4B5n, this occurs at t ∼ 1.1 s and 1.4 s (see the middle panel of Fig. 5.14). For
t ≲ 1.1 s, the polarity of bφ̄,ave is positive in the polar region of the upper hemisphere.
Then at t ∼ 1.1 s, the polarity flips to negative, following the polarity flip at an inner
region of the accretion disk. Subsequently, at t ∼ 1.4 s, the polarity flips back to positive.
For Liso of this model, there are three characteristic peaks at t ∼ 0.3 s, 1.3 s, and 1.5 s.
These peaks reflect the variation of the butterfly structure at the polar region: During the
polarity flips in progress, the intensity of the outgoing Poynting flux and Liso naturally
drop, because the magnetic field in the polar region is not aligned and the magnetosphere
loses a coherency with respect to the magnetic-fields lines.

This polarity flip in the magnetosphere is also found in the snapshots of the magnetic-
field structure. Figure 5.15 shows the toroidal and poloidal magnetic field structures
on the x-z plane at t ∼ 0.3 s, 1.3 s, 1.5 s, and 2.7 s for model Q4B5n. The first three
panels correspond to the snapshots at which Liso is at local peaks. The figure clearly
shows the polarity flip of both poloidal and toroidal magnetic fields in the magnetosphere.
The magnetic fields ascending from the disk reconnect the originally-existing fields in the
magnetosphere, and subsequently, the polarity is changed.

The middle and bottom panels of Fig. 5.14 also show the magnetic-field polarity flip
near the polar region for t > 2.5 s of model Q4B5n and for t ∼ 1.0 s on the upper hemisphere
of model Q4B5tn. However, for these stages, no peak in Liso is found and its typical value
is lower than ∼ 1049 erg/s, which is an order of magnitude lower than the peak luminosity.
Our interpretation for this is that the magnetic fields ascending from the disk due to the
MRI dynamo activity disturb or deform the magnetosphere, but are not strong enough or
aligned enough to replace the polarity of the field completely and reform the magnetosphere
that can launch a high-intensity Poyting flux with Liso ∼ 1050 erg/s.

We note that the polarity flip was already reported in magnetohydrodynamics simula-
tions for the accretion disks around a spinning black hole [64, 79]. For these simulations,
the authors also found a turbulent state of the accretion disks. Thus, the polarity flip is
likely to occur often, if magnetic fluxes with high field strengths are ejected from the inner
region of the disks in a turbulent state.

For both models Q4B3e15 and SFHoQ4B5, the maximum value of Liso is ∼ 5 ×
1049 erg/s, which is slightly lower than those of other models for which typically Liso ∼
1050 erg/s in the bright stages. Our interpretation is that this is due to the lower magnetic-
field strength in the magnetosphere. For these models, the rest-mass density in the disk
at the time when the magnetosphere is formed is lower. The reason for model Q4B3e15
is that it takes a longer time to form the magnetosphere than for the other DD2 models
and the reason for model SFHoQ4B5, the disk mass is smaller than for the DD2 mod-
els. As we already mentioned, the field strength in the magnetosphere is determined by
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the field strength of the disk at which the equipartition state is achieved. For model
Q4B3e15, the equipartition is achieved in the relatively late stage, at which the rest-mass
density and internal energy of the disk are relatively low. This leads to a lower magnetic-
field strength in the magnetosphere for these two models. As a result of the lower field
strength, the Poynting luminosity, which is powered by the Blandford-Znajek mechanism,
becomes lower. The lower maximum value of Liso for model SFHoQ4B5 is understood as
the physical result, while that for model Q4B3e15 could be the numerical artifact due to
the insufficient grid resolution.

The high-Poynting luminosity stage for model Q4B3e15 starts at ∼ 2600ms and lasts
for ∼ 400ms, entering the fading stage at ∼ 3000ms. For model SFHoQ4B5, the high-
Poynting luminosity stage starts at ∼ 1100ms. We do not find a clear fading stage for
this model, but Liso appears to gradually decrease to ∼ 1049 erg/s at the termination
of the simulation. We indeed find for this model that the opening angle increases with
a timescale of a few seconds, and thus, we expect that Liso will eventually drop in this
timescale.

The isotropic-equivalent Poynting luminosity of Liso ∼ 1050 erg/s together with the
opening angle of θ ∼ 10◦ (cf. Fig. 5.1) fairly agrees with those for short-hard gamma-ray
bursts (or at least for low-luminosity short-hard gamma-ray bursts) in the assumption that
the conversion efficiency of the Poynting flux to the gamma-ray radiation is sufficiently
high (i.e., close to unity) [14, 15].

5.2.2 MADness parameter

Figure 5.16 shows the time evolution of the so-called MADness parameter which is defined
by [78]

ϕAH :=
ΦAH√

ṀAH4πr2AHc
, (5.5)

where

ṀAH :=

∮
AH

ρ
√−guidSi

≈
∮
r=max (rAH)

ρ∗v
rr2 sin θdθdφ, (5.6)

and

ΦAH :=

∮
AH

Bi√γdSi

≈
∮
r=max (rAH)

Brr2 sin θdθdφ. (5.7)

It is found that for all the models ϕAH < 10 within the simulation time. Thus, the accretion
disks in our simulations do not satisfy the often-referred condition for the magnetically-
arrested disk (MAD), ϕAH ≳ 50 [78]. However, as we have already described, a high-
intensity Poynting flux is generated even if the condition for the MAD is not satisfied.
Thus, the MADness parameter ϕAH may not be suitable for assessing whether the jet is
launched in the context of neutron-star mergers.

Figure 5.17 shows the time evolution of ΦAH: the magnetic flux penetrating the appar-
ent horizon. For models Q4B5n and Q4B5tn, the magnetic fluxes penetrating the upper
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Figure 5.16: The time evolution of the MADness parameter for models Q4B3e15 (top
panel), Q4B5n and Q4B5tn (middle panel), and SFHoQ4B5 (bottom panel). The results
for models Q4B5L and Q4B5H of the previous chapter is also shown for comparison. The
characters “u” and “l” represent the upper and lower hemispheres, respectively.
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Figure 5.17: The same as Fig. 5.16 but for the time evolution of the magnetic flux evaluated
on the apparent horizon.
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Figure 5.18: The profile of the local MADness parameter ϕAH,local along the polar direction
(θ) as a function of time for models Q4B3e15 (top panel), Q4B5n (middle), and Q4B5tn
(bottom).
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Figure 5.19: The angular distribution of the Poynting flux per steradian on a sphere of
r ≈ 1500 km for model Q4B5tn at selected time slices. The left and right panels display
the upper and lower hemispheres, respectively. The bright color displayed in the polar
region stems from the Blandford-Znajek effect, while for other regions, the magnetic field
accompanied by the outflowing matter contributes mainly to the Poynting flux. The region
for which the Poynting flux is intense moves in the direction of the y-axis from the vicinity
of the pole. At the same time, the opening angle of the Poynting flux gradually increases.
See also the following link for the animation: https://www2.yukawa.kyoto-u.ac.jp/

~kota.hayashi/Q4B5tn-pf.mp4.
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and lower hemisphere of the apparent horizon are shown separately, although these two
components approximately agree with each other. For most of the models, the magnetic
flux on the apparent horizon reaches its peak in the timescale similar to that for achieving
the equipartition in the accretion disk. Since ΦAH does not increase after the peak, the
decrease of the accretion rate is the only path for the increase of the MADness parameter
for such models. For model Q4B5tn, which initially has the toroidal magnetic field in the
neutron star, ΦAH is low for the early post-merger stage (t ≲ 50ms) and it increases grad-
ually in the entire simulation time. For this case, field lines starting from a point in each
hemisphere always end in the same hemisphere for the early stage. However, due to the
MRI turbulence and dynamo, the poloidal field is developed and subsequently penetrates
the black-hole horizon, resulting in the increase of ΦAH. By contrast, for the pure poloidal
initial field, the black hole horizon is penetrated by the poloidal field from the early stage.

Because the MADness parameter defined on the entire horizon surface might not be
a good indicator for assessing the launch of the strong Poynting flux, instead of it, we
propose another parameter based on the local quantities. The point is that the magnetic-
field lines that generate the strong Poynting flux do not penetrate the black-hole horizon
in the vicinity of the equator, at which dense matter infalling from the accretion disk
is always present and the (low-beta) magnetosphere is not formed. This suggests that
focusing on the polar region on the apparent horizon for evaluating the MADness-like
quantity would be a better strategy. Thus, we introduce a “local MADness parameter
ϕAH,local”, which is defined by

ϕAH,local :=
Br

√
ρ∗vrc

. (5.8)

Figure 5.18 shows the azimuthal-average value of the local MADness parameter ϕAH,local

as a function of time and polar angle θ for models Q4B3e15, Q4B5n, and Q4B5tn. For all
the models, we find time intervals with Liso ≳ 3 × 1049 erg/s, and for such time intervals
we always find ϕAH,local ≳ 100 at polar region of the apparent horizon. This suggests that
the black hole has the ability to form a magnetosphere and launch a jet if the value of
ϕAH,local at the polar region exceeds 100, even if the value of ϕAH is smaller than 50.

We note here that ϕAH,local only gives us the necessary condition for the launch of a jet
with high-Poynting luminosity. The disturbance or the deformation of the magnetosphere
far from the horizon associated with the evolution of the accretion disk could result in a
low value of Liso. For example the local MADness parameter exceeds 100 at t ≳ 1700ms
but Liso falls below 1049 erg/s for Q4B5tn model. This is due to the deformation (tilt) of
the magnetosphere induced by the post-merger mass ejection. The details of this behavior
are given in the next subsection.

Focusing on the polarity, the local MADness parameter for model Q4B5n shows inter-
esting behavior. As we already pointed out in this subsection, this model shows a clear
butterfly structure of bφ̄,ave extending to the polar region due to the flip of the magnetic-
field polarity, and this flip occurs at the peaks of Liso. A similar flip is also observed for the
local MADness parameter for t = 1000–1500ms (see Fig. 5.18). Thus, we conclude that
the complete flip of the magnetic-field polarity in the magnetosphere is the result of this
polarity flip on the apparent horizon. Just like in the MRI dynamo and butterfly structure
of bφ̄,ave in the accretion disk, the polarity flip starts in the vicinity of the equatorial plane
and propagates to the polar region. This is because the value of ϕAH,local is lower than
10 near the equatorial plane and the fluid dynamics dominates over the magnetic-field
dynamics. This feature enables the matter accretion from the disk to occasionally carry
the magnetic field with opposite polarity. Then, the magnetic tower effect enhances the
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magnetic-field strength along the polar direction. In this process, the preexisting magnetic
field near the pole is dissipated away due to the reconnection by the magnetic field with
opposite polarity ascending from the equatorial region, which replaces the polarity of the
field penetrating the polar region of the horizon. Once the magnetic tower effect is in ac-
tion, the magnetic field is amplified by the winding (associated with the black-hole spin)
and the matter is pushed outward. As a result, a high-ϕAH,local region is realized near the
pole, where the magnetic-field strength is high and the rest-mass accretion rate is low. In
the high-ϕAH,local region, the magnetic-field dynamics dominates the fluid dynamics, and
hence, the polarity flip cannot start in the polar region.

5.2.3 Time duration for high Poynting luminosity

The stage with a high value of Liso continues for ∼ 400–2200ms and subsequently start
decreasing. This is particularly clear for models Q4B3e15, Q4B5n, and Q4B5tn. For these
models, we confirmed that the value of Liso decreases by nearly two orders of magnitude
in the fading stage. This is consistent with the duration of the short-hard gamma-ray
bursts, whose typical duration is ∼ 1 s [14].

In the previous chapter, we discussed that the decrease of Liso is due to the increase in
the opening angle of the funnel region and the decrease of the magnetic-flux density in the
magnetosphere. The opening angle of the strong Poynting-flux region increases from ≲ 10◦

to ∼ 20◦ and the intensity of the Poynting flux becomes low with time. This is directly
related to the accretion disk evolution. The location of the funnel wall is determined by
the balance between the gas pressure of the thick torus and the magnetic pressure at the
funnel wall. In the seconds-long evolution of the torus (disk), the rest-mass density and
the gas pressure at the funnel wall gradually decrease due to the post-merger mass ejection
and matter accretion onto the black hole. On the other hand, the magnetic pressure in
the magnetosphere and at the funnel wall does not decrease significantly, in particular for
the late stage of the evolution. Thus the magnetic pressure can eventually exceed the gas
pressure at the original position of the funnel wall, resulting in the gradual expansion of
the funnel region. As discussed previously, this mechanism could be one of the ingredients
that determine the time duration of short-hard gamma-ray bursts.

For the SFHoQ4B5 model, the opening angle also increases with time but with a longer
timescale. As a result, we do not find the clear fading stage of Liso for this model in our
simulation time. Due to the high computational cost, we terminated the simulation at
t ∼ 2500ms, but if we evolve the system longer, the fading stage is likely to be present.

From the results for models Q4B3e15, Q4B5n, and Q4B5tn, we find two additionally
possible mechanisms for the fade-away of the Poynting luminosity, which could also explain
the short time duration of short-hard gamma-ray bursts. For both mechanisms, the non-
trivial evolution of the magnetosphere associated with the evolution of the accretion disk
is essential.

For models Q4B3e15 and Q4B5n, in the very late stage of our simulation, the aligned
magnetic field is dissipated away, and as a result, the magnetosphere with aligned magnetic
fields disappears. Figure 5.15 shows that for t ≲ 1550ms the poloidal magnetic-field lines
in the polar region are aligned and approximately directed to the direction of the black-hole
spin axis (z-axis); i.e., a magnetosphere is present. In the magnetosphere, the magnetic-
field lines are clearly helical and maintain the high-intensity Poynting flux. However, it is
found that at t ≈ 2730ms the magnetic field in the polar region is not aligned anymore.
Moreover, the magnetic-field dynamics cannot govern the fluid dynamics and the clear
magnetosphere disappears. In the absence of the well-ordered magnetic field, the system
cannot maintain the high-intensity Poynting flux.
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5.2. Magnetic field in the funnel region and the relation to the short-hard gamma-ray
burst

Figure 5.14 shows that for model Q4B5n with t ∼ 1500–2500ms for which the high
Poynting luminosity is maintained (see Fig. 5.13), the polarity of the poloidal magnetic
field at the polar region remains to be preserved and does not reverse. However, for
t ≳ 2500ms, the Poynting luminosity decreases. For this late stage, the polarity in the
polar region frequently reverses in response to the polarity reversal in the disk near the
equatorial plane. The local MADness parameter in Fig. 5.18 also shows similar behav-
ior. We interpret that the disappearance of the magnetosphere and the decrease of the
Poynting flux stem from the MRI dynamo activity in the accretion disk. Due to the MRI
dynamo activity, the polarity of the magnetic field in the accretion disk is reversed quasi-
periodically and the magnetic flux continuously ascends toward the polar region from the
equatorial region. If the magnetic field ascending from the disk has the polarity different
from that in the magnetosphere and its field strength is high enough, the magnetic field
that is originally located in the magnetosphere could be dissipated away by the magnetic-
field reconnection. This is what is observed for t ≳ 2500ms of model Q4B5n, and for
t ≳ 3000ms of Q4B3e15 model. If the strength of the ascending magnetic field is even
stronger, then it could replace the polarity completely and reform the magnetosphere
again. This is what is observed for t ≈ 1000–1500ms of model Q4B5n. However, we
expect that the magnetosphere formation will not occur again after the disappearance of
the strong magnetic fields for models Q4B3e15 and Q4B5n because as already discussed,
the magnetic-field strength in the disk is determined by the rest-mass density (and thus
internal energy density) achieved for the equipartition relation. Since the rest-mass den-
sity decreases as a result of the disk expansion, the post-merger mass ejection, and the
mass accretion onto the black hole, the magnetic-field strength in the disk also decreases.
Therefore, the revival of a magnetosphere with strong magnetic fields is not possible in the
late stage of the disk. In the absence of strong magnetic fields, the Poynting luminosity
is low because the Blandford-Znajek Poynting luminosity is proportional to the square of
the magnetic-field strength [72].

Model Q4B5tn shows the second mechanism. In this mechanism, the magnetosphere
still exists, but the Poynting luminosity becomes apparently low if we measure along a
particular direction. The mechanism of this is the tilt of the accretion disk and magne-
tosphere. Figure 5.19 shows the angular distribution of the Poynting flux per steradian
defined by −T r

t

√−g/ sin θ on a sphere of r ≈ 1500 km for model Q4B5tn. For t ≲ 1300ms
the strong Poynting-flux region is approximately aligned with the polar direction (z-axis
direction). However, at t ∼ 2000ms the strong Poynting-flux region starts deviating from
the polar region clearly, and at t ≈ 2900ms it is tilted by 25◦–40◦ from the z-axis direc-
tion in the y-z plane. The isotropic-equivalent luminosity is defined by the integration for
0◦ < θ < 10◦ and 170◦ < θ < 180◦ on the upper and lower hemispheres, respectively, and
thus, it decreases significantly by the tilt. We note here that the black-hole spin axis is
aligned with the z-axis during the entire simulation time. As Fig. 5.2 shows, the system
approximately has the equatorial-plane symmetry in the early stage of the post-merger
evolution. However, later, the system loses the symmetry; the accretion disk misaligns
with the equatorial plane and the major axis of the magnetosphere also deviates from the
z-axis direction. This is due to the asymmetric nature of the post-merger mass ejection
resulting from the turbulent state of the accretion disk. Specifically, in this model, the
post-merger ejecta carries a large amount of the y-component of the angular momentum
and this breaks the symmetry of the accretion disk. Indeed, the remnant accretion disk
has the y-component of the angular momentum, and as a result, the system tilts in the
y-z plane. 3

3We note that the system is still capable of launching a jet to an off-axis direction. Indeed we still find
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5. Result2: The dependence on initial magnetic field strength, configuration,
neutron-star equation of state, and equatorial-plane symmetry

We find not only the tilt of the high Poynting-flux region, but also the widening of
the opening angle in Fig. 5.19 like in the models of the previous chapter. For model
Q4B5tn in Fig. 5.19, at t ≈ 850ms, the opening angle is ≲ 10◦ but it increases to ∼ 30◦

at t ≈ 2900ms. Thus, the intensity of the Poynting flux decreases simultaneously with
tilting. This widening of the opening angle results from the decrease of the gas pressure at
the funnel wall due to the post-merger mass ejection and matter accretion onto the black
hole, as we already described.

We have found the two possible mechanisms for the decrease of the Poynting luminosity
in addition to one mechanism that we already found in the previous chapter. For all the
three mechanisms, the evolution of the accretion disk and the post-merger mass ejection are
critical processes. Our results show that irrespective of the mechanisms, the timescale of
∼ 1 s for the high Poynting-luminosity stage is determined by the evolution timescale of the
accretion disk, which is determined by the neutrino cooling and magnetohydrodynamics
turbulence that control the post-merger mass ejection.

A word of caution is appropriate here. The system, specifically the accretion disk, is in
a turbulent state by the MRI. That is, the evolution of the disk and MRI dynamo activity
are determined by a stochastic process. This implies that we cannot precisely predict the
strength of the magnetic field that penetrates the black hole and forms the magnetosphere
and the angular momentum that is carried away by the post-merger ejecta. It is also not
easy to predict whether the black hole will always be penetrated by the magnetic field
strong enough to form a magnetosphere and launch the Poynting flux that can explain
typical short-hard gamma-ray bursts. It is also not easy to predict by which mechanisms
the high Poynting-luminosity stage is terminated. However, our simulation results show
that once the magnetosphere is formed, its subsequent evolution is determined by the
global properties of the post-merger ejecta and the accretion disk.

the strong Poynting-flux region even after Liso (in our definition) drops.
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Chapter 6

Summary

In this thesis, we summerise the entire evolution process of the black hole-neutron star
merger starting from the inspiral stage, the merger stage through the post-merger stage.
We performed general-relativistic neutrino-radiation magnetohydrodynamics simulations
and evolved the black hole-accretion disk system remaining after the tidal disruption for
∼ 1–6 s in order to self-consistently explore the dynamical mass ejection, remnant disk
evolution, post-merger mass ejection, and generation of collimated Poynting flux in the
magnetosphere which may drive a short-hard gamma-ray burst. The mass of the black
hole and the neutron star were chosen to be plausible values (MBH,0 = 5.4 or 8.1M⊙ and
MNS = 1.35M⊙; cf. Ref [7]), and we prepare a rapidly spinning black hole (χBH = 0.75) to
consider the case that the neutron star is tidally disrupted. Also, we preformed simulations
in various setups focusing on the following five points: (1) Two different initial black
hole mass MBH,0 = 5.4 and 8.1M⊙, which correspond to the mass ratio Q = 4 and 6,
were adopted. (2) Three different initial maximum magnetic-field strengths ranging from
3× 1015G to 5× 1016G were assumed. (3) The poloidal and the toroidal magnetic fields
were assumed for the initial magnetic-field configurations in the neutron star. (4) The
simulations were performed with and without imposing the equatorial-plane symmetry.
(5) DD2 EOS and the SFHo EOS were employed to model the neutron star.

We found, irrespective of the difference in the setups listed above, that the essential part
of the merger and post-merger processes is qualitatively universal. First, dynamical mass
ejection takes place right after the tidal disruption of the neutron star in the timescale of a
fewms. Then the accretion disk is formed around the remnant black hole. In the accretion
disk, the magnetic field is amplified by magnetohydrodynamics effects such as the MRI,
winding, and Kelvin-Helmholtz instability. The MRI turbulence induces effective viscosity
that enhances the angular-momentum transport. As a result, the mass accretion and the
expansion of the disk are induced. The MRI dynamo is also activated and the polarity
of the magnetic field is reversed quasi-periodically. In addition, a portion of the matter
with the strong magnetic fields is outflowed vertically from the disk. This plays a role in
the disk expansion to the vertical direction. In the turbulent process, thermal energy is
generated, but in the first several hundred ms, the generated heat is dissipated primarily
by the neutrino emission and it does not have a significant effect on the post-merger mass
ejection.

We analyzed the ratio of the anisotropic stress to the pressure to evaluate the alpha
viscous tensor, αij . It is found that all the components of αij have a value between 10−2

and 10−1 after the magnetic field amplification saturates and the disk settles into the
equipartition state. However, the value of the rφ or xy components of this tensor is larger
than the other components. This reflects that not only the effective viscous effect but
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6. Summary

also intrinsic magnetohydrodynamics effects play a role in the momentum transport. The
large value of αrφ suggests that a magnetohydrodynamics effect associated with global
magnetic fields such as the magneto-centrifugal effects [119] play an important role in the
angular momentum transport.

The disk expands gradually due to the angular momentum transport effects. As a
result, the maximum temperature of the disk drops, and the neutrino luminosity drops.
Then the neutrino emission cannot carry away an appreciable fraction of the thermal
energy generated by the turbulent process from the disk, and the generated thermal energy
induces the convective motion in the disk, which carries the thermal energy generated
around the inner edge of the disk to the outer region. This convective motion contributes
to the heating of the outer part of the disk, and eventually, induces the post-merger mass
ejection.

There are two components in the electron fraction distribution for the ejected matter.
One is a low-electron fraction component (Ye < 0.1) produced by the dynamical ejecta
and the other is a mildly neutron-rich component (0.1 ≲ Ye ≲ 0.4) produced by the post-
merger ejecta. Also, there are two components in the velocity distribution. One is a fast
component (up to v ∼ 0.4c) produced by the dynamical ejecta and the other is a relatively
slow component (v < 0.1c) produced by the post-merger ejecta. These distributions are
suitable for reproducing an elemental abundance pattern similar to the solar abundance
and those of the metal-poor stars [127].

We found quantitative differences between the results for the models with low and high
initial magnetic-field strengths. Because it takes a longer time to amplify the magnetic
field up to saturation and to achieve an equipartition state in the disk from the low initial
field strength (with a limited grid resolution), the evolution of the accretion disk and
post-merger mass ejection are delayed. However, essentially no differences are found in
the properties of the ejected matter.

Accompanying the turbulent disk formation, a funnel-shaped magnetosphere with the
low rest-mass density and the aligned helical magnetic-field lines are formed near the rota-
tion axis of the black hole. This magnetosphere is a magnetically dominated region and is
in an approximate force-free state. The magnetic field lines that form the magnetosphere
penetrate the black hole and it extracts the rotational kinetic energy of the rapidly spin-
ning black hole by the Blandford-Znajeck mechanism [72]. Then, the collimated outgoing
Poynting flux is generated with the opening angle of ∼ 10◦, and its isotropic-equivalent
luminosity is ∼ 1050 erg/s. The high Poynting luminosity stage continues for ∼ 0.5–2 s,
and the luminosity subsequently decreases. This timescale is determined mainly by the
evolution of the accretion disk. These properties are consistent with typical short-hard
gamma-ray bursts [14, 15].

We found three possible processes that could determine the time scale for the high
Poynting luminosity stage. First, the Poynting luminosity is likely to drop due to the
spreading of the funnel wall and the decrease of the magnetic-field strength. The spreading
of the funnel wall is caused by the decrease of the gas pressure from the torus at the funnel
wall which takes place due to the post-merger mass ejection. As the funnel wall spreads,
the magnetosphere, the Poynting flux, and the magnetically driven outflow become less-
collimated. Second, for the model with a low initial magnetic-field strength and the
model with no equatorial-plane symmetry, the Poynting luminosity for a given observer
drops due to the disappearance of the magnetosphere stemming from the reconnection
of the magnetic-field lines. This is caused by the MRI dynamo activity in the accretion
disk, which enforces the magnetic flux with a variety of the polarity to be ejected quasi-
periodically from the disk to the polar region. When strong magnetic fields with the
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polarity opposite to that in the magnetosphere emerge from the disk, they pair-annihilate
by the reconnection, and the magnetosphere temporarily disappears. If the magnetic field
emerging from the disk is strong enough by any chance, it replaces the magnetic field
in the magnetosphere. However, this replacement is only found in the model with no
equatorial-plane symmetry, and the disappearance occurs for the models with low initial
magnetic-field strength and the model with no equatorial-plane symmetry. Third, for
the model with the initially toroidal magnetic field in the neutron star, the Poynting
luminosity drops due to the tilt of the magnetosphere. Because the post-merger ejecta
occasionally carries the angular momentum component not parallel to the black hole spin
axis, the accretion disk is enforced to tilt, in particular in the late-time evolution. Then, it
results in the tilt of the magnetosphere because the funnel structure of the magnetosphere
is determined by the gas pressure from the disk (torus). Irrespective of these mechanisms,
the evolution process of the accretion disk does determine the evolution process of the
magnetosphere. These three mechanisms all include stochastic processes, and it is not
feasible to precisely predict which mechanisms determine the evolution process of the
magnetosphere. However, these three could be plausible mechanisms to make short-hard
gamma-ray bursts as short as ∼ 0.5–2 s.

From a quantitative point of view, the dynamical ejecta mass for present models were
≈ 0.046M⊙ (DD2 Q = 4 models), ≈ 0.038M⊙ (DD2 Q = 6 models), and ≈ 0.014M⊙
(SFHo Q = 4 model). The disk mass right after its formation was Mdisk,0 ≈ 0.28M⊙ (DD2
Q = 4 models), ≈ 0.18M⊙ (DD2 Q = 6 models), and ≈ 0.22M⊙ (SFHo Q = 4 model).
The post-merger mass ejection sets in as the maximum disk temperature and neutrino
luminosity drop below ∼ 3Mev, and ∼ 1051–1051.5 erg/s, respectively. The mass of the
post-merger ejecta was ≳ 0.030M⊙ (DD2 Q = 4 model), ≳ 0.020M⊙ (DD2 Q = 4 model),
and ≳ 0.018M⊙ (SFHo Q = 4 model), which are ∼ 10% of Mdisk,0. We note, however, that
we have only done simulations for the three physical models. The quantitative dependence
of the evolution, especially of the post-merger evolution, on the binary mass, the black-
hole spin, and the neutron star EOS is yet to be discovered. If the remnant disk mass is
larger, the post-merger ejecta mass could be larger. Also, the Poynting luminosity could
be higher because the magnetic field could be amplified stronger in the equipartition state
with higher rest-mass density. In contrast, Poynting luminosity would become lower or
even the magnetosphere may not be formed if the spin of the black hole is smaller. The
quantitative aspects is an issue to be explored in future studies.
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