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Abstract

In this Ph.D. thesis, we look for chaos in highly excited strings. Recent studies show

that black holes are characterized by chaos due to redshift near the event horizon. Since

the microscopic degrees of freedom of a black hole originate in a highly excited string, it

is expected that there is a chaotic dynamics in a highly excited string.

We have studied scattering amplitudes of open bosonic strings at tree-level. Our

results show that there is no sign of chaos, however, we have not yet excluded all possi-

bilities. We have conjectured that string scatterings can be chaotic if we include higher

loop corrections, or if we consider closed strings, 5-point or 6-point amplitudes.

We hope that our work serves as a step toward the formulation of chaos in string

scatterings, and bridges a gap between microscopic dynamics of strings and macroscopic

nature of black holes.
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1 Introduction

Why chaos?

Almost half a century ago, the black hole information paradox [1, 2] showed inconsistency

between general relativity and quantum mechanics. Although general relativity and quantum

mechanics are great achievements of modern physics, the paradox tells us that there must be

unknown mysteries hidden inside the horizon. It is necessary to identify the appropriate mi-

croscopic degrees of freedom and reconcile its microscopic laws with macroscopic phenomena.

Microscopic degrees of freedom of a black hole originate in a highly excited string. The

information paradox motivated the construction of a unitary S-matrix which describes black

hole formation and evaporation [3–6]1. The idea of the black hole S-matrix was elaborated in

the principle of black hole complementarity2 [10–13]. For a distant observer who phenomeno-

logically describes a black hole as a standard quantum system, its microscopic degrees of

freedom live near the event horizon. Its string interpretation shows that strings tend to form

a single large string, implying that there is a correspondence between black hole states and

highly excited string states [14]. The correspondence has been intensively studied in [14–22]3

to identify the microscopic origin of black holes.

Our next mission will be reconciling the laws of strings with macroscopic phenomena. Its

key lies in black hole chaos. Chaos often refers to the irregularity of microscopic dynamics

which causes thermalization on macroscopic scales. Black holes can be regarded as chaotic

scatterers in the spirit of black hole S-matrix.4 When a particle is shot into a black hole,

its initial condition is apparently forgotten due to thermalization, and it takes a long time

to evaporate due to the redshift near the event horizon (See Fig. 1). These two macroscopic

features imply that there are microscopic irregular dynamics in black holes. The idea of black

hole chaos is supported by the fact that a light ray passing near the event horizon is sensitive

to perturbation of the horizon [7, 8, 24]. In the AdS/CFT correspondence, such sensitivity in

the gravity side corresponds to quantum chaos on the holographic side [25–31].

From the viewpoint of chaos, black holes are distinguished objects. The point of black

hole chaos is that it is associated with an event horizon. Indeed the Lyapunov exponent, a

measure of chaos, is related to surface gravity. It is also conjectured that black holes are the

1See also an overview [7] and related works [8, 9]
2It was named after an idea to implement the equivalence principle. While a distant observer sees a

phenomenological surface, called the stretched horizon, near the event horizon, an infalling observer sees

nothing when crossing the event horizon. Apparently, these two observations contradict each other. However,

there is no way for the infalling observer to report the absence of the stretched horizon to the distant observer.

In this sense, there is complementarity between the two observers.
3See also a review [23].
4Chaos on the stretched horizon was already mentioned in [10].
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Figure 1: A highly excited string and a black hole are expected to be chaotic scatterers.

When a particle is shot into a black hole, its initial conditions are apparently forgotten due

to the thermalization, and it takes a long time for a particle to escape due to the redshift

near the event horizon. Actually, initial condition sensitivity and a long delay-time are typical

features of chaotic scatterers. We look for its microscopic origin in scatterings of a highly

excited string.

fastest scramblers [32]5 and saturate chaos bounds [35, 36], implying that black holes are the

most chaotic systems in the universe.6 These features distinguish black hole chaos from the

chaos in ordinary many body systems.

From the reasons above, there is a motivation to look for chaos in highly excited strings.

Recently it has been shown that, even at tree-level, scattering amplitudes of highly excited

strings are erratic functions [43, 44]7 which was thought to be a sign of chaos. However, the

precise mechanism where chaos shows up has not yet been identified, nor has a quantitative

evaluation of chaos been made.

Research

In this Ph.D. thesis, we look for chaos in string scatterings. As the first step, we study open

bosonic strings at tree-level. In order to extract chaos in erratic scattering amplitudes, we

resort to an established method: the transient chaos analysis.

Transient chaos is a type of chaos in which chaotic behavior lasts only for a finite time. For

5See also [33,34].
6Precise definitions for scrambling and chaos in quantum systems are still in progress. While these con-

jectures motivate us to study black hole chaos, we should deepen our understanding of chaos to explain the

thermal nature of black holes from microscopic viewpoints. See also [37–42].
7See also related works [45–47].

4



example, classical pinball scatterings are classified as transient chaos since a particle escapes

from a chaotic scattering region within a finite time. In classical scatterings, there are two

diagnoses for chaos: fractal structure in scattering data, and non-trivial geometrical structure

in scattering region.

Firstly, the analysis of the fractal structure we employ is summarized as follows. Consider

a particle scattered by a potential. The scattering data consists of a pair of the incoming

and the outgoing angles of the particle motion, and we shall name it (θ, θ′). For a sufficient

number of numerical experiments of the scattering, one finds a lot of the pair data, which is

translated into a one-dimensional function θ′(θ). For chaotic scattering, one should be able to

find a fractal structure in this function θ′(θ). Like in the chaotic dynamics produced by the

baker map, the fractal structure detects chaotic dynamics within a scattering region [48–52].

We apply the transient chaos analysis described above to string scattering amplitudes. In

particular, we consider scattering amplitudes of a tachyon and a highly excited string (HES),

i.e. amplitudes of HES-tachyon to HES-tachyon, which mimic a scattering of a tachyon by

a HES. To describe the in- and out-HES state, we follow the method adopted in the chaos

analyses [43] using the DDF states [53].8 To obtain the scattering data θ′(θ) from the quantum

scattering amplitudes, we extract the outgoing angles of the largest pole θ′ of the amplitude

for fixed incoming angles θ. Since generically string scattering amplitudes have multiple poles,

we regard the largest pole as the most probable scattering in the quantum treatment.

Secondly, the analysis of geometrical structure is summarized as follows. Consider a clas-

sical pinball scattering. When a particle is shot into a scattering region, typically, it bounces

between pins many times, and eventually escapes from the scattering region. Such irregular

bounces are the source of chaos [48–52]. However, if the pins are aligned along a straight line,

such irregular bounces do not occur. Thus the geometrical structure in a scattering region

detects chaos.

In this research, we study the geometrical structure of a string scattering region. Since the

geometrical structure is not given as the pins in classical scatterings, we reconstruct images

of a scattering region from string amplitudes. We employ a formula used in [58, 59]. The

reconstruction method is basically a Fourier transformation of string amplitudes, mimicking

ordinal imaging technologies such as tomography.

Results and future works

Our results show that there is no fractal structure in the scattering data, nor non-trivial

geometrical structure in the string scattering region. Thus we have concluded that there is no

8The calculation of the HES amplitudes was developed in [54]. See also [55,56] for HES states studied from

the viewpoint of cosmic strings, and a recent paper [57] for a classical limit of HES amplitudes.
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sign of chaos, at least, in open bosonic strings at tree-level.

Nevertheless, we have not yet excluded all possibilities. We expect that chaos shows up if

we include higher loop corrections, or if we consider closed strings, 5-point or 6-point scattering

amplitudes, based on physical interpretations of our results. Studying such cases is left for

future works.

Another task might be a refinement of our strategy to extract chaos. One caveat is that the

absence of the fractal structure may originate in the quantum nature of the string scattering

amplitudes. As described above, our strategy to obtain the scattering data is to pick the

largest pole in the amplitude. There could be a refined strategy to extract the scattering data

by taking some classical limit of the scattering amplitudes.

Our ultimate goal is to pin down where chaos shows up in string scatterings, and to describe

the thermal nature of black holes from microscopic viewpoints. Strings are finite-size objects

and thus have exponentially large number of excitations. Those features cause complicated

patterns of zeros and poles in scattering amplitudes, which distinguish strings from ordinary

point particles. Only strings might be able to generate the most chaotic systems, and that

might be the reason why a black hole horizon emerges.9 We hope that this research serves as

a step toward the formulation of chaos, and bridges a gap between strings and black holes.

Organization of this thesis

This paper is organized as follows. In Sec. 2, we review black hole chaos. The point of black

hole chaos is the redshift near the horizon. Later we review the correspondence principle to

motivate us to look for the origin of black hole chaos in highly excited strings. Then we review

recent studies on erratic scatterings of highly excited strings.

In Sec. 3, we review transient chaos. We introduce basic concepts and measures to char-

acterize chaos. We can detect chaotic dynamics from the fractal structure in scattering data

and the geometrical structure in a scattering region.

In Sec. 4, we look for a fractal structure in scattering data of a highly excited string. We

compute a scattering amplitude of HES-tachyon to HES-tachyon. Although its scattering

data are highly erratic, we could not find any fractal structure. We discuss the possibility that

chaos shows up if we include higher loop corrections.

In Sec. 5, we study geometrical structure in a scattering region of highly excited strings.

We employ an imaging method: Fourier transformation of string amplitudes. Our results

show that strings look like double-slits. We discuss the possibility that chaos shows up if we

9Just showing that a given system is chaotic is insufficient since typical systems in the universe are chaotic.

This research will become truly valuable when we identify specific dynamics of strings which explain the

development of black holes.
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consider closed strings, 5-point or 6-point scattering amplitudes.

In Sec. 6, we conclude this paper and discuss future prospects.
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2 Black hole chaos

In this section, we review black hole chaos, which is a bridge between the thermal properties

of black holes and the microscopic dynamics of strings. Black holes are regarded as chaotic

scatterers due to the event horizon. A particle orbit near the event horizon is sensitive to

its perturbation due to the redshift. Such a sensitivity corresponds to quantum chaos in

the AdS/CFT correspondence. Also, a phenomenological description of black holes shows

that black holes are the fastest scramblers. It is conjectured that black holes saturate chaos

bounds. These features distinguish black holes from ordinary chaotic systems.

The microscopic origin of black hole chaos is expected to lie in highly excited strings. There

is a correspondence between black hole states and single string states. A transition from a

highly excited string to a black hole implies that the geometrical structure of a string is highly

complicated just before black hole formation. Recently, it has been shown that scattering

amplitudes involving highly excited strings are erratic functions.

2.1 Redshift near horizon

Sensitivity to horizon perturbation

Let us consider a D = d+ 1 = 4 dimensional Schwarzschild black hole, whose metric is given

by

− dτ 2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2 dΩ2 . (2.1)

This metric is useful for a distant observer. A clock at infinity records the Schwarzschild time

t. Although the metric is singular at the event horizon r = 2GM , it is just a coordinate

singularity. Indeed the curvature near the horizon is finite ∼ κ2 <∞. Here κ = 1/4GM is the

surface gravity. Also, a free falling observer reaches the event horizon within a finite proper

time.

The Rindler coordinates (ω, ρ) are useful to describe the near horizon behaviors. It is given

by

dω = κ dt , (2.2)

dρ =

(
1− 2GM

r

)−1/2

dr . (2.3)

The Rindler time ω is just the dimensionless version of the Schwarzschild time, and ρ is the

proper distance. The metric near the event horizon ρ ≃ 0 reduces to

− dτ 2 ≃ −ρ2 dω2 + dρ2 + r2 dΩ2 . (2.4)
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We can find the Hawking temperature βBH by Wick rotation and by removing its conical

singularity ωE ∼ ωE + 2π. Then the Euclidean time at infinity is periodic as tE ∼ tE + 2π/κ,

which tells us that the Hawking temperature is βH = 2π/κ.

The Minkowski coordinates (T, Z) are useful to describe a free falling observer. It is given

by

T = ρ sinhω, (2.5)

Z = ρ coshω. (2.6)

Writing the S2 part as X2 + Y 2 = r2 dΩ2, the metric reduces to

− dτ 2 = − dT 2 + dZ2 + dX2 + dY 2 . (2.7)

Consider a free falling particle 1 = dT / dτ , 0 = dZ / dτ . Its momentum and position behave

as

p ∼ e+κt, (2.8)

ρ ∼ e−κt, (2.9)

at late time κt ≫ 1. Due to the redshift, a free falling particle asymptotically approaches

the event horizon. Although the particle cannot reach the event horizon within a finite

Schwarzschild time t, it acquires exponentially large momentum, causing a high energy shock

wave.

The Kruskal-Szekeres coordinates (U, V ) extend the patch into the region inside the event

horizon. It is given by

U = −e−κ(t−r∗), (2.10)

V = +e+κ(t+r∗). (2.11)

where r∗ is the Tortoise coordinates, or Regge-Wheeler coordinates, such that(
1− 2GM

r

)−1/2

dr =

(
1− 2GM

r

)+1/2

dr∗ . (2.12)

Paths U = const./V = const. describe outgoing/incoming light rays, respectively. The metric

is rewritten as

− dτ 2 = −2A dU dV + r2 dΩ2 , (2.13)

where

A =
16(GM)3

r
e−

r
2GM . (2.14)
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Now let us analyze sensitivity to horizon perturbation. Consider an incoming light ray

V = Vin = 0 with momentum pV,in shot into a black hole. Due to the redshift factor (2.8), the

momentum of the incoming ray exponentially increases, causing a shock wave near the event

horizon. Its shock wave geometry is computed in [7, 8]. The result is

− dτ 2 = −2A dV (dU − F (V,Ω) dV ) + r2 dΩ2 , (2.15)

where

−∆S2F + F = 8πG(−pV,in) δ(V − Vin)δ
2(Ω− Ωin). (2.16)

It shows that the shock wave delays a clock around it, causing a shift of U coordinate. If

another outgoing ray U = const. crosses the incoming ray V = 0, its path shifts as

∆U =

∫
dU =

∫
dV F (V,Ω). (2.17)

Then the arrival time at infinity is also shifted [7, 8, 24]. It is

∆t =
dt

dU
∆U = κ−1eκ(t−r∗)∆U. (2.18)

Remark that the exponential factor eκt comes from the redshift near the event horizon. For a

distant observer, who describes a black hole phenomenologically as a standard object, a small

shift ∆U grows exponentially with respect to time.

An exponential growth of a small deviation is a necessary condition for chaos. One of the

important measures characterizing chaos is the Lyapunov exponent. Consider a dynamical

system with a phase space {q1, . . . qd, p1, . . . , pd}. The Lyapunov exponent λL is defined by the

rate of expansion of a small deviation as

δqi(t) ∼ δqi(0)e
λLt (2.19)

at late time λLt ≫ 1. The Lyapunov exponent measures how the system is sensitive to an

initial condition. More precise definitions of chaos and other important measures will be

introduced in the next section Sec. 3.

The result is also interpreted as follows. When an incoming shock wave crosses the event

horizon, the horizon grows due to an injected energy into a black hole. Then another light

ray travels a path closer to the new horizon. It takes an exponentially longer time to go away

from the horizon due to the redshift.
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Holography

The authors of [25–31] related a shock wave geometry to an exponential growth of out-of-time-

order correlator (OTOC) [60] in the AdS/CFT correspondence. They considered a thermofield

double state corresponding to a two sided black hole

|Ψ⟩ = 1

Z1/2

∑
n

e−βEn/2 |n⟩L |n⟩R , (2.20)

and considered a correlator corresponding to shock wave geometry

⟨Ψ|V (t1)W (t2)V (t1)W (t2) |Ψ⟩ . (2.21)

Here V (t1) and W (t2) create light rays inside the bulk whose endpoints are at boundary time

t1, t2 respectively. The correlator was computed by interpreting it as a scattering amplitude.

The S-matrix to compute bulk scattering amplitude was constructed by [7, 8]. Let us

rewrite the shift due to an incoming shock wave as

F (V,Ω) = (−δPV,in)δ(V − Vin) f(Ω,Ωin). (2.22)

The shift in the U -direction must cause a phase shift for an outgoing state. Then the state

must be replaced as

|Pout⟩ → exp

[
i

∫
d2Ωout P̂out∆U

]
|Pout⟩ ,

= exp

[
i

∫
d2Ωout P̂outf(Ωout,Ωin)(−δPV,in)

]
|Pout⟩ . (2.23)

Summing over incoming particles, the S-matrix for a shock wave geometry is constructed as

⟨Pout|Pin⟩ = N exp

[
−i
∫

d2Ωin d
2Ωout Poutf(Ωout,Ωin)Pin

]
. (2.24)

Its perturbative expansion at the leading order

S ∼ eiδ ∼ 1 + iδ (2.25)

can be roughly evaluated by noting that

f(Ωout,Ωin) ∼ G ∼ Area

SBH

, (2.26)

∆U ∼ eκ(t1−t2). (2.27)

Using this S-matrix to compute the bulk scattering amplitude, we find that the OTOC grows

as

⟨Ψ|V (t1)W (t2)V (t1)W (t2) |Ψ⟩ ∼ 1

SBH

eκ(t1−t2). (2.28)
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The rate of the growth of OTOC is a quantum version of the Lyapunov exponent. For example,

consider an ordinary quantum mechanical system, and its OTOC10

−
〈
[q(t), p(0)]2

〉
. (2.29)

Taking the semi-classical limit, we can replace the commutator with the Poisson bracket. Then

we find that

−
〈
[q(t), p(0)]2

〉
∼ {q(t), p(0)}2 =

(
∂q(t)

∂q(0)

)2

∼ e2λLt. (2.30)

Thus the exponential growth of OTOC is understood as the quantum version of the Lyapunov

exponent.

Fast scrambling

For a distant observer who phenomenologically describes a black hole as a standard system,

a black hole looks like the fastest scrambler.11 We review the fast scrambling conjectured

by [32].

Let us consider the near horizon geometry of a Schwarzschild black hole, and write its S2

part as X2
⊥ = X2 + Y 2 = r2 dΩ2. We consider free falling charged particles: 1 = dT / dτ , 0 =

dZ / dτ ,X⊥ = 0, and observe their electrical field at infinity. When the charged particles

approach the stretched horizon, a distant observer sees an electrical field

Eρ = EZ =
Z − Z0

[(Z − Z0)2 +X2
⊥]

3/2

∼ ℓ−2
P

eω

[e2ω + ξ2⊥]
3/2
, (2.31)

where we defined a dimensionless coordinate ξ⊥ = X⊥/ℓP on the stretched horizon. The

stretched horizon is a phenomenological surface r ∼ 2GM + ℓP on which microscopic degrees

of freedom live for a distant observer [10–14]. The distant observer can phenomenologically

understand that charges are distributed as

σ(ω, ξ⊥) ∼ Eρ. (2.32)

10This is also called the out-of-time-order commutator, which is roughly equal to the out-of-time-order

correlator plus some trivial terms.
11Precise definitions for scrambling and chaos in quantum systems are still in progress. See also [37–42].
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Figure 2: Surface density of charges for a distant observer. Charges are spread out on the

stretched horizon at an exponential rate.

This surface charge density is plotted in Fig. 2. As the time at infinity progresses, the charges

are spread over the stretched horizon. Note that for a fixed ξ⊥ local charge density reaches

the maximum at

ω ∼ ln ξ⊥. (2.33)

Then we can evaluate the time ω∗ when charged particles are fully spread over a black hole.

Substituting ξ⊥ ∼ rBH ∼ S
1/2
BH

ω∗ ∼ lnSBH (2.34)

Remark that this scrambling time is faster than ordinary systems ω∗ ∼ S#, and that the

logarithm came from the redshift factor. In this sense, a black hole is regarded as a fast

scrambler.

Black holes are distinguished objects from the viewpoint of chaos. It is conjectured that

black holes saturate chaos bound [35]

λ ≤ λL = κ =
2π

βBH

. (2.35)

Another type of chaos bound is proposed in [36], which is consistent with the above chaos

bound at the high temperature limit.

From the fast scrambling conjecture and chaos bounds, we may expect that there is a

distinguished dynamics which realizes the maximally chaotic systems.

2.2 Correspondence principle

In the context of black hole complementarity [10–12], the author of [14] speculated that there

is a one-to-one correspondence between black hole states and single string states. In this part,

we review a correspondence between a microscopic black hole and a highly excited string.

13



Let us consider a D = d + 1 = 4-dimensional Schwarzschild black hole. Its Schwarzschild

radius and the Bekenstein-Hawking entropy are

rBH = 2GM, (2.36)

SBH =
Area

4G
= 4πGM2. (2.37)

When the black hole size is of the order of string scale, the black hole entropy is compatible

with the string entropy as follows.

Consider a string with mass M . Let α′ ∼ 1, for simplicity, so that string tension is of the

order of unity. Then the total length is L ∼M . The string mass is expressed by its excitation

level N as M ∼ N1/2. For a fixed excitation level N , there are as many string states as the

number of partition of N . Thus string state degeneracy grows exponentially as n(M) ∼ eβHM .

Here a constant βH > 0 is called the Hagedorn temperature.

The effective size of the string is l ∼ L1/2. This is understood by a random walk picture of

a string, in which a string is regarded as the path of a random walk. Using the microcanonical

ensemble of string states, we find that the string entropy is S ∼ lnn(M). Thus

l ∼ L1/2 ∼ N1/4, (2.38)

S ∼M ∼ N1/2. (2.39)

When a black hole is string scale size 1 ∼ rBH ∼ GM , the black hole entropy and the string

entropy are compatible as

SBH ∼M ∼ S. (2.40)

Interpreting the gravitational constant as the string coupling G ∼ g2, such a correspondence

occurs at

g ∼ G1/2 ∼M−1/2 ∼ N−1/4. (2.41)

However, the effective string size l ∼ N1/4 is apparently too large for N ≫ 1, comparing to

the black hole size 1 ∼ rBH. Actually, a string contracts from the random walk size to the string

scale due to its self-interactions. Although the string coupling g is small at the corresponding

point, there is a non-perturbative effect which causes the contraction of a string. Since

β ∼ ∂S(M)

∂M
∼ βH, (2.42)

we shall analyze a region slightly below the Hagedorn temperature 0 < β − βH ≪ 1. See also

e.g. [61] for the thermodynamics of strings. As we will see below, self-interactions decrease

the temperature of a string.
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Let us use the canonical ensemble below. We will follow computations by [19]. Consider

strings wound on a thermal circle. Near the Hagedorn temperature, two winding modes

with the winding number ±1 become massless, and eventually become tachyonic above the

Hagedorn temperature. Thus strings near the Hagedorn temperature are effectively described

by two real scalar modes on a thermal circle. Combining the two scalars into a single complex

scalar χ, its action is

I[β;χ] = −β
∫

ddx
(
|∂χ|2 +m2(β)|χ|2

)
, (2.43)

where

m2(β) ∼ M2(β)
∣∣
winding mode

∼ β2 − β2
H. (2.44)

Its first quantization gives a single string contribution.

We can check that this thermal scalar formalism reproduces the single string degeneracy

n(M) ∼ eβHM and the random walk size l(M) ∼ N1/4 ∼ M1/2. Let us define a partition

function as

Z =

∫
Dχ e−I[β;χ]. (2.45)

Its single string contribution is its logarithm Z = lnZ. Critical behavior m2(β) ≪ 1 is

dominated by the zero mode as

Z ∼ lnZ

∼ − ln det
(
−∂2 +m2(β)

)
∼ − ln(β − βH)

∼
∫ ∞

0

dM

M
e−(β−βH)M =

∫ ∞

0

dM M−1eβHM e−βM (2.46)

Then the single string degeneracy n(M) ∼ eβHM is reproduced.

Since the random work size is ∼ l(M), the distribution of strings are approximately ∼
ex

2/l2(M). Its thermal ensemble is∫ ∞

0

dM n(M)e−βM e−x2/l2(M) ∼ e−Cm(β)x (2.47)

where C is a constant ∼ O(1). Note that its typical size m(β)−1 agrees with the correlation

length of the thermal scalar. Thus the thermal scalar formalism is consistent with the random

walk picture.

Now let us introduce self-interactions. Including the lightest modes, dilaton and graviton,

actions are

I[β;χ] = −β
√
Gττ

∫
ddx

√
detGij e

−2Φ
[
Gij∂iχ

∗∂jχ+m2(β)χ∗χ
]
,
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I[β;G,Φ] = −β
√
Gττ

16πG

∫
ddx

√
detGij e

−2Φ
[
R + 4Gij∂iΦ∂jΦ

]
, (2.48)

where the mass m(β) is modified to

m2(β) ∼ β2Gττ − β2
H (2.49)

since gravity changes the proper length.

[19] solved this problem by mean field approximation. The thermal scalar χ obeys the

Schrödinger equation with an effective potential due to self-interactions. Rescaling χ and

coordinates, it becomes [
− ∂2

∂ξ2i
−
∫

ddξ′
|ψ(ξ′)|2

|x|d−2
>

]
ψ(ξ) = εψ(ξ), (2.50)

where

ξ = (g2M)1/(4−d)x, (2.51)

ψ(ξ) = (g2M)−d/(8−2d)χ(x), (2.52)

and where

ε ∼ −(g2M)−2/(4−d)βH(βc − βH). (2.53)

Here |ξ|> is defined as the greater of |ξ| and |ξ′|. Its term is interpreted as an effective potential

due to gravitational sources inside a region [0, ξ]. The gravitational constant is identified with

the string coupling G ∼ g2. Also βc is the local temperature around an effective potential

region. It is determined by consistency of mean field approximation12. The size of the wave

function is of the order of the potential size ξ ∼ O(1). Imposing a bound state condition

ε ∼ −O(1), we obtain

l ∼ (g2M)−1/(4−d) ∼ (g2N1/2)−1/(4−d). (2.54)

Then the effective size of a string at the transition point g ∼ N−1/4 is

l ∼ 1. (2.55)

This agrees with the black hole size 1 ∼ rBH, thus the discrepancy of two sizes of a black hole

and a string is solved.

It is remarkable that a string can contract to the string scale size l ∼ 1 while its total

length remains L ∼ N1/2 ≫ 1. It shows that the long string is confined to a tiny region, thus

the geometrical structure of a string must be highly complicated when self-interactions are

included. It motivates us to look for the origin of black hole chaos in a highly excited string.

12This is improved in [22] to study phase transition between a string and a black hole. The authors introduced

another scalar to describe the radius of thermal circle. While its radius is fixed to β at infinity, locally the

radius changes.
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2.3 Erratic string scattering

Recently, [43, 44]13 studied on scattering amplitudes of highly excited strings. The authors

employed the DDF operator construction method to obtain a general formula. Its physical

interpretation is that a highly excited string is constructed by shooting many photons into

a tachyon. The photons supply energy and angular momentum to the tachyon, and finally

picking out a pole, we find a contribution from a highly excited string.

In this part, we review the result by [44]. Let us consider open bosonic strings. We shoot

J photons, into a tachyon, with momentum {−Naq}a=1,...,J and with the same polarization

λ.14 Here q is a unit null vector perpendicular to the polarization vector. Picking out a pole,

we can construct a highly excited state with mass M2 = 2(N − 1), N =
∑J

a=1Na, and with

angular momentum J .

Then we can compute a decaying amplitude of a highly excited string into two tachyons.

Denoting the tachyon momentum by p, the amplitude is

A =
J∏

a=1

(−p · λ) Γ(Na +Nap · q)
Γ(Na)Γ(1 +Nap · q)

. (2.56)

Note that this amplitudes has many poles and zeros due to the Gamma functions, which

corresponds to a distinguished feature of a string that strings have many excitations. The

authors of [43, 44] evaluated amplitudes numerically for generic partitions of the excitation

level N =
∑J

a=1Na and showed that their behaviors are highly erratic.

13See also [45–47]
14See [43,44,54] for more general cases.
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3 Transient chaos

In this section, we review transient chaos. Transient chaos is characterized by three properties:

unpredictability, aperiodicity, and fractality. These are generated by three key mechanisms:

stretching, folding, and escape.15 We demonstrate how transient chaos is generated in a simple

toy model called the gluttonous baker map. We see that fractality in the phase space is a

good probe of chaos. Other measures of chaos are also introduced later.

Next, we review classical scatterings of a particle by multiple disks. Typical scattering

systems show chaotic behavior and generate a fractal structure. However, when all disks are

aligned along the same straight line, the system does not show chaotic behavior since the

folding mechanism is absent in such a case. In this sense, the geometrical structure in a

scattering region is a good probe of chaos.

This review is based on [40–42,48–52].

3.1 Basic concepts

Transient chaos is a type of chaos whose chaotic behavior lasts only for a finite time. By

contrast, ordinary chaos which lasts for an infinitely long time is called permanent chaos.16

Transient chaos is characterized by three properties in the phase space17:

• Unpredictability

• Aperiodicity

• Fractality18

These are generated by three key mechanisms:

• Stretching

• Folding

• Escape

The unpredictability means that the deviation of the initial condition grows exponentially.

When it comes to simulating a chaotic system numerically, we need an exponentially powerful

computer to improve the precision. Thus it is practically impossible to know the long term

behavior of a chaotic system. The mechanism which expands a deviation is called stretching.

15Compared to the stretching and folding mechanisms, the word “escape mechanism” is not popularly used.

However, we use these three words on an equal footing in this paper so that we can clearly understand how

fractal structure appears from transient chaos.
16Also, there is another classification: dissipative/conservative chaos.
17These properties are not independent. Indeed measures of chaos are related to each other as we will see

later.
18Permanent chaos also shows fractal structure, but it does not originate in the escape mechanism of transient

chaos.
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The stretching mechanism is iterated by the folding mechanism. Then the expansion of a

deviation lasts for a long time, resulting aperiodic phase space. The expansion rate is measured

by the Lyapunov exponent. Its topological versions are called the topological entropy and the

metric entropy.

The fractality means that the chaotic sets in the phase space have a self-similar structure

and fill only the partial of the phase space. It is associated with the escape mechanism where

some regions in the phase space escape from chaotic regions. The measure for the fractal

structure is called the fractal dimension.

In the following parts, we demonstrate how these characteristics and key mechanisms are

related in simple toy models: the baker map and its modification, the gluttonous baker map.

Stretching and folding

The baker map19 is one of the simplest and analytically tractable examples of chaos. It contains

all the key mechanisms for chaos: stretching and folding.

Suppose that we have a piece of bread dough with a unit length [0, 1). We put a teaspoon

of flavor powder at x on the dough, and knead it so that the powder is distributed uniformly.

The kneading process consists of stretching the dough to twice its length, cutting it, and

folding them to the original size. The position x of the flavor powder is mapped by a function

fb(x) =

{
2x 0 ≤ x < 1/2

2x− 1 1/2 ≤ x < 1
. (3.1)

Repeating the same process n times, it is mapped to

f ◦n
b (x) = fb(fb(. . . fb(x))), (3.2)

where ◦n denotes the n-th iteration.

We can easily confirm that the flavor powder is distributed randomly. It is convenient to use

binary representation. Suppose that the original position of the flavor powder is represented

by

x0 = (0.ξ1ξ2 . . . ξn+1ξn+2 . . . )2, (3.3)

and that the lower digits ξn+1, ξn+2 . . . are not specified since they are much smaller than the

size of the teaspoon. By the definition of the map fb(x), the position x0 is mapped to

xn = (0.ξn+1ξn+2 . . . )2 (3.4)

19The baker map often refers to a two-dimensional map. It generates a fractal structure in a one-dimensional

direction on a two-dimensional sheet to which the map is applied. In this paper, we analyze a one-dimensional

version of the baker map, ignoring the fractal structure which does not originate in transient chaos.
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after the n-th iteration. Since the smaller digits cannot be specified, effectively the flavor

powder is randomly distributed. Remark that the sequence xn → xn+1 → · · · is not periodic

and that the deviation of the smaller digits ξn+1, ξn+2, . . . grows exponentially by the iterations

of the stretching and the folding. The chaoticity of the baker map originates in the stretching

and the folding mechanisms. The stretching of the bread dough expands a small deviation,

resulting in shifts of the digits ξi to the left. The folding of bread dough keeps it in its original

size and allows iterations for a long time.

Also, there is another version of the map 20

ft(x) =

{
2x 0 ≤ x < 1/2

2(1− x) 1/2 ≤ x ≤ 1
. (3.5)

Similarly this map shows chaotic behavior.

Escape

Transient chaos is a type of chaos in which a chaotic process lasts only for a finite time. Its

essence is also understood in a simple toy model, the gluttonous baker map. We can clearly

see that a fractal structure in the phase space is associated with the escape mechanism.

Suppose that we have a piece of bread dough with a unit length [0, 1]. We knead the

bread dough with a teaspoon of flavor powder. However, this time the baker is so gluttonous.

Kneading processes are as follows. The bread dough is stretched to triple its length, and cut

into three pieces. The gluttonous baker eats one of the three pieces, and folds only the two

pieces into the original size. The position x of the flavor powder is mapped by a function

fgb(x) =

{
3x 0 ≤ x ≤ 1/3

3(1− x) 2/3 ≤ x ≤ 1
. (3.6)

Here the middle piece 1/3 < x < 2/3 is eaten by the baker.

This map also generates chaos in the same way as the ordinary baker map fb(x). However,

in this case, some subset of the bread dough [0, 1] escapes from the chaotic processes within

a finite time. Let us denote, by C, a subset of the original dough [0, 1] which is not eaten by

the baker. By the definition of the function fgb(x), we can find a subset Cn ⊂ [0, 1] which is

not eaten the baker until the n-th iteration. For each n, we find that

C0 = [0, 1], (3.7)

C1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
, (3.8)

20This is called the tent map.
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C2 =

[
0,

1

9

]
∪
[
2

9
,
3

9

]
∪
[
6

9
,
7

9

]
∪
[
8

9
, 1

]
, (3.9)

...
... (3.10)

The set C is the limit C = limn→∞Cn. This is nothing but the Cantor set. The Cantor set is

a typical fractal set, which has a self-similar structure and non-integer dimension.

Remark that transient chaos generates a fractal structure in the phase space. The original

interval C0 = [0, 1] is mapped to a unit interval but with a hole at the middle C1 = [0, 1/3] ∪
[2/3, 1] since the middle region [1/3, 2/3] escapes from the mapping (or is eaten by the baker).

The same processes are performed iteratively due to the stretching and folding mechanism,

resulting in a self-similar structure of intervals with a hole.

Inversely a fractal structure of phase space probes chaos. Its self-similar structure means

that there are some iteration mechanisms. For each iteration, the bread dough needs to be

stretched more than the unity in order to compensate for the loss of the bread dough. The

stretched dough needs to be folded to keep its original size.

3.2 Measures

We introduce measures of chaos. As explained before, fractality is a good probe of chaos. It

is measured by the fractal dimension. We will see that the fractal dimension determines the

Lyapunov exponent. Although we will use the gluttonous baker map as an example in this

section, the following measures and relations between them can be generalized to other fractal

sets.

Let us consider the gluttonous baker map

ggb(x) =

{
ε−1
1 x 0 ≤ x ≤ ε1

ε−1
2 (1− x) 1− ε2 ≤ x ≤ 1

. (3.11)

We assume 0 < ε1 < ε2 < 1 without loss of generality. This map generates the Cantor set as

the limit of

I(0) = [0, 1], (3.12)

I(1) = I
(1)
1 ∪ I(1)2 , (3.13)

I(2) = I
(2)
1 ∪ I(2)2 ∪ I(2)3 ∪ I(2)4 , (3.14)

...
... (3.15)

We denote the length of an interval I
(n)
i by ε

(n)
i .
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Natural measure

A chaotic set consists of small pieces of different sizes. The natural measure characterizes

how often each piece appears in a chaotic set. Let ε be the resolution to measure length. For

example, if we choose ε ∼ ε(n) < εn1 , we can measure the length of an interval I
(n)
i with good

precision. We denote, by Ni(ε), the minimum number of small boxes with length ε necessary

to cover the interval I
(n)
i , and by N(ε) to cover the whole set I(n). The natural measure is

defined by

Pi(ε) =
Ni(ε)

N(ε)
. (3.16)

In the case of the gluttonous baker map (3.11),

Pi(ε
(n)) =

ε
(n)
i

(ε1 + ε2)n
. (3.17)

Escape rate

The escape rate characterizes how quickly randomly selected initial conditions escape from a

chaotic set. It is defined at late time by

(chaotic sets) ∼ e−κn. (3.18)

In the case of the gluttonous baker map (3.11), it is given by

(ε1 + ε2)
n ∼ e−κn, (3.19)

or equivalently

ε
(n)
i eκn ∼ Pi(ε

(n)). (3.20)

Then we find that

κ = − ln(ε1 + ε2). (3.21)

Box counting dimension

The fractality of a given set is measured by fractal dimension, which is a generalization of the

ordinary dimension. One way to measure a dimension is to count the number of boxes which

cover a set. Suppose that a given set is embedded in a d-dimensional space. Let N(ε) be

the minimum number of small boxes with length ε necessary to cover the set. For sufficiently

small ε, the box counting dimension is defined by

N(ε) ∼
(
1

ε

)D0

. (3.22)
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This definition is a generalization of an ordinary dimension since d dimensional spaces satisfy

D0 = d. Rearranging it we can write also as

D0 =
lnN(ε)

− ln ε
, (3.23)

for the limit ε → 0. Noting that the Cantor set generated by (3.11) has a strict self-similar

structure, (
1

ε

)D0

∼ N(ε) =
∑
i

Ni(ε)

=
∑
i

N(ε/εi)

∼
(

1

ε/εi

)D0

. (3.24)

Thus the box counting dimension is also determined by an equation∑
i

εD0
i = 1. (3.25)

Information dimension

The information dimension is another type of generalization of the ordinary dimension. While

we used identical boxes to define the box counting dimension, we may use boxes of different

sizes to cover segments of different lengths and define an effective number of boxes to cover

the whole set. An effective number of boxes can be counted by using information

I(ε) = −
∑
i

Pi(ε) lnPi(ε). (3.26)

Let us explain its meaning quickly. For example, consider a two-sided coin whose head or

tail appears with the equal probability {Pi} = {1/2, 1/2}. Since the head and tail can be

distinguished, we may say that the coin has a size two, and has 1-bit information. Indeed the

information defined above satisfies 2 = eI . Next, consider a super unfair coin {Pi} = {1, 0}.
Since the coin always shows its head, we may say that the coin has an effective size one, and

has 0-bit information. Indeed 1 = eI is satisfied. Thus the exponential of information can

define an effective size of a system.

The information dimension is defined by

eI(ε) ∼
(
1

ε

)D1

. (3.27)
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When the probability distribution is uniform, the effective number of boxes eI(ε) reduces to

N(ε). Rearranging it we can write as

D1 =
ln eI(ε)

− ln ε
, (3.28)

for the limit ε→ 0. We can easily show that the information dimension is no greater than the

box counting dimension

D1 ≤ D0. (3.29)

Noting that − ln ε ∼ −
∑

i Pi(ε
(n)) ln ε

(n)
i holds for sufficiently high resolution,

D1 =
−
∑

i Pi(ε
(n)) lnPi(ε

(n))

−
∑

i Pi(ε(n)) ln ε
(n)
i

. (3.30)

In the case of the gluttonous baker map (3.11), it is given by

D1 =
− ε1

ε1+ε2
ln ε1

ε1+ε2
− ε2

ε1+ε2
ln ε2

ε1+ε2

− ε1
ε1+ε2

ln ε1 − ε2
ε1+ε2

ln ε2

=
−ε1 ln ε1 − ε2 ln ε2 + (ε1 + ε2) ln(ε1 + ε2)

−ε1 ln ε1 − ε2 ln ε2
. (3.31)

Lyapunov exponent

The Lyapunov exponent characterizes how fast the deviation of initial conditions grows. Let

us consider a small interval ∆
(n)
i ⊂ I

(n)
i . Its expansion factor Λ1i(n) is given by

∆
(n)
i

∆(0)
∼ eΛ1i(n). (3.32)

The Lyapunov exponent is defined as the average of the local expansion factor by

λ1 =
∑
i

Pi(ε)
Λi(n)

n
=
∑
i

Pi(ε
(n))

− ln ε
(n)
i

n
. (3.33)

In the case of the gluttonous baker map (3.11), it is given by

λ1 = − ε1
ε1 + ε2

ln ε1 −
ε2

ε1 + ε2
ln ε2. (3.34)

Topological entropy

The topological entropy characterizes how fast the original segments in a set are divided into

smaller segments at each step. Let us allocate a sequence of symbols for each interval I
(n)
i .
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For example, we can allocate as {I(0)} → {0}, {I(1)i } → {0, 1}, {I(2)i } → {00, 01, 10, 11}, . . . .
The topological entropy K0 is defined by

(#allowed symbolic sequence) ∼ eK0n. (3.35)

In the case of the gluttonous baker map (3.11), each interval is divided into two smaller

intervals at each step. Thus

K0 = ln 2. (3.36)

Metric entropy

The metric entropy is a generalization of the topological entropy. We use an effective number

of allowed symbolic sequences which is counted by the information I(ε). The metric entropy

is defined by

e−
∑

i Pi(ε
(n)) lnPi(ε

(n)) ∼ eK1n. (3.37)

We can easily show that the metric entropy is no greater than the topological entropy

K1 ≤ K0. (3.38)

Relations

Chaos can be detected by fractality in the phase space as explained before in the gluttonous

baker map. It can also be understood from relations between measures of chaos. From (3.20),

(3.30), and (3.33), we find that the Lyapunov exponent is determined by fractal dimension as

λ1 =
κ

1−D1

. (3.39)

From (3.37), we find that the metric entropy is determined as

K1 = λ1 − κ = λ1D1. (3.40)

3.3 Chaos in scatterings

Classical scatterings on many disks are typically chaotic. When a particle is shot into a

scattering region, it collides with the disks many times. Then the deviation of an initial

condition, say, of the impact parameter grows exponentially. Within a finite time, a particle

escapes from the scattering region. Then the chaos is transient.

We will see below that three-disk scatterings are chaotic while two-disk scatterings are

not. This is because there is no folding mechanism in two-disk scatterings. The geometrical

structure in a scattering region determines whether a scattering system is chaotic or not.
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Figure 3: Classical two-disk scattering. The two disks with radius r = 0.75 are placed at

(x, y) = (0,±1). The gray circle indicates a scattering region. Particles are shot from the left

with impact parameter b > 0. They collide with disks and escape from the scattering region

within a finite time. The right panel is a plot of scattering angle θ′ with respect to impact

parameter b. It is singular around bc ∼ 0.37; small segments are accumulated around b = bc.

Scattering on disks

Let us consider a classical scattering on two disks as illustrated in the left panel of Fig. 3.

We put two disks of radius r = 0.75 at (x, y) = (0,±1). A particle is shot from the negative

x-axis with the impact parameter b. Its scattering angle θ′ with respect to b is plotted in the

right panel of Fig. 3.

As the figure shows, the scattering is irregular around a critical value bc ∼ 0.37. This is

caused by an unstable periodic orbit: bounces between two disks along the y-axis. When the

impact parameter is tuned around the critical value b ∼ bc, a particle bounces between the

two disks many times. Since the bouncing orbit is unstable, a slight change of the impact

parameter b discontinuously changes the scattering angle θ′. In this sense, scatterings by two

disks stretch the deviation of initial conditions.

However, this system is not chaotic. Indeed, when we zoom into the plot, the number of

small segments does not scale exponentially. Thus the plot cannot be fractal. The absence

of fractality is clearer in the plot of the delay-time as shown in Fig. 4. From the plot, we

can find a subset of all possible impact parameters for which a particle does not escape the

scattering region no later than T = Tc > 0. This subset is analogous to a subset I(n) ⊂ I in

the gluttonous baker map. Thus the subset of impact parameters is a fractal set if scatterings

are chaotic. The plot is clearly not fractal. It just has a peak at b ∼ bc, which is caused by

bounces of a particle between the two disks.
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Figure 4: Escape time (or delay-time) with respect to impact parameter in two-disk scattering.

The plot has a single peak at b = bc which corresponds to bounces between the two disks,

thus it cannot be fractal.

Next, let us add another disk in the scattering region as illustrated in Fig. 5. We put

three disks of radius r = 0.75 at (x, y) = (−1/2,±
√
3/2), (1, 0). In this system, a particle

scattered by disks bounces back by another disk, and is confined in the scattering region for a

longer time. Such bounces give the folding mechanism. Then the scattering becomes chaotic.

Indeed, the plot of the scattering angle in Fig. 5 is fractal. When we zoom into the plot, a

similar structure re-appears and the number of small segments scales exponentially. Fractality

is clearer in the plot of delay-time as shown in Fig. 6. When we zoom into the plot, a similar

structure re-appears and the number of small segments scales exponentially.

Scattering on four-hill potential

Finally, we review particle scatterings by a four-hill potential and see that the scattering data,

the plot of incoming/outgoing angles, has a fractal structure.

Consider the motion of a single particle scattered by a potential (see Fig. 7). A potential

is localized around the origin of the space into which the particle is shot and then scattered

to reach the spatial infinity. The scattering data could be, for example, the incoming angle θ

and the impact parameter b for the initial state of the particle and the outgoing angle θ′ and

the impact parameter b′ for the final state of the particle. Thus the data consists of a set of

values (θ, b, θ′, b′) with many numerical experiments, for a fixed potential and fixed energy of

the particle. In other words, the data is a set of functions θ′(θ, b) and b′(θ, b).21

If one chooses a potential whose complexity is large enough, then it happens that the

particle which was shot in can be trapped for a certain period of time and then escapes to

the spatial infinity. During this trapping time, the particle is scattered many times by the

21One can choose θ = 0 and ignore measuring b′, then the scattering data is only θ′(b), which was used

in [62].
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Figure 5: Classical three-disk scattering. Three disks with radius r = 0.75 are placed at

(x, y) = (−1/2,±
√
3/2), (1, 0). The gray circle indicates a scattering region. The right panel

is a plot of scattering angle θ′ with respect to impact parameter b. It is singular not only

around a single value of b. Actually, there are infinitely many unstable periodic orbits.

inner structure of the potential and loses its initial information (which is θ and b). This causes

chaos, the sensitivity to the initial condition.

In Fig. 7, two examples of the scattering of a particle which goes through the four-hill

potential with the Lagrangian

L =
1

2
ẋ2 +

1

2
ẏ2 − x2y2e−x2−y2 (3.41)

are presented. The particle is shot from the right hand side with the initial angle θ = 0.125

and 0.127 respectively, with b = 0. The outcome is drastically different, although the initial

conditions differ just slightly.

Generic scattering processes are different from the case of the bounded systems for which

the standard definition of chaos applies: one cannot measure the chaos for infinite duration of

time, because the particle can escape from the chaotic region. Therefore the chaotic nature is

hidden in the scattering data of the particle which goes through the potential.

In Fig. 8, the scattering data of the particle which goes through the four-hill potential

(3.41) is presented. We have chosen b = 0 for simplicity, and look at only the function θ′(θ).

The top-left panel is the whole view of the data. The scattering data obviously finds a lot of

jumps, and in particular, the jumps are accumulated to form a dense part. If one magnifies the

dense part, as seen in the other panels, one finds a similar dense structure in the scattering

data. This is the fractal-like structure, which shows the transient chaos of the scattering

process.
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Figure 6: Escape time (or delay-time) with respect to impact parameter in three-disk scat-

tering. When we zoom into the plot, a similar structure re-appears and the number of small

segments scales exponentially. Thus the plot is fractal.

The existence of the fractal structure means that a single destination of the particle motion

can have two or more paths. It is nothing but the initial condition sensitivity, that is the

definition of classical chaos.

In summary, for classical scattering, there are two diagnoses for chaos: the fractal structure

in the scattering data θ′(θ) and the non-trivial geometrical structure in the scattering region.

In the followings section, we obtain scattering data and a picture of a scattering region for

string scatterings, in particular highly excited strings, and look for chaos.
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Figure 7: The classical scattering of a single particle in two spatial dimensions. The scattering

potential is the four-hill potential (3.41) whose equal-height slice is plotted as four circles.

Left: Initial condition is θ = 0.125 with b = 0. Right: Initial condition is θ = 0.127 with

b = 0. For both plots, the energy is fixed to E = 0.045.
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Figure 8: The scattering data of the particle for the four-hill potential model (3.41). The

particle energy is fixed to E = 0.045, and the impact parameter is also fixed to b = 0. Top-

left: the whole view of the scattering data θ′(θ). The top-right, bottom-left, bottom-right

panels are the magnified plots of the scattering data, while the top-left panel is the whole view

of the scattering data. In the top-left panel, one finds connected lines and scattered plots.

Interestingly, also in the magnified plots in the top-right, bottom-left and bottom-right panels,

one finds a similar structure. This is the fractal-like structure of the self-similarity.
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4 Fractal structure in string scattering data

In this section, we look for a fractal structure in scattering data of a highly excited string

(HES). First of all, we generalize an idea of classical chaotic scatterings to quantum scatterings.

Then we compute scattering amplitudes of HES-tachyon to HES-tachyon.

Our results show that the scattering amplitude is highly erratic. However, we could not

find any fractal structure, which is necessary for chaos. Finally, we discuss the possibility that

chaos shows up if we include higher loop corrections.

4.1 Generalization to quantum scattering

The transient chaos in classical scattering is well-understood, as we have reviewed in the

previous subsection. However, string theory is built out of quantum scattering amplitudes.

How can we generalize the classical analysis to the quantum scattering amplitudes? Here, let

us explain our strategy to apply the transient chaos analysis for classical scattering processes

which we reviewed in the previous subsection to the quantum scattering processes.

First of all, we need to note that in quantum scattering processes, due to the Heisen-

berg uncertainty principle, we do not have all the information which the classical scattering

has. Thus here we start with a discussion on what parameters are suitable for the quantum

scattering processes.

The quantum scattering in standard quantum field theories is normally described by plane

waves, as any particle state is a superposition of quantized plane waves. This means that, the

initial state and the final state are specified only by the momenta of all the particle states,

incoming and outgoing. They are the parameters for quantum scattering, and we can further

reduce the number of the independent parameters by considering some limit, as follows.

In the analogy of the physical set-up of the transient chaos in classical scattering, we

suppose a scattering of a light particle by a potential. In the standard 2-to-2 scattering

processes in quantum field theories, this potential scattering is realized if one requires a limit

where the other particle is much heavier than the light scattered particle. Thus, in this limit,

what specifies the scattering amplitude is only the combination (p
(ini)
µ , p

(fin)
µ ), which is the

momenta of the light scattered particle. Furthermore, once we specify the mass m of the

light particle, then with the energy conservation, we find p
(ini)
0 = p

(fin)
0 =

√
p2 +m2 for the

momentum magnitude p (> 0). The scattering is specified by p and the pair (θ, θ′) where

θ and θ′ are the angles of the incoming and the outgoing momenta (p
(ini)
i , p

(fin)
i ). Thus, the

scattering data is given by the scattering amplitude A(p, θ, θ′).

Next, we present our procedures to extract the scattering plot similar to Fig. 8 from the

quantum scattering amplitudes, to find the transient chaos of the system. Note that the
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classical scattering data is given by a map (b, θ) → (b′, θ′) for a given energy, where b is

the impact parameter. In the quantum scattering we consider plane waves, meaning that

the impact parameters are uniformly integrated. Once the impact parameter dependence is

integrated, the classical scattering is specified by a map θ → θ′, i.e. a function θ′(θ) for a

given energy.

We can relate this classical scattering data θ′(θ) and the quantum scattering amplitude

A(p, θ, θ′) as follows. The absolute square of the scattering amplitude A describes the proba-

bility. When the amplitude has a pole at some value of θ′, we can say that the value is most

probable in the scattering. Since the position of the pole depends also on the other data (p, θ),

it gives θ′ as an implicit function of (p, θ). When the amplitude has multiple poles at θ′ = θ′m
for given p and θ, as

A(p, θ, θ′) ∼
∑
m

Rm(p, θ)

θ′ − θ′m(p, θ)
(4.1)

then we can say that the value θ′m(p, θ) which gives the largest residue |Rm(p, θ)| among all

poles is the most probable scattering. In this manner, we can extract the function θ′(p, θ),

which is θ′m(p, θ) with the largest |Rm(p, θ)|, from the scattering amplitude A(p, θ, θ′), and

regard θ′(p, θ) as a quantum counterpart of the classical scattering data θ′(θ).

Note that the obtained function θ′(p, θ) can be discontinuous, since the largest pole, or

equivalently the label m of the largest residue, may differ for different θ. In general, when

there are multiple poles in the scattering amplitude, the scattering data θ′(θ) for a given value

of p, which is a single-valued, consists of a set of segment functions whose domains are disjoint

with each other.

In the following part, we use this definition of θ′(θ) for the scattering data of the string

scattering amplitudes.

4.2 HES-tachyon to HES-tachyon scattering

We study a scattering of a tachyon by a highly excited string (HES) in open bosonic string

theory:

HES + tachyon → HES + tachyon. (4.2)

We compute its scattering amplitude A(p, θ, θ′), and find that it has multiple poles at θ′ =

θ′m(θ). We regard the angle associated with the largest pole as a quantum counterpart of

the classical scattering data. We show that the scattering data θ′(θ) consists of disconnected

segments, and look for the fractal structure.
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Figure 9: String amplitude for the process: (tachyon + J photons) + tachyon→ (tachyon + J

photons) + tachyon. The external lines on the left/right hand side are the incoming/outgoing

strings. After picking out poles labeled with v, v′, it describes the scattering of a tachyon by

a highly excited string (HES).

4.2.1 Setups

To construct the HES-tachyon scattering amplitude, we start with a scattering:

(tachyon + J photons) + tachyon → (tachyon + J photons) + tachyon. (4.3)

Its diagram is shown in Fig. 9. The external lines on the left/right hand side are the incom-

ing/outgoing strings. J photons have momenta {−Naq}a=1,...,J and the same polarization λ

is shared by all the photons. The tachyon with momentum p2 can form an intermediate HES

state by absorbing all these J photons. By picking out a pole labeled with v, we focus on

the HES state. A similar construction of a HES state has been used, for example, in [43, 44].

The HES scatters another incoming tachyon with momentum p1. The outgoing strings are

constructed in a similar but opposite processes. The incoming strings decay into an outgoing

tachyon with momentum p′1 and a HES corresponding to a pole labeled with v′. The outgoing

HES state is constructed from a tachyon with momentum p′2 and J photons which have mo-

menta {−N ′
bq

′}a=1,...,J and share the same polarization λ′, or equivalently, the HES decays into

a tachyon and J photons successively. The resulting amplitude with the poles v, v′ extracted

describes the desired process (4.2).

Let us summarize the setups and some assumptions to simplify computations. The mo-

mentum conservation law is

0 = p1 + (p2 −Nq) + (p′2 −N ′q′) + p′1

= p1 + p2 + p′2 + p′1 −N(q + q′) , (4.4)
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where

N =
J∑

a=1

Na =
J∑

b=1

N ′
b = N ′, (Na, N

′
b ≥ 1) (4.5)

is the total excitation level of HES, and here, the total excitation number N ′ of the outgoing

HES is taken to be the same as that (N) of the incoming HES. The mass M of HES is given

in terms of the total excitation number N as

M2 = 2(N − 1). (4.6)

Since all photons have the same polarization, the number of photons J equals to the total

angular momentum. Here note that N ′
b is not necessarily equal to Nb. The on-shell conditions

for the tachyons and photons are

p21 = p22 = p′22 = p′21 = −(−2), (4.7)

and

q2 = q′2 = 0, (4.8)

respectively. For simplicity, we assume that q ∝ q′ and λ = −λ′. Then the photon momenta

and polarization vectors satisfy

q · q′ = 0, λ2 = λ′2 = λ · λ′ = 0,

q · λ = q′ · λ′ = q · λ′ = q′ · λ = 0. (4.9)

We also assume that

(p1 + p2) · λ = (p′1 + p′2) · λ′ = 0 (4.10)

for simplicity. This is satisfied without loss of generality, for example, by taking the center-

of-mass frame of the incoming/outgoing strings. We define the Mandelstam(-like) variables

as

s = −(p1 + p2 −Nq)2 = −(p′1 + p′2 −N ′q′)2, (4.11)

t = −(p1 + p′2 −N ′q′)2 = −(p′1 + p2 −Nq)2, (4.12)

u = −(p1 + p′1)
2 = −(p2 −Nq + p′2 −N ′q′)2. (4.13)

Also we define variables to describe the HES poles as

v = −(p2 −Nq)2, (4.14)

v′ = −(p′2 −N ′q′)2. (4.15)

These satisfy an identity

s+ t+ u = 4 · (−2) + 2 · (1 + v/2) + 2 · (1 + v′/2). (4.16)
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4.2.2 Amplitude and its largest pole

Here, we calculate the HES-tachyon to HES-tachyon amplitude. The amplitude becomes a

four point amplitude after picking out the intermediate HES poles of v- and v′-channels, and

is given in the form of a worldsheet boundary integral over the position of one of four vertex

operators which cannot be fixed by the conformal symmetry. The integral can be split into

three segments. The amplitude contains poles of three channels: s-, t- and u-channels, and

each of three segments of the integral contains contributions from two of three channels. Here,

we focus on the segment of integral Ast which contains contributions of s- and t-channels.22

Some straightforward computations in App. A show that the st-part contribution for the

HES-tachyon to HES-tachyon scattering amplitude is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏

a=1

(pia · λ) c
(ia)
ka

)(
J∏

b=1

(pjb · λ′) d
(jb)
lb

)
B(−α(s) + k + l,−α(t)). (4.17)

Here the coefficients c
(i)
k , d

(j)
l are defined by

c
(2)
k = +ck(α2 + 1, α1 + 1, α′

2), (4.18)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (4.19)

d
(2)
l = −cl−1(β

′
2, β

′
1, β2 + 1), (4.20)

d
(2′)
l = +cl(β

′
2 + 1, β′

1 + 1, β2), (4.21)

where

ck(α2, α1, α
′
2)

=
Γ(−α2 + 1)Γ(−α1 + 1)

Γ(−α2 − α1 + 2)

Γ(α′
2 + k)

Γ(α′
2)

Γ(−α2 + 1 + k)

Γ(−α2 + 1)

Γ(−α2 − α1 + 2)

Γ(−α2 − α1 + 2 + k)

1

Γ(k + 1)
, (4.22)

and

αi = −(−Naq) · pi, βj = −(−N ′
bq

′) · pj. (4.23)

The last factor B(−α(s) + k + l,−α(t)) in (4.17) is the Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (4.24)

22The part Ast originates in the DDF construction of the fourth vertex operator going around one of the

other three vertex operators, see App. A for the details. Although this is a part of the whole scattering

amplitude, we assume that this is enough for looking at any possible fractal structure. In fact, the complete

structure of the Veneziano amplitude is determined solely by Ast.
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and k, l and α are defined by

α(x) = 1 + x/2, k =
J∑

a=1

ka, l =
J∑

b=1

lb. (4.25)

To evaluate the amplitude (4.17), we have taken the following parameterization of the

momenta and polarization vectors,

−q = 1√
2(N−1)+p2−p cos θ


1

0

0

−1

, −(−q′) = 1√
2(N−1)+p2−p cos θ′


1

0

0

−1

,

λ = 1√
2


0

1

i

0

 −λ′ = 1√
2


0

1

i

0

,

p1 =


√
p2 − 2

p sin θ

0

p cos θ

, −p′1 =


√
p2 − 2

p sin θ′ cosφ′

p sin θ′ sinφ′

p cos θ′

,

p1 + p2 −Nq =


√
s

0

0

0

, −p′1 − p′2 +N ′q′ =


√
s

0

0

0

.

(4.26)

Here, p stands for the magnitude of the momentum of the incoming tachyon, and the scattering

amplitude is parametrized by the angles23 θ, θ′ and φ′. The Mandelstam(-like) variables are

now expressed as

s = (
√
2(N − 1) + p2 +

√
p2 − 2)2, (4.27)

t = (
√
2(N − 1) + p2 −

√
p2 − 2)2 − 2p2(1 + cos θ cos θ′ + sin θ sin θ′ cosφ′), (4.28)

u = −2p2(1− cos θ cos θ′ − sin θ sin θ′ cosφ′). (4.29)

It is straightforward to check that these variables satisfy the identify (4.16). Also we easily

23In 2 → 2 scattering of scalar particles, one can take the center of mass frame with which the scattering

angle is fixed. However, our HES has a specific spatial orientation which is its polarization. Our spherical

coordinate system respects the polarization of the photons which are used to make the HES. There is no

remaining rotation symmetry which could fix the angular variables.
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find for (4.23) that

p1 · q = +

√
2(−1)+p2+p cos θ√
2(N−1)+p2−p cos θ

, p2 · q = +1, p′2 · q = −
√

2(N−1)+p2−p cos θ′√
2(N−1)+p2−p cos θ

,

p′1 · q′ = +

√
2(−1)+p2+p cos θ′√
2(N−1)+p2−p cos θ′

, p′2 · q′ = +1, p2 · q′ = −
√

2(N−1)+p2−p cos θ√
2(N−1)+p2−p cos θ′

,
(4.30)

and for the coefficients in (4.17) that

p2 · λ = −p2 · λ′ =
−1√
2
p sin θ, (4.31)

p′2 · λ′ = −p′2 · λ =
−1√
2
peiφ

′
sin θ′. (4.32)

Under these parametrization, the HES-tachyon to HES-tachyon amplitude is given by the

momentum and the incoming/outgoing angles A = A({Na}, {N ′
b}; p, θ, θ′, φ′).

We apply the strategy in Sec. 4.1 to this amplitude and find the largest pole, to extract

the scattering data. Let us consider the amplitude for given excitation levels {Na}, {N ′
b}

and magnitude of momentum p. Since the Mandelstam variable s depends only on the total

excitation level N and magnitude of momentum p, the s-channel poles are independent of the

angular variables. On the other hand, the t-channel poles come from the divergences of the

Beta function in (4.17), and appear in certain outgoing angles for given incoming angles. The

t-channel poles form a line in two-dimensional space of outgoing angles θ′ and φ′. For a fixed

φ′, the positions of poles in the outgoing angle {θ′m(θ)} is given as functions of the incoming

angle θ. They can be obtained by solving

α(t(θ, θ′)) = n, n ∈ Z≥, (4.33)

as the t-channel poles come from the poles of Γ(−α(t)) in the Beta function in (4.17). We

evaluate this equation numerically. Among the data {θ′m(θ)}, we look for their maximum

poles, which has the largest residue of the poles. The residue around the poles is

Ãst = lim
α(t)→n

lim
{α2}→{Na}

lim
{β′

2}→{N ′
b}

sin π(−α(t))
π

J∏
a=1

sin πα2

π

J∏
b=1

sin πβ′
2

π
Ast

= Ast|B→B̃,c→c̃,d→d̃ . (4.34)

Here we have defined

B̃(−α(s) + k + l,−α(t)) = lim
α(t)→n

sin π(−α(t))
π

B(−α(s) + k + l,−α(t))

=
Γ(−α(s) + k + l)

Γ(−α(s)− n+ k + l)Γ(1 + n)
, (4.35)

c̃k(α2, α1, α
′
2) = lim

α2→Na

sin πα2

π
ck(α2, α1, α

′
2)
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=
1

Γ(k + 1)Γ(α2 − k)

Γ(α2 − k + α1 − 1)

Γ(α1)

Γ(α′
2 + k)

Γ(α′
2)

, (4.36)

and have also defined

c̃
(2)
k = −c̃k(α2 + 1, α1 + 1, α′

2), (4.37)

c̃
(2′)
k = −c̃k−1(α2, α1, α

′
2 + 1), (4.38)

d̃
(2)
l = −c̃l−1(β

′
2, β

′
1, β2 + 1), (4.39)

d̃
(2′)
l = −c̃l(β′

2 + 1, β′
1 + 1, β2). (4.40)

Note that the signs of the coefficients c̃(2), d̃(2
′) are flipped since sinπ(α2 + 1) = − sinπα2.

Numerically evaluating the reside at {θ′m(θ)}, and finding the largest one among them, we

construct the scattering data θ′(θ) of the HES-tachyon scattering amplitudes.

4.2.3 Transient chaos analysis of the scattering amplitude

In this subsection, we show numerical plots of the scattering data θ′(θ) for various fixed

parameters, and discuss their fractal feature (the self-similarity).

The results for a scattering of a tachyon and a HES with the angular momentum J = 1 are

shown in Fig. 10. The top/middle/bottom two panels are the plots for the excitation levels

N = N1 = N ′
1 = 1, 5, 9. The three panels on the left and right hand side are the plots for

φ′ = 0 and φ = π/4, respectively. The momentum is fixed at p = 2.6 so that the energy

squared is positive, E2 = p2 − 2 ≈ 7− 2 > 0.

The plots are highly erratic, for larger excitation levels. The tilted lines in the case N = 1

split into smaller segments in the cases N = 5, 9. However, we do not see any fractal structure.

In particular, the number of the small segments does not increase exponentially in N . Note

that typical fractal data is produced by a repeated action of an operation creating self-similar

structure, and the number of small structure grows exponentially in the number of the action,

thus also in our case, it is expected that the number of the smaller segments would have grown

exponentially in N if the scattering were chaotic.

This is further confirmed in Fig. 11, where the excitation level is chosen as N = 27.

This number N = 27 ≈ 4p2 was chosen so that as many t-channel poles, found in (4.33),

appear as possible, nevertheless, the fractal feature, or the exponentially smaller structure,

does not appear. Thus we conclude that the scattering data is not fractal. Assuming that the

fractal nature is the sign of chaos in quantum systems, our result means that our HES-tachyon

scattering is not chaotic.

The results for the scattering of the HES with J > 1 are shown in Fig. 12. The top,

bottom-left and bottom-right panels are the plots for the excitation levels {Na} = {N ′
b} = {5},

{3, 1, 1}, {1, 1, 1, 1, 1}, respectively. Other parameters are fixed as φ′ = 0, p = 2.6. As the
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photons of which the HES with the total excitation level N consists are partitioned into more

photons to form a HES with smaller excitation levels {Na}, {N ′
b}, we find in Fig. 12 that the

small segments disappear. We conclude that even with the HES with J > 1 the fractal nature

is not found, therefore, the scattering amplitudes are not chaotic.24

This behavior on the partitions is explained as follows. As seen from the examples of the

case J = 1, the smaller segments appear for larger N (or Na, N
′
b). In the scattering amplitude,

there exist several lines of poles. When we pick out the pole with the largest residue, the

largest pole depends on the incoming angles. Thus, the line in the scattering data of the

largest pole is segmented. This magnitude of the residue at each pole is mostly determined by

the coefficients c
(i)
k (α), d

(j)
l (β), where α, β are proportional to Na, N

′
b times oscillating functions

(see (4.23), (4.30)). These coefficients oscillate more rapidly for larger values of {Na}, {N ′
b}.

Then, the largest pole frequently changes from a line to another, and then, the line of the

largest pole is split into smaller segments. The minimum length of the segments is bounded

by the maximum of {Na}, {N ′
b}.

From the reasons described above, we expect that a larger N and a change in J does

not produce the fractal behavior. First of all, for the fractal structure the scattering data

needs to have exponentially small segments. The smallness of the segments is bounded by the

maximum of {Na}, {N ′
b}. Increasing N provides only linearly small segments, which does not

help giving a fractal structure. Increasing J just lowers the maximum of {Na}, {N ′
b} and thus

reduces the fractalness. The complexity of the J-partitions of N is not related to the fractal

nature.25 This is the reason why the scattering data is not fractal.

4.3 Possible cases when chaos shows up

The absence of a fractal structure in the scattering data is a negative result for looking for

chaos. Nevertheless, we have not yet excluded all possibilities. We can expect that chaos

shows up when we include higher loop corrections for the following reasons.

If we regard the multiple scattering in classical transient chaos as multiple scattering in

string theory, it could mean that we need to visit higher loop amplitudes. The scattering

amplitudes which we have studied in this paper is the tree level scattering, which is of the

order of the string coupling constant. However, the particle scattering by a fixed potential

is a non-perturbative process in the sense that the scattering potential can be decomposed

24We have used the typical value of p so that the total energy is positive. Even with other values of p, the

scattering data does not show the fractal structure.
25Note that the exponential growth of the number of states in string excitations is not related to the small

segments in the scattering data. In some other setup of the amplitudes, this exponential growth might produce

some chaotic behavior, though it does not in our case.
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into its radial modes. Therefore, naively speaking, for a possible transient chaos, higher loop

amplitudes would be necessary.

As a first guess, we can use the tree level scattering data given in Fig. 10, Fig. 11 and

Fig. 12 to produce the multiple scattering. For example, we can use the function

θ′(θ) (4.41)

and apply this map many times, as

θ′(θ′(θ)), · · · (4.42)

This is an analogy of the popular baker map which produces chaos. Unfortunately, since the

slope of the scattering data in the left panels of Fig. 10 and Fig. 11 and in Fig. 12 is identical

to 1, this map does not work to magnify a part of the scattering data (which is necessary

for any chaotic map). While at this stage, our naive multiple application of the scattering

data map does not seem to produce chaos, the slope of some parts of the scattering data with

φ′ = π/4 exceeds 1. The measure analysis is necessary to figure out whether the map can

generate chaos or not.
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Figure 10: Scattering data θ′(θ) involving a HES with the angular momentum J = 1. The

top/middle/bottom two panels are the plots when the excitation level is N = N1 = N ′
1 =

1, 5, 9. The three panels on the left/right hand side are the plots when φ′ = 0, π/4. The

momentum is fixed at p = 2.6. Although the plots are highly erratic, fractal structure has not

been observed.

42



0 1 2 3 4 5 6 θ0

1

2

3

4

5

6

θ'

0 1 2 3 4 5 6 θ0

1

2

3

4

5

6

θ'

Figure 11: Scattering data θ′(θ) when J = 1, N = 27. The excitation level is chosen so that

as many t-channel poles appear as possible. Other parameters are fixed as Fig. 10. Still fractal

structure does not appear.
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Figure 12: Scattering data θ′(θ) involving a HES with the angular momentum J > 1. The

top/bottom-left/bottom-right panels are the plots when the excitation level is {Na} = {N ′
b} =

{5}, {3, 1, 1}, {1, 1, 1, 1, 1}. Other parameters are fixed as φ′ = 0, p = 2.6. As the level N is

partitioned into smaller numbers {Na}, {N ′
b}, the small segments disappear.
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5 Geometrical structure in string scattering region

In this section, we study the geometrical structure of string scattering regions. We employ

an imaging method: Fourier transformation of scattering amplitudes. First of all, we check

that our method appropriately works in the standard double-slit experiment. Then we show

that string scattering regions look like double-slits. It can be explained analytically; the zeros

of string amplitudes coincide with the ones of the standard double-slit experiment. We may

interpret the slits in string images as the end points of strings.

We could not find any non-trivial geometrical structure, which is necessary for chaos, since

the slits are aligned along the same straight line. We discuss the possibility that chaos shows

up if we consider closed strings or multi-point scatterings.

5.1 Double-slit experiment

First of all, we review the standard double-slit experiment, and a method to reconstruct the

image from the amplitude on a screen, to demonstrate that the amplitudes actually encode

the image of the double slit.

Let us put two slits S1, S2 on (z, x) = (±l/2, 0), and place the center of a spherical screen

of redius L ≫ l at the origin. A wave with wavelength λds passes through the slits from the

negative to the positive x-direction. An observer P is placed at (z, x) = (L cos θ′, L sin θ′) on

the screen. See Fig. 13.

If the screen is sufficiently large, i.e. L≫ l, the difference of two optical paths is given by

S2P− S1P ≃ l cos θ′. (5.1)

Thus the condition that the amplitude at P vanishes is

cos θ′ ≃ k′

2

λds
l

(5.2)

where k′ is an odd integer. More precisely, supposing that a spherical wave is emitted from

the two slits with identical phase and amplitude A, the wave amplitude on the sphere placed

at the spatial infinity L(≫ l) is

A(θ′, φ′) ≃ 2A cos

(
πl

λds
cos θ′

)
. (5.3)

Zeros of this amplitude is given by (5.2). The result is independent of another spherical

coordinate φ′ as the slits are separated along the z-axis in this case.

The wave amplitude itself does not give the image of the slit, as understood in Fig. 14.

Optical wave theory provides a method for the imaging. The popular method is just to put a
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Figure 13: Double-slit is put at S1 and S2, and scattered wave is observed at the point P.

Figure 14: The amplitude of waves in the double slit experiment, for πl/λds = 15.

lens of a finite size d on the celestial sphere, and convert the wave amplitude with the frequency

ω = 2π/λds into the image on a virtual screen located at a focal point of the lens. The formula

for converting the amplitude to the image is approximated just by a Fourier transformation

for L≫ l (see [58, 59] for more details and brief reviews of the formula):

I(X, Y ) =
1

(2d)2 sin θ′0

∫ θ′0+d

θ′0−d

dθ′
∫ φ′

0+d/ sin θ′0

φ′
0−d/ sin θ′0

dφ′eiω((θ
′−θ′0)X+(φ′−φ′

0)Y )A(θ′, φ′). (5.4)

Here the coordinate (X, Y ) is the one on the virtual screen placed behind the lens, so the image

I of the optical wave is produced on that XY -plane. The location of the center of the lens is

at (θ′, φ′) = (θ′0, ϕ
′
0), and a rectangular shape of the lens region is adopted for computational

simplicity.

The lens size d needs to cover at least several zeros of the amplitude to find a sharp image,

otherwise the image is blur and no structure can be reconstructed from the amplitude. In the

present case of the double-slit experiment, when one takes the limit l ≫ λds the zeros of the
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Figure 15: The lens resolution, seen in the behavior of the function σ(x) (5.6), for 2πd/λds = 10

(left) and for 2πd/λds = 100 (right). For large d/λds (meaning that the wave length is small

enough so that it detects many oscillations of the amplitude), this function is highly peaked

at x = 0, and the resolution is high.

amplitude are aligned densely, so the lens size d can be taken quite small compared to 2π. It

means that the curvature effect of the celestial sphere in the imaging can be ignored and the

formula (5.4) is validated.

Let us substitute the double-slit amplitude (5.3) into the imaging formula (5.4) and check

if the image reproduces the shape (location) of the slits. The result is

I(X, Y ) = A(−1)k̃σ(Y/ sin θ′0)

(
σ

(
X − l sin θ′0

2

)
+ σ

(
X +

l sin θ′0
2

))
(5.5)

where we have defined

σ(x) ≡
sin
(

2πd
λds
x
)

2πd
λds
x

. (5.6)

See Fig. 15 for the meaning of this function σ(x). The calculation is straightforward but we

have just assumed that the center of the location of the lens satisfies the condition

l

λds
cos θ′0 = k̃ ∈ Z (5.7)

to simplify the result. It can be met easily because we can find such an integer in the limit

l ≫ λds which we took as described above.

The density plots of the image function (5.5) are shown in Fig. 16. One clearly finds the

position of the double slits. The parameters are chosen as: 2πd/λds = 30 and l = 1. The

left figure is the image of the lens put at (θ′0, φ
′
0) = (π/2, 0). The location θ′0 = π/2 means

that the lens is put at the right hand side in Fig. 13, facing the double slits head-on, and

the distance between the images of the two slits should be the largest. On the other hand,

when the location of the viewer is shifted in the z direction in Fig. 13, the distance between
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Figure 16: The X-Y images of the double-slit experiment, reconstructed from the wave am-

plitudes at the spatial infinity. Left: seen from the head-on point (θ′0, φ
′
0) = (π/2, 0) facing the

aligned slit. Middle: (θ′0, φ
′
0) = (π/3, 0). Right: (θ′0, φ

′
0) = (π/4, 0). As the viewer shifts from

the head-on point, the distance between the slits decreases by the function sin θ′0 consistently.

the images of the slits should decrease. In fact, as seen in the middle and the right figures in

Fig. 16, for (θ′0, φ
′
0) = (π/3, 0) and for (θ′0, φ

′
0) = (π/4, 0) respectively, one finds a consistent

behavior.

In the next part, we apply this method for string scattering amplitudes, and see the images

of the fundamental string.

5.2 Images of string via Veneziano amplitude

In this part, we obtain the images of a fundamental string by using the Veneziano amplitude,

and show that the fundamental string is a double-slit.

More specifically, we point out that the zeros of the Veneziano amplitude match the ones

of the double-slit amplitude described in the previous Sec. 5.1. Then we reconstruct images

of a string by the Fourier transformation of the Veneziano amplitude. The images show two

columns (which are “slits”) standing apart at a distance of a typical length of strings.

5.2.1 Veneziano amplitude and its zeros

First, we describe our notation of the Veneziano amplitude, tachyon-tachyon to tachyon-

tachyon scattering amplitude.

We label its four vertices with 1, 2, 2′, 1′. The momentum conservation law is

0 = p1 + p2 + p′2 + p′1. (5.8)

Since each vertex is a tachyon, we have the on-shell condition

p21 = p22 = p′22 = p′21 = −(−2). (5.9)
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Here, we conventionally chose α′ = 1/2. In the following computations, we will use the same

unit. The Mandelstam variables are defined as

s = −(p1 + p2)
2 = −(p′1 + p′2)

2, (5.10)

t = −(p1 + p′2)
2 = −(p′1 + p2)

2, (5.11)

u = −(p1 + p′1)
2 = −(p2 + p′2)

2. (5.12)

These satisfy an identity

s+ t+ u = 4 · (−2). (5.13)

The Veneziano amplitude [63] is given by

AVen = 2
[
AVen

st +AVen
tu +AVen

us

]
, (5.14)

where

AVen
xy =

Γ(−α(x))Γ(−α(y))
Γ(−α(x)− α(y))

, α(x) = 1 + x/2. (5.15)

The amplitude has s-channel poles at s = 2n for integers n ≥ −1. Since we are interested in

the images of a string formed at the scattering, we pull out one of the s-channel poles and

look at the residue of the pole of the Veneziano amplitude. Using the reflection formula of the

Gamma function and the identity (5.13), the residue of the s-channel pole is

ÃVen
s = lim

s→2n

sin π(−1− s/2)

π
(AVen

st +AVen
us )

=
1

Γ(2 + n)

[
Γ(−1− t/2)

Γ(−2− n− t/2)
+ (t↔ u)

]
=

1

Γ(2 + n)

[
Γ(−1− t/2)

Γ(2 + u/2)
+ (t↔ u)

]
.

(5.16)

To evaluate this amplitude, we denote the magnitude of the momentum of the in-coming

tachyons is p. In the center-of-mass frame, the momenta can be generically parametrized as

p1 =


√
p2 − 2

p sin θ

0

p cos θ

, −p′1 =


√
p2 − 2

p sin θ′ cosφ′

p sin θ′ sinφ′

p cos θ′

,

p2 =


√
p2 − 2

−p sin θ
0

−p cos θ

, −p′2 =


√
p2 − 2

−p sin θ′ cosφ′

−p sin θ′ sinφ′

−p cos θ′

.
(5.17)

48



The parameter θ, which measures the angle of the incoming tachyon against the z-axis, will

be fixed later for the convenience in numerical computations. Under this parametrization, the

Mandelstam variables are expressed as

s = 4(p2 − 2) = 2n, (5.18)

t = −2p2(1 + cos θ cos θ′ + sin θ sin θ′ cosφ′), (5.19)

u = −2p2(1− cos θ cos θ′ − sin θ sin θ′ cosφ′). (5.20)

Let us look for zeros of the residue of the s-channel pole of the amplitude (5.16). It is zero

if and only if

0 = Γ(−1− t/2)Γ(2 + t/2) + (t↔ u)

=
π

sin π(−1− t/2)
+ (t↔ u). (5.21)

This condition is equivalent to

π(−1− t/2) + π(−1− u/2) = 2Zπ, (5.22)

or π(−1− t/2)− π(−1− u/2) = (2Z− 1)π. (5.23)

If n is even, the first equation is satisfied for any angles. Then the amplitude is trivially zero.

In the following discussion, we assume that n is odd. The second equation reduces to

cos θ cos θ′ + sin θ sin θ′ cosφ′ =
2Z− 1

n+ 4
. (5.24)

Fixing θ = 0 makes clear a comparison of this result to the double-slit experiment in Sec. 5.1.

In the present case the zeros of the amplitude are at

cos θ′ =
2k + n

n+ 4
, (5.25)

for an integer k ∈ Z. Rewriting this as

cos θ′ ≃ k′

n+ 4
=

k′

2p2
, (5.26)

where k′ is an odd integer, k′ ∈ 2Z − 1, we find that the location of the zeros is exactly the

same as that of the double-slit experiment, (5.2), with the replacement

p2 =
l

λds
. (5.27)

Here p is the magnitude of the tachyon momentum in the Veneziano amplitude, while l (λds)

is the slit-separation (wave length) in the double-slit experiment.

We have found here that the zeros of the Veneziano amplitude coincide completely with the

double-slit experiment. In the next subsection, we look at the Veneziano amplitude in more

detail and will find that indeed the imaging of the fundamental string results in a double-slit

in the n→ ∞ limit.
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Figure 17: Images of a fundamental string, extracted and reconstructed from the s-channel

pole of the Veneziano amplitude. The incoming angle is chosen as θ = π/2. Various figures are

for different choices of the viewer’s location (lens location) specified by (θ′0, φ
′
0). Brightness of

these density plots is normalized in each plot. The red points in the images are the brightest

points.

5.2.2 Imaging of a fundamental string

Here first we present images of a string by straightforward numerical evaluations, and after

that, we analyze the images analytically in a certain limit to extract the structure.

The imaging formula described in Sec. 5.1 is

I(X, Y ) =
1

(2d)2 sin θ′0

∫ θ′0+d

θ′0−d

dθ′
∫ φ′

0+d/ sin θ′0

φ′
0−d/ sin θ′0

dφ′eip((θ
′−θ′0)X+(φ′−φ′

0)Y )ÃVen
s (θ′, φ′). (5.28)

Here d is the size of the lens whose center is put at (θ′, φ′) = (θ′0, φ
′
0). The lens is applied to

the wave signal ÃVen
s (θ′, φ′) which reached the asymptotic infinity with the angle (θ′, φ′) in

the 2-dimensional spherical coordinate. The frequency of the wave, appearing in the formula

(5.4), is now given by the tachyon momentum p. The wave amplitude is taken as the residue

of the s-channel pole at s = 2n, of the Veneziano amplitude (5.16).
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Figure 18: Images of a fundamental string, with θ = π/4.

A straightforward numerical evaluation of the imaging (5.28) produces the images shown

in Fig. 17 and Fig. 18. Since the tachyon scattering is in the center-of-mass frame, we can fix

θ without losing generality. Fig. 17 and Fig. 18 are for θ = π/2 and θ = π/4, respectively,

with n = 11. We find that in fact the images of the fundamental string are those of the double

slits.

Analytic estimation of the image, which is useful to study the structure of the images, is

possible. Let us investigate in particular the separation between the two slits. For simplicity

let us take θ = 0 to eliminate the φ′-dependence of the amplitude (5.16). We find

ÃVen
s =

1

(n+ 1)!

[
Γ
(
n
2
+ 1− n+4

2
cos θ′

)
Γ
(
−n

2
− n+4

2
cos θ′

) +
Γ
(
n
2
+ 1 + n+4

2
cos θ′

)
Γ
(
−n

2
+ n+4

2
cos θ′

) ] . (5.29)

To perform an analytic evaluation of the imaging formula for this amplitude, we need to find

a simplified expression of the amplitude. A simplification occurs when we take a large n.

Indeed, in the large n limit the zeros are very close to each other, thus a small lenz is sufficient

for the imaging. This means that we need only a local expression of (5.29) around a certain

value of θ′.

Below, we obtain a simplified local expression of the amplitude around a zero specified by
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Figure 19: A plot of the amplitude (5.29) for n = 11, magnified around θ′ = π/2.

the integer k given in (5.24). We present two expressions; one is for the region around the

zero with k = −(n+ 1)/2, which means the expression for θ′ ∼ 0 in the large n limit, and the

other is for a generic value of k.

First, notice that the amplitude (5.29) can be locally approximated by

ÃVen
s ∼ f(θ′) cos(cθ′), (5.30)

where c is a constant dependent on the choice of k of the central zero, and f(θ′) is some

smooth positive function giving the magnitude of the oscillation. This is obvious if we look at

the plot of the amplitude (5.29) given in Fig. 19. The amplitude has zeros at (5.24) and does

not diverge, so it can be approximated by the form (5.30) with a very simple function f(θ′).

The derivation of the explicit form of f(θ′) and the constant c is simple. The latter can be

fixed by the distribution of the location of the zeros given in (5.24), and the magnitude function

f(θ′) can be fixed by evaluating the slope of the amplitude at those zeros. A straightforward

calculation shows

ÃVen
s (θ′) ∼ ±

[
2

π nCn
2

]
cos
(nπ

2

(
θ′ − π

2

))
(θ′ ∼ θ′0 = π/2) (5.31)

This expression tells us that the magnitude function f(θ′) is constant around θ′ = π/2. And

for a generic k (which means θ′ ∼ θ′0 for generic θ′0), we find

ÃVen
s (θ′) ∼ ±

[
2

nπ nCn
2
(1−cos θ′0)

(
1− cos θ′0
1 + cos θ′0

)(n sin θ′0/2)(θ
′−θ′0)

]
cos

(
nπ sin θ′0

2
(θ′ − θ′0)

)
. (5.32)

We can see that the magnitude function f(θ′) is an exponentially growing function. As a

consistency check, if one puts θ′0 = π/2 in this expression (5.32), it reduces to (5.31)26.

26Note that the difference factor 1/n is irrelevant as it comes out by just how the combinatoric factor

nCn
2 (1−cos θ′

0)
is evaluated in the sub-leading order in the large n expansion. In any case, the overall constant

factor is not the issue to look at the structure of the images.
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Let us evaluate the imaging formula (5.28) with these large-n approximated amplitudes

(5.31) and (5.32). For the case θ′ ∼ π/2, the expression (5.31) is completely the same as that

of the double slit (5.3), and we find

Iθ0=π/2(X, Y ) ∝ σ(Y ) [σ (X − πp) + σ (X + πp)] (5.33)

where

σ(x) ≡ sin(pdx)

pdx
. (5.34)

The function σ is, as was described for the case of the double-slit experiment, is highly peaked

at x = 0 in the limit p→ ∞. Thus the bright spots in the image are localized at

(X, Y ) = (±πp, 0). (5.35)

This is in fact a double slit. In the limit n ≃ 2p2 → ∞, the image consists of just two bright

point-like spots, and the coincidence with the double-slit experiment is exact.

The distance ∆ between the two bright points in the image is given by

∆ = π
√
2n (5.36)

in the string length unit ls = 1/
√
2 which we took throughout the paper. The behavior

∆ ∼
√
n ls is consistent with the approximate length of a fundamental string at the excitation

level n, as we will discuss in Sec. 5.4.

Next, let us evaluate the images with the generic θ′0 using (5.32). The result is

Iθ0=θ′0
(X, Y ) ∝ σ

(
Y

sin θ′0

)[
σ

(
X − ∆(θ′0)

2
+ iX̃0

)
+ σ

(
X +

∆(θ′0)

2
+ iX̃0

)]
(5.37)

where

∆(θ′0) ≡ π
√
2n sin θ′0, X̃0 ≡

√
n

2
(sin θ′0) log

1 + cos θ′0
1− cos θ′0

. (5.38)

This means that there are two slits which are located, in the complexified coordinates,

(X, Y ) =

(
±∆(θ′0)

2
+ iX̃0, 0

)
. (5.39)

The imaginary part contributes to make the peak of σ(x) smoother, as the pole deviates from

the real axis. The real part gives a physical consistency with the spatial location of the double-

slit: the distance between the bright spots in the image is ∆(θ′0). The factor sin θ′0 in this

∆(θ′0) is expected from the spatial consistency since the position of the viewer is shifted from

the equator and thus the two slits should be seen at an angle, exactly giving the factor sin θ′0.

Thus we conclude that the images seen at angle are spatially consistent with each other, which

is a nontrivial check for the image slits to be present in the real space.
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Figure 20: String amplitude of three tachyons and J photons. Picking out a pole at the

internal line labeled with v leads to the amplitude of a HES decaying into two tachyons.

5.3 Images of highly excited string

In this part, we show that the slit-like behavior of a string is not limited to the Veneziano

amplitude. As another clean example, we study a highly excited string (HES) decaying to two

tachyons.

The amplitude formula for a HES decaying to two tachyons was computed in [43,44]. We

will briefly review their results but with slight modifications. Later, we list the location of the

amplitude zeros, and point out that its amplitude zeros also match the ones of the double-

slit in Sec. 5.1. Then we reconstruct images of a HES by the Fourier transformation of the

amplitude. The images show multi-slits, which are understood as convolutions of double-slits.

5.3.1 Amplitude and its zeros

Following [44], we start with a string scattering amplitude for

tachyon, J photons → 2 tachyons

as depicted in Fig. 20. After computing the amplitude, we pick out a pole which corresponds

to an intermediate HES state. Momenta of one incoming tachyon and two outgoing tachyons

are denoted by p1, p2 and p3. Momenta of J photons are chosen to be proportional to a null

vector, q, and are given by −Naq, where Na are integers and a = 1, · · · , J . The momentum

conservation law is

0 = (p1 −Nq) + p2 + p3 (5.40)

where

N =
J∑

a=1

Na, (Na ≥ 1) (5.41)
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When a pole of the intermediate state is picked out, N and J will be interpreted as the

excitation level and the angular momentum of the HES, respectively. The on-shell conditions

for the tachyon momenta are

p21 = p22 = p23 = −(−2). (5.42)

For simplicity, polarizations of photons are taken to be equal to each other and denoted by λ.

Then, the conditions for the photon momenta and polarizations are given by

q2 = 0, λ2 = 0, q · λ = 0. (5.43)

For simplicity, we assume that

(p2 + p3) · λ = 0. (5.44)

This condition is satisfied, for example, in the center-of-mass frame. Then the amplitude is

factorized as

AHES =
J∏

a=1

Aa, (5.45)

Aa =
(−p2 · λ)− (−p3 · λ)

2

×

[
Γ(−α(a)

1 + 1)Γ(−α(a)
2 )

Γ(−α(a)
1 − α

(a)
2 + 1)

− Γ(−α(a)
2 )Γ(−α(a)

3 )

Γ(−α(a)
2 − α

(a)
3 )

+
Γ(−α(a)

3 )Γ(−α(a)
1 + 1)

Γ(−α(a)
3 − α

(a)
1 + 1)

]
, (5.46)

where

α
(a)
i = Napi · q. (5.47)

Each factor of the amplitude, Aa has poles when 1− α
(a)
1 is a negative integer. Poles at

α
(a)
1 ∼ Na, (5.48)

are located at the same position in the momentum space,

v = −(p1 −Nq)2 ∼ 2(N − 1). (5.49)

Picking out this pole, we have a HES at an intermediate state. By taking the residues of Aa,

we obtain the decay of the HES with the mass

M2 = 2(N − 1), (5.50)
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and the total angular momentum J . Using an identity α
(a)
1 +α

(a)
2 +α

(a)
3 = 0, and the condition

of the pole, α
(a)
1 ∼ Na, we find

ÃHES
v = lim

v→2(N−1)

(
J∏

a=1

sin πα
(a)
1

π

)
AHES

=
J∏

a=1

(−p2 · λ)− (−p3 · λ)
2

[
Γ(−α(a)

2 )

Γ(Na)Γ(−α(a)
2 −Na + 1)

+ (2 ↔ 3)

]

=
J∏

a=1

(−p2 · λ)− (−p3 · λ)
2

[
Γ(−α(a)

2 )

Γ(Na)Γ(α
(a)
3 + 1)

+ (2 ↔ 3)

]
(5.51)

Here, the first term is a contribution studied in [44].

In the center-of-mass frame, we take the following parametrization of the momenta,

− q =
1√

2N − 2


1

0

0

−1

, λ =
1√
2


0

1

i

0

, (5.52)

p1 −Nq =


√
2N − 2

0

0

0

, −p2 =


√
2N − 2/2√

2N + 6/2 sin θ′

0√
2N + 6/2 cos θ′

, −p3 =


√
2N − 2/2

−
√
2N + 6/2 sin θ′

0

−
√
2N + 6/2 cos θ′

.
(5.53)

Under this parametrization, the variables α
(a)
i are expressed as

α
(a)
1 = Na, (5.54)

α
(a)
2 = −Na

2

(
1 +

√
2N + 6√
2N − 2

cos θ′
)
, (5.55)

α
(a)
3 = −Na

2

(
1−

√
2N + 6√
2N − 2

cos θ′
)
. (5.56)

Let us look for zeros of the amplitude (5.51). It is zero if and only if

0 = (−p2 · λ) = −(−p3 · λ), (5.57)

or 0 = Γ(−α(a)
2 )Γ(α

(a)
2 + 1) + (2 ↔ 3) (5.58)

for some 1 ≤ a ≤ J . Calculations similar to those in Sec. 5.2 show that the amplitude is

trivially zero if some Na is even. In the following discussion, we assume that Na’s are odd for

any 1 ≤ a ≤ J . Then we find that the zeros of the amplitude are at
√
2N + 6√
2N − 2

cos θ′ =
2Z− 1

Na

. (5.59)
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In the high excitation limit Na → ∞, it is written as

cos θ′ ≃ k′

Na

, (5.60)

where k′ is an odd integer, k′ ∈ 2Z− 1. We find that the location of the zeros is exactly the

same as that of the double-slit experiment, (5.2), with the replacement

Na

2
=

l

λds
. (5.61)

Here Na is an excitation level of the a-th mode such that N =
∑

aNa, while l (λds) is the slit

separation (wave length) in the double-slit experiment.

5.3.2 Imaging of a highly excited string

Here first we present images of a HES by straightforward numerical evaluations, and then

understand the images analytically in a certain limit.

Since the amplitude depends only on the outgoing angle θ′, we restrict ourselves to imaging

in this single direction. We use the following imaging formula

I(X) =
1

(2d)2 sin θ′0

∫ θ′0+d

θ′0−d

dθ′eip(θ
′−θ′0)XÃHES

v (θ′). (5.62)

Here p is now the magnitude of the outgoing tachyon momentum p =
√
2N + 6/2. A straight-

forward numerical evaluation of the imaging formula (5.62) produces the images shown in

Fig. 21. Both of the images are for θ′0 = π/2, but with different numbers of excitations of

N =
∑J

a=1Na. We find that the images of a HES are those of multi-slits.

Such multi-slit structures can simply be understood by using the results in the Veneziano

amplitude. When Na ≫ 1, the amplitude (5.51) reduces to a simple form

ÃHES
v ≃

J∏
a=1

sin θ′

[
Γ
(
+Na

2
(1 + cos θ′)

)
Γ
(
−Na

2
(1− cos θ′)

) + Γ
(
+Na

2
(1− cos θ′)

)
Γ
(
−Na

2
(1 + cos θ′)

)] (5.63)

up to a constant. Remark that each factor inside
∏J

a=1 coincides with the Veneziano amplitude

at θ = 0 (5.29) with the replacement n→ Na,

ÃHES
v ≃ (sin θ′)J

J∏
a=1

ÃVen
s

∣∣∣
n→Na

. (5.64)

Thus the reconstructed image of a HES, the Fourier transformation of ÃHES
v , is the convolution

of the images of the Veneziano amplitudes with n→ Na as,

IHES ≃ (sin θ′)J ∗ IVen
∣∣
n→N1

∗ · · · ∗ IVen
∣∣
n→NJ

. (5.65)
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Figure 21: Images of a highly excited string, extracted and reconstructed from a HES

intermediate state pole of the tachyon-photon amplitude. The size of the imaging lens is

chosen as d = 0.11. The left panel, for a division N = N1+N2 = 19+39, shows a 4-slit, while

the right panel, for N = N1 +N2 +N3 = 19 + 39 + 79, shows an 8-slit.

Recall that the image of the Veneziano amplitude IVen is a double-slit with a slit separation

l/λds ≃ n/2. With replacements n→ Na, λds → 1/
√
N , the image of a HES is the convolution

of double-slits with separations ∆a ∼ Na/
√
N . Then we can conclude that the image of a

HES is a 2J -slit. Indeed it can be easily demonstrated that the convolution of double-slits

with different slit separations is a multi-slit. Let

Ia(X) = δ

(
X − ∆a

2

)
+ δ

(
X +

∆a

2

)
(5.66)

be an ideal image of a double-slit with the slit separation ∆a. Then its convolution

Ia ∗ Ib(X) =

∫ ∞

−∞
dX ′ Ia(X

′)Ib(X −X ′)

=
∑

s1,s2=±1

δ

(
X + s1

∆a

2
+ s2

∆b

2

)
(5.67)

is a 22-slit. Performing similar operations recursively, we can show that J-times convolution

of the double-slit with different slit-separations is a 2J -slit as27

I1 ∗ · · · ∗ IJ(X) =
∑

sa=±1

δ (X + s1∆1 · · ·+ sJ∆J) . (5.68)

We conclude that the image of the highly excited string reconstructed from its decay

amplitude is a multi-slit.

27Particularly when ∆a/∆1 ≃ 2a, the slits are equally separated.
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5.4 Interpretation

In this part, we present several observations from the results obtained above, and provide their

possible interpretations.

Firstly, we point out that the slit-like appearance of scattering amplitude images is an

inherent feature of strings. Recall, for example, the Veneziano amplitude. At the zeros of the

amplitude (5.24), each term of (5.16) becomes zero simultaneously. There is no non-trivial

cancellation between the two terms. In other words, the zeros of the amplitude originate in

the gamma functions in the denominator. These gamma functions are also the source of poles

which correspond to intermediate excited string states. Thus the existence of a series of zeros

(5.24) reflects the existence of a series of intermediate states in string theory. Remember that,

contrary to string theory, perturbative quantum field theories have only a few intermediate

states, and scatterings occur at a point.

Secondly, it is remarkable that the order of slit separtions agrees with that of the total

string length. Recall that the slit separations in the Veneziano amplitude and in the HES

scattering amplitude (with J = 1) are

∆Ven ∼
√
n ls, ∆HES ∼

√
N ls, (5.69)

respectively. Here n is roughly the square of the invariant mass, and N is roughly the square

of the mass of a HES. On the other hand, the total length of a string with a massM is roughly

estimated as

ltotal ∼
1

α′M ∼
√
N ls (5.70)

since a string has a constant tension α′. Thus, the slit separation and string length coincide

with each other, meaning that the string may extend between the slits.

Thirdly, we stress that slits can only show up on a straight line both in the Veneziano

amplitude and the HES amplitude. Technically, this is because the θ′ dependence of their

amplitude zeros is only in the form of ± cos θ′. In fact, other types of θ′ dependence with

non-trivial phases cos(θ′ − ϑ′) are required for the slit to show up away from the straight line.

This can be easily demonstrated as follows. Suppose that we have three slits S1, S2, S3 which

are not on a straight line as in Fig. 22. If the location of S3 is (z, x) = (0,−l′/2), the optical

path lengthes are

S1P−OP = − l

2
cos θ′, (5.71)

S2P−OP = +
l

2
cos θ′, (5.72)

S3P−OP = +
l′

2
cos(θ′ − π/2). (5.73)
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Figure 22: Three slits are put at S1, S2, S3, and scattered wave is observed at the point P.

Thus the location of the amplitude zeros depends not only on ± cos θ′ but also on the phase-

shifted + cos(θ′ − π/2).

From these observations, we can provide an interpretation that the location of slits are

the end points of a string. Firstly, we should remark that the order of the slit separation is

not the random walk size l ∼ M1/2 ∼ N1/4, but rather it is the total length of the string

L ∼ M ∼ N1/2. It motivates us to assume that the string behaves like a simple harmonic

oscillator in the scattering processes.

Then there remain two possibilities: the locations of slits indicate (i) the nodes, or (ii) the

end points, of the vibrating string. The first possibility is excluded since the HES amplitude

with J = 1, N ≫ 1 behaves like a double-slit as discussed in Sec. 5.3. If the nodes of the

vibrating string are the origin of the slit image, the HES image with J = 1, N ≫ 1 would have

been a multi-slit, rather than the double-slit. Since this is not the case, thus we are left with

the possibility (ii): slits are end points of the string.

Such an interpretation is also supported by the following scenarios. Suppose there is a

classical vibrating string with markers attached to its end points, as an analogy of the world

sheet with open string vertex operators inserted at its boundary. The long time average of

the probability that the markers are found at a point X is roughly evaluated by∫ T

0

dt

T
δ(X −X0 sinωt) ∼

1√
X2

0 −X2
. (5.74)

Then it becomes maximum at the point where the string is fully extended to its maximum

size. This is consistent with our results where slits appeared with the slit separations of the

order of the total string length.

Another scenario is about the origin of interference patterns. Suppose that incoming two

strings are shot along the z-direction and scattered at the origin. Our results have shown that

if this scattering is observed from the x-direction, the image is the double-slit lined up along
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the z-direction. It would be natural to imagine that a string formed at the origin vibrates

along the z-direction, and is torn apart when the string reaches its maximum length. Each

of two pieces of the broken string can be scattered in any directions, though one must go in

the opposite direction to the other. The observer in the x-direction can detect the scattered

string with a definite probability. At the observation, the observer has two possibilities: the

left one of the two pieces of the broken string reaches the observer while the right one goes

in the opposite direction, or visa versa. The superposition of these two possibilities would be

the source of the interference patterns which appear in the string scattering amplitudes.

These scenarios encourage us to state that the slits are the end points of a fundamental

string.

5.5 Possible cases when chaos shows up

The slit-like structure of highly excited strings is a negative result for looking for chaos. Based

on the interpretations explained previously, the bright spots in string images are understood

as the place from which small pieces of a string come to an observer. Thus string scatterings

we have studied are analogous to classical scatterings on multi-disks but all of whose disks

are aligned along the same straight line. As we have reviewed, such scattering systems do not

show chaos, nor string scatterings.

Nevertheless, it is too early to admit that string scattering has no chaos. In classical

scatterings, chaos shows up when disks are placed away from the straight line. It makes

particles collide with disks many times within a scattering region. Some setups of string

scatterings can mimic such complicated collisions of particles. For example, we can consider

a closed string. Since a closed string has a circle shape, its images may have bright spots on

a circle, not on a straight line. Such a non-trivial geometrical structure could be the source of

chaos. We may also have to consider 2-to-3 or 3-to-3 amplitudes as classical scatterings need

no less than three disks for chaos to show up.
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6 Conclusion and discussions

Summary of results

In this Ph.D. thesis, we have looked for chaos in string scatterings. We have studied open

bosonic string amplitudes at tree-level. Our results showed that there is no fractal structure

in the scattering data, nor non-trivial geometrical structure in the scattering regions. We have

concluded that there is no sign of chaos in highly excited strings within our strategy to extract

chaos and the HES states we have constructed.

In section Sec. 2, we reviewed black hole chaos. The essence of black hole chaos is the

redshift near the event horizon. Also, recent studies on fast scrambling and chaos bounds

imply that black holes are the most chaotic system in the universe.28 These features distinguish

black hole chaos from the chaos in ordinary many body systems. The correspondence principle

between black hole states and string states has motivated us to look for the source of black

hole chaos in highly excited strings.

In section Sec. 3, we reviewed transient chaos. Transient chaos is characterized by three

properties: unexpectability, aperiodicity, and fractality. These are generated by three key

mechanisms: stretching, folding, and escape. These mechanisms amplify a small deviation

of the initial conditions iteratively for a finite time, causing irregular behaviors of a system.

Transient chaos can be detected by a fractal structure in scattering data, and non-trivial

geometrical structure in a scattering region.

In section Sec. 4, we have studied scattering amplitudes of a highly excited string and looked

for a fractal structure in the scattering data. We considered open bosonic string amplitudes at

tree-level as the first step. The states of a highly excited string were constructed by mimicking

the DDF formalism. Since scattering amplitudes take non-zero values at almost all angles, we

picked out the largest poles to construct scattering data θ′(θ). Our results showed that there

is no fractal structure in the scattering data.

In section Sec. 5, we have looked for a non-trivial geometrical structure in string scattering

regions. We performed the Fourier transformation of string scattering amplitudes to take

pictures of string scattering regions. Our results showed that the string scattering regions

look like double-slits. Their geometrical structure was too simple to produce chaos.

Future works

Although the results were negative at this state, we have not yet excluded all possibilities. We

need to continue our research to look for chaos in other setups.

28As explained in the introduction, more precise definitions for scrambling and quantum chaos should be

developed.
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At the end of Sec. 4 and Sec. 5, we have discussed that chaos possibly shows up when

higher loop corrections are included, or when we consider a closed string, 5-point or 6-point

scattering amplitudes. Also, we may need to consider more general states of a highly excited

string. The photons we have shot into tachyons to construct HES states have shared the same

polarization, and they could be generalized. These are left for future works.

It will be a better idea to look for a fractal structure in plots of delay-time with respect

to an incoming angle. As explained in the review part Sec. 3, sometimes a fractal structure

is cleaner to see in delay-time T (θ) than in the scattering data θ′(θ) we have used. Also, we

may need to modify our strategy to extract chaos. Since our definition of the scattering data

extracts just an aspect of the quantum amplitudes (although we believe that it is a natural

definition), there could be a more sophisticated definition of the scattering data which may

manifest possible transient chaos. For example, we have ignored the impact parameter b in

our definition because usually the quantum scatterings are defined by plane waves. However,

if one considers wave packets rather than the plane waves, the amplitudes would contain more

information about the locality of the HES structure.

We may develop more powerful tools to study string amplitudes. One hint lines in the

works of [64–67]. The authors analyzed the high energy behavior of string amplitudes by

finding saddles of the world-sheet integral. Since their main interest was s→ ∞ dependency,

they focused on a single saddle contribution, ignoring angular dependency. We may improve

their computations by, say, including contributions from other non-trivial saddles. The idea

could be tested by the hyperasymptotics [68, 69] in the the Airy [70] function, the Gamma

function [71], and the Beta function.

It will also be interesting to analyze the geometrical structure of strings more precisely. Its

hint is in the spacetime uncertainty principle [72–74]. Yoneya looked for a string counterpart

of the uncertainty principle in quantum mechanics. He arrived at spacetime uncertainty

∆X∆T ≳ 1, and tried to reformulate string theory so that its geometrical structure becomes

clearer [75]. The idea may be developed to study the geometrical structure of a string scattering

region.

These problems are left for future works. By solving these, we will be able to approach

microscopic irregular dynamics in black holes which explains their thermal properties.

Chaos in the future

While we have looked for chaos in this thesis, I hope that the word chaos is replaced with a

more precise word in the future. Chaos is essentially the negation of solvability. It means that

we have little knowledge about irregular dynamics, nor precise words to classify a variety of

chaotic systems.
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Our mission is to pin down the essential dynamics in highly excited strings which describes

the thermal nature of black holes from microscopic viewpoints. The problem would be quite

hard since the problem of thermalization is already challenging and very exciting without

gravity.

We may need to liberate ourselves from the idea of an independent entity, or free quanta

separated from a background. Modern physics assumes the existence of a free particle and

additionally introduces interactions. Although we have eaten a lot of fruits from such a

formulation, typical systems in the universe are not so simple. Around the transition between

a highly excited string and a black hole, counting the number of strings makes no sense since

there are irregular connection/re-connection processes within an interaction region.

I believe that the formulation of modern physics is quite inefficient in describing highly

excited strings. Then what should we do to describe them? I have no idea at all now, however,

I believe that chaos might give us some hints.29 We should know more about chaos to pin

down the essential mechanism, and to classify a variety of irregular systems. Then we may

find a new concept to describe highly excited strings nonperturbatively.

29I also believe that resurgence might tell us a way to liberate ourselves from perturbation.

64



Acknowledgment

This Ph.D. thesis is based on my works [76, 77] which were partly done in collaboration with

K. Hashimoto and Y. Matsuo. Although I could not include all subjects of other papers, I

shall be grateful to collaborators M. Honda, T. Fujimori, S. Kamata, T. Misumi, N. Sakai

on my research on resurgence. I would like to thank T. Onogi and H. Fukaya, who gave me

an opportunity to start a new project on anomaly. I learned a lot through discussions and

writing papers.

I am really indebted to the hospitality of my supervisor K. Hashimoto, and all members

of my laboratory at Kyoto University. I would like to thank H. Hata, H. Kawai, S. Sugimoto,

M. Fukuma, K. Tsumura, K. Yoshioka, K. Yoshida, K. Sugiyama, T. Ishii, Y. Matsuo, Y.

Namekawa, H. Kyono, J. Sakamoto, K. Sakai, J. Yamamoto, Y. Hamada, N. Matsumoto, T.

Ohata, S. Okumura, Y. Abe, J. Haruna, O. Fukushima, S. Kushiro, D. Takeda, R. Watanabe,

T. Ito, K. Kyo, K. Sugiura, J. Yoshinaka, T. Ishii, T. Shigemura, and T. Tsukamoto.

It was an honor to have discussed spacetime uncertainty with T. Yoneya. His words “we are

just going up a spiral staircase” encouraged me to continue my research on quantum gravity.

Although I could not meet T. Maskawa face-to-face before he passed away, I would like to

keep his words “Shutei-Ganko” in mind; his unique use of words, meaning that “have a high

perspective to see far into the future, but do make a steady progress.”

I enjoyed discussions on resurgence with J. Haruna, K. Murakami, Y. Hayashi, climbing

mountains with H. Kanno, H. Omiya, K. Shiozaki, Y. Tanizaki, baseball with M. Amo, D.

Takeda, Y. Taki, K. Kyo, J. Yoshinaka, and playing Nintendo Smash Bros. oji-san-battle with

J. Haruna, K. Murakami, H. Omiya, R. Toshio, Y. Manita, T. Takahashi.

I thank singer-songwriter L. Ieiri. Her passionate music always strengthened my mind. I

would like to cherish my memories with M. Genshin and Y. Kondo, my best friends at Kariya

high school. I learned the joy of discussing problems in front of a blackboard, which made me

decide to become a physicist. R. Usami and M. Hearn reminded me of my passion for string

theory. I thank game creator ZUN, doujin writer Sohika, and doujin illustrator Minus.

Last but not least, I would like to thank my parents Takashi, Michiko, and my brother

Tsuyoshi. They gave me opportunities to have an interest in science and supported me in

studying a lot of things freely.

The works of T.Y. is in part supported by Sasakawa Scientific Research Grant from The

Japan Science Society ID:2021-2026, JST SPRING Grant Number JPMJSP2110, and JSPS

KAKENHI Grant No. JP22J15276.

65



A Explicit formulas of HES-tachyon to HES-tachyon

amplitude

We start with a general formula for the bosonic open string tree-level amplitude, and pick out

poles corresponding to HES states as was done in [44]. We use the same strategy to compute

the four-point amplitude of the scattering of the HES-tachyon to HES-tachyon, to obtain the

scattering data θ′(θ).

A.1 Channels

The general formula for the tree-level amplitude involving any number of tachyons and photons

is given by

A =
1

vol.

∫
dwi dza

∏
i<j

|wij|pi·pj
∏
a<b

|zab|pa·pb
∏
i,a

|wi − za|pi·pa

× exp

[∑
a̸=b

λa · λb
2z2ab

−
∑
i,a

pi · λa
wi − za

]∣∣∣∣∣
O(λa)

, (A.1)

where wij = wi − wj, zab = za − zb. Here the indices i run over the tachyons, and the indices

a run over the photons. The photon polarizations are denoted by λa.

We focus on the case q ∝ q′ but applied to general integer J .30 Using the assumption

q ∝ q′, the amplitude reduces to

A =
1

vol.

∫ ∞

−∞

∏
i=1,2,2′,1′

dwi

∏
i<j

|wij|pi·pj

×
∫ ∞

−∞

J∏
a=1

dza
∏
a,i

|za − wi|−αi
∑
i

−pi · λ
wi − za

×
∫ ∞

−∞

J∏
b=1

dz′b
∏
b,j

|z′b − wj|−βj
∑
j

−pj · λ′

wj − z′b
(A.2)

where we defined

αi = −(−Naq) · pi, βj = −(−N ′
bq

′) · pj. (A.3)

The integral over wi can be divided into six parts as in the case of the Veneziano amplitude,

A = (Ast +Atu +Aus) + (Ats +Aut +Asu) , (A.4)

30See also [54] for a recent study on computation of the amplitudes.
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where

Ast = A|w′
1=−∞,w2=0,w1=w,w′

2=1

=

∫ 1

0

dw wp1·p2(1− w)p1·p
′
2

J∏
a=1

Z212′

a (α, p, λ;w)
J∏

b=1

Z212′

b (β, p, λ′;w) (A.5)

Atu = A|w2=−∞,w′
2=0,w1=w,w′

1=1 = Ast|2→2′,2′→1′ , (A.6)

Aus = A|w′
2=−∞,w′

1=0,w1=w,w2=1 = Ast|2→1′,2′→2 , (A.7)

Ats = Ast|2↔2′ , (A.8)

Aut = Atu|2′↔1′ , (A.9)

Asu = Aus|1′↔2 . (A.10)

Here we have defined the photon integral

Zijk
a (α, p, λ;w) =

∫ ∞

−∞
dza |za|−αi |za − w|−αj |za − 1|−αk

(
−pi · λ
−za

+
−pj · λ
w − za

+
−pk · λ
1− za

)
(A.11)

A.2 Photon integral

To proceed, we define following integrals and evaluate them.

12

2′1′

∞
0 w

1

a

=

∫ w

0

dza |za|−α2|za − w|−α1 |za − 1|−α′
2

=

∫ 1

0

dx w1−α2−α1
x−α2(1− x)−α1

(1− wx)α
′
2

(z = wx)

= w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)
, (A.12)

12

2′1′

∞
0 w

1a =

∫ 0

−∞
dza |za|−α2|za − w|−α1 |za − 1|−α′

2

=

∫ 1

0

dx
x−2+α2+α1+α′

2(1− x)−α2

(1− (1− w)x)α1
(1− z = 1/x)

= Γ(α2 + α1 + α′
2 − 1)Γ(−α2 + 1) F

(
α1, α2 + α1 + α′

2 − 1

α1 + α′
2

; 1− w

)
,

(A.13)
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12

2′1′

∞
0 w

1 a =

∫ 1

w

dza |za|−α2|za − w|−α1 |za − 1|−α′
2

=

∫ 1

0

dx (1− w)1−α′
2−α1

x−α′
2(1− x)−α1

(1− (1− w)x)α2
(z = (1− w)(1− x) + w)

= (1− w)1−α′
2−α1Γ(−α′

2 + 1)Γ(−α1 + 1) F

(
α2, −α′

2 + 1

−α′
2 − α1 + 2

; 1− w

)

=

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
2↔2′, w↔1−w

, (A.14)

12

2′1′

∞
0 w

1

a

=

∫ ∞

1

dza |za|−α2|za − w|−α1 |za − 1|−α′
2

=

∫ 1

0

dx
x−2+α′

2+α1+α2(1− x)−α′
2

(1− wx)−α1
(z = 1/x)

= Γ(α′
2 + α1 + α2 − 1)Γ(−α′

2 + 1) F

(
α1, α′

2 + α1 + α2 − 1

α1 + α2

;w

)

=

12

2′1′

∞
0 w

1a

∣∣∣∣∣∣∣∣∣
2↔2′, w↔1−w

. (A.15)

Then the photon integrals are evaluated as follows.

12

2′1′

∞
0 w

1

a

=

∫ w

0

dza |za|−α2 |za − w|−α1|za − 1|−α′
2
−p2 · λ
−za

= −(−p2 · λ)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α2→α2+1

, (A.16)
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12

2′1′

∞
0 w

1

a

=

∫ w

0

dza |za|−α2 |za − w|−α1|za − 1|−α′
2
−p1 · λ
w − za

= +(−p1 · λ)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α1→α1+1

, (A.17)

12

2′1′

∞
0 w

1

a

=

∫ w

0

dza |za|−α2 |za − w|−α1|za − 1|−α′
2
−p′2 · λ
1− za

= +(−p′2 · λ)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α′
2→α′

2+1

. (A.18)

Other integrals over the intervals (−∞, 0), (w, 1), (1,∞) are evaluated in a similar manner.

We are interested in the HES-tachyon to HES-tachyon scattering. Picking out the HES-

pole:

v, v′ ∼ 2(N − 1), i.e. α2 ∼ Na, β
′
2 ∼ N ′

b, (A.19)

the photon integral reduces to

Z212′

a (α, p, λ;w) =

∫ ∞

−∞
dza |za|−α2 |za − w|−α1|za − 1|−α′

2

(
−p2 · λ
−za

+
−p1 · λ
w − za

+
−p′2 · λ
1− za

)

∼


12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a



+


12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a


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+


12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a



= +(−p2 · λ)

−

12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a


∣∣∣∣∣∣∣∣∣∣
α2→α2+1

+ (−p1 · λ)

+

12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a


∣∣∣∣∣∣∣∣∣∣
α1→α1+1

+ (−p′2 · λ)

+

12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a


∣∣∣∣∣∣∣∣∣∣
α′
2→α′

2+1

(A.20)

Using a formula for the hypergeometric function (see e.g. Eq. 15.8.4 in [78]),

±

12

2′1′

∞
0 w

1

a

+

12

2′1′

∞
0 w

1a

= ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)

+ Γ(α2 + α1 + α′
2 − 1)Γ(−α2 + 1) F

(
α1, α2 + α1 + α′

2 − 1

α1 + α′
2

; 1− w

)

= ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)
+ Γ(α2 + α1 + α′

2 − 1)Γ(−α2 + 1)
π

sin π(−α2 − α1 + 1)

×

[
1

Γ(α′
2)Γ(−α2 + 1)

F

(
α1, α2 + α1 + α′

2 − 1

α2 + α1

;w

)

− w−α2−α1+1

Γ(α1)Γ(α2 + α1 + α′
2 − 1)

F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)]
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∼ ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)
− Γ(α2 + α1 + α′

2 − 1)Γ(−α2 + 1)
π

sin π(−α2 − α1 + 1)

× w−α2−α1+1

Γ(α1)Γ(α2 + α1 + α′
2 − 1)

F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)

=

(
±1− sin πα1

sin π(−α2 − α1 + 1)

)
Γ(−α2 + 1)Γ(−α1 + 1) w−α2−α1+1F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)

∼
(
±1 + (−1)−α2+1

)
12

2′1′

∞
0 w

1

a

(A.21)

When Na is even, the integral Z212′
a (α, p, λ;w) trivially vanishes. Thus in the following com-

putations, we assume that Na is odd for any a = 1, . . . , J . Then

Z212′

a (α, p, λ;w)

∼ +(p2 · λ)(+2)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α2→α2+1

+ (p1 · λ)(−2)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α1→α1+1

+ (p′2 · λ)(−2)

12

2′1′

∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣
α′
2→α′

2+1

. (A.22)

A.3 Tachyon integral

To proceed, let us expand the hypergeometric function as

12

2′1′

∞
0 w

1

a

= w−α2−α1+1Γ(−α2 + 1)Γ(−α1 + 1) F

(
α′
2, −α2 + 1

−α2 − α1 + 2
;w

)
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= w−α2−α1+1

∞∑
k=0

ck(α2, α1, α
′
2) w

k. (A.23)

Here we have defined

ck(α2, α1, α
′
2)

=
Γ(−α2 + 1)Γ(−α1 + 1)

Γ(−α2 − α1 + 2)

Γ(α′
2 + k)

Γ(α′
2)

Γ(−α2 + 1 + k)

Γ(−α2 + 1)

Γ(−α2 − α1 + 2)

Γ(−α2 − α1 + 2 + k)

1

Γ(k + 1)

∼ π

sin πα2

1

Γ(k + 1)Γ(α2 − k)

Γ(α2 − k + α1 − 1)

Γ(α1)

Γ(α′
2 + k)

Γ(α′
2)

. (A.24)

Then

Z212′

a (α, p, λ;w)

∼ (p2 · λ)(+2) w−α2−α1ck(α2 + 1, α1, α
′
2) w

k + (p1 · λ)(−2) w−α2−α1ck(α2, α1 + 1, α′
2) w

k

+ (p′2 · λ)(−2) w−α2−α1

∞∑
k=0

ck(α2, α1, α
′
2 + 1) wk+1.

(A.25)

Now let us assume that

(p1 + p2) · λ = (p′2 + p′1) · λ′ = 0 (A.26)

for simplicity. These conditions are satisfied, for example, in the center-of-mass frame. The

first two terms in (A.25) are rearranged as

Z212′

a (α, p, λ;w) ∼ (p2 · λ)(+2) w−α2−α1

α2∼Na∑
k=0

ck(α2 + 1, α1 + 1, α′
2) w

k

+ (p′2 · λ)(−2) w−α2−α1

α2∼Na∑
k=0

ck−1(α2, α1, α
′
2 + 1) wk. (A.27)

Similarly, by replacements 2 ↔ 2′, w → 1− w, α→ β, λ→ λ′, we obtain

Z212′

b (β, p, λ′;w) ∼ (p′2 · λ′)(+2) (1− w)−β′
2−β1

β′
2∼N ′

b∑
l=0

cl(β
′
2 + 1, β1 + 1, β2) (1− w)l

+ (p2 · λ′)(−2) (1− w)−β′
2−β1

β′
2∼N ′

b∑
l=0

cl−1(β
′
2, β1, β2 + 1) (1− w)l.

(A.28)

Substituting these into (A.5), we can perform the integral over w. Noting that

p1 · p2 −
J∑

a=1

α2 −
J∑

a=1

α1 = −2− s/2, (A.29)
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p1 · p′2 −
J∑

b=1

β′
2 −

J∑
b=1

β1 = −2− t/2, (A.30)

the result is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏

a=1

(pia · λ) c
(ia)
ka

)(
J∏

b=1

(pjb · λ′) d
(jb)
lb

)
B(−α(s) + k,−α(t) + l) (A.31)

where

c
(2)
k = ck(α2 + 1, α1 + 1, α′

2), (A.32)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (A.33)

d
(2)
l = −cl−1(β

′
2, β1, β2 + 1), (A.34)

d
(2′)
l = cl(β

′
2 + 1, β1 + 1, β2), (A.35)

and where

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, α(x) = 1 + x/2, (A.36)

k =
J∑

a=1

ka, l =
J∑

b=1

lb. (A.37)

Here ends the derivation of the HES-tachyon to HES-tachyon amplitude, given in (A.31).

A.4 Another expression for the amplitude

In this subsection, for a consistency check of our amplitude formula (A.31), we study another

expression of the amplitude.

Similar computations show that

Z212′

b (β, p, λ′, w)

∼ +(p2 · λ′)(+2)

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β2→β2+1

+ (p1 · λ′)(+2)

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β1→β1+1

+ (p′2 · λ′)(+2)

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β′
2→β′

2+1
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∼ +(p2 · λ′)(+2)


12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β2→β2+1

−

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β1→β1+1



+ (p′2 · λ′)(+2)

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β′
2→β′

2+1

(A.38)

Using a formula for the hypergeometric function (see e.g. Eq. 15.8.1 in [78]),

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β2→β2+1

−

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β1→β1+1

= Γ(β′
2 + β1 + β2)Γ(−β′

2 + 1)

[
F

(
β1, β′

2 + β1 + β2

β1 + β2 + 1
;w

)
− F

(
β1 + 1, β′

2 + β1 + β2

β1 + β2 + 1
;w

)]

= Γ(β′
2 + β1 + β2 + 1)Γ(−β′

2 + 1) (−w) F

(
β1 + 1, β′

2 + β1 + β2 + 1

β1 + β2 + 2
;w

)

= (1− w)−β′
2−β1 Γ(β′

2 + β1 + β2 + 1)Γ(−β′
2 + 1) (−w) F

(
β2 + 1, −β′

2 + 1

β1 + β2 + 2
;w

)

= (1− w)−β′
2−β1 Γ(−β′

1 + 1)Γ(−β′
2 + 1) (−w) F

(
β2 + 1, −β′

2 + 1

−β′
2 − β′

1 + 2
;w

)

= (1− w)−β′
2−β1 (−w)

∞∑
l=0

cl(β
′
2, β

′
1, β2 + 1) wl

= (1− w)−β′
2−β1

β′
2∼N ′

b∑
l=0

−cl−1(β
′
2, β

′
1, β2 + 1) wl, (A.39)

12

2′1′

∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣
β′
2→β′

2+1

= Γ(β′
2 + β1 + β2)Γ(−β′

2) F

(
β1, β′

2 + β1 + β2

β1 + β2
;w

)
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= (1− w)−β′
2−β1 Γ(β′

2 + β1 + β2)Γ(−β′
2) F

(
β2, −β′

2

β1 + β2
;w

)

= (1− w)−β′
2−β1 Γ(−β′

1)Γ(−β′
2) F

(
β2, −β′

2

−β′
2 − β′

1

;w

)

= (1− w)−β′
2−β1

β′
2∼N ′

b∑
l=0

cl(β
′
2 + 1, β′

1 + 1, β2) w
l. (A.40)

Substituting these into (A.5), and noting that

p1 · p2 −
J∑

a=1

α2 −
J∑

a=1

α1 = −2− s/2, (A.41)

p1 · p′2 −
J∑

b=1

β′
2 −

J∑
b=1

β1 = −2− t/2, (A.42)

we can perform the integral over w. The result is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏

a=1

(pia · λ) c
(ia)
ka

)(
J∏

b=1

(pjb · λ′) d
(jb)
lb

)
B(−α(s) + k + l,−α(t)) (A.43)

where

c
(2)
k = ck(α2 + 1, α1 + 1, α′

2), (A.44)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (A.45)

d
(2)
l = −cl−1(β

′
2, β

′
1, β2 + 1), (A.46)

d
(2′)
l = cl(β

′
2 + 1, β′

1 + 1, β2), (A.47)

and where

k =
J∑

a=1

ka, l =
J∑

b=1

lb, (A.48)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, α(x) = 1 + x/2. (A.49)

In spite of the superficially different appearance of the amplitude formula (A.31) and the

formula (A.43), they are equivalent. The former depends on β1 and both of the s, t-channels

are shifted, while the latter depends on β′
1 and only the s-channel is shifted.
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