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Abstract
Purpose: For pancreatic cancer patients, image guided radiation therapy and
real-time tumor tracking (RTTT) techniques can deliver radiation to the target
accurately. Currently, for the radiation therapy machine with kV X-ray imaging
systems, internal markers must be implemented to facilitate tumor tracking.The
purpose of this study was to develop a markerless deep learning-based pan-
creatic tumor positioning procedure for real-time tumor tracking with a kV X-ray
imaging system.
Methods and materials: Fourteen pancreatic cancer patients treated with
intensity-modulated radiation therapy from six fixed gantry angles with a gimbal-
head radiotherapy system were included in this study. For a gimbal-head radio-
therapy system, the three-dimensional (3D) intrafraction target position can be
determined using an orthogonal kV X-ray imaging system. All patients under-
went four-dimensional computed tomography (4DCT) simulations for treat-
ment planning, which were divided into 10 respiratory phases. After a patient’s
4DCT was acquired, for each X-ray tube angle, 10 digitally reconstructed radio-
graph (DRR) images were obtained. Then, a data augmentation procedure
was conducted. The data augmentation procedure first rotated the CT volume
around the superior–inferior and anterior–posterior directions from −3

◦

to 3◦

in 1.5◦ intervals. Then, the Super-SloMo model was adapted to interpolate 10
frames between respiratory phases. In total, the data augmentation procedure
expanded the data scale 250-fold.In this study,for each patient,12 datasets con-
taining the DRR images from each specific X-ray tube angle based on the radia-
tion therapy plan were obtained. The augmented dataset was randomly divided
into training and testing datasets. The training dataset contained 2000 DRR
images with clinical target volume (CTV) contours labeled for fine-tuning the
pre-trained target contour prediction model.After the fine-tuning, the patient and
X-ray tube angle-specific CTV contour prediction model was acquired.The test-
ing dataset contained the remaining 500 images to evaluate the performance of
the CTV contour prediction model.The dice similarity coefficient (DSC) between
the area enclosed by the CTV contour and predicted contour was calculated
to evaluate the model’s contour prediction performance. The 3D position of the
CTV was calculated based on the centroid of the contour in the orthogonal DRR
images, and the 3D error of the prediction position was calculated to evaluate
the CTV positioning performance. For each patient, the DSC results from 12 X-
ray tube angles and 3D error from 6 gantry angles were calculated, representing
the novelty of this study.

Med Phys. 2022;1–9. wileyonlinelibrary.com/journal/mp © 2022 American Association of Physicists in Medicine 1

mailto:m_nkmr@kuhp.kyoto-u.ac.jp
https://wileyonlinelibrary.com/journal/mp
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.15456&domain=pdf&date_stamp=2022-01-27
Dejun Zhou
主論文



2 MARKERLESS TUMOR POSITIONING BY DL

Results: The mean and standard deviation (SD) of all patients’ DSCs were
0.98 and 0.015, respectively. The mean and SD of the 3D error were 0.29 mm
and 0.14 mm, respectively. The global maximum 3D error was 1.66 mm, and
the global minimum DSC was 0.81. The mean calculation time for CTV contour
prediction was 55 ms per image. This fulfills the requirement of RTTT.
Conclusions: Regarding the positioning accuracy and calculation efficiency,
the presented procedure can provide a solution for markerless real-time tumor
tracking for pancreatic cancer patients.

KEYWORDS
deep learning, markerless tumor positioning, pancreatic cancer, real time tumor tracking, target con-
tour prediction

1 INTRODUCTION

Pancreatic cancer is one of the leading causes of can-
cer death worldwide.1 Although surgical resection is rec-
ommended for complete eradication, most pancreatic
cancer patients have unresectable disease states at
diagnosis. Thus, radiotherapy combined with systemic
chemotherapy has become the standard treatment.2 To
deliver the radiation dose to the target accurately, real-
time tumor tracking (RTTT) is a useful approach.3

Multiple techniques have been adapted to track the
motion of tumors, including kV X-ray imaging,4 mag-
netic resonance imaging,5 and ultrasound imaging.6

Currently, in clinical practice, the kV X-ray imaging tech-
nique is the most widely used. Because of the physical
characteristics of kV X-ray, the contrast of soft tissue is
low in kV X-ray projection images. Currently, to track the
motion of soft targets accurately, internal markers, such
as metallic fiducials, are implanted into the tumor or its
surrounding tissue before a planning computed tomog-
raphy (pCT) scan.7 In pCT, the geometric correlation
between the internal markers and tumor is identified.
During treatment, by detecting the positions of internal
makers, the position of the target can be calculated
using the geometric correlation determined previously.
In clinical practice, the use of internal markers has
proven to be effective, but some areas for improvement
have also been highlighted. First, the implementation of
internal markers is invasive. It prolongs the treatment
period and causes risk to the patient, such as tumor
bleeding.Second,the geometric correlation between the
markers and target may change between the pCT scan
and time of treatment.8 During treatment, the geometric
correlation between the markers and target may also
shift with respiration.Such marker-induced error causes
a decrease in the accuracy of tumor tracking. Third, the
markers may cause metal artifacts in the pCT, degrad-
ing the image quality.9 To overcome these limitations,
a solution that realizes markerless tumor positioning
is required. The solution should have the ability to
directly predict the position of the soft tissue target in
kV X-ray projection images without the assistance of
markers.

Deep learning is one possible solution. Deep learn-
ing is a flourishing area in the field of medical physics.10

The application of deep learning-based models has
improved in the field of radiation oncology treatment,
and the improvement of graphics processing units
(GPUs) ensures that deep learning models are capable
of real-time tumor tracking.

Some researchers have aimed to adapt deep learning
to markerless target localization. Zhao et al. researched
deep learning-based markerless tumor localization in
the pancreas11 and prostate.12 Their model is based on
a region proposal network13 and predicts the bounding
box of the tumor on digitally reconstructed radiograph
(DRR) images. They calculated the mean absolute dif-
ference (MAD) between the ground truth and predicted
top-left corner of the bounding box to evaluate the local-
ization performance. In their work, two-dimensional (2D)
localization was not sufficient for tumor tracking,and the
appropriateness of localization with the top-left corner
of the bounding box to evaluate performance is worth
discussing. In contrast, several investigators developed
a three-dimensional (3D) localization model.14–16 Their
model is based on a fully convolutional neural network17

and predicts the target position based on the center of
the target probability map. By predicting the target in
images from two-view X-ray fluoroscopy images, the
3D position could be determined. However, the target
was either spherical or ovoid, which is far from a clinical
situation.

This paper presents a deep learning-based proce-
dure consisting of data augmentation and training of
a patient-specific target contour prediction model for
markerless tumor positioning. The data augmentation
method and contour prediction model are patient- and
kV X-ray tube angle-specific. No historical data are
required, and the procedure is independent of insti-
tution protocol. Beyond the bounding box and simple
shape, the clinical target volume (CTV) contour of the
pancreatic tumor is predicted from DRR images, and
the 3D position of the tumor is calculated based on the
centroid of the CTV contour. The performances of CTV
contour and 3D positioning prediction were analyzed
and evaluated.
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TABLE 1 Patient characteristics

Patient
ID Age (y) Sex Stage

CTV size
(cm3)

3D motion
range (mm)

1 59 F cT4N0M0 140.69 13

2 64 F cT4N0M0 61.07 14

3 59 M cT4N0M0 87.71 10

4 64 M cT4N1M0 105.55 15

5 69 F cT4N0M0 66.15 11

6 73 M cT4N0M0 107.79 11

7 62 M cT4N0M0 184.9 16

8 76 F cT3N0M0 61.92 10

9 75 F cT3N0M0 91.63 10

10 72 M cT4N0M0 114.43 10

11 74 M cT4N0M0 153.28 11

12 73 M cT4N0M0 133.9 10

13 67 F cT4N1M0 102.18 13

14 67 F cT4N0M0 146.56 10

2 MATERIALS AND METHODS

2.1 Vero4DRT system

The Vero4DRT system has a gimbaled 6 MV X-ray head
and an orthogonal kV X-ray imaging system.18 The gim-
baled head and imaging system were installed with a
compact accelerator in an O-ring gantry. The O-ring
gantry can rotate ±60

◦

about its vertical axis and ±185
◦

along its O-shaped structure. The orthogonal kV X-ray
imaging system consists of two pairs of X-ray tubes and
flat panel detectors (FPDs). The X-ray source to isocen-
ter distance and FPD distance are 1000 and 1836 mm,
respectively. The orthogonal kV X-ray imaging system
rotates simultaneously with the gimbaled head, and the
orthogonal X-ray tube angles are ±45

◦

from the axis
of the gimbaled head. The maximum irradiation field of
FPDs at isocenter level is 222 mm × 168 mm,with a spa-
tial resolution of 0.211 mm at the isocenter level. The
pixel array size of an FPD is 1024 × 768. During treat-
ment, the imaging system can continuously take orthog-
onal X-ray projection images.

2.2 Patient characteristics and
treatment planning

4DCT scans of 14 patients with locally advanced pan-
creatic cancer were included in this study (Table 1).
CT simulations were performed using the BodyFix
system (Elekta AB, Stockholm, Sweden) with arms
raised overhead. The 4DCT scans were acquired from
the LightSpeed RT 16-slice CT simulator (General
Electric Medical Systems, Waukesha, WI, USA) or
SOMATOM Definition AS (Siemens Medical Systems,

Erlangen, Germany) with a real-time positioning man-
agement system (Varian Medical System, Palo Alto, CA,
USA). The entire respiratory period was divided into 10
respiratory phases.

The gross tumor volume (GTV) included the tumor
and metastatic lymph nodes.The CTV included the GTV
plus a 5 mm margin, the retropancreatic space, and the
paraaortic lymph nodes between the celiac axis and
superior mesenteric artery.The radiation oncologist con-
toured the GTV and CTV for each phase.

All patients underwent six-port coplanar static
intensity-modulated radiation therapy (IMRT) with
RTTT. The gantry angles were 80

◦

, 120
◦

, 160
◦

, 200
◦

,
240

◦

, and 280
◦

. Correspondingly, the clockwise and
counterclockwise X-ray tube angles were the gantry
angles plus and minus 45

◦

, respectively. The prescribed
dose was 48 Gy in 15 fractions.

2.3 Data augmentation procedure for
labeled dataset generation

A large labeled dataset was required to both train and
evaluate the performance of the deep learning model.
This section presents a data augmentation method
aimed at generating sufficient labeled data from the orig-
inal data from one X-ray tube angle of a patient.

The starting point of the data augmentation was a
patient’s 4DCT, which contained the CT volumes of
10 respiratory phases. To obtain the ground truth of
the CTV contour from the DRR image, CTV-only CT
volumes were generated by an in-house program. The
program extracted CTV contours from the DICOM
structure storage file and set the voxel value outside the
CTV contours to zero. Then, the open-source program
Plastimatch was applied to generate DRR images
for both the original and corresponding CTV-only CT
volumes. The geometry settings for DRR generation
were taken from the Vero4DRT system. As a result, 10
paired DRR and CTV-only DRR images corresponding
to each respiratory phase were acquired.

The first step for augmentation was to tilt the gantry
angle and ring angle from –3

◦

to 3
◦

in 1.5
◦

intervals for
DRR image generation. This has the same effect as the
CT volumes being rotated around the superior-inferior
and anterior-posterior directions. As the gantry angle
and ring angle were tilted five times for each respiratory
phase, the data scale was augmented 25-fold after this
step.After this step,250 paired DRR and CTV-only DRR
images were acquired.

The second step was to use the Super-SloMo model
to interpolate frames between the respiratory phases.
The Super-SloMo model was proposed by Nvidia, and
the details of the model were introduced in a pre-
vious paper.19 In this work, the Super-SloMo model
trained on the Adobe 240-fps dataset was adapted to
interpolate images between the original DRR images
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and CTV-only DRR images of consecutive respiratory
phases. In this step, to ensure that the CTV contours
were still valid after interpolation, it was important to
ensure that the interpolated motion of the CTV-only
DRR images was the same as that of the original DRR
images. Here, the hyperparameters acquired based on
the original DRR images were directly used to interpo-
late the CTV-only DRR images. With the same set of
hyperparameters, the pixels in the original DRR images
and CTV-only DRR images moved simultaneously. Nine
frames were interpolated between consecutive phases,
producing a 10-fold augmentation. Thus, a total of 2500
paired DRR images and CTV-only DRR images were
obtained for one X-ray tube angle of a patient. This
data augmentation range and scale were considered
to be appropriate by referring to previous work by Zhao
et al.11

By extracting the mask of the CTV from the CTV-only
DRR image and overlapping it with the corresponding
original DRR image,labeled DRR images were obtained.
Subsequently, the 2500 labeled DRR images were ran-
domly divided into two subsets: a training dataset of
2000 images to fine-tune a pre-trained target contour
prediction model and a testing dataset of 500 images
to evaluate the performance of the patient-specific
CTV contour prediction model. The same dataset split-
ting approach was used in previous works for similar
purposes.11,12,16

2.4 Patient-specific deep learning
model for target contour prediction

For each patient and each X-ray tube angle, a spe-
cific target contour prediction model was trained and
tested with the corresponding DRR image dataset. The
workflow for training and testing a patient-specific deep
learning model for target contour prediction is shown in
Figure 1.The target of this study was the CTV.After data
augmentation, a pre-trained target contour prediction
model was fine-tuned with the training dataset to predict
the CTV contours from the DRR images. The details of
the model can be found in a previous paper done by
He et al.20 In brief, this model can predict the contour of
the target in each region of interest (RoI). In this work,
the backbone for feature extraction was ResNet with a
depth of 5021 and a feature pyramid network (FPN).22

The reason for this choice was based on the consider-
ation of accuracy and calculation time. The model was
pre-trained on the COCO dataset.23 The loss function
of the model during training was multitasking. For each
RoI, the loss function contained loss on classification,
bounding box,24 and contour.20 The training and testing
frameworks were both detectron2, provided by Face-
book AI Research.25 The base learning rate was set
to 0.02. The pre-trained model was fine-tuned for 2000
iterations.

2.5 Performance evaluation

For one kV X-ray tube angle of a patient, a testing
dataset containing 500 DRR images was used to eval-
uate the performance of the deep learning model.

The dice similarity coefficient (DSC) was introduced
to evaluate the performance of the target contour pre-
diction as follows:

DSC =

2 |
|
|
Atruth ∩ Apredict

|
|
|

Atruth + Apredict
, (1)

where Atruth and Apredict are the areas enclosed by the
ground truth contour and predicted contour, respectively.
The intersection symbol indicates the area where Atruth
and Apredict overlap.

During the testing, the original DRR images were
inputted into the fine-tuned model. The output was
DRR images with the predicted CTV contours. Then,
the ground truth and predicted CTV centroid were
calculated based on the corresponding CTV con-
tours. With the CTV centroids on the orthogonal
paired DRR images, the 3D position was defined
as the midpoint of the shortest intersection vector
between the vectors connecting the orthogonal kV
X-ray source and corresponding 2D position on the
FPDs. The distance between the 3D position of a
labeled CTV and predicted CTV was calculated to
evaluate the performance of the model for tumor
positioning.

3 RESULTS

The calculation efficiency of the tumor contouring model
was found to be high. The high-performance computer
(HPC) used in this study had an Intel Core i7 9800X
CPU, four Quadro GV100 32 GB GPUs,and eight 16 GB
RAM modules.The training time with one GPU was 2.5 s
per iteration.For 2000 iterations, the training time for one
X-ray tube angle of a patient was approximately 1.4 h.
As the HPC had four GPUs and each patient had 12
X-ray tube angles, the total training time for one patient
was approximately 4.2 h. The averaged contour predic-
tion time with one GPU for one image was 55.17 ms.
As the orthogonal images can be calculated parallelly
on two GPUs, the calculation efficiency is sufficient for
real-time tumor tracking.

The predicted contour of CTV and its centroid visually
matched the ground truth with high accuracy. Figure 2
shows examples of predicted contours and centroids
overlaying the ground truth results from two orthogo-
nal X-ray tube angles of a patient in different respi-
ratory phases equal to end-inhalation, end-exhalation,
and middle-respiratory phase. The ground truth contour
of a CTV was obtained by overlapping the CTV-only
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F IGURE 1 Overall workflow of the deep learning-based markerless tumor positioning procedure

F IGURE 2 Examples of pancreatic tumor CTV contours and centroids predicted by the deep learning model (blue lines and × symbols)
and their corresponding ground truth labels (red lines and + symbols) overlaid on the patient’s digitally reconstructed radiographs. The first,
second, and third columns represent end-inhalation, end-exhalation, and middle-respiratory phase, respectively. The kV X-ray tube angles for the
first and second rows are 115

◦

and 205
◦

, respectively

DRR image with its corresponding DRR image. During
the frame interpolation between respiratory phases, the
weight parameters were generated by the DRR images,
and the same weight parameter set was used to interpo-
late the frames of CTV-only DRR images to ensure that
the motion was identical between the CTV-only DRR
images and DRR images.

For one X-ray tube angle of a patient, 500 testing
images were imported to evaluate the performance
of the model. The present study included 14 patients

treated with six fixed gantry angles, which corresponds
to 12 X-ray tube angles. A total of 84 000 results
were included in the CTV contouring evaluation, and
42 000 results were included in the 3D positioning
evaluation.

DSC was introduced to evaluate the model’s contour-
ing performance. The calculation of DSC was based
on single DRR images, and the results versus X-ray
tube angle and patient were compared. Figure 3 shows
the statistical DSC results regarding X-ray tube angle
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F IGURE 3 DSCs regarding (a) X-ray tube angle and (b) patient. The orthogonal X-ray tube angles were ±45◦ from the gantry angle

F IGURE 4 3D error (in mm) regarding (a) gantry angle and (b) patient

(Figure 3a) and patient (Figure 3b). The mean and
standard deviation (SD) for the 84 000 results were
0.98 and 0.015, respectively. The global minimum DSC
was 0.81. In Figure 3b, it is noticeable that for patients
nos. 2, 10, and 11, the statistical DSC results are not as
good as those for the other patients.

The 3D positioning error was calculated to evaluate
the model’s target positioning performance. The calcu-
lation of 3D position was based on paired orthogonal
DRR images,and the 3D positioning error versus gantry
angle and patient was compared. Figure 4 shows a box
plot of the 3D error regarding gantry angle (Figure 4a)
and patient (Figure 4b). For the total of 42 000 3D error
results, the mean value and SD were 0.29 mm and
0.14 mm, respectively. The global maximum 3D error
was 1.66 mm. Figure 4b shows that for patient no. 8,
the deep learning-based procedure achieved the best
performance regarding 3D error.

4 DISCUSSION

To the best of our knowledge, the present study is the
first to realize contour prediction of pancreatic tumors
from DRR images and to predict 3D tumor position.
As the procedure is patient- and kV X-ray tube angle-
specific, it is not oncologist or institution dependent. Its
application can be easily extended to different tumor
sites and institutions.

Clinically, regarding real-time tumor tracking, the accu-
racy of 3D positioning is the main focus. The results
clearly show that the deep learning-based procedure
can accurately predict the 3D position of a pancreatic
tumor without the assistance of internal markers. The
mean ±SD of 3D error regarding the 42 000 results
was 0.29 ± 0.14 mm, and the maximum 3D error was
1.66 mm.The mean 3D error was close to the FPD pixel
size at isocenter level, indicating that the accuracy is
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F IGURE 5 Examples of three cases with low DSC. The blue lines and × symbols represent the predicted CTV contours and centroids,
respectively. The red lines and + symbols represent the ground truth labels. The left is from patient no. 2 with X-ray tube angle 205

◦

(DSC is
0.955). The middle is from patient no. 10 with X-ray tube angle 115

◦

(DSC is 0.965). The right is from patient no. 11 with X-ray tube angle 325
◦

(DSC is 0.891)

close to the machine limitation and fulfills clinical prac-
tice requirements.Compared with the work of Zhao et al.
with a similar tumor site,11 their 2D mean absolute errors
were found to be only less than 2.6 mm,which illustrates
the novelty of this work.

The box plots of each gantry angle Figure 4a are sim-
ilar, so it can be concluded that the 3D positioning error
was independent of the gantry angle. The second row
of Figure 2 demonstrates that the 3D positioning per-
formance was stable, even when the CTV in the DRR
images was overlapping with vertical bone in a large
area.From Figure 4b, it is noticeable that the 3D error for
patient no.8 is smaller than that for the other patient.This
is because among the patients with tumor motion equal
to 10 mm, the CTV size of patient no.8 was the smallest.
This indicates that the deep learning-based procedure
and model may have better positioning performance on
targets with small volume and small motion range.

In the future, the prediction of target contour may
assist in treatment, and as such, target contour predic-
tion analysis was also conducted in this study.As shown
in Figure 3a, the DSC box plots are similar for different
X-ray tube angles. Therefore, the target contour predic-
tion of the deep learning-based procedure was stable
for different X-ray tube angles. As shown in Figure 3b,
the DSCs for patients nos. 2, 10, and 11 are notably
lower compared to those of the other patients. Figure 5
shows the labeled and predicted DRR images of these
three patients from the X-ray tube angles with the lowest
mean DSC values.These target contours have two com-
mon features.The first is asymmetry. It can be seen from
the DRR images that the contour of the CTV is far from
symmetrical. This asymmetry indicates the existence of
sudden changes in the contour, and it is difficult to pre-
dict the contour accurately in regions containing sudden
changes. The second common feature is smoothness.
When the contour is not smooth, it is difficult to predict
it accurately. Meanwhile, as shown in Figure 5, although
the inaccurate contour prediction would cause a rela-
tively low DSC value, at this level of prediction accuracy,
the centroid of prediction and ground truth CTV contour
still matched well. This can explain why the DSC value

for patient no. 11 in Figure 3b was lower than the others,
but in Figure 4b, the 3D error was not particularly higher
compared to that for other patients.

The calculation time per image is critical for clinical
implementation. With the assistance of a GPU and the
latest deep learning framework, the mean contour pre-
diction time of an image was 55 ms. According to the
American Association of Physicists in Medicine Task
Group 76,26 to realize RTTT, the total system latency
should be less than 500 ms. For the Vero4DRT system,
the system lag was determined to be less than 48 ms.27

In addition to the image processing time achieved in this
work, the deep learning-based markerless tumor posi-
tioning procedure fulfills the requirement for RTTT.

Compared with the previous works,11,16 this work
shows advantages in the following aspects. First, our
work predicted the contour of the tumor and determined
the tumor position based on the centroid of the contour.
This definition may be more in line with clinical needs.
Second, the calculation times of Zhao et al. and Taka-
hashi et al. were less than 20011 and 32.5 ms16 per
image, respectively. Therefore, the work presented here
is much quicker than Zhao et al.’s and comparable with
Takahashi et al.’s. However, considering that our work
can predict the contour of a tumor with a similar calcula-
tion time, compared with Takahashi et al.’s work, the cal-
culation time is still superior. The third and most impor-
tant aspect is the positioning accuracy. For pancreatic
tumor positioning, the presented procedure offers the
best positioning results.

Currently, a pre-trained target contour model is
required to predict target position because less data
are required for fine-tuning a pre-trained deep learn-
ing model than initially training a deep learning model.
According to the results, the presented data augmenta-
tion procedure and patient-specific training data scale
were sufficient to fine-tune a pre-trained target contour
model. Ideally, a deep leaning model that predicts 3D
position directly from orthogonal images would be better.
Meanwhile, to initially train a deep learning model, much
more than 2000 images are required. As there is cur-
rently no pre-trained model for this purpose, the present
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work may contribute to the development of a practical
approach in the field.

Although this paper presented a procedure to gen-
erate a patient- and X-ray tube angle-specific model
that can detect the contour and centroid of a pan-
creatic tumor CTV from DRR images with high accu-
racy, two main limitations exist regarding the imple-
mentation of this procedure in clinical practice. First,
because it is currently impossible to detect and con-
tour pancreatic tumors from real X-ray projection images
obtained during radiation therapy, the synthetic DRR
images of this study were used for both training and
testing the target contour prediction model. Although
the synthetic DRR images were realistic, there were
still differences from the real ones. During treatment,
the MV beam scatters may be detected by the FPDs
and generate noise in the X-ray projection images.28

This may decrease the performance of the model. For
the X-ray imaging system of Vero4DRT, X-ray projec-
tion images are recorded as raw data recorded by the
FPDs. Conversion based on contrast, gamma correc-
tion, image window level, and window width is required
to render X-ray projection images similar to synthetic
DRR images. The model performance may also depend
on the accuracy of the conversion. In the future, the
model performance will be evaluated with real kV X-
ray projection images of patients with pancreatic tumors
who underwent RTTT treatment. For pancreatic tumors,
the marker-implanted RTTT results were recorded and
published.29 Once the presented work is expanded and
successfully predicts target positions in real kV X-ray
images of the recorded patients, the validation of the
model performance will be presented by comparing clin-
ical RTTT records and the predicted 3D target posi-
tions of the model. That is the next milestone for the
authors.

Second, patient anatomy and pancreatic tumor
motion may change between 4DCT simulation and the
time of treatment.30 Therefore, the procedure must aug-
ment the data and train the target contour prediction
model using the DRR images generated from patients’
4DCT scans.For the institutional procedure under which
this study was conducted, the patient’s 4DCT was sim-
ulated approximately 7 to 14 days before the treatment
started. The patients were treated in 15 fractions within
a median of 21 days.7 During this period, the interfrac-
tional change in tumor shape and surrounding normal
tissues will have a negative effect on the model perfor-
mance. To overcome this limitation, analysis of the per-
formance on real kV X-ray projection images is required.
If the decrease in positioning performance is identified
as clinically significant,an update of the model based on
the DRR images from cone beam computed tomogra-
phy volume or another 4DCT simulation may be required
during the patient’s period of treatment.This is within the
scope of adaptive radiotherapy.

5 CONCLUSION

A novel deep learning-based procedure for markerless
tumor positioning was presented in this paper. For 14
pancreatic tumor patients treated with six-gantry-angle
IMRT, the mean ± SD of 3D error was 0.29 ± 0.14 mm.
The CTV contour prediction time per image was approx-
imately 55 ms. This procedure provides a potential solu-
tion to markerless real-time tumor tracking for multiple
tumor sites or organs of interest. Future studies should
focus on testing and evaluating the performance of the
presented procedure using real X-ray projection images.
After retrospective studies and validations with radia-
tion oncologists’ contours on X-ray projection images, a
phantom study will be conducted,and clinical implemen-
tation will be considered.
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Development of AI-driven prediction 
models to realize real-time tumor tracking 
during radiotherapy
Dejun Zhou1, Mitsuhiro Nakamura1,2* , Nobutaka Mukumoto2, Hiroaki Tanabe3, Yusuke Iizuka2, 
Michio Yoshimura2, Masaki Kokubo4, Yukinori Matsuo2 and Takashi Mizowaki2 

Abstract 

Background: In infrared reflective (IR) marker-based hybrid real-time tumor tracking (RTTT), the internal target posi-
tion is predicted with the positions of IR markers attached on the patient’s body surface using a prediction model. 
In this work, we developed two artificial intelligence (AI)-driven prediction models to improve RTTT radiotherapy, 
namely, a convolutional neural network (CNN) and an adaptive neuro-fuzzy inference system (ANFIS) model. The 
models aim to improve the accuracy in predicting three-dimensional tumor motion.

Methods: From patients whose respiration-induced motion of the tumor, indicated by the fiducial markers, 
exceeded 8 mm, 1079 logfiles of IR marker-based hybrid RTTT (IR Tracking) with the gimbal-head radiotherapy system 
were acquired and randomly divided into two datasets. All the included patients were breathing freely with more 
than four external IR markers. The historical dataset for the CNN model contained 1003 logfiles, while the remaining 
76 logfiles complemented the evaluation dataset. The logfiles recorded the external IR marker positions at a fre-
quency of 60 Hz and fiducial markers as surrogates for the detected target positions every 80–640 ms for 20–40 s. For 
each logfile in the evaluation dataset, the prediction models were trained based on the data in the first three quarters 
of the recording period. In the last quarter, the performance of the patient-specific prediction models was tested and 
evaluated. The overall performance of the AI-driven prediction models was ranked by the percentage of predicted 
target position within 2 mm of the detected target position. Moreover, the performance of the AI-driven models was 
compared to a regression prediction model currently implemented in gimbal-head radiotherapy systems.

Results: The percentage of the predicted target position within 2 mm of the detected target position was 95.1%, 
92.6% and 85.6% for the CNN, ANFIS, and regression model, respectively. In the evaluation dataset, the CNN, ANFIS, 
and regression model performed best in 43, 28 and 5 logfiles, respectively.

Conclusions: The proposed AI-driven prediction models outperformed the regression prediction model, and the 
overall performance of the CNN model was slightly better than that of the ANFIS model on the evaluation dataset.

Keywords: Real-time tumor tracking, Tumor motion prediction, Convolutional neural network, Adaptive neuro-fuzzy 
inference system
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Background
During beam delivery, the targets—particularly those 
located in the thoracic and abdominal regions—move 
during respiration [1]. Conventionally, the internal tar-
get volume method is the most common approach to 
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perform radiation therapy for such targets, as it suffi-
ciently covers the range of movement [2]. However, in 
this approach, along with the target, the surrounding 
normal tissue is also irradiated at a high dose, which may 
have adverse consequences.

With recent advances in radiotherapy systems, four-
dimensional (4D) radiotherapy can be performed in 
clinical practice. In this approach, breath-hold, res-
piratory gating, and real-time tumor tracking (RTTT) 
techniques can be adopted to reduce the effects of res-
piratory motion [3]. In particular, through the RTTT, the 
beam position can be changed with the target position, 
thereby minimizing the occurrence of the adverse events 
caused by the motion of the target without burdening the 
patient’s breath or extending the treatment time [4].

In September 2011, we started infrared reflective (IR) 
marker-based RTTT (IR Tracking) with a gimbal-head 
radiotherapy system, known as Vero4DRT (Hitachi 
Ltd., Tokyo, Japan, and Brainlab AG, Feldkirchen, Ger-
many) [5], for lung [6], liver [7], and pancreatic [8] can-
cer patients. IR Tracking is a hybrid RTTT technique that 
combines direct positioning and indirect RTTT methods 
[9]. The IR Tracking method predicts the internal target 
position with the positions of IR markers placed on the 
patient’s abdominal wall by using the regression-based 
prediction model. The prediction accuracy of IR Tracking 
depends considerably on the performance of the predic-
tion model [10]. We have observed that the regression-
based prediction model does not represent the tumor 
motion accurately. In this regard, the existing regression-
based prediction model implemented in Vero4DRT can 
be improved in terms of accuracy [11–13].

Artificial intelligence (AI) techniques are being exten-
sively and rapidly implemented in radiotherapy [14]. 
In general, support vector regression [15, 16], Gaussian 
process regression [17], neural networks [18, 19], and 
fuzzy logic [20, 21] can be applied to predict target posi-
tions with external surrogate positions; however, these 
algorithms are associated with specific limitations when 
applied to prediction models. The performance of the 
support vector regression is not satisfactory when data 
is used from free-breathing humans [16]. Moreover, the 
Gaussian process regression approach was tested only 
on a respiratory simulation phantom model with a rub-
ber hot-water bottle [17]. Consequently, the simulation 
cannot accurately reflect the actual patient breathing 
and tumor motion. Although neural networks and fuzzy 
logic exhibit a satisfactory performance, in the research 
conducted with the use of these techniques, only 3 and 
20 patients were tested, respectively [18, 20, 21]. In the 
work presented by Teo et  al., only the tumor motion in 
the superior–inferior direction was predicted with the 
input of internal target position with an electronic portal 

imaging device (EPID) at the frequency at 7.5  Hz [19, 
22]. In addition, their approach cannot be performed if 
the internal target positions are invisible on EPID. Thus, 
the approach was rendered unsuitable for intensity-mod-
ulated radiation therapy or volumetric modulated arc 
therapy.

Considering such aspects, two AI-driven predic-
tion models, expected to have enhanced accuracy, were 
developed in this work. A convolutional neural network 
(CNN)-driven model with fine-tuning, and a model 
driven by an adaptive neuro-fuzzy inference system 
(ANFIS) with a pattern search algorithm were used. 
Compared to the regression-based prediction model, 
the AI-driven prediction models can better predict the 
internal target position in three dimensions (3D) using 
the external marker position without changes in the cur-
rent workflow. Compared to the CNN model, the ANFIS 
model contained fewer layers, does not require building 
a reference model, and does not need too much data for 
training. With two different approaches based on AI, it 
may be possible to have more alternatives for future 
research. By comparing and analyzing the performance 
of the different prediction models in the same scenarios, 
we can obtain a better understanding of their characteris-
tics. The performance of the proposed prediction models 
was further compared to that of the regression model and 
was evaluated to enhance the understanding of the differ-
ence between the AI mechanisms and the conventional 
approach involved in developing prediction models.

Methods
IR tracking procedure of Vero4DRT
The details of the RTTT procedure for Vero4DRT were 
described in a previous study [10].

Before the treatment beam delivery, an IR camera 
mounted on the ceiling of the treatment room moni-
tors the motion of the one-dimensional (1D) IR markers 
placed on the abdominal wall every 16.7  ms. In addi-
tion, the orthogonal kV X-ray imaging subsystem imple-
mented in Vero4DRT detects the fiducial markers as 
surrogates for the detected target positions (Pdetect) every 
80–640  ms. These motions are monitored for 20–40  s. 
After monitoring, a regression-based prediction model 
f (PIR, vIR) is built as follows:

where PIR is the averaged 1D IR marker position of multi-
ple IR markers’ measurements, v

IR
 is the averaged vertical 

velocity of the IR markers. The positions of the IR mark-
ers are predicted from the past position (25 ms before) to 
compensate for the system delay. The parameters from a 
to e are optimized by linear regression.

(1)f (PIR, vIR) = aP2
IR + bPIR + c + dv2IR + evIR,
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During the treatment beam delivery, the future 3D tar-
get position (Ppredict) is predicted from the position and 
velocity of IR markers with the use of Eq. (1). Addition-
ally, the internal target position is monitored every 1 s to 
verify the results produced by the prediction model.

Data characteristics
This research was performed in accordance with the Dec-
laration of Helsinki and was approved by the institutional 
review board. A total of 1079 logfiles were extracted from 
Vero4DRT. These logfiles were obtained from lung, liver, 
and pancreatic cancer patients whose 3D respiration-
induced motion of the tumor, as indicated by the fiducial 
markers, exceeded 8 mm during IR Tracking. We selected 
8 mm based on previous studies, considering the adapta-
tion of respiratory motion management techniques [23] 
and significance of long- and short-term tumor motion 
variability [24]. All the patients were breathing freely, 
and more than four external IR markers were attached 
on the abdominal walls of each patient. The logfiles were 
acquired when building the prediction model. In our 
clinical practice protocol, we recorded IR marker posi-
tions during an interval of 20–40  s at a frequency of 
60 Hz before treatment beam delivery and detected tar-
get positions indicated by the implanted markers for the 
same period at intervals ranging from 80 to 640 ms. Dur-
ing this period, the regression prediction model was con-
structed [10–12].

The 1079 logfiles were randomly divided into two data-
sets. To improve the prediction accuracy, as many data-
sets as possible are required. In this study, the historical 
dataset for the CNN model contained 1003 logfiles, and 
the remaining 76 logfiles complemented the evaluation 
dataset. The evaluation dataset was used to evaluate the 

performance of the prediction models. For each logfile in 
the evaluation dataset, the first three quarters were used 
as the training periods for transfer learning to build the 
patient-specific prediction models. The last quarter was 
the testing period and was used to test the performance 
of the prediction model.

Table  1 summarizes the IR marker motion patterns 
for the logfiles in the evaluation dataset. The mean and 
standard deviation (SD) values of the peak-to-peak 
motion range (R), the breathing period (T), and the 90th 
percentile of the respiratory velocity (v90) during the 
training and testing periods were calculated separately. 
The absolute difference of each value was calculated to 
show whether the respiratory motion was smooth and 
stable. Table  2 shows the summary of tumor motion 
range in three directions. The mean and SD values of the 
detected target motion ranges in the right–left, superior–
inferior, and anterior–posterior directions during the 
training and testing period were calculated.

CNN‑driven prediction model
The schema for the CNN model is shown in Fig. 1. The 
CNN model was constructed to have nineteen layers in 
total, with eight convolution layers, five batch normaliza-
tion layers, three dropout layers, a flatten layer, and two 
dense layers. In this study, the model was implemented 
in Python 3.6.4 and Keras 2.1.2. The Adam optimizer was 
employed, and the loss function was the mean value of 
the absolute differences between the detected and pre-
dicted target positions presented by the CNN model.

The CNN model consisted of training based on a 
large patient population and conducting patient-specific 
transfer learning. Initially, a single reference model was 
developed with the use of the historical dataset. In this 

Table 1 Summary of infrared reflective (IR) marker motion characteristics for evaluation dataset

R, Peak-to-peak motion range; T, period; v90, 90th percentile of respiratory velocity. Values are presented as means ± standard deviations (SD) [range, min–max]. 
P-values are the paired t-test results between training period and testing period

Training period Testing period Absolute difference p‑value

R (mm) 7.2 ± 2.9 [2.9–15.5] 7.1 ± 3.0 [2.9–16.5] 1.2 ± 1.7 [0.0–10.4] 0.87

T (s) 4.2 ± 1.5 [2.5–8.2] 4.2 ± 1.4 [1.1–8.4] 0.6 ± 0.9 [0.0–5.7] 0.97

v90 (mm/s) 7.3 ± 2.0 [4.0–13.5] 7.4 ± 2.2 [3.8–17.5] 0.8 ± 0.9 [0.0–5.0] 0.74

Table 2 Summary of detected target motion ranges in three directions for the evaluation dataset

Values are shown in means ± SD [range, min–max]. P-values are the paired t-test results between training period and testing period

Training period Testing period Absolute difference p‑value

Right–left (mm) 2.1 ± 1.7 [0.5–9.1] 2.1 ± 1.9 [0.4–10.8] 0.4 ± 0.4 [0.0–2.2] 0.76

Superior–inferior (mm) 16.4 ± 8.1 [7.6–37.1] 16.5 ± 8.6 [7.4–46.0] 2.4 ± 3.8 [0.0–27.1] 0.92

Anterior–posterior (mm) 3.0 ± 1.3 [0.8–6.4] 3.1 ± 2.4 [0.8–19.9] 0.7 ± 1.9 [0.0–16.7] 0.64
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process, CNN could learn and acquire knowledge from 
the dataset. The reference model was trained for 20 
epochs with a learning rate of 0.001. The reason for the 
setting of parameters was based on the consideration that 
the reference model was fine-tuned later. The construc-
tion of the reference model involved the following steps:

1. Randomly extract the data for 12 s PIR (720 positions) 
for IR marker No. 1 from a single historical logfile 
(dashed line 1 in Fig. 1).

2. Extract 25 Pdetect values from the same period at 
equal intervals (dashed line 2 in Fig. 1).

3. Extract 50 PIR immediately before time t in the last 
quarter of a single historical logfile (dashed line 3 in 
Fig. 1).

4. Calculate Ppredict at time t [Ppredict(t)] in the last quar-
ter of the single historical logfile with the data from 
steps 1–3 (dashed line 4 in Fig. 1).

5. Train the reference model and learn the weights 
based on the aforementioned steps.

6. Repeat the steps until all the IR markers, time inter-
vals, and entire historical dataset are covered.

For each logfile in the evaluation dataset, the reference 
model was tuned using the data in the first three-quar-
ters of the logfile (training period). The tuned reference 
model was trained for five epochs, with the learning rate 
ranging linearly from 0.0005 to 0.0001. For each logfile, 
the CNN model calculated Ppredict using the following 
steps:

1. Extract the data for the last 12 s PIR (720 positions) of 
IR marker No. 1 from the training period.

2. Extract 25 Pdetect values from the same period with 
equal intervals.

3. Extract 50 PIR immediately before time t in the train-
ing period.

4. Tune the reference model with Pdetect(t) and the data 
acquired in steps 1–3 until all the time points in the 
training period are covered.

5. Calculate Ppredict(t) one at a time. The input was 50 
PIR immediately before time t, with the last 720 PIR 
and 25 Pdetect values of the training period.

6. Repeat step 5 until all the markers are covered.
7. Calculate the average value of Ppredict(t) calculated 

with each IR marker. This result is the final prediction 
result.

8. Repeat step 7 until all the time t in testing period is 
covered.

ANFIS‑driven model
The ANFIS technique combined the adaptive neural net-
work and fuzzy inference system (FIS). The FIS used the 
fuzzy set theory and fuzzy rules to map the inputs to the 
outputs. The fuzzy set was generated through a clustering 
algorithm, and the mapping was performed by consider-
ing the membership function and fuzzy rules. Subse-
quently, a five-layer adaptive neural network was adapted 
as a machine learning approach to tune the FIS param-
eters. The detailed information regarding ANFIS can be 
found in [25] and [26].

The schema for the ANFIS model presented in this 
work is shown in Fig. 2. The input of the model was the IR 
marker positions, and the output was the predicted target 
position in 3D. The ANFIS model predicted the target 
position one at a time, similar to the CNN and regres-
sion-based models. In this work, FIS and ANFIS were 
implemented in MATLAB (R2020a, MathWorks, Natick, 
MA, USA) using the Fuzzy Logic and ANFIS Toolboxes. 

Fig. 1 Schema of the convolutional neural network (CNN) model. The CNN model consisted of eight convolution layers (green), five batch 
normalization layers (blue), three dropout layers (yellow), a flatten layer (gray), and two dense layers (orange)
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The Fuzzy Logic Toolbox provided the Mamdani and 
Sugeno FIS types. The Sugeno-type FIS was adopted for 
the ANFIS model because of its higher computational 
efficiency compared to that of the Mamdani-type FIS. 
The hybrid method was selected as the optimization 
method in the ANFIS Toolbox. In particular, the hybrid 
method combined the backpropagation and least-squares 
estimation techniques for the parameters of the input 
and output membership functions, respectively. In the 
ANFIS model, the ANFIS was implemented with a pat-
tern search algorithm, which can sequentially select the 
input data from the candidates to optimize the total 
squared error of the ANFIS during the training. For each 
logfile, the ANFIS model calculated Ppredict based on the 
following steps:

1. Extract Pdetect and PIR of IR marker No. 1 from the 
training period of each logfile.

2. For each Pdetect(t), prepare 11 input candidates of PIR 
(herein, values of PIR(t) to PIR(t − 10) were selected 
owing to their proximity to Pdetect(t)). Eight additional 
candidates, specifically, PIR(t − 15), PIR(t − 20), PIR(t 
− 25), PIR(t − 30), PIR(t − 35), PIR(t − 40), PIR(t − 
45), and PIR(t − 50), were selected as they may influ-
ence Pdetect(t); the numbers refer to the index in the 
array of the IR marker motion data). The correspond-

ing Pdetect values of the 11 input candidates were not 
extracted.

3. Process the 19 input candidates sequentially and 
select the candidate with the minimum training error 
in the ANFIS.

4. Sequentially process the remaining input candidates 
with the selected candidates and repeat steps 3 and 4 
until five inputs are selected from the 19 candidates. 
These five inputs were considered to be the most rel-
evant patterns of PIR with Pdetect(t).

5. Train the model with Ppredict(t) and the most relevant 
pattern of PIR during the training period for four 
epochs.

6. Calculate Ppredict(t) with the most relevant pattern of 
PIR during the testing period.

7. Repeat step 6 until all the IR marks are covered.
8. The average value of Ppredict(t) calculated using each 

IR marker is the final prediction result.
9. Repeat step 8 until all the time t in testing period is 

covered.

Data analysis
The proposed prediction models processed each of the 
randomly selected 76 logfiles by using the aforemen-
tioned procedure. For each logfile, the CNN model 

Fig. 2 Schema of the adaptive neuro-fuzzy inference system (ANFIS) model. The node with the capitalized N letter refers to the normalized fuzzy 
inference system (FIS), while the node with lowercase n refers to non-normalized FIS
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fine-tuned the reference model during the training 
period and yielded the prediction results for the test-
ing period. The ANFIS model used the pattern search 
algorithm and developed the ANFIS for each logfile 
during the training period and predicted the target 
positions during the testing period. To enable a com-
parison, a regression model was constructed during 
the training period [13], and Ppredict values were cal-
culated during the testing period for each of the 76 
logfiles.

During data analysis, the detected target position 
was considered as the ground truth of the prediction. 
The overall performance of the prediction model was 
ranked by the percentage of Ppredict within 2 mm of Pde-

tect at each recorded time. Furthermore, the cumulative 
percentage curve of 3D prediction positional error for 
the three models was analyzed.

According to the International Organization of 
Standardization (ISO) standard 5725-1 [27], the accu-
racy of a measurement is a combination of the true-
ness (mean error) and precision (standard deviation 
of the error, SD). In this study, the performances of 
the proposed CNN, ANFIS, and regression model on 
a single logfile were also evaluated in terms of accu-
racy. The mean absolute error (MAE) and SD between 
Ppredict and Pdetect were calculated for each logfile from 
the evaluation dataset. The parametric paired t-test 
was performed to evaluate the statistical significance 
of MAE between the AI-driven and regression model; 
the level of significance was set to 0.05.

As the CNN model learnt from the historical dataset 
and the ANFIS model was trained and tested on a sin-
gle logfile, the change in the respiratory range, period, 
and velocity measured by the IR markers for the train-
ing and testing periods of the logfile might have influ-
enced the comparison of the proposed prediction 
models. To quantify these changes, the variables δr, 
δp, and δv, that indicated the degrees of change in the 
respiration range, period, velocity between the train-
ing and testing periods, respectively, were defined and 
calculated for each logfile:

where Valuetest and Valuetrain represent the correspond-
ing values during the testing and training periods, 
respectively. For the range and period, the values were 
the mean range and period, respectively. For velocity, the 
values were the 90th percentiles of the IR velocity dur-
ing the testing period and training period, respectively. A 
larger δ value indicates a greater change. In particular, for 
stable respiratory patterns, δ will be close to zero.

(2)δ =

∣

∣

∣

∣

Valuetest

Valuetrain
− 1

∣

∣

∣

∣

,

Results
The averaged training times of the CNN and ANFIS 
models for each logfile were approximately 12 s and 95 s, 
respectively.

The cumulative percentage curve of the 3D predic-
tion positional error is also consistent with the afore-
mentioned result (Fig.  3). As shown in Fig.  3, the CNN 
and ANFIS models exhibit nearly the same cumulative 
percentage distribution when the 3D prediction posi-
tional error is smaller than 1  mm. When the distance 
between Ppredict and Pdetect ranged from 1 to 3  mm, the 
CNN model exhibited the highest performance. Overall, 
the performance of the AI-driven models was better than 
that of the regression model. The percentages of 3D pre-
diction positional error within 2 mm were 95.1%, 92.6% 
and 85.6% for the CNN, ANFIS, and regression models, 
respectively. This indicates that the CNN model showed 
the best performance among the three models. There 
were significant differences in MAE between the CNN 
and regression model (p < 0.05) and between the ANFIS 
and regression model (p < 0.05).

The mean ± SD values of the degrees of change in 
the respiration range (δr), period (δp), and velocity (δv) 
between the training and testing periods were 0.17 ± 0.32 
(range, 0.00–2.69), 0.13 ± 0.17 (range, 0.00–0.98), and 
0.10 ± 0.12 (range, 0.00–2.69), respectively. Figure  4 
shows the relationships between δr, δp, and δv, and 
MAE + 2SD. Figure  4a shows that the performances of 
the ANFIS and CNN models are comparable. Figure 4b 
and c show that the performance comparison of the CNN 
and ANFIS models is stable at all ranges for δp and δv. 
Meanwhile, the AI-driven models always performed bet-
ter than the regression model. In the following section, 
the performance comparison of the prediction models is 
discussed based on δr.

Fig. 3 Cumulative percentage curve regarding Ppredict within Pdetect in 
designated distance
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Upon comparison, it was noted that for the 43 logfiles 
(56.6%) showing that the CNN model outperformed the 
other models, the median δr value was equal to 0.12. In 
contrast, for the 28 logfiles wherein the ANFIS model 
outperformed the other models, the median δr was 
observed to be 0.07 (36.8%). Figure 5 shows an example 
of IR motion with a δr value of 0.06. The MAE + 2SD 

values of the CNN and ANFIS models were 1.29 and 
0.71  mm, respectively. In this case, the performance 
of the ANFIS model was slightly better than that of the 
CNN model for the respiration range between the train-
ing and testing periods. As δr increased, the change in 
the respiration range became significant, and the CNN 
model outperformed the other models. For instance, in 

Fig. 4 Mean absolute error (MAE) + 2 standard deviations (SD) between Ppredict and Pdetect versus (a) δr, (b) δp, and (c) δv. The boxes represent the 
interquartile ranges (IQRs). Outliers were above the third quartile plus 1.5 × IQR. Blue, red, and orange represent the CNN, ANFIS, and regression 
models, respectively. N in the horizon axis refers to the number of logfile regarding to each range
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Fig. 4 continued

Fig. 5 Time series data for IR marker (left side), detected and predicted target position (right side) of logfile No. 38 with a δr of 0.06. The three 
groups of waves on the right, from top to bottom, show the target positions in the LR, SI, and AP directions, respectively. This is a typical scenario 
that indicates that the respiratory was stable and the ANFIS model outperformed. The detected and predicted tumor trajectories corresponding to 
the testing period of the logfile, and the models give prediction results in each direction separately
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the case of logfile No. 62 with a δr value of 0.36 (Fig. 6), 
the MAE + 2SD values of the CNN and ANFIS mod-
els were 1.90 and 2.91  mm, respectively. Among the 76 
logfiles, the regression model exhibited superior perfor-
mances in the cases of five logfiles (6.6%), in which the 
inhale and exhale motions were quasilinear. For log file 
No. 5 (Fig.  7), the MAE + 2SD values of the regression, 
CNN, and ANFIS model were 1.87, 3.10, and 2.39  mm, 
respectively. Logfile No. 44 had a δr of 2.69, which cor-
responded to the maximum value among the 76 logfiles. 
As shown in Fig. 8, the patient inhales deeply during the 
last quarter of the recording time, leading to an irregular 
value of δr and produced the maximum MAE + 2SD for 
all three prediction models.

Discussion
In this study, the prediction performances of the CNN 
and ANFIS models were compared to that of a regression 
model that has been utilized clinically. The CNN model 
was initially built as a single reference model with the his-
torical dataset, and patient-specific transfer learning was 
later conducted during the training period. The ANFIS 
model was driven by ANFIS for each logfile, and a pattern 
search algorithm was adopted to select the most relevant 
input data. The test results showed that both AI-driven 

prediction models exhibited better overall performance 
than the regression model tested on the 76 logfiles. For 
each logfile, the averaged training time of the CNN and 
ANFIS model was approximately 12  s and 95  s, respec-
tively. Considering the training data acquisition duration, 
which was 20 s to 40 s, the model construction durations 
of the CNN and ANFIS models were less than 52 s and 
135 s, respectively. This was less than the average model 
construction duration of the regression model, which was 
162  s, as reported by Depuydt et  al. [28]. With shorter 
model construction durations, shorter treatment session 
durations can be expected if the AI-driven models are 
applied in clinical practice. The median value of MAE for 
the 76 logfiles in test dataset was 0.65, 0.66, and 1.02 mm 
for the CNN, ANFIS, and regression model, respectively. 
Thus, as the CNN and ANFIS models showed better 
accuracy and shorter model construction durations, less 
times and shorter durations of model retraining during 
a treatment fraction can also be expected. The durations 
of a treatment session will be further shorten. The p-val-
ues between the AI-driven models and regression model 
were less than 0.05, indicating that the performance of 
the AI-driven models was significantly better than that of 
the regression model. Institutionally, the setting of mar-
gin for RTTT considers both the errors induced by the 

Fig. 6 Time series data for IR marker (left side), and detected and predicted target positions (right side) of logfile No. 62 with a δr value equal to 
0.36. The three groups of waves on the right, from top to bottom, show the target positions in the LR, SI, and AP directions, respectively. This is 
a typical scenario whereby the change in respiratory range was significant and CNN model outperformed. The detected and predicted tumor 
trajectories corresponding to the testing period of the logfile, and the models give prediction results in each direction separately
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internal markers [29] and the accuracy of the prediction 
model [10]. The implementation of AI-driven prediction 
models in clinical practice is expected to reduce the mar-
gin derived by the positional error of prediction models 
and benefit the patient in the future.

The CyberKnife (CK) system can perform RTTT using 
a prediction model other than Vero4DRT [9, 30]. The 
conventional [31] and ANFIS approach [20, 21] to con-
struct a prediction model for a CK system was reported 
in previous studies. According to Poels et  al. [31], the 
prediction accuracy of the regression model was compa-
rable with that of conventional CK models. The results 
of this study demonstrated that the proposed model 
notably outperformed the regression model. Consider-
ing this statement, it can be concluded that the CNN 
and ANFIS models would outperform the conventional 
CK models. The work conducted by Torshabi and Ghor-
banzadeh et al. adapted ANFIS to predict target motion 
with external marker motions for a CK system [20, 21]. In 
their work, the patients were divided into a control group 
whose tumor tracking was carried out smoothly, and a 
worst group that was the opposite. For their research, the 
average 3D root mean square error for the control group 
was 1.1 mm. In the present work, taking into considera-
tion all the logfiles in the test dataset, the median value 

of MAE was 0.65 and 0.66 mm for the CNN and ANFIS 
models, respectively. This indicates that the present AI-
driven models show better performances as compared to 
those discussed in previous works.

Compared to the Gaussian process regression model 
[17], which uses a rubber hot-water bottle to simulate 
respiratory motion, the proposed models were trained 
and tested with actual clinical data. The application 
prospects of such models in clinical practice may be 
more promising. Moreover, the predictions obtained 
using the support vector regression [16] and neu-
ral networks [18] pertained to a small patient cohort 
(7 and 3 patients, respectively). The present research 
was performed based on considerations of 76 logfiles, 
which corresponded to more reliable results. Compar-
ing ours to the work done by Isaksson et  al. [18], the 
performance of their neural network model decreased 
notably within 5 s; thus, the model needs to be updated 
within every 5 s. For the AI-driven models presented in 
this work, the testing period ranged from 5 to 10 s and 
the performance was stable, as demonstrated in Figs. 5, 
6 and 7. The subsequent model accuracy will depend on 
δr, δp, and δv, as shown in Fig. 4. The model presented 
by Teo et al. [19] required the detected target position 
with EPID at a frequency of 7.5  Hz and provided the 

Fig. 7 Time series data for IR marker (left side), and detected and predicted target positions (right side) of log file No. 5 with quasilinear inhale and 
exhale motions. The three groups of waves on the right, from top to bottom, show the target positions in the LR, SI, and AP directions, respectively. 
In this scenario, the inhale and exhale motions were quasilinear, and the regression model yielded the best performance. The detected and 
predicted tumor trajectories corresponding to the testing period of the logfile, and the models give prediction results in each direction separately
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prediction results only in the superior–inferior direc-
tion during the treatment beam delivery. In contrast, 
the target position was predicted in 3D with IR mark-
ers at 60 Hz without information of the internal target 
position. If the orthogonal kV X-ray imaging subsystem 
works at a higher frequency, the patient may receive 
additional dosage. Considering both our situation and 
the trade-off between the dosage and prediction accu-
racy, the models presented in this work may be more 
suitable for us.

Although the proposed prediction models can nota-
bly outperform the regression model, certain limitations 
remain. The CNN model exhibited a high performance 
when the scenarios were similar to those of the logfile 
learnt from the historical data based on the CNN. Fur-
thermore, the ANFIS model was trained and tested solely 
based on the logfile and benefited from the pattern search 
algorithm. When the associated respiratory motion was 
stable, or when training was performed for a larger num-
ber of respiratory cycles, the performance of the ANFIS 
model would be comparable to that of the CNN model. 
According to this finding, the classification of the res-
piratory motion followed by the selection of appropriate 
models is expected to lead to higher prediction accuracy.

In the unique logfile No. 44 (Fig. 8a), the CNN model 
could not produce an accurate prediction result. This 
may have been caused by the imbalance in the histori-
cal dataset because the irregular respiratory patterns, 
for example that in logfile No. 44, were seldom included 
in the historical data. If additional logfiles similar to file 
No. 44 were to be included during the construction of 
the reference model, or if the irregular IR motion was 
included during the training period for fine-tuning, the 
performance of the CNN model could be improved in a 
similar situation. The δr value of logfile No. 44 was 2.69. 
It was significantly large for the ANFIS model to provide 
accurate results. In the case of the regression model, the 
velocity of the IR markers changed drastically, and the 
coefficients of the regression model were not suitable 
for this scenario; this resulted in inferior performance. 
Owing to the advantages of pattern recognition abil-
ity and robustness of the historical dataset, the ANFIS 
model corresponded to a lower MAE + 2SD (9.61 mm) in 
this case. In contrast, the MAE + 2SD for logfile No. 44 
was 28.02  mm when the CNN model was used. Never-
theless, none of the considered prediction models could 
provide an acceptable prediction result (Fig. 8b). For such 
cases, our current clinical protocol already has a fail-safe 

Fig. 8 Time series data for IR marker (left side), and detected and predicted target positions (right side) of logfile No. 44 with the largest δr value 
equal to 2.69. The three groups of waves on the right, from top to bottom, show the target positions in the LR, SI, and AP directions, respectively. 
In this case, the patient inhaled deeply during the last quarter of the recording time, and none of the models could yield an acceptable prediction 
result. The detected and predicted tumor trajectories corresponding to the testing period of the logfile, and the models give prediction results in 
each direction separately
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approach. When the prediction error is larger than a pre-
defined threshold (e.g., 3 mm, approximately half of the 
margin), the treatment beam will be automatically turned 
off [32]. When a systematic deviation is observed, the 
prediction model will be rebuilt and updated.

Among the 76 logfiles, the CNN, ANFIS, and regres-
sion models exhibited superior performances with mini-
mum MAE + 2SD in 56.6%, 36.8%, and 6.6%, respectively. 
Even though the CNN and ANFIS models outperformed 
the regression model, all the possible scenarios in clini-
cal practice cannot be covered. Specifically, for scenarios 
wherein the respiratory range changes considerably, as 
that shown in Fig. 4a whereby δr was greater than 0.3, the 
performances of the prediction models decreased. Based 
on the current study, the performance of the prediction 
model will decrease when δr increases. Currently, the 
input of the AI-driven models was the 1D IR marker posi-
tion. Correspondingly, whether the relationship between 
the IR marker and internal target positions was stable 
may have a dominant influence on the performance of 
AI-driven prediction models. This implies that regardless 
of how the velocity and period changed, if the relation-
ship of the internal and external position was stable, the 
performance of the prediction model was stable. How-
ever, if the respiratory range changes significantly during 
the testing period compared to that during the training 
period, the AI-driven models cannot learn the posi-
tion relationship during the training period. This change 
would cause a negative influence on the prediction accu-
racy (Fig. 4a). To address such situations, the automatic 
beam-off function can be implemented, in which the MV 
beam delivery is automatically turned off if the detected 
3D target position is beyond a predefined threshold [32]. 
In addition, the use of high-dose-rate, flattening, filter-
free beams could significantly reduce the radiation deliv-
ery time, potentially contributing toward stabilization of 
the prediction accuracy.

Overall, this study was associated with three nota-
ble limitations. Firstly, point-by-point predictions were 
only performed during the last quarter of the logfiles. 
This corresponded to approximately 5 to 10 s of the tar-
get motion. As reported by Poels et al. [33], if a patient’s 
breathing motion is not stable and the prediction accu-
racy becomes unacceptable during treatment, the predic-
tion model must be updated. To overcome this limitation, 
sequential prediction model updates can be implemented 
during beam delivery, or the technique presented by Teo 
et al. can be adapted to reduce the tracking drift in posi-
tion [34]. Secondly, only the data from Vero4DRT were 
adapted to train and test the prediction models. The per-
formances of the models on other systems must be exam-
ined in the future at different sampling rates, such as the 
CK system. Thirdly, only δr, δp and δv, which represented 

respiratory pattern changes, were considered in this 
study; however, there may be other factors that may need 
to be used to reduce the tracking accuracy. Lastly, this 
was a retrospective study. Currently, the models were 
developed, trained, and tested on previously acquired 
logfiles. In the future, more well-conceived experiments 
will be considered. The future experiments may contain 
longer recording durations and more irregular respira-
tory patterns to further improve the AI-driven models.

Conclusions
The overall performance of the proposed CNN and 
ANFIS models were considerably better than that of the 
currently employed regression model. The CNN model 
performed slightly better than the ANFIS model based 
on tests conducted with the 76 randomly selected log-
files. Changes in the model performances were examined 
at different patient scenarios. In the case of consider-
able changes in the respiration range, the CNN model 
may exhibit the optimal performance. In contrast, in the 
case of stable respiratory ranges, the ANFIS model may 
achieve high prediction accuracy. Additional work can be 
performed to expand the application scenarios of the AI-
driven models and conduct parameter optimization.

Abbreviations
1D: One-dimensional; 3D: Three-dimensional; 4D: Four-dimensional; AI: Artifi-
cial intelligence; ANFIS: Adaptive neuro-fuzzy inference system; CK: CyberKnife; 
CNN: Convolutional neural network; EPID: Electronic portal imaging device; 
FIS: Fuzzy inference system; IR: Infrared reflective; IR Tracking: Infrared reflective 
marker-based hybrid real-time tumor tracking; ISO: International Organization 
of Standardization; MAE: Mean absolute error; Pdetect: Detected 3D internal 
position; PIR: 1D infrared reflective marker position; Ppredict: 3D predicted target 
position; R: Peak-to-peak motion range of infrared reflective marker; RTTT : 
Real-time tumor tracking; SD: Standard deviation; T: Breathing period; v90: 90Th 
percentile of the respiratory velocity.

Acknowledgements
We sincerely appreciate the technical support and guidance from all the staff 
members of the Medical Physics Laboratory of Kyoto University Graduate 
School of Medicine (http:// medic alphy sics. hs. med. kyoto-u. ac. jp/) provided 
throughout the study.

Authors’ contributions
DZ and MN planned the study, performed the statistical analysis, and drafted 
the manuscript. NM, HT, YI, MY, MK, YM, and TM conceived the study, partici-
pated in its design and coordination, and helped draft the manuscript. All 
authors read and approved the final manuscript.

Funding
This research was partly supported by AMED [Grant Number JP20he2302001].

Availability of data and materials
Authors are not able to share data.

Declarations

Ethical approval and consent to participate
This study followed all the dictates of the Declaration of Helsinki and the 
Ethics Review Board of Kyoto University Hospital, and the Faculty of Medicine 

http://medicalphysics.hs.med.kyoto-u.ac.jp/


Page 13 of 14Zhou et al. Radiation Oncology           (2022) 17:42  

approved the research. Written consent to participate was obtained from the 
patients.

Consent for publication
Written consent was obtained from the patients for publication of this report 
and any accompanying images.

Competing interests
We have no competing interest to disclose.

Author details
1 Division of Medical Physics, Department of Information Technology 
and Medical Engineering, Human Health Sciences, Graduate School of Medi-
cine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, 
Japan. 2 Department of Radiation Oncology and Image-Applied Therapy, 
Graduate School of Medicine, Kyoto University, Kyoto, Japan. 3 Department 
of Radiological Technology, Kobe City Medical Center General Hospital, Hyogo, 
Japan. 4 Department of Radiation Oncology, Kobe City Medical Center General 
Hospital, Hyogo, Japan. 

Received: 20 October 2021   Accepted: 14 February 2022

References
 1. Matsuo Y, Onishi H, Nakagawa K, et al. Guidelines for respiratory motion 

management in radiation therapy. J Radiat Res. 2013;54(3):561–8. https:// 
doi. org/ 10. 1093/ jrr/ rrs122.

 2. International Commission on Radiation Units and Measurements ICRU 
Report 62. Prescribing, recording, and reporting photon beam therapy 
(Supplement to ICRU Report 50), ICRU, Bethesda, MD (1999)

 3. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory 
motion in radiation oncology report of AAPM Task Group 76. Med Phys. 
2006;33(10):3874–900. https:// doi. org/ 10. 1118/1. 23496 96.

 4. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med 
Phys. 2004;31(10):2738–41. https:// doi. org/ 10. 1118/1. 17741 32.

 5. Hiraoka M, Mizowaki T, Matsuo Y, et al. The gimbaled-head radiotherapy 
system: rise and downfall of a dedicated system for dynamic tumor track-
ing with real-time monitoring and dynamic WaveArc. Radiother Oncol. 
2020. https:// doi. org/ 10. 1016/j. radonc. 2020. 07. 002.

 6. Matsuo Y, Ueki N, Takayama K, et al. Evaluation of dynamic tumour track-
ing radiotherapy with real-time monitoring for lung tumours using a 
gimbal mounted linac. Radiother Oncol. 2014;112(3):360–4. https:// doi. 
org/ 10. 1016/j. radonc. 2014. 08. 003.

 7. Iizuka Y, Matsuo Y, Ishihara Y, et al. Dynamic tumor-tracking radiotherapy 
with real-time monitoring for liver tumors using a gimbal mounted linac. 
Radiother Oncol. 2015;117(3):496–500. https:// doi. org/ 10. 1016/j. radonc. 
2015. 08. 033.

 8. Nakamura A, Hiraoka M, Itasaka S, et al. Evaluation of dynamic tumor-
tracking intensity-modulated radiotherapy for locally advanced 
pancreatic cancer. Sci Rep. 2018;8(1):1–10. https:// doi. org/ 10. 1038/ 
s41598- 018- 35402-7.

 9. Dieterich S, Cleary K, D’Souza W, et al. Locating and targeting moving 
tumors with radiation beams. Med Phys. 2008;35(12):5684–94. https:// doi. 
org/ 10. 1118/1. 30205 93.

 10. Akimoto M, Nakamura M, Mukumoto N, et al. Predictive uncertainty in 
infrared marker-based dynamic tumor tracking with Vero4DRT. Med Phys. 
2013;40(9): 091705. https:// doi. org/ 10. 1118/1. 48172 36.

 11. Mukumoto N, Nakamura M, Sawada A, et al. Accuracy verification of infra-
red marker-based dynamic tumor-tracking irradiation using the gimbaled 
x-ray head of the Vero4DRT (MHI-TM2000). Med Phys. 2013;40(4): 041706. 
https:// doi. org/ 10. 1118/1. 47945 06.

 12. Mukumoto N, Nakamura M, Yamada M, et al. Intrafractional tracking accu-
racy in infrared marker-based hybrid dynamic tumour-tracking irradiation 
with a gimballed linac. Radiother Oncol. 2014;111(2):301–5. https:// doi. 
org/ 10. 1016/j. radonc. 2014. 02. 018.

 13. Akimoto M, Nakamura M, Mukumoto N, et al. Baseline correction 
of a correlation model for improving the prediction accuracy of 

infrared marker-based dynamic tumor tracking. J Appl Clin Med Phys. 
2015;16(2):14–22. https:// doi. org/ 10. 1120/ jacmp. v16i2. 4896.

 14. El Naqa I, Ruan D, Valdes G, et al. Machine learning and modeling: data, 
validation, communication challenges. Med Phys. 2018;45(10):e834–40. 
https:// doi. org/ 10. 1002/ mp. 12811.

 15. Ernst F, Martens V, Schlichting S, et al. Correlating chest surface motion to 
motion of the liver using ε-SVR: a porcine study. In: International confer-
ence on medical image computing and computer-assisted intervention. 
Springer, Berlin, 2009; 356–364. https:// doi. org/ 10. 1007/ 978-3- 642- 04271-
3_ 44.

 16. Ernst F, Bruder R, Schlaefer A, et al. Correlation between external and 
internal respiratory motion: a validation study. Int J Comput Assist Radiol 
Surg. 2012;7(3):483–92. https:// doi. org/ 10. 1007/ s11548- 011- 0653-6.

 17. Özbek Y, Bárdosi Z, Freysinger W. respiTrack: patient-specific real-time 
respiratory tumor motion prediction using magnetic tracking. Int J 
Comput Assist Radiol Surg. 2020;15(6):953–62. https:// doi. org/ 10. 1007/ 
s11548- 020- 02174-3.

 18. Isaksson M, Jalden J, Murphy MJ. On using an adaptive neural network to 
predict lung tumor motion during respiration for radiotherapy applica-
tions. Med Phys. 2005;32(12):3801–9. https:// doi. org/ 10. 1118/1. 21349 58.

 19. Teo P, Ahmed B, Kawalec P, et al. Feasibility of predicting tumor motion 
using online data acquired during treatment and a generalized neural 
network optimized with offline patient tumor trajectories. Med Phys. 
2018;45(2):830–45. https:// doi. org/ 10. 1002/ mp. 12731.

 20. Torshabi AE, Pella A, Riboldi M, Baroni G. Targeting accuracy in real-time 
tumor tracking via external surrogates: a comparative study. Technol 
Cancer Res Treat. 2010;9(6):551–62. https:// doi. org/ 10. 1177/ 15330 34610 
00900 603.

 21. Ghorbanzadeh L, Torshabi AE, Nabipour JS, et al. Development of a syn-
thetic adaptive neuro-fuzzy prediction model for tumor motion tracking 
in external radiotherapy by evaluating various data clustering algorithms. 
Technol Cancer Res Treat. 2016;15(2):334–47. https:// doi. org/ 10. 1177/ 
15330 34615 571153.

 22. Teo P, Crow R, Van Nest S, et al. Tracking lung tumour motion using a 
dynamically weighted optical flow algorithm and electronic portal imag-
ing device. Meas Sci Technol. 2013;24(7):074012. https:// doi. org/ 10. 1088/ 
0957- 0233/ 24/7/ 074012.

 23. Negoro Y, Nagata Y, Aoki T, et al. The effectiveness of an immobilization 
device in conformal radiotherapy for lung tumor: reduction of respiratory 
tumor movement and evaluation of the daily setup accuracy. Int J Radiat 
Oncol Biol Phys. 2001;50(4):889–98. https:// doi. org/ 10. 1016/ s0360- 
3016(01) 01516-4.

 24. Dhont J, Vandemeulebroucke J, Burghelea M, et al. The long- and 
short-term variability of breathing induced tumor motion in lung and 
liver over the course of a radiotherapy treatment. Radiother Oncol. 
2018;126(2):339–46. https:// doi. org/ 10. 1016/j. radonc. 2017. 09. 001.

 25. Babuška R, Verbruggen H. Neuro-fuzzy methods for nonlinear system 
identification. Annu Rev Control. 2003;27(1):73–85. https:// doi. org/ 10. 
1016/ S1367- 5788(03) 00009-9.

 26. Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE 
Trans Syst Man Cybern. 1993;23(3):665–85. https:// doi. org/ 10. 1109/ 21. 
256541.

 27. International Organization for Standardization. Accuracy (Trueness and 
Precision) of Measurement Methods and Results - DIN ISO 5725-2; 1994.

 28. Depuydt T, Poels K, Verellen D, et al. Treating patients with real-time 
tumor tracking using the Vero gimbaled linac system: implementation 
and first review. Radiother Oncol. 2014;112(3):343–51. https:// doi. org/ 10. 
1016/j. radonc. 2014. 05. 017.

 29. Ueki N, Matsuo Y, Nakamura M, et al. Intra- and interfractional variations 
in geometric arrangement between lung tumours and implanted mark-
ers. Radiother Oncol. 2014;110(3):523–8. https:// doi. org/ 10. 1016/j. radonc. 
2014. 01. 014.

 30. Hoogeman M, Prévost JB, Nuyttens J, et al. Clinical accuracy of the res-
piratory tumor tracking system of the CyberKnife: assessment by analysis 
of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303. https:// doi. 
org/ 10. 1016/j. ijrobp. 2008. 12. 041.

 31. Poels K, Dhont J, Verellen D, et al. A comparison of two clinical correlation 
models used for real-time tumor tracking of semi-periodic motion: a 
focus on geometrical accuracy in lung and liver cancer patients. Radio-
ther Oncol. 2015;115(3):419–24. https:// doi. org/ 10. 1016/j. radonc. 2015. 05. 
004.

https://doi.org/10.1093/jrr/rrs122
https://doi.org/10.1093/jrr/rrs122
https://doi.org/10.1118/1.2349696
https://doi.org/10.1118/1.1774132
https://doi.org/10.1016/j.radonc.2020.07.002
https://doi.org/10.1016/j.radonc.2014.08.003
https://doi.org/10.1016/j.radonc.2014.08.003
https://doi.org/10.1016/j.radonc.2015.08.033
https://doi.org/10.1016/j.radonc.2015.08.033
https://doi.org/10.1038/s41598-018-35402-7
https://doi.org/10.1038/s41598-018-35402-7
https://doi.org/10.1118/1.3020593
https://doi.org/10.1118/1.3020593
https://doi.org/10.1118/1.4817236
https://doi.org/10.1118/1.4794506
https://doi.org/10.1016/j.radonc.2014.02.018
https://doi.org/10.1016/j.radonc.2014.02.018
https://doi.org/10.1120/jacmp.v16i2.4896
https://doi.org/10.1002/mp.12811
https://doi.org/10.1007/978-3-642-04271-3_44
https://doi.org/10.1007/978-3-642-04271-3_44
https://doi.org/10.1007/s11548-011-0653-6
https://doi.org/10.1007/s11548-020-02174-3
https://doi.org/10.1007/s11548-020-02174-3
https://doi.org/10.1118/1.2134958
https://doi.org/10.1002/mp.12731
https://doi.org/10.1177/153303461000900603
https://doi.org/10.1177/153303461000900603
https://doi.org/10.1177/1533034615571153
https://doi.org/10.1177/1533034615571153
https://doi.org/10.1088/0957-0233/24/7/074012
https://doi.org/10.1088/0957-0233/24/7/074012
https://doi.org/10.1016/s0360-3016(01)01516-4
https://doi.org/10.1016/s0360-3016(01)01516-4
https://doi.org/10.1016/j.radonc.2017.09.001
https://doi.org/10.1016/S1367-5788(03)00009-9
https://doi.org/10.1016/S1367-5788(03)00009-9
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/21.256541
https://doi.org/10.1016/j.radonc.2014.05.017
https://doi.org/10.1016/j.radonc.2014.05.017
https://doi.org/10.1016/j.radonc.2014.01.014
https://doi.org/10.1016/j.radonc.2014.01.014
https://doi.org/10.1016/j.ijrobp.2008.12.041
https://doi.org/10.1016/j.ijrobp.2008.12.041
https://doi.org/10.1016/j.radonc.2015.05.004
https://doi.org/10.1016/j.radonc.2015.05.004


Page 14 of 14Zhou et al. Radiation Oncology           (2022) 17:42 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 32. Garibaldi C, Russo S, Ciardo D, et al. Geometric and dosimetric accuracy 
and imaging dose of the real-time tumour tracking system of a gimbal 
mounted linac. Phys Med. 2015;31(5):501–9. https:// doi. org/ 10. 1016/j. 
ejmp. 2015. 04. 001.

 33. Poels K, Depuydt T, Verellen D, et al. Improving the intra-fraction update 
efficiency of a correlation model used for internal motion estimation dur-
ing real-time tumor tracking for SBRT patients: fast update or no update? 
Radiother Oncol. 2014;112(3):352–9. https:// doi. org/ 10. 1016/j. radonc. 
2014. 09. 007.

 34. Teo P, Guo K, Fontaine G, et al. Reducing the tracking drift of an uncon-
toured tumor for a portal-image-based dynamically adapted conformal 
radiotherapy treatment. Med Biol Eng Comput. 2019;57(8):1657–72. 
https:// doi. org/ 10. 1007/ s11517- 019- 01981-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.ejmp.2015.04.001
https://doi.org/10.1016/j.ejmp.2015.04.001
https://doi.org/10.1016/j.radonc.2014.09.007
https://doi.org/10.1016/j.radonc.2014.09.007
https://doi.org/10.1007/s11517-019-01981-4


© The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Radiation Research, 2022, pp. 1–6
https://doi.org/10.1093/jrr/rrac063

Development of independent dose verification plugin
using Eclipse scripting API for brachytherapy

Dejun Zhou1, Mitsuhiro Nakamura1,2,*, Yohei Sawada3, Tomohiro Ono2,
Hideaki Hirashima2, Hiraku Iramina2, Takanori Adachi2, Takahiro Fujimoto3

and Takashi Mizowaki2

1Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507,
Japan

2Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
3Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto 606-8507, Japan

*Corresponding author. Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto
University, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81-75-751-4176; E-mail: m_nkmr@kuhp.kyoto-u.ac.jp

(Received 9 June 2022; revised 14 August 2022; editorial decision 26 August 2022)

ABSTRACT
In this study, an independent dose verification plugin (DVP) using the Eclipse Scripting Application Programming
Interface (ESAPI) for brachytherapy was developed. The DVP was based on the general 2D formalism reported in
AAPM-TG43U1. The coordinate and orientation of each source position were extracted from the translation matrix
acquired from the treatment planning system (TPS), and the distance between the source and verification point (r)
was calculated. Moreover, the angles subtended by the center-tip and tip-tip of the hypothetical line source with
respect to the verification point (θ and β) were calculated. With r, θ , β and the active length of the source acquired
from the TPS, the geometry function was calculated. As the TPS calculated the radial dose function, g(r), and 2D
anisotropy function, F(r,θ), by interpolating and extrapolating the corresponding table stored in the TPS, the DVP
calculated g(r) and F(r,θ) independently from equations fitted with the Monte Carlo data. The relative deviation of
the fitted g(r) and F(r,θ) for the GammaMed Plus HDR 192Ir source was 0.5% and 0.9%, respectively. The acceptance
range of the relative dose difference was set to ±1.03% based on the relative deviation between the fitted functions
and Monte Carlo data, and the linear error propagation law. For 64 verification points from sixteen plans, the mean of
absolute values of the relative dose difference was 0.19%. The standard deviation (SD) of the relative dose difference
was 0.17%. The DVP maximizes efficiency and minimizes human error for the brachytherapy plan check.

Keywords: brachytherapy; independent dose verification; eclipse scripting

INTRODUCTION
Brachytherapy delivers a high dose to the target volume while realizing
a steep dose falling away from the target. Compared with external
beam radiotherapy (EBRT), brachytherapy can protect normal tissue
while increasing the dose to the target volume. Brachytherapy treat-
ments are conducted with a small fraction and large dose per fraction.
Once there is a difference between the planned and delivered doses,
it is hard to compensate for the negative effect caused by the differ-
ence [1]. Multiple works have recommended performing indepen-
dent dose verifications to assess the dose calculated by the treatment
planning system (TPS) before the brachytherapy treatment [2–4].
Currently the calculation-based verification is the realistic way to check

the brachytherapy plan before dose delivery rather than measurement-
based verification.

The whole process of brachytherapy treatment in our hospital is
shown in Fig. 1. First, the patient underwent computed tomography
(CT) simulation with applicators. The brachytherapy treatment plan
is then made based on the planning CT images. We do not change
applicator setup during treatment planning. The independent dose
verification is conducted after brachytherapy treatment planning. If the
relative dose difference is within the tolerance, the brachytherapy will
be conducted and dose will be delivered. If not, the treatment will be
re-planned until the verification pass. Currently, in our institution, a
Microsoft Excel-based independent dose verification is under clinical
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Fig. 1. The flowchart of brachytherapy treatment.

practice. Shortcomings of current verification method were revealed.
Software other than the TPS was not allowed to be installed on clinical
treatment planning machines. To perform the dose verification, the
plan information was transferred from the machine with the TPS to
another machine with the Microsoft Excel application and pasted to the
template file; then, the verification dose was calculated. This procedure
is not efficient and may induce human error. Moreover, as the Microsoft
Excel-based independent dose verification does not adapt the orienta-
tion of each source position in the calculation, the current acceptance
range of the relative dose difference of a selected dose verification
point is a ± 5% setting between the calculation results of the TPS and
verification results. This is a relatively large range compared to the one
used in the study reported by Carmona et al. [5], where the relative
dose difference was within ±2%. A potentially large acceptance range
may give a false positive verification judgement.

To overcome the shortcomings, an independent dose verification
plugin (DVP) using Eclipse Scripting Application Programming
Interface (ESAPI; Varian Medical Systems, Palo Alto, CA, USA) for
brachytherapy was developed [6]. The purpose of this study was
to simplify the dose verification procedure for brachytherapy and
improve the accuracy of the verification dose calculation.

MATERIALS AND METHODS
Description of dose verification plugin

In our institution, we use a Bravos unit (Varian Medical Systems) with
the GammaMed Plus HDR 192Ir active source and BrachyVision V16.1
(Varian Medical Systems) for brachytherapy treatment planning. For
this reason, the DVP was dedicated to the Varian TPS and could be inte-
grated with the TPS interface. The DVP was written in C# using ESAPI.
With ESAPI, the DVP can access the plan information directly from the

TPS and show the dose verification report on the clinical machine with
few clicks. There is no need to export, copy and paste data between
computers and files. The plan details, especially the orientation of each
source position, were adapted in the dose verification calculation in the
DVP. In this way, the DVP will show more accurate calculation results,
and the acceptance range for the dose verification will be narrowed.
The source file of the DVP was one single file. It is easy to update the
plugin and distribute it between institutions.

Dose calculation
The DVP calculates the dose at a verification point (Pver) indepen-
dently and compares the TPS results at the same point to verify the
dose calculation. The dose calculation algorithm of the DVP was the
general 2D formalism reported in the Association of Physicists in
Medicine’s update, Task Group 43 (AAPM-TG43U1) [7].

Ḋ (r, θ) = Sk • � • GL (r, θ)
GL (r0, θ0)

• gL (r) • F (r, θ) , (1)

where r is the distance from the center of the active source to Pver. θ

is the angle subtended by the central axis of the active source and the
line connecting the center of the active source and Pver. r0 and θ 0 are
specified to 1 cm and 90◦, respectively, according to AAPM-TG43U1.
Sk is the air-kerma strength on the treatment day. Λ is the dose rate
constant of the active source. GL is the geometry function. gL is the
radial dose function, and FL is the 2D anisotropy function.

The DVP accesses the calibration Sk and half-life of the active
source as well as the calibration and treatment dates at 12 a.m. directly
from the TPS with ESAPI. Subsequently, the value of Sk at the day of
treatment was calculated using the information above and the law of
radioactive decay. The DVP also directly acquires � from the TPS with
ESAPI.

The active source in our institution is a line source. The DVP
calculates the GL based on the line-source model reported in AAPM-
TG43U1 [7].

GL (r, θ) =
{ β

Lrsinθ , if θ �= 0◦(
r2 − L2

4

)−1
, if θ = 0◦ , (2)

where L is the active length of the source. β is the angle subtended by
the tips of the hypothetical line source with respect to the Pver.

The first step of calculating GL was to obtain the 3D coordinates
of the active source center, both active source tips, and Pver. The active
length of the source was stored in the TPS, and the DVP acquired it
directly. The TPS stored the position and orientation of the source with
a transform matrix. The third column is the source orientation, and the
fourth column is the center position. The positions of both tips of the
source were calculated by the center position plus/minus the results
of half of the active length, multiplied by the source orientation. The
position of Pver was defined in the TPS and directly acquired by the
DVP. With the coordinate’s information above, r, θ , β and GL were
calculated.

In the TPS, gL and FL were calculated by interpolating and extrap-
olating the corresponding data table stored in the radioactive source
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Table 1. Fitted parameters of the anisotropy function for GammaMed Plus HDR 192Ir. Zero values are represented by dashes

i ki ai bi ei

1 −2.30569 - 4.97×10−1 −1.7×10−3

2 −1.98×10−2 - −1.46 −2.96
3 2.847×10−2 −3.25×10−1 5.2×10−1 -
4 2.27378 11.5962 24.586 1.469
i a′

i b′
i e′

i
1 - −14.54 −1.14×10−1

2 - −1.5588×10−1 −1.057
3 −6.3265×10−1 −4.47×10−1 −1.81×10−2

4 17.0192 39.889 1.2924

model. In the DVP, these two functions were calculated independently
with fitted dosimetric parameters and equations reported by Lliso et al.
[8]. The function for gL was:

gL (r) = hri

1+jrk , (3)

where for the GammaMed Plus HDR 192Ir source, h, i, j and k were
equals to 1.001, 7.69 ×10−3, 2.1×10−4 and 2.63, respectively.

The general functional forms of FL were

F (r, θ) = k (r) + a(r)
(

θ
180◦

)e(r)

1+b(r)
(

θ
180◦

)e(r) + a′(r)
(

1− θ
180◦

)e′(r)

1+b′(r)
(

1− θ
180◦

)e′(r) , (4)

where

k (r) = k1rk2 + k3r + k4,

a (r) = a1ra2 + a3r + a4, a′ (r) = a′
1ra′2 + a′

3r + a′
4

b (r) = b1rb2 + b3r + b4, b′ (r) = b′
1rb′2 + b′

3r + b′
4

e (r) = e1re2 + e3r + e4, e′ (r) = e′
1re′2 + e′

3r + e′
4

The fitted parameters of FL for the GammaMed Plus HDR 192Ir are
summarized in Table 1.

Subsequently, the dose rate of each source position at Pver was
calculated using equation 1, the DVP calculated the dose at Pver, using
the following equation:

DDVP = ∑N
i=1 Ḋi (r, θ) • ti, (5)

where i is the index of the active source in the plan, and t is the
dwell time.

Dose verification
The Pver dose calculated by the DVP was compared with the dose cal-
culated by the TPS. The relative dose difference (Ddiff%) was calculated
using the following equation:

Ddiff % = 100% × DDVP−DTPS
DTPS

, (6)

where DTPS was the dose at Pver calculated by the TPS.
According to Lliso et al. [8], the average absolute value of the

relative deviation between the anisotropy function and Monte Carlo
data was 0.9% for the GammaMed Plus HDR 192Ir source. For the
radial dose function, the value was 0.5%. Based on the linear error
propagation theory,

�
(

gL • FL
) = ±

√(
�gL

)2 + (�FL)
2, (7)

where �gL and �FL were the average relative deviations of gL and
FL, respectively. �

(
gL • FL

)
was the average relative deviation of gL

multiplied by that of FL. We assumed that, other than gL and FL, there
were no deviations in the other components of the dose calculation. In
this case, we set ±1.03% as the acceptance range for Ddiff%.

Patient characteristics
This study was approved by the Institutional Review Board of Kyoto
University Hospital (approval number: R1446). Our institution
started treating patients with the Bravos system from April 2022. Three
patients who underwent brachytherapy treatment were included in
this study. Two patients were treated with tandem-ovoid applicators,
and one was treated with a tandem cylinder. The fractional dose was
6 Gy. At the time of writing, two patients underwent 3 fractions, and
one patient underwent 1 fraction. The patients underwent a computer
tomography scan and were prepared for each fraction. For each plan,
four verification points located at the bladder, rectum, point A at the
left side and point A at the right side of the tandem, were determined
by the on-site medical physicists or radiation technician, according to
the International Commission on Radiation Units and Measurements
Report 38 recommendations [9].

Clinical workflow
The user interface of the DVP is shown in Fig. 2. Before running the
DVP, at least one reference point with a location should be selected as
the dose verification point and stored in the reference point list of the
current plan. The first window of the DVP was the dose verification-
point selection window (Fig. 2a). The list of the combo box contained
all non-abstract reference points of the plan. After selection and clicking
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Fig. 2. User interface of the DVP. (a) The dose verification point selection window. (b) The dose verification report windows.

the ‘calculate’ button, the calculation report was shown in the next win-
dow (Fig. 2b). The calculation report contains important treatment
information, DDVP, DTPS, Ddiff% and the dose calculated by the DVP at
each source position.

RESULTS AND DISCUSSION
For 16 plans, 64 verification points were selected and included in
the statistic results. The mean of the absolute Ddiff% was 0.19%. The
standard deviation (SD) of Ddiff% was 0.17%.
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Fig. 3. Demonstration of the failed dose verification when the dose verification point was too close to one of the source positions
([a] and [b]), and too far from the sources ([c] and [d]).

Among all the 64 results, the calculation result of the DVP was
smaller than that of the TPS for 83% of verification points (53 veri-
fication points). This was caused by the curve of the fitted �gL, and
�FL was always below the curve of the Monte Carlo simulated data, as
reported by Lliso et al. [8].

In the two situations, the absolute Ddiff% may be out of the accep-
tance range. First, if the verification point position was inside one of
the source positions, a large dose difference was observed. As shown in
Fig. 3a–b, the verification point was inside one of the source positions.
Ddiff% of this verification point was 34.96%.
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Second, when the verification point was intentionally positioned
far from the sources, Ddiff% was out of the acceptance range, as
shown in Fig. 3c–d. Ddiff% of this verification point was −3.11%.
Both situations were caused by the dosimetric parameters used to
calculate gL and FL in the TPS, and the DVP was not accurate when
the verification point was too close or far from the sources. Once
Ddiff% is greater than the tolerance, the location of the verification
point needs to be checked for appropriateness. If the verification
point is confirmed as appropriate, the plan may need optimization.
In this way, the purpose of the dose verification for brachytherapy is
achieved.

This work presented the DVP with GammaMed Plus HDR 192Ir
source. However, the DVP can be extended to verify brachytherapy
with other type of active sources easily. All need to do is to change the
fitted parameters of gL and FL to the parameters of the corresponding
active source according to previous work [8].

CONCLUSION
An independent DVP dedicated to Eclipse TPS for brachytherapy was
developed. For the GammaMed Plus HDR 192Ir source, the acceptance
range of the relative dose difference between the TPS and plugin was
±1.03%. For 64 verification points, the mean of the absolute values of
the relative dose difference was 0.19%. The SD of the relative dose dif-
ference was 0.17%. The entire clinical workflow of the plugin contained
a few clicks. Once the plugin is under clinical practice, it will maximize
efficiency and minimize human error for the brachytherapy plan check
before treatment. The code of the DVP will be shared upon reasonable
request.
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