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Executive Summary 

In recent years, many developing countries have had a significant increase in their road 

infrastructure stock. The increased pavement stock has posed a new challenge of how to manage 

these roads cost effectively and avoid the total dilapidation of the network without deriving any 

economic gains. This has generated interest in road infrastructure asset management, a relatively 

new field in developing countries such as Uganda; which has seen the introduction of Pavement 

Management Systems (PMSs) and Bridge Management Systems (BMSs) to scientifically manage 

roads and bridges, respectively.  

 

In the management of infrastructure, it is necessary to estimate the deterioration rate so as to 

proactively plan for intervention. The estimation requires significant amounts of time series data 

including condition, inventory and maintenance history. The stochastic Markov hazard model is 

among the most popular models in the probabilistic estimation of infrastructure deterioration rates 

for network (macro) level planning. Infrastructure planning mainly involves optimizing costs 

including travel, intervention, environmental, safety, etc. involved in the usage of infrastructure; 

and utility to determine the optimum management strategy. This dissertation’s main theme is to 

improve road infrastructure management technologies in developing countries using proactive 

rather than reactive methods. The thesis contains the following chapters: 

 

Chapter 1: Provides a general introduction on infrastructure asset management and includes the 

background and motivation. It discussed the total Asset Management Cycle with special interest 

given to the Plan-Do-Check-Act (PDCA) cycle. It explained the cycle from inception to end and 

identified the areas of interest in asset management. 

 

Chapter 2: Presents a review of relevant literature that the subsequent chapters look at in detail. 

The reviewed literature includes infrastructure asset management with a special interest to road 

pavements; transportation mainly the aspect of travel time and the factors that affect it; and image 

processing and deep learning with their applications majorly in transportation and infrastructure 

asset management research. 
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Chapter 3: Explains pavement management using stochastic Markov models to proactively plan 

for road infrastructure intervention optimally. This research work involved modeling the 

deterioration process of road pavements using Markov models and Markov Chain Monte Carlo 

(MCMC) methods, and planning for optimum road intervention while incorporating the aspect of 

increase in deterioration rate due to past maintenance works. Specifically, the study examined the 

applicability to developing countries of a Pavement Management System (PMS) with less data 

(two-point) requirement to complement current practice. The study compared the current PMS 

based on specified time intervals regardless of deterioration rate (i.e., time-dependent policy) and 

a proposed PMS based on deterioration rate (i.e., condition-dependent policy) for the surveyed 

Ugandan national road network considering a basic plan and a fixed budget, and also investigated 

the effect of preventive works using a greedy algorithm. The results showed that a shift to the 

condition-dependent policy increased percentages of network in good and fair condition by 8.6% 

and 2.5%, respectively, and reduced percentages in poor and bad condition by 8.5% and 2.6%, 

respectively. Preventive maintenance further increased percentage in good condition by 27.4% and 

reduced percentages in poor and bad condition by 11.6% and 4.2%, respectively, with a 53.5% 

reduction in life cycle costs (LCC). This research formed a strong basis to encourage a shift to the 

condition-dependent policy and preventive maintenance while discouraging the worst first basis, 

and could be used to support the improvement of PMSs in developing countries. 

 

Chapter 4: Describes the effect of condition on travel time on roads, an extension of Chapter 3 

that dwells on road infrastructure condition. Specifically, it looked at management of multiple 

pavement sections considering varied interventions on pavement durability and capacity and their 

effects on travel time. Road data was used to build an asset management model applied to 

determine the intervention choice for multiple road sections concurrently by optimizing social 

costs (travel and road improvement) incurred by society. The model innovatively combined 

condition improvement (e.g., patching) and capacity increase (e.g., increasing number of lanes) in 

a joint decision framework to facilitate socially optimum intervention choice after meeting 

minimum safety levels. Empirically, the model showed the contribution to decrease in travel time 

on account of condition improvement and capacity increase for Ugandan roads. Optimal 

intervention strategies were proposed within a set budget limit and it was suggested that there may 

be no need to arbitrarily increase intervention budgets. This study may positively impact timely 
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multiple pavement intervention decisions and can be applied to other infrastructure such as bridges 

and tunnels. It can be adapted to optimally decide effective and efficient management choices for 

other facilities, such as pipelines, building and road furniture; that have component parts and many 

possible interventions during their life time. 

 

Chapter 5: Explores deep learning in civil engineering infrastructure asset management with a 

special interest in computer vision, an application that has become necessary given challenges such 

as shortage of labour, safety, need to improve accuracy and a bigger infrastructure stock. 

Technological advancements have facilitated the change in data type from human-based inspection 

data to for instance abundant smartphone image data that may require more efficient computer-

based techniques for analysis. Human-based data is prone to a number of errors including miss-

reporting, omission and/or wrong data entries that compromise analysis results. On the other hand, 

computer-based techniques are less error prone, cheaper and more efficient. In this chapter, road 

images from the publically available Road Damage Dataset – 2020 were analyzed by carrying out 

experiments using simpler image processing techniques (i.e., lazysnapping and region growing 

from a seed point) and deep learning. The simpler image processing techniques involved the user 

setting initial Regions of Interest (RoIs) or seed point with the unallocated image pixels allocated 

as either background or foreground programmatically using a similarity metric. For deep learning, 

convolutional neural networks (CNNs) using region proposals were applied to train a model to 

detect and quantify road features and defects in parallel. The deep learning also included an 

improvement in the setting of the annotation precision and Intersection over Union (IoU) threshold 

objectively. The simpler segmentation methods were challenged by breakage due to lighting and 

colour changes, and erroneous allocation of pixels as object whereas, deep learning overcame these 

challenges and additionally showed more promising and accurate results.  A probabilistic road 

asset management model was developed and the deep learning output was applied as model input 

to generate information for planning purposes for select roads in Japan. In this chapter, an empirical 

study was carried out for Japanese roads mainly because of image data unavailability in Uganda. 

However, the findings in the study are readily applicable to developing countries in future when 

infrastructure image data is collected. The study showed the possibility of generating intervention 

proposals for multiple road sections using an efficient and effective method at a lower cost without 

a huge human dependence, and at comparatively higher accuracy levels. It showed promising 
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applications and adaptation to regions with less human resources, disaster affected areas, and could 

be used by practitioners to improve i-construction technologies. 

 

Chapter 6: Concludes the thesis, prescribes policy implications of the studies and investigations 

in earlier chapters, and gives directions for possible future work. 
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𝑡   time 

𝑟   inspection interval 

𝐶𝑆   condition state 

𝑖   initial condition sate 

𝑗   current condition state 
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𝑖   serviceability limit 
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𝒌
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𝒙𝑘   row vector of explanatory variables 
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𝜃𝑖
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𝑘   remaining duration (life expectancy) for each group 𝑘 and condition 𝑖 
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𝒎𝒑
𝒔𝒌   set of maintenance strategies for each section 
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𝒂𝒕,𝑠
𝑘
   maintenance history at time 𝑡 for section 𝑠𝑘 

𝑉𝑖
𝑡,𝑠𝑘 (𝒂𝒕,𝒔

𝒌
)  agency costs at time 𝑡 for section 𝑠𝑘 with past repair works 𝒂𝒕,𝒔

𝒌
 

𝜌𝑟   discount rate 

𝛺   budget limit 

 

Notation used in Chapter 4 

 

𝐴 intervention 

𝑘𝑔  pavement section 𝑘 in group 𝑔 

𝑨 set of interventions performed on 𝑘𝑔 

𝑎𝑘𝑔 area of 𝑘𝑔 improved 

𝐶𝑘
𝑔,𝐴 unit cost of intervention on 𝑘𝑔 

𝑐𝑘
𝑔
 capacity of 𝑘𝑔 

𝒈̅  group data 

𝑖𝑘
𝑔
 condition of 𝑘𝑔 

𝑖𝑘
𝑔
 safety limit 

𝑘𝑔 pavement section in group 𝑔 

𝑛  exponent 

𝜏𝑘
𝑔
 travel time on 𝑘𝑔 

𝜏𝑘
𝑔,0 free-flow travel time on 𝑘𝑔 

𝑣𝑘
𝑔
 traffic volume on 𝑘𝑔 

𝑊𝑘𝑔  priority weight 

𝑿𝑘
𝑔
 covariate vector  

𝑦  exponent 

ℝ+  positive real numbers 

𝜃1 condition parameter 

𝜃2  volume:capacity parameter 

𝚪 set of all feasible actions 

𝜽  collection of unknown parameters 
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𝜔 monetary value of one unit of travel time 

𝛺 budget limit 

∇ improvement in condition 

ξ total social cost 

ξ0 initial total social cost 

𝛿 dummy variable 

 

Notation used in Chapter 5 

 

𝐴 intervention 

𝑑𝑘
𝑛 defect density of class n for section 𝑘 

𝒅𝒌  vector of defect densities for section 𝑘 

𝑆𝑘 safety metric 

𝑖 annotation case 

𝑛𝑖 number of annotation cases 

𝑒 expert 

𝐶𝑘 cracking ratio for section 𝑘 

𝐷𝑘 rutting/ pothole depth for section 𝑘 

𝜎𝑘 roughness for section 𝑘 

𝑀𝐶𝐼𝑘 MCI for section 𝑘 

𝑀𝐶𝐼𝑚𝑖𝑛
𝑘  minimum MCI for 𝑘 

𝑀𝐶𝐼𝑚𝑎𝑥
𝑘  maximum MCI for 𝑘 

𝑝 probability of MCI falling within a given range 

𝑝0  probability limit 

𝛽𝑞 unknown parameters 

𝜷 vector of unknown parameters 

𝛿𝑖, 𝛿𝑘,𝑒 dummy variables 
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Chapter 1 

1. Introduction 

 

“A minimum of expense is, of course, highly desirable; but the road which is truly the 

cheapest is not the one which has cost the least money, but the one which makes the 

most profitable returns in proportion to the amount spent on it.” – W.M. Gillespie, 

1847(Bennett and Greenwood, 2002) 

1.1 Infrastructure Asset Management 

Infrastructure asset management is an evolving field that is highly needed in countries that have 

developed substantial infrastructure stocks. Developed countries that experienced high economic 

growth about 60 years ago are deeply engaged in developing efficient asset management systems 

to delay the total dilapidation of the costly infrastructure including roads, bridges, tunnels and 

pipelines that facilitate economic growth. Less developed nations have started experiencing similar 

challenges as their infrastructure stock increases, and so are adapting asset management 

technologies. The International standard for Asset Management ISO55000 and its sister standards 

ISO55001 and ISO55002 provide guidance and specify requirements for effective and efficient 

asset management (British Standards, 2014). The standard defines an asset as: 

 

“An item, thing or entity that has potential or actual value to an organization. The 

asset value varies between different organizations and can be tangible or intangible, 

financial or non-financial.” 

 

From the above definition of assets, it is in the interest of organizations and/or countries to manage 

assets well throughout their life and derive maximum value/ benefit from them. The ISO55000 

states that asset management supports the realization of asset value while balancing financial, 

environmental and social costs, risk, quality of service and asset performance. The standard lists 

improved financial performance, informed asset investment decisions, managed risk, improved 
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services and outputs, demonstrated social responsibility, demonstrated compliance, enhanced 

reputation, improved efficiency and effectiveness as some of the benefits of asset management. 

The Asset Management System (AMS) is related to the organization as shown in Figure 1.1 below. 

 

 

Figure 1.1. Key elements of asset management. 

 

From the above description, Infrastructure Asset Management may be defined as; 

“The optimal allocation of scarce budgets between the new arrangement of 

infrastructure and rehabilitation/maintenance of the existing infrastructure to maximize 

the value of the stock of infrastructure and to realize the maximum outcomes for the 

citizens (Kobayashi, 2008).” 

The AMS can be viewed as a set of tools, plans and information systems, which are integrated to 

ensure the delivery of asset management activities. The AMS supports a long-term and sustainable 

approach to decision making.  
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1.2 The asset management cycle 

The asset management cycle involves activities specified for the infrastructure through its life time 

until its death where a new development is established. The asset management cycle involves Plan-

Do-Check-Act (PDCA) (Figure 1.2). “Plan” involves long, mid and short term planning and 

design; “Do” contains intervention including minor and major repairs, and construction; “Check” 

looks at inspection, and estimation of pavement performance; and “Act” involves carrying out 

rehabilitation, budget policy formulation and evaluation (Kaito 2013). One of the main goals of 

asset management is to optimize the life cycle costs of an infrastructure system such as a pavement 

network through Life Cycle Cost Analysis (LCCA). The Highway Development and Management 

(HDM), developed by the World Bank (WB), and the Kyoto model, developed by Kyoto 

University Asset Management team, are some of the prominent Pavement Management Systems 

(PMSs) consistent with ISO55000 in use in the professional world. HDM is the most popular and 

is arguably regarded as the world standard PMS. The HDM has been improved over the years with 

HDM-4 as the latest version. The HDM-4 supports decisions on budget planning, condition 

assessment and road investment evaluation. The HDM-4 requires a rich database with climatic and 

meteorological data, road condition, pavement age, regional characteristics for full 

operationalization. On the other hand, the Kyoto model requires only two-time series condition 

data to estimate pavement deterioration rate and perform budget and road investment planning. 

 

Figure 1.2. PDCA cycle for Infrastructure Asset Management. 
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1.3 Road Infrastructure Management  

Road infrastructure assets comprise of roadways, bridges, tunnels and drainage. Road asset 

management may require significant amounts of data including condition and repair work history 

stored in a database that is regularly updated. The data could be used in deterioration prediction 

models to generate deterioration trends that may be used by road infrastructure managers for 

intervention planning (AASHTO 2012, Kobayashi et al. 2013). There are a number of prediction 

models including stochastic, deterministic, Artificial Neural Networks (ANNs) and Bayesian 

models that can be used for deterioration estimation based on factors such as the nature of 

infrastructure, data type and management needs of the agency (Uddin 2006, Tsuda et al. 2006, 

AASHTO 2012). For instance, stochastic models such as the Markov hazard model are ideal for 

predicting pavement deterioration because of its uncertainty. Deterioration prediction information 

can then be used to develop management plans and strategies by optimizing life cycle costs (LCC), 

usage and utility (Kobayashi et al. 2013, Obunguta and Matsushima 2020, Mizutani et al. 2020). 

 

The deterioration of road assets may be influenced by factors including those occurring in the 

environment such as high impact extreme weather events including floods and gradual changes 

such as traffic loading and chemicals. These factors may be incorporated in deterioration 

estimation models as explanatory variables or by creating infrastructure groups (Tsuda et al. 2006, 

Obunguta and Matsushima 2020). However, some factors that accelerate deterioration may be 

compounded by deterioration which in turn compounds their effects. A case in point is the 

compounding of road surface deterioration by the destruction of the subbase layers (Kobayashi 

and Kaito 2016). As the load bearing capacity of the subbase degrades, the surface deteriorates 

faster and develops defects including cracks, ruts and potholes which in turn facilitate the further 

degeneration of the subbase by exposing it to degradation agents such as moisture. Infrastructure 

attack by chemicals has also been looked at by past studies including Roelfstra et al. (2004), 

Akiyama et al. (2011), Lethanh et al. (2017) and Cui et al. (2021). 

 

Traffic flow may be delayed due to bottlenecks in the road networks including poor road condition 

and low capacity of roadways. As a result, road agencies face the challenge of deciding the 

appropriate intervention choice for multiple road assets mainly due to shortages in budget, shortage 

of objective decision methods and probably the complexity of these tasks. In the literature, there 
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have been attempts to model the relationship between condition and travel time (Chandra 2004, 

Adey et al. 2012, Wang et al. 2014), however, the effect of intervention on multiple road assets on 

travel times and social cost, that this study explores, hasn’t been looked at elaborately. 

 

The need to improve efficiency, accuracy, access to disaster areas and scope of road infrastructure 

management systems led to the incorporation of image processing and deep learning techniques in 

data collection (images and videos), analysis and decision making. Studies including Maeda et al. 

(2018) and Zou et al. (2022) looked at improving the management of civil infrastructure by 

addressing the shortage of experts leading to less inspection coverage, and the inaccessibility of 

areas after a disaster, respectively. Deep learning involves important initial steps before model 

training which include the labor-intensive annotation and setting of model parameters such as the 

Intersection over Union (IoU) threshold for object detection (Mirikharaji et al. 2021, Greenwald 

et al. 2022). These important preliminary steps have been determined subjectively which may 

result in varied results based on the annotator and model inputs including the IoU. This study 

attempts to make the determination of these initial steps objective by maximizing the probability 

of correct defect detection, which may be important in ensuring the safety of road users. 

1.4 Background and Motivation 

A number of developing countries including Uganda have heavily invested in road infrastructure 

to boost their economic growth. As an example, Uganda has mainly invested in national roads 

linking cities with the intention of improving the efficiency of transportation of goods and services 

across the country and region to strengthen the economy through inter and intra national trade links. 

This ambitious development of transportation infrastructure has been a costly venture similar to 

the experience of developed nations that had a rapid economic growth period more than 50 years 

ago. As a result, developing countries are or will inevitably face the challenge of effectively 

managing the large infrastructure stock. Asset Management has thus become a necessity. 

Previously, developing countries managed their infrastructure assets in a reactive way with 

minimal consideration given to the estimation of future condition and without carrying out robust 

life cycle cost analysis. Management that overlooks proactive intervention and planning results in 

the faster dilapidation of infrastructure in the developing world despite the huge initial investment 

costs. Modern infrastructure asset management methods seek to solve key questions such as the 
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optimum budget allocation, maintenance strategies to optimally manage infrastructure in the long 

term, the best ways of maximizing infrastructure value, and the optimal balance between new 

developments verses maintaining existing stocks. These research questions have led to 

developments including stochastic deterioration hazard models, operations research, and 

econometric analysis to improve infrastructure performance. These studies generally require large 

time series data volumes that has also influenced analysis methods such as Bayesian modeling and 

imputation methods in case of incomplete data, computing techniques for image data, and 

probabilistic Markov models for a minimum of two-point time series data. Additionally, the 

differences in environmental exposure between infrastructure may lead to different deterioration 

trends and hence may require varied approaches. 

 

In Uganda, different agencies are charged with the duty of managing roads. Uganda National 

Roads Authority (UNRA) manages national roads while local governments manage district roads. 

In some cases, the line between national and district roads is not so clearly defined; which causes 

different management decisions by different actors for the same infrastructure. Some of the road 

projects that have been fully or partly funded by donors require certain management standards 

after project completion and may involve donors or their agents. The agencies also use separate 

and incompatible management systems which may not provide avenues for benchmarking. For 

instance, in Uganda, UNRA uses Deighton's Total Infrastructure Management System (dTIMS) 

and Highway Development and Management Model (HDM-4) while Ministry of Works and 

Transport (MoWT) that oversees local governments uses Rehabilitation and Maintenance Planning 

System (RAMPS). In addition, if donors are involved in the management of roads, an entirely new 

PMS may be adopted. Each PMS has different data requirements and this introduces 

incompatibility which affects joint coordination and road management by sister agencies. 

Furthermore, there is a lack of institutional capacity which makes pavement monitoring and 

management inconsistent. In these instances, decisions are made based on biased human 

judgement rather than scientific methods. There is also limited funding for road maintenance 

because priority has been given to novel construction. Similar inefficient management challenges 

are common in other developing countries. 

 

The development of asset management systems that include the deterioration rate of infrastructure 
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condition as opposed to reactive intervention based AMS may improve infrastructure performance. 

Kobayashi et al. (2013) and Obunguta and Matsushima (2020) have explored condition-dependent 

infrastructure asset management and showed its advantages such as better performance and cost 

saving, compared to the time-dependent option, empirically. The challenge of determining the 

most appropriate intervention for multiple infrastructure assets and its effects on travel time is 

looked at by Obunguta et al. (2022). These studies attempted to optimize the management of 

infrastructure using predictive models such as the stochastic Markov hazard model proactively. 

 

This research was motivated by the foreseeable challenges and gaps in planning that could 

potentially water down all the heavy investment in public infrastructure in developing countries, 

some of which is donor funded or financed by loans. It was inspired by the need to improve road 

infrastructure management and planning from reactive to proactive methods that lower LCCs over 

the long term. To complement current maintenance practice, this study attempted to solve the 

challenges by introducing management systems that require less input in terms of data and funding 

but give rich output that is adequate for planning purposes. The cost savings including inspection 

costs could be used for novel development and maintenance works. The gaps in infrastructure asset 

management literature including the effect of road condition on travel times also strongly 

motivated this research so as to contribute to road asset management knowledge. The challenges 

of inaccessibility of infrastructure damaged after disasters, less coverage due to a shortage of 

experts and the need to improve management accuracy and decisions also encouraged the futuristic 

ideas including incorporating the analysis of abundant smartphone image data using image 

processing techniques and deep learning to improve road infrastructure management systems.   

1.5 Research Objectives 

The objectives of this study mainly encompass the improvement of infrastructure asset 

management with a keen focus on the adoption of recent asset management technologies by 

developing countries. The research extends work by earlier studies including Tsuda et al. (2006), 

Kobayashi et al. (2013), and Maeda et al. (2018). Specifically, the objectives of this study are; 

 

1) Complement the current infrastructure management practice in developing countries 

including Uganda by developing AMS with less data requirement but rich output to aid 
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proactive planning and intervention.  

2) Customise earlier AMSs including PMS models based on the needs of developing countries 

by extending earlier studies to incorporate the aspect of change in deterioration rate due to 

maintenance history. 

3) Develop a social cost model to evaluate effects of road intervention on capacity and 

durability on travel time for multiple assets concurrently. 

4) Build a probabilistic asset management model using deep learning including setting the 

inputs (i.e., annotation and IoU) objectively so as to support less human dependent AMSs. 

5) Test the empirical applicability of the developed models including stochastic Markov 

models, investigate the effect of preventive maintenance on network condition and the 

efficiency of the less human dependent computer-based AMSs. 

1.6 Expected Contributions 

This study is generally expected to contribute to the improvement of asset management and 

innovatively show possible applications and adaptations of the latest technologies in majorly 

developing countries following the structure in Figure 1.3. In detail, the expected main 

contributions are;  

1) In Chapter 3, this research encourages a shift to the proactive condition-dependent PMS 

and preventive maintenance while discouraging the reactive time-dependent PMS. It is 

expected that this study could be used to support the improvement of PMSs in developing 

countries. 

2) This dissertation expanded the discussion on condition in Chapter 3 to include its effects 

on traffic flow and the determination of optimum intervention for multiple road sections. 

The study in Chapter 4 could be applied to optimally decide effective and efficient 

management choices for other infrastructure including bridges, tunnels, pipelines and 

buildings; that have component parts and many possible interventions during their life time. 

3) Deep learning and computer vision could be adapted to regions with less human resources; 

disaster affected areas; improve i-construction technologies, infrastructure management 

efficiency and accuracy. Chapter 5 looks at new computing technologies including deep 

learning and explores ways to appropriately leverage the merits of technology in the face 

of modern day challenges including labor shortages. Due to data availability issues, the 
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empirical application was done for Japanese roads (a developed country); however, the 

research outcomes show promise and could be applied to developing countries in future 

when infrastructure image data is available. 

 

Figure 1.3. Structure of thesis. 
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Chapter 2 

2 Review of Relevant Literature 

2.1 Introduction 

The literature presented in this chapter describes in general terms what is detailed in subsequent 

chapters. First, literature on infrastructure asset management with a keen interest on road 

pavements is described followed by transportation mainly the aspect of travel time and the factors 

that affect it. Next, image processing and deep learning with their applications majorly in 

transportation and infrastructure asset management research are looked at. This literature review 

also includes illustrations to emphasize key points raised in the thesis. 

2.2 Pavement Infrastructure Asset Management 

Infrastructure asset management mainly involves inspection of infrastructure condition, creating 

an inventory and condition database, modeling infrastructure performance and planning for 

interventions including minor/ major repairs and reconstruction based on the estimated 

performance/ deterioration results (Figure 2.1).   The database could be updated using subsequent 

inspection data and repair history information that also informs estimation and future intervention 

planning (Madanat and Ben-Akiva 1994, AASHTO 2012, Kobayashi et al. 2013, Han et al. 2017, 

Obunguta and Matsushima 2020).  

 

Figure 2.1. Infrastructure Asset Management Process.
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Infrastructure performance may be estimated using a number of models for instance deterministic, 

stochastic or probabilistic, regression, Artificial Neural Networks (ANNs), and subjective or 

expert-based models (Uddin 2006, Tsuda et al. 2006, AASHTO 2012, Abaza 2016, 2017, Pérez-

Acebo et al. 2020). Many of these models require the discretization of infrastructure condition 

before their application. Discretization involves assigning a representative condition state for a 

given range of condition data measured using other metrics. The transition of condition states can 

then be modeled and the estimated outputs used for infrastructure planning purposes. Stochastic 

models and ANNs have arguably been the most popular because of their practicality in modeling 

infrastructure deterioration amidst prediction uncertainity (Kobayashi et al. 2013) and increased 

scope amidst a shortage of experts (Maeda et al. 2018, Pérez-Acebo et al. 2020), respectively. 

Among the stochastic models, Markov models have been extensively looked at and empirically 

applied to model deterioration transition for infrastructure including pavements and bridges (Tsuda 

et al. 2006). The Markov model requires a minimum of two-point data (data collected at two 

different years for the same infrastructure) to generate deterioration trends. The Figure 2.2 shows 

possible paths of transition for infrastructure condition state i over time 𝜏 that can be modeled 

probabilistically using stochastic models such as the Multi-State Exponential Markov hazard 

(MUSTEM) model developed by Tsuda et al. (2006). 

 

Figure 2.2. Transition of infrastructure condition (Tsuda et al. 2006). 
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Infrastructure planning is the step that follows infrastructure performance estimation. Planning 

may be done at either micro level (specific infrastructure) or macro level (infrastructure group). 

At the macro level, the main goal is to set standards and budgets whereas, at the micro level the 

goal may be to determine an appropriate repair method for an infrastructure section for example a 

road junction. For macro level planning, management plans could be drawn based on rules set by 

the management agency. There are a number of rules applied by agencies in the management of 

infrastructure that may be broadly grouped into two; i.e., the condition-dependent and the time-

dependent rule. The time-dependent policy involves infrastructure interventions after regular 

intervals regardless of their deteriorated state; whereas, the condition-dependent policy specifies 

civil infrastructure intervention based on deterioration rates (Kobayashi et al. 2013, Obunguta and 

Matsushima 2020). The time-dependent policy is ideal for infrastructure such as small lighting, 

road furniture and buried infrastructure such as pipelines that are costly to inspect. The condition-

dependent policy would be more suited for civil infratructure including bridges and road 

pavements that experience uncertainity in their deterioration. Infrastructure planning also involves 

the optimization of infrastructure Life Cycle Costs (LCCs) including user, agency and 

environmental costs; infrastructure usage and utility, for instance, travel time, safety and comfort 

to determine the most optimum strategies for an infrastructure group (Kobayashi et al. 2013, 

Obunguta and Matsushima 2020, Mizutani et al. 2020).  

Similar to many developing countries, Uganda mainly intervenes on its infrastructure over regular 

intervals (time-dependent policy) regardless of its deterioration being uncertain (MoWT 2011 – 

2017). Past studies haven’t made detailed empirical comparisons and shown the advantages of the 

condition-dependent policy compared to the time-dependent policy for infrastructure including 

pavements. This thesis builds a model that facilitates the comparison between the time-dependent 

policy, currently applied by many developing countries, with the condition-dependent policy that 

is suitable for management of infrastructure with uncertain deterioration; and evaluates the effect 

of preventive maintenance on pavement condition and LCCs with an empirical application to 

Ugandan roads.  

2.3 Transportation and Asset Management 

Transportation, the movement of goods and people from an origin to a destination, is supported by 

infrastructure such as roads, railways, airports etc. and as such the condition of one affect the other. 
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For example, narrow dilapitated roads increase transportation costs including travel times, 

congestion and vehicle operation costs (VOCs); and heavily trafficked roads may deteriorate faster. 

The Figure 2.3 illustrates this interdependency between road capacity and condition. Road 

infrastructure systems may require policies that optimize road capacity and condition to improve 

user utility including travel times. Due to the complexity of infrastructure system intervention 

decisions, an efficient decision process may be required that for instance evaluates the trade-off 

between condition improvement and capacity increase choice for multiple road sections 

concurrently through optimizing social costs including travel, safety, intervention and 

environmental costs (Obunguta et al. 2022).  

 

Figure 2.3.Interdependency between road capacity and condition. 

Past studies including Watanatada et al. (1987), Bennett and Greenwood (2002), Chandra (2004), 

Transport Research Board (TRB)  (2000, 2010) and  Wang et al. (2014) made attempts to model 

the relationships between the speed, travel time, capacity and road condition with the results 

showing strong relationships. Adey et al. (2020) listed accident, travel time, vehicle operation, 

comfort, noise, and particle emissions as important considerations for road service. The calibrated 

relationships between  these variables are important in the evaluation of how the changes in one 

variable affect the others and vice versa. Generally, wider roads (with higher capacity) and roads 

in good condition are expected to offer shorter travel times that increases user utility and lowers 

transportation costs. Additionally, in the optimization of road infastructure costs, it is important to 
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look at minimizing inspection, maintenance and rehabilitation costs as these directly affect agency 

costs and user costs mainly VOCs and travel costs (Madanat and Ben-Akiva 1994, Lethanh et al. 

2015, Yang et al. 2015).  

The novelty of this chapter includes modeling the relationship between pavement condition and 

capcity and showing how intervention affects travel time not elaborated by earlier studies. This 

intervention choice (road expansion or repair) decision problem is modeled and includes social 

cost (user and agency) optimisation. An empirical application using road data from Uganda is 

shown in the subsequent sections of this thesis. 

2.4 Image Processing and Deep Learning for Asset management 

Image processing and deep learning are advanced computing fields that can be applied to improve 

the efficiency and effectiveness of infrastructure asset management. These advancements offer 

increased coverage in infrastructure monitoring, better access to disaster areas, condition 

prediction and planning; and improved accuracy especially as the proportionate number of 

management experts reduces and the infrastructure stock increases (Maeda et al. 2018, Zou et al. 

2022). Image processing could involve analysis of images and generating output for infrastructure 

planning. Deep learning consists of obtaining infrastructure images, annotating (labeling) them, 

training and validating a program to detect the annotated objects, and the program’s application to 

generate output for a given set of image data (Figure 2.4). The output, for instance, section defect 

densities could be applied as inputs in infrastructure planning to determine appropriate 

interventions. Deep learning and image processing seek to accurately detect and segment objects 

in images. Algorithms built using region proposals and CNNs (R-CNN) including Mask R-CNN 

algorithm (He et al. 2018) have been the most promising and have shown higher accuracy 

compared to other algorithms. 

 

Figure 2.4. Main steps in deep learning. 
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The vital prerequisite steps to deep learning model training and validation include annotation and 

the right setting of the Intersection over Union (IoU). These important initial steps are user 

dependent and affect model training and object detection. The IoU is an important metric that 

determines whether a right detection of an object can been made (Figure 2.5). Based on the set 

IoU, a detection in the image may be specified as either true or false and as such IoU should be set 

carefully. Image annotation is a cumbersome process that requires a lot of labour hours. Very 

precise annotations may be required for sensitive fields including health and security that require 

much higher accuracy. Infrastructure performance estimation may not require very high accuracy 

compared to other more sensitive fields such as health because the damage level need only fall 

within a specified range for appropriate classification. More precise annotations may increase 

accuracy, however, they are costly.  Therefore, a trade-off may exist between the quality and time 

cost of annotating images. The accuracy-time cost trade-off may avail practitioners with annotation 

quality choice for specific purposes (Mirikharaji et al. 2021).  

This study seeks to make the determination of annotation quality and IoU objective rather than 

subjective using probabilistic methods to facilitate efficient choices of these important inputs for 

specific purposes. As an addition to the discussion in past studies, this study also shows how output 

from image processing could be applied to determine intervention decisions for infrastructure 

emprically using Japanese roads as an example. 

 

Figure 2.5. Intersection over Union (Arya et al. 2020a). 
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Chapter 3 

3 Pavement Management Using Stochastic Markov 

Models 

 

"Investment in infrastructure is a long term requirement for growth and a long term 

factor that will make growth sustainable." – Chanda Kochhar 

 

3.1 Introduction 

In this chapter, a review of relevant pavement management literature was presented including 

Stochastic models on the estimation of infrastructure (in this case pavements) deterioration rate. 

The Markov Hazard model was discussed and applied in the estimation of transition probability 

and life expectancy. Management planning that minimises Life Cycle Costs (LCC) was also 

presented. 

3.2 Pavement Management 

Pavement Management Systems (PMSs) contain inventory, condition data obtained after 

periodical inspections, deterioration prediction models, and rehabilitation and maintenance history 

(Madanat and Ben-Akiva 1994, AASHTO 2012, Kobayashi et al. 2013, Han et al. 2017). Once 

inspection is carried out, pavements may be graded based on observed condition according to a 

discrete scale defining condition states. Typically, road agencies may initially check pavement 

condition through inspections then carry out detailed tests for example the Falling Weight 

Deflectometer (FWD) and soil tests for critical sections. However, it should be noted that each 

road agency has its own specific management procedure. In Uganda, a four-point condition scale 

is used to categorise pavement condition while a seven-point scale is used in Japan. Saha and 

Ksaibati (2017) argue that a wider scale compensates for errors made by raters in the field. 

Pavement deterioration rate can be estimated using deterministic, stochastic (probabilistic), 

Bayesian, and subjective (expert-based) models (Tsuda et al. 2006, AASHTO 2012). Uddin (2006) 

classified deterioration prediction 
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models into regression analysis techniques, Artificial Neural Networks (ANNs), and probabilistic 

performance models (with Bayesian and Markov models as the main methodologies in this 

approach). Despite ANNs receiving increasing attention in recent years, deterministic and 

stochastic models still attract the most attention (Abaza 2016, 2017, Pérez-Acebo et al. 2020). 

Pavement management may be handled at either micro level (specific pavement section) or macro 

level (network). At the macro level, the main goal is to set standards and budgets whereas, at the 

micro level the goal may be to determine an appropriate repair method for a pavement section. 

Setting network standards and intervention budgets is heavily reliant on deterioration prediction 

models. Both deterministic and stochastic models can be used to predict pavement performance at 

macro level (George 2000, AASHTO 2015, Dalla Rosa et al. 2017); whereas, deterministic models 

may be preferable at the micro level (Tsuda et al. 2006, Kobayashi et al. 2013). Unlike 

deterministic models, which predict an exact value for an index, stochastic models estimate the 

probabilistic distribution of the expected value. Therefore, stochastic models are able to 

incorporate uncertainty in pavement performance. Because pavement performance is recognised 

to be probabilistic in nature, some levels of uncertainty are required; hence, stochastic models 

would be more ideal (Li et al. 1997, Kobayashi et al. 2013, Pérez-Acebo et al. 2019). Among 

stochastic models, Markov models are the most widely employed to predict pavement deterioration, 

with many examples in the literature developed by Tsuda et al. (2006), Kobayashi et al. (2010), 

Lethanh and Adey (2012), and Lethanh et al. (2015). Recent studies have attempted to simplify 

pavement deterioration prediction requiring only two time-series observations such as Tsuda et al. 

(2006) whose study was based on Markov models and Mohammadi et al. (2019) who presented 

both deterministic (based on regression) and probabilistic (based on Markov methods) approaches. 

Pérez-Acebo et al. (2019) developed a deterioration prediction model considering shorter time 

intervals (half year cycles) for Moldova. This study showed that intensive data collection over 

shorter time periods could compensate for inexistent historical data. Performance prediction 

models based on the Bayesian approach have also been developed (Kobayashi et al. 2012, 

Tabatabaee and Ziyadi 2013, Han et al. 2014, Pantuso et al. 2019). Once pavement deterioration 

is estimated, maintenance plans and budgets can be formulated from an informed point of view. 

Management plans can be drawn based on either the condition-dependent or the time-dependent 

policy. The time-dependent policy involves maintenance or renewal of infrastructure after regular 
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intervals regardless of their deteriorated state; whereas, for the condition-dependent policy civil 

infrastructure is maintained or replaced based on its deterioration rate (Kobayashi et al. 2013). A 

condition-dependent management policy would be ideal for pavement infrastructure with 

uncertain and variable deterioration processes. Kobayashi et al. (2013) determined life cycle costs 

(LCC) using the Multi-State Exponential Markov hazard (MUSTEM) model (Tsuda et al. 2006) 

at a specified risk control level for pavements based on the condition-dependent rule and examined 

the trade-off between risk and LCC. The higher the risk (lower service level), the lower the LCC 

and vice versa. On the other hand, the time-dependent policy is suitable for smaller systems such 

as lighting systems and buried civil infrastructure that are costly to inspect. Currently, many 

developing countries including Uganda have adopted a time-dependent management policy for 

pavements, neglecting the fact that pavement deterioration is a stochastic process. 

In recent years, many developing countries have had a significant increase in their road 

infrastructure stock due to increased access to finance both locally and internationally. Oxford 

Economics (2014) forecasts that capital project and infrastructure spending worldwide is expected 

to total more than US$ 9 trillion (hereafter $ is used) by 2025, up from $ 4 trillion in 2012 with 

developing countries accounting for nearly half of all infrastructure spending. This poses a new 

challenge of how to cost-effectively manage the road infrastructure. In the case of Uganda, some 

donor-funded road projects had specific management standards after completion, hence attempts 

were made to introduce some PMSs such as the World Bank’s HDM-4; however, for the remaining 

bulk of the network, the time-dependent management policy was still applied. This generated a 

challenge of incompatibility in pavement network management due to parallel management 

systems. Additionally, inspection surveys were irregular due to funding shortfalls. Therefore, 

developing countries need a PMS with less data requirement (two-point data) but which generates 

a rich output (containing predicted network condition, expected maintenance expenditure and 

estimated LCC) adequate for planning purposes.  

This study empirically shows the advantage of the condition-dependent policy by using the 

MUSTEM model with Ugandan national road pavement data. As far as is known, no other study 

investigates the effectiveness of the condition-dependent policy empirically for Ugandan national 

roads. In addition, this study explicitly considers the acceleration of deterioration due to repeated 

maintenance following Han et al. (2017). 
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The rest of this Chapter is organised as follows: the subsequent section discusses the management 

practice in Uganda and provides the study objectives, followed by the proposed condition-

dependent pavement management model and a description of its empirical application. Lastly, the 

conclusions are presented. 

3.3 Deterioration Mechanism of Pavements 

3.3.1 Pavement structure and loading 

Pavements may be classified into two main groups; i.e., flexible and rigid pavements. Flexible 

pavements are the most common pavement type because of their lower cost owing to the fact that 

they require low cost material for the base, subbase and subgrade layers; and a thin surface course. 

The surface layer is made of Hot-Mix Asphalt (HMA), the base and subbase may contain stabilized 

(with cement or lime) or unstabilized aggregates, the subgrade is typically a local material. Flexible 

pavements differ from rigid pavements in their load transfer. When a traffic load is applied at the 

surface, the load is distributed as shown in Figure 3.1. The load is distributed over a small area at 

the surface but as depth increases, the same load is distributed over a wider area. Therefore, high 

quality materials need to be used at the surface due to the high stress and lower quality materials 

may be used at greater depths. When the load is removed, the localised deformation rebounds 

(hence the name “Flexible”); however, an infinitesimal amount of deformation could stay and 

accumulate over time (Mamlouk 2006). 

 

Figure 3.1. Load distribution in flexible pavement (Mamlouk 2006). 
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3.3.2 Pavement deterioration 

Flexible pavements have unique properties including repeated and variable loading cycles, change 

in material properties with environment and fast deterioration, unlike other structures that are safe 

for an extended period of time if the maximum possible design load is not exceeded. Typically, 

flexible pavement life may average about 10 to 15 years before reaching a failed state (Mamlouk 

2006). Common pavement distresses include fatigue cracking, rutting, roughness, thermal 

cracking, shoving, bleeding, raveling, polished aggregates, and reflection cracking. Pavement 

failure occurs when one or more of the distresses reach an unacceptable level (Figure 3.2). The 

deterioration process of pavement can be discretized into condition states in order to model the 

deterioration trends using stochastic Markov hazard models (Tsuda et al. 2006). 

 

Figure 3.2. Deterioration of pavement condition over time. 

3.4 Management practice in Uganda  

3.4.1 Road management in Uganda 

In Uganda, 96.5 % of freight traffic and 95.0 % of passengers travel by road. In 2017, the road 

network in Uganda consisted of 20,544 km of national roads (4,551 km paved and 15,993 km 

unpaved), 124,241 km of district, urban and community access roads of which 5,389 km were 

paved (JICA 2015, MoWT 2011 – 2017). 

Different agencies are charged with the duty of managing roads in Uganda. The Uganda National 

Roads Authority (UNRA) manages national roads while local governments, under the Ministry of 

Works and Transport (MoWT), manage district roads. As discussed earlier, Uganda adopted the 

time-dependent management policy for pavements and, in a number of cases, planning is based on 
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human judgement. This time-dependent policy does not involve regular inspections and 

maintenance actions are performed after specified intervals. Intervention actions are also done after 

complaints from road users about bad road condition. 

 

Road management finance in Uganda is provided by the Government of Uganda and partners 

through the Uganda Road Fund which dispatches funds based on needs of each road management 

agency, with consideration given to national plans. The funds cater for monitoring, administrative, 

and actual maintenance costs (MoWT 2011 – 2017). As a measure to improve maintenance 

planning, MoWT categorises areas by priority for maintenance (e.g. close proximity to schools or 

hospitals and in disaster zones) as shown in Figure 3.3. The road rehabilitation prioritisation grid 

gives priority to pavements with a critical state (worst first), neglecting those with fast deterioration. 

The grid is based on the following factors, with the percentage in brackets showing contribution 

to priority (MoWT 2015): 

 

1) Land cover (30%) – urban areas, agricultural, natural terrestrial vegetation and bare lands. 

2) Population distribution (30%). 

3) Public facilities (30%) – health facilities (1/2) and schools (1/2). 

4) Hazards (10%) – floods (7/10) and landslides (3/10). 

  

Figure 3.3. Road rehabilitation prioritisation grid for Uganda (MoWT 2015). 

3.4.2 Study objectives  

This study builds on earlier studies to develop a PMS suitable for developing countries. The 

objectives of this study are;  
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1) Complement the current network management practice in developing countries such as 

Uganda by introducing a PMS with less data requirement but rich output.  

2) Customise earlier PMS models based on the needs of developing countries by adding an 

extension to the study of Kobayashi et al. (2013) to include the aspect of change in 

deterioration rate due to maintenance history and generalising pavement interventions (Figure 

3.4). 

3) Test the applicability of the model in Uganda by comparing the current time-dependent policy 

to the proposed condition-dependent policy and investigate the effect of preventive 

maintenance on network condition. 

 

Figure 3.4. Extension to earlier PMS model. 

3.5 Pavement management model 

3.5.1 Model framework 

Road agencies are responsible for management of roads. Specifically, road agencies formulate 

management plans, sets standards and budgets, carry out inspections, maintain databases, and 

perform maintenance works periodically. Inspection and repair works are done per pavement 

section defined by the road agency according to, for instance, length and type. In this model, 
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pavement condition is considered to be graded into condition states according to a discrete scale 

after inspection. Pavement condition is represented by discrete condition states 𝑖(𝑖 = 1,… , 𝐽) with 

condition 𝐽 as the absorbing (final) state. For user safety and comfort, a serviceability limit, 𝑖, at 

which road pavements reach the minimum standard is set by the road agency. It is the goal of the 

agency to determine an optimum maintenance strategy from a set (𝒎𝒑) by defining inspection 

intervals (𝑟), maintenance actions (𝑨), and minimum service levels (𝑖) in a given discrete service 

time 𝑡. A finite planning period (from 𝑡 = 0 to 𝑡 = 𝑇) is considered. The optimum strategy is one 

that minimises LCC with the highest standard and, maintains more roads in better and fewer in 

worse condition. The LCC is considered to contain agency costs (inspection and maintenance). 

Although pavement maintenance works generate social costs such as user and environmental costs, 

these are not considered in this study. User safety and comfort is considered by setting an 

appropriate serviceability limit.  

With at least two time-series data sets (e.g. at 𝑡 = 0 and 𝑡 = 𝑟) shown in Figure 3.5, it is possible 

to predict the future deteriorated condition of pavement infrastructure despite the uncertainty of 

transition of condition states. A continuous distribution of life expectancy, the time a pavement 

remains in a specific condition state, can be defined. Uncertainty in predicting future pavement 

condition, with a life cycle characterised by deterioration and repair, increases as shown by the 

shaded probability area below the distribution in Figure 3.5. With more accurate data and better 

analysis methods, it is possible to reduce uncertainty levels. It is considered that within a 

pavement’s service time (from 𝑡 = 0  to 𝑡 = 𝑇 ), 𝑛  number of discrete inspection surveys are 

carried out. Maintenance actions, denoted by 𝑨(𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑖−1), are performed on pavements 

in correspondence to observed condition 𝑖 after inspection. Maintenance is done based on the time-

dependent or condition-dependent rule. At time 𝑇 , reconstruction (𝐴𝐽−1)  is carried out for all 

sections.  An example of correspondence between observed condition and action is shown in Table 

3.1. In some cases, preventive maintenance actions can be performed on pavements even before 

they reach 𝑖, (𝑖 = 2, … , 𝐽 − 1). Expected expenditure that is necessary for planning purposes can 

be estimated from the maintenance plans. 
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Figure 3.5. Uncertain deterioration considering repair. 

It is necessary to estimate pavement condition 𝑖 before action 𝐴 can be specified. Deterioration 

rate can be estimated using Markov hazard models. In the estimation of deterioration rate, the 

mixed MUSTEM model (Tsuda et al. 2006, Kaito et al. 2015) was adopted.  

3.5.2 Maintenance strategy 

A pavement structure will deteriorate over time 𝑡 due to usage (traffic loads) and environmental 

agents (e.g. temperature and moisture). Considering the discrete time axis (𝑡 = 0,1,2, … ) and that 

pavements are regularly inspected after specified discrete intervals 𝑟 (𝑟 = 1,2,3, … ), 𝑛 number of 

road inspections are carried out as defined by the discrete time axis as 𝑡 = 𝑟𝑛 (𝑛 = 0,1,2, … ). At 

a given inspection time 𝑟𝑛, road inspectors observe pavement condition ℎ(𝑟𝑛) = 𝑖(𝑖 = 1,… , 𝐽). 

Actions 𝑨(𝐴0, 𝐴1, 𝐴2, … , 𝐴𝐽−1)  are performed on pavements in correspondence to observed 

condition 𝑖 after inspection. Once action is taken, pavement condition 𝑖 is assumed to improve to 

a better condition 𝑖̂. This improvement in pavement condition can be expressed using 𝑖𝑟𝑒𝑝, the 

better condition of a pavement section following repair: 

 

 
𝑖𝑟𝑒𝑝 = {

𝑖     𝑖𝑓                  𝐴0 (𝑁𝑜 𝑎𝑐𝑡𝑖𝑜𝑛)  
𝑖̂   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (𝐴1, 𝐴2, … , 𝐴𝐽−1)  

 

(𝑖 = 1,… , 𝐽) 

(3.1) 

 

Inspected pavement sections can be grouped based on such factors as traffic loading and 

environment. Consider that in each 𝑘(𝑘 = 1,… , 𝐾) pavement group, there are 𝑠𝑘(𝑠𝑘 = 1,… , 𝑆𝑘) 
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road sections in total. The road agency sets maintenance strategy 𝒎𝒑
𝒔𝒌 per pavement section; 𝒎𝒑

𝑠𝑘  

is a set of strategies 𝒎𝒑
𝑠𝑘(𝒎𝑨↔𝒊

𝒔𝒌 , 𝒓𝒔
𝒌
), 𝒓𝒔

𝒌
= (𝑟1

𝑠𝑘 , … , 𝑟𝑇
𝑠𝑘) is a row vector of inspection intervals, 

and 𝒎𝑨↔𝒊
𝒔𝒌 = (𝐴0

𝑠𝑘 ↔ 1,… , 𝐴𝑖−1
𝑠𝑘 ↔ 𝑖) is a set of actions performed on each section depending on 

observed condition 𝑖. Precise processes on setting strategies and actions are outside the scope of 

this study. Table 3.1 shows an example of actions set by the road agency, their associated costs and 

attained condition after repair. The repair actions are set, considering a trade-off between cost and 

repair frequency. It was assumed that patching improved condition by one step while overlay 

improved condition by two steps. Reconstruction (𝐴𝐽−1)  is only done at the end of pavement 

service life. The inspection and repair cost 𝐶𝑖−1 is an increasing monotone function with action 𝐴 

and satisfies constraints in (𝐶𝐴0 = 0): 

 

 𝐶𝐴0 ≤ 𝐶𝐴1 ≤ 𝐶𝐴2 ≤ ⋯ ≤ 𝐶𝐴𝐽−1   

 

(3.2) 

Table 3.1. Action taken for roads based on observed condition. 

Condition 

state, 𝑖 
Costs Repair actions Condition after 

repair, 𝑖̂ 
1 𝐶𝐴0 𝐴0 1 

2 𝐶𝐴0 𝐴0  2 

𝐶𝐴1 𝐴1 e.g. patching  1 

𝐶𝐴2 𝐴2 e. g. overlay  1 

3 𝐶𝐴0 𝐴0 3 

𝐶𝐴1 𝐴1 2 

𝐶𝐴2 𝐴2 1 

… … … … 

𝐽 𝐶𝐴0 𝐴0 𝐽 

𝐶𝐴1 𝐴1 𝐽 − 1 

𝐶𝐴2 𝐴2 𝐽 − 2 

… … … 

𝐶𝐴𝐽−1 𝐴𝐽−1 1 

 

3.5.3 Estimation of Markov Transition Probability (MTP) 

The MTP, given a condition state ℎ(𝑟𝑛) = 𝑖 observed at discrete time 𝑟𝑛, defines the probability 

that the condition state at a future time will change to ℎ(𝑟𝑛 + 𝑟) = 𝑗.  
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 𝑃𝑟𝑜𝑏[ℎ(𝑟𝑛 + 𝑟) = 𝑗|ℎ(𝑟𝑛) = 𝑖] = 𝜋𝑖𝑗    (3.3) 

 

The MTP from condition 𝑖 to 𝑗 given that there was no repair can be expressed as (Tsuda et al. 

2006): 

 

𝜋𝑖𝑗 =∑∏
𝜃𝑚̃

𝜃𝑚̃ − 𝜃𝑘̃

𝑘̃−1

𝑚̃=𝑖

𝑗

𝑘̃=𝑖

∏
𝜃𝑚̃

𝜃𝑚̃+1 − 𝜃𝑘̃

𝑗−1

𝑚̃=𝑘̃

𝑒𝑥𝑝(−𝜃𝑘̃𝑟)   

𝑖 ≤ 𝑘̃ ≤ 𝑚̃ ≤ 𝑗 

(3.4) 

 

where 𝜃𝑖 is the hazard rate and, 𝑘̃ and 𝑚̃ are indices. 

For a set of condition states (𝑖 = 1,… , 𝐽), the matrix of MTP can be defined by using transition 

probabilities between each pair of condition states (𝑖, 𝑗): 

 

 
𝒑 = [

π11 ⋯ π1𝐽
⋮ ⋱ ⋮
0 ⋯ π𝐽𝐽

]    
(3.5) 

 

As properties of MTP and nature of pavement deterioration considering no repair, all of conditions 

below must be satisfied: 

 

 𝜋𝑖𝑗  ≥ 0

𝜋𝑖𝑗 = 0 (𝑤ℎ𝑒𝑛 𝑖 > 𝑗)

∑ 𝜋𝑖𝑗
𝐽

𝑗=1
 = 1

}
 
 

 
 

   

(3.6) 

 

The Markov prediction model is a stochastic process that follows three restrictions (Ortiz-García 

et al. 2006, Pérez-Acebo et al. 2018) as follow: 

(1) The process should be discrete in time. 

(2) The process should have a finite state space. 

(3) The process should verify Markov property (Isaacson and Madsen 1976). This property 

states that any future state of the process depends on its present state and not on the past 

states (Hillier and Lieberman 1990). Pavement deterioration has been proven to follow 
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Markov property (Kerali and Snaith 1992). 

 

Therefore, MTP does not depend on earlier history, hence Markov processes are memoryless. The 

transition probability from time 𝑟𝑛 to 𝑟𝑛 + 𝑟 depends only on the condition state ℎ(𝑟𝑛). In the 

prediction of future pavement condition, it is possible to estimate the probability distribution of 

pavement condition. The deterioration process at time 𝑟𝑛 + 𝑟 can be expressed by MTP: 

 𝒑(𝑟) = 𝒑𝑟  (3.7) 

 

The hazard rate for each group 𝑘 and condition 𝑖 can be expressed in exponential form: 

  

 𝜃𝑖
𝑘 = 𝑒𝑥𝑝(𝒙𝑘𝜷𝑖

′ )  

(𝑖 = 1,… , 𝐽 − 1) 

(3.8) 

 

where 𝜷𝑖 = (𝜷𝑖,1, … , 𝜷𝑖,𝑀) is a row vector of unknown parameters with symbol [′] showing that 

it is transposed and 𝒙𝑘 is a row vector of explanatory variables.  

 

The log-likelihood function can be expressed as:  

 

 

𝑙𝑛[𝑳(𝜷)] = 𝑙𝑛 [∏∏∏{𝜋𝑖𝑗(𝑟̅
𝑘, 𝒙̅𝑘: 𝜷)}

𝛿𝑖𝑗
𝑘

𝐾

𝑘=1

𝐽

𝑗=𝑖

𝐽−1

𝑖=1

]  

=∑∑∑𝛿𝑖𝑗
𝑘 𝑙𝑛[𝜋𝑖𝑗(𝑟̅

𝑘, 𝒙̅𝑘: 𝜷)]

𝐾

𝑘=1

𝐽

𝑗=𝑖

𝐽−1

𝑖=1

   

𝛿𝑖𝑗
𝑘 = {1   𝑤ℎ𝑒𝑛 ℎ(𝑟𝑛)

𝑘  = 𝑖 𝑎𝑛𝑑 ℎ(𝑟𝑛 + 𝑟)𝑘  =  𝑗
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    

  

(3.9) 

 

 

where 𝛿𝑖𝑗
𝑘  is a dummy variable and the symbol [ ]̅ signifies a measured quantity. 

The unknown parameters 𝜷𝑖 can be obtained by maximising the log-likelihood function in (3.9) 

using Newton’s method (Tsuda et al. 2006) or by using Bayesian methods such as Markov Chain 
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Monte Carlo (MCMC) using the Metropolis-Hastings (MH) algorithm (Hastings 1970, Gilks et al. 

1995, Kobayashi et al. 2010, 2011, 2012, Han et al. 2016). MCMC samples 𝜷𝑖  values from a 

probability distribution until equilibrium where the Markov chain converges. The MH algorithm 

is used to randomly sample 𝜷𝑖 values from the probability distribution. 

The life expectancy (𝑅𝑀𝐷𝑖
𝑘) for a given pavement group 𝑘 is then given by (Lancaster 1990): 

 
𝑅𝑀𝐷𝑖

𝑘 =
1

𝜃𝑖
𝑘   

(3.10) 

 

The average life expectancy 𝐸𝑇𝑗
𝑘(𝑗 = 2, … , 𝐽) is obtained by summing up life expectancies from 

condition state 𝑖 = 1 at the start of the pavement life cycle:  

 

𝐸𝑇𝑗
𝑘 =∑

1

𝜃𝑖
𝑘

𝑗

𝑖=1

  

(3.11) 

 

In reality it is difficult to have a homogeneous infrastructure group; consequently, models that 

incorporate mixing mechanisms are ideal. The aspect of heterogeneity is introduced to pavement 

groups. The heterogeneity factor of an individual group is denoted 𝜀𝑘. If 𝜀𝑘 > 1, this pavement 

group undergoes faster deterioration; if 𝜀𝑘 < 1 , the pavement group has longer life than the 

benchmark. The hazard rate can be expressed in mixture form (Kaito et al. 2015) as follows; 

 

 𝜃𝑖
𝑘 = 𝜀𝑘 𝜃̃𝑖

𝑘 

(𝑖 = 1,… , 𝐽 − 1; 𝑘 = 1,… , 𝐾)  

(3.12) 

 

where 𝜃̃𝑖
𝑘 is the average hazard rate for group 𝑘 and condition 𝑖. 

 

3.5.4 Mixture Markov Hazard Model 

In reality it is difficult to have a homogeneous infrastructure group. Due to this, models that 

incorporate mixing mechanisms are ideal. The aspect of heterogeneity is introduced to pavement 

groups. The heterogeneity factor of an individual group is denoted as 𝜀𝑘. If 𝜀𝑘 > 1, this pavement 

group undergoes faster deterioration, if 𝜀𝑘 < 1, the pavement group has longer life. The hazard 

rate can be expressed in mixture form as; 
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 𝜆𝑖
𝑠𝑘 = 𝜆̃𝑖

𝑠𝑘𝜀𝑘 

(𝑖 = 1,… , 𝐽 − 1; 𝑘 = 1,… , 𝐾; 𝑠𝑘 = 1,… , 𝑆𝑘)  

(3.13) 

 

where 𝜆̃𝑖
𝑠𝑘 is the average hazard rate for group 𝑘  and condition 𝑖  

 

The Markov transition probability can then be expressed as; 

 

 

𝜋𝑖𝑗
𝑘 (𝑧𝑘: 𝜀 ̅𝑘) =∑ ∏

𝜆̃𝑚
𝑘

𝜆̃𝑚
𝑘 − 𝜆̃𝑙

𝑘

𝑗−1

𝑚=𝑖,≠𝑙

𝑗

𝑙=𝑖

𝑒𝑥𝑝(−𝜆̃𝑙𝜀̅
𝑘𝑧𝑘)  

=∑𝜓𝑖𝑗
𝑙

𝑗

𝑙=𝑖

(𝝀̃𝑘)𝑒𝑥𝑝(−𝜆̃𝑙𝜀̅
𝑘𝑧𝑘)  

(𝑖 = 1, … , 𝐼 − 1; 𝑗 = 𝑖 + 1,… , 𝐼; 𝑘 = 1,… , 𝐾), 

where 

𝜓𝑖𝑗
𝑙 (𝝀̃𝑘) = ∏

𝜆̃𝑚
𝑘

𝜆̃𝑚
𝑘 − 𝜆̃𝑙

𝑘

𝑗−1

𝑚=𝑖,≠𝑙

    

(3.14) 

 

3.5.5 Markov Chain Monte Carlo (MCMC) Methods 

MCMC methods have been widely covered in earlier literature. Here we give a snapshot of this 

estimation method using the Metropolis-Hastings Algorithm. Let 𝑋  denote observed data 

(variables) and 𝛽 denote unknown parameters. The joint distribution; 

 

 𝑝(𝑋, 𝛽) =    𝑝(𝑋|𝛽)𝑝(𝛽)  (3.15) 

 

Where 𝑝(𝛽) is the prior distribution and 𝑝(𝑋|𝛽) is the likelihood 

 

By Bayes theorem, the posterior distribution of 𝛽 conditional on observed data 𝑋 is; 
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𝑝(𝛽|𝑋) =  

𝑝(𝛽)𝑝(𝑋|𝛽)

∫ 𝑝(𝛽)𝑝(𝑋|𝛽)𝑑𝛽
   

(3.16) 

 

Suppose 𝐸[𝑓(𝛽)] is the expectation of given quantity of 𝛽 given observed data. MCMC estimates 

𝐸[𝑓(𝛽)] by drawing samples 𝛽𝑡 (𝑡 = 1,… , 𝑛) from the posterior distribution. The expectation is 

approximated by; 

 

 
𝐸[𝑓(𝛽)] =

1

𝑛
∑𝑓(𝛽𝑡)

𝑛

𝑡=1

 
(3.17) 

 

For a Markov chain, the next state 𝛽𝑡+1 depends only on the current state 𝛽𝑡, not on the history of 

the chain (𝛽0, 𝛽1, … , 𝛽𝑡−1), i.e., is memoryless. In some cases, especially where the Markov chain 

takes long to converge, burn-in (discarded samples) are considered to eliminate the error due to 

the initial estimate of 𝛽. Consider that 𝑏 burn-in samples are eliminated; the ergodic average will 

be; 

 
𝑓𝑒 =

1

𝑛 − 𝑏
∑ 𝑓(𝛽𝑡)

𝑛

𝑡=𝑏+1

 
(3.18) 

 

3.5.6 Metropolis-Hastings Algorithm 

The Metropolis-Hastings (MH) algorithm is a tool for accepting or rejecting a move to the next 

state. For each time point 𝑡, the next state 𝛽𝑡+1 is chosen by sampling a candidate point 𝜌 from a 

proposal distribution 𝑞(. |𝛽𝑡). The candidate point is accepted with probability 𝛼(𝛽𝑡, 𝜌) where; 

 

 
𝛼(𝛽, 𝜌) = min(1,

𝑃. 𝐷(𝜌)𝑞(𝛽|𝜌)

𝑃. 𝐷(𝛽)𝑞(𝜌|𝛽)
)  

(3.19) 

 

Where 𝑃.𝐷 stands for posterior distribution 

 

If the proposed candidate point is accepted, the next state becomes 𝛽𝑡+1 = 𝜌 and if rejected the 
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chain does not move (𝛽𝑡+1 = 𝛽𝑡). 

 

3.5.7 Change in deterioration rate 

When maintenance actions 𝑨(𝐴0, 𝐴1, 𝐴2, … , 𝐴𝐽−1) are carried out, an inventory of the number of 

past maintenance works, 𝒂𝒕,𝑠
𝑘
(𝑎0

𝑡 , 𝑎1
𝑡 , 𝑎2

𝑡 … , 𝑎𝐽−1
𝑡 ) for each pavement section 𝑠𝑘(𝑠𝑘 = 1,… , 𝑆𝑘) in 

each pavement group 𝑘(𝑘 = 1,… , 𝐾)  is recorded. As discussed by Han et al. (2017), past 

maintenance works may increase pavement deterioration. The increase could be due to the 

difference in exposure to deterioration agents such as moisture (e.g. through patching joints) for a 

maintained pavement section compared to a new one. Consider that pavement sections 𝑠𝑘 = 1 and 

𝑠𝑘 = 2  have maintenance history 𝒂𝒕,1  and 𝒂𝒕,2  respectively with the number of works 𝒂𝒕,2 

significantly greater than 𝒂𝒕,1   at time 𝑡 . It can be expected that pavement section two would 

deteriorate faster than one as discussed above (Figure 3.6). If both pavement sections are inspected 

and are observed to have reached or exceeded the service limit 𝑖, different corrective actions 𝐴 

should be taken despite the fact that they could be in the same deteriorated state. Pavement section 

two, with faster deterioration should be maintained with stronger and thicker materials and 

superior designs compared to one with slower deterioration.  

 

To account for an increased deterioration rate, it is considered that pavement service life is 

shortened due to past maintenance works 𝒂𝒕,𝑠
𝑘
. The remaining duration 𝑅𝑀𝐷𝑖

𝑠𝑘  reduces by a factor 

𝜑𝐴  and hazard rate  𝜃𝑖
𝑠𝑘  increases. The MTP 𝜋𝑖𝑗(𝜃𝑖

𝑠𝑘)  is transformed, which in turn affects 

estimated LCC. 

 

 𝑅𝑀𝐷𝑖
𝑠𝑘(𝑟𝑛+𝑟)

= (1 − 𝜑𝐴0)
𝑎0
𝑟𝑛+𝑟

∗ … ∗ (1 − 𝜑𝐴𝐽−1)
𝑎𝐽−1
𝑟𝑛+𝑟

∗ 𝑅𝑀𝐷𝑖
𝑠𝑘(𝑟𝑛)

  

𝒂(𝒓𝒏+𝒓),𝑠
𝑘
(𝑎0

𝑟𝑛+𝑟 , 𝑎1
𝑟𝑛+𝑟 , 𝑎2

𝑟𝑛+𝑟 … , 𝑎𝐽−1
𝑟𝑛+𝑟), (𝑖 = 1,… , 𝐽 − 1)  

(3.20) 

 

Once reconstruction is done for a pavement section in the absorbing state 𝐽, it is considered to 

recover to the original state without any accelerated deterioration (𝒂𝒕,𝑠
𝑘
= 𝟎). Faster pavement 

deterioration to 𝐽 attracts a renewal cost 𝐶𝐽−1 ≈ ∞, which is prohibitive and so it is desirable to 

prevent pavement deterioration to 𝐽 between 𝑡 = 0 𝑎𝑛𝑑 𝑡 = 𝑇. 
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Figure 3.6. Increase in deterioration rate due to past repair works. 

3.5.8 Transition probability considering repair 

When a pavement undergoes repair, the transition probability will be modified because the 

pavement system has become newer. The MTP matrix will be multiplied with a repair matrix 𝒑𝒓𝒆𝒑. 

The elements of the 𝐽 × 𝐽 repair matrix are denoted as 𝜋𝑖𝑗
𝑟𝑒𝑝 (𝑖 = 1,… 𝐽), (𝑗 = 1,… , 𝐽). Once no 

repair (𝐴0) is done to a pavement, we expect the pavement to undergo deterioration and so the 

MTP matrix will remain unchanged. In this case, the repair matrix will be an identity matrix 

𝒑𝒓𝒆𝒑 = 𝑰. This is the default state of the repair matrix with all values in the major diagonal being 

1 and all other matrix elements being 0.  

 

 

𝒑𝒓𝒆𝒑 =

[
 
 
 
 

 

1
0
0
0
0

 

0
1
0
0
0

 

0
0
⋱
0
0

 

0
0
0
1
0

 

0
0
0
0
1

 

]
 
 
 
 

  

(3.21) 

 

For all repair matrices, the values of 𝜋𝑖𝑗
𝑟𝑒𝑝

 above the major diagonal must be 0 because it is not 

expected that any repair action will worsen pavement condition. The values on the major diagonal 

or below it can take the value of either 1 or 0. The condition ∑ 𝜋𝑖𝑗
𝑟𝑒𝑝𝐽

𝑗=1 = 1 must be met within 

𝒑𝒓𝒆𝒑. The repair probability 𝜋𝑖𝑗
𝑟𝑒𝑝

 is defined by: 
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𝜋𝑖𝑗
𝑟𝑒𝑝 = {

1    𝑖𝑓  𝑖𝑟𝑒𝑝 = 𝑖̂

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(𝑖 = 1,… , 𝐽) 

(3.22) 

 

The transitional probability matrix 𝒑𝒕𝒓𝒂𝒏𝒔  is a matrix with elements 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠(𝑖 = 1,… 𝐽), (𝑗 =

1, … , 𝐽): 𝒑𝒕𝒓𝒂𝒏𝒔 is obtained according to: 

 

 𝒑𝒕𝒓𝒂𝒏𝒔 = 𝒑(𝑟) ∗ 𝒑𝒓𝒆𝒑  (3.23) 

 

3.5.9 Maintenance optimisation  

3.5.9.1 Agency costs (inspection and repair) 

In the optimisation model, the maintenance strategy 𝒎𝒑
𝒔𝒌 is set by road managers. A finite horizon 

(𝑡 = 𝑇) is considered and so there is need to estimate pavement salvage value (Tsunokawa and 

Schofer 1994, Li and Madanat 2002). The inspection and repair costs of each pavement section 

can be expressed using a value function: 

 

 

𝑉𝑖
𝑡,𝑠𝑘 (𝒂𝒕,𝒔

𝒌
) = 𝐶𝑖

𝑡,𝑠𝑘 + 𝑒𝑥 𝑝(−𝜌𝑟(𝑡 + 𝑟))∑{(𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 ∗ 𝐸 (𝑉𝑗

𝑡,𝑠𝑘 (𝒂𝒕,𝒔
𝒌
))}

𝐽

𝑗=1

 

𝑖(𝑖 = 1,… , 𝐽) ( 𝑡 = 0,… , 𝑇) 

𝐸 (𝑉𝑗
𝑡,𝑠𝑘 (𝑎𝑡,𝑠

𝑘
)) = ∑(𝑝𝐴

𝑡 ∗

𝑁𝐴

𝐴=1

𝑉𝑗
(𝑡+𝑟),𝑠𝑘

(𝑎(𝑡+𝑟),𝑠
𝑘
)) 

𝐶𝑖
𝑡,𝑠𝑘 = 𝛿1𝑐

𝑡,𝑠𝑘 + 𝐶𝐴↔𝑖
𝑡,𝑠𝑘

 

(𝑗 = 1, … , 𝐽) 

𝛿1 = {
1      𝑖𝑓 𝑡 = 𝑟𝑛 (𝑛 = 0,1,2, … )
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 

(3.24) 

 

where 

𝑉𝑖
𝑡,𝑠𝑘 (𝒂𝒕,𝒔

𝒌
) are agency costs at time 𝑡 for section 𝑠𝑘 with past repair works 𝒂𝒕,𝒔

𝒌
 

𝐶𝐴↔𝑖
𝑡,𝑠𝑘

 is repair cost at time 𝑡 and condition 𝑖 for section 𝑠𝑘 
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𝑐𝑡,𝑠
𝑘
 is cost of inspecting a pavement section  

𝛿1 is a dummy variable 

𝜌𝑟 is the discount rate 

𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 is transitional probability  

𝐸 (𝑉𝑗
𝑡,𝑠𝑘 (𝒂𝑡,𝑠

𝑘
)) is the expectation of inspection and repair costs for section 𝑠𝑘 

𝑇 is the duration between reconstruction times 

𝑝𝐴
𝑡  is the probability of taking action 𝐴 at time 𝑡 

𝑁𝐴 is the total number of possible repair actions 𝐴 

3.5.9.2 Optimisation problem 

For each strategy, 𝒎𝒑
𝒔𝒌 the LCC can be obtained by summing up all agency costs for all pavement 

sections 𝑠𝑘(𝑠𝑘 = 1,… , 𝑆𝑘) within pavement reconstruction time 𝑇. Due to a finite time horizon, 

the pavement section will have a salvage value 𝐶𝑣
𝑠𝑘 . It is assumed that 𝐶𝑣

𝑠𝑘 = 0 at 𝑇. 

 

 

𝐿𝐶𝐶 = ∑(𝑉𝑖
0)𝑠

𝑘

𝑆𝑘

𝑠𝑘=1

  

(3.25) 

 

The optimisation problem can then be expressed by: 

 

 𝑚𝑖𝑛 𝐿𝐶𝐶

𝒎𝑨↔𝒊
𝒔𝒌 , 𝒓𝒔

𝒌   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑ ∑ 𝐶𝑖
𝑡,𝑠𝑘

𝑆𝑘

𝑠𝑘=1

𝐾

𝑘=1

∈ 𝛺 

(3.26) 

 

where 𝛺 is the budget limit 

 

To obtain LCC, unknowns 𝑉𝑖
𝑡,𝑠𝑘 (𝒂𝑡,𝑠

𝑘
)  need to be solved first; 𝑉𝑖

𝑡,𝑠𝑘 (𝒂𝑡,𝑠
𝑘
)  forms a dynamic 

programming problem that can be solved by backwards induction starting at time 𝑇 (Sundaram 
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1999).  As shown in Figure 3.7, for a given section 𝑠𝑘 at time 𝑟𝑛, set 𝑉𝑖
𝑇 = 0  ∀𝑖  we obtain the 

following: 

𝑉𝑖
𝑟𝑛 = 𝐶𝑖

𝑟𝑛      ∀𝑖  

 

Figure 3.7. Pavement inspection and maintenance timeline. 

 

Since we have a solution at time 𝑟𝑛 , we can obtain subsequent solutions of 𝑉𝑖
𝑡  by backwards 

induction from 𝑡 = 𝑟(𝑛 − 1) to 𝑡 = 0, which is of interest. These are compounded and at 𝑡 = 0 

we obtain the following: 

 

 

𝑉𝑖
0 = 𝐶𝑖

0 + 𝑒𝑥 𝑝(−𝜌𝑟𝑟) [∑(𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 ∗ (∑𝑝𝐴

0

𝑁𝐴

𝐴=1

) ∗ 𝑉𝑗
𝑟)

𝐽

𝑗=1

]   ∀𝑖 

∑𝑝𝐴
0

𝑁𝐴

𝐴=1

= 1   

(3.27) 

 

An algorithm showing the solution procedure is shown in Figure 3.8. The steps to the solution are 

detailed below: 

1) Define strategy 𝒎𝒑
𝒔𝒌. 

2) Calculate (𝑉𝑖
0)𝑠

𝑘
 by backwards induction. 

3) Calculate LCC. 

4) Check that all strategies 𝒎𝒑
𝒔𝒌 have been evaluated and constraints satisfied. 

5) Determine optimal strategy 𝒎𝒑
𝒔𝒌∗(𝒎𝑨↔𝒊

𝒔𝒌∗ , 𝒓𝒔
𝒌∗).  
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Figure 3.8. Solution to optimisation problem. 

In reality, the maintenance works can only be done within the allocated budget each financial year. 

If the repair cost exceeds budget limits, works could be deferred for low priority sections or less 

costly preventive actions performed. The decision on selection of sections for repair is complex 

and involves a balancing of pavement condition, economic, political and other considerations 

associated with the road section. In this study we simplify this complex problem to a knapsack 

problem with sections selected using a greedy algorithm (GA) (Rinnooy Kan et al. 1993). The 

budget limit is represented by the knapsack and the sections to be maintained are selected based 

on fastest deterioration rate first (condition-dependent policy) or worst condition first (time-

dependent policy) at any intervention time. The GA may generate solutions approximate to optimal 

solutions. 

 

3.5.10 Estimated condition of network  

To further aid the decision process on selection of optimum maintenance strategy, it is important 

to add a third parameter, condition of network, which is derived from set service level 𝑖  and 

selected maintenance strategy based on repair in correspondence to observed condition after 
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inspection (𝐴𝑖−1
𝑠𝑘 ↔ 𝑖). The length of network in each condition state (CS) at discrete time 𝑟𝑛 + 𝑟 

is determined as follows: 

 

 𝑪𝑺𝑟𝑛+𝑟 = 𝒑(𝑟) ∗ 𝑪𝑺𝑟𝑛   

(𝑛 = 0,1,2,3, … ) 

(3.28) 

 

where 𝑪𝑺𝑟𝑛 is a 1 × 𝐽 matrix of number of road sections per condition state and 𝒑(𝑟) is a 𝐽 × 𝐽 

MTP matrix at time 𝑟𝑛. 

 

Knowing the percentage of network in each condition state at a specified descrete time will aid 

decisions on selecting the optimum maintenance strategy especially in the case where the 𝒎𝒑
𝒔𝒌 

pool is small.  

3.6 Empirical study  

3.6.1 Uganda national roads network 

The Uganda national roads database consists of paved and unpaved roads, road structural type, 

daily traffic volume, average speed, and pavement condition for 1-km sections for survey years 

2009 – 2019 (UNRA 2019). Data for 41 paved national roads collected in November and December 

of 2017 and 2018 (two-point data), which was complete, was selected. This data consisted of 2,425 

sections that were additionally sorted to eliminate sections that erroneously showed improvement 

in condition despite there being no repair, leaving a total of 1,993 sections. Out of the 1,993 

sections, 24 sections for road A001 were rigid pavements and the rest were flexible. Roads were 

categorised by condition (Table 3.2). Road condition measured in form of International Roughness 

Index (IRI) using a test vehicle by UNRA was categorised into condition states (Table 3.3). The 

IRI estimates the roughness of a road obtained by measuring longitudinal road profiles. Pavement 

condition in the Uganda national roads database was also measured using another index, the Visual 

Condition Index (VCI). There was no major difference in estimation results (shown later on) 

considering VCI or IRI data. Surveyed Ugandan pavements deteriorated between 2017 and 2018, 

with deterioration being attributed to agents such as traffic loading and environmental conditions 

(e.g. moisture and temperature). As pavement condition worsened, average speed reduced, 

therefore speed may be an indicator of pavement condition (Table 3.2). The increase in speed on 
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pavements in condition 2 could be due to other factors such as road geometry and driver behaviour. 

To estimate deterioration rate, pavement sections were grouped based on traffic on specific roads 

(Table 3.5). The road group names were listed in Table 3.11 in the Appendix. Pavements may also 

be grouped based on administrative area, environmental zone etc. Grouping based on traffic, a 

major deterioration agent, was selected because it was the most practical for this study. It made 

intervention actions more specific and hence more effective. 

 

Table 3.2. Road surface condition. 

Road 

Surface 

Condition 

Category No. of 

sections 

Average speed 

(km/h) 

Description 

2017 2018 2017 2018 

1 – Good  1,284 981 52.70 55.07 Good shape, smooth running surface 

2 – Fair 648 727 58.05 56.80 Reasonable shape, corrugations and 

potholes up to 10 cm deep 

3 – Poor 59 224 49.69 50.15 Poor shape, frequent depressions, rutting 

and potholes >10 cm deep 

4 – Bad 2 61 18.50 27.84 Bad shape, deep depressions and potholes, 

serious rutting, dry weather only 

 

Table 3.3. Categorisation of condition states for paved roads (MoWT, 2011–17). 

Categorisation 1. Good 2. Fair 3. Poor 4. Bad 

IRI (mm/m) 0 – 3.50 3.51 – 5.00 5.01 – 6.50 >6.50 

 

3.6.2 Estimation of deterioration rate 

Estimation of deterioration rate was done for pavement sections grouped based on road traffic. 

Equation (3.12) can specifically be written as: 

 

 𝜃𝑖 = 𝑒𝑥 𝑝(𝛽0,𝑖 + 𝛽1,𝑖𝑥1 + 𝛽2,𝑖𝑥2 + 𝛽3,𝑖𝑥3)   (3.29) 

 

where 𝑥1  is traffic loading in Equivalent Standard Axle Loads (ESALs), 𝑥2  is average speed 

(km/h), and 𝑥3 is a dummy variable based on road type (i.e., rigid and flexible pavements): 

 

 
𝑥3 = {

1         𝑓𝑜𝑟 𝐶𝐶                                
0         𝑓𝑜𝑟 𝐴𝐶, 𝑆𝐷 𝑎𝑛𝑑 𝑃𝐵         

  
(3.30) 

 



Chapter 3. Pavement Management using Stochastic Markov Models 

45 
 

where AC is asphalt concrete, SD is surface dressed, PB is permeable base, and CC is cement 

concrete; CC pavements are rigid and the rest are flexible.  

The vehicle traffic load was converted to ESALs (Table 3.12 and Table 3.13 in the Appendix) 

using the load equivalency factor for each vehicle type (MoWT 2010, FHWA 2014). Average speed 

was used as an explanatory variable despite the fact that speed may be affected by road geometry 

and driver behaviour. Other explanatory variables such as environmental factors (e.g. temperature 

and moisture) and, pavement structural strength (e.g. layer thickness) would have improved 

estimation results for hazard rate and life expectancy but these were not used due to the data 

limitation in the current Uganda national roads database. 

Estimation was carried out using MCMC methods with the MH algorithm. The MATLAB 

programming language was used to solve for the unknown parameters. The MCMC methods were 

used because the formulated log-likelihood function was conditional on many unknown 

parameters and the merits of shorter computation time. The unknown 𝛽 parameters converged as 

shown in Table 3.4. By the central limit theorem, as the number of samples increases, the sample 

mean will tend towards the population mean and the normal distribution curve will be more bell 

shaped. Burn-in values up to the 100th iteration were eliminated for a 1000 run because the initial 

estimate was off the convergence value. Some 𝛽 values were excluded due to sign restrictions. The 

𝛽 values indicated that traffic loading had a significant impact on deterioration rate in condition 

state 2. Higher traffic loading leads to faster deterioration rates. Faster average speeds can be 

achieved on smoother pavements despite the fact that road geometry and driver behaviour 

significantly influence speed, and sections of stronger pavement type (rigid) have longer life hence 

the negative 𝛽 values for both explanatory variables. Geweke diagnostic values for all 𝛽 values 

should fall within the [1.96, –1.96] limits to test chain convergence. A Geweke value of 0 means 

perfect convergence. Table 3.5 and Figure 3.9 show estimated life expectancy for surveyed 

Ugandan national roads. Generally, the surveyed roads exhibit shorter life spans than their 

expected design life of about 20 years (MoWT 2010). The short life is probably due to heavier 

traffic loading and lower strength construction materials. For instance, despite both roads A001 

and A003 having high average daily traffic (17.44 and 16.93 thousand ESALs in 2018 

respectively), road A001 has longer life expectancy because it is constructed with stronger 

materials (A001 has 24 CC sections). 
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Table 3.4. Estimated 𝛽 values.  

Condition 

state, 𝑖 
Absolute Traffic 

loading 

Average 

speed 

Pavement type 

𝛽0 𝛽1 𝛽2 𝛽3 

1 – 0.6399  

(– 0.0040) 

- – 1.2325 

(0.1322) 

– 0.1583  

(– 0.0415) 

2 – 0.1094  

(– 0.0367) 

0.3020  

(– 0.0700) 

– 2.0156 

(0.0806) 

– 1.3499  

(– 0.0261) 

3 0.3948  

(– 0.0806) 

- – 2.8973 

(0.0181) 

– 1.3938 

(0.0751) 

*Values in parentheses are the Geweke diagnostic for 𝛽. 

Table 3.5. Life expectancy for surveyed Ugandan national roads. 

𝑘 Road 

section 

group 

Actual road 

length (km) 

No. of 

surveyed 

sections 

Average daily 

traffic (thousand 

ESALs) 

*𝜀𝑘 Life expectancy (years) 

Condition state  

2017 2018 1 2 3 Total 

0 BM** 3,377.74 1,993 3.95 3.64 1.00 3.78 3.24 3.67 10.69 

1 A001 224.52 87 19.13 17.44 1.03 3.20 3.02 4.41 10.64 

2 A002 421.32 355 8.50 6.18 1.13 3.64 2.60 3.35 9.60 

3 A003 47.29 11 28.33 16.93 1.98 3.09 1.07 2.20 6.36 

4 A004 88.90 77 1.21 1.23 0.88 4.09 3.81 4.18 12.08 

5 A005 418.38 94 2.09 2.48 0.84 4.22 3.91 4.53 12.66 

6 A006 433.62 348 3.70 4.55 0.95 3.95 3.40 3.92 11.27 

7 A007 342.99 93 3.88 3.88 0.93 4.01 3.42 4.02 11.45 

8 A008 310.85 235 1.61 1.78 0.94 3.96 3.56 3.86 11.38 

9 B100 33.50 23 4.77 5.24 1.55 2.98 2.05 2.04 7.07 

10 B103 10.11 9 0.30 0.84 1.15 3.44 2.99 2.90 9.33 

11 B150 174.00 77 0.63 0.74 0.85 4.19 4.01 4.37 12.57 

12 B151 59.18 41 0.51 1.08 1.27 3.23 2.69 2.53 8.46 

13 B152 123.54 49 0.51 0.96 0.96 3.84 3.55 3.73 11.13 

14 B153 87.87 77 0.51 1.20 1.07 3.61 3.20 3.21 10.02 

15 B200 43.26 41 0.43 0.43 0.85 4.20 4.04 4.37 12.61 

16 B300 146.41 63 0.23 0.30 0.86 4.14 3.99 4.28 12.41 

17 B303 8.00 8 0.46 0.42 2.08 2.49 1.73 1.29 5.51 

18 B307 55.79 55 1.70 1.72 1.17 3.44 2.87 2.90 9.21 

19 B308 16.91 17 2.81 2.81 1.04 3.69 3.12 3.44 10.25 

20 C004 21.48 19 2.75 0.97 1.42 3.12 2.33 2.22 7.67 

21 C157 3.37 3 0.97 0.97 2.32 2.36 1.55 1.12 5.03 

22 C158 1.52 1 0.97 0.97 2.30 2.37 1.56 1.14 5.06 

23 C170 2.05 2 0.97 0.97 1.63 2.86 2.13 1.80 6.80 

24 C198 3.72 3 0.97 0.97 1.85 2.66 1.90 1.52 6.08 

25 C199 1.48 1 0.97 0.97 2.46 2.28 1.47 1.04 4.79 

26 C210 5.40 1 0.18 0.18 2.24 2.40 1.63 1.17 5.19 

27 C232 1.33 1 0.11 0.11 2.34 2.34 1.57 1.10 5.01 

28 C308 12.76 11 0.17 0.17 0.93 3.93 3.69 3.82 11.44 

29 C309 6.70 7 0.17 0.17 1.35 3.16 2.58 2.29 8.03 
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30 C350 54.30 52 0.63 0.83 1.04 3.68 3.27 3.29 10.24 

31 C354 2.72 2 0.33 0.33 1.16 3.46 2.98 2.85 9.28 

32 C356 32.43 14 0.18 0.49 1.02 3.71 3.36 3.36 10.44 

33 C410 34.54 17 0.61 0.83 1.08 3.56 3.16 3.23 9.95 

34 C412 9.89 10 0.033 0.14 0.99 3.79 3.50 3.55 10.84 

35 C420 2.90 2 0.069 0.069 2.18 2.43 1.67 1.20 5.30 

36 C457 5.10 4 0.033 0.033 1.25 3.27 2.77 2.56 8.61 

37 C511 11.73 9 0.068 0.068 1.12 3.46 3.07 3.02 9.55 

38 C517 0.76 1 0.068 0.068 2.18 2.43 1.67 1.20 5.30 

39 C540 103.61 63 0.25 0.25 1.07 3.61 3.22 3.21 10.03 

40 C684 4.10 4 0.55 0.55 1.66 2.82 2.11 1.74 6.67 

41 C744 9.41 6 0.69 0.69 1.01 3.75 3.36 3.44 10.55 

*𝜀𝑘 is the heterogeneity parameter, **Benchmark (BM) is the total of all sections in the network. 

Note: The hazard rate is obtained as shown in Equation (3.10). 

 

  

Figure 3.9. Life expectancy of Ugandan national roads. 
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3.7 Management strategy ideal for Uganda 

3.7.1 Management policy setting 

The current time-dependent policy and the proposed condition-dependent policy were compared 

considering a basic plan and a fixed budget. The basic plan involves laying overlays when a 

pavement deteriorates to condition 3 or 4. The comparison was based on surveyed network 

condition and LCC at end of analysis period per policy. The Ugandan road maintenance budget 

was $138.3, $145.2, $118.8, and $166.1 million in Financial Year (FY) 2013/14, FY 2014/15, FY 

2015/16 and FY 2016/17 respectively (MoWT 2011 – 2017). This averaged at about $142.1 million 

each year for the entire 4,551 km network. For the surveyed 1,993 km network, the equivalent 

budget was about $62.2 million and this was used as a fixed annual budget. Sections for repair 

were selected using a GA basing on worst condition first (time-dependent policy) or fastest 

deterioration first (condition-dependent policy) as weights in the selection process. The LCC 

options used in this study are shown in Table 3.6. Repair cost was presented as a range due to 

different traffic volumes. It was assumed that some technological advancements kept the overlay 

cost at lower bound (𝐶𝐴2 = 280,000 $/km). For patching, average cost (𝐶𝐴1 = 12,950 $/km) and an 

inspection cost of 1,000 $/km were considered.  

Intervention actions, i.e., patching (𝐴1) and overlay (𝐴2), were set in correspondence to pavement 

condition. It was considered that the same action was performed throughout the lifecycle of a 

pavement after it was specified. Absorbing state 𝐽 was avoided by carrying out more inspections 

for the case of the condition-dependent policy and making more effective interventions for the case 

of the time-dependent policy due to prohibitive renewal costs. Each action was considered to cause 

an acceleration of pavement deterioration (reduction in service life) with 𝐴2 which is more costly 

causing less reduction in service life and the reverse for less costly 𝐴1. Han et al. (2017) showed 

that repeated maintenance accelerated pavement deterioration by up to about 30% in South Korea. 

Due to the absence of maintenance history data in Uganda, it was assumed that 𝜑𝐴1 = 20% and 

𝜑𝐴2 = 10%  as factors for reduction in pavement service life due to actions 𝐴1  and 𝐴2 ,  

respectively. Other 𝜑𝐴 values were considered but there was no significant difference in results. 

The analysis period was fixed as 𝑇 = 15 years and the inspection interval was fixed as 𝑟 = 1 year. 
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Table 3.6. LCC analysis options.  

Option Details Source 

Number of sections 1,993 out of about 4,551 Uganda national paved 

road network database 

Life expectancy Obtained probabilistically by MCMC 

methods in case of condition-

dependent policy, unknown for time-

dependent policy 

 

Unit costs (for two-

lane roads) 
𝐶𝐴0 (0) 

𝐶𝐴1 (8.4 – 17.5)* 

𝐶𝐴2 (280 – 497.5)* 

Discount rate 𝜌𝑟 (10%) 

MoWT (2011 – 2017), 

Bank of Uganda (2018) 

*Value in 1,000 $/km (in 2017). Range shows value for low and high traffic roads. 

 

The MTP is affected by 𝜑𝐴 due to maintenance history 𝒂𝒕,𝑠
𝑘
. As shown in the empirical study, 

MTP is important in estimating agency costs and subsequently LCC. Without any past repair works, 

the MTP matrix for the surveyed Ugandan network is shown in Equation (3.31). With increased 

maintenance works, the probability values above the major diagonal are expected to increase 

signifying faster pavement deterioration as shown in Equation (3.32) at year 15 (end of the analysis 

period). 

 

𝒑𝒚𝒆𝒂𝒓 𝟏 = [ 

0.7676
0
0
0

 

0.1986
0.7346
0
0

 

0.0308
0.2307
0.7614
0

 

0.0030
0.0347
0.2386
1

 

]  

(3.31) 

 

 

𝒑𝒚𝒆𝒂𝒓 𝟏𝟓 = [ 

0.5974
0
0
0

 

0.2949
0.5483
0
0

 

0.0894
0.3413
0.5880
0

 

0.0183
0.1104
0.4120
1

 

]  

(3.32) 

 

Considering a fixed annual budget of $62.2 million, the LCC and surveyed network condition, 

which are the criteria for comparison, are shown in Table 3.7, Figure 3.10, and Figure 3.11  per 

policy; there was no difference in LCC because the annual budget was fully utilised in both cases. 

A shift from the current time-dependent policy to the proposed condition-dependent policy could 

lead to an improvement in network condition by increasing percentages of the surveyed network 

in good and fair condition by 8.6% and 2.5%, respectively, and reducing percentages in poor and 
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bad condition by 8.5% and 2.6%, respectively, at the current budget level. 

 

Table 3.7. Condition of surveyed Ugandan roads and LCC at end of the analysis period based on 

adopted management policy. 

Policy LCC 

($ million) 

Percentage (%) of surveyed network in 

condition state 

1 2 3 4 

Initially*  - 49.2 36.5 11.2 3.1 

Time- 

dependent 

538.43 0.5 15.8 27.4 56.3 

Condition- 

dependent 

538.43 9.1 18.3 18.9 53.7 

*Percentages shown are at start of the analysis period. 

 

 

Figure 3.10. Condition of surveyed network considering time-dependent policy. 
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Figure 3.11. Condition of surveyed network considering condition-dependent policy. 

 

At the current budget level, more than 50% of the pavement sections would deteriorate beyond the 

service level (𝑖 = 3). In order to maintain the service level 3, an annual budget of about $100.2 

million is required. This results in improved network condition, with only 6.2% of the network 

deteriorating to the worst condition at the end of the analysis period with a 15-year LCC of $839.05 

million (Table 3.8). 

 

Table 3.8. Condition of surveyed Ugandan roads and LCC at end of the analysis period 

considering that service level 3 is strictly maintained.  

LCC 

($ million) 
𝑖 Percentage (%) of road network in 

condition state 

1 2 3 4 

839.05 3 31.2 41.6 21.0 6.2 

 

3.7.2 Maintenance plan setting 

Three maintenance plans including the do-nothing plan, were investigated by varying 

serviceability limit 𝑖 and actions in correspondence to observed condition after inspection (𝐴 ↔ 𝑖) 

were compared (Table 3.9). Plan 1 involves preventive maintenance works done when pavements 
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comparison as in the previous subsection, and a condition-dependent policy was assumed. The 

budget level was set at $100.2 million annually. 

 

Table 3.9. Proposed maintenance plans. 

Plan 𝑖 Condition state (𝑖) 
1 2 3 and 4 

𝒎𝒑,𝟎 - 𝐴0 𝐴0 𝐴0 

𝒎𝒑,𝟏 2 𝐴0 𝐴1 𝐴2 

𝒎𝒑,𝟐 3 𝐴0 𝐴0 𝐴2 

 

Table 3.10 shows surveyed network condition and LCC at end of the analysis period per plan. Plan 

1 had the best condition, with LCC falling within limits (Figure 3.12, Figure 3.13 and Table 3.10) 

making it optimum. Plan 1 with preventive maintenance intervention led to a further improvement 

in network condition by increasing percentage of the surveyed network in good condition by 27.4% 

and reducing percentages in poor and bad condition by 11.6% and 4.2%, respectively, with a 53.5% 

LCC reduction compared to plan 2. This result shows the effectiveness of preventive maintenance 

with the same budget constraint. The budget was not fully utilised for plan 1 because the road 

agency was restricted to carry out inspection and intervention only once in a year. The lower 

percentage of sections in condition 2 for plan 1 is because preventive works maintained the 

sections in condition 1. If nothing was done, 87% of the network would deteriorate to the worst 

condition (Figure 3.14 and Table 3.10). 
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Figure 3.12. Condition of surveyed network with plan 1, fixed budget and condition-

dependent policy. 

 

Figure 3.13. Condition of surveyed network with plan 2, fixed budget and condition-

dependent policy. 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

ce
n

ta
g
e 

o
f 

N
et

w
o

rk

Year

1. Good 2. Fair 3. Poor 4. Bad

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

ce
n

ta
g
e 

o
f 

N
et

w
o

rk

Year

1. Good 2. Fair 3. Poor 4. Bad



Chapter 3. Pavement Management using Stochastic Markov Models 

54 
 

 

Figure 3.14. Condition of surveyed network considering doing nothing. 

 

Table 3.10. Condition of surveyed Ugandan roads and LCC at end of the analysis period per 

plan.  

Plan LCC 

($ million) 

Budget 

utilisation 

(%) 

Percentage (%) of road network in 

condition state 

1 2 3 4 

𝒎𝒑,𝟎 - - 0.9 3.1 9.0 87.0 

𝒎𝒑,𝟏 390.55 46.5 58.6 30.0 9.4 2.0 

𝒎𝒑,𝟐 839.05 100 31.2 41.6 21.0 6.2 

3.8 Discussion of main results 

The MUSTEM model adopted to estimate deterioration rate requires a minimum of two-point data 

which is manageable for developing countries such as Uganda. Life expectancy of surveyed 

Ugandan roads was about 10.69 years (benchmark). This estimated pavement life of the surveyed 

roads was noted to be shorter than the expected design life of about 20 years attributable to heavier 

traffic loading and lower strength construction materials. The estimation results could be improved 

with better data such as temperature and layer thickness as explanatory variables. 

A shift from time-dependent to condition-dependent management policy resulted in a significant 

improvement in network condition by increasing percentages of the surveyed network in good and 
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fair condition by 8.6% and 2.5%, respectively, and reducing percentage, in poor and bad condition 

by 8.5% and 2.6%, respectively. By prioritising repair for pavement sections with fast deterioration 

instead of those in worse condition, the road agency slowed the deterioration rate of sections to 

worse condition, in effect preserving the entire network in better condition for a longer time. 

Preventive maintenance works further improved road network condition by increasing percentage 

of the surveyed network in good condition by 27.4% and reducing percentages in poor and bad 

condition by 11.6% and 4.2%, respectively, with a 53.5% reduction in LCC. Due to the low cost 

of preventive works, they can be done at higher frequencies (repair cost and frequency trade-off). 

In addition, preventive works limit exposure of the pavement to deterioration agents such as 

moisture, hence slowing deterioration.  

The budget was not fully utilised for plan 1 because the road agency was restricted to carry out 

inspection and intervention only once in a year. It would be impractical for the road agency to 

carry out inspection and intervention actions over much smaller intervals of less than a year. 

Additionally, this could generate other costs due to disruption of road traffic and noise pollution 

during the numerous repairs.  

3.9 Conclusions and recommendations 

This study attempted to introduce planning for pavement maintenance based on the condition-

dependent instead of the time-dependent policy commonly used in developing countries such as 

Uganda. A shift from time-dependent to condition-dependent policy was studied considering a 

fixed budget. Also, maintenance planning with and without preventive maintenance was 

investigated considering a limited budget. A management policy shift to condition-dependent 

policy resulted in a significant improvement in pavement condition. Preventive maintenance works 

further improved road network condition. This study therefore supports a pavement management 

policy shift to the condition-dependent policy and maintenance planning with preventive 

maintenance works to be adopted in developing countries such as Uganda. There is also a need to 

analyse the relationship between the pavement design and estimated life expectancy in order to 

empirically show the effectiveness of increasing design life in future research. 

The extension to include effect of maintenance works and generalisation of repair interventions 

made the model more practical. Additionally, due to the low data requirement of this PMS, it could 
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easily be adapted to network systems in developing countries. With a few adjustments, it may be 

applied to other infrastructure systems such as bridges.  

The study faced a number of limitations including the following: 

1) Incomplete data: deterioration of road pavements is also affected by environmental 

conditions such as temperature and moisture. Average speed was used as an explanatory 

variable in the estimation of the hazard rate and life expectancy despite the fact that average 

speed is affected by other factors such as road geometry and driver behaviour not only 

pavement condition. Average speed was used because it was an indicator of road condition 

and also due to scarcity of data in the current database.  

2) Solution procedure: the solution procedure was cumbersome for a bigger pool of suggested 

plans. 

 

Despite the practicality of this study, a few areas of improvement were identified. The following 

are recommended:  

1) Data collection: the sectioning of Ugandan roads at about 1 km per section was probably 

due to limited resources and labour for data collection. Pavement quality over a distance 

of 1 km varies and it could be erroneous to report a uniform pavement condition. Pavement 

section length could be reduced to a maximum of 100 m per section and marked according 

to how critical they are, for instance bridge and intersection approach sections, for better 

management. More pavement data such as temperature and layer thickness could be 

collected to improve estimation and planning.  

2) Solution method: plans were considered to be set by the road agency. Selection of an 

optimum plan could be a cumbersome process in the case of a bigger pool. A more efficient 

solution method is therefore required. 
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A.1 Appendix 

Table 3.11 shows the names of the surveyed Ugandan road groups. The roads were named based 

on the cities and towns they connect. 

Table 3.11. Names of surveyed Ugandan national roads. 

Road section group Road name 

A001 Kampala - Mukono - Lugazi - Njeru - Jinja - Kakira - Iganga - Nakalama - Bugiri - 

Namutere - Tororo - Malaba (Uganda/Kenya border) 

A002 Kampala - Kibuye - Natete - Busega - Mpigi - Buwama - Lukaya - Masaka - Lyantonde - 

Mbarara  - Ntungamo - Rubaale - Muhanga - Kabale - Katuna (Uganda/Rwanda border) 

A003 Kibuye - Zana  - Entebbe Airport 

A004 Masaka - Kyotera - Mutukula (Uganda/Tanzania border) 

A005 Busega - Bujuuko - Mityana - Naama - Myanzi - Kiganda - Kitenga - Mubende - Lusalira - 

Nabingoola - Lubaale - Kyegegwa - Kakabala - Kyenjojo - Rugombe - Fortportal - Rwimi - 

Hima - Mubuku - Kasese - Kikorongo - Bwera - Mpondwe (Uganda/Congo border) 

A006 Kampala - Kawempe - Matuga - Wobulenzi - Kasana - Luweero - Nakasongola - Kafu - 

Kigumba - Karuma - Kamdini - Minakulu - Bobi - Gulu - Atiak - Nimule (Uganda/South 

Sudan border) 

A007 Malaba (Uganda/Kenya border) - Tororo - Magodes - Nabumali - Mbale - Namunsi - Kumi 

- Soroti - Dokolo - Agwata - Lira - Ayer - Kamdini 

A008 Karuma - Olwiyo - Packwach - Nebbi - Eruba - Arua - Manibe - Maracha - Koboko - Oraba 

(Uganda/South Sudan border) 

B100 Kubiri - Gayaza - Kalagi 

B103 Nyendo - Villa Maria - Sembabule - Lwemiyaga - Nkonge - Kibula - Magege - Kasambya - 

Lusalira 

B150 Ishanyu - Bwizibwera - Ibanda - Muziza - Kamwenge - Fortportal 

B151 Mbarara - Ishanyu - Kabwohe - Ishaka 

B152 Ntungamo - Kagamba - Ishaka - Buhinda - Rugazi - Katunguru  - Kikorongo 

B153 Kabale - Ikumba - Muko - Nyakabande - Kisoro – Bunagana (Uganda/Congo border) 

B200 Kafu - Masindi 

B300 Namunsi - Sironko - Muyembe - Namalu - Chosan - Lokapel - Ariamoi - Moroto 

B303 Soroti - Arapai - Katakwi - Iriri - Ariamoi - Nadunget 

B307 Jinja - Buwenge - Kamuli - Nawantale - Bukungu 

B308 Namutere - Busia 

C004 Namboole - Gayaza road - Hoima road - Busega 

C157 Entebbe - Nakiwogo 

C158 Nakiwogo Statehouse road 

C170 Namboole access road 

C198 Budo - Nakasozi 

C199 Nabbingo access road 

C210 Nyendo - Masaka 

C232 Lyantonde - High Street 

C308 Nakasongola loop 

C309 Nakasongola - Airbase 

C350 Katete - Isingiro 

C354 Kikagati - Murungo bridge 

C356 Ibanda - Kanoni - Kazo 
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C410 Kagamba - Kebisoni - Rukugiri 

C412 Kisoro - Kyanika (Uganda/Rwanda border) 

C420 Kabale access road 

C457 Kisoro - Muganzi - Chahi 

C511 Kasese - Kilembe mines 

C517 Kasese Railway station road 

C540 Fortportal - Kichwamba - Karugutu - Bundibugyo - Lamia (Uganda/Congo border) 

C684 Gulu Airport road 

C744 Eruba - Vurra (Uganda/Congo border) 

 

Table 3.12 and Table 3.13 show load conversion to ESALs for each vehicle type. 

 

Table 3.12. Vehicle weight and equivalent ESALs factor (MoWT 2010, FHWA 2014). 

Vehicle type Min – Max 

weight (kN)* 

ESALs** 

Motorcycles and 

scooters 

0.044 - 13.34 - 

Saloon cars and taxis 4.45 - 35.54 0.06 

Light Goods 4.45 - 35.54 0.06 

Small Buses 88.92 > 1.59 

Medium Buses 88.92 > 1.59 

Large Buses 133.45 > 6.92 

Light Trucks 88.92 -133.45 1.59 

Medium Trucks 88.92 > 1.59 

Truck trailer/ semi-

trailer 
133.45 > 6.92 

Bicycles NA - 

Carts NA - 

*Maximum weight was considered following normal practice of designing for the worst case. 

** ESALs can be obtained from MoWT (2010) (Table 3.13) considering a commonly applied 

relative damage exponent (𝑛̇=4) or by simply calculating ESALs=[𝑎𝑥𝑒𝑙 𝑙𝑜𝑎𝑑/80]𝑛̇ for loads in 

kN. 
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Table 3.13. Load equivalency factors for different axel load groups in ESALs (MoWT 2010). 

Axle Loads Measured in kg Axle Loads Measured in kN 

Axle Load 

Range (kg) 
𝑛̇ = 3 𝑛̇ = 4 𝑛̇ = 4.5 Axle Load 

Range (kN) 
𝑛̇ = 3 𝑛̇ = 4 𝑛̇ = 4.5 

Less than 1500 - - - Less than 15 - - - 

1500-2499 .02 - - 15-24 .02 - - 

2500-3499 .05 .02 .01 25-34 .05 .02 .01 

3500-4499 .12 .06 .05 35-44 .13 .06 .05 

4500-5499 .24 .15 .12 45-54 .24 .15 .12 

5500-6499 .41 .30 .26 55-64 .42 .32 .28 

6500-7499 .64 .56 .52 65-74 .66 .58 .55 

7500-8499 .95 .95 .94 75-84 .99 .99 1.00 

8500-9499 1.35 1.51 1.59 85-94 1.41 1.59 1.69 

9500-10499 1.85 2.29 2.55 95-104 1.94 2.42 2.71 

10500-11499 2.46 3.34 3.90 105-114 2.58 3.55 4.16 

11500-12499 3.20 4.72 5.75 115-124 3.35 5.02 6.15 

12500-13499 4.06 6.50 8.22 125-134 4.26 6.92 8.82 

13500-14499 5.07 8.73 11.46 135-144 5.32 9.3 12.31 

14500-15499 6.23 11.49 15.61 145-154 6.54 12.26 16.79 

15500-16499 7.56 14.87 20.85 155-164 7.94 15.88 22.45 

16500-17499 9.06 18.93 27.37 165-174 9.53 20.24 29.50 

17500-18499 10.76 23.78 35.37 175-184 11.32 25.44 38.15 

18500-19499 12.65 29.51 45.09 185-194 13.31 31.59 48.67 

19500-20499 14.75 36.22 56.77 195-204 15.53 38.79 61.32 
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Derivation of MTP 

Consider that the condition state of one pavement section at time 𝜏𝑖 or time point 𝑦𝑖  is assumed to 

increase from 𝑖 to 𝑖 + 1. The period length in which the condition state remains in 𝑖 is represented 

by stochastic variable 𝜁𝑖 = 𝜏𝑖 − 𝜏𝑖−1 = 𝑦𝑖 . 𝜁𝑖  is the life expectancy of a condition state 𝑖  with 

probability density function 𝑓𝑖(𝜁𝑖) and distribution function 𝐹𝑖(𝜁𝑖) (Lancaster, 1990). 

 

 
𝐹𝑖(𝑦𝑖) = ∫ 𝑓𝑖 

𝑦𝑖

0

(𝜁𝑖)𝑑𝜉𝑖 
(3.33) 

 

The probability 𝐹𝑖̃ (𝑦𝑖) of a transition in the condition state 𝑖 during the time point interval 𝑦𝑖 = 0 

to 𝑦𝑖 ∈ [0,∞] is; 

 

 𝑃𝑟𝑜𝑏{𝜁𝑖 ≥ 𝑦𝑖} = 𝐹𝑖̃(𝑦𝑖) = 1 − 𝐹𝑖(𝑦𝑖)  (3.34) 

 

The conditional probability that the condition state of one pavement section at time 𝑦𝑖 advances 

from 𝑖 to 𝑖 + 1 during the time interval [ 𝑦𝑖, 𝑦𝑖 + ∆𝑦𝑖] is defined as; 

 

 
𝜆𝑖(𝑦𝑖)∆𝑦𝑖 =

𝑓𝑖  (𝑦𝑖)∆𝑦𝑖

𝐹𝑖̃(𝑦𝑖)
  

(3.35) 

 

The probability density 𝜆𝑖(𝑦𝑖)is the hazard function and can be defined with independence from 

time as; 

 

 𝜆𝑖(𝑦𝑖) = 𝜃𝑖  (3.36) 

 

Differentiating both sides of (3.34) with respect to 𝑦𝑖 we obtain 

 

 𝑑𝐹𝑖̃(𝑦𝑖)

𝑑𝑦𝑖
= −𝑓𝑖(𝑦𝑖)  

(3.37) 

 

(3.35) then reduces to 
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𝜆𝑖(𝑦𝑖) =
𝑓𝑖 (𝑦𝑖)

𝐹𝑖̃(𝑦𝑖)
= −

𝑑𝐹𝑖̃(𝑦𝑖)
𝑑𝑦𝑖
𝐹𝑖̃(𝑦𝑖)

=
𝑑

𝑑(𝑦𝑖)
(− log 𝐹𝑖̃(𝑦𝑖)) 

(3.38) 

 

Integrating equation (3.38) 

 
∫ 𝜆𝑖(𝑢)𝑑𝑢
𝑦𝑖

0

= [− log 𝐹𝑖̃(𝑢)]0
𝑦𝑖 = − log𝐹𝑖̃(𝑦𝑖) 

𝐹𝑖̃(0) = 1 − 𝐹𝑖(0) = 1 

(3.39) 

 

Substituting (3.36), probability 𝐹𝑖̃(𝑦𝑖) that life expectancy of condition state 𝑖 becomes longer than  

𝑦𝑖 is;  

 
𝐹𝑖̃(𝑦𝑖) = 𝑒𝑥𝑝 [−∫ 𝜆𝑖(𝑢)𝑑𝑢

𝑦𝑖

0

] = 𝑒𝑥𝑝(−𝜃𝑖𝑦𝑖) 
(3.40) 

 

According to (3.37) 

 𝑓𝑖(𝜁𝑖) = 𝜃𝑖𝑒𝑥𝑝(−𝜃𝑖𝜁𝑖)  (3.41) 

 

Now consider that the condition state has changed to 𝑖 at the time 𝜏𝑖−1, and remains constant until 

the inspection time 𝜏𝐴(time point 𝑦𝐴). The probability that the condition state 𝑖 remains constant 

in a subsequent time 𝑧𝑖(≥ 0) measured from 𝑦𝐴 is; 

 

 𝐹𝑖̃(𝑦𝐴 + 𝑧𝑖|𝜁𝑖 ≥ 𝑦𝐴) = 𝑃𝑟𝑜𝑏{𝜁𝑖 ≥ 𝑦𝐴 + 𝑧𝑖|𝜁𝑖 ≥ 𝑦𝐴} (3.42) 

 

Dividing both sides by 𝐹𝑖̃(𝑦𝑖) in (3.34) 

 𝑃𝑟𝑜𝑏{𝜁𝑖 ≥ 𝑦𝐴 + 𝑧𝑖}

𝑃𝑟𝑜𝑏{𝜁𝑖  ≥  𝑦𝐴}
=
𝐹𝑖̃(𝑦𝐴 +  𝑧𝑖)

𝐹𝑖̃(𝑦𝐴 )
  

(3.43) 

 

Using (3.40) on the right side of (3.42); 

 𝐹𝑖̃(𝑦𝐴 +  𝑧𝑖)

𝐹𝑖̃(𝑦𝐴 )
=
𝑒𝑥𝑝{−𝜃𝑖(𝑦𝐴 +  𝑧𝑖)}

𝑒𝑥𝑝(−𝜃𝑖𝑦𝐴)
= 𝑒𝑥𝑝(−𝜃𝑖𝑧𝑖)  

(3.44) 

 

Therefore the transition probability; 
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 𝑃𝑟𝑜𝑏[ℎ(𝑦𝐵) = 𝑖|ℎ(𝑦𝐴) = 𝑖] = 𝑒𝑥𝑝(−𝜃𝑖𝑍) (3.45) 

 

where 𝑍  is the interval between two inspection times 𝑦𝐴 and 𝑦𝐵. 

(For derivation of other MTPs refer to Tsuda et al. 2006) 
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Photo Gallery 

 

Figure 3.15. Categorization of road condition for Uganda (MoWT, 2014) 

 

Figure 3.16. Inspection vehicle (Shimizu Corporation et al., 2021). 
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Figure 3.17. Sensor mounted on car wheel (Shimizu Corporation et al., 2021). 

 

 

Figure 3.18. Road images from Uganda (Shimizu Corporation et al., 2021). 

 

 

Figure 3.19. Inspected road condition for select routes in 2017 (Using UNRA 2019 data). 
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Figure 3.20. Inspected road condition for select routes in 2018 (Using UNRA 2019 data). 

 

 

Figure 3.21. Traffic level on select routes in 2017 (Using UNRA 2019 data). 
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Figure 3.22. Traffic level on select routes in 2018 (Using UNRA 2019 data).  

 

 

Figure 3.23. Estimated road pavement condition in 2021. 
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Chapter 4 

4 Pavement Intervention Effects on Travel Time 

 

“Adding car lanes to deal with traffic congestion is like loosening your belt to cure 

obesity.” – Lewis Mumford (1955) 

 

4.1 Introduction 

Efficient transportation systems are an important prerequisite for economic growth since they 

facilitate the efficient and safe delivery of goods and services. In many developing countries, the 

most popular delivery mode for goods is road transportation. Because of the poor condition and 

congestion on some roads, a significant amount of productive time is lost during travel; a huge 

cost that hinders economic development. For instance, in Kampala, Uganda, an estimated 40% of 

rush-hour journeys are spent at a standstill due to narrow dilapidated roads. In addition, pavement 

management has been fragmented with uncoordinated decisions taken for interlinked road aspects; 

for example, the inadequacy in road capacity (congestion) has been managed separately by 

planners, whereas durability (structural failure) has been handled by engineers despite the close 

links between these aspects. This study looks at three fundamental considerations for road travel; 

i.e., safety, condition, and capacity. The study builds a social cost model to evaluate intervention 

(condition improvement and capacity increase) choice for multiple road sections simultaneously 

by optimizing social costs after setting safety limits. The social cost model contains a travel time 

function that incorporates a condition term in the original Bureau of Public Roads function. The 

model defines social cost as a summation of travel and intervention costs incurred by the society, 

and proposes an evaluation framework that combines both capacity and durability aspects. To 

show the applicability of the model, an empirical study was carried out on Ugandan road 

pavements.
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4.2 Pavement Management 

Pavement management policies could be formulated to deal with the inadequacies in road capacity 

(congestion) and durability (structural failure). The fragmentation of pavement management where 

uncoordinated decisions are taken for interlinked road aspects is a recurring challenge that has led 

to, for instance, planners dealing only with congestion and leaving pavement failure to engineers. 

A case in point is in Uganda where some roads are managed by both the Uganda National Roads 

Authority (UNRA) and local authorities at different times with often varying maintenance and 

expansion decisions yet both are under the Ministry of Works and Transport (MoWT 2011–2017). 

As a result, pavement intervention does not always fully meet the required maintenance and 

improvement needs. Furthermore, this disjointed management is exacerbated by the current 

problem of rapidly aging or deteriorating infrastructure that has led to the widening gap between 

maintenance needs and finance allocation. For example, in Uganda, the national road maintenance 

budget catered for only 26%, 48%, and 34.8% of the total needs in 2013, 2014, and 2015, 

respectively (MoWT 2011–2017). This underscores the challenges faced by road administrators 

in providing efficient road service. 

 

The efficient transportation of goods and services is an important prerequisite for economic growth 

in any country. In Uganda, about 96.5% of freight and 95.0% of passengers travel by road, 

confirming the popularity of road transport compared to other modes (rail, water, and air). In 

Kampala, Uganda, an estimated 40% of rush-hour journeys are spent at a standstill due to such 

reasons as narrow roads in poor condition (MoWT 2011–2017; Bird and Venables 2020). This lost 

time is a huge social cost that slows down economic development. It is therefore in the interest of 

any public road administrator to improve the effectiveness and efficiency of road service, a 

challenge this study attempts to solve. 

 

This study proposes a social cost model with an evaluation framework that combines both capacity 

and durability aspects and looks at three fundamental considerations for road travel; i.e., safety, 

condition and capacity by incorporating a condition term in the original Bureau of Public Roads 

(BPR 1964) travel time function and evaluates the trade-off between intervention (condition 

improvement and capacity increase) choice for multiple road sections concurrently by optimizing 
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social costs after setting safety limits. There exist more considerations for road travel including 

noise, comfort and particle emission (Adey et al. 2020). Some of these items could be sub 

components or outcomes of the three fundamental considerations; for instance, comfort may be a 

sub component of safety and poor condition may lead to particle (dust) emission. Social cost was 

defined as a summation of travel and intervention costs incurred by the society. To show the 

applicability of the model, an empirical study was carried out on Ugandan road pavements. As far 

as is known, no past study builds a model that can be applied to empirically evaluate intervention 

effects for multiple sections simultaneously. The objectives of this study are: 

1) Develop a social cost model to evaluate effects of road intervention on capacity and 

durability for multiple sections concurrently. 

2) Empirically apply the model to Ugandan road pavements. 

 

The rest of this chapter is organized as follows. The next section presents a review of relevant 

literature; followed by a summary of Ugandan road data, based on which a social cost optimization 

model is developed. The subsequent section contains the model application. Finally, conclusions 

from the results and suggestions for future work are made. 

4.3 Literature Review 

Models consist of functions defining relationships between dependent and independent variables. 

These functions may include parametric and non-parametric forms. Parametric functions involve 

a prior selection of the functional form, whereas for non-parametric methods, functions and 

patterns are generated by linking independent short linear segments. In the literature, parametric 

models in the pavement infrastructure management field such as regression models (e.g., TRB 

2000, 2010; Chandra 2004; and Wang et al. 2014) and non-parametric models (e.g., Richmond et 

al. 2021) have been developed. Non-parametric forms give room for the data to generate a shape 

from which representative functional forms can be derived, whereas parametric methods enable 

reference to past literature for similar functional forms and therefore could be useful for 

comparative studies. Additionally, functional forms may be linear or non-linear. Generally, non-

linear functional forms are more appropriate than linear forms because they can account for scale 

economies or diseconomies (Sinha and Labi 2007). 
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A number of studies have attempted to develop relationships between the speed, travel time, 

capacity, and road condition. Wang et al. (2014) developed an empirical model for Californian 

freeways showing the relationship between the pavement roughness and Free-Flow Speed (FFS), 

the speed achieved by a single vehicle when no other vehicles are on a corridor (road section). The 

number of lanes, days of the week, gasoline price, and pavement roughness were used as 

explanatory variables. It was shown that the roughness had a small impact on the FFS given the 

good state of Californian roads (90% of the surveyed roads had a roughness level of 3 mm/m or 

lower). A study by Chandra (2004) investigated the effect of road roughness on the capacity of 

two-lane roads in India taking into consideration the effect of lane indiscipline on Passenger Car 

Unit (PCU) equivalents. A regression model was built empirically and it showed that for every 

1,000 mm/km increase in surface unevenness, the capacity of two-lane roads decreased by 300 

PCUs per hour.  

 

The Transport Research Board (TRB) also developed linear models to estimate the FFS for US 

roads using the lane width and lateral clearance, total number of lanes, interchange density, and 

road horizontal and vertical alignment as the main factors affecting the speed (TRB 2000, 2010). 

The TRB models did not include the road surface condition as an explanatory variable, probably 

because of its insignificant effect on FFS for US roads. For roads with high roughness levels 

(approximately > 6 mm/m), Bennett and Greenwood (2002) developed a limiting speed model.  

 

An empirical study in Brazil by the World Bank showed that the travel time function vs. condition 

was expected to follow the trend as shown in Figure 4.1. Shorter travel times could be achieved 

before a road section deteriorated to a critical condition. In the case of Brazilian roads, the 

significant condition level, where condition has an effect on travel time, was determined as 6 

mm/m (Watanatada et al. 1987). The slightly increasing trend line, highlighted in red color, could 

occur due to traffic congestion on pavements in good condition. Additionally, according to the 

Bureau of Public Roads (BPR, 1964), the travel time function vs. volume:capacity ratio was 

expected to follow the trend as shown in Figure 4.2. Travel time reduction could be achieved by 

making improvements on a section (e.g., condition improvement and capacity increase). These 

ideas on travel time, condition and volume:capacity relationships are followed later on in the 



Chapter 4. Pavement Intervention Effects on Travel Time 

75 
 

calibration of the travel time function and to evaluate the trade-off between condition improvement 

and capacity increase that was not considered by earlier studies. 

 

Figure 4.1. Expected trend of travel time function. 

 

 

Figure 4.2. Time function before and after intervention. 

 

Sinha and Labi (2007) detailed the decision making process for transportation systems. 

Transportation systems can be evaluated using costs consisting of agency costs (incurred by the 

road service provider) including facility maintenance costs; user costs (incurred by the road users), 

for example, travel time costs; and secondary costs or externalities such as congestion. When 

evaluating improvement strategies for transportation systems, interventions can be compared to a 

base alternative, typically the do-nothing option; and comparisons of the level of transportation 
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cost saving/ reduction can be made, and the cost optimizing alternative selected. In the evaluation 

process, the analyst may exclude costs that may not vary across alternatives such as initial planning, 

and right of way; and the costing of interventions may be done in an aggregate or disaggregate 

manner. Aggregate costing may involve using an average rate; for instance, cost per lane-kilometer, 

whereas disaggregate costing may be more detailed with costing done using prices of individual 

intervention items. The costs may be adjusted for temporal (e.g., inflation) and spatial variations 

based on the location of the project, economies of scale accrued due to handling more project units, 

and they may also incorporate uncertainties brought about by disasters. 

 

Specifically, in the asset management field, Adey (2019) looked at the road infrastructure asset 

management process in its entirety with the goal of improving efficiency and effectiveness. Adey 

et al. (2020) defined impact types for users and the public and listed accident, travel time, vehicle 

operation, comfort, noise, and particle emissions as important considerations for road service. 

Adey et al. (2012) built models to evaluate total benefits of road preservation in Switzerland and 

showed how the relationship between benefits to road condition through pavement condition 

indicators, such as surface friction, surface damage and the longitudinal unevenness, and road type 

could be used to determine optimal intervention strategies. Adey’s (2012) study built different 

models to evaluate intervention strategies on Swiss roads but did not develop a framework to 

evaluate varied interventions for multiple sections concurrently. 

 

Madanat and Ben-Akiva (1994) developed a Latent Markov Decision Process (LMDP) for optimal 

inspection and repair of facilities by minimizing the sum of inspection, maintenance and 

rehabilitation costs. Smilowitz and Madanat (2000) extended the LMDP to include network level 

constraints by using randomized policies.  Adey et al. (2014) built an optimization model to 

determine the optimal intervention strategy for a road link composed of multiple objects and 

investigated the use of impact hierarchy in a case study in the Netherlands. Lethanh et al. (2015) 

developed a model to optimize intervention strategies for multiple assets using Markov models 

and empirically demonstrated the model using a road link comprising one road section and one 

bridge. Kobayashi et al. (2013) formulated optimal policies for inspecting pavements with 

deterioration uncertainty by minimizing life cycle costs. These studies gave less attention to the 

evaluation of intervention effects on multiple sections. 
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The Analytic Hierarchy Process (AHP) has been used by earlier researchers to determine the 

priority of pavement sections for repair work. For instance, Moazami et al. (2011) and Dabous et 

al. (2019) used the AHP framework to prioritize pavement maintenance using the pavement 

condition, type, and traffic volume as the alternative options at different decision levels. 

 

Yang et al. (2015) investigated the trade-off between road user costs and agency costs 

(maintenance) by balancing maintenance operations during peak and non-peak traffic hours (at 

night) when road user costs were low but the time was unsafe for workers and agency costs were 

higher. Yang et al. (2015) optimized the start time and duration of maintenance work with minimal 

impact on the total costs (user and agency) in the road network. 

 

Other studies in the literature also attempted to improve the efficiency of the pavement network 

by suggesting different management policies. Small and Winston (1988), Newbery (1988, 1989), 

and Small et al. (1989) investigated specific road cost recovery policies considering road damage 

costs and congestion costs. They examined whether congestion and durability charges recovered 

costs due to road damage attributed to vehicle loading (especially by trucks) and weather, 

congestion, and other non-traffic related costs such as policing and lighting. Verhoef and Small 

(2004), and Small and Yan (2001) investigated road pricing considering differentiated products to 

maximize the benefits of tolling considering heterogeneous users and applied Wardrop’s 

equilibrium for congested networks (Wardrop 1952). Liu and Wang (2016) used the stochastic 

user equilibrium approach based on the logit model to determine appropriate extensions to road 

networks by minimizing the total network travel time. Lin and Lin (2011) developed a pavement 

maintenance strategy for Kaohsiung, Taiwan by using pavement roughness data, traffic volume, 

and expert advice as the criteria to support the pavement maintenance decision process. A study 

by Volovski et al. (2017) empirically suggested that maintenance expenditure exhibited significant 

spatial and temporal variations for maintenance done at different locations and years. 

 

As shown in the literature review, the bulk of the past studies suggest policies and models to 

improve efficiency and effectiveness of road maintenance to achieve acceptable road service but 

do not specifically build a joint framework to evaluate intervention effects on capacity and 
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durability. This study attempts to narrow this gap in the literature by contributing to the 

development of a framework to evaluate the effect of intervention on road capacity and durability 

for multiple sections simultaneously and shows its application through an empirical study on actual 

road sections. 

4.4 Travel time vs. condition and capacity relationships for Ugandan roads 

4.4.1 Database 

Ugandan national roads are managed by UNRA under the supervision of the MoWT. As of 2017, 

the entire national road network in Uganda consisted of 20,544 km (4,551 km paved and 15,993 

km unpaved). Road data for the year 2018 consisting of traffic volume, speed, pavement condition 

and type, location, and other inventory data such as the section length and width were obtained 

from the UNRA database (UNRA 2019). The data covered both paved and unpaved sections with 

the pavement condition measured using the International Roughness Index (IRI). The IRI estimates 

the roughness of a road obtained by measuring longitudinal road profiles using a test vehicle. 

UNRA engineers used a bump integrator to measure the IRI. A road section in perfectly good 

condition has an IRI of about 0 to 2.00 mm/m, whereas one in worse condition has an IRI of 8.00 

mm/m or more (MoWT 2011–2017). The IRI was obtained mainly for paved sections at 1 km 

intervals, probably due to limited manpower and equipment. The traffic volume was measured in 

terms of the average annual daily traffic per road link using manual road counts at specific 

locations following the American Association of State Highway and Transportation Officials 

(AASHTO) average of averages method (FHWA 2018). The speed on a road section was measured 

using a radar gun. Sections with unknown travel speed, traffic volume, or condition (all unpaved) 

were cleaned out. The remaining data sample consisted of 2,425 sections each with a length of 1 

km, which were reduced to 2,404 sections after further cleaning. A summary of the data is 

presented in the following subsections. Data was also available for 2017, but it showed similar 

trends to those of the 2018 data. 

4.4.2 Data summary 

The data summary presents the pavement condition, travel time, and volume:capacity ratio for the 

surveyed paved Ugandan road network. The daily traffic on Ugandan roads was heterogeneous; 

hence, it was converted to a homogeneous equivalent, passenger car units (PCUs), based on the 

PCU factor for each vehicle type according to Table 4.1. Then, the daily traffic volume was 
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multiplied by the thirtieth hourly volume factor of 0.15 to convert it to an hourly volume so as to 

compute the volume:capacity (𝑣/𝑐)  ratio for each section (MoWT 2010). The road section 

capacity, the flow that produces the minimum acceptable journey speed, could be approximated 

from the measured width within the database. Most of the national roads were typically two-lane 

(with section width ranging from 6 to 11 m for all sections). The sections with a narrower width 

had no shoulders. The road capacity was set at the typical value of 2,200 PCU/h for two-lane roads 

(TRB 2000, 2010; Chandra 2004). 

 

Table 4.1. PCU factors (MoWT 2010 and FHWA 2014) 

Vehicle type Terrain 

Rolling Mountainous 

Motorcycles and scooters 1.0 1.5 

Saloon cars and taxis 1.0 1.5 

Light goods 1.5 3.0 

Small buses 1.5 3.0 

Medium buses 4.0 6.0 

Large buses 4.0 6.0 

Light trucks 1.5 3.0 

Medium trucks 5.0 10.0 

Truck trailer/semi-trailer 8.0 20.0 

Bicycles 0.5 NA* 

Carts 1.0 NA 

* NA stands for not applicable. 

 

Histograms were developed to show the distribution of the measured travel time, roughness, and 

volume:capacity ratio across the surveyed sections (Figure 4.3). The histograms showed that most 

of the sections had a measured time falling between 50 and 100 s, most sections were uncongested 

(𝑣/𝑐 < 1) because they are interurban center national roads, and most sections were in good to 

fair condition with an IRI of 5.00 mm/m and below. 
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Figure 4.3. Histograms for 2018 data. 

 

Travel time 𝜏 vs. IRI scatter plots per section were generated but did not show a clear trend. A 

clearer trend could be seen when the plots were averaged (grouped) (Table 4.2 and Figure 4.4). It 

can be deduced that the condition effect was experienced from an IRI of about 4.00 mm/m and 

above (worse condition), shown by the exponential increase in the travel time for IRI > 4.00 mm/m, 

whereas the congestion effect was experienced from an IRI of about 3.00 mm/m and below (better 

condition), shown by the slight increase in the travel time for IRI < 3.00 mm/m. 
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Table 4.2. Average travel time (𝜏) and volume:capacity (𝑣/𝑐) ratio per IRI group for 2018  

IRI group 

(mm/m) 

No. τ (s) v/c 

0.00–2.00 181 64.35 

(22.50) 

0.67 

(0.34) 

2.01–3.00 679 76.67** 

(38.40) 

0.62 

(0.75) 

3.01–4.00 837 68.84 

(35.55) 

0.45 

(0.58) 

4.01–5.00 426 73.66 

(40.44) 

0.46 

(0.46) 

5.01–6.00 189 90.18* 

(61.37) 

0.51 

(0.63) 

6.01–7.00 49 114.37* 

(79.02) 

0.38 

(0.42) 

7.01– 43 172.98* 

(72.94) 

0.73 

(1.15) 

Note: Values in parentheses are the standard deviations. 

* Condition effect, ** congestion effect. 

 

Figure 4.4. Measured time vs. IRI for 2018. 
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Figure 4.5. Measured time vs. v/c for 2018. 

 

Travel time vs. volume:capacity scatter plots were also generated but, again, these plots did not 

clearly show that the travel time increased with an increase in the volume:capacity ratio. Hence, 

the sections were classified based on the location (urban or rural) and terrain (rolling or 

mountainous) as shown in Table 4.3. This classification showed that urban roads were more 

congested than rural roads and that roads in mountainous areas were less congested compared to 

those in rolling terrain. The vertical lines of the plotted points, which represent roads, showed that 

one road may crisscross from one region to another; e.g., from rural-rolling to rural-mountainous 

(Figure 4.5). Therefore, the sections were grouped into 45 road groups based on the location and 

terrain (Table 4.3). When grouped, the worst condition, average volume:capacity ratio, and 

average travel time within the group were obtained. The worst condition was considered for safety 

reasons and the average travel time and volume:capacity ratio were considered because national 

roads are not as heavily trafficked as urban roads. The travel time vs. volume:capacity trend 

became clearer with the travel time being stagnant when 𝑣/𝑐 ≤ 0.5 and then increased when 
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𝑣/𝑐 > 0.5 (Figure 4.6). It was also shown that roads in urban mountainous areas had longer travel 

times. The histograms developed for the 45 road groups showed a similar distribution for the 

measured travel time and volume:capacity ratio as for the case of individual sections. For the 

roughness, the proportion in a worse condition showed a slight increase for groups (Figure 4.7). 

Table 4.3. Number of road sections and groups for 2018 data 

Region Sections Groups 

Urban mountainous 20 6 

Urban rolling 436 13 

Rural mountainous 434 13 

Rural rolling 1,514 13 

Total 2,404 45 

 

  

Figure 4.6. Average measured time vs. v/c per group for 2018. 
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Figure 4.7. Histograms for groups for 2018. 

 

Based on the data summary, it was shown that grouping the road sections produced the expected 

trend as shown in the literature and thus could generate better model estimates compared to using 

individual sections. This can be explained by the fact that road sections on the same link or 

interlinked sections interact and the condition of one section may affect the travel time on other 

sections. 

4.5 Model 

4.5.1 Model Framework and Notation 

Road networks consist of origins and destinations joined by links comprising sections and nodes. 

Nodes are often seen as junctions or points representing changes in the link characteristics; e.g., 
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travel speed, capacity, etc. (Luis 2008). In the model, a road network is subdivided into individual 

(discrete) pavement sections because the identification of poor network sections may be more 

targeted which could make intervention more effective. Based on the data summary as shown in 

Figure 4.4 and Table 4.2; the BPR function, a regression model, may be suitable to represent the 

relationship between travel time, condition and volume:capacity ratio on paved Ugandan roads. 

Consider a road network with a population of 𝐾𝑔  road sections with 𝑘𝑔 = 1𝑔, … , 𝑘𝑔  each 

belonging to a group 𝑔 = 1,… , 𝐺. Each road section 𝑘𝑔 has a covariate vector 𝑿𝑘
𝑔
∈ ℝ𝑞 +, and 

requires travel time 𝜏𝑘
𝑔
∈ ℝ + to traverse. The scalar 𝑞 is defined as 𝑞(𝑞 = 1,2,3, … ). The travel 

time on each section 𝜏𝑘
𝑔
 can be defined as a regression model: 

 

 
𝜏𝑘

𝑔
= 𝜃1(𝑋1

𝑘𝑔)𝑛 +⋯+ 𝜃𝑞(𝑋𝑞
𝑘𝑔)

𝑛′

  
(4.1) 

 

where 

𝜃1, … , 𝜃𝑞 are unknowns collected in the parameter 𝜽; 

𝑛(𝑛 = 1,2,3, … ) is an index; and 

ℝ+ denotes positive real numbers. 

 

The notation 𝑛′ is used to avoid confusion that may arise because index 𝑛 may vary for each 

covariate. The covariate vector may include covariates: the pavement condition 𝑖𝑘
𝑔
= 𝑋1

𝑘𝑔, and 

the traffic volume:capacity (𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)  = 𝑋2

𝑘𝑔  following the parametric BPR power function 

(BPR 1964) with the pavement condition as an additional explanatory variable. 

 

The society, including road users, may face the travel time and intervention costs. The benefits of 

product differentiation for the case of heterogeneous users as discussed by Small and Yan (2001) 

were not considered. Intervention costs were assumed to have no spatial variations. Also, discount 

rates considering multiple interventions at the same time (economies of scale) were fixed and 

discounts considering the time value of money were not considered because the interventions for 

all candidate sections were assumed to be done at once. Additionally, for this study, even if we 

considered such discounts, there may be no significant change in the results. In the actual road 

network, users may shift to a route with a lower travel cost or stop travel altogether. For simplicity, 
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it was assumed that there was no incentive (i.e., free-flow conditions or no charges) for road users 

to change their route (section) or to stop travel; hence, the traffic volume 𝑣𝑘
𝑔
 was assumed to 

remain constant on each section 𝑘𝑔. 

 

Pavement durability may be affected by traffic loading, moisture penetration to sublayers, and 

significant temperature variations (i.e., loading and weather). Pavement durability was included in 

the model using the variable pavement condition. Congestion is one of the major indicators of the 

level of service of a road network. Inadequacy in road capacity was included in the model by 

considering the volume:capacity (𝑣𝑘
𝑔
/𝑐𝑘

𝑔
) ratio on a road section. 

 

Whereas other studies (e.g., Small and Yan 2001; Lui and Wang 2016) have approached network 

design problems by using Wardrop’s equilibrium (Wardrop 1952), the present study optimized the 

social cost considering action on each individual section because of the generally lower traffic 

levels (uncongested) for intercity national roads following optimization frameworks; e.g., Yang et 

al. (2015), Smilowitz and Madanat (2000). This was because equilibrium may be difficult to 

achieve for uncongested roads within practical time limits contrary to Wardrop’s consideration of 

congested networks. Optimum intervention strategies were obtained by minimizing the social cost 

ξ. The social cost was defined as a summation of travel and intervention costs, incurred by the 

society, for all road sections. 

4.5.2 Travel Time Function 

As shown in the data summary, it was more likely that regression on groups could generate better 

results compared to regression on individual sections. The adopted travel time function was 

general; i.e., it could be applied to groups or individual sections. Comparisons could then be made 

for regression results considering groups or individual sections to determine the better model fit. 

 

The travel time 𝜏𝑘
𝑔
(𝑖𝑘

𝑔
, 𝑣𝑘

𝑔
, 𝑐𝑘

𝑔
) was defined as a function of the pavement condition 𝑖𝑘

𝑔
, traffic 

volume 𝑣𝑘
𝑔
, and section capacity 𝑐𝑘

𝑔
 as shown by the modified BPR function in Equation (4.2) 

with the unknown parameter vector 𝜽  and index 𝑛 . The modified BPR function was more 

promising because Ugandan road data showed an exponential increase in the travel time after the 

significant condition 𝑖𝑘
𝑔∗  and significant volume:capacity ratio (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ . The original BPR 
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function has a power of 𝑛 = 4 and 𝜃2 = 0.15, and does not include the condition term. Whereas 

other studies have used linear functions with explanatory variables to define the travel speed (TRB 

2000, 2010; Chandra 2004; Vlahogianni 2007; Wang et al. 2014; Ravi Sekhar et al. 2016) or the 

travel time (Iryo et al. 2005), this study defined travel time using the nonlinear function: 

 

 𝜏𝑘
𝑔
= 𝜏𝑘

𝑔,0 [{1 + 𝜃1𝑓(𝑖
𝑘𝑔)} {1 + 𝜃2(𝑓(𝑣

𝑘𝑔/𝑐𝑘
𝑔
))
𝑛
} ] 

 

𝑓(𝑖𝑘
𝑔
) = {

0                      𝑖𝑓  𝐼𝑅𝐼𝑘
𝑔
 ≤ 𝑖𝑘

𝑔∗ 

(𝑖𝑘
𝑔
− 𝑖𝑘

𝑔∗)𝑦    𝑖𝑓  𝐼𝑅𝐼𝑘
𝑔
 > 𝑖𝑘

𝑔∗ 
     

𝑓(𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)  = {

0                                                 𝑖𝑓  (𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)  ≤ (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ 

(𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)  − (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗     𝑖𝑓  (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)  > (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ 
     

(4.2) 

 

where 

𝜃1 and 𝜃2 are unknowns collected in parameter 𝜽; 

𝜏𝑘
𝑔,0 is free-flow travel time on section 𝑘𝑔 when traveling at the FFS; 

𝐼𝑅𝐼𝑘
𝑔
 is the IRI of section 𝑘𝑔; 

𝑓(𝑖𝑘
𝑔
) and 𝑓(𝑣𝑘

𝑔
/𝑐𝑘

𝑔
) are the condition and volume:capacity functions, respectively; 

𝑦 is an index; and 

𝑖𝑘
𝑔∗ and (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ are the condition and volume:capacity significant values. 

During free flow, 𝜃2  = 0 and at full capacity (𝑣𝑘
𝑔
= 𝑐𝑘

𝑔
), the critical speed is reached, where 

operations are unstable and any slight disturbance to the network causes traffic flow breakdown 

(FHWA 2018). 

 

Road users may prefer a specific section leading to negative impacts, such as congestion. 

Oversized vehicles and junctions (in urban settings) are the main contributors to congestion (Lu et 

al. 2016; Luis 2008). In this study, the congestion externality was captured in the volume:capacity 

ratio (delay cost) term in Equation (4.2). 

 

The modified BPR function can be calibrated as a nonlinear least squares problem by minimizing 

the loss function 𝐿(𝜏𝑘
𝑔
, 𝑿𝑘

𝑔
; 𝜽, 𝑛). The loss function was defined as the sum of squared deviations 
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between the predicted travel time and the actual measured travel time for all road groups. The 

objective function can be expressed as: 

 

 
𝑚𝑖𝑛
𝜽, 𝑛

 𝐿 = ∑ (𝜏𝑚𝑜𝑑𝑒𝑙
𝑘𝑔 − 𝜏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑘𝑔 )
2

𝐾𝑔

𝑘𝑔=1

  

(4.3) 

 

For regression on individual sections, exact section values can be used. When regression is done 

based on groups, group data 𝒈̅(𝜏𝑘
𝑔̅̅ ̅̅̅, (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑖𝑘

𝑔̅̅ ̅̅ ) may be defined as: 

 

𝜏𝑘
𝑔̅̅ ̅̅̅ =

1

𝑘𝑔
∗ ∑ 𝜏𝑘

𝑔

𝑘𝑔

𝑘𝑔=1𝑔

                   ∀𝑔  

(4.4) 

 

 

(𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

𝑘𝑔
∗ ∑ (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)

𝑘𝑔

𝑘𝑔=1𝑔

              ∀𝑔  

(4.5) 

 

 𝑖𝑘
𝑔̅̅ ̅̅ =

𝑎𝑟𝑔𝑚𝑎𝑥

𝑖𝑘
𝑔 𝑓(𝑖𝑘

𝑔
)                       𝑖𝑘

𝑔
∈ 𝑔  ∀𝑔  (4.6) 

 

4.5.3 Calibration of the Modified BPR Function 

The modified BPR function was calibrated using the data for 2018, and then the model was applied 

to the entire surveyed paved Ugandan national road network. The significant values 𝑖𝑘
𝑔∗  and 

(𝑣𝑘
𝑔
/𝑐𝑘

𝑔
)∗ were fixed at 4.00 mm/m IRI and 0.5, respectively based on the surveyed Ugandan 

pavement data summary. Other significant values did not generate majorly different results. Also, 

model calibration considering individual sections did not generate better results compared to 

calibration considering groups. In the calibration, the following considerations were made: 

1) The FFS was set according to Figure 4.8 and Table 4.4.  

2) Higher travel speeds can be achieved in rural areas and for rolling terrain. The free-flow 

travel time was obtained from the FFS by dividing it by the section length. 
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3) The data was aggregated into groups based on the terrain and location. For aggregate data, 

the worst condition value, average time, and average volume:capacity ratio were used as a 

representative section for a group in the estimation.  

4) The index 𝑦 was fixed to 1 because the use of other values did not improve the results. 

 

Figure 4.8. Speed achieved on surveyed Ugandan national road sections. 

Table 4.4. Average speed (km/h) and set FFS  

Development 

Category 

Urban  Rural  

Terrain Mountainous  Rolling  Mountainous  Rolling  

Average speed* 41.68 50.63 47.41 55.54 

*Average speed was set as the FFS. 

The parameter 𝜽 and index 𝑛 were estimated using R programming language as shown in Table 

4.5 and Table 4.6. The model calibration results showed that the road condition and 

volume:capacity ratio were strongly related to the travel time. The condition and volume:capacity 

ratio parameters had a low standard error, with a significant t-value and p-value for a 95% 

confidence interval. This result empirically shows that the road condition and volume:capacity 

ratio have a significant effect on the travel time. The positive sign for the condition parameter 

indicates that as the condition worsens, the travel time increases. The same can be inferred for the 

volume:capacity ratio. Also, the estimated 𝜃2value was close to that of the original BPR equation. 
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The 𝑛 value was insignificant; hence, it was also fixed to 1. Other nonlinear relationships were 

tested with 𝑦 free or fixed to other values but the results were not any better. Figure 4.9 shows the 

plots of the estimated vs. measured time with points generally falling close to the 45° line. The 

results for the 2018 data in Table 4.6 showed the best parameter estimate. It should be noted that 

the inaccuracy in the model is due to noise in the data because the travel time is also affected by 

other factors such as the road geometry and driver behavior, but not only the road condition and 

traffic volume as considered in this study. 

 

Table 4.5. Estimated parameter values with n free for 2018  

R2 Variable Parameter Estimated 

value 

Standard 

error 

t-value Pr (>|t|) Significance 

code 

0.5778 Condition 𝜃1 0.3157 0.04651 6.79 2.91e-08 *** 

Volume/ 

capacity 
𝜃2 0.4385 0.12576 3.49 0.00116 ** 

Power 𝑛 0.5479 0.35498 1.54 0.13024  

Significance codes: ***: 0, **: 0.001, *: 0.01 

Table 4.6. Estimated parameter values with n fixed for 2018  

R2 Variable Parameter Estimated 

value 

Standard 

error 

t-value Pr (>|t|) Significance 

code 

0.5615 Condition 𝜃1 0.3331 0.04387 7.59 1.8e-09 *** 

Volume/ 

capacity 
𝜃2 0.3481 0.09740 3.57 0.00088 *** 

Power 𝑛 1     

 

 

Figure 4.9. Estimated vs. average measured time plots. 
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From the results in Table 4.6, it can be seen that 1 unit improvement in condition 𝑖𝑘
𝑔
 results in a 

reduction of 0.3331/(1 + 0.3331𝑖𝑘
𝑔
) in the travel time if 𝑣𝑘

𝑔
/𝑐𝑘

𝑔
 is held constant. This shows that 

a unit improvement in the condition for roads in fair condition (smaller 𝑖𝑘
𝑔

) has a larger net 

reduction in the travel time compared to that for roads in a worse condition (larger 𝑖𝑘
𝑔
). Similarly, 

a unit improvement in 𝑣𝑘
𝑔
/𝑐𝑘

𝑔
 results in a reduction of 0.3481/(1 + 0.3481(𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)) in the 

travel time if 𝑖𝑘
𝑔
 is held constant. 

4.5.4 Pavement Intervention 

Pavement management decisions such as improving the condition, increasing the capacity, and no 

action are considered to be undertaken by the road agency. Action 𝐴𝑖  is taken to improve the 

section condition, action 𝐴𝑐  to increase the section capacity, and action 𝐴0  is no action. This 

attracts an intervention unit cost 𝐶𝑘
𝑔,𝐴 considering a specified intervention  𝑨(𝐴 = 𝐴𝑖 , 𝐴𝑐 , 𝐴0) for 

section area 𝑎𝑘𝑔  to be improved (𝐶𝑘
𝑔,𝐴0 = 0).  When intervention occurs, the condition and 

capacity improve based on Equations (4.7) and (4.8) respectively. 

 

 
𝑖𝑘

𝑔
= {

 𝑖𝑘
𝑔
− ∇              𝑖𝑓 𝐴𝑖                  

𝑖𝑘
𝑔
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    𝐴0          

 
(4.7) 

 

 
𝑐𝑘

𝑔
= {

𝑚𝑐𝑘
𝑔
             𝑖𝑓    𝐴𝑐      

𝑐𝑘
𝑔
     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    𝐴0 

  
(4.8) 

 

where 

𝑚 is the percentage change in the capacity; and  

∇ is the improvement in the condition. 

4.5.5 Social Cost  

The social cost ξ(𝜏𝑘
𝑔
, 𝐶𝑘

𝑔,𝐴) is presented as a summation of the travel and the intervention cost as 

shown in Equation (4.9). Intervention costs were considered to be paid for by the society to 

maintain public road infrastructure; therefore, they are a form of social cost. It was assumed that 

the intervention is done once a year on a road section and thus the road user travel cost was 
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computed for 365 days. 

 

 

ξ = ∑{(365𝜔𝑘𝑔𝑣𝑘
𝑔̅̅ ̅̅ ̅ ∗ 𝜏𝑘

𝑔,𝐴̅̅ ̅̅ ̅̅ ) + ∑ ∑𝑎𝑘𝑔𝐶
𝑘𝑔,𝐴

𝐴

𝑘𝑔

𝑘𝑔=1𝑔

}

𝐺

𝑔=1

 

(4.9) 

 

where 

𝜔 is the monetary value of one unit of travel time; 

𝜏𝑘
𝑔,𝐴̅̅ ̅̅ ̅̅  is the new average travel time on 𝑘𝑔sections in group 𝑔 after intervention, 𝑨; and 

𝑣𝑘
𝑔̅̅ ̅̅ ̅ is the average volume on 𝑘𝑔sections in group 𝑔. 

4.5.6 Objective Function and Solution Algorithm 

The objective of the model is to minimize the total social cost ξ ; hence, the objective function can 

be expressed as shown in Expression (4.10) with feasibility and budget Constraints; (4.11) and 

(4.12) respectively. 

 

 𝑚𝑖𝑛
𝑨
  ξ  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(4.10) 

 

 𝑨 ∈ 𝚪  (4.11) 

 

 

∑ ∑ ∑𝑎𝑘𝑔𝐶
𝑘𝑔,𝐴

𝐴

𝑘𝑔

𝑘𝑔=1𝑔

𝐺

𝑔=1

∈  𝛺  

(4.12) 

 

where 

𝚪 is a set of all feasible actions; and 

𝛺 is the budget limit. 

 

The discrete sections for intervention are selected using a greedy algorithm (GA) (Rinnooy Kan et 

al. 1993). The discrete candidate sections with the largest reduction in social cost (ξ0 − ξ𝐴
𝑘𝑔) are 
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selected first by the GA until the entire budget is consumed in a typical knapsack procedure. If the 

reduction in social cost (ξ0 − ξ𝐴
𝑘𝑔)  is the same for several sections, this may result in their 

clustering in the same position for intervention forming a Pareto frontier. To overcome this 

challenge, a second decision level based on the priority weight 𝑊𝑘𝑔 , prioritizing sections based 

on traffic volume 𝑣𝑘
𝑔
and condition 𝑖𝑘

𝑔
, may be introduced as an application of the AHP. This can 

be explicitly expressed as follows: 

 

 𝑚𝑎𝑥
𝑨
  (ξ0 − ξ𝐴

𝑘𝑔′) + 𝛿𝑊𝑘𝑔′          𝐴𝑘
𝑔

= 0 𝑓𝑜𝑟  ∀ 𝑘𝑔 ≠ 𝑘𝑔′ 

𝑊𝑘𝑔 =
𝑣𝑘

𝑔

𝑣𝑚𝑎𝑥
𝑘𝑔

×
𝑖𝑘

𝑔

𝑖𝑚𝑎𝑥
𝑘𝑔

 

𝛿 = {
1           𝑖𝑓   (ξ0 − ξ𝐴

𝑘𝑔
)  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑘𝑔 

0          𝑖𝑓   (ξ0 − ξ𝐴
𝑘𝑔
)  𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑘𝑔 

 

(4.13) 

 

where 

ξ0 is the initial social cost; 

ξ𝐴
𝑘𝑔  is the social cost if action 𝐴 is taken for section 𝑘𝑔′ and nothing is done for other 

sections 𝑘𝑔; 

𝑊𝑘𝑔  is the priority weight; 

𝑣𝑚𝑎𝑥
𝑘𝑔  is the maximum 𝑣𝑘

𝑔
 for all sections; 

𝑖𝑚𝑎𝑥
𝑘𝑔  is the maximum 𝑖𝑘

𝑔
 for all sections; 

𝛿 is a dummy variable to avoid clustering at one intervention position; and 

the symbol [′] is used to distinguish 𝑘𝑔′ from other sections 𝑘𝑔. 

 

The solution algorithm is shown in Figure 4.10. The steps of the algorithm are detailed below. 

1) Set the safety limit 𝑖𝑘
𝑔
. 

2) Propose interventions that prioritize safety; hence, sections with 𝑖𝑘
𝑔
> 𝑖𝑘

𝑔
 are repaired 

first. For sections above the safety limit, the worst sections are prioritized (repaired first). 

3) Check that the feasibility constraint has been met for unsafe sections selected for repair. 

4) Check that the budget constraint has been satisfied for the repair work for the unsafe 
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sections. 

5) Propose interventions ( 𝐴𝑖 , 𝐴𝑐 ) for all remaining sections 𝑘𝑔  with 𝑖𝑘
𝑔
> 𝑖𝑘

𝑔∗  and 

𝑣𝑘
𝑔
/𝑐𝑘

𝑔
> (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗  and calculate the social cost ξ𝐴

𝑘𝑔  each time for each candidate 

section and each proposed intervention.  

6) Check that the feasibility constraint has been met again for the proposed interventions. 

7) Calculate ξ𝐴
𝑘𝑔′for each candidate section 𝑘𝑔′ given that 𝐴𝑘

𝑔
= 0 for ∀𝑘𝑔 ≠ 𝑘𝑔′. 

8) Select the candidate sections for intervention using a GA based on  
𝑚𝑎𝑥
𝑨
  (ξ0 − ξ𝐴

𝑘𝑔′) +

𝛿𝑊𝑘𝑔 .  

9) Calculate ξ cumulatively for the selected sections and the change in cumulative social 

cost ∆ξ(𝑘𝑔) for each candidate section 𝑘𝑔 and discard action for candidate sections with 

an increase in ξ. 

10) Check that the budget constraint has been satisfied and cut off actions for candidate 

sections that are outside the budget limit. 

11) Determine the optimum intervention strategy and social cost for each set 𝑖𝑘
𝑔
. 
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Figure 4.10. Solution algorithm. 

4.6 Model Application 

4.6.1 Optimum Intervention Strategy for Surveyed Paved Ugandan Roads 

This subsection describes the application of the model to determine the optimum intervention 

strategy for paved Ugandan road sections. Intervention costs were set based on Ugandan road 

maintenance costs. The data for 2018, with the best estimate of the travel time model, was used in 
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the determination of the optimum strategy. The cost of the interventions was set according to Table 

4.7. No action was taken for sections in good condition with an IRI ≤ 4.00 mm/m and uncongested 

sections with 𝑣𝑘
𝑔
/𝑐𝑘

𝑔
<  0.5. When repair was done, section roughness was assumed to improve 

by ∇ =  1 mm/m roughness. When capacity was increased, section capacity was doubled; i.e., 

from a two-lane (𝑐𝑘
𝑔
 = 2,200 PCU/h) to a four-lane section (𝑐𝑘

𝑔
 = 4,400 PCU/h). For sections 

below the safety limit 𝑖𝑘
𝑔
, the section condition was considered to improve to the best condition 

(about 2 mm/m roughness) when it was repaired and the safety improvement cost was set to twice 

the repair cost. The traffic was assumed to flow for 12 h in a day because night traffic is normally 

negligible. It was also assumed that technological improvements restricted the repair (overlay cost) 

at the lower boundary and the capacity improvement cost at 70% of the current cost. The current 

Ugandan national road maintenance budget is mainly allocated to paved roads because it is still a 

deficit. The budget was US$138.3 (hereafter $ is used), $145.2, $118.8, and $166.1 million in 

fiscal year 2013/14, 2014/15, 2015/16, and 2016/17, respectively, for the entire 4,551 km paved 

network (MoWT 2011–2017). This averaged to about $31,223/km, which was set as the current 

budget level. For 2,404 km paved roads, the current budget limit was set to $75.06 million. 

Table 4.7. Cost of interventions (MoWT 2011–2017, UNRA 2018) 

Action Unit cost* 

Repair (Ai) (280-497.5) 

Capacity increase (Ac) 2,360 

*Value in 1,000 $/km (in 2017). Range shows the value for low- and high-traffic roads. 

The proposed intervention policies were evaluated within a period of one year; hence, discounting 

of costs was unnecessary. The monetary value of one unit of travel time in Uganda was estimated 

based on the transport charges in Uganda and its environs. In 2015, road freight charges from 

Kampala to Nairobi, a distance of about 688 km, were approximately $500 (0.73 $/km) (NCTTA 

2015). Based on the Ugandan freight charges and the average time required to travel one kilometer 

(76.04 s), the exogenous variable 𝜔 was set to 34.56 $/PCU/h. The estimated variable 𝜔 excludes 

other important considerations for unit travel cost such as costs to other road users because of the 

lack of more accurate travel cost data on Ugandan roads. Also, the results may not change 

significantly if other unit travel cost values were used. Four safety limits 𝑖𝑘
𝑔
 were considered to 

be set by the road agency, as shown in Table 4.8. Two intervention batches were considered. The 
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first batch involved repairing sections to meet the safety levels and the second batch involved 

setting interventions that optimized the social cost. 

 

Table 4.8. Social cost per set safety limit for surveyed Ugandan national roads at current budget 

level 

𝑖𝑘
𝑔
  ξ ($million) Reduction 

in ξ (%) 

No. of sections repaired out 

of 762 candidates 

No. of sections with 

capacity increased 

out of 815 candidates *Batch 1 *Batch 2 Total 

Do nothing 11,562.6899 0.00 0 0 0 0 

4 10,975.3483 5.08 134 0 134 0 

5 10,975.3483 5.08 134 0 134 0 

6 10,843.9522 6.22 103 3 106 10 

7 10,749.2520 7.04 48 6 54 28 

*Batch 1 contains sections above the safety limit that were repaired and batch 2 contains 

sections within the safety limit but repaired to optimize the social cost. 

An optimization program, which was developed in Python programming language based on the 

solution algorithm, produced the optimum results for each set safety limit and at different budget 

levels. Data preparation was done in Microsoft Excel with each section having free-flow travel 

time, condition, volume:capacity ratio, traffic volume, and a group label. It was empirically shown 

that the stricter the safety limit (smaller IRI) for the surveyed paved Ugandan national roads, the 

higher the social cost (Table 4.8 and Figure 4.11). At stricter safety limits, there was less flexibility 

in optimizing the social cost as more sections were preselected for repair. The opposite was true 

for less strict safety limits (higher IRI), in which case more sections were selected for capacity 

increase by the optimization algorithm. The results showed that at the stricter safety limit of 6 

mm/m, more sections (103) were preselected for repair in the first batch with low flexibility for 

optimization resulting in the higher total social cost (about $10.84 billion) compared to the less 

strict safety limit of 7 mm/m with a social cost of $10.75 billion and 48 first batch sections.  

 

Also, at the less strict safety limit of 7 mm/m, more sections (28) were selected for capacity 

increase compared to the 10 sections selected at the stricter 6 mm/m safety level in the second 

batch. This framework could therefore be useful for road administrators to evaluate the trade-off 

off between safety and social cost; and between capacity increase and condition improvement for 

multiple road sections (Figure 4.12).  
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The largest reduction in social cost (7.04%) at the current budget level for Uganda’s case was 

realized at the safety limit of 7 mm/m road roughness and the second-largest reduction was 6.22% 

at a 6 mm/m safety limit. Based on the set standards, the road agency may choose the appropriate 

safety limit but not necessarily the lowest cost option.  

 

 

Figure 4.11. Social cost at safety levels at the current budget level. 

 

Figure 4.12. Percentage of repair or capacity improvement cost at each safety limit at current 

budget level. 

 

At a 6 mm/m safety limit, the social cost was reduced by 13.83%, the largest reduction, when the 
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budget was increased up to about 535%, beyond which the social cost stagnated (Table 4.9 and 

Figure 4.13). To carry out interventions on all candidate sections in the surveyed paved network 

(i.e., when a limitless budget was considered), a budget level of $1,588.58 million, a 2,017% 

increase, was found to be sufficient; however, there was no improvement in the social cost 

reduction. A similar trend was observed for other safety limits. This suggested that it was 

counterproductive to increase the road maintenance budget arbitrarily. 

 

Table 4.9. Social cost per set budget level for surveyed Ugandan national roads at 𝑖𝑘
𝑔
= 6 

% increase in 

Ω  

ξ ($million) Reduction 

in ξ (%) 

No. of sections repaired  

out of 762 candidates 

No. of sections with 

capacity increased out 

of 815 candidates Batch 1 Batch 2 Total 

Current 10,843.9522 6.22 103 3 106 10 

5 10,805.0146 6.55 103 4 106 12 

10 10,753.7840 6.70 103 6 109 14 

25 10,703.8913 7.43 103 6 109 21 

50 10,603.0933 8.30 103 13 116 31 

100 10,490.2514 9.27 103 23 126 52 

200 10,379.1245 10.24 103 43 146 94 

500 9,993.4319 13.57 103 305 408 186 

535 9,963.9635 13.83 103 316 419 200 

600 9,963.9635 13.83 103 316 419 200 

750 9,963.9635 13.83 103 316 419 200 

 

 

Figure 4.13. Social cost at different budget levels at 𝑖𝑘
𝑔
= 6. 
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After the safety limit had been met, the priority order of candidate sections for intervention varied 

based on interventions that optimized the social cost. The change in order is inferred in Table 4.8 

where the number of sections for repair reduced, whereas the number of sections for capacity 

improvement increased as the safety limit was made less strict. 

4.6.2 Discussion of Main Results 

The main results in this study include the calibration of the travel time function and the model 

application to Ugandan road pavements. Based on the Ugandan pavement data, the significant 

values 𝑖𝑘
𝑔∗ and (𝑣𝑘

𝑔
/𝑐𝑘

𝑔
)∗ were fixed at 4.00 mm/m IRI and 0.5, respectively, for the empirical 

application of the travel time function. Other significant values did not generate better results. Also, 

model calibration considering individual sections did not generate better results compared to 

calibration considering groups. The results for the 2018 data shown in Table 4.6 gave the best 

estimate. The model calibration results showed that the road condition and volume:capacity ratio 

had a strong relationship with the travel time. The condition and volume:capacity ratio parameters 

had a low standard error, with a significant t-value and p-value for a 95% confidence interval. This 

result empirically shows that the road condition and volume:capacity ratio have a significant effect 

on the travel time. The positive sign for the condition parameter indicates that as the condition 

worsens, the travel time increases. The same can be inferred for the volume:capacity ratio. Also, 

the estimated 𝜃2value was close to that of the original BPR equation. 

 

In the model application, when stricter safety limits were set, more sections could be preselected 

for repair with low flexibility for optimization resulting in a higher total social cost. As the safety 

limit was made less strict, more sections could be selected for capacity increase due to the increase 

in the pool of candidate sections for optimization. With a larger pool of sections for optimization, 

a more optimum intervention strategy and hence lower social cost could be achieved. Therefore, 

the model can be a useful tool for road managers to evaluate the trade-off between safety and social 

costs; and between repair and capacity increase for multiple road sections at different safety limits. 

 

At the 6 mm/m safety limit, the largest reduction in the social cost was achieved at a budget 

increase of about 535%, above which the social cost stagnated for the paved Ugandan roads. 

Beyond this point, the intervention costs increased yet the travel costs generally remained stagnant; 
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hence, the algorithm did not select more sections for intervention. This was because carrying out 

intervention on less congested sections in good condition was counterproductive. 

4.7 Conclusion 

This study developed a model to aid the decision process on simultaneous pavement interventions 

(condition improvement and capacity increase) by optimizing the social cost for multiple road 

sections. A framework to evaluate the trade-off between pavement repair and capacity increase at 

set safety limits and a model with a modified BPR function that incorporated a condition variable 

were developed. After calibrating the travel time function, an empirical study was carried out on 

the surveyed paved Ugandan national road network at different safety limits and budget levels. 

 

The calibration of the travel time function empirically showed a significant relationship between 

the travel time and condition and volume:capacity ratio for Uganda’s case. When applying the 

model to the surveyed paved Ugandan road network, the use of less strict safety limits resulted in 

a larger reduction in the social cost because there was more flexibility in the choice of sections for 

optimum intervention. It was also empirically shown that it was counterproductive to carry out 

intervention action on less congested sections in good condition, so the budget need not be 

arbitrarily increased beyond productive limits. By setting different model input values; i.e., cost of 

capacity increase, repair, and effect of each intervention, safety and budget limit, it is possible to 

obtain different social costs and order of sections for intervention work with different trade-off 

levels for various interventions. 

 

This research can be extended by considering multiple assets, e.g., bridges, tunnels and road 

pavements; tolling, and network equilibrium. This work can also be formulated as a time series 

problem in which infrastructure life cycle costs can be optimized. When tolling is considered, 

incentives to change route or stop travel (i.e., free-flow conditions or no charge) may exist; hence, 

the volume on sections may change from time to time (different equilibrium points). 
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Chapter 5 

5 Pavement Management Using Deep Learning 
 

“I think A.I. is probably the single biggest item in the near term that’s likely to affect 

humanity.” – Elon Musk 

5.1 Introduction 

This chapter’s main theme involves improving civil infrastructure management using advanced 

computing techniques. Specifically, the chapter looks at image processing techniques and deep 

learning to support asset management decisions by improving their efficiency, accuracy and cost 

effectiveness. Pavement management decisions have traditionally been made by engineers 

(human-based). However, the pavement stock has recently increased in many countries yet 

management expert numbers are reducing, posing a challenge of how to manage road 

infrastructure with fewer resources efficiently. Human-based methods are prone to errors that 

compromise analysis and decisions. More efficient computer-based techniques could offer viable 

solutions. This research builds a pavement management model with a safety metric output using 

inputs from image processing. The study explored image processing techniques considering a 

trade-off between processing cost and output accuracy, with the annotation precision and 

Intersection over Union (IoU) set objectively. The robustness of the model was tested by 

comparing its output with the judgement of expert engineers on pavement safety level and its 

applicability was empirically shown for select roads in Japan. 

5.2 Pavement management 

Pavement management decisions may be based on the predicted performance of the pavement 

structure. Infrastructure performance models can be placed into three broad categories; i.e., 

stochastic (probabilistic), deterministic and computer techniques (Tsuda et al. 2006, Kobayashi et 

al. 2010, Tabatabaee and Ziyadi 2013, Pérez-Acebo et al. 2019, Obunguta and Matsushima 2020). 

The Bayesian approach has also been used to improve the prediction of infrastructure performance 

through updating whenever more data is available (Kobayashi et al. 2012, Tabatabaee and Ziyadi 

2013). 
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Infrastructure asset management is heavily dependent on infrastructure condition which requires 

significant amounts of data. Stochastic and deterministic techniques may require a minimum of 

two-point data to predict the performance of infrastructure systems; however, cases of incomplete 

data including one-point sometimes occur due to a lack of resources such as human and equipment 

to carry out surveys. Lethanh and Adey (2012) applied the improved stochastic hidden Markov 

model to model pavement deterioration in case of incomplete monitoring data. Additional data 

may be generated through multiple imputation (Rubin 1976, 1987) and/or computer techniques 

could be used to process one-point data and output useful information to support management 

decisions (Maeda et al. 2018, Zou et al. 2022).  

 

In the past, data had been collected by engineers through periodic inspection which is prone to a 

number of errors such as miss-reporting, omission and/or wrong data entries especially as the 

infrastructure stock increases. Human-based detection and measurement of defects is a highly 

subjective process liable to bias. The use of expensive specialized damage measurement equipment 

may not be feasible in some settings and may also disrupt normal traffic flow. A shortage of experts 

has also resulted in less inspection coverage (Maeda et al. 2018). Furthermore, the collected data 

is normally manually sorted by a data analyst to eliminate unusable data, a process that may 

introduce additional errors. The poor data problem is further augmented at the data cleaning stage, 

where a lot of data is eliminated affecting the power of estimates obtained from prediction models; 

which blurs management decisions (Obunguta and Matsushima 2020). Accurate and effective 

computer-based infrastructure management using fewer resources (both human and material) 

could thus be desirable. 

 

Pavement management decisions are made to minimize costs typically Life Cycle Costs (LCC) for 

a projected period of operation. Kobayashi et al. (2013) developed a pavement management model 

that optimized inspection and repair for pavements by minimizing LCC. Obunguta and 

Matsushima (2020) optimized the LCC of a pavement system by considering different 

management policies; i.e., time-dependent and condition-dependent, and explored the effect of 

preventive maintenance on LCC. Pavement intervention may also be determined by optimizing 

road usage and utility (Lin and Lin 2011, Liu and Wang 2016, Mizutani et al. 2020). 
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5.3 Image processing techniques 

5.3.1 Datasets, simple segmentation and deep learning 

Recent technological advancements have led to the development of comparatively lower cost but 

high quality smartphones which has resulted in the production of abundant smartphone road image 

data. The images may be stored in datasets such as ImageNet (Deng et al. 2009) and PASCAL 

VOC (Everingham et al. 2015), CamVid (Cambridge University 2021) and Road Damage Dataset 

– 2020 (RDD-2020) (Arya et al. 2020a). 

 

For infrastructure systems such as road networks, images are normally collected by taking photos 

through the car windshield using a smartphone mounted on the dashboard (Figure 5.1). Car 

windshield images are complex because they contain a lot of noise (many objects) and are in 

perspective view. The images may additionally be affected by weather; e.g., lighting and shadows. 

Plan view images, taken directly above the road surface; for example, using a drone may be simpler 

but are legally prohibited in many jurisdictions.  

 

Image processing has been applied to many fields such as forestry to evaluate the impacts of 

policies addressing deforestation (The Mathworks Inc. 2021), transportation infrastructure for road 

damage detection (Maeda et al. 2018, Arya et al. 2020a, 2021), and dermatology to determine the 

severity of skin cancer (Kinyanjui et al. 2019) and skin lesions (Mirikharaji et al. 2021). A study 

by Zou et al. (2022) applied deep learning using the You Only Look Once v4 (YOLOv4) algorithm 

to detect defects in structures after an earthquake disaster. Maeda et al. (2018) developed a road 

damage detection system based on the YOLO algorithm using smartphone images in Japan. Thuyet 

et al. (2022) developed an autonomous road inspection system using deep learning and data 

obtained using a Laser Crack Measurement System to detect cracks and patches. Other studies 

such as Goncalves and Givigi (2016), Hong et al. (2020) have developed methods to detect and 

measure crack defects in civil infrastructure from simple image data that contains a few objects. 
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Figure 5.1. Setup of smartphone in car (Arya et al. 2021). 

Object recognition systems can be broadly divided into three groups. First, human-based methods, 

where an inspector observes and measures defects using traditional measurement equipment. 

Second, microscopic inspection using specialized tools; and third, machine vision, in which defects 

are identified and quantified automatically by image analysis. Machine vision has proved to be the 

most efficient and accurate of the three. Within machine vision, Artificial Neural Networks 

(ANNs) and convolutional neural networks (CNNs); and pattern recognition using colour models 

have emerged as the most popular (Goncalves and Givigi 2016). Colour models were an 

advancement of simple threshold segmentation (e.g., Otsu 1979). Other segmentation methods 

including graph-based segmentation using the lazysnapping technique and region growing from a 

seed point have been developed (The Mathworks Inc. 2021). 

 

In deep learning, algorithms built using region proposals and CNNs (R-CNN) have achieved 

higher accuracy. The Mask R-CNN algorithm (He et al. 2018); an advancement of Faster R-CNN 

(Ren et al. 2015), Fast R-CNN (Girshick 2015) and R-CNN (Girshick et al. 2014), is the current 

state-of-the art algorithm in the family of object detection and segmentation algorithms using 

region proposals. Mask R-CNN extended Faster R-CNN by adding a branch for predicting 

segmentation masks from each Region of Interest (RoI) and also replaced the RoIPool layer with 

the RoIAlign layer that is quantization-free which solved the misalignment challenge in earlier 

algorithms (Figure 5.2).  
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Figure 5.2. Facebook AI Research's Mask R-CNN (He et al. 2018). 

 

Object detection techniques build a bounding box based on the object category as shown in Figure 

5.3 and therefore do not provide information about the size and shape of defects. Image detection 

and segmentation algorithms such as Mask R-CNN  provide a pixel-wise mask for an object which 

gives more details about its shape and size, and may also be more suitable for segmentating 

complex images containing overlapping objects, different colours, textures, contrasts and light 

intensities. The severity of defects, obtained through quantification, is important for the asset 

management decision process especially considering user safety. 

 
Figure 5.3. Crack detection (Maeda et al. 2018). 

5.3.2 Image Annotation 

Annotation is a vital preliminary step, despite being labour-intensive, before training a deep 

learning model and therefore should be done as efficiently and as accurately as possible. For object 

detection, bounding boxes and object labels are manually added to the images at every instance an 

object is identified by the annotator. For object segmentation, a pixel-wise mask and object label 

are manually added to the images at each instance. Higher quality and more precise annotations 
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may increase accuracy, however, they require a higher time cost to achieve. Past studies including 

Greenwald et al. (2022) have attempted to optimize the time cost for annotating images by 

combining expert, crowd and computer input while ensuring required accuracy levels are met. Xu 

et al. (2021) applied partial annotation to leverage the advantages of using annotated and 

unannotated regions in the training process for crowd counting tasks. More informative 

annotations may involve detailed manual boundary drawings for a feature of interest, whereas less 

informative approximate annotations (e.g., bounding boxes or simplified polygons) may require 

simpler drawings.  Therefore, a trade-off may exist between the quality and time cost of annotating 

images (Mirikharaji et al. 2021). For infrastructure performance evaluations, the accuracy 

requirements for measurements may not be as strict compared to fields such as health because 

classification of the defect level need only fall within a specified range. Practitioners may decide 

the needed annotation quality for specific purposes more efficiently based on the accuracy-time 

cost trade-off. 

5.4 Problem statement 

Road infrastructure asset management is faced with the challenge of an increasing infrastructure 

stock yet management expert numbers are dwindling that results in low coverage and the neglect 

of some infrastructure as discussed above which may be unsafe for road users. This challenge is 

further exacerbated by the inaccuracy of human-based inspection and data preparation which 

compromises pavement performance results and subsequent management decisions. Road 

infrastructure asset management may capitalize on the gains in the technological industry that have 

seen the development of low cost smartphones. Pavement smartphone images from a wider road 

infrastructure stock may be taken and analysed using more efficient and accurate image processing 

techniques compared to human-based methods. For image processing, less accurate simple 

segmentation methods which do not require costly annotations and the more accurate deep learning 

process that requires the costly annotations exist. A trade-off between accuracy and annotation cost 

may therefore be evaluated by varying annotation precision requirements from no annotation (for 

simple segmentation methods), less detailed to more precise annotations (for deep learning). This 

trade-off may be used to evaluate the most appropriate image processing methods and 

requirements for pavement defect detection tasks because in pavement asset management very 

precise defect measurements may be unnecessary since the defects need only fall within a specified 
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range for appropriate intervention prescription. Also noted in the previous sections is the 

subjectivity of annotation and deep learning model inputs  such as IoU which this research work 

attempts to set objectively by building a probabilistic pavement asset management model that is 

validated by expert analysis. The study also shows how the output from deep learning can be 

applied to pavement asset management to encourage adoption of more efficient technologies in 

the asset management practice. 

5.5 Study objectives 

The main objective of this study is to explore the possibility of arriving at sound pavement 

management decisions with minimal human dependence. Specifically, the objectives are: 

 

1) Carry out an experimental comparison between simple segmentation methods and deep 

learning. 

2) Develop a probabilistic pavement management model based on safety and set annotation 

precision and Intersection over Union (IoU) objectively. 

3) Empirically show the applicability of the model using deep learning output from the processed 

RDD-2020.  

 

As far as is known, no other study develops a model that sets the IoU and annotation precision 

objectively including expert validation and empirically shows the applicability of image 

processing outputs as inputs for asset management decisions. The rest of this chapter is organised 

as follows. The next section develops the probabilistic asset management model followed by an 

empirical model application including deep learning on the RDD-2020. Conclusions and 

suggestions for possible future work are presented at the chapter end. 

5.6 Probabilistic Asset Management Model 

5.6.1 Model definition and overview 

Consider that a road pavement section 𝑘(𝑘 = 1,2, … , 𝐾)  has defect density 𝑑𝑘
𝑛  estimated from 

processed image data with 𝑛(𝑛 = 1,2, … ,𝑁) indicating the class of the defects; e.g., cracks and 

potholes. From the estimated 𝑑𝑘
𝑛, an input vector 𝒅𝒌 = [𝑑𝑘

1 , … , 𝑑𝑘
𝑁] can be created that generates 

an output, the safety metric 𝑆𝑘 = 𝑓(𝒅𝒌). The safety metric may be the Maintenance Control Index 

(MCI) that is commonly used in Japan (JARA 2013). Each section 𝑘, can thus have an estimated 
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𝑀𝐶𝐼𝑘. Based on the severity of 𝑀𝐶𝐼𝑘, road managers may propose the appropriate intervention A 

on a section with options; do nothing 𝐴0, sealing or patching 𝐴1, overlay 𝐴2, and reconstruction 

𝐴3. The estimated defect densities 𝑑𝑘
𝑛 may vary based on image processing; i.e., set annotation 

case i and IoU threshold. The defect densities may also vary due to other factor including image 

quality such as lighting conditions, e.g., shadows; scale, e.g., perspective view and/or pavement 

infrastructure properties, e.g., material colors. In this study, processing methods were emphasized 

and the goodness of fit of annotation case i and IoU in defect detection was validated using the 

pavement condition estimates by experts 𝑒(𝑒 = 1,2, … , 𝐸) . The priority for intervention on a 

section k is determined based on the magnitude of the safety metric on that particular section in 

comparison with other sections and the intervention is proposed following an intervention matrix. 

This is illustrated in Figure 5.4 with 𝑀𝐶𝐼𝑘=1 < 𝑀𝐶𝐼𝑘=2, which implies that worse section 𝑘 = 1 

should receive priority for intervention. The defect densities used to estimate 𝑀𝐶𝐼𝑘 are obtained 

probabilistically by maximizing the probability of detection of defects considering different 

annotation cases 𝑖 and IoU threshold against the expert benchmark. The annotation cases are of 

number 𝑛𝑖 and 𝑀𝐶𝐼𝑘
∗ is the MCI determined after optimizing 𝑖 and IoU. 

 
Figure 5.4. Illustration of two pavement sections. 

The 𝑀𝐶𝐼𝑘 is defined as (Minami and Suzuki 2008, Miyamoto and Yoshitake 2009, JARA 2013, 

Yoshida 2016, Kubo 2017); 

 

 𝑀𝐶𝐼𝑘,0 = 10 − 1.48𝐶𝑘
0.3 − 0.29𝐷𝑘

0.7 − 0.47𝜎𝑘
0.2  

𝑀𝐶𝐼𝑘,1 = 10 − 1.51𝐶𝑘
0.3 − 0.30𝐷𝑘

0.7   

𝑀𝐶𝐼𝑘,2 = 10 − 2.23𝐶𝑘
0.3               

𝑀𝐶𝐼𝑘,3 = 10 − 0.54𝐷𝑘
0.7              

 

𝑀𝐶𝐼𝑘 = 𝑚𝑖𝑛(𝑀𝐶𝐼𝑘,𝑗)     𝑗(𝑗 = 0, … ,3)   

(5.1) 
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where 𝐶𝑘 is the cracking ratio in %, 𝐷𝑘 is the rutting depth in mm and 𝜎𝑘 is the roughness in mm. 

5.6.2 Probabilistic annotation and IoU setting 

Consider that the quality of annotations for images and set IoU applied in deep learning can be 

varied. Assume that the defect densities 𝒅𝒌 for a given annotation case 𝑖 and IoU can be estimated 

using a computer and give an output 𝑀𝐶𝐼𝑘. Consider that experts 𝑒(𝑒 = 1,2, … , 𝐸) analyse the 

same K images and grade them using a similar point scale used for computer analysis.  Considering 

the expert analysis as the benchmark, a successful computer match is established if 𝑀𝐶𝐼𝑘 falls 

within [𝑀𝐶𝐼𝑚𝑖𝑛
𝑘 , 𝑀𝐶𝐼𝑚𝑎𝑥

𝑘 ] from the expert analysis, otherwise it is considered a failure (no match). 

Using multiple logistic regression, the probability ∈ [0,1] of predicting a binary outcome (match 

= 1, or no match = 0) can be estimated given annotation case 𝑖 and IoU. The explanatory variable 

i may be considered as categorical and the IoU as continuous within the limits [0,1]. 

 Pr{𝑀𝐶𝐼𝑚𝑖𝑛
𝑘 ≤ 𝑀𝐶𝐼𝑘 < 𝑀𝐶𝐼𝑚𝑎𝑥

𝑘 |𝑖, 𝐼𝑜𝑈} = 𝑝(𝑖, 𝐼𝑜𝑈) (5.2) 

 

 
𝑝(𝑖, 𝐼𝑜𝑈) =

𝑒𝑥𝑝(𝛽0 + 𝛽1𝛿1 +⋯+ 𝛽𝑛𝑖−1𝛿𝑛𝑖−1 + 𝛽𝑄𝐼𝑜𝑈)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝛿1 +⋯+ 𝛽𝑛𝑖−1𝛿𝑛𝑖−1 + 𝛽𝑄𝐼𝑜𝑈)
   

 

(5.3) 

where 𝜷 (𝛽0, 𝛽1, … , 𝛽𝑄) is a vector of unknown parameters to be estimated with 𝑞(𝑞 = 0, 1, … , 𝑄) 

denoting number of explanatory variables; and 𝛿𝑖 (𝑖 = 1,… , 𝑛𝑖 − 1)  are dummy variables for 

annotation case. The base annotation case I has all the dummies equal to zero. For three annotation 

cases, 𝛿1 = 𝛿2 = 0 for the base case I; 𝛿1 = 1 and 𝛿2 = 0 for case II; and  𝛿1 = 0 and 𝛿2 = 1 for 

case III. The dummies 𝛿1  and 𝛿2  are comparative between cases II and III with the base case, 

respectively. This definition of dummies is important to avoid indeterminate model coefficients 

that may occur due to singularities as a result of the violation of the perfect collinearity property. 

 

Assuming that the probabilities of detection are mutually independent then the log-likelihood 

expressing the joint probability density of successful defect detection considering all experts and 

sections is; 
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𝑙𝑛[𝑳(𝜷)] = 𝑙𝑛 [∏∏{𝑝(𝑖, 𝐼𝑜𝑈)}𝛿𝑘,𝑒{1 − 𝑝(𝑖, 𝐼𝑜𝑈)}(1−𝛿𝑘,𝑒)
𝐾

𝑘=1

𝐸

𝑒=1

]  

=∑∑{𝛿𝑘,𝑒𝑙𝑛[𝑝(𝑖, 𝐼𝑜𝑈)] + (1 − 𝛿𝑘,𝑒)𝑙𝑛[1 − 𝑝(𝑖, 𝐼𝑜𝑈)]}

𝐾

𝑘=1

 

𝐸

𝑒=1

  

 

𝛿𝑘,𝑒 = {
1       𝑖𝑓  𝑚𝑎𝑡𝑐ℎ        
0       𝑖𝑓 𝑛𝑜 𝑚𝑎𝑡𝑐ℎ   

 

 

(5.4) 

where 𝛿𝑘,𝑒 is a dummy variable for match or no match. 

 

The unknown parameters can be obtained by maximizing the log-likelihood function; 

 𝜕 𝑙𝑛[𝑳(𝜷)]

𝜕𝛽𝑞
= 0 

(𝑞 = 0, 1, … , 𝑄) 

(5.5) 

An iterative method for example the Newton Raphson method could be used to iteratively estimate 

𝜷 within a given tolerance level. 

For a given annotation case 𝑖 and IoU to be acceptable to effectively detect and quantify defects, 

the probability 𝑝(𝑖, 𝐼𝑜𝑈) should not be less than a set limit 𝑝0 . 

 𝑝(𝑖, 𝐼𝑜𝑈)) ≥ 𝑝0    (5.6) 

The annotation case 𝑖∗ and 𝐼𝑜𝑈∗ that optimizes the probability of detection of defects is obtained 

as; 

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖, 𝐼𝑜𝑈  𝑝(𝑖, 𝐼𝑜𝑈) (5.7) 

The defect densities 𝑑𝑘
𝑛∗ obtained for 𝑖∗ and 𝐼𝑜𝑈∗ are used in the calculation of 𝑀𝐶𝐼𝑘

∗. 

5.6.3 Intervention planning 

The choice of intervention A on a section is determined by maximizing the MCI for the entire 

pavement stock (Obunguta et al. 2022). When action is carried out, it is assumed that the defect 

density improves and 𝑑𝑘
𝑛∗ = 0. The intervention on a given section is determined based on the 
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MCI following an intervention matrix shown in Table 5.1. This type of intervention decision is 

used by a number of agencies including the Ministry of Land, Infrastructure, Transport and 

Tourism of Japan (Miyamoto and Yoshitake 2009, Kubo 2017). The cut off level for each defect 

class intervention can be varied by a road agency based on their standards.  

A Pareto frontier may occur where for two or more elements, the 𝑀𝐶𝐼𝑘 value is the same. In this 

case, other factors may be considered such as the importance factor of a pavement section relative 

to others. If other factors are insignificant, then the prioritization of intervention for the sections at 

the Pareto frontier may be done randomly. 

Table 5.1 Intervention matrix (Miyamoto and Yoshitake 2009, Kubo 2017). 

𝑀𝐶𝐼𝑘 Intervention 

𝐴0 𝐴1 𝐴2 𝐴3 

𝑀𝐶𝐼𝑘 = 10 o x x x 

4.5 ≤ 𝑀𝐶𝐼𝑘 < 10 x o x x 

2.5 ≤ 𝑀𝐶𝐼𝑘 < 4.5 x x o x 

𝑀𝐶𝐼𝑘 < 2.5 x x x o 

Note: o means intervention and x means no intervention. 

5.7 Empirical application 

5.7.1 Outline of application 

In the empirical application, simple object segmentation methods that don’t require costly 

annotation were explored, and a deep learning model was trained using the Mask R-CNN 

algorithm in Python 3.9.1 to detect and quantify defects and road features (RoIs) in the RDD-2020 

so as to estimate the defect densities applied in the probabilistic asset management model. To show 

the practicality of the model, an empirical application was carried out for select roads in Japan. 

The empirical application was done for Japanese roads due to the unavailability of reliable road 

image data in Uganda. 

5.7.2 Road image dataset 

The RDD-2020 contains images of 600 × 600 pixels for road surfaces approximately 10 m ahead 

taken using a camera mounted on a vehicle traveling at an average speed of about 40 km/h (about 

10 m/s) capturing an image every second. The dataset is heterogeneous with more objects and 

includes images from India, Japan, and the Czech Republic (Figure 5.5).  
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a) b) c) 

Figure 5.5. Road images from Japan (a), India (b) and Czech (c). 

5.7.3 Simple segmentation methods 

5.7.3.1 Overview of methods 

There are several segmentation techniques that can be applied to extract features of interest from 

images. For many images, segmentation needs to be done programmatically as opposed to 

manually because of computational reasons. This study explored graph-based segmentation using 

the lazysnapping technique and region growing from a seed point. The segmentation algorithms 

can be developed in MATLAB and looped through images stored in a specified file directory. 

For the lazysnapping technique, the initial background and foreground RoIs are user-dependent. 

After the RoIs are set, the algorithm programmatically classifies other unallocated image pixels as 

either background or foreground based on a similarity metric. In Figure 5.6, consider a 5x5 pixel 

image with a low pixel (dark) foreground and a high pixel (light) background. The foreground 

(object) region can be segmented out by specifying the RoI with dimensions 

[xmin,ymin,width,height] and a background RoI with its own dimensions. The RoIs for each group 

(fore or background) can be as many as necessary. The lazysnapping formular can then be used to 

group pixels based on similarity.  



Chapter 5. Pavement Management Using Deep Learning 

118 
 

 
Figure 5.6. Graph-based segmentation by lazysnapping with a foreground and background RoI.  

For region growing from seed point(s), the RoI is iteratively grown by comparing all unallocated 

neighbouring pixels to the RoI based on a similarity measure as illustrated in Figure 5.7 where the 

initial user-dependent seed point Sp with coordinates [x,y] is grown to cover the low pixel object 

region (Kroon, 2021). 

 
Figure 5.7. Region growing from a seed point (Sp).  

To run either algorithms programmatically, the RoIs or the Sp need to be pre-set by the user for 

the entire dataset. When performed programmatically, the algorithms may generate inaccurate 

results incase the initial RoIs and Sps do not fall in the pixel area of the feature of interest for all 

images. 
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5.7.3.2 Simple segmentation experiments 

The segmentation experiments shown in Figure 5.8 and Figure 5.9 highlighted that both 

lazysnapping and region growing from a seed point were challenged by; 

1) Region continuity breakage due to lighting conditions; i.e., dark shadows (Figure 5.9 a), bright 

shiny surfaces and bright reflections (Figure 5.8 c and Figure 5.9 c) probably from the 

windscreen due to the camera flash. 

2) Breakage in segmentation regions due to the colour difference between the road markings such 

as zebra crossings and lane separations; and the pavement surface (Figure 5.8 b and Figure 5.9 

b).  

3) Unwanted regions were segmented (Figure 5.8 d). 

a) b) 

c) d) 

Figure 5.8. Segmentation trials using the lazy snapping technique on RDD-2020.  
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a) b) 

c) d) 

Figure 5.9. Segmentation trials using region growing from a seed point on RDD-2020.  

The simple segmentation experiments showed that both techniques were challenged by the 

complexities of segmenting features as a result of lighting and colour changes, and unwanted 

objects were segmented in several cases because segmentation of complex images was challenged 

by inaccurate initial RoI specification if done programmatically. On the other hand, manual 

segmentation may be cumbersome, hence, deep learning may offer more accurate segmentation 

results despite having a higher computational cost (annotation and training) compared to simple 

segmentation methods. 

5.7.4 Deep learning 

5.7.4.1 Algorithm 

Deep learning involves annotating images then training a model to detect the annotated RoIs. In 

this study, the deep learning model was trained using the Mask R-CNN algorithm to detect and 

build a pixel-wise mask on road features and defects. The main steps of the algorithm are detailed 

in Table 5.2 below. 
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Table 5.2 Deep learning algorithm. 

Algorithm: Deep learning and defect quantification 

Start 

Step 1: Obtain road pavement images 

Step 2: Sort images 

Step 3: Annotate images in the training and validation set 

Step 4: Input annotated images then train and test the deep learning model 

Step 5: Defect quantification 

Step 6: Output quantified defects; i.e., defect densities 

End 

 

5.7.4.2 Deep learning accuracy 

The Mean Average Precision (mAP) is a popular metric in computer vision for evaluating the 

accuracy of object detectors (Padilla et al., 2020). The measures, precision and recall, are required 

in the estimation of mAP. Precision is the ratio of true positives to all predicted positives, whereas 

recall is the ratio of true positives to all actual positives. To explicitly express precision and recall, 

the following parameters are defined as; 

 True Positive (TP): If an object or defect instance is present in the ground truth, and the label 

and the bounding box of the instance are correctly predicted with Intersection over Union 

(IoU) ≥ threshold. 

 False Positive (FP): If the model predicts an object or defect instance at a particular location 

in the image, but the instance is not present in the ground truth for that particular image. This 

also applies to the case when the predicted label doesn't match with the actual label. 

 False Negative (FN): If an object or defect instance is present in the ground truth, but the 

model fails to predict either the correct label or the bounding box of the instance. 

The precision and recall are then defined mathematically as;  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5.8) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5.9) 
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The average precision (AP) is obtained as the average of precision values obtained from the 

precision-recall (PR) curve for a select set of recall values. The mAP score is the mean of APs over 

all the object classes, N.  

 

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑛

𝑁

𝑛=1

 

(5.10) 

 

5.7.4.3 Image annotation 

This study explored three annotation cases (Figure 5.10) with decreasing labour requirements and 

precision, and compares their accuracy in determining the right defect classifications and 

quantifications against expert judgements. The study employed the Visual Geometry Group 

(VGG) Image Annotator (VIA) software to annotate the RDD-2020 images and the annotations 

were exported in the JSON format. The annotation of the objects of interest was done following 

Table 5.3. The road feature was added to the defect classes defined by Arya et al. (2020a) with 

D00, D10 and D20 defining cracks and D40 mainly potholes based on the Japan Road Maintenance 

and Repair Guidebook 2013 (JARA 2013). Figure 5.11 shows a select road damage image before 

and after annotation. It took about 2 to 4 minutes for case I, 1 to 2 minutes for Case II and less than 

1 minute for Case III; to annotate a single image using human labour depending on the amount of 

defects observed in the image by the annotator. The Figure 5.12 and Figure 5.13 show the training 

and validation data statistics, respectively, with a total of 1,165 annotated objects. The low 

occurrence of D40 defects in Japan compared to the other countries is probably due to better and 

more regular maintenance.  

 

 
Figure 5.10. Different annotation cases in red, green and blue. 
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Table 5.3 Objects of interest (Arya et al. 2020a). 

Object ID Description Defects Group 

Road Road surface  

D00 Linear crack, longitudinal 𝐶𝑘 

D10 Linear crack, lateral 

D20 Alligator crack 

D40 Pothole, rutting, bump, separation 𝐷𝑘 

a) b) 

Figure 5.11. Road damage image before (a) and after (b) annotation. 

 
Figure 5.12. Training data statistics. 

Japan India Czech
All

countries

No. of images 82 78 83 243

Road 82 84 85 251

D00 87 21 45 153

D10 107 10 70 187

D20 56 41 49 146

D40 29 85 49 163

Total objects 361 241 298 900
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Figure 5.13. Validation data statistics. 

5.7.4.4 Deep learning experiments 

The model was trained for 50 epochs at a learning rate of 0.001 in Python 3.9.1 using an Intel(R) 

Core(TM) i5-5200U CPU @ 2.20GHz with 4.00GB RAM and 500GB HDD computer. Model 

accuracy was tested at different IoU thresholds across different object classes considering varied 

annotation precision. The model training took about 33 hours. The Table 5.4 shows mAP values 

per defect class at different IoU thresholds and annotation cases. The Figure 5.14 shows the 

improved results of the road feature extraction and the defect identification done in parallel without 

image lighting and colour change inhibitions (Comparing Figure 5.14 a with Figure 5.8 a; and 

Figure 5.14 c with Figure 5.8 c and Figure 5.9 c) and unwanted segmentation (Figure 5.14 d and 

Figure 5.8 d). The model showed high confidence values of up to 0.99 for prominent road features. 

Comparing across the different annotation cases, the mAP increased by an average of 8.3% from 

Case I to II and by an average of 5.8% from Case II to III considering all IoU thresholds. This 

mAP increase was probably because of the increase in the RoI size which resulted in more overlap 

between the ground truth and prediction, hence more detection. However, the difference in 

detection accuracy was less than 10% which may arguably be insignificant. Particularly, Case III 

and II may be competitive because relatively similar mAP levels were achieved at a lower 

Japan India Czech All countries

No. of images 30 21 27 78

Road 30 25 28 83

D00 29 3 17 49

D10 29 2 18 49

D20 29 12 13 54

D40 8 13 9 30

Total objects 125 55 85 265
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annotation cost compared to Case I. This result may show the insignificance of annotation 

precision in generating acceptable defect density estimates for pavement management purposes. It 

is also important to note that for a given annotation case and IoU, specific defects may be detected 

better, for instance, the smaller size D00 defect was detected at the highest AP considering 

annotation case II, which is more precise compared to III, for all IoU thresholds. 

The Road object class had the highest AP values because the road feature was very prominent in 

all the images which made it easy for the algorithm to learn, detect and segment. On the other hand, 

the linear cracks consisting of lateral and longitudinal cracks had comparatively lower APs because 

they were generally of much smaller size compared to other objects; hence, their detection and 

segmentation was poorer. As the IoU was decreased, the APs increased across all object classes 

except for the Road class because the less strict IoU requirement resulted in more object detection 

as the ground truth and prediction needed not overlap much. The high AP value for the Road class 

was stagnant because that was the maximum achievable value.  

 a)  b)  

 c)  d) 

Figure 5.14. Detection and segmentation of road features and defects on RDD-2020 for case I, 

IoU 0.5. 
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Table 5.4 AP per object class at different IoU thresholds. 

IoU Object 

ID 

Case I Case II Case III 

AP mAP AP mAP AP mAP 

0.7 Road 0.9794 0.3436 1.0 0.3963 1.0 0.4097 

D00 0.0833 0.3280 0.1517 

D10 0.3556 0.0407 0.4520 

D20 0.1011 0.2045 0.0824 

D40 0.1985 0.4081 0.3624 

0.5 Road 0.9794 0.5738 1.0 0.6328 1.0 0.6979 

D00 0.3444 0.6472 0.5992 

D10 0.5799 0.1512 0.7674 

D20 0.5337 0.5704 0.4843 

D40 0.4318 0.7951 0.6386 

0.3 Road 0.9794 0.7020 1.0 0.7284 1.0 0.7645 

D00 0.6083 0.7358 0.7258 

D10 0.5950 0.2523 0.7681 

D20 0.7291 0.7893 0.6039 

D40 0.5984 0.8644 0.7245 

0.1 Road 0.9794 0.7046 1.0 0.7309 1.0 0.7645 

D00 0.6083 0.7358 0.7258 

D10 0.5950 0.2523 0.7681 

D20 0.7397 0.8019 0.6039 

D40 0.6005 0.8644 0.7245 

 

5.7.4.5 Defects density 

The extent of defects could be estimated from the segmented images by calculating the ratio of the 

size of defect pixels to the size of pavement pixels. A ratio was considered because the images may 

be taken at different perspectives and using different smartphones and hence may have different 

relative sizes. This estimation of the defect densities 𝑑𝑘
𝑛 in an image taken at a specific location 

was done so as to facilitate comparisons between different road sections. The defect density is also 

similar to the cracking ratio defined by the Japan Road Association (JARA 2013, Kubo 2017). 

 
𝑑𝑘
𝑛 =

𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡 𝑝𝑖𝑥𝑒𝑙𝑠

𝑁𝑜. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠
   

(5.11) 

The defect densities were estimated for 1,660 select sections in Adachi City, Japan (Figure 5.15). 

For some sections, the aggregate defect densities were greater than expected probably due to the 

detection and segmentation of multiple objects at different instances, overlap and partial detection 
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of road features in the images. From Figure 5.15, more defects were detected when the IoU was 

reduced because of a less strict IoU that enabled more detection. Also, more severe defects could 

be detected from annotation case I to II to III, attributable to the increase in RoI size as annotation 

is made less precise. The variation such as reduction in defect detection for case III could be 

attributed to annotation subjectivity. 

 
Figure 5.15. Section defect densities. 

5.7.5 Estimation of the safety metric  

The data preparation stage before application of the probabilistic model generated 12,000 data 

points for 100 select sections from Adachi City considering 12 possible combinations of annotation 

case i and IoU compared against the judgement of ten expert engineers. The experts classified the 

pavement images visually based on a three-point scale in Table 5.5 and their experience. To 

eliminate bias, the experts were presented with the images labeled from 1 to 100 (blind judgement). 

A comparison was made between the expert image classification and the image analysis results. In 

the estimation of MCI, instead of the rutting/ pothole depth, the density value was used. The 

estimated MCI values were compared with the expert analysis to determine a match or no match. 
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Table 5.5 Evaluation of pavement soundness (Kubo 2017). 

Type Condition 

(Deterioration level) 

Approximate 

𝑀𝐶𝐼𝑘 

1 Good Low and the 

pavement surface is 

in a good condition 

4.5 ≤ 𝑀𝐶𝐼𝑘 ≤ 10 

2 Phase to 

keep surface 

function 

Medium 

deterioration level 

2.5 ≤ 𝑀𝐶𝐼𝑘 < 4.5 

3 Repair phase High and expected to 

be beyond the 

permissible level 

soon 

𝑀𝐶𝐼𝑘 < 2.5 

The Table 5.6 shows a summary of the expert classification aggregated into the worst, best and 

mode (majority) result from the ten experts for each of the 100 sections. About 71% of the sections 

were classified as good by majority experts.  

Table 5.6 Aggregate expert classification for the selected sections. 

Condition 

state 

Number of sections 

Worst Best Mode 

1 28 86 71 

2 51 13 28 

3 21 1 1 

The Figure 5.16 shows a comparison of image processing output and expert classification with the 

highest matching rate of 65.5% achieved for both annotation case II and III at 0.7 IoU considering 

all experts. 
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Figure 5.16. Image processing vs expert classification. 

The unknown parameters were estimated by maximizing the log-likelihood function using 

Newton’s method as shown in Table 5.7. All the estimated parameters had significant p-values (< 

0.05) and all had low standard errors. The significant p-values mean that i and IoU influence the 

accurate detection of defects. As the annotation case was made less strict; i.e., from I to II to III, 

the estimated parameters increased which showed that the odds of obtaining a right detection 

increased by 25.2% from I to II, 28.3% from I to III, and 3.1% from II to III; if other variables 

were fixed. The increase in odds as annotation was made less strict could be attributed to the 

increase in the RoI area which increased the probability of detection. There were 574% more odds 

of right detection if the IoU was increased if annotation precision was fixed. This increase in odds 

was because increased IoU resulted in less defect detection which generated results that showed 

road pavements in good condition and matching with the expert judgement. This result showed the 

need to limit the IoU within given thresholds to avoid erroneous and meaningless detections as 

IoU approximates the limits of 0 and 1. 
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Table 5.7 Estimation of unknown parameters. 

Parameter Estimate Standard error exp(β) Increase in odds p-value 

𝛽0 -0.9127 0.04734 0.4014 -0.5986 2 × 10−16 

𝛽1 0.2250 0.04580 1.2523 0.2523 8.98 × 10−7 

𝛽2 0.2491 0.04581 1.2829 0.2829 5.42 × 10−8 

𝛽3 1.9074 0.08483 6.7356 5.7356 2 × 10−16 

To evaluate the success rate of the model in making correct predictions, a confusion matrix and 

hitting rate accuracy were generated. The confusion matrix showing the accuracy rate of the 

calibrated model in predicting an observed match or no match at a 0.5 cut off is shown in Table 

5.8. The model rightly predicted the observations at a 60.42% accuracy rate, showing high 

goodness of fit of the calibrated model. The model may not need to be an exact match since the 

expert classification was not based on only observed defects. The expert classification was also 

based on experience and other defect characteristics including crack patterns and defect colors not 

considered in the deep learning. For example, diagonal cracks are indicative of shear failure in 

reinforced concrete structures and reflection linear cracks may show the degeneration of the 

pavement sub layers; and black colour may be due to bleeding defects where asphalt binder is 

forced to the pavement surface. 

Table 5.8 Confusion matrix. 

 Observed  

Match No 

match 

Total 

Predicted 

Match 3637 2363 6000 

No 

match 

2387 3613 6000 

 Total 6024 5976 12000 

Accuracy 0.6038 0.6046 0.6042 

The Figure 5.17 shows a match in classification between the image processing and majority experts 

with Figure 5.17 a) and b) classified as 1 and 2, respectively. The Figure 5.18 shows a mismatch 

in classification between the majority experts (classified as 3) and the image processing (classified 

as 2) probably attributable to the variation in grouping of the condition states and other factors 

such as crack pattern not considered in the image processing.  
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 a)  b) 

Figure 5.17. Image processing and expert classification match. 

 
Figure 5.18. Image processing and expert classification no match. 

The Table 5.9 shows probabilities of obtaining a match or right detection for each i and IoU 

combination. The highest probability of 0.66 was achieved if IoU was set to 0.7 and the least 

precise annotation case III was applied. As noted, the high probabilities for 0.7 IoU were also 

influenced by no defect detection which led to high MCI values that matched expert results. If 𝑝0 

is set to 0.5, then IoUs of 0.3 and below may be inappropriate for pavement defect detection tasks; 

and high IoUs above 0.7 need to be selected taking into consideration the inability to detect defects 

at such strict thresholds. This result showed the insignificance of highly precise annotations (case 

I), and that very low or very high IoUs may be undesirable for road defect detection tasks. From 

the optimization process, defect densities can be obtained and proposed section intervention can 

be determined following an intervention matrix after prioritization.  
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Table 5.9 Probabilities of detecting a match. 

Annotation case i IoU Pr(i, IoU) 

I 0.7 0.6041 

0.5 0.5102 

0.3 0.4157 

0.1 0.3270 

II 0.7 0.6564 

0.5 0.5661 

0.3 0.4712 

0.1 0.3783 

III 0.7 0.6619 

0.5 0.5720 

0.3 0.4772 

0.1 0.3839 

 

5.8 Discussion 

5.8.1 Annotation precision and cost trade-off 

This study evaluated the trade-off between image processing inputs including annotation precision 

and cost. First, the research experimentation explored using simple segmentation methods that do 

not require costly annotation on the publicly available RDD-2020. For efficiency reasons, simple 

segmentation should be done programmatically as opposed to manually as the latter is cumbersome 

for a large image dataset. Whereas simple segmentation methods incur no annotation cost, they 

were challenged by region breakage due to poor lighting conditions and colour changes, and 

unwanted objects were segmented in several cases. These challenges of simple segmentation 

methods could have potentially resulted in accurate estimation of defect densities. 

 

The shortcomings of simple segmentation methods led to the experimentation on deep learning 

methods. A deep learning model was trained using the Mask R-CNN algorithm utilizing the RDD-

2020. For deep learning, the road images were annotated by varying the degree of precision. Less 

informative annotations required less annotation time, whereas more informative annotations 

consumed more time. As annotation precision was reduced, the odds of obtaining a correct match 

increased from annotation case I, II to III as a result of the increase in the RoI area which increased 

the probability of detection. These results showed the insignificance of very precise and costly 
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annotations for pavement defect detection tasks. However, the annotations should be tight enough 

to avoid erroneous allocation of non object regions as RoIs before model training as this may 

generate inaccuracies. 

5.8.2 Deep learning, objective annotation and IoU 

As discussed in the previous subsection, deep learning overcame the challenges faced by simple 

segmentation methods. Additionally, deep learning in which all objects of interest (road features 

and defects) were identified and segmented in parallel made it convenient to estimate the defect 

densities. The deep learning results were also more promising with objects detected and segmented 

with high AP values. Road features were detected and segmented with the highest AP values 

because they were very prominent in the images. As IoU was decreased, more defects were 

detected because a less strict IoU enabled more detection since the ground truth and prediction 

needed not overlap much. Also, more severe defects were detected from annotation case I to II to 

III because of the increase in the RoI size that allowed more overlap between the ground truth and 

prediction. 

 

A probabilistic pavement management model that included setting IoU and annotation precision 

objectively with validation from experts was developed in this study to facilitate the 

standardisation of setting model inputs so as to have more uniform outputs that would minimise 

the variability of infrastructure intervention decisions. The validation of the model by a group of 

experts ensured that the model could be applied even in areas where expert engineers were very 

few or absent to hopefully reduce the proportion of infrastructure neglected as a result of personnel 

shortages. In the empirical application of the model, the estimated parameters were significant 

which showed that IoU and annotation precision influenced accurate defect detection. The 

calibrated model also had a high success hitting rate of more than 60%.  It was shown that low IoU 

resulted in more defect detection, whereas the annotation precision was insignificant. As 

annotations were made less precise, the RoI size increased which resulted in more overlap between 

the ground truth and the prediction hence more defect detection. As the IoU was reduced, the 

requirement for area of overlap was made less strict which meant that the ground truth and 

prediction needed not overlap much increasing detection. However, the IoU needs to be restricted 

to avoid meaningless and erroneous detections if IoU approximates the limits of 0 and 1. Despite 

being insignificant, the object annotations need to be as tight as possible to avoid labeling non 
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object regions as objects and the annotations shouldn’t be cumbersome so as to lower the 

processing cost. The developed model maximized the probability of right defect detection because 

more detection may encourage proactive intervention and further investigation for the candidate 

sections which could improve road user safety. 

5.8.3 Road asset management application  

The optimum model inputs, annotation precision and IoU, could be used to generate the section 

defects and safety level, MCI in this paper. The obtained MCI that may closely match with the 

expert classification can then be used to prescribe the appropriate interventions for a road pavement 

group using an intervention matrix as shown earlier in the article. The intervention on a section 

can be based on the severity of the defects on a given section in comparison to other sections in 

the infrastructure group. It may be noted that the intervention in this case could be based on one 

point image data collected at one time point, however, the appropriateness of intervention decisions 

could be improved by incorporating future performance prediction models such as the stochastic 

Markov hazard model since image data is expected to be more available in future. The required 

performance model could inform the image data collection process so as to generate more 

consistent and usable data.  

5.9 Conclusions 

This research proposed a framework to feasibly apply deep learning model results to pavement 

asset management. The study used the publicly available smartphone road image data from Japan, 

India and the Czech republic to train and validate a deep learning model built on the Mask R-CNN 

algorithm. The experiments showed that with fewer resources for management amidst an 

increasing infrastructure stock, computer vision promises safer and more efficient asset 

management and planning compared to the current human dependent practice. The research work 

empirically showed the following: 

1) Experimental comparison showed the merits of deep learning compared to simple 

segmentation in overcoming poor lighting conditions and colour changes to correctly 

segment objects in images. 

2) Choice of the IoU threshold and annotation precision are important for object detection 

tasks and should be optimally determined. The IoU significantly affected defect detection 
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and hence should be carefully selected to avoid meaningless and erroneous detections. The 

annotation precision was insignificant in defect detection and so less costly simplified 

polygons may suffice. 

3) Tests showed that one-point data obtained from a single image dataset can be efficiently 

used to support intervention choices on infrastructure with less human dependence. 

In future, better stochastic asset management models could be developed using consistently 

obtained data because current state-of-the-art asset management models require at least two-point 

condition data to model deterioration processes and perform LCC analysis. Building and 

improving algorithms that detect patterns of defects and their colors is a possible area for future 

research because defect patterns and colours could indicate the failure type. The efficiency of 

detection and segmentation algorithms also needs to be generally improved. A positive feedback 

loop can also be created between data collection and future asset management needs. To make the 

data more usable for planning the Global Positioning System (GPS) coordinates of the photos 

could be included in the database so that the road sections can be better identified and linked to 

road network maps. It is recommended that further studies and methodologies be developed to 

make annotation more objective than subjective to minimize the variability due to different 

annotators. 
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Chapter 6 

6 Conclusions 

6.1 Summary of Presented Research 

This thesis has detailed Infrastructure asset management showing the traditional and currently 

applied methods and has looked at the future directions in this field with a focus on encouraging 

its full appreciation in developing countries. The dissertation described traditional methods 

including the subjective human based and reactive management methods that have been in 

operation for a significant time mainly because of the low infrastructure stock in developing 

countries that are still in the infrastructure development stage and are transitioning into the 

maintenance phase. With current increases in the stock due to improved access to finance, the 

developing world will definitely face similar challenges including aging infrastructure that the 

developed world is currently facing after the rapid economic growth period in the 20th century. 

The first sections of the dissertation looked at deterioration forecasting, important for proactive 

planning using stochastic Markov models. Then the challenge of intervention decision making for 

multiple sections in an infrastructure group was looked at. The thesis then explored the applications 

of computing specifically deep learning to infrastructure asset management. Below are the specific 

research directions taken in this dissertation. 

Firstly, the studies undertaken in this dissertation encouraged the adoption of proactive 

infrastructure management; i.e., the condition-dependent policy and preventive maintenance, that 

utilizes objective and mathematical methods to estimate the deterioration trends of public 

infrastructure such as roads, bridges, tunnels and pipelines to delay their total dilapidation and 

avoid disastrous failures and disruptions. The study detailed the stochastic Markov hazard model 

to estimate deterioration trends and included an empirical application using real world data.  
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Secondly, the challenge of intervention planning for multiple sections and the effect of road 

intervention on travel time was looked at as this is an emerging planning problem for infrastructure 

managers in both developing and developed countries. Decisions on new developments and repair 

of existing infrastructure have traditionally been made subjectively but this dissertation proposed 

a more objective way to make these decisions optimally while ensuring that the society that uses 

this public infrastructure benefits maximally. 

Finally, this dissertation looked at the application of new computing technologies to manage 

infrastructure given the challenges of reduced management personnel and increasingly dangerous 

conditions for inspectors to access damaged infrastructure for instance after a disaster, and the 

need for more accurate data for planning. This section of the thesis looked at artificial intelligence 

specifically computer vision to improve the accuracy of quantification of infrastructure defects and 

efficiently plan for appropriate intervention. This section suggested a probabilistic method of 

setting the annotation quality and Intersection over Union objectively rather than subjectively in 

an attempt to standardize these important pre-steps to deep learning. 

The thesis included empirical application cases using data mainly obtained from Uganda and Japan 

to empirically show the applicability of the proposed models.  

 

6.2 Conclusions and Recommendations 

The main takeaways from this dissertation include the following; 

 A shift from the time-dependent to the condition-dependent management policy that 

incorporates infrastructure deterioration rates in planning may improve infrastructure 

planning and lower the LCCs. Additionally, the gains from this proactive policy can be 

further realized if preventive maintenance is adopted by the management agency (Chapter 

3). This kind of policy shift mainly in developing countries may play a role in improving 

the quality of transportation infrastructure mainly road pavements. 

 With proper intervention planning that balances the kind of actions performed on elements 

of an infrastructure group, it may be unnecessary to arbitrarily increase intervention 

budgets. This thesis showed the possibility of optimizing interventions by lowering social 

costs if key bottlenecks in the road infrastructure system including poor pavement 
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condition and inadequate capacity were optimally cleared to facilitate traffic flow and 

hence shorten travel times (Chapter 4). 

 Infrastructure asset management should capitalize on the advances in computing to handle 

the challenges currently faced including shortage of experts and poor access in areas 

affected by disasters. It was shown that road pavement smartphone image processing may 

offer viable solutions in the detection and quantification of road infrastructure defects using 

cheaper methods for data collection (only a smartphone) and analysis. This could improve 

infrastructure management efficiency, inspection coverage, measurement accuracy and 

facilitate access to dangerous sites e.g. after a disaster (Chapter 5). This chapter also 

showed that the setting of annotation precision and Intersection over Union setting could 

be standardized so as to reduce the variability of object (defect) detection. 

To conclude, the following recommendations are made to improve asset management especially 

in developing countries; 

 It is recommended to improve data collection by sectioning roads at about 100 m per 

section due to the variability of pavement condition as length increases. Data collection 

should also be more specific and based on how critical sections are, for example bridge 

and intersection approach sections, for better management. A positive feedback loop can 

also be created between data collection and future asset management needs. For instance, 

to make the data more usable for planning the GPS coordinates of the photos could be 

included in the database so that the road sections can be better identified and linked to road 

network maps. 

 As infrastructure monitoring data changes from written or typed data to image mainly 

photogrammetric data, the analysis methods need to be improved and simplified to enable 

larger coverage, and more efficient and effective decision making. Also, algorithms could 

be developed and improved to handle various situations such as incomplete data and 

detailed image features including defect colours and patterns. 

 


