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LIST OF SYMBOLS 

 

The symbols frequently used in this dissertation are listed below. Please note that the meaning of 

some symbols sometimes differs from that in the list, depending on the context.   

  

Symbol Description 

𝐴𝑅, 𝐴𝑅′  Aspect ratio, 𝐴𝑅 = 𝐿/𝑊 and 𝐴𝑅′ = max⁡(𝐿/𝑊,𝑊/𝐿) 

𝐶𝑉𝑆 The ratio of rupture speed to S-wave velocity (𝑉𝑟𝑚𝑎𝑥/𝑉𝑆 or 𝑉𝑟/𝑉𝑆). 

𝐷 Slip 

𝐷̇ Slip velocity (the time derivative of slip) 

𝐸𝑅 Radiated energy 

𝐸𝐺  Fracture energy 

𝐸𝑃 Total potential energy 

𝐸𝐹  Frictional energy (𝐸𝐹 = 𝐸𝑃 − 𝐸𝑅 − 𝐸𝐺) 

𝑓 Circular frequency (Hz)  

𝑓𝑐 Corner frequency 

𝐹𝑟𝑒𝑠, 𝐹𝑟𝑒𝑠𝜔2 The residual between observed and model spectral ratio (misfit value). 

𝐺, 𝐺𝐸  Fracture energy per unit area 

𝐻(∙) Heaviside step function 

𝐼𝑝𝑞 L1 distance (norm) from a center of the rectangular source 

𝐼𝑝𝑞 = |𝑝 − 0.5| + |𝑞 − 0.5| 

𝑘𝑐 A constant used to calculate ∆𝜎𝑓𝑐 from corner frequency. The subscript c is replaced 

by S or P depending on the wave type used to obtain corner frequency. 

𝐾 Amount of instantaneous dislocation, recommendation 𝐾⁡ = ⁡3 

𝐿 Rupture length 

𝐿𝑊, 𝑆 Rupture area 

𝑀0 Seismic moment 

𝑀𝑤 Moment magnitude 

𝑝, 𝑞 Location of rupture starting point 

𝑟ℎ Hypocenter distance 

𝑆𝑅𝑜𝑏𝑠 Observed spectral ratio 

𝑆𝑅𝜔2, 𝑆𝑅𝐸 Model spectral ratio 

𝑉𝑐 Velocity of wave type P or S. Subscript designates a wave type.  

𝑉𝑟   Rupture speed 

𝑉𝑟/sin𝜃 Rupture speed along length direction, 0⁡ ≤ ⁡𝜃⁡ ≤ 𝜋/2 
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𝑉𝑟/cos𝜃 Rupture speed along width direction, 0⁡ ≤ ⁡𝜃⁡ ≤ 𝜋/2  

𝑉𝑟𝑚𝑎𝑥  Maximum rupture speed of the rectangular source model, max(𝑉𝑟/sin𝜃, 𝑉𝑟/cos𝜃) 

𝑉𝑅𝑒𝑔𝑓 , 𝑉𝑅𝑒𝑛𝑣 Variance reduction 

𝑊 Rupture width 

𝛾 The parameter to describe the sharpness of a spectral corner  

𝛿 Dip angle 

𝛿(∙) Dirac’s delta function 

∆𝜎̅̅̅̅  Average static stress drop 

∆𝜎𝑅 A parameter whose unit is the same as the stress drop  

∆𝜎𝑠 Average static stress drop calculated with the seismic moment and the overall rupture 

area (the moment-based stress drop) 

∆𝜎𝐸 The energy-related stress drop 

∆𝜎𝑙𝑎 The stress drop on the localized area with large slip (the largest-asperity area) 

∆𝜎𝑓𝑐 The stress drop calculated from corner frequency  

∆𝑊0 The available energy 

𝜂𝑅 The radiation efficiency defined as 𝜂𝑅 = 𝐸𝑅/(𝐸𝑅 + 𝐸𝐺) 

𝜂𝑅′ The radiation efficiency defined as 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 

𝜂𝑅
𝐸 The radiation efficiency defined as 𝜂𝑅

𝐸 = 2𝜎𝑎/∆𝜎𝐸  

𝛩,𝛷 Angles in polar coordinate 

𝛬 The rupture orientation angle 

𝜇 Shear rigidity 

𝜎𝑎 The apparent stress, 𝜎𝑎 = 𝜇𝐸𝑅/𝑀0 

𝜎𝑑 Dynamic stress level 

𝜎𝑓 Frictional stress during an earthquake 

𝜎0 Average initial shear stress before an earthquake 

𝜎1 Average final shear stress after an earthquake 

𝜏𝐿1,⁡ 𝜏𝐿2,⁡ 𝜏𝑊1,⁡ 𝜏𝑊2 Apparent rupture time 

𝜏𝑟 Rise time 

𝜑𝑠 Strike angle 

𝜔 Angular frequency, 𝜔 = 2𝜋𝑓 (rad/s) 

Ω Source time function or source spectral amplitude 

Ω𝐸  The envelope spectrum (the proposed source spectrum model) 

Ω𝐸𝑁 The normalized envelope spectrum 
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Chapter 1  

 

INTRODUCTION 

 

1.1. BACKGROUND 

 

Mitigating social loss due to earthquake disasters is a fundamental objective in earthquake 

engineering. Rapid recovery of earthquake-damaged urban functions immediately after a severe 

earthquake disaster is a key to minimizing the loss of society due to earthquake disasters. It is expected 

to be beneficial to prepare a post-earthquake recovery strategy that contributes to the early recovery of 

the earthquake-damaged urban functions, considering not only damage to buildings and infrastructure 

from the mainshock but also the cumulative damage from aftershocks. For this purpose, the earthquake 

damage estimation for potential severe earthquakes and their aftershocks in a target region is necessary. 

Predicting ground motions for potentially expected earthquakes is one of the most important subjects 

in the damage evaluation of buildings and infrastructures. Since a precise model of an earthquake source 

is necessary for reliable ground motion prediction, accumulating our knowledge of earthquake source 

properties leads to improve earthquake-damage evaluation.  

Understanding the source properties of small-to-moderate earthquakes, not only large earthquakes, 

is important in earthquake engineering. For example, aftershocks with moderate magnitudes may cause 

additional damage to a structure suffering the mainshock shaking. Besides, small-to-moderate 

earthquakes are advantageous for investigating the statistical properties of source parameters, e.g., the 

joint probability distribution of source parameters, since the number of small-to-moderate earthquakes 
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is much greater than that of large earthquakes. For example, we can predict the ground motions of a 

target earthquake by prescribing the source parameters randomly from their joint distribution. 

Evaluating possible strong ground motions that can cause severe earthquake damage for a target urban 

area helps evaluate potential earthquake damage and helps plan a post-earthquake recovery strategy for 

mitigating social loss due to expected earthquake disasters.  

Investigating the relationships between the seismic moment or magnitude and source parameters 

(source parameter scaling laws) is one of the most fundamental subjects in seismology. A precise 

understanding of the scaling law of source parameters over small to large earthquakes may be helpful 

for predicting the strong ground motions of a target region where seismic records of a past large 

earthquake are absent. For example, the scaling law of the average static stress drop (or simply stress 

drop in this dissertation) has been studied widely. The stress drop is one of the source parameters 

associated with the strength of earthquake ground motion and is also a fundamental parameter for a 

deeper understanding of the physics of earthquakes. The independence of stress drop on the magnitude 

indicates the self-similar scaling under the assumption of a constant rupture speed (Aki, 1967). The 

stress drops of large earthquakes (e.g., 𝑀𝑤 > 6.0) are independent of the magnitude and are 1 to 10 

MPa approximately for typical crustal or subduction zone earthquakes (Aki, 1972; Kanamori & 

Anderson, 1975; Kanamori & Brodsky, 2004; Venkataraman & Kanamori, 2004). In contrast, for small-

to-moderate earthquakes, the scaling relation of the stress drops is still controversial, i.e., some studies 

suggest a magnitude-independent scaling of the stress drop, but some other studies show the increasing 

stress drop with the magnitude (e.g., Abercrombie, 2021 and references therein). Thus, investigating 

the source properties of small-to-moderate earthquakes is still an ongoing subject, and accumulating 

reliable data on the source parameters of small-to-moderate earthquakes is necessary.     

Extracting a source effect from seismic records is fundamental for investigating earthquake source 

properties but is often difficult for small-to-moderate earthquakes. We can interpret a recorded ground 

motion as a convolution of the source, the path-site effect (e.g., geometrical spreading, scattering 

attenuation, and site amplification), and the response of the recording instrument. In the frequency 

domain, a recorded seismic spectrum 𝑢(𝑓) is represented as  

𝑢(𝑓) = s(𝑓) ∙ 𝑔(𝑓) ∙ 𝑖(𝑓) (1.1) 
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where s(𝑓), 𝑔(𝑓) and 𝑖(𝑓) represent the source effect, the path-site effect, and the instrumental 

response, respectively. The instrumental response is a known property. Thus, removing the path-site 

effect 𝑔(𝑓) from seismic records is a fundamental issue in extracting the source effect s(𝑓). The 

rupture process of large earthquakes is usually investigated by finite-fault inversion using long-period 

waveforms (e.g., Hartzell & Heaton, 1983). The path-site effect 𝑔(𝑓), can be obtained using the 

relatively simple earth model because long-period waveforms do not suffer from small-scale 

heterogeneity in the earth’s interior. However, a simple earth model is usually inadequate for 

investigating the source properties of small earthquakes. Since short-period waveforms carry 

information on the source properties of small earthquakes, the wave propagation and site amplification 

effects need to be evaluated for short-period (or high-frequency) components when analyzing the source 

properties of small earthquakes. A detailed earth model is required to remove the path-site effects in 

high-frequency ranges from ground motion records. However, there should be limitations in the 

resolution of an earth’s interior structure model due to our limited observation networks and thus 

limitations in the approach to analyzing small earthquakes by removing the path-site effect using a 

detailed earth model considering small-scale heterogeneity. 

Taking the ratio of seismic spectral amplitudes (spectral ratio) is a widely used approach to extract 

the source of small-to-moderate earthquakes (e.g., Abercrombie, 2021). If two earthquakes are in 

proximity and have similar focal mechanisms, the path-site effects, e.g., attenuation in propagating the 

earth’s interior and site amplification, in the seismic spectra can be similar. In this case, the spectral 

ratio cancels the path-site effects. Suppose the path-site effects and instrument responses are the same 

for two earthquakes. Then, the spectral ratio is  

𝑢1(𝑓)

𝑢2(𝑓)
 = 
𝑠1(𝑓)

𝑠2(𝑓)
∙
𝑔(𝑓)

𝑔(𝑓)
∙
𝑖(𝑓)

𝑖(𝑓)
=
𝑠1(𝑓)

𝑠2(𝑓)
(1.2) 

where subscripts 1 and 2 identify the two earthquakes. An advantage of taking spectral ratio is that is 

not necessary to model path-site effect. Since it is usually hard to evaluate path-site effect adequately 

at a high-frequency range, taking spectral ratio is one of the most reliable approaches for extracting the 

source of small-to-moderate earthquakes (e.g., Abercrombie, 2021; Ide et al., 2003).  

The spectral ratio analysis estimates source parameters by fitting model spectral ratios predicted 

from a source spectrum model to observed spectral ratios. The corner frequency of a source spectral 
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amplitude is usually estimated by the spectral ratio analysis to calculate the stress drop by assuming a 

simple source model. The corner-frequency-based stress drop ∆𝜎𝑓𝑐 is calculated from the following 

equation using the corner frequency 𝑓c (Brune, 1970):  

∆𝜎𝑓𝑐 ⁡= ⁡
7𝑀0

16
(
𝑓𝑐
𝑘𝑐𝑉𝑆

)
3

(1.3) 

where 𝑀0  is the seismic moment, and 𝑉𝑆  is the S-wave velocity. The stress drop is commonly 

calculated from the corner frequency by assuming a simple source model, a circular source with 

symmetric rupture propagation. The coefficient 𝑘𝑐 relates the corner frequency to the source radius of 

a circular crack (Brune, 1970; Dong & Papageorgiou, 2003; Kaneko & Shearer, 2015; Madariaga, 1976; 

Sato & Hirasawa, 1973). Usually, a constant 𝑘𝑐 is used for all earthquakes of interest to calculate the 

stress drops. Using the same value of 𝑘𝑐 implies all earthquakes are assumed to have the same source 

geometry, rupture speed, and location of rupture start point on a rupture plane. The rupture start point 

on a rupture plane is associated with the directionality of rupture propagation (called rupture directivity 

in this study). For example, Madariaga (1976) derived the 𝑘𝑐 value from the dynamic simulation of a 

circular source rupturing symmetrically from the center with a rupture speed of 0.9𝑉𝑆. The problem is 

that the source model assumption (i.e., the choice of the 𝑘𝑐 value) considerably affects the stress drop 

values. For example, the stress drop estimates using the circular source models by Brune (1970) and 

Madariaga (1976) have a factor of 5.6 difference. Using other source models (the 𝑘𝑐 values) is also 

possible since there is no exact relationship between the corner frequency and the source radius and no 

consensus on which source models we should use (Atkinson & Beresnev, 1997; Beresnev, 2001). 

The previous studies support that the stress drop needs to be estimated by considering rupture speed, 

geometry, and directivity. Kaneko & Shearer (2015) performed numerical analysis for circular and 

elliptical sources assuming various rupture speeds and rupture propagation patterns. Their results show 

that the 𝑘𝑐 value is significantly affected by the rupture geometry, speed, and directivity. For example, 

many studies have observed small earthquakes with prominent rupture directivity effects (Abercrombie 

et al., 2017; Bakun et al., 1978; Boatwright, 2007; Courboulex et al., 2013; Fletcher & Boatwright, 

2019; Kane et al., 2013; Lengliné & Got, 2011; Yoshida, 2019). This observation implies that the 

symmetric rupture assumption does not necessarily valid. Wu et al. (2019) observed a complex event 

with 𝑀𝑤 = 4.0 and pointed out the insufficiency of using a simple source model. Variations in rupture 
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geometry, speed, and directivity may cause significant errors in the stress drop estimation if a constant 

𝑘𝑐 is used. 

The average static stress drop plays a fundamental role in studying the earthquake energy budget 

(e.g., Kanamori & Rivera, 2006; Noda et al., 2013). For example, under the assumption of a simple 

slip-weakening model (i.e., no stress overshoot and undershoot), the stress drop ∆𝜎̅̅̅̅  involves the sum 

of radiated energy 𝐸𝑅 and fracture energy 𝐸𝐺  as 𝐸𝑅 + 𝐸𝐺 = 1/2∆𝜎̅̅̅̅ 𝐷𝑆 (𝐷: average slip, 𝑆: rupture 

area) (e.g., Kanamori & Rivera, 2006). The radiated energy is the energy released as seismic waves and 

is thus seismologically measurable. The fracture energy is the energy involved with the resistance to 

rupture propagation, e.g., cracking, off-fault plastic deformation, and latent heat due to thermal 

pressurization or melting. The twice the ratio of the apparent stress 𝜎𝑎 = 𝜇𝐸𝑅/𝑀0 (𝐸𝑅: radiated energy, 

𝜇: shear rigidity) to the stress drop ∆𝜎̅̅̅̅  characterizes the ratio of the radiated energy 𝐸𝑅  and the 

fracture energy 𝐸𝐺 , 𝐸𝑅/(𝐸𝑅 + 𝐸𝐺) = 2𝜎𝑎/∆𝜎̅̅̅̅  (e.g., Kanamori & Brodsky, 2004; Kanamori & Rivera, 

2006). The ratio 2𝜎𝑎/∆𝜎̅̅̅̅  is called the radiation efficiency (e.g., Kanamori & Brodsky, 2004; 

Venkataraman & Kanamori, 2004). For example, radiation efficiency helps investigate the difference 

in the rupture characteristics between earthquakes classified into different categories (e.g., small versus 

large earthquakes or crustal versus subduction zone interplate earthquakes).  

The average static stress drop is often calculated from the rupture area 𝑆 and the seismic moment 

𝑀0, (Eshelby, 1957; Kanamori & Anderson, 1975).  

∆𝜎𝑠 =
7𝑀0

16(𝑆/𝜋)3/2
(1.4) 

The corner-frequency-based stress drop is also calculated from the seismic moment and source area. 

However, Noda et al. (2013) suggested that the average static stress drop calculated with the seismic 

moment and the source area is inadequate for investigating the earthquake energy budget. The stress 

drop calculated with equation (1.4) corresponds to the spatial average of the stress drop weighted by 

the slip distribution calculated for the circular crack model with a uniform stress drop distribution 

(Madariaga, 1979; Noda, 2013). We need the stress drop averaged by weighting local stress drops with 

corresponding local slips for the study of the earthquake energy budget. The average static stress drop 

weighted by local slips is called the energy-related stress drop ∆𝜎𝐸 (Noda et al., 2013):  
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∆𝜎𝐸 =
∫ ∆𝜎1∆𝑢1𝑑𝑆Σ

∫ ∆𝑢1𝑑𝑆Σ

⁡⁡⁡⁡⁡⁡⁡⁡(1.5) 

where ∆𝜎1 and ∆𝑢1 are local stress drop and slip at each point of the studied fault, and Σ indicates 

that the integral is taken over the entire fault plane. We usually obtain slip and stress drop distributions 

by finite fault inversion. Equation (1.5) is a simplified formulation derived by assuming that the 

components of stress drop and slip in the overall slip direction are dominant (see Noda et al., 2013 for 

the detail). Noda et al. (2013) showed that the energy-related stress drop ∆𝜎𝐸 is always greater than or 

equal to the moment-based stress drop, ∆𝜎𝑠 = 𝐶𝑀0/𝑆
3/2 (𝐶 is a constant). If a target earthquake has 

a nearly uniform stress drop, ∆𝜎𝑠 can be comparable to ∆𝜎𝐸. Hence, if the stress drop distribution of 

a target earthquake is relatively uniform, the stress drop calculated with equation (1.4) can be adequate 

for studying the earthquake energy budget. However, some previous observational studies demonstrate 

that small-to-moderate earthquakes have heterogeneous distributions of slip and stress drop (e.g., 

Dreger et al., 2007; Kim et al., 2016).  

 

1.2. OBJECTIVE AND OVERVIEW 

 

Developing an earthquake source analysis method for small-to-moderate earthquakes that goes 

further than the standard corner-frequency-based approach is fruitful. Performing a finite fault inversion 

for a target earthquake is ideal, but the data are not usually adequate, especially for small-to-moderate 

earthquakes. The finite fault inversion needs much detailed information about the fault geometry. Also, 

calculating accurate high-frequency Green’s functions for inversion of small earthquakes needs detailed 

(possibly 3D) local velocity structures. Since extracting a source effect is one of the most critical 

difficulties in investigating the source properties of small-to-moderate earthquakes, extending the 

spectral ratio approach would be one appropriate research direction. Specifically, more detailed source 

properties than the corner frequency need to be obtained from the source term extracted as observed 

spectral ratios. This study aims to develop a new spectral ratio approach of investigating the source 

properties of small-to-moderate earthquakes, which does not rely on a simple circular source 

assumption but is not so complex as finite fault inversion. Besides, this dissertation studies the source 

parameter scaling relations based on the developed spectral ratio approach. 
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This study develops a spectral ratio approach to estimate the stress drop of small-to-moderate 

earthquakes considering rupture geometry, speed, and directivity firstly (consideration of rupture 

directivity effect). Then, by applying the developed spectral ratio approach to shallow crustal 

earthquakes (3.2 ≤ 𝑀𝑤 ≤ 6.0) in Japan, it is revealed that the rupture area estimated by the spectral 

ratio analysis is a localized rupture area with large slip and is not the overall rupture area. When we  

calculate the stress drop from the seismic moment and source area using equation (1.4), we need to use  

the total rupture area. Hence, the stress drops calculated from the rupture area estimated by the spectral 

ratio analysis suffer systematic overestimation. This study proposes a procedure to calculate the stress 

drop ∆𝜎𝑠 by modifying the estimated rupture area to the expected overall rupture area (consideration  

of source heterogeneity). Then, the revised stress drop estimates, ∆𝜎𝑠, are confirmed to be within a 

plausible range. The result of this study implies that a source of small-to-moderate earthquakes can be 

described well as a heterogeneous source model with a localized rupture area with a high average stress 

 

Figure 1.1 Descriptions of the differences between this study and previous studies. 
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drop. Therefore, a single asperity model, whose stress drop is concentrated on a small area located in 

the overall rupture area and is zero outside of this area, is assumed to calculate the energy-related stress 

drop ∆𝜎𝐸 (consideration of source heterogeneity).  

Figure 1.1 summarizes the difference between the method proposed in this study and other methods 

(the corner-frequency-based method and finite fault inversion). The single asperity model, introduced 

in this study, is one of the simplest heterogeneous earthquake source models but is more detailed than 

a typical circular source with a uniform stress drop. The spectral ratio analysis developed in this study 

provides the rupture area with large slip of a target earthquake as a rectangular source model, which is 

interpreted as the localized area of concentrated stress drop in the single asperity model. As a source 

model becomes complicated, more detailed observational information is expected to be required. 

Spectral ratios observed by stations are necessary to estimate the rectangular source parameters in the 

proposed approach, although the corner-frequency-based method requires spectral ratio averaged over 

stations. Finite fault inversion needs seismic waveforms (i.e., both amplitude and phase spectra) 

obtained for each station.  

There are several expected advantages by developing a new spectral ratio approach. The following 

are the examples of the benefits or improvements from the accomplishment of this research.  

Source Parameter Scaling Relations 

The rupture speed 𝑉𝑟 is a key parameter for understanding the earthquake source scaling law in 

addition to the average static stress drop ∆𝜎̅̅̅̅ ⁡(∆𝜎𝑠 or ∆𝜎𝐸 in this study). The relationship between the 

seismic moment 𝑀0 and corner frequency 𝑓𝑐 is widely used to study the similarity of earthquakes. 

For example, a self-similar scaling implies that the seismic moment is inversely proportional to the cube 

of the corner frequency, 𝑀0 ∝ 𝑓𝑐
−3 (e.g., Aki, 1967). Some studies observed non-self-similar scalings 

(e.g., Walter et al., 2006 and references therein). Suppose a non-self-similar scaling relation 𝑀0 ∝

𝑓𝑐
−(3+𝜀)

 holds with 𝜀 > 0. Kanamori & Rivera (2004) derived the relation:  

∆𝜎̅̅̅̅ 𝑉𝑟
3 ∝ 𝑀0

𝜀/(𝜀+3) (1.6) 

An observed relationship between 𝑀0 and 𝑓𝑐  determines the exponent 𝜀. Since ∆𝜎̅̅̅̅  and 𝑉𝑟  must 

satisfy equation (14) for a prescribed 𝜀, they cannot vary independently. Therefore, when we have a 

non-self-similar scaling relation 𝑀0 ∝ 𝑓𝑐
−(3+𝜀)

, we cannot distinguish at least the following two cases: 

(1) ∆𝜎̅̅̅̅  is scale-independent, and 𝑉𝑟 is scale-dependent; (2) ∆𝜎̅̅̅̅  is scale-dependent, and 𝑉𝑟 is scale-
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independent. According to Kanamori & Rivera (2004), the first case indicates that the rupture dynamics 

between small and large earthquakes are different. On the other hand, the second case indicates that 

small and large earthquakes are dynamically similar but statically not. To distinguish these two scaling 

relations, we need to estimate both ∆𝜎̅̅̅̅  and 𝑉𝑟.  

Earthquake Energy Budget 

The rupture speed is also important for studying the earthquake energy budget. The radiation 

efficiency derived by the analysis of a simple crack depends on the rupture speed explicitly (e.g., 

Kanamori & Brodsky, 2004). Thus, rupture speed is essential for evaluating radiation efficiency. 

Furthermore, the energy-related stress drop ∆𝜎𝐸 is necessary for calculating the radiation efficiency 

and fracture energy. The calculation of ∆𝜎𝐸 assuming the single asperity model is simple but beneficial. 

The proposed stress drop calculation with the single asperity model does not require conducting finite 

fault inversion. It is usually hard to perform finite fault inversion for small-to-moderate earthquakes.  

Earthquake Engineering 

Improving the analysis method of small-to-moderate earthquakes can help develop the physics-

based probabilistic seismic hazard assessment (physics-based PSHA). The physics-based PSHA 

mentioned here predicts the ground motions of a target earthquake by prescribing the source parameters 

randomly from their joint distribution (Hutchings et al., 2007). The evaluation of the joint distribution 

is important. For example, Causse & Song (2015) suggested that the rupture speed can be correlated 

inversely to the stress drop. Since both the stress drop and rupture speed are influential to the strength 

of high-frequency radiated energy, the joint distribution of the stress drop and rupture speed (and other 

parameters) is necessary. Small-to-moderate earthquakes are suitable for accumulating data on the 

source parameters since their number is greater than that of large earthquakes.   

 

1.3. ORGANIZATION 

 

The dissertation comprises six chapters. Chapter 1 introduces the background and aims of this 

research. Chapters 2 to 5 contain the main contents of the dissertation described above. Chapter 6 

summarizes the main findings of the dissertation and future perspectives. 

The main topics studied in this dissertation are summarized as follows.  
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(1) Developing a new source spectrum model incorporating the effect of the rupture size, shape, speed, 

and directivity (Chapter 2).  

(2) Incorporating the proposed source spectrum model into a spectral ratio approach and confirming 

that model spectral ratios fit observed spectral ratios well (Chapter 3). 

(3) Revealing that the estimated rupture area corresponds to a localized area with large slip rather than 

the total rupture area (Chapter 4). 

(4) Proposing the procedure to calculate the stress drop ∆𝜎𝑠 by modifying the estimated rupture area 

to the expected total rupture area and investigating the stress drop results (e.g., the scaling relation, 

rupture speed dependence, comparison of ∆𝜎𝑠 to ∆𝜎𝑓𝑐, and uncertainty assessment) (Chapters 4).  

(5) Introducing the energy-related stress drop ∆𝜎𝐸 assuming the single asperity model (Chapter 5).    

(6) Investigating the stress drop, apparent stress, and radiation efficiency (e.g., the scaling relations) 

(Chapter 5).  

Chapter 2 develops a new source spectrum model enabling us to estimate the rupture area, shape 

(aspect ratio), speed, and directivity (rupture start point) with spectral ratio fitting. Source spectrum 

model incorporating the effect of the rupture size, shape, speed, and directivity as the source parameters 

is needed to develop a new spectral ratio approach as this study seeks. Hence, this study derives the 

mathematical representation of a new source spectrum model from a rectangular kinematic source 

model with uniform slip distribution. Then, the mathematical representation of the envelope of this 

source spectrum is proposed. This study calls the source spectrum model the envelope spectrum.  

   Chapter 3 develops a spectral ratio approach using the envelope spectrum and confirms that model 

spectral ratios using the envelope spectrum can fit observed spectral ratios well. The effects of rupture 

geometry, speed, and directivity appear in the difference in spectral ratios for each station or wave type. 

Hence, the model spectra ratio using the developed source spectrum model is needed to fit observed 

spectral ratios obtained by station and wave type in order to estimate the source parameters. It is 

unknown whether the developed spectrum model (the envelope spectra) works well to explain observed 

spectra. Thus, it is necessary to confirm the effectiveness of the envelope spectra through the application 

to observed earthquakes. The spectral ratio approach is applied to 409 shallow crustal earthquakes in 

Japan. The new spectral ratio approach enables us to estimate the rupture length, width, speed, and 

rupture start point. Then, we can calculate the stress drop directly from the estimated rupture area and 

the seismic moment. However, this chapter submits an issue that the stress drops calculated from the 
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estimated rupture area and the seismic moment are more than ten times systematically higher than the 

typical range suggested by the previous studies of large earthquakes.  

Chapter 4 solves the high-stress drop issue submitted in Chapter 3 and revises the stress drop 

calculation procedure from the estimated rupture area and the seismic moment. This chapter shows the 

evidence that the estimated rupture area corresponds to a localized area with large slip rather than the 

total rupture area. This result suggests that a compact rupture area compared to the overall rupture area 

mainly controls the shape of the seismic spectrum in a broadband frequency range. The cause of this 

result is the heterogeneous stress drop distribution of natural earthquakes. This chapter proposes a way 

to calculate the static stress drop ∆𝜎𝑠 by modifying the estimated rupture area to the expected total 

rupture area. Then, the validity of the revised stress drop is confirmed, and the relationships between 

the stress drop ∆𝜎𝑠  and other parameters (e.g., the seismic moment, depth, and rupture speed) are 

investigated.  

Chapter 5 shows the way to relate the stress drop ∆𝜎𝑠 obtained in Chapter 4 to the energy-related 

stress drop ∆𝜎𝐸 by assuming the single asperity model. Then, this chapter estimates the radiated energy, 

radiation efficiency, and fracture energy for the shallow crustal earthquakes studied in Chapters 3 and 

4 and reveals the scaling relation of the source parameters (e.g., 𝜎𝑎, ∆𝜎𝑠, and 𝜂𝑅
𝐸).  
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Chapter 2  

 

SOURCE SPECTRUM MODEL 

CONSIDERING RUPTURE DIRECTIVITY EFFECT 

 

2.1. OVERVIEW 

 

This chapter develops a source spectrum model that incorporates rupture size, geometry, speed, and 

rupture start point. A spectral ratio analysis with this source spectrum model enables us to estimate the 

rupture size, geometry, speed, and rupture start point (Chapters 3 and 4). Since observed spectral ratios 

are often smoothed by applying a tapering or stacking technique, a source spectrum model with a 

smooth spectral shape (i.e., without spectral holes) is useful (e.g., Shimmoto, 2020 and 2022). Besides, 

the deconvolution by seismic source spectra is generally unstable if there are some spectral holes in its 

amplitude spectrum (Mueller, 1985). A source spectral amplitude model without spectral holes is needed 

to make the deconvolution operation stable. One of the most commonly used source spectrum models 

with a simple smooth spectral shape is the omega-square model by Brune (1970). The omega-square 

model has succeeded in describing observed earthquake source spectra (e.g., Aki, 1967). However, 

Brune’s spectrum model does not consider the rupture directivity effect. Thus, this chapter proposes a 

source spectrum model to satisfy the following conditions (Shimmoto et al., 2020): (1) the rupture 

directivity effect is considered; (2) the shape of the source spectral amplitude is smooth (i.e., without 

spectral holes); (3) the high-frequency spectral falloff rate is inversely proportional to the square of the 

frequency as similar to the omega-square model. 
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2.2. KINEMATIC SOURCE MODEL 

 

The kinematic source model with rectangular fault for an isotropic homogeneous whole space was 

used to model rupture propagation. Haskell (1964) proposed a source model with unilateral rupture 

propagation. The rupture speed for the width component is seen as infinite in this model. Hirasawa & 

Stauder (1965) and Mikumo (1971) used the bidirectional rupture propagation model. In this model, 

the rupture speed can be finite for both fault length and width direction. However, the location of the 

rupture starting point on the fault plane in the bidirectional model is limited to the edge of the fault 

plane. The location of the rupture starting point is one of the important parameters for rupture modeling 

(Miyake et al., 2003; Mai et al. 2005).  

Two conditions are considered for the rupture modeling in this study: (1) the rupture speed along 

both fault length and width directions can be finite, (2) the location of the rupture starting point can be 

set freely on the fault plane. The bilateral-bidirectional rupture model satisfies both these conditions 

(Figure 2.1). This type of model has been used by Khattri (1969). In the bilateral-bidirectional rupture 

model, the fault plane is expressed by fault length 𝐿 and width 𝑊. The location of the rupture starting 

point is set as origin, and the fault plane is constructed by introducing the parameters 𝑝 and 𝑞 (Figure 

 

Figure 2.1 The bilateral–bidirectional fault model and coordinate systems. (a) The bilateral–bidirectional fault 

model and the coordinate systems used to calculate the source spectrum. A gray solid line shows the fault plane 

and black solid straight lines show the rupture fronts. The x1 axis and x2 axis are set to be parallel to the 

direction along the strike and up-dip, respectively. The direction of the x3 axis is set as normal to the fault 

plane. (b) The slip velocity function and slip function.  

time

Slip

time

Slip velocity(b)
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x2
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2.1a). The uniform velocity of the rupture fronts Vr and the angle 𝜃 are introduced to express the 

rupture propagation (Figure 2.1a). 

A boxcar-type slip velocity function characterized by rise time 𝜏𝑟 and final dislocation 𝐷 is often 

used. However, when boxcar-type slip velocity is used for a rectangular fault, the source spectral 

amplitude decays as 𝜔−3 at high frequency (e.g., Geller, 1976). Thus, the boxcar function combined 

with the Dirac’s delta function 𝛿𝐷(𝑡) is used as the slip function (Figure 2.1b).  

𝐷1̇(𝑡) = ⁡
𝐷

𝐾
𝛿𝐷(𝑡) +

𝐾⁡ − ⁡1

𝐾
⁡
𝐷

𝜏𝑟
⁡{𝐻(𝑡) − 𝐻(𝑡⁡ − ⁡𝜏𝑟)} (2.1) 

𝐻(𝑡)  is Heaviside’s unit step function and 𝐾  is related to the amount of slip that is displaced 

instantaneously. The first term with the delta function is interpreted to be related to the radiation of the 

high frequency component during the initial phases of the rupture (Heaton & Hartzell, 1989). The slip 

function is derived as an integration of equation (2.1) (Figure 2.1b).  

𝐷1(𝑡) = {

0, 𝑡⁡ ≤ ⁡0
𝐷

𝐾
𝐻(𝑡) ⁡+⁡

⁡𝐾 − 1

𝐾

𝐷

𝜏𝑟
𝑡, 0⁡ < 𝑡⁡ ≤ ⁡𝜏𝑟

𝐷, 𝜏𝑟 < ⁡𝑡

(2.2) 

I considered that it would be useful to determine the value of K by referring to the specific slip 

function. In this study, the slip velocity function derived from the dynamic simulation of fault rupture 

by Day (1982) is used as the reference model with modification. The reference slip velocity is given as  

⁡𝐷̇𝑟(𝑡) =
𝐷

2√𝜏𝑟𝑡⁡
{𝐻(𝑡) − 𝐻(𝑡⁡ − ⁡𝜏𝑟)} (2.3) 

The reference slip function is derived by integration of equation (2-3).  

𝐷𝑟(𝑡) ⁡= ⁡{

0, 𝑡⁡⁡ ≤ ⁡⁡0
𝐷

√𝜏𝑟
√𝑡, 0⁡ < ⁡𝑡⁡ ≤ ⁡ 𝜏𝑟

𝐷, 𝜏𝑟 ⁡< ⁡𝑡

(2.4) 

The value of K  is determined so as to make the values of integration of the two slip functions in 

equations (2.2) and (2.4) from 𝑡⁡ = ⁡0 to 𝑡⁡ = ⁡ 𝜏𝑟 equal. The result is 𝐾⁡ = ⁡3 (see Appendix A1 for 

the derivation).  

The source spectrum is obtained from the Fourier transform of the source time function.  

The source time function is formulated as  

Ω(𝒙, 𝑡) ⁡= ⁡𝜇 ∫ ∫ 𝐷1̇[𝑡 −⁡𝑇𝑣 −⁡𝑇𝑟]
𝑝𝐿

−(1−𝑝)𝐿

𝑞𝑊

−(1−𝑞)𝑊

𝑑𝜉1𝑑𝜉2 (2.5) 

where μ is a shear rigidity. Tr is the time delay due to wave propagation from the rupture point to the 
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observation station. In the far-field approximation (Aki & Richards, 2002), Tr is expressed as 

𝑇𝑟 ⁡= ⁡
𝑟ℎ ⁡− ⁡𝜉1sin𝛩cos𝛷⁡−⁡𝜉2sin𝛩sin𝛷

𝑉𝑐
(2.6) 

where 𝑉𝑐 is the velocity of wave-type, P or S. The hypocenter distance 𝑟ℎ, and the angles 𝛩 and 𝛷 

are components of the polar coordinates shown in Figure 2.1a. 𝑇𝑣 is the time delay due to rupture 

propagation from the hypocenter to rupture point.  

𝑇𝑣 ⁡= ⁡
|𝜉1|sin𝜃⁡ +⁡ |𝜉2|cos𝜃

𝑉𝑟
(2.7) 

As a result, the source spectrum Ω(x, ω) is formulated as equations (2.8) and (2.9).    

Ω(𝒙,𝜔) ⁡= ⁡exp(
𝑖𝜔𝑟ℎ
𝑐
) ∙ 𝑀0 ∙ 𝐹𝜏 ∙ 𝐹𝐿 ∙ 𝐹𝑊 (2.8) 

𝐹𝜏 ⁡= ⁡
1

𝐾
⁡+⁡

𝐾⁡ − ⁡1

𝐾
exp (−⁡𝑖𝜔

𝜏𝑟
2
)
sin (

𝜔𝜏𝑟
2 )

𝜔𝜏𝑟
2

(2.9a) 

𝐹𝐿 ⁡= ⁡𝑝exp (−⁡𝑖𝜔
𝜏𝐿1
2
)
sin (

𝜔𝜏𝐿1
2
)

𝜔𝜏𝐿1
2

⁡+⁡(1⁡ − ⁡𝑝)exp (−⁡𝑖𝜔
𝜏𝐿2
2
)
sin (

𝜔𝜏𝐿2
2
)

𝜔𝜏𝐿2
2

(2.9b) 

𝐹𝑊 ⁡= ⁡𝑞exp (−⁡𝑖𝜔
𝜏𝑊1
2
)
sin (

𝜔𝜏𝑊1
2 )

𝜔𝜏𝑊1
2

⁡+⁡(1⁡ − ⁡𝑞)exp (−⁡𝑖𝜔
𝜏𝑊2
2
)
sin (

𝜔𝜏𝑊2
2 )

𝜔𝜏𝑊2
2

(2.9c) 

𝜏𝐿1 ⁡= ⁡𝑝𝐿 (
sin𝜃

𝑉𝑟
⁡− ⁡

sin𝛩cos𝛷

𝑉𝑐
) (2.9d) 

𝜏𝐿2 ⁡= ⁡ (1⁡ − ⁡𝑝)𝐿 (
sin𝜃

𝑉𝑟
⁡+ ⁡

sin𝛩cos𝛷

𝑉𝑐
) (2.9e) 

𝜏𝑊1⁡ = ⁡𝑞𝑊 (
cos𝜃

𝑉𝑟
⁡− ⁡

sin𝛩sin𝛷

𝑉𝑐
) (2.9f) 

𝜏𝑊2 ⁡= ⁡ (1⁡ − ⁡𝑞)𝑊 (
cos𝜃

𝑉𝑟
⁡+ ⁡

sin𝛩sin𝛷

𝑉𝑐
) (2.9g) 

𝑀0  is the seismic moment, which is defined as 𝑀0 ⁡= ⁡𝜇𝐿𝑊𝐷 , 𝒙  stands for the location of the 

observation station, and 𝑖⁡ = ⁡√−⁡1 . 𝐹𝜏  is the Fourier transformation of the slip velocity. 𝐹𝐿  is 

interpreted as the frequency domain representation of the one-dimensional bilateral rupture propagation 

along the fault length with rupture speed of 𝑉𝑟/sin𝜃. 𝜏𝐿1 and 𝜏𝐿2 are the apparent rupture times of 

the two one-dimensional faults with unilateral rupture propagation in opposite directions to each other, 

whose fault lengths are pL and (1⁡ − ⁡𝑝)𝐿, respectively. The symbols used for the representation of 

the source spectrum model are summarized in Table 2.1. The detailed derivation of equation (2.9) can 
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be found in Appendix A1. 

The source spectral amplitude of the proposed spectrum model is required to decay as 𝜔−⁡2 at high 

frequency. |𝐹𝜏|  goes to the constant 1/𝐾  as 𝜔⁡ → ⁡∞ . On the other hand, |𝐹𝐿|  and |𝐹𝑊|  are 

dependent on 𝜔−⁡1  as 𝜔⁡ → ⁡∞ , respectively. Thus, the source spectral amplitude decays 

proportionally to 𝜔−⁡2  in the high frequency range in most cases. Note that the source spectral 

amplitude decays proportionally to 𝜔−1  in the high frequency range when 𝜏𝐿1 ⁡= ⁡ 𝜏𝐿2 ⁡= ⁡0  or 

𝜏𝑊1 ⁡= ⁡ 𝜏𝑊2 ⁡= ⁡0. 

 

Table 2.1. Description of symbols used in the source spectrum model 

Symbol Description 

𝜔 Angular frequency (rad/s) 

𝐿,𝑊 Fault length and width 

𝐾 Amount of instantaneous dislocation, recommendation 𝐾⁡ = ⁡3 

𝜏𝑟 Rise time of dislocation 

𝑀0 Seismic moment, 𝑀0 ⁡= ⁡𝜇𝐿𝑊𝐷𝑜 

𝑉𝑐 Velocity of wave type P or S 

𝑉𝑟/sin𝜃 Rupture speed along strike direction 

0⁡ ≤ ⁡𝜃⁡ ≤ ⁡𝜋/2 

𝑉𝑟/cos𝜃 Rupture speed along dip direction 

𝑝, 𝑞 Location of rupture starting point 

0⁡ ≤ ⁡𝑝, 𝑞⁡ ≤ ⁡1 

𝑟ℎ Hypocenter distance 

𝛩,𝛷 The angles in polar coordinate (Figure 1-1) 

 

2.3. MODEL OF SEISMIC SOURCE SPECTRAL ENVELOPE 

 

The purpose of approximating the source spectral amplitude by its envelope is to make the 

deconvolution by the source spectrum stable. Approximating the amplitude spectrum by its envelope is 

a suitable simplification to extract the features of spectral shape and spectral level. In this chapter, the 

source spectral amplitude approximated by its envelope is called the envelope spectrum. The envelope 

spectrum was assumed to have the form of  

Ω𝐸(𝒙,𝜔) ⁡= ⁡𝑀0 ∙ 𝐹𝐸𝜏 ∙ ⁡𝐹𝐸𝐿 ⁡ ∙ 𝐹𝐸𝑊 (2.10) 

where 𝐹𝐸𝜏, 𝐹𝐸𝐿, and 𝐹𝐸𝑊 correspond to the envelopes for |𝐹𝜏|, |𝐹𝐿|, and |𝐹𝑊|, respectively. I  
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derived the 𝐹𝐸𝜏 by referring to the mathematical form of equations (2.9a). 

𝐹𝐸𝜏 ⁡= ⁡

{
 
 
 

 
 
 1, ⁡⁡𝜔⁡ < ⁡

2𝐾
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1

𝐾
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2

)

2

⁡+⁡(
(𝐾⁡ − ⁡1)2

2(
𝜔𝜏𝑟
2 )

2 )

2

⁡+ ⁡
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2 )

2 , ⁡⁡
2𝐾

𝜏𝑟(𝐾⁡ + ⁡1)
⁡≤ ⁡𝜔

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.11)

 

The detailed derivation of equation (2.11) can be found in Appendix A1.3. I derived the mathematical 

representation of 𝐹𝐸𝐿 by trial and error by referring to the mathematical form of |𝐹𝐿|. Specifically, 

some functions describing the envelope were assumed based on the theoretical solution in equation 

(2.9) and tested by comparing the envelope predicted from an assumed function to the original spectrum 

|𝐹𝐿| predicted from the theoretical solution. Appendix A1.3 shows the derivation of the mathematical 

representation of the envelope 𝐹𝐸𝐿 for the case that 𝜏𝐿1 and 𝜏𝐿2 have positive values. When 𝜏𝐿1 or 

𝜏𝐿2 has a negative value, it becomes hard to infer the mathematical representation of the envelope 𝐹𝐸𝐿. 

The mathematical representation of 𝐹𝐸𝐿 is shown in equations (2.12). That for 𝐹𝐸𝑊 is obtained by 

replacing 𝜏𝐿1, 𝜏𝐿2, and 𝑝 with 𝜏𝑊1, 𝜏𝑊2, and 𝑞, respectively, in equation (2.12). The derivation was 

similar to equation (2.11) for equations (2.12a) to (2.12c). Equations (2.12d) to (2.12g), the case that 

the apparent rupture time becomes minus, were derived by testing some functions.  

 

 

 

 

 

Figure 2.2 The envelope 𝐹𝐸𝜏, and the original spectral amplitude for slip velocity |𝐹𝜏|. 
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(𝑖)⁡1⁡ ≤ ⁡ 𝜏𝐿1/𝜏𝐿2 

𝐹𝐸𝐿 ⁡= ⁡

{
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(2.12a) 

 

(𝑖𝑖)⁡0⁡ ≤ ⁡𝜏𝐿1/𝜏𝐿2 ⁡< ⁡1 

𝐹𝐸𝐿 ⁡= ⁡
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(𝑖𝑖𝑖)⁡𝜏𝐿1 ⁡= ⁡𝜏𝐿2 ⁡= ⁡0 

𝐹𝐸𝐿 ⁡= ⁡1.0 (2.12c) 

 

(𝑖𝑣) ⁡− 1⁡ ≤ ⁡ 𝜏𝐿1/𝜏𝐿2 ⁡< ⁡0, 𝜏𝐿1 ⁡< ⁡0⁡  
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(𝑣)⁡𝜏𝐿1/𝜏𝐿2 ⁡< ⁡−1, 𝜏𝐿1 ⁡< ⁡0 

𝐹𝐸𝐿 ⁡= ⁡
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(𝑣𝑖) ⁡− 1⁡ ≤ ⁡ 𝜏𝐿1/𝜏𝐿2 ⁡< ⁡0, 𝜏𝐿2 ⁡< ⁡0 

𝐹𝐸𝐿 ⁡= ⁡
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Figure 2.3 compares the original spectrum |𝐹𝐿| to its envelope 𝐹𝐸𝐿 predicted from equation (2.12). 

The envelope model 𝐹𝐸𝐿 (red) describes the envelope of the original spectrum |𝐹𝐿| (gray) adequately. 

The source spectra were calculated from the source model with bilateral-unidirectional rupture 

propagation. The bilateral-unidirectional source model consists of two sub-faults (right-top). The source 

areas of these sub-faults are different (identified as large and small). The spectra 𝐹𝐸𝐿 have two corner 

frequencies defined as 1/𝜋𝜏𝐿1  for the large sub-fault and 1/𝜋𝜏𝐿2  for the small one (Figure 2.3). 

Three representative stations (forward, backward, and reference) are selected to show the differences in 

spectral properties due to the rupture directivity effect. Figure 2.3 illustrates the shifts of the two corner 

frequencies in the three stations due to the rupture directivity effect. In the forward station, the apparent 

rupture time of the large sub-fault, 𝜏𝐿1, becomes shorter, and that of the small sub-fault, 𝜏𝐿2, becomes 

longer. On the other hand, in the backward station, the apparent rupture time of the large sub-fault, 𝜏𝐿1, 

becomes longer, and that of the small sub-fault, 𝜏𝐿2, becomes shorter.  

Figure 2.4 shows the comparison between the envelope spectra Ω𝐸(𝒙, 𝑓) and the original spectra 

|Ω(𝒙, 𝑓)| calculated from the theoretical solution in equation (2.9). The envelope spectrum is a good 

 
Figure 2.3 The envelope 𝐹𝐸𝐿  (red) and the original spectral amplitude |𝐹𝐿|  (gray). These spectra were 

calculated using the source model in the right-top for the three stations (forward, backward, and reference 

stations). The yellow triangles stand for these stations.  
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approximation of the envelope of the original source spectral amplitude according to the examples 

shown in Figure 2.4. 

 

  
Figure 2.4a Comparison of the envelope spectra (red) and the original source spectral amplitudes (gray) for 

representative cases. The model earthquake has length of 10 km. The rupture speed is 𝑉𝑟 = sin𝜃𝐶𝑉𝑆𝑉𝑠 , 

where 𝑉𝑠 ⁡is the S-wave velocity. P- and S-wave velocities are 5.8 and 3.4 km/s, respectively. 𝐾 = 3 is used, 

and 𝑀0 is normalized. The other parameters are described in each panel.  
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Figure 2.4b Description is the same as Figure 2.4a. 
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Figure 2.4c Description is the same as Figure 2.4a. 
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2.4. CONCLUSIONS  

 

This chapter developed a source spectrum model (the envelope spectrum) considering the rupture 

directivity effect. Firstly, the mathematical representation of the source spectrum of the rectangular 

kinematic source model with bilateral–bidirectional rupture propagation was derived. Then, the 

equations to approximate the theoretical solution of the source spectral amplitude by its envelope were 

proposed. This approximation removes the spectral holes from the source spectral amplitude. Finally, it 

was demonstrated that the envelope spectrum is adequatel approximation of the envelope of the original 

source spectrum (Figure 2.4). The purpose of developing the envelope spectrum is to enable us to 

estimate rupture size, geometry, speed, and directivity from the spectral ratio analysis. The previous 

standard spectral ratio approach estimates corner frequency from observed spectral ratios. Then, the 

corner frequency is related to the source radius by assuming rupture speed, geometry, and directivity to 

estimate the stress drop. In contrast, the envelope spectrum enables us to infer the finite source 

properties of the rectangular source model, i.e., rupture size, shape, speed, and rupture start point, from 

observed spectral ratios. 
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Chapter 3  

 

SPECTRAL RATIO METHOD 

 

3.1. OVERVIEW 

 

This chapter develops a spectral ratio approach incorporating the envelope spectrum to estimate the 

stress drop of small-to-moderate earthquakes considering rupture geometry, speed, and directivity. 

Spectral ratios are stacked by station and wave type for multiple empirical Green’s functions (EGFs), 

and then, the spectral ratio stacks from all stations are fitted simultaneously to the model spectra to 

estimate the source parameters (Shimmoto, 2022). We can calculate the stress drop directly from the 

estimated rupture area. The spectral ratio method is applied to small-to-moderate earthquakes in Japan. 

It is not obvious whether or not the envelope spectrum (or the rectangular source model) is appropriate 

to explain observed seismic spectra. Thus, it is confirmed that the model spectral ratio using the 

envelope spectrum fits observed spectral ratios well. Next, the stress drops are calculated from the 

estimated rupture areas and the seismic moment. However, despite the success in the spectral ratio 

fitting, it is shown that the stress drop estimates are systematically more than one order higher than 

typical stress drop ranges implied from previous studies of large earthquakes (Shimmoto, 2022).      
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3.2. DATA 

 

This study estimates the stress drops and radiated energies of 𝑀𝑤  3.2 to 6.0 shallow crustal 

earthquakes in the four regions shown in Figure 3.1 (Niigata, Iwate-Miyagi, Fukushima-Ibaraki, and 

Kumamoto) in Japan. These earthquakes are recorded by typically 15 to 25 Hi-net stations (NIED 

2019a; Okada et al., 2004) at distances of 10 to 100 km. The sampling rate of the Hi-net data is 100 Hz, 

and three components were used. The seismic moments, fault plane solutions, and hypocenters of these 

earthquakes are provided by F-net (NIED 2019b) and JMA. The depths of the target earthquakes are 

less than 20 km. Hi-net stations are deployed in boreholes so data have low noise levels and minimal 

 

Figure 3.1. Epicenters and focal mechanisms of the target earthquakes in the four regions, and 1-D velocity 

structure models (top-middle) used in this study. The color maps indicate the type of focal mechanism. The 

value in the color bar ranges from -1.0 for a normal fault (blue) to 1.0 for a reverse fault (yellow) (Shearer et 

al., 2006).   
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site effects which facilitates the spectral analyses in this study. The focal mechanisms of the earthquakes 

in the four regions cover all faulting types: strike-slip (Kumamoto), normal fault (Fukushima-Ibaraki), 

and reverse fault (Niigata and Iwate-Miyagi) (Figure 3.1). The seismic phase data provided by JMA 

was used to extract the P- and S-waves. The 1-D velocity structure model obtained based on Koketsu 

et al. (2012) was used to calculate take-off angles (Figure 3.1). The spectral ratio analysis results of the 

earthquakes in the Fukushima-Ibaraki region are from Shimmoto (2022). 

 

3.3. METHOD 

 

3.3.1. Spectral Ratio Stacks Using Multiple Empirical Green’s Functions  

 

The spectrum of a target event divided by the spectrum of an EGF cancels the path, site, and 

instrument effect in the resultant spectral ratio, enabling the extraction of the source effect from seismic 

records. This study stacked spectral ratios for multiple EGFs by station and wave type to improve the 

stability of the spectral ratios (Abercrombie et al., 2017). The stack represents the geometric mean. The 

spectral ratio models using the source spectrum model developed in the Chapter 2 (the envelope 

spectrum) were fit to the observed spectral ratios obtained by station and wave type to estimate the 

source parameters of a target earthquake. 

Both P- and S-waves were used to calculate amplitude spectra. The time window length was 

determined from 

𝑡𝑤 = 1.8 × (10
−14 ×𝑀0)

1
3 (3.1)

 

where 𝑀0  is the seismic moment of a target event. The time window length by equation (3.1) is 

approximately eight times the source duration (Kanamori & Brodsky, 2004). If an extracted P-wave 

contains the S-wave, I did not use the P-wave. Pre-event noise spectra were obtained with the same 

time window length to calculate signal-to-noise ratio (SNR). The amplitude spectra were smoothed 

using a multi-taper method (Thomson, 1982; Park et al., 1987).  

Small earthquakes were selected from the vicinity of target earthquakes to search for suitable EGFs. 

The JMA magnitudes of small earthquakes were 0.7 to 2.0 units smaller than the target events. The 
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unified earthquake catalog by JMA provides the hypocenter location and JMA magnitude of small 

earthquakes. The differences in the epicentral distance between the target earthquakes and EGF events 

were within 4 km for earthquakes with 𝑀𝑤 less than 4.0, within 6 km for earthquakes with 𝑀𝑤 4.0 to 

5.0, and within 12 km for earthquakes with 𝑀𝑤 larger than 5.0. The depth differences between the 

target earthquakes and EGF events were within 2 km for earthquakes with 𝑀𝑤 less than 4.0, within 3 

km for earthquakes with 𝑀𝑤 4.0 to 5.0, and within 6 km for earthquakes with 𝑀𝑤 larger than 5.0. I 

did not set strict distance criteria since this spectral ratio analysis only uses amplitude spectra (e.g., Ross 

& Ben-Zion, 2016). 

After selecting small earthquakes based on the location criteria, I calculated spectral ratios and 

selected suitable ones for stacking. I applied three criteria: (1) signal-to-noise ratio (SNR), (2) variance 

reduction (e.g., Uchide & Imanishi, 2016), and (3) low- and high-frequency amplitude ratio 

(Abercrombie, 2014; Abercrombie et al., 2017). These criteria contribute to removing spectral ratios 

with irregular shapes or bumps. The SNRs were calculated for every frequency point within the target 

frequency range. Their minimum was required to be at least 3.0 (e.g., Abercrombie et al., 2017; Ross 

& Ben-Zion, 2016; Viegas et al., 2010). I fitted spectral ratio calculated from the omega-square model 

(Aki, 1967; Brune, 1970; Boatwright, 1980) to an observed spectral ratio to evaluate the variance 

reduction and the amplitude ratio at low- and high-frequency in the best-fit spectral ratio model. The 

spectral ratio using the omega-square model is 

𝑆𝑅𝜔2 = 𝐶 {
1 + (

𝑓
𝑓𝑐2
)
𝑛𝛾

1 + (
𝑓
𝑓𝑐1
)
𝑛𝛾}

1
𝛾

(3.2) 

where 𝑛 describes the high-frequency falloff rate and was assumed as, 𝑛 = 2 (e.g., Abercrombie et 

al., 2017). When 𝑛 = 2, 𝛾 = 1 corresponds to the model by Brune (1970), and 𝛾 = 2 corresponds 

to the model by Boatwright (1980). The omega-square model with a higher 𝛾 value has a sharper 

spectral corner. The range of 𝛾 was assumed as, 1⁡ ≤ ⁡𝛾⁡ ≤ ⁡2. The constant C is the ratio of the 

seismic moments of a target and small earthquake. The variance reduction is defined as 

𝑉𝑅𝑒𝑔𝑓 ⁡= (1 −
𝐹𝑟𝑒𝑠𝜔2

∑ (log10𝑆𝑅𝑜𝑏𝑠(𝑓𝑖) ⁡− 𝐸[log10𝑆𝑅𝑜𝑏𝑠(𝑓)])
2𝑁𝑓

𝑖⁡=1⁡

)× 100 (3.3) 
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𝐹𝑟𝑒𝑠𝜔2 ⁡= ⁡∑ (log10𝑆𝑅𝑜𝑏𝑠(𝑓𝑖) ⁡− ⁡log10𝑆𝑅𝜔2(𝑓𝑖))
2

𝑁𝑓

𝑖⁡=1⁡

(3.4) 

where 𝑁𝑓  is the number of frequency components, 𝑆𝑅𝑜𝑏𝑠(𝑓𝑖) is the observed spectral ratio, and 

𝐸[log10𝑆𝑅𝑜𝑏𝑠(𝑓)]  is the expected value of log10𝑆𝑅𝑜𝑏𝑠(𝑓) . The spectral ratios with a variance 

reduction of more than 90% were only stacked. Additionally, I removed spectral ratios with the ratio of 

the spectral levels at low- and high-frequency in the fit of the omega-square model being smaller than 

2 (Abercrombie, 2014). I applied the three criteria in the previous paragraph to a spectral ratio for a 

target and EGF pair and stacked it if all the three criteria were satisfied. These criteria were examined 

for each of the three components (NS, EW, and UD) for each EGF event by station and wave type, and 

only the components that satisfy the three criteria were used for stacking. After selecting spectral ratios 

satisfying the three criteria, the spectral ratios were stacked by station and wave type. Then, the stacked 

spectral ratios were normalized so that their low-frequency spectral level equals 1.0. A stacked spectral 

ratio for P- or S-wave at a station is only used in the spectral ratio fitting if the number of spectral ratios 

in the stack is 8 or more. Figure 3.2 illustrates the example of the spectral ratio stacking.    
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Figure 3.2. An example of the stacked spectral ratio for the Mw 3.8 event that occurred on July 4th, 2011, in 

the Fukushima-Ibaraki region. (a) The stations (blue triangles) and the epicenter (red dot). (b) The normalized 

stacked spectral ratios (red curves) and the individual spectral ratios used for the stacking (gray curves) with 

the number of stacks. The title on each panel shows the station name and wave type.   

 

(a)

(b)
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3.3.2. Spectral Ratio Model 

 

The model spectra were simultaneously fit to all the normalized stacked spectral ratios 

𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙𝑗, ⁡𝑓𝑖) to estimate the source parameters by minimizing the following residual:  

𝐹𝑟𝑒𝑠 ⁡= ⁡ ∑ (log10𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙𝑗, 𝑓𝑖) ⁡− ⁡log10𝑆𝑅𝐸

𝑐(𝒙𝑗, 𝑓𝑖))
2

⁡⁡

𝑖,𝑗,𝑐⁡⁡

(3.5) 

where the indices 𝑐, 𝑗, and 𝑖 represent the wave type, station, and frequency components, respectively. 

𝑆𝑅𝐸
𝑐(𝒙𝑗, ⁡𝑓𝑖) is  

𝑆𝑅𝐸
𝑐(𝒙, 𝑓) =

Ω𝐸𝑁(𝒙, 𝑓)

Ω𝜔2(𝒙, 𝑓)
(3.6) 

where Ω𝐸𝑁(𝒙, 𝑓)  is the (normalized) envelope spectrum, and Ω𝜔2(𝒙, 𝑓)  is the omega-square 

spectrum. 

Ω𝜔2(𝒙, 𝑓) =
1

{1 + (
𝑓
𝑓𝑐2
)
2𝛾

}

1
𝛾

(3.7)
 

The rectangular source model developed in the Chapter 2 enables us to estimate source spectra at 

all stations for both P- and S-waves (Shimmoto, 2020). The envelope of the source spectrum model is 

described as Ω𝐸(𝒙, 𝑓), equation (2.10):  

Ω𝐸(𝒙, 𝑓) ⁡= ⁡𝑀0𝐹𝐸(𝒙, 𝑓|𝐿,𝑊, 𝑝, 𝑞, 𝑉𝑟, 𝜃, 𝛩, 𝛷, 𝑉𝑐 , 𝜏𝑟) (3.8) 

where 𝑓 is the frequency, and x is the vector to indicate the location of an observation station, and 𝑀0 

is the seismic moment. The details of the parameters can be found in Figure 3.3. The polar coordinates, 

Θ and Φ, can be obtained from dip 𝛿, strike 𝜑𝑠, azimuth 𝜓𝑎𝑧, take-off angle 𝜓𝑡𝑓, and the rupture 

orientation angle 𝛬 (Figures 3.3a and 3.3b). The relationships between the polar coordinates and these 

angles are summarized in the following equations. 

[

sin𝛩cos𝛷′

sin𝛩sin𝛷′

cos𝛩

] = [

cos𝜑𝑠 sin𝜑𝑠 0

cos𝛿sin𝜑𝑠 −⁡cos𝛿cos𝜑𝑠 −⁡sin𝛿

−⁡sin𝛿sin𝜑𝑠 sin𝛿cos𝜑𝑠 −⁡cos𝛿

] [

sin𝜓𝑡𝑓cos𝜓𝑎𝑧

sin𝜓𝑡𝑓sin𝜓𝑎𝑧

cos𝜓𝑡𝑓

] (3.9) 

𝛷 = 𝛷′ − Λ (3.10) 
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The take-off angle was obtained using the 1-D velocity structure model. The envelope is normalized so 

that its low-frequency asymptote would equal one.   

Ω𝐸𝑁(𝒙, 𝑓) ⁡=
Ω𝐸(𝒙, 𝑓)

𝑀0
= 𝐹𝐸 (3.11) 

This normalized envelope, Ω𝐸𝑁(𝒙, 𝑓), is called the envelope spectrum in the following studies. The 

value of θ in the bilateral–bidirectional source model (Figure 3.3a) was assumed as 45 degrees, which 

indicates that the rupture propagates with a square rupture front. The square rupture front was selected 

because it is analogous to the circular rupture front used in finite fault inversion frequently. The rise 

time was calculated using the following equation (Geller, 1976):  

𝜏𝑟 =⁡
16√𝐿𝑊

7𝜋3/2𝑉𝑆
(3.12) 

 

Figure 3.3. Description of the source and source spectrum model. (a) Rectangular fault with bilateral–

bidirectional rupture propagation. The axes x1 and x2 (black arrows) are parallel to the strike and dip direction, 

respectively. The positive direction of axis x2 is the up-dip direction. The axis x3 is normal to the fault plane. 

The angle 𝛬 designates the orientation of the rectangular source on the fault plane. The coordinate system is 

rotated 𝛬  degree counter-clockwise around x3 (coordinate system colored with red). (b) Geometrical 

configuration of the fault plane (dip and strike), the fault coordinate system, the take-off angle, and azimuth. 

(c) Slip velocity function.  
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where VS is the S-wave velocity at a depth of the hypocenter. The rupture speed was controlled by the 

ratio of the maximum rupture speed 𝑉𝑟𝑚𝑎𝑥 = √2𝑉𝑟  to the S-wave velocity 𝑉𝑆 , which is 𝐶𝑉𝑆 =

𝑉𝑟𝑚𝑎𝑥/𝑉𝑆. 

 

3.3.3. Comparison of Model Spectral Ratio with Observed Data  

 

We need to determine the corner frequency 𝑓𝑐2 and the sharpness of spectral corner γ of the spectral 

model given in equation (3.7) for each station and wave type. The estimate of the source parameters of 

the target earthquake becomes unstable unless we restrict the parameters 𝛾  and 𝑓𝑐2 . Therefore, I 

limited the range of 𝑓𝑐2 and 𝛾 values using the spectral ratio model of equation (3.2) before searching 

for the minimum residual of equation (3.5). The observed spectral ratios were normalized (Figure 3.4a), 

and hence, I set 𝐶 = 1.0 in equation (3.2). To constrain the range, I first determine 𝛾 values by fitting 

the spectral ratio (Figure 3.4b) to equation (3.2). I used these determined 𝛾 values as the fixed values 

when searching the minimum residual of equation (3.5). Then, the constrained range for ⁡𝑓𝑐2  was 

determined using the criterion of Viegas et al. (2010), where the values of 𝑓𝑐2  with normalized 

residuals less than 1.05 were used (Figure 3.4c). The residuals were obtained for each prescribed 𝑓𝑐2 

and normalized by the minimum residual. 
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The parameters to be estimated are the rupture length 𝐿, aspect ratio 𝐴𝑅(= 𝐿/𝑊), rupture speed 

𝐶𝑉𝑆 = 𝑉𝑟𝑚𝑎𝑥/𝑉𝑆, rupture start point (𝑝 and 𝑞), fault plane (strike and dip), rupture orientation angle 

Λ, and corner frequencies 𝑓𝑐2. I conducted a grid search to minimize the residual 𝐹𝑟𝑒𝑠, equation (3.5), 

to determine the source parameters of a target earthquakes. Since we usually cannot avoid the parameter 

trade-off issues, one better approach is to limit the source parameters in advance so that they can only 

have the values within a physically reasonable range. It is difficult to estimate the rupture start point or 

source dimension simultaneously with rupture speed by the optimization due to the trade-off. Hence, I 

controlled 𝐶𝑉𝑆 by prescribing realistic values in the grid search. The 𝐶𝑉𝑆 was tested from 0.6 to 0.9 

with an interval of 0.05 (e.g., Venkataraman & Kanamori, 2004). This study also prescribed the aspect 

ratios in the grid search to avoid obtaining an unrealistically narrow rupture area. The aspect ratios 

tested in the grid search were 1/3, 1/2, 1, 2, and 3. 

 

Figure 3.4. Examples of the preliminary fitting of spectral ratios with the omega-square model to determine 

the range of tested 𝑓𝑐2 values. The results of the two S-wave spectral ratios for the different stations are shown. 

(a) Examples of stacking of spectral ratios. The red curves are the stacked spectral ratios and gray curves are 

individual spectral ratios used for stacking. (b) Comparison of the observed spectral ratios (red) with the 

optimal spectral ratio models (blue). (c) Example of determining the constraint range (vertical dotted lines) for 

𝑓𝑐2. The horizontal black line shows the normalized residual of 1.05.  

 

(a) (b) (c)
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The grid search estimated the optimal parameters (𝐿, 𝑝, 𝑞, and corner frequencies 𝑓𝑐2) for each 

combination of the prescribed rupture speed, aspect ratio, rupture orientation, strike, and dip under the 

constraints of 𝑓𝑐2. I used the strike and dip angles obtained for each earthquake’s two possible fault 

planes indicated by their focal mechanism provided by F-net. The rupture orientation angles 𝛬 of 0 and 

45 degrees were tested since the square rupture front has the minimum rupture speed in the direction of 

45 degrees oriented from that of the maximum rupture speed. The source parameters (𝐿, 𝑝, 𝑞, and 𝑓𝑐2) 

and residual (Fres) were obtained for each combination of 𝐶𝑉𝑆, 𝐴𝑅, 𝛬, 𝜑𝑠, and 𝛿. I evaluated the 

model-dependent uncertainty of the stress drop estimates by calculating the stress drops from the source 

parameter sets whose residual (𝐹𝑟𝑒𝑠) is less than 1.05 times the minimum residual. The stress drop 

calculation is described in the following sections. In this study, the criterion that residuals (Fres) are less 

than 1.05 times the minimum residual is called the minimum residual criterion. Figure 3.5 summarizes 

the source parameter estimation procedure.  
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Figure 3.5. Summary of the source parameter estimation procedure 
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3.4. RESULTS 

 

This study provides the stress drop estimates for the 409 earthquakes. The stress drop ∆𝜎𝑅 was 

calculated from estimated rupture area LW by the following equation (Eshelby, 1957; Keilis-Borok, 

1959).  

∆𝜎𝑅 =
7𝑀0

16(𝐿𝑊/𝜋)3/2
(3.13) 

The stress drops ∆𝜎𝑅 are in the range of 4.5 to 724 MPa with a median of 67.9 MPa (Figure 3.6a). The 

89% of the stress drop estimates are within 10 to 200 MPa. Figure 3.6b shows the histogram of the 

stress drop ∆𝜎𝑅 for each of the target regions. 

 

Figure 3.6 Histograms of the stress drop ∆𝜎𝑅. (a) Histogram of the stress drop ∆𝜎𝑅 for all events in the four 

target regions. (b) Histograms of the stress drops ∆𝜎𝑅 for each of the target regions. 
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To evaluate the accuracy of the spectral ratio fitting, I calculated the variance reduction defined as 

𝑉𝑅𝑒𝑛𝑣 ⁡= ⁡(1 −
𝐹𝑟𝑒𝑠

∑ (log10𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙𝑗, 𝑓𝑖) ⁡− 𝑆𝑅̅̅̅̅ )

2⁡⁡
𝑖,𝑗,𝑐⁡⁡

)× 100 (3.14) 

where 𝐹𝑟𝑒𝑠 is the residual in equation (3.5), and 𝑆𝑅̅̅̅̅  is the average value for all components of the log 

spectral ratios, log10𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙𝑗, 𝑓𝑖). The 409 earthquakes have variance reductions of more than 80% 

(Figure 3.7a). Figure 3.7 also shows the number of stations (Figure 3.7b), the number of spectral ratios 

(Figure 3.7c), and maximum azimuthal gaps (Figure 3.7d). The spectral ratio fitting was conducted 

using events with a sufficient number of stations and spectral ratios with a broadband frequency range. 

   Table 3.1 and Figure 3.8 show a representative result of the spectral ratio analysis for an Mw 3.8 

event, whose source parameters, especially for rupture orientation angle and fault plane ambiguity, were 

well resolved. Figure 3.8a shows the stations used in the spectral ratio fitting and the best-fit rupture 

model. Figure 3.8 compares the envelope spectra, Ω𝐸𝑁(𝒙, 𝑓⁡) ⁡= ⁡ 𝑆𝑅𝐸
𝑐(𝒙, 𝑓) × Ω𝜔2(𝒙, 𝑓⁡), with the 

synthesized source spectra, 𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙, 𝑓⁡) × Ω𝜔2(𝒙, 𝑓⁡), and shows the details of the spectrum shape for 

both the model and data. The model envelope spectra (gray curves) agree with the observed source 

 

Figure 3.7. Histograms to summarize the results of the spectral ratio analysis: (a) The number of stations. (b) 

Number of stations used in the spectral ratio analysis. (c) Variance reduction. (d) Maximum azimuthal gaps.  

 

Median = 89.5%
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Median = 100.9 deg.
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spectra (red curves) in the broadband frequency range (Figure 3.8). The variance reduction for the 

representative event is 91.4%. Appendix A2 provides additional representative results of the spectral 

ratio fitting. Table 3.1 shows the ensemble of the estimated source parameters whose residuals are less 

than 1.05 times the minimum residual, i.e., satisfying the minimum residual criterion. The source 

parameter ensemble was used to evaluate the uncertainty of the stress drop estimates.  

 

Table 3.1. The ensemble of the estimated source parameters whose residuals are less than 1.05 times the 

minimum residual for the Mw 3.8 event shown in Figure 3.7, i.e., satisfying the minimum residual criterion. 

Residual L (m) W (m) AR p q CVS Λ 

(deg.) 

φ
s
 

(deg.) 

δ 

(deg.) 

ΔσR 

(MPa) 

41.99 440 440 1 0.03 0.17 0.8 0 331 34 17.8 

42.98 408 408 1 0.03 0.16 0.75 0 331 34 22.3 

43.05 477 477 1 0.04 0.19 0.85 0 331 34 13.9 

43.63 377 377 1 0.03 0.15 0.7 0 331 34 28.0 
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Figure 3.8. The result of the spectral ratio analysis for the Mw 3.8 event that occurred on July 4th, 2011 in the 

Fukushima-Ibaraki region. (a) The stations (blue triangles) and the best-fit rupture model (top-left and top-

right). The green arrow next to the red dot indicates the strike direction. The green arrow on the top of the best-

fit model also shows the strike direction. (b) Comparison of the envelope spectra, Ω𝐸𝑁(𝒙, 𝑓), (gray) and 

synthesized source spectra, 𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙, 𝑓) × Ω𝜔2(𝒙, 𝑓) , (red) for the representative event (bottom). The 

synthesized source spectra correspond to the observation. The titles of each subplot designate the names of 

station and wave type. The polar coordinates are shown in each of the plots.  
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In the corner-frequency-based method, we usually assume a circular source with symmetric rupture 

propagation with a rupture speed of 0.9𝑉𝑆. It is useful to test if this assumption is generally valid. Thus, 

the spectral ratio analysis was conducted by assuming the square source (𝐴𝑅 = 1) whose rupture 

propagates from the center (𝑝 = 𝑞 = 0.5) with rupture speed of 0.9𝑉𝑆  (𝐶𝑉𝑆 = 0.9). The bilateral–

bidirectional source model with these assumptions (I call the standard source model) is not completely 

the same as the circular source but can be a good approximation. I call the source model estimated by 

the method originally proposed in this study the extended source model. I calculated the difference of 

the Akaike Information Criteria, ∆AIC, following Yoshida (2019).    

∆AIC = AIC𝑠𝑡𝑎𝑛𝑑 − AIC𝑒𝑥𝑡𝑒𝑛𝑑 = ⁡𝑁ln (
𝐹𝑟𝑒𝑠
𝑠𝑡𝑎𝑛𝑑

𝐹𝑟𝑒𝑠
𝑒𝑥𝑡𝑒𝑛𝑑) − 2∆𝑘 (3.15) 

where AIC𝑠𝑡𝑎𝑛𝑑  and AIC𝑒𝑥𝑡𝑒𝑛𝑑  are the Akaike Information Criteria for the standard and extended 

source model. 𝐹𝑟𝑒𝑠
𝑠𝑡𝑎𝑛𝑑 and 𝐹𝑟𝑒𝑠

𝑒𝑥𝑡𝑒𝑛𝑑⁡are the residuals calculated from equation (3.5) for the standard 

and extended source model. ∆𝑘 is the difference of the number of model parameters, ∆𝑘 = 4. N is the 

total number of fitted frequencies in equation (3.5) calculated by adding fitted frequencies for all 

stations and wave types. Figure 3.9a shows that ∆AIC  for all the earthquakes exceeds 2.0 (the 

horizontal blue line), which indicates that all the analyzed earthquakes prefer the extended source model 

to the standard source model (Yoshida, 2019). Figure 3.8b shows the rupture start points (𝑝 and 𝑞) 

estimated as the best-fit model. We see that most earthquakes rupture asymmetrically, which is 

consistent with the results by Yoshida (2019). The histograms of the aspect ratio and rupture speed are 

shown in Figures 3.9c and 3.9d. We see that 𝐴𝑅 = 1 is less common. The rupture speed of 𝐶𝑉𝑆 = 0.9 

does not tend to occur more frequently than other rupture speeds. Thus, the standard source model is 

less common.  
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Figure 3.9. The ∆AIC and source parameters estimated as the best-fit model. (a) ∆AIC versus moment 

magnitude. The horizontal blue line indicates ∆AIC = 2. (b) Distribution of the rupture start points on a rupture 

plane. The symmetric rupture is described as 𝑝 = 𝑞 = 0.5. For example, 𝑝 = 𝑞 = 1.0 indicates that rupture 

asymmetrically propagates along length and width directions. (c) Histogram of aspect ratio. (d) Histogram of 

𝐶𝑉𝑆. 

 

 

3.5. DISCUSSION 

 

Compared to the typical range of 1 to 10 MPa observed for large earthquakes (Kanamori & 

Anderson, 1975; Kanamori & Brodsky, 2004; Venkataraman & Kanamori, 2004), the estimated stress 

drop values are one-order higher (10 to 200 MPa) (Figure 3.5). Table 3.2 compiles the source parameters 

of the large earthquakes (foreshock, mainshock, and aftershock) observed in the target regions. The 

stress drops ∆𝜎𝑠 were calculated from the source area 𝑆 and the seismic moment 𝑀0.  

∆𝜎𝑠 =
7𝑀0

16(𝑆/𝜋)3/2
(3.16) 

(a) (b)

(c) (d)
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The stress drops ∆𝜎𝑠 of the large earthquakes are within the typical 1 to 10 MPa range. This fact 

suggests that the stress drops estimated by the spectral ratio analysis are ∆𝜎𝑅  anomalously high. 

Another critical issue is the radiation efficiency 𝜂𝑅
′ , which is the ratio of the apparent stress 𝜎𝑎 ⁡to the 

average static stress drop ∆𝜎𝑠 multiplied by 2, 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠. The radiation efficiency 𝜂𝑅

′  takes the 

value from 0.1 to 1.0 for typical earthquakes (e.g., Venkataraman & Kanamori, 2004). Suppose that the 

apparent stress is 1.5 MPa, which is a typical value (Hanks & Kanamori, 1979). Then, the stress drop 

∆𝜎𝑅 of 67.9 MPa, which is the median estimate of ∆𝜎𝑅 (Figure 3.6), provides the (average) radiation 

efficiency 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑅 of 0.04, which is too low compared with the typical range of 0.1 to 1.0.  

In the Fukushima-Ibaraki region, Yoshida et al. (2015) estimated the differential stress and found 

that the range of the differential stress is 2 to 30 MPa. The 10 to 200 MPa stress drops appear 

inconsistent with the differential stress estimates by Yoshida et al. (2015). Uchide & Imanishi (2016) 

calculated the stress drops of some earthquakes in the Fukushima-Ibaraki region from corner frequency 

assuming the source model by Madariaga (1976). Their results show that the stress drops are 4 to 95 

MPa with a median of 26 MPa. The Madariaga model assumes symmetric rupture propagation and high 

rupture speed, 0.9𝑉𝑆 . However, the results in Figure 3.9 does not support the validity of using the 

Madariaga model for the earthquakes analyzed in this study. If we apply appropriate source geometry, 

 

Table 3.2. The complied source parameters for the large earthquakes in the target regions 

Earthquake M0 (Nm)* L x W (km) S (km2) Δσs (MPa) References  

Niigata Chuetsu 2004 7.5e+18 25 x 12 300 3.6 Miyazawa et al. (2005) 

Asano & Iwata. (2009) 

Niigata Chuetsu 2004  
aftershock  

2.9e+18 12 x 12 

 

144 4.1 Miyazawa et al. (2005) 

Iwate Miyagi 2008 2.7e+19 40 x 18 720 3.4 Yokota et al. (2009) 

Suzuki et al. (2010) 

Fukushima Hamadori 
2011 

9.6e+18 20 x 10 

15 x 10 

350** 3.6 Anderson et al. (2013) 

Tanaka et al. (2014) 

Kumamoto foreshock 
2016 

1.7e+18 12 x 12 

 

144 2.5 Asano et al. (2016) 

Kumamoto 2016 4.4e+19 55 x 15 

 

825 4.5 Yoshida et al. (2017) 

Asano & Iwata (2021) 

* The seismic moment values are obtained from F-net. 

** Two faults ruptured in the 2011 Fukushima Hamadori earthquake. The total rupture area was calculated by adding the 

rupture areas of two faults. 
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rupture speed, and rupture directivity in the corner-frequency-based stress drop estimation, the stress 

drops by Uchide & Imanishi (2016) can become higher. For example, the 𝑘𝑐 value is generally smaller 

for asymmetric rupture propagation than symmetric rupture propagation and is also smaller for lower 

rupture speed (Kaneko & Shearer, 2015). The 10 to 200 MPa stress drop estimates are reasonable from 

a point of view of the corner-frequency-based method.  

Our high stress drop estimates are inconsistent with the typical range of 1 to 10 MPa and the 

differential stress values by Yoshida et al. (2015) studies but are consistent with the corner-frequency-

based study, such as Uchide & Imanishi (2016). The goodness of the spectral ratio fitting suggests that 

our estimated rupture areas should have some physical significance. However, when we calculate the 

stress drop using equation (3.13), we assume that the rupture area obtained from the spectral ratio fitting 

corresponds to the overall rupture area, which is necessary to calculate the static stress drop from 

equation (3.13). The rupture area estimated from the spectral ratio analysis may not be the overall 

rupture area but a smaller area that is generating strong seismic radiation. If this is true, the stress drops 

calculated from equation (3.13) with the rupture area 𝐿𝑊 will be systematically higher than an average 

stress drop for the entire fault plane.  

 

3.6. CONCLUSIONS 

 

This chapter developed a procedure to estimate the source parameters (rupture size, shape, speed, 

and rupture start point) of the rectangular source model by the spectral ratio fitting with the envelope 

spectrum. The source parameters are estimated by fitting the model spectral ratios with the envelope 

spectrum to observed spectral ratios obtained by station and wave type. This spectral ratio fitting is 

different from the standard spectral ratio approach, which fits the model spectral ratio to an observed 

spectral ratio averaged over all stations to estimate the corner frequency. This difference is because the 

developed spectral ratio approach estimates more detailed source parameters than the standard one. It 

was confirmed that the model spectral ratio with the envelope spectrum fits the observed spectral ratios 

well. However, this chapter found a problem that the stress drops calculated from the rupture areas 

estimated by the spectral ratio approach are too high (about one order) compared with the typical stress 

drop range of 1 to 10 MPa despite good accuracy in the spectral ratio fitting.       
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Chapter 4  

 

SEISMIC SPECTRA AND SOURCE HETEROGENEITY  

 

4.1. BACKGROUND AND OVERVIEW 

 

In the previous chapter, we saw that the stress drops ∆𝜎𝑅 calculated from the rupture area estimated 

by the spectral ratio analysis are too high compared with the typical range. A hypothesis is that the 

rupture area estimated from the spectral analysis is not the overall rupture area but is a much smaller 

area. This chapter clarifies the physical meaning of the estimated rupture area. 

The source model developed in Chapter 2 does not incorporate slip heterogeneity and can still be 

too simple to represent a realistic earthquake rupture. Some studies suggest that the slip distribution of 

small earthquakes, similar to large earthquakes, is heterogeneous rather than uniform (Dreger et al., 

2007; Kim et al., 2016; Yamada et al., 2005). The heterogeneous stress drop distribution can cause 

high-stress drops locally but a low average stress drop (Dreger et al., 2007; Kim et al., 2016; Brown et 

al., 2015). The source heterogeneity may affect the rupture area estimated by the spectral ratio analysis. 

The high-stress drop estimates in the previous chapter may correspond to the stress drop on a localized 

area with large slip.  

This chapter demonstrates that the rupture area 𝐿𝑊  estimated by the spectral ratio method 

corresponds to a localized area with large slip rather than the overall rupture area. This consequence 

suggests that a localized area with large slip controls the shapes of the seismic source spectrum rather 

than the total rupture area. Hence, the stress drops, ∆𝜎𝑅, calculated with the rupture area obtained from 
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this spectral ratio method are systematically higher than the actual average stress drop for the entire 

rupture area. This chapter proposes a procedure to correct the bias in the stress drop estimation and 

calculate the stress drops. Then, their scaling relation, focal mechanism dependence, depth dependence, 

rupture speed dependence, uncertainty, and relationship to the corner-frequency-based stress drop are 

studied.  

 

4.2. WHAT IS THE ESTIMATED RUPTURE AREA? 

 

Firstly, I compared the slip inversion results of the two 𝑀𝑤 5.9 events by JMA with the best-fit 

rupture models in the spectral ratio method (Shimmoto, 2022). The rupture speeds of the best-fit rupture 

models are almost the same as those used in the finite source inversions (Figure 4.1). The rupture areas 

estimated by the spectral ratio method are significantly smaller than the overall rupture area (Figure 

4.1). The rupture areas estimated from the spectral ratio method seem to correspond to the areas of the 

large slip regions in the finite fault inversions.   
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Figure 4.1. Comparison of the estimated rupture area with the slip distribution for two Mw 5.9 events. The 

information on the spectral ratio analysis and slip inversion is described on the left. The results of the slip 

inversion were provided by JMA. The yellow stars are the hypocenters used in the slip inversion. The blue 

rectangular areas correspond to the estimated rupture area and are plotted assuming the hypocenters coincide 

with those used in the slip inversion. (a) 2011 Mw 5.9 event. (b) 2016 Mw 5.9 event. The blue rectangular rupture 

area for Figure 4.1b is shifted to the region with a large slip for easy comparison. These plots were made based 

on the slip inversion result by JMA. 

Figure 4.1a: https://www.data.jma.go.jp/svd/eqev/data/sourceprocess/event/2011041214074228near.pdf 

Figure 4.1b: https://www.data.jma.go.jp/svd/eqev/data/sourceprocess/event/2016122821384904near.pdf 

  

 

 

Slip (cm)

(a) 2011.04.12.14.07 (Mw 5.9)

Spectral ratio analysis

L = 4.38 km

W = 1.46 km

Vrmax = 2.04 km/s (0.6Vs)

Slip inversion

Vr = 2.0 km/s

Strike = 167

Dip = 51

Rake 2

(b) 2016.12.28.21.38 (Mw 5.9)

Spectral ratio analysis

L = 2.28 km

W = 6.84 km

Vrmax = 2.72 km/s (0.8Vs)

Slip inversion

Vr = 2.6 km/s

Strike = 160

Dip = 62

Rake -82

https://www.data.jma.go.jp/svd/eqev/data/sourceprocess/event/2011041214074228near.pdf
https://www.data.jma.go.jp/svd/eqev/data/sourceprocess/event/2016122821384904near.pdf
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Secondly, I compared the estimated rupture areas of the two large earthquakes with those of the 

other earthquakes. Somerville et al. (1999) provide the regression results of the relationships between 

the total rupture area and seismic moment, also the area of the largest asperity and seismic moment. 

The rupture areas estimated in this study are consistent with the regression line for the area of the largest 

asperity, rather than the total rupture area (Figure 4.2). Note that 𝑀𝑤 5.9 (𝑀0 = 7.9 × 10
17 Nm) is 

within the magnitude range treated by Somerville et al. (1999). The rupture speeds of the earthquakes 

analyzed by Somerville et al. (1999) are limited to 2.4 to 3.0 km/s. Looking at the results for rupture 

speeds greater than or equal to 2.4 km/s (red dots in Figure 4.2), they appear even more consistent with 

the regression curve for the largest asperity area. These results also indicate that the rupture area 

estimated by the spectral ratio method corresponds to the localized area with large slip.  

 

 

Figure 4.2. The relationship between the rupture area and seismic moment for this study. The dashed and solid 

blue lines are the regression results of the total rupture area and the area of the largest asperity, respectively, 

by Somerville et al. (1999). The red and black dots are the results obtained by the spectral ratio method and are 

classified by the rupture speed. The gray bars stand for the upper and lower bound of the estimated rupture 

areas.  
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The rise time was calculated from the rupture area 𝐿𝑊  with equation (3.12). The rise times 

obtained in this study are consistent with the regression curve obtained by Somerville et al. (1999) 

(Figure 4.3). This result suggests that the rise time is more comparable to the rupture duration in a 

localized area with large slip rather than an overall rupture duration. Somerville et al. (1999) pointed 

out that the rise time is similar to the rupture duration of the largest asperity.  

 

4.3. REVISE OF STRESS DROP CALCULATION METHOD 

 

Since we saw that the estimated rupture area LW is much smaller than the overall rupture area, the 

stress drop calculated by equation (3.13) represents a much higher value than the average static stress 

drop. Somerville et al. (1999) reported that the ratio of the rupture area of the largest asperity to the 

overall rupture area is 17.5% on average. We can use this average area ratio to estimate the average 

stress drop for the entire fault. Assuming that the estimated rupture areas occupy 17.5% of the overall 

rupture area for all the target earthquakes, we can calculate the average static stress drop ∆𝜎𝑠⁡as: 

∆𝜎𝑠 =
7𝑀0

16(𝑆/𝜋)3/2
= 0.1753/2∆𝜎𝑅 (4.1) 

 

Figure 4.3. The relationship between the rise time and the seismic moment for this study. The blue line is the 

regression result by Somerville et al. (1999). The gray bars stand for the upper and lower bound.  
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where 𝑆 is the overall rupture area, 𝑆 = 𝐿𝑊/0.175. The stress drop ∆𝜎𝑠⁡is one order smaller than the 

stress drop ∆𝜎𝑅. Note that the stress drop estimation with equation (4.1) corrects only the bias from the 

interpretation of the areas of the asperity and total rupture. There is also the uncertainty in the stress 

drop estimates due to not knowing the actual ratios of the estimated rupture areas to the overall rupture 

areas for each individual events. Therefore, we should treat only the statistical trend of the stress drop 

∆𝜎𝑠 and not the individual values of each event. 

I interpret the results as an earthquake source with a single asperity and heterogeneous stress drop 

distribution (Boatwright, 1988; Das & Kostrov, 1986; McGarr, 1981; Rudnicki & Kanamori, 1981). 

The stress drop is concentrated on a small area located in the overall rupture area and is zero outside of 

this area. Consequently, the stress drop averaged over the overall rupture area is much lower than that 

on the small region. The stress drop on the small area, the local stress drop ∆𝜎𝑙𝑎, can be calculated as 

follows (Madariaga, 1979; Miyake et al., 2003). 

∆𝜎𝑙𝑎 =
7𝑀0
16𝑅𝑟2

=
1

0.175
∆𝜎𝑠 = √0.175∆𝜎𝑅 ⁡⁡⁡⁡⁡⁡⁡⁡(4.2) 

The local stress drop ∆𝜎𝑙𝑎 is approximately half of the stress drop ∆𝜎𝑅 and is a factor of 5.7 larger 

than the average static stress drop ∆𝜎𝑠.  
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4.4. STRESS DROP RESULTS  

 

4.4.1. Seismic Moment Dependence 

 

The revised stress drops ∆𝜎𝑠 calculated for the best-fit models range from 0.33 to 53 MPa with a 

median of 4.97 MPa, and 91% of the stress drop estimates are within a typical range of 1 to 20 MPa 

(Figure 4.4). The median stress drop is 4.91 MPa (the best-fit model) if the large earthquakes in Table 

3.2 are included. The scale dependence of the stress drop is somewhat complicated. In the range of 

𝑀0 < 5.0 × 1016 Nm (𝑀𝑤 < 5.1), the stress drop increases as the seismic moment increases. However, 

we may also interpret that stress drop is relatively scale-independent in 𝑀0 < 1.0 × 10
15 Nm. From 

near 𝑀0 = 5.0 × 10
16 Nm, the stress drop decreases and seems to become independent of the seismic 

moment in the range of 𝑀0 > 5.0 × 10
16 Nm. The local stress drops ∆𝜎𝑙𝑎 range from 1.9 to 303 MPa 

with a median of 28.4 MPa, and 91% of the local stress drops ∆𝜎𝑙𝑎 are in 5 to 100 MPa.  

 

Figure 4.4. The average static stress drops ∆𝜎𝑠⁡versus the seismic moment 𝑀0. The black dots are the best-fit 

stress drops estimated by the spectral ratio analysis.  

  

Mw 5.1
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Figure 4.5 The stress drops ∆𝜎𝑠  for each of the target regions. The gray lines indicate the estimation 

uncertainty. The yellow stars are the compiled data in Table 3.2. The blue dashed lines show the median values 

calculated for the best-fit model.  

 

Figure 4.5 shows the stress drops ∆𝜎𝑠 for each of the target regions with the uncertainties of the 

stress drop estimates. The stress drops were calculated for all source parameters that satisfy the residual 

criterion to evaluate the uncertainties of stress drop estimates (e.g., see Table 3.1) (gray lines in Figure 

4.5). In the Niigata, Fukushima-Ibaraki, and Kumamoto, the stress drop increases with the seismic 

Niigata

Iwate-Miyagi

Fukushima-Ibaraki

Kumamoto
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moment in 𝑀0 < 5.0 × 10
16 Nm and becomes nearly scale-independent in 𝑀0 > 5.0 × 1016 Nm. 

This tendency holds even if the estimation uncertainties are considered (gray lines in Figure 4.5). In the 

Iwate-Miyagi, it is difficult to confirm this tendency because the stress drops of earthquakes with 𝑀0 >

5.0 × 1016 Nm are absent.  

 

4.4.2. Faulting Type Dependence 

 

Figure 4.6 summarizes the focal mechanism-dependency of the stress drops ∆𝜎𝑠 for the best-fit 

models. The stress drop ∆𝜎𝑠 appears not to depend on the faulting types. However, the normal and 

reverse faults have slightly lower median stress drops (red stars). The normal-faulting earthquakes are 

found mainly in the Fukushima-Ibaraki, and the reverse-faulting earthquakes are dominant in the 

Niigata and Iwate-Miyagi (Figure 3.1). 

 

 

  

 

Figure 4.6 (a) The focal mechanism dependence of the stress drops. The normal faulting, strike-slip, and reverse 

faulting correspond to the values on the x-axis -1.0, 0, and 1.0, respectively. The values classifying faulting types 

(x-axis) were divided into bins with 0.2 widths to calculate the median values for different faulting types (the 

red stars). 
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4.4.3. Rupture Speed Dependence 

 

The relationship between the rupture speed and the stress drop is significant in engineering 

seismology (e.g., Causse & Song, 2015) and in understanding the physics of earthquakes (e.g., 

Kanamori & Rivera, 2004). Figure 4.7 shows the relationships between the rupture speed and the stress 

drop for the best-fit rupture models. The rupture speed and the stress drop are inversely correlated. The 

coefficient of correlation between log10𝑉𝑟𝑚𝑎𝑥 and log10∆𝜎𝑠 is –0.55. The linear regression in log 

space suggests that the stress drop is inversely proportional to the cube of rupture speed in a statistical 

manner (Kanamori & Rivera, 2004).  

 

 

Figure 4.7 The relationship between the rupture speed and the stress drops. The red line is the regression result.  
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4.4.4.  Stress Drop and Corner Frequency 

 

The stress drop is calculated from the corner frequency 𝑓c in the standard approach (Chapter 1). 

∆𝜎𝑓𝑐 ⁡= ⁡
7𝑀0

16
(
𝑓𝑐
𝑘𝑐𝑉𝑆

)
3

(4.3) 

Estimating the 𝑘𝑐 value from the estimated stress drop ∆𝜎𝑠 and the corner frequency should be useful 

for comparison with the corner-frequency-based method. Thus, I fitted the spectral ratio calculated from 

the omega-square model to the S-wave spectral ratio averaged over the stations and estimated the corner 

frequency assuming 1 ≤ 𝛾 ≤ 2. From equation (4.3) and equation (4.1), we can obtain the 𝑘𝑐 value 

for S-wave, 𝑘𝑠, as 

 

Figure 4.8 The rupture speed versus the estimated 𝑘𝑠 values. Top panel shows all estimated 𝑘𝑠 values with 

their median values calculated for each rupture speed. The 𝑘𝑠 values provided for the average static stress 

drop (white dots and yellow stars) and the local stress drop (the blue stars). The bottom panel is the box plot of 

the⁡𝑘𝑠 values for the average static stress drop. The horizontal red line indicates the median, and the bottom 

and top edges stand for the 25th and 75th percentiles, respectively (the horizontal blue lines). The horizontal 

black lines indicate the maximum and minimum values. The symbol “+” indicates an outlier.  
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𝑘𝑠 =
𝑓𝑐√𝐿𝑊

𝑉𝑆√0.175𝜋
⁡⁡⁡⁡⁡⁡⁡⁡(4.4) 

where 𝑓𝑐 is the corner frequency of the average spectrum for S-wave. We can obtain the 𝑘𝑠⁡value to 

estimate the local stress drop by 𝑘𝑠 × 0.175
1/3. 

Figure 4.8 provides the estimated 𝑘𝑠⁡values. The median 𝑘𝑠⁡value for the average static stress drop 

∆𝜎𝑠 is 0.388, which is close to the 𝑘𝑠⁡values by Brune (1970) (𝑘𝑠 = 0.372). The mean of 𝑘𝑠⁡value for 

is 0.420. The 𝑘𝑠⁡values are highly variable for different earthquakes, from 0.227 to 0.832. The standard 

deviation is 0.112. The median 𝑘𝑠⁡value for the local stress drop is 0.217, which is consistent with 

Madariaga (1976) 𝑘𝑠 = 0.21). The 𝑘𝑠⁡value for the local stress drop increases as rupture speed 

increases, and the medians calculated for each rupture speed approximately from 0.2 to 0.3 (blue stars), 

which is consistent with Kaneko & Shearer (2015). Figure 4.10 compares the stress drops derived from 

equation (4.1) and equation (4.3) with the corner frequencies by assuming 𝑘𝑠 = 0.40 (i.e., constant 

𝑘𝑠 value assumption). I chose this 𝑘𝑠 = 0.40 so that the median stress drop estimated from the corner 

frequency would be consistent with the median of the stress drop ∆𝜎𝑠. Figure 4.9 shows that the range 

of the stress drops estimated from the corner frequency (0.64 to 45 MPa with a median of 4.79 MPa, 

red dots) is approximately consistent with the range of the stress drops ∆𝜎𝑠 (0.33 to 53 MPa with a 

median of 4.97 MPa, white dots). 

Figure 4.10 compares the stress drop ∆𝜎𝑠  to the corner-frequency-based stress drop ∆𝜎𝑓𝑐 . I 

calculated ∆𝜎𝑓𝑐 by assuming 𝑘𝑠 = 0.40. The color map indicates the rupture speed. The rupture speed-

 

Figure 4.9 The comparison with the average static stress drops to the corner-frequency-based stress drops 

calculated by assuming 𝑘𝑠 = 0.40.  
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dependence of ∆𝜎𝑠 is useful to see the difference between ∆𝜎𝑠 and ∆𝜎𝑓𝑐. For example, Figure 4.10 

demonstrates that a high rupture speed causes a low value of ∆𝜎𝑠 (e.g., 1.0 MPa) but a high value of 

∆𝜎𝑓𝑐 (e.g., 1.0 MPa). The essential cause of this discrepancy is the assumption of the proportionality 

of the cube of the corner frequency to the stress drop in the corner-frequency-based approach. This 

assumption does not hold if rupture speed varies with earthquakes.    

 

 

 

  

 

Figure 4.10 Relationship between the stress drop ∆𝜎𝑠⁡and the corner-frequency-based stress drop ∆𝜎𝑓𝑐 .  The 

rupture speed is shown by the color map. 
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4.4.5. Depth Dependence 

 

Figure 4.11 shows the relationship between the stress drops ∆𝜎𝑠 and depth. The depth-dependence 

tendency is not clear in the four target regions (Figure 4.11a). Figure 4.12b summarizes the results of 

the depth-dependence for the four target regions. The median stress drops calculated for each depth bin 

(red stars) tend to increase with depth slightly. The median of ∆𝜎𝑠 increases from 3.4 to 7.8, a factor 

of 2.3, as depth increases from 5 to 13 km.  

 

Figure 4.11 The relationship between depth and stress drops. (a) The depth-dependence in each target region. 

(b) The depth-dependence for all target regions. The red stars are the median values calculated for each bin.  

 

Niigata Iwate-Miyagi

Fukushima-Ibaraki Kumamoto

(a)

(b)
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Figure 4.12a shows the depth-dependence of the corner-frequency-based stress drop ∆𝜎𝑓𝑐 . The 

median of ∆𝜎𝑓𝑐 increases from 4.1 to 6.6 MPa, a factor of 1.6, as depth increases from 5 to 13 km. The 

medians of ∆𝜎𝑓𝑐 (red stars) tend to increase as similar to ∆𝜎𝑠 (Figure 4.12b). The depth dependences 

of ∆𝜎𝑓𝑐  and ∆𝜎𝑠  may be overestimated due to the constant S-wave velocity in the 1-D velocity 

structure model assumed in this study. The S-wave velocity in the Kumamoto region is 3.4 km/s from 

3.0 up to 15.5 km depth, and the one in the other regions is 3.4 km/s from 6.7 up to 17 km depth. For 

example, if we assume the S-wave velocity is 3.7 km/s at 13 km depth, the median ∆𝜎𝑓𝑐 at this depth 

decreases to 5.2 MPa, which is a factor of 1.3 higher than the median ∆𝜎𝑓𝑐 at 5 km depth. We may 

apply a similar discussion for ∆𝜎𝑠 because the S-wave velocity controls the rupture speed in the grid 

search. Thus, the depth dependence of the stress drop is probably not remarkable in this study.  

 

 

Figure 4.12 The relationship between depth and the corner-frequency-based stress drops ∆𝜎𝑓𝑐 (𝑘𝑠 = 0.40). 

(a) The depth dependence of ∆𝜎𝑓𝑐 . The red stars are the median values calculated for each bin. (b) Comparison 

of the depth-dependences of the medians of ∆𝜎𝑠 and ∆𝜎𝑓𝑐 . The blue diamonds were obtained from the best-

fit model. 

 

 

  

(a) (b)
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4.5. STRESS DROP UNCERTAINTY 

 

I investigated the stress drop uncertainty considering a number of other parameters in my model. 

The resolution of the other parameters influences the stress drop uncertainty. This study treats only the 

statistical tendency of the relationship between the stress drop uncertainty and the uncertainty of other 

parameters. The source parameter ensembles were obtained for each event based on the minimum 

residual criterion, the criterion that residuals (Fres) are less than 1.05 times the minimum residual, in the 

grid search (e.g., Table 3.1). The working hypothesis is that the source parameter uncertainty is 

evaluated based only on this minimum residual criterion in the grid search. Figure 4.13a shows the 

histograms of the uncertainties of the rupture speed 𝐶𝑉𝑆, the aspect ratio 𝐴𝑅′ = max⁡(𝐿/𝑊,𝑊/𝐿), 

and the rupture start point 𝐼𝑝𝑞.  

𝐼𝑝𝑞 = |𝑝 − 0.5| + |𝑞 − 0.5| ⁡⁡⁡⁡⁡⁡⁡⁡(4.5) 

𝐼𝑝𝑞 takes the value from 0 to 1.0 and represents the L1 distance from the center of the rupture area. The 

uncertainties of 𝐶𝑉𝑆, 𝐴𝑅′, and 𝐼𝑝𝑞 are defined as the difference between the upper and lower bounds 

obtained from the minimum residual criterion (e.g., 𝑢𝑝𝑝𝑒𝑟𝐶𝑉𝑆 − 𝑙𝑜𝑤𝑒𝑟𝐶𝑉𝑆 = 0.15  in Table 3.1). 

Figure 4.13b shows the relationship between the stress drop uncertainty and the uncertainty of 𝐶𝑉𝑆, 

𝐴𝑅′, and 𝐼𝑝𝑞. The 𝐴𝑅′ uncertainty does not correlate to the stress drop uncertainty. The uncertainty 

of 𝐶𝑉𝑆 or 𝐼𝑝𝑞 is correlated positively to the stress drop uncertainty. This result is due to the parameter 

trade-off: (1) 𝐶𝑉𝑆 versus the rupture area (or ∆𝜎𝑠) and (2) 𝐶𝑉𝑆 versus 𝐼𝑝𝑞 (Boatwright, 2007). The 

median uncertainty of 𝐶𝑉𝑆 is 0.15. This study could distinguish high rupture speed (𝐶𝑉𝑆 ≥ 0.75 for 

73 events) and low rupture speed (𝐶𝑉𝑆 ≤ 0.75  for 141 events) for about half of the analyzed 

earthquakes although some events have low resolutions of 𝐶𝑉𝑆 (Figure 4.13a). The median uncertainty 

of 𝐼𝑝𝑞 is 0.13, and the resolution 𝐼𝑝𝑞 of relatively well under the working hypothesis.  
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Figure 4.13 Summary of the source parameter uncertainties. (a) Histograms of the uncertainties of the rupture 

speed 𝐶𝑉𝑆  (left), aspect ratio 𝐴𝑅′  (middle), and the rupture start point 𝐼𝑝𝑞   (right). (b) The relationships 

between the stress drop uncertainty and the uncertainties of other parameters. (c) The source parameter 

uncertainties and resolution of the fault plane solution. The histograms show the uncertainties of stress drop 

(left), rupture speed (middle), and the rupture start point (right). (d) The source parameter uncertainties and 

resolution of the rupture orientation angle 𝛬 . (e) The relationship between the stress drop uncertainty and the 

observation limitation.  
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The grid search tested the two possible nodal planes of the fault plane solution and the two cases of 

the rupture orientation angles 𝛬  (0 or 45 degrees). The rupture orientation angle characterizes the 

orientation angle of the estimated rupture area (the large-slip asperity area) on the nodal plane. For 

example, Figures 4.1a and 4.1b illustrate the cases of 𝛬 = 45 and 𝛬 = 0, respectively. The two nodal 

planes of the fault plane solution or rupture orientation angles were sometimes resolved uniquely based 

on the minimum residual criterion (e.g., Table 3.1). The resolution of the fault plane or rupture 

orientation angle 𝛬 affects the uncertainty of ∆𝜎𝑠, 𝐶𝑉𝑆, and 𝐼𝑝𝑞 (Figures 4.13c and 4.13d). However, 

the stress drop uncertainty was low for some events even though their fault planes or 𝛬 could not be 

resolved. This result implies that the ambiguities of fault planes and 𝛬 were not the direct factors in 

increasing the stress drop uncertainty. The resolution of 𝛬 (0 or 45 degrees in this study) was relatively 

low (Figure 4.13d). This low resolution can be partly because the actual angles of 𝛬 for some events 

have intermediate values of 0 and 45 degrees. Figure 4.13e shows the relationship between the stress 

drop uncertainty and the observation conditions (the maximum azimuthal gaps, the number of stations, 

and the number of spectral ratios). Improving these observation conditions seems not significant for 

reducing the stress drop uncertainty.  

I investigated the effect of 𝑓𝑐2 on the stress drop estimates by conducting the spectral ratio analysis 

by fixing these parameters as specific values (Figure 4.14). For example, Shearer et al. (2019) showed 

that 𝑓𝑐2 is sometimes hard to constrain well and affects the corner frequency of a target earthquake. I 

only focused on the effect of 𝑓𝑐2 on the systematic error in the stress drop estimates by assuming that 

the spectral ratios were well estimated. This study demonstrates the two cases: (1) fix 𝑓𝑐2 as low values, 

and (2) fix 𝑓𝑐2  as high values. In this study, the fixed values of 𝑓𝑐2⁡ were determined as the 

multiplication of 1/1.5 (low) or 1.5 (high) to the best-fit 𝑓𝑐2 values in the initial spectral ratio fitting 

(e.g., Figure 3.4b).  
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Figure 4.14a compares the (best-fit) stress drops ∆𝜎𝑠 without and with fixing 𝑓𝑐2. If 𝑓𝑐2 values 

are fixed as high (low), the stress drops become systematically higher (lower). Figure 4.14b shows the 

relationship between the seismic moment and the ratio of the minimum residuals obtained without and 

with fixing 𝑓𝑐2. The minimum residuals without fixing 𝑓𝑐2 are systematically smaller than those with 

fixing 𝑓𝑐2 as the low values (the left panel). This result suggests that the stress drops obtained by 

forcing low values of 𝑓𝑐2 are not plausible. Besides, we see that the systematic errors of the stress 

 

Figure 4.14 Effect of 𝑓𝑐2 on the stress drop estimates. (a) Stress drop comparison. The horizontal axis shows 

the stress drop obtained without fixing 𝑓𝑐2. The vertical axis shows the stress drop obtained with fixed 𝑓𝑐2. (b) 

Seismic moment versus the minimum residual ratio. The denominator of the minimum residual ratio is the 

minimum residual obtained without fixing 𝑓𝑐2. (c) Seismic moment versus stress drop for best-fit model. The 

left panel is the same as Figure 4.4 (best-fit model). The right panel is the combined result of the stress drops 

without fixing and 𝑓𝑐2⁡and with fixing 𝑓𝑐2 as high values. The red dots are the replaced results, and the black 

dots are the same as the original results. The replaced stress drops in the right panel were determined based on 

the minimum residuals.  

 

Median 4.97 MPa

Original

Median 5.23 MPa

Combined

(a)

(b)
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drops are less than a factor of 2.0 (the blue lines in Figure 4.14a). Therefore, the low resolutions of 𝑓𝑐2 

cannot cause the high values of the stress drop ∆𝜎𝑅 (the median of 67.9 MPa) compared to the typical 

values of 1 to 10 MPa. The minimum residuals without fixing 𝑓𝑐2 are greater than those obtained by 

fixing 𝑓𝑐2 as high values for 68 events (the right panel in Figure 4.14b). This tendency is remarkable 

in the evens with 𝑀0 < 10
15 Nm. Figure 4.14c shows the relationships between the seismic moment 

and the stress drop ∆𝜎𝑠 for the best-fit model. The left panel shows the same result as Figure 4.4. The 

right panel shows the result of replacing the stress drops of the 68 events with those obtained by fixing 

𝑓𝑐2 as the high values. The effect of the stress drop replacement is not significant for the conclusion of 

the stress drop scaling relation (Figure 4.14c). The difference in the median values is about 5% (4.97 

and 5.23 MPa).  

 

4.6. DISCUSSION 

 

4.6.1. Stress Drops 

 

The rupture area estimated in this analysis is small compared with the overall rupture area and can 

be interpreted as corresponding to a local region with large slip (asperity). Thus, the developed spectral 

ratio approach is suitable for obtaining the rupture area with large slip (the largest asperity area). The 

average stress drops ∆𝜎𝑠 for the entire faults are obtained as 1 to 20 MPa with a median of 4.97 MPa 

by assuming the rupture area estimated from the spectral ratio analysis occupies 17.5% of the overall 

rupture area based on the result by Somerville et al., (1999). This result assumes that the average ratio 

of the asperity area to the overall rupture area does not vary significantly. For example, if the average 

area ratio varies to 22.5% or 12.5% from 17.5%, the stress drop estimates systematically change by a 

factor of 1.46 or 0.60, respectively, which does not alter the conclusions. The stress drops observed for 

the earthquakes with Mw 3.2 to 6.0 are similar to those observed for large earthquakes (e.g., Aki, 1972; 

Kanamori & Anderson, 1975; Venkataraman & Kanamori, 2004). The stress drop estimates are 

consistent with the differential stress of 2 to 30 MPa (the shear stress of 1 to 15 MPa) obtained by 

Yoshida et al. (2015) in the Fukushima-Ibaraki region. This differential stress should be regarded as the 

regional average, and hence, it is compared with the median stress drop in this region (3.7 MPa).  
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In the source model incorporated in this study, the local stress drop is 5.7 times higher than the 

average static stress drop. The two different stress drop estimates (∆𝜎𝑠 and ∆𝜎𝑙𝑎) may be helpful to 

reconcile some inconsistent stress drop values estimated from the different approaches. For example, 

the stress drop inferred from the laboratory friction experiment is more comparable to the local stress 

drop ∆𝜎𝑙𝑎 than the average static stress drop ∆𝜎𝑠 (Zielke et al., 2017). Another example can be found 

in Dreger et al. (2007). 

One of the advantages of the developed stress drop estimation method over the single corner-

frequency approach is that we can reduce the model-dependent bias and evaluate the model-dependent 

uncertainty. The corner frequency cannot be uniquely related to the stress drop ∆𝜎𝑠 (Figures 4.8 and 

4.10). Considering the rupture speed in stress drop estimation is significant for calculating the radiation 

efficiency and the fracture energy (e.g., Kanamori & Brodsky, 2004; Kaneko & Shearer, 2015). The 

inverse correlation between rupture speed and stress drop is important in predicting ground motion 

(Causse & Song, 2015; Chounet et al., 2018). An earthquake with a high-stress drop does not necessarily 

cause a ground motion with high spectral amplitudes at high frequencies, i.e., it does not always have a 

high corner frequency (Atkinson & Beresnev, 1997).  

The minimum residuals without fixing 𝑓𝑐2  are usually better than with fixing 𝑓𝑐2  for the 

earthquakes with 𝑀𝑤 > 4.0  (𝑀0 > 1.0 × 10
15  Nm) (Figure 4.14b). The corner frequency for 

earthquakes with 𝑀𝑤 = 4.0 is about 3.0 Hz which is approximately 1/10 times the high-frequency 

limit. Thus, a recommended high-frequency limit is more than 10.0 times the corner frequency of a 

target earthquake if the magnitudes of EGF events are about 1.0 to 2.0 units lower than the target event. 

The result obtained by fixing 𝑓𝑐2 as high values showed better misfit values for 68 events with 𝑀𝑤 <

4.0 (right panels in Figure 4.14b). This result is probably because the high-frequency limit in the 

analysis (mostly 35 Hz) is inadequately low for evaluating 𝑓𝑐2 for some events. However, Figure 4.14c 

shows that the influence of this result was not significant for the statistical tendency of the stress drop 

results, at least for the studied case. Note also that the misfit values without fixing 𝑓𝑐2 are better for 

70% of the earthquakes with 𝑀𝑤 < 4.0. The maximum corner frequency for the analyzed earthquakes 

was 7.5 Hz, about 1/5 times the high-frequency limit. Hence, when the high-frequency limit is between 

5.0 and 10.0 times the corner frequency of a target earthquake, the results may not often be biased 

significantly, but we need to check the stress drop result carefully. If the recommended value of 10.0 is 
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not satisfied, one better approach may be to test by fixing the high-frequency limits in the constraint 

ranges of 𝑓𝑐2 as high values. 

 

4.6.2. Seismic Spectra and Localized Area with Large Slip 

 

The results of the spectral ratio fitting indicate that a compact area compared to the overall rupture 

area mainly controls the shape of a broadband seismic spectrum. The origin of this observation is the 

earthquake stress drop heterogeneity (e.g., Boatwright, 1988; Miyake et al., 2003). While important 

information about the total rupture area appears in the low-frequency spectral level, i.e., the value of 

the seismic moment, Miyake et al. (2003) showed that the characteristics of a strong motion generation 

area (SMGA), which is a compact area compared with the overall rupture area, can sufficiently 

reproduce near-source ground motions in a broadband frequency. They defined the SMGA as the area 

with relatively large slip velocities within a total rupture area and showed that the size and position of 

the SMGA match well with those of the area with large slips. The features of the SMGA are similar to 

those of the rupture area estimated in our spectral ratio analysis. The relationship between earthquake 

source heterogeneity and strong motion generation supports the conclusion that the small areas obtained 

by the spectral ratio analysis correspond to the localized regions with large slips that dominate the strong 

ground motions. In conclusion, I think that it is important to consider the heterogeneity of stress drop 

(or slip) distribution in addition to the rupture geometry, speed, and directivity when estimating the 

stress drops from seismic spectra. 

Most of the analyzed earthquakes were estimated to rupture asymmetrically (Figure 3.8). Mai et al. 

(2005) showed that few earthquake ruptures start within the region of very-large-slip asperity. After an 

earthquake rupture nucleates at the hypocenter, the earthquake rupture starts to propagate and reach an 

area of large-slip-asperity. Then, the dynamic stress concentration at the rupture front breaks the large-

slip asperity from its edge. Thus, the localized area with large slip often ruptures asymmetrically. 

Considering the discussion in the previous paragraph, it is plausible that we often observe earthquakes 

with asymmetric (unilateral) rupture propagations from seismic spectrum analysis. It is important to 

notice that the asymmetricity of the earthquake rupture estimated from seismic spectra may not be the 

characteristic of an overall fault rupture but that of a localized area with large slip.  
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Often stress drop for small earthquakes is estimated by the source dimension derived from the shape 

of the seismic source spectrum (e.g., the corner frequency). In general, however, this extracted source 

dimension may not correspond to the overall rupture area, as discussed above, and needs to be corrected 

by considering the effect of the earthquake source heterogeneity. This problem was discussed in the 

pioneering work by Boatwright (1984). However, this problem has been less focused on in the analysis 

of small-to-moderate earthquakes, probably because the standard approach relates a corner frequency 

to a source dimension by assuming a source model in a priori. The second moment approach is another 

tool to obtain the stress drops of small-to-moderate earthquakes considering the source geometry, 

rupture speed, and rupture directivity (McGuire, 2004; McGuire & Kaneko, 2018). The second moment 

approach estimates the finite source properties from the apparent characteristic duration (McGuire, 

2004). Meng et al. (2020) applied the second moment approach to the small-to-moderate earthquakes 

in southern California and obtained relatively high values of the stress drop (4.5 to 186 MPa with a 

median of 41.8 MPa). In light of the results in this study, these high-stress drop estimates may imply a 

small area compared to the total rupture area controls the apparent characteristic duration.  

 

4.6.3. Corner-Frequency-Based Stress Drop 

 

In the corner-frequency-based stress drop estimation, the kc value by Brune (1970) is useful to 

calculate average static stress drop, and the one obtained from the dynamic simulation of a crack model 

with a uniform stress drop (e.g., Madariaga, 1976; Kaneko & Shearer, 2015) is useful to calculate local 

stress drop (assuming the single asperity model). For example, Uchide & Imanishi et al. (2016) 

estimated the stress drops using the Madariaga model as 4 to 95 MPa with a median of 26 MPa in the 

Fukushima-Ibaraki region. Their stress drop estimates are consistent with the local stress drop ∆𝜎𝑙𝑎 (5 

to 100 MPa with a median of 21 MPa in the Fukushima-Ibaraki region) rather than the average static 

stress drop ∆𝜎𝑠. The dynamic crack simulation approach provides the kc value by relating the corner 

frequency to the source radius of the crack model. If a large-slip asperity area controls the spectral shape 

of a natural earthquake, it should also dominate the corner frequency value. Hence, it may be reasonable 

that the stress drop estimated from the corner frequency and the 𝑘𝑠 value derived by the dynamic crack 

simulation tends to be close to ∆𝜎𝑙𝑎 rather than ∆𝜎𝑠.  
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The 𝑘𝑠  value by Brune (1970) was derived differently from the dynamic simulation approach. 

Brune (1970) derived the spectral model at first. Then, he made an ad hoc assumption that the circular 

source radiates the model spectra. The radiation efficiency 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 (𝜎𝑎: the apparent stress) 

helps explain why ∆𝜎𝑓𝑐 calculated with the 𝑘𝑠 value by Brune (1970) tends to be close to ∆𝜎𝑠 rather 

than ∆𝜎𝑙𝑎. Only ∆𝜎𝑓𝑐 calculated with the kc value by Brune (1970) provides the plausible value of the 

radiation efficiency, 0.466, for the omega-square model (e.g., Ji et al., 2022). This radiation efficiency 

value is consistent with the previous study of large earthquakes on average (e.g., Venkataraman & 

Kanamori, 2004). Therefore, the 𝑘𝑠 value by Brune (1970) provides the average static stress drop rather 

than the local stress drop. For example, the radiation efficiency becomes about 0.08 when using the 𝑘𝑠 

value by Madariaga (1976) for the apparent stress calculated with the omega-square spectrum by Brune 

(1970). There is no inherent reason that a simple circular source model explains all aspects of a 

heterogeneous earthquake. The radiation efficiency of about 0.4 to 0.6, often implied from a standard 

circular crack simulation, appears to be a good approximation of the average radiation efficiency of 

typical crustal earthquakes. However, the relationship between the corner frequency and source radius 

obtained using a uniform stress drop crack model may not be appropriate to estimate the total rupture 

area of a heterogeneous earthquake.   

The corner-frequency-based approach can be used to estimate the average of the stress drop of 

numerous earthquakes only if the 𝑘𝑐 value is appropriate. A plausible median of the 𝑘𝑠 value for the 

shallow crustal earthquakes implied in this study was 0.40, which is higher than 0.372 by Brune (1970). 

Recently, Ji et al. (2022) implied that the 𝑘𝑠 value of 0.41 is plausible for shallow crustal earthquakes. 

The result of this study is consistent with the implication by Ji et al. (2022).  

 

4.7. CONCLUSIONS 

 

This chapter revealed that the rupture area estimated by the spectral ratio approach developed in this 

study is small compared with the total rupture area and can be interpreted as a localized rupture area 

with large slip. Thus, a compact rupture area compared with the total rupture area dominantly controls 

the source spectral shapes in a broadband range. This conclusion implies that the idea of the strong 

motion generation area (SMGA) is significant for small-to-moderate earthquakes. Since an earthquake 
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rupture often initiates from outside the localized area with large slip, the rupture front tends to break the 

large-slip asperity area from its edge. Combining this fact with the result that a compact area compared 

with the overall rupture area controls the shape of a source spectrum dominantly, it is plausible that 

most of the analyzed earthquakes were estimated to have asymmetric rupture propagation, as found in 

the previous chapter.  

The comparison of the estimated rupture area 𝐿𝑊  with the result by Somerville et al. (1999) 

suggests that the estimated rupture area can be 17.5% of the total rupture area on average. The average 

static stress drops ∆𝜎𝑠 were calculated using the 17.5% area ratio and are within a typical range of 1 

to 20 MPa. They increase with the seismic moment in 𝑀0 > 5.0 × 10
16 Nm (𝑀𝑤 > 5.1) and tend to 

be scale-independent in 𝑀0 < 5.0 × 10
16 Nm. They are not strongly dependent on faulting type but 

increase with depth weakly. Comparing the stress drops of the large earthquakes in Table 3.1 with the 

estimated stress drops ∆𝜎𝑠 supports the validity of the stress drop calculation. Thus, I conclude that 

the spectral ratio approach developed in this study is effective for estimating the average static stress 

drop considering the rupture speed, geometry, and rupture start point.  

The log10𝑉𝑟𝑚𝑎𝑥 and log10∆𝜎𝑠 are inversely correlated with a correlation coefficient of – 0.55. 

Specifically, ∆𝜎𝑠 ∝ 𝑉𝑟𝑚𝑎𝑥
−3 . An earthquake with a high value of the stress drop ∆𝜎𝑠 does not necessarily 

cause ground motions with high spectral amplitudes at high frequencies due to the inverse correlation 

between the stress drop and rupture speed. Obvious dependences of the stress drop ∆𝜎𝑠 on depth and 

focal mechanism were not found.   

The 𝑘𝑠  values were estimated from the corner frequencies and the estimated rupture area. The 

median and mean of the 𝑘𝑠 value are 0.388 and 0.42, respectively. The 𝑘𝑠 value of 0.40 provides the 

median value of ∆𝜎𝑓𝑐 similar to that of ∆𝜎𝑠. The 𝑘𝑠 value by Brune (1970) is useful to calculate 

average static stress drop, and the one obtained from the dynamic simulation of a crack model with a 

uniform stress drop (e.g., Madariaga, 1976) is useful to calculate local stress drop under the assumption 

of the single asperity model. The corner-frequency-based approach may be helpful to the stress drop 

variability investigation (Figure 4.9). However, we should recognize that the between event variability 

of the 𝑘𝑠 value is significantly large (Figure 4.8). The standard deviation of the 𝑘𝑠 value is 0.112. In 

conclusion, the rupture geometry, speed, directivity, and source heterogeneity should be considered 

when estimating the stress drops from seismic spectra.  
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Chapter 5  

 

EARTHQUKE ENERGY BUDGET AND 

SOURCE PARAMETER SCALING RELATIONS 

 

5.1. OVERVIEW 

 

The previous chapter studied the average static stress drop Δ𝜎𝑠 . Another observable physical 

quantity in seismology is the radiated energy 𝐸𝑅. The average static stress drop and radiated energy are 

fundamental for understanding the energy budget during an earthquake. For example, the radiation 

efficiency is calculated from the apparent stress and the average static stress drop. However, the stress 

drop calculated from the seismic moment and rupture area, the moment-based stress drop Δ𝜎𝑠, can be 

inappropriate for studying the earthquake energy budget, e.g., the evaluation of the radiation efficiency 

(Noda et al., 2013). Thus, at first, this chapter proposes a way to obtain the energy-related stress drop 

Δ𝜎𝐸, which is appropriate for studying the earthquake energy partitioning, based on the single asperity 

model introduced in the previous chapter. Then, this chapter provides the radiated energy estimates for 

the shallow crustal earthquakes analyzed in the previous chapters and investigates the relationship 

between the seismic moment and the stress drop, the scaled energy 𝐸𝑅/𝑀0 (or the apparent stress 𝜎𝑎.), 

and the radiation efficiency. Furthermore, the relationship between the fracture energy and slip is 

studied.  
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5.2. EARTHQUAKE ENERGY BUDGET AND STRESS DROP 

 

The overview of the earthquake energy budget is described briefly. More detailed descriptions can 

be found in, for example, Kostrov & Das (1988), Kanamori & Brodsky (2004), and Kanamori & Rivera 

(2006). The occurrence of an earthquake releases the potential energy 𝐸𝑃 (the elastic strain energy 

accumulated by crustal deformation and gravitational energy) as the radiated energy 𝐸𝑅 , fracture 

energy (or breakdown energy) 𝐸𝐺 , and frictional energy (or thermal energy), 𝐸𝐹. The fracture energy 

is the energy involved with all resistance to rupture propagation, e.g., cracking, yielding, and latent heat 

due to thermal pressurization or melting. The frictional energy is interpreted as the remaining energy 

dissipated other than the radiated energy and the fracture energy, 𝐸𝐹 = 𝐸𝑃 − 𝐸𝑅 − 𝐸𝐺. The potential 

energy change before and after an earthquake is expressed as follows.  

Δ𝑊 =
1

2
(𝜎0 + 𝜎1)𝐷𝑆 =

1

2
∆𝜎̅̅̅̅ 𝐷𝑆 + 𝜎1𝐷𝑆 = 𝐸𝑅 + 𝐸𝐺 + 𝐸𝐹 (5.1) 

where 𝜎0 is the average initial stress, 𝜎1 is the average final stress, 𝐷 is the average slip, 𝑆 is the 

rupture area. The average static stress drop is ∆𝜎̅̅̅̅ = 𝜎0 − 𝜎1. The radiation efficiency 𝜂𝑅 is the ratio 

of the radiated energy to the sum of the radiated energy and the fracture energy, 𝜂𝑅 = 𝐸𝑅/(𝐸𝑅 + 𝐸𝐺).  

Figure 5.1 illustrates the relationship between stress and slip during an earthquake for a simple stress 

relaxation model (a slip-weakening model). Figure 5.1a shows a simple slip-weakening model in which 

there is no stress undershoot and overshoot, i.e., the dynamic stress 𝜎𝑑 is equal to the final stress 𝜎1. 

In this case, we can evaluate the radiation efficiency from seismologically observable quantities: 

𝜂𝑅 =
𝐸𝑅

𝐸𝑅 + 𝐸𝐺
=

𝐸𝑅

1/2∆𝜎̅̅̅̅ 𝐷𝑆
= 2𝜇

𝐸𝑅
𝑀0

1

∆𝜎̅̅̅̅
= 2

𝜎𝑎

∆𝜎̅̅̅̅
(5.2) 

where 𝑀0 is the seismic moment, and 𝜎𝑎 is the apparent stress 𝜎𝑎 = 𝜇𝐸𝑅/𝑀0 (𝜇: shear rigidity). The 

sum of the radiated energy and fracture energy is called the available energy, ∆𝑊0 = 𝐸𝑅 + 𝐸𝐺 

(Husseini & Randall, 1976). Figure 5.1 illustrates that the available energy per unit area ∆𝑊0/𝑆 is 

equal to 1/2∆𝜎̅̅̅̅ 𝐷 . The radiation efficiency 𝜂𝑅  quantifies the ratio of the radiated energy to the 

available energy. For example, a low radiation efficiency implies that a large amount of the available 

energy is dissipated as the fracture energy. The fracture energy per unit area for the stress relaxation 

model in Figure 5.1 is defined as: 
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𝐺 =
𝐸𝐺
𝑆
= ∫ (𝜎𝑓(𝑢) − 𝜎𝑑)

𝐷

0

𝑑𝑢 =
1

2
(∆𝜎̅̅̅̅ − 2𝜎𝑎)𝐷 (5.3) 

where 𝜎𝑓 is the frictional stress (the shear stress on fault during slip) and 𝜎𝑑 = 𝜎1 = 𝜎𝑓(𝐷) indicates 

the residual stress level (Abercrombie & Rice, 2005). The frictional energy is 𝐸𝐹 = 𝜎1𝐷𝑆, which is not 

seismologically measurable. Equations (5.2) and (5.3) were derived under the assumption of the simple 

slip-weakening model, although a real earthquake can have a more complex stress relaxation process. 

However, it is advantageous that we can evaluate the radiation efficiency and fracture energy from 

seismologically inferable source parameters (𝑀0, ∆𝜎̅̅̅̅ , 𝐸𝑅, and 𝐷) using equations (5.2) and (5.3).   

   The physical quantities in Figure 5.1 are average values, and there are several ways to calculate an 

average value of stress drop. A common approach is to calculate average static stress drop from the 

seismic moment 𝑀0  and the rupture area 𝑆  (the moment-based stress drop). An example of the 

moment-based stress drop is (Eshelby, 1957; Kanamori & Anderson, 1975). 

∆𝜎𝑠 =
7𝑀0

16(𝑆/𝜋)3/2
(5.4) 

In the previous chapter, the average static stress drops ∆𝜎𝑠 were calculated based on equation (5.4) 

using the rupture area estimated from the spectral ratio analysis, see equation (4.1). The moment-based 

stress drop has been used frequently since equation (5.4) requires only simple physical quantities 𝑀0 

and 𝑆. The stress drop calculated with equation (5.4) corresponds to the spatial average of the stress 

drop weighted by the slip distribution calculated for the circular crack model with a uniform stress drop 

(Madariaga, 1979; Noda, 2013). The critical point is that the moment-based stress drop is not the spatial 

 
Figure 5.1 Graphic descriptions of the earthquake energy budget without stress overshoot and undershoot. The 

solid red curve represents the frictional stress 𝜎𝑓. The radiated energy per unit area 𝐸𝑅/𝑆 is enclosed by the 

dashed red line and solid red curve. The fracture energy per unit area 𝐸𝐺/𝑆 = 𝐺 is enclosed by the solid red 

curve, solid blue line, and dashed blue curve. 
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average of the stress drop weighted by the actual slip distribution. The radiation efficiency calculated 

with ∆𝜎𝑠 is expressed as 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 in this study.  

The average static stress drop ∆𝜎𝐸  calculated by weighting the stress drop by the actual slip 

distribution (obtained from a finite fault inversion in practice) is necessary useful for investigating the 

energy partitioning during an earthquake (Noda et al., 2013). In this study, this average stress drop is 

called the energy-related stress drop, ∆𝜎𝐸. The energy-related stress drop ∆𝜎𝐸 is calculated as 

∆𝜎𝐸 =
∫ ∆𝜎1∆𝑢1𝑑𝑆Σ

∫ ∆𝑢1𝑑𝑆Σ

⁡⁡⁡⁡⁡⁡⁡⁡(5.5) 

where ∆𝜎1 and ∆𝑢1 are (local) stress drop and slip at each point of the studied fault, and Σ indicates 

that the integral is taken over the entire fault plane (Noda et al., 2013; Ye et al., 2016). Noda et al. (2013) 

showed the energy-related stress drop is always greater than or equal to the moment-based stress drop. 

The energy-related stress drop and the moment-based stress drop take similar values if the stress drop 

distribution is relatively uniform. Since earthquakes have heterogeneous stress drop distribution mostly, 

the radiation efficiency calculated with ∆𝜎𝑠 , 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 , can cause systematic overestimations. 

The radiation efficiency is preferred to be calculated with the energy-based stress drop ∆𝜎𝐸, that is, 

𝜂𝑅
𝐸 = 2𝜎𝑎/∆𝜎𝐸.        

   The single asperity model, introduced in the previous chapter, enables us to calculate the energy-

related stress drop by using the seismic moment and the rupture area estimated from the spectral ratio 

analysis. The single asperity model assumes that the stress drop is concentrated on the localized area 

(the asperity area) and is zero outside this localized area. Suppose that the ratio of the asperity area 𝑆1 

to the total rupture area 𝑆 is 17.5%, 𝑆1 = 0.175𝑆 (Chapter 4). In this case, under the assumption of 

the single asperity model, the average stress drop on the asperity area is ∆𝜎𝑙𝑎 = ∆𝜎𝑠/0.175. The stress 

drop distribution on the large-slip asperity area estimated by the spectral ratio analysis is expected to be 

relatively homogeneous. Therefore, the stress drop on the asperity area is assumed to be uniform as 

∆𝜎𝑙𝑎. Since the seismic moment released on the asperity area is √0.175𝑀0, the slip on the asperity area 

is 

𝐷1 =
√0.175𝑀0

𝜇0.175𝑆
=

𝐷

√0.175
(5.6) 

where 𝐷 = 𝑀0/(𝜇𝑆). Similarly, the slip on the rupture region outside the asperity area is  
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𝐷2 =
1

𝜇

(1 − √0.175)𝑀0
(1 − 0.175)𝑆

= 0.705𝐷 ⁡⁡⁡⁡⁡⁡⁡⁡(5.7) 

Finally, the energy-related stress drop ∆𝜎𝐸 for the single asperity model is 

∆𝜎𝐸 =
∆𝜎𝑙𝑎𝐷1𝑆1 + 0 ∙ 𝐷2𝑆2

𝐷1𝑆1 + 𝐷2𝑆2
=

1

√0.175
∆𝜎𝑠 ≈ 2.4∆𝜎𝑠 (5.8) 

where 𝑆2 = (1 − 0.175)𝑆 . The result suggests that 𝜂𝑅
′ = 2.4𝜂𝑅

𝐸  under the single asperity model 

assumption. This chapter provides the radiation efficiency 𝜂𝑅
𝐸 calculated from the seismic moment and 

source area by assuming the relation 𝜂𝑅
𝐸 = 𝜂𝑅

′ /2.4.   

 

5.3. METHOD OF RADIATED ENERGY ESTIMATION 

 

The radiated energy is computed from the following equation (Venkataraman & Kanamori, 2004).  

𝐸𝑅 = [
8𝜋

15𝜌𝑉𝑃
5 +

8𝜋

10𝜌𝑉𝑆
5]∫ 𝑓2|Ω(𝑓)|2

∞

0

𝑑𝑓 ⁡⁡⁡⁡⁡⁡⁡⁡(5.9) 

where 𝜌  is the density, 𝑓  is the frequency, and 𝑉𝑃  and 𝑉𝑆  are the P- and S-wave velocities, 

respectively. The S-wave velocity is typically 3.4 km/s. |Ω(𝑓)| is the displacement source spectral 

amplitude. I obtained |Ω(𝑓)|  from the spectral ratios stacked over all stations. A difficulty in 

evaluating the radiated energy is a limited frequency bandwidth. For example, Ide & Beroza (2001) 

show that a limited frequency bandwidth can cause systematic underestimation of the radiated energy. 

Prieto et al. (2004) calculated |Ω(𝑓)| using the model-predicted spectrum rather than the observed 

data. Then, they conducted the integration by extending the upper integration limit to avoid 

underestimating the radiated energy. Following Prieto et al. (2004), I calculated the radiated energy 

using the model-predicted spectrum of equation (5.10).  

|Ω(𝑓)| =
𝑀0

{1 + (
𝑓
𝑓𝑐1
)
2𝛾

}

1
𝛾

⁡⁡⁡⁡⁡⁡⁡⁡(5.10)
 

where 𝑀0 is the seismic moment, 𝑓𝑐1 is the corner frequency of a target earthquake, and 𝛾 indicates 

the sharpness of spectral corner, assuming 1.0 ≤ 𝛾 ≤ 2.0. The falloff rate was assumed to be 2.0 since 

the falloff rate of the envelope spectrum is proportional to 𝑓−2 at a high frequency range. I fitted the 

spectral ratio model of equation (5.11) to the normalized average spectral ratios for S-wave in order to 

estimate 𝑓𝑐1 and 𝛾.  
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𝑆𝑅𝜔2 =

{
 

 1 + (
𝑓
𝑓𝑐2
)
2𝛾

1 + (
𝑓
𝑓𝑐1
)
2𝛾

}
 

 

1
𝛾

(5.11) 

where 𝑓𝑐2 is the corner frequency of a stacked spectrum of EGFs. The radiated energies were computed 

from equation (5.9) and the source spectrum model of equation (5.10). The 𝑓𝑐1 and 𝛾 of the source 

spectrum model were estimated from S-wave spectra. Figure 5.2a shows the spectral ratio fitting to the 

average spectral ratio. Figure 5.2b demonstrates three average source spectra: observed (red), 

|Ω(𝑓)|/𝑀0 (dashed blue), and the envelope spectrum (green). The observed spectrum in Figure 5.2b 

was synthesized by multiplying the normalized omega-square model calculated using 𝑓𝑐2  and 𝛾 , 

estimated by the spectral ratio fitting, to the observed average spectral ratio (the red curve in Figure 

5.2a). 

 

 

Figure 5.2 Example of estimating the average source spectrum. (a) Spectral ratio fitting result. The red curve 

is the average observed spectral ratio, and the dashed blue curve is the prediction from the omega-square model. 

The gray curves are the observed spectral ratios obtained for each station. (b) Comparison between the observed 

average spectrum (red), the average envelope spectrum (green), and the normalized omega-square model 

|Ω(𝑓)|/𝑀0 (dashed blue).  

 

 

 

 

(b)(a)
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5.4. RESULTS 

 

5.4.1. Radiated Energy and Stress Drop 

 

Figure 5.3 shows the relationship between the radiated energy divided by the seismic moment (the  

scaled energy 𝐸𝑅/𝑀0) and the seismic moment. The yellow stars in Figure 5.3 are the scaled energies 

calculated for the large earthquakes observed in the target regions by referring to Kanamori et al. (2020). 

 
Figure 5.3 The relationship between the scaled energy and the seismic moment. (a) Results for each target 

region. (b) Results combined for all target regions. The black dots are the estimates in this study, and the yellow 

stars are the estimates by Kanamori et al. (2020). The red inclined line shows the regression result obtained for 

𝑀𝑤 < 5.1. The horizontal red line indicates the median value at 𝑀𝑤 > 5.1.     

 

Niigata Iwate-Miyagi

KumamotoFukushima-Ibaraki

4.72e-5

Mw 5.1

(a)

(b)
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Table 5.1 summarizes the source parameters for the large earthquakes used in this study. The 

Fukushima-Ibaraki (normal faulting) and Kumamoto (strike-slip) regions have slightly smaller scaled 

energies than other regions (reverse faulting) (Figure 5.3a). The scaled energies estimated in this study  

are consistent with ones obtained by Kanamori et al. (2020) (the yellow stars).  

Figure 5.3b summarizes the scaling relation of the scaled energy for all regions. The median is 

5.15 × 10−5 . The scaled energy increases with the seismic moment and becomes relatively 

independent of the seismic moment at near 𝑀0 = 5.0 × 10
16 Nm (𝑀𝑤 = 5.1), as we saw for the stress 

drop scaling relation in the previous chapter. I conducted the regression analysis for the events with 

𝑀𝑤 < 5.1. The regression result between the scaled energy and the seismic moment (the red line for 

𝑀𝑤 < 5.1 in Figure 5.3b) is 

log10𝐸𝑅/𝑀0 = −6.83 + 0.17log10𝑀0 (5.12) 

Several studies suggest that the scaled energy (or the apparent stress) is independent of the seismic 

moment at a large magnitude range (e.g., Choy & Boatwright, 1995; Kanamori et al., 2020; Ye et al.,  

 

Table 5.1. Source parameters of large earthquakes in the target regions.   

Earthquake 𝑀0 
(Nm)* 

𝐸𝑅 (J)** 𝑆 (km2) 𝐷 (m)† ∆𝜎𝑠 
(MPa) †† 

References  

Mid Niigata (Chuetsu) 
2004 

7.5e+18 3.9e+14 300 0.8 3.6 Kanamori et al. (2020) 

Miyazawa et al. (2005) 

Asano & Iwata. (2009) 

Mid Niigata (Chuetsu) 
2004  aftershock  

2.9e+18 6.8e+13 144 0.7 4.1 Kanamori et al. (2020) 

Miyazawa et al. (2005) 

Iwate Miyagi 2008 2.7e+19 7.9e+14 720 1.3 3.4 Kanamori et al. (2020) 

Yokota et al. (2009) 

Suzuki et al. (2010) 

Fukushima Hamadori 

2011 

9.6e+18 5.0e+14 350 0.9 3.6 Kanamori et al. (2020) 

Anderson et al. (2013) 

Tanaka et al. (2014) 

Kumamoto foreshock 
2016 

1.7e+18 5.2e+13 144 0.4 2.5 Kanamori et al. (2020) 

Asano et al. (2016) 

Kumamoto 2016 4.4e+19 2.9e+15 825 1.8 4.5 Kanamori et al. (2020) 

Yoshida et al. (2016) 

Asano & Iwata (2021) 

* The seismis moment values were obtained from F-net. 

**The apparent stress can be calculated as 𝜇𝐸𝑅/𝑀0, where 𝜇⁡is the shear rigidity (assumed to be 30 GPa). 

† The values of slip D were calculated as 𝑀0/(𝜇𝑆), where 𝜇 is assumed to be 30 GPa. 

††The stress drops were calculated with equation (5.4)  
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2016). Therefore, I regarded that the scaled energy is scale-independent in 𝑀𝑤 ≥ 5.1 (the horizontal  

red line in Figure 5.3b). Note that the choice of the reference magnitude 𝑀𝑤 = 5.1 is just for  

simplicity and not conclusive.   

As described in the previous chapter, the stress drops tend to increase with the seismic moment in 

𝑀𝑤 < 5.1 and become independent of the seismic moment from near 𝑀𝑤 = 5.1 (Figure 5.4a). I  

conducted the regression analysis for the data where 𝑀𝑤 < 5.1 and obtained the trend of the stress 

drop increase with the magnitude (the red line for 𝑀𝑤 < 5.1). The regression result shows the relation 

∆𝜎𝑠 ∝ 𝑀0
0.25: 

log10∆𝜎𝑠 = −3.07 + 0.25log10𝑀0 (5.13) 

For 𝑀𝑤 > 5.1, Figure 5.4a and the previous studies (e.g., Aki, 1972; Kanamori & Anderson, 1975; Ye 

et al., 2016) suggest that the stress drop is independent of the seismic moment.  

 

Figure 5.4 The scaling relations of the moment-based stress drop ∆𝜎𝑠 and the produce of the cube of rupture 

speed and the moment-based stress drop, 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠. (a) The relationship between the seismic moment and ∆𝜎𝑠 

(the best-fit models). The yellow stars are from Table 5.1. (b) The relationship between the seismic moment 

and 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠. The vertical gray lines show the uncertainties (the upper and lower bounds). The inclined red 

line shows the regression result obtained for 𝑀𝑤 < 5.1. The horizontal red line indicates the median value at 

𝑀𝑤 > 5.1. 

 

(a)

3.55 MPa

Mw 5.1

51.6 km3s-3MPa

(b)
Mw 5.1
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The scaling relation of the product of the cube of the rupture speed 𝑉𝑟𝑚𝑎𝑥 and the stress drop ∆𝜎𝑠, 

𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠, is similar to that of the stress drop ∆𝜎𝑠 (Figure 5.4b). Ye et al. (2016) observed that the 

product 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 is stable (small uncertainty) due to the trade-off between the ∆𝜎𝑠 and 𝑉𝑟𝑚𝑎𝑥 in 

the source parameter estimation. The same tendency was observed in this study. Hence, the existence 

of the transition of the scale dependence of 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 is reliable. The relationship between the seismic 

moment and 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 in 𝑀𝑤 < 5.1 is 

log10𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 = −1.45 + 0.22log10𝑀0 (5.14) 

The seismic moment dependency, 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 ∝⁡𝑀0

0.22, is similar to that of ∆𝜎𝑠, ∆𝜎𝑠 ∝⁡𝑀0
0.25.  

 

5.4.2. Radiation Efficiency 

 

Figure 5.5 shows the relationship between the seismic moment and the radiation efficiencies, 𝜂𝑅
𝐸 =

2𝜎𝑎/∆𝜎𝐸 (Figure 5.5a) and 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 (Figure 5.5b). The radiation efficiencies were calculated 

for the best-fit model. The radiation efficiencies 𝜂𝑅
𝐸 of the large earthquake in Table 5.1 were calculated 

by assuming 𝜂𝑅
𝐸 = 𝜂𝑅

′ /2.4 = 𝜎𝑎/(1.2∆𝜎𝑠) (Figure 5.5a). The radiation efficiency is independent of 

 

Figure 5.5 The relationship between the seismic moment and radiation efficiencies (a) 𝜂𝑅
𝐸 = 2𝜎𝑎/∆𝜎𝐸  and 

(b) 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 = 2.4𝜂𝑅

𝐸. The yellow stars are the radiation efficiencies calculated for the earthquakes in 

Table 5.1. The dashed-horizontal blue lines indicate the median values. 

(a)

(b)
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the seismic moment. This result is due to the similar scale dependencies of the stress drop and scaled 

energy (Figures 5.3 and 5.4). The radiation efficiency 𝜂𝑅
𝐸 varies from 0.05 to 2.5 and is more than 1.0 

for 7% of the analyzed earthquakes (Figure 5.5a). On the other hand, the radiation efficiency 𝜂𝑅
′  varies 

from 0.1 to 6.0 and is more than 1.0 for 22% of the analyzed earthquakes (Figure 5.5b).  

Figure 5.6 shows the scaling relation of the radiation efficiency 𝜂𝑅
𝐸 for each target region. Regional 

differences in the radiation efficiency 𝜂𝑅
𝐸  are not significant. Thus, the radiation efficiency 𝜂𝑅

𝐸  is 

relatively independent of the seismic moment. The scale independence of radiation efficiency implies 

that the ratio of the radiated energy to the fracture energy is similar between small and large earthquakes. 

Since rupture speed is directly relevant to the radiation efficiency, the constancy of the radiation 

efficiency implies that of the rupture speed. Although the resolution of rupture speed was low, the 

seismic moment dependencies of the stress drop ∆𝜎𝑠 and the product 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 were relatively well 

resolved. Since ∆𝜎𝑠 and 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 are similarly scaled with the seismic moment, the rupture speed 

is considered to be independent of the seismic moment. 
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Figure 5.6 The relationship between the seismic moment and radiation efficiency 𝜂𝑅
𝐸 = 𝜂𝑅

′ /2.4. The red dots 

are from the best-fit model. The gray lines indicate the upper and lower bounds of 𝜂𝑅
𝐸. The yellow stars are the 

radiation efficiencies calculated for the earthquakes in Table 5.1. The dashed horizontal blue lines indicate the 

median values.  

 

Niigata

Iwate-Miyagi

Fukushima-Ibaraki

Kumamoto
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Figure 5.7 shows the relationship between the radiation efficiency 𝜂𝑅
𝐸 and other source parameters. 

This study found the rupture speed dependency of the radiation efficiency 𝜂𝑅
𝐸  (Figure 5.7a). The 

regression result between the log radiation efficiency log10𝜂𝑅
𝐸 and log rupture speed log10𝐶𝑉𝑆 shows 

that⁡𝜂𝑅
𝐸 is proportional to the cube of 𝐶𝑉𝑆: 

𝜂𝑅
𝐸 = 0.83𝐶𝑉𝑆

3.0 (5.15) 

Figure 5.7a compares the relation of equation (5.15) to the radiation efficiency derived as a function of 

rupture speed for a mode II (longitudinal shear) crack (Fossum & Freund, 1975), a mode III (transverse 

shear) crack (Eshelby, 1969; Kostrov, 1966), an energy-based model derived by Kanamori & Brodsky 

 

Figure 5.7 Relationship between the radiation efficiency 𝜂𝑅
𝐸 and other source parameters. (a) The radiation 

efficiency 𝜂𝑅
𝐸 versus rupture speed 𝐶𝑉𝑆. The black dots show the observations for the best-fit model, and the 

yellow stars are the medians calculated for each rupture speed. For comparison, the relation 𝜂𝑅
′  and 𝐶𝑉𝑆 is 

also shown (the dashed red curve). Other curves are from a mode II (longitudinal shear) crack (Fossum & 

Freund, 1975), a mode III (transverse shear) crack (Eshelby, 1969; Kostrov, 1966), an energy-based model 

(mode E, Kanamori & Brodsky, 2004), and the result for symmetric circular crack by Kaneko & Shearer (2015). 

(b) The radiation efficiency 𝜂𝑅
𝐸 versus the energy-related stress drop ∆𝜎𝐸. (c) The radiation efficiency 𝜂𝑅

𝐸 

versus the apparent stress 𝜎𝑎. 

 

(a) (b)

(c)
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(2004), and the result for a symmetric circular crack by Kaneko & Shearer (2015). The relation by 

equation (5.15) is comparable to the result by Kaneko & Shearer (2015). Figure 5.7a shows the 

relationship between the radiation efficiency 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠 and rupture speed 𝐶𝑉𝑆, 𝜂𝑅

′ = 1.98𝐶𝑉𝑆
3.0 

(the dashed red curve). The relation 𝜂𝑅
′ = 1.98𝐶𝑉𝑆

3.0 suggests that the value of the radiation efficiency 

𝜂𝑅
′  tends to exceed 1.0 for 𝐶𝑉𝑆 > 0.8. Kanamori & Rivera (2004) has implied a similar tendency. That 

is, we can obtain the relation 𝜂𝑅
′ = 1.74𝐶𝑉𝑆

3.0 from equation (9) of Kanamori & Rivera (2004). Figure 

5.7b suggests that the log radiation efficiency log10𝜂𝑅
𝐸 is inversely correlated to the log stress drop 

log10∆𝜎𝐸 (the correlation coefficient is −0.66). This relationship indicates that the higher the stress 

drop, the greater the fraction of the available energy dissipated as the fracture energy. Figure 5.6c 

suggests that the log apparent stress log10𝜎𝑎 is not correlated to the log radiation efficiency log10𝜂𝑅
𝐸 

strongly (the correlation coefficient of 0.17). Ye et al. (2016) have reported the similar tendencies to 

Figures 5.7b and 5.7c. 

 

5.4.3. Corner-Frequency-Based Stress Drop 

 

The scaling of corner-frequency-based stress drop ∆𝜎𝑓𝑐 also appears to change from near 𝑀𝑤 =

5.1 (Figure 5.8a). The median stress drop ∆𝜎𝑓𝑐 is 4.79 MPa, calculated including the stress drops of 

the large earthquakes (the yellow stars), for 𝑘𝑠 = 0.40. The seismic moment dependency of ∆𝜎𝑓𝑐, 

∆𝜎𝑓𝑐 ∝ 𝑀0
0.20, is similar to that of ∆𝜎𝑠 in 𝑀𝑤 < 5.1. Figure 5.8b shows the relationship between the 

seismic moment and corner frequency. Baltay et al. (2011) analyzed the earthquakes in Japan, including 

the Iwate-Miyagi and Niigata regions, and obtained the average stress drop of 5.92 MPa using the Brune 

source model 𝑘𝑠 = 0.372. Figure 5.8b compares the result in this study (the black dots and red line) 

with the corner frequency derived from a constant stress drop of 5.92 MPa using the Brune source 

model (the blue line). Although this study shows the transition of the scaling relation, the corner 

frequency with the 5.92 MPa stress drop appears to be consistent with the result in this study if we see 

the overall trend. For 𝑀𝑤 < 5.1 , the scaling relation of the corner frequency is 𝑓𝑐 ∝ 𝑀0
−0.266 

approximately (the red line in Figure 5.8b).  

 



95 

 

The essential difference between ∆𝜎𝑓𝑐  and ∆𝜎𝑠  appears in the radiation efficiency estimates 

(Figure 5.8c). The radiation efficiency obtained from ∆𝜎𝑓𝑐, 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑓𝑐, is approximately constant 

since ∆𝜎𝑓𝑐 is correlated strongly with the apparent stress. For example, if we calculate 𝜎𝑎 from the 

omega-square model by Brune (1970) and ∆𝜎𝑓𝑐 assuming 𝑘𝑠 = 0.372, we obtain a constant radiation 

efficiency value of 0.47. Some observational studies found that strong correlation between 𝜎𝑎  and 

∆𝜎𝑓𝑐  (e.g., Baltay et al., 2011; Ide et al., 2003; Oth et al., 2010). On the other hand, the radiation 

efficiency obtained from ∆𝜎𝑠,⁡ 𝜂𝑅
′ = 2𝜎𝑎/∆𝜎𝑠, varies considerably compared with that obtained ∆𝜎𝑓𝑐 

due to the between-event variability of the finite source properties, especially rupture speed (Figure 

5.8c).  

 

Figure 5.8 (a) The scaling relation of the corner-frequency-based stress drop. The stress drops were calculated 

using 𝑘𝑠 = 0.40. The red line shows the regression result. The blue dashed line shows the median. The yellow 

stars are from Table 5.1. (b) The scaling relation of the corner-frequency. The red line shows the regression 

result in this study. The blue solid line is obtained from ∆𝜎𝑓𝑐 = 5.92 MPa and 𝑘𝑠 = 0.372. (c) The radiation 

efficiencies 𝜂𝑅
′  calculated by ∆𝜎𝑓𝑐  and ∆𝜎𝑠. ∆𝜎𝑓𝑐 were calculated with 𝑘𝑠 = 0.40. The color bar describes 

the rupture speed.  

 

(a)

(c)(b)

Mw 5.1

Mw 5.1
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5.4.4. Comparison with Other Crustal Earthquakes 

 

   Comparing with previous studies can help confirm if the scaling relations found in this study can 

be plausible or not. The stress drop and apparent stress were compiled from shallow crustal earthquakes 

with 𝑀𝑤 < 3.0 and 𝑀𝑤 > 6.0 from previous studies. Then, the scaling relations of the stress drop, 

apparent stress, and radiation efficiency are investigated for a wide seismic moment range. Furthermore, 

the relationship between the fracture energy is studied for the compiled earthquakes.   

The selected large crustal earthquakes and their source parameters are shown Tables 5.1 and 5.2. 

The radiation efficiencies 𝜂𝑅
𝐸 for the large earthquakes were calculated assuming ∆𝜎𝐸 = 2.4∆𝜎𝑠. The 

source parameters of small earthquakes (𝑀𝑤 < 3.0) are provided by Abercrombie & Rice (2005), Ide 

et al. (2003), Oye et al. (2005), Venkataraman et al. (2006), and Yamada et al. (2007). The stress drops 

were obtained from the corner frequency. The value of the stress drop ∆𝜎𝑓𝑐 can be different depending 

on the assumption of a source model, i.e., the choice of the 𝑘𝑐 value, significantly (e.g., Kaneko & 

Shearer, 2015). This model dependency problem causes difficulty in comparing the stress drop ∆𝜎𝑓𝑐 

to the stress drop ∆𝜎𝑠 derived for large earthquakes. On the other hand, this study showed that ∆𝜎𝑓𝑐 

calculated with the S-wave corner frequency and 𝑘𝑠 = 0.40 provides a comparable value to ∆𝜎𝑠 on 

average. Thus, I re-calculated ∆𝜎𝑓𝑐 provided the previous studies by using 𝑘𝑠 = 0.40. The radiation 

efficiencies 𝜂𝑅
𝐸  for the small earthquakes were calculated from the corner frequencies assuming 

∆𝜎𝐸 = 2.4∆𝜎𝑓𝑐. The source parameters of the aftershocks of the 1994 Northridge earthquake by Mori 

et al. (2003) were compared to the results in this study. The magnitudes of the Northridge aftershocks 

are similar to the earthquakes analyzed in this study. The radiation efficiencies of the Northridge 

aftershocks were calculated by assuming ∆𝜎𝐸 = 2.4∆𝜎𝑠. I used the stress drop ∆𝜎𝑠 of the Northridge 

aftershocks compiled by Abercrombie & Rice (2005). 
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Table 5.2 List of the source parameters of large crustal earthquakes. Most earthquakes are compiled by 

referring to Abercrombie & Rice (2005) and Lambert et al. (2021), which are omitted in the reference list. 

Earthquake 𝑀0 

(Nm) 

𝐸𝑅 

(J)** 

𝐿 x 𝑊  

(km) 

𝑆 

(km2) 

𝐷 

(m) † 

∆𝜎𝑠 
(MPa) 

References  

San Fernando, 1971 7.0e+18 1.5e+15 12 x 14 168 1.2 8.1 Bolt (1986) 

Heaton (1990) 

Smith et al. (1991) 

Imperial Valley 
1979   

6.7e+18 5.9e+14 35 x 15 525 0.4 1.7 Archuleta (1984)  

Morgan Hill 1986 2.1e+18 1.4e+14 20 x 8 160 0.4 2.9 Bolt (1986) 

Heaton (1990) 

Smith et al. (1990) 

Loma Prieta 1989 3.1e+19 2.7e+15 40 x 17 680 1.5 4.8 Wald et al. (1991) 

Landers 1992 7.7e+19 1.2e+16 65 x 15 975 2.6 7.6 Kanamori et al. (1993) 

Wald & Heaton (1994) 

Northridge 1994 1.3e+19 1.2e+15 15 x 20 300 1.4 6.3 McGarr & Fletcher (2000) 

Wald et al. (1996) 

Kobe 1995 2.4e+19 1.5e+15 60 x 20 1200 0.7 1.7 Wald (1995)  

Hector Mine 1999 6.3e+19 3.2e+15 30 x 15 

30 x 15 

20 x 15 

1200* 1.8 3.7 Venkataraman et al. (2004) 

Ji et al. (2002) 

Izmit 1999 2.1e+20 6.0e+15 100 x 20 2000 3.5 7.0 Bouchon et al. (2000) 

Yagi & Kikuchi (2000) 

Tibi et al. (2001) 

Kanamori & Ross (2019) 

Western Tottori 
2000 

1.2e+19 9.3e+14 30 x 20 600 0.7 2.3 Tinti et al. (2005) 

Choy & Boatwright (2009) 

Kanamori et al. (2020) 

Denali 2002 7.6e+20 3.6e+16 292 x 18 5256 4.8 10.4 Asano et al. (2005) 

Choy & Boatwright (2004) 

Fukuoka 2005 1.2e+19 6.2e+14 26 x 18 468 0.9 3.3 Kanamori et al. (2020) 

Asano & Iwata (2006) 

Noto 2007 1.4e+19 8.7e+14 25 x 15 375 1.2 4.7 Kanamori et al. (2020) 

Asano & Iwata (2011) 

Niigata Chuetsu-
oki 2007 

9.3e+18 3.4e+14 30 x 24 720 0.4 1.2 Aoi et al. (2008) 

Kanamori et al. (2020) 

*The total rupture area was calculated as the sum of the rupture areas of the three fault segments shown by Ji et al. (2002).  

**The apparent stress can be calculated as 𝜇𝐸𝑅/𝑀0, where 𝜇 is assumed to be 30 GPa. 

† The values of slip 𝐷 were calculated as 𝑀0/(𝜇𝑆), where 𝜇 is assumed to be 30 GPa. 
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   Figures 5.9 compiles the seismic moment dependences of the apparent stress 𝜎𝑎, the stress drop 

∆𝜎𝑠, and the radiation efficiency 𝜂𝑅
𝐸. The apparent stresses of the large earthquakes in this study (the 

white circles) are comparable to those of the compiled large crustal earthquakes (the yellow stars) and 

are independent of the seismic moment (Figures 5.9a). It is usually observed that the apparent stresses 

of large earthquakes (e.g., 𝑀𝑤 > 7.0) are independent of the seismic moments (Choy & Boatwright, 

1995; Kanamori et al., 2020; Ye et al., 2016). The stress drops of the large earthquakes in this study 

(the white circles) are comparable to those of the compiled large crustal earthquakes (the yellow stars) 

and are independent of the seismic moment (Figure 5.9b). The stress drops ∆𝜎𝑠  of the large 

earthquakes (𝑀𝑤 > 5.1) are within 1 to 10 MPa (Figure 5.9b). This result is consistent with the 

previously proposed scaling relation (e.g., Aki, 1972; Kanamori & Anderson, 1975).  

The scaling relations of the compiled stress drops and apparent stresses for the small earthquakes 

with 𝑀𝑤 < 3.0 are relatively complex. We see that the stress drop (or apparent stress) increases with 

the seismic moment in 𝑀𝑤 < 5.1 (Figures 5.9a and 5.9b), which are approximately consistent with 

the scaling relations found in the shallow crustal earthquakes analyzed in this study (the white circles). 

However, we can also see that the stress drop and apparent stress results by Ide et al. (2003) and Yamada 

et al. (2007) appear independent of the seismic moment. A more reliable fact may be that the variability 

of the stress drop (or apparent stress) values is higher for earthquakes with 𝑀𝑤 < 5.1 than those with  

𝑀𝑤 > 5.1. Another confident result is that we do not see the scaling relation that the stress drop (or 

apparent stress) becomes lower as the seismic moment increases for earthquakes with 𝑀𝑤 < 5.1.  

Figure 5.9c suggests that the radiation efficiency 𝜂𝑅
𝐸  is relatively independent of the seismic 

moment over the entire magnitude range. The radiation efficiencies obtained in this study for events 

with 𝑀𝑤 > 5.1 (the white circles) are similar to those of the large crustal earthquakes in Tables 5.1 

and 5.2 (the yellow stars) (Figure 5.9c). The radiation efficiency 𝜂𝑅
𝐸 of the two earthquakes (the 1999 

Izmit and 2002 Denali earthquakes) with 𝑀𝑤 > 7.5  (𝑀0 > 1.8 × 10
20  Nm) have relatively low 

values. The low radiation efficiencies for the two earthquakes with 𝑀𝑤 > 7.5 may be due to the long 

narrow fault geometry, i.e., large aspect ratios. For example, some studies showed that the radiation 

efficiencies of elliptical cracks are generally lower than those of circular cracks (e.g., Kaneko & Shearer, 

2015). 
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Figure 5.9 Source parameter scaling relations for crustal earthquakes. (a) The relationship between the seismic 

moment and the apparent stress 𝜎𝑎. (b) The relationship between the seismic moment and the moment-based 

stress drop ∆𝜎𝑠 . (c) The relationship between the seismic moment and the radiation efficiency 𝜂𝑅
𝐸 . The 

horizontal dashed line indicates 𝜂𝑅
𝐸 = 1.0. 

 

Mw 5.1(a)

(b)

(c)
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Figure 5.10 shows the relationship between fracture energies per unit area, 𝐺𝐸, and slip 𝐷. The 

fracture energies 𝐺𝐸 were calculated from the energy-related stress drop ∆𝜎𝐸 and the apparent stress 

𝜎𝑎.  

𝐺𝐸 = 0.5(∆𝜎𝐸 − 2𝜎𝑎)𝐷 (5.16) 

Equation (5.16) assumes the slip-weakening model whose dynamic stress and final stress levels are the 

same (i.e., no stress undershoot and overshoot). The value of 𝐺𝐸 becomes negative if there is stress 

undershoot. In Figure 5.10, the fracture energies with negative values were ignored. The fracture energy 

𝐺𝐸 increases with increasing slip. Since the scaling relations of the stress drop and apparent stress 

change around 𝑀𝑤 = 5.1, the different markers are used for illustrating the fracture energy results for 

𝑀𝑤 < 5.1  (the white circles) and 𝑀𝑤 > 5.1  (the red circles). We can see a branch of the slip 

 

Figure 5.10 The fracture energy 𝐺𝐸  versus slip 𝐷. The differences between models A and B for the results of 

Perry et al. (2020) are effective normal stress (50 and 25 MPa) and coupling coefficient (0.1 and 0.34 MPa/K). 

The coupling coefficient gives pore pressure change per unit temperature change under undrained conditions. 

The solid red and cyan lines are the theoretical predictions by Rice (2006). 

 

Rice (2006)

Rice (2006)

or
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dependency of 𝐺𝐸 at near 𝐷 = 0.1 m (the white circles versus the red circles). This branch is relevant 

to the scaling transition observed in the stress drop and the apparent stress in Figure 5.9. The fracture 

energy results of the numerical simulations of crack-like earthquake sequences on faults with rate-and-

state friction and thermal pressurization by Perry et al. (2020) are consistent with the observational 

results for 𝑀𝑤 > 5.1 compiled in this study (Figure 5.10). Besides, the trend of the increasing fracture 

energy with slip is consistent with the theoretical predictions by Rice (2006). The relationship between 

𝐺𝐸 and 𝐷 deviates from the predictions by Rice (2006) and Perry et al. (2020) for earthquakes with 

𝐷 > 0.1 m and 𝑀𝑤 < 5.1 (the white circles and green squares). 

I conducted a regression analysis to investigate the relationship between 𝐺𝐸  and 𝐷  for 

earthquakes with 𝑀𝑤 < 5.1. The regression results of the relationship between 𝐺𝐸 and 𝐷 for 𝑀𝑤 <

5.1 was obtained as: 

log10𝐺
𝐸 = 7.29 + 1.50log10𝐷 (5.17) 

 

Figure 5.11 (a) The fracture energy 𝐺𝐸   versus slip 𝐷 . The solid blue line is the regression result for 

earthquakes with 𝑀𝑤 < 5.1 (the black dots). (b) The energy-related stress drop ∆𝜎𝐸 versus slip 𝐷. The blue 

solid line is obtained from equation (5.19). (c) Examples of the relationship between shear stress and slip from 

the power law fracture energy scaling 𝐺𝐸 ∝ 𝐷1.5. The middle and right panels compare the cases of small and 

large slips. The solid red curves correspond to the slip histories.  

(c)

(a) (b)
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Figure 5.11a illustrates the regression result. Following Abercrombie & Rice (2005), the frictional stress 

can be obtained from equations (5.3) and (5.17) as:  

𝜎𝑓(𝐷) = 𝜎0
′ − 58.5𝐷0.5 (5.18) 

where 𝜎0
′  is a constant. The unit of 𝜎𝑓(𝐷) is MPa, and that of 𝐷 is m. The constant 𝜎0

′  may be 

interpreted as the peak strength at onset of failure (Abercrombie & Rice, 2005). Suppose that there is 

no stress undershoot and overshoot. Besides, I assume to interpret the constant 𝜎0
′  the initial stress. 

Then, the stress drop is expressed as: 

∆𝜎𝐸(𝐷) = 𝜎0
′ − 𝜎𝑓(𝐷) = 58.5𝐷

0.5 (5.19) 

Figure 5.11b shows the relationship between the energy-related stress drop ∆𝜎𝐸(𝐷) and slip 𝐷 with 

the relation from equation (5.19) (the solid blue line). The stress drop ∆𝜎𝐸 increases with increasing 

slip for earthquakes with 𝑀𝑤 < 5.1. Equation (5.19) predicts a stress drop value of 52.3 MPa for the 

average slip of 0.8 m (the upper limit in the regression analysis), which can be close to the shear strength 

of a fault in a shallow depth of 5–10 km. Figure 5.11c exemplifies the relationship between the frictional 

stress 𝜎𝑓(𝐷) and slip 𝐷 derived by assuming the shear strength of 𝜎0
′ = 76 MPa, calculated by 

multiplying the effective normal stress 126 MPa by the friction coefficient 0.6. Although stress drop 

increases with slip (the middle and right panels in Figure 5.11c), the radiation efficiency has a constant 

value of 0.33 if the relation 𝐺𝐸 ∝ 𝐷1.5 holds.   

𝜂𝑅
𝐸 =

0.5∆𝜎𝐸(𝐷) ∙ 𝐷 − 𝐺
𝐸

0.5∆𝜎𝐸(𝐷) ∙ 𝐷
=
1

3
(5.20) 

The radiation efficiency of 0.33 is consistent with the median (or geometric mean) of 𝜂𝑅
𝐸 found in this 

study (median: 0.25, geometric mean: 0.29) (Figure 5.5a). A more general form of the power law in 

fracture energy scaling, 𝐺𝐸 ∝ 𝐷𝛼, provides a constant radiation efficiency as: 

𝜂𝑅
𝐸 = 1 −

2(𝛼 − 1)

𝛼
(5.21) 

A physical requirement 𝜂𝑅
𝐸 < 1.0 suggests that the exponent 𝛼 must satisfy 1 < 𝛼 < 2. Finally, it is 

noted that the results in this paragraph hold under some assumptions and are only inapplicable for large 

earthquakes with 𝑀𝑤 > 5.1. Also, the fracture energy scaling discussed in this paragraph expresses an 

approximate statistical trend and needs not to be valid for individual events. 
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5.4.5. Comparison with Subduction Zone Interplate Earthquakes 

 

Figure 5.12 compares the apparent stress 𝜎𝑎, the energy-related stress drop ∆𝜎𝐸, and the radiation 

efficiency 𝜂𝑅
𝐸 for the crustal earthquakes (this study and Tables 5.1 and 5.2) and the subduction zone 

interplate earthquakes by Ye et al. (2016). Most of the results by Ye et al. (2016) were obtained by 

assuming a rupture speed of 2.5 km/s. Figure 5.12a shows that the apparent stress of the crustal 

earthquakes is higher than that of subduction zone earthquakes. Similar to the apparent stress result, the 

energy-related stress drop ∆𝜎𝐸  of the large crustal earthquakes (𝑀𝑤 > 5.1 ) is higher than that of 

subduction zone earthquakes (𝑀𝑤 > 7.0 ). The radiation efficiency 𝜂𝑅
𝐸  is similar in the crustal and 

subduction zone earthquakes and is independent of the seismic moment. Table 5.3 summarizes the 

results of the apparent stress 𝜎𝑎, the stress drop ∆𝜎𝐸, and the radiation efficiency 𝜂𝑅
𝐸 for the crustal 

earthquakes with 𝑀𝑤 > 5.1 and the subduction zone earthquakes. The median apparent stress of the 

large crustal earthquakes is 1.6 MPa and is 2.6 time higher than that of the subduction zone earthquakes. 

The difference in the apparent stress of the crustal and subduction zone interplate earthquakes 

corresponds to the difference in the stress drop ∆𝜎𝐸 rather than the radiation efficiency (Table 5.3).  
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Table 5.3 Summary of the source parameters of large crustal earthquakes (𝑀𝑤 > 5.1) and subduction zone 

interplate earthquakes (𝑀𝑤 > 7.0).  

 Large crustal (𝑀𝑤 > 5.1) Large subduction zone interplate 

Apparent stress 𝜎𝑎 

(MPa) 

0.7 to 5.0 

Median 1.55, Geometric mean 1.76 

0.1 to 1.5 

Median 0.61, Geometric mean 0.56 

Stress drop ∆𝜎𝐸 

(MPa) 

2 to 20 

Median 8.55, Geometric mean 8.38 

1.0 to 10 

Median 3.43, Geometric mean 3.44 

Radiation 

efficiency 𝜂𝑅
𝐸 

0.1 to 1.0 

Median 0.37, Geometric mean 0.42 

0.1 to 1.0 

Median 0.38, Geometric mean 0.34 

  

 

Figure 5.12 Comparison of the source parameter scaling relations between crustal earthquakes and subduction 

zone interplate earthquakes. The seismic moment versus (a) the apparent stress 𝜎𝑎, (b) the energy-related stress 

drop ∆𝜎𝐸, and (c) the radiation efficiency 𝜂𝑅
𝐸. 

(a)

(c)

(b)
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5.5. DISCUSSION 

 

5.5.1. Radiation Efficiency and Earthquake Rupture Dynamics 

 

This study confirmed that the moment-based stress drops ∆𝜎𝑠 and the apparent stress 𝜎𝑎 obtained 

in this study are consistent with those obtained for large crustal earthquakes shown in Tables 5.1 and 

5.2 (the white circles and yellow stars in Figures 5.9a and 5.9b). This result supports the validity of the 

statistical trends obtained for ∆𝜎𝑠 and 𝜎𝑎 by the spectral analysis in this study. This study found that 

the value of the radiation efficiency 𝜂𝑅
𝐸 is typically within 0.1 to 1.0 for shallow crustal earthquakes 

(the white circles and the yellow stars and 5.9c). This result is reliable if the assumption of the single 

asperity model, whose asperity area is 17.5% of the total rupture area, is valid, i.e., ∆𝜎𝐸 = 2.4∆𝜎𝑠. We 

may need to consider the following two factors: (1) the assumption of a 17.5% area ratio and (2) the 

influence of the existence of multiple asperities. The consistency of moment-based stress drops, ∆𝜎𝑠, 

obtained by the spectral ratio analysis and Tables 5.1 and 5.2 support that the 17.5% area ratio is valid 

(the white circles and yellow stars in Figures 5.9b). Chapters 3 and 4 (and Appendix A2) showed that 

the single localized area is usually adequate to explain the observed spectral ratios. Thus, the single 

asperity model may be a good approximation of small-to-moderate earthquakes and sufficient for 

investigating the statistical properties of their source parameters. For large earthquakes, Somerville et 

al. (1999) showed that while the area of the largest asperity is 17.5% of the total rupture area on average, 

the combined asperity area is 22% of the total rupture area. This result implies that the area of the largest 

asperity often occupies most of the combined asperity area. The influence of the remaining asperity 

areas other than the largest asperity area may not be so significant for the statistical trends of ∆𝜎𝐸, 𝜂𝑅
𝐸, 

and 𝐺𝐸. Thus, the statistical trend that 𝜂𝑅
𝐸 of the shallow crustal earthquakes (the white circles and the 

yellow stars and 5.9c) is typically within 0.1 to 1.0 is considered to be approximately valid. A multiple 

asperity model is more complex than a single asperity model. Hence, the radiation efficiency calculated 

by the single asperity model may be an overestimate, but it is unlikely that it is an underestimate. Thus, 

the conclusion that the radiation efficiency 𝜂𝑅
𝐸 is typically less than 1.0 is robust. 

The result that 𝜂𝑅
𝐸  is mostly less than 1.0 suggests that stress undershoot, which indicates the 

dynamic stress level during seismic slip is lower than the final shear stress, is probably rare. Figure 5.13  
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shows the illustrative descriptions of stress overshoot and undershoot. Lambert et al. (2021) 

demonstrates that self-healing pulse-like ruptures usually cause significant stress undershoots. Hence, 

the self-healing pulse-like ruptures typically provide the values of the radiation efficiency 𝜂𝑅
𝐸 greater  

than 1.0. On the other hand, crack-like ruptures are typically characterized by stress overshoot and 

provide the value of the radiation efficiency 𝜂𝑅
𝐸 less than 1.0 (e.g., Lambert et al., 2021). Thus, the 

ruptures of the studied small-to-moderate earthquakes are energetically crack-like.  

The slip duration of a dynamic crack (with a uniform stress drop) is comparable to the rupture 

duration of the overall rupture area. However, the slip durations (or rise time) of observed earthquakes 

are often significantly shorter than the rupture duration (e.g., Heaton, 1990; Somerville et al., 1999; 

Dreger et al., 2007). The studied small-to-moderate earthquakes are also expected to have short slip 

duration, implied in Chapter 4. Heaton (1990) considers short slip durations observed in the finite fault 

inversion results of seven shallow earthquakes as evidence of self-healing pulse-like rupture. On the 

other hand, Beroza & Mikumo (1996) shows that short-length-scale stress drop (and slip) heterogeneity 

can also cause short rise time. In a heterogeneous earthquake source, there are several localized areas 

with large slips, sometimes called asperities (e.g., Somerville et al., 1999). The short slip duration in a 

heterogeneous source can be because the slips on asperity areas are arrested by unloading from arrest 

waves generated by the local rupture boundaries around these asperities. In this case, the rupture of each 

 

Figure 5.13 Graphic descriptions of the earthquake energy budget with (a) stress overshoot and (b) undershoot. 

Crack-like ruptures typically have stress overshoot and provide 𝜂𝑅
𝐸 of less than 1.0. The kinematic feature of 

crack-like ruptures is a long slip duration comparable to the rupture duration of overall rupture area. Self-

healing pulse-like ruptures have stress undershoot and typically provide 𝜂𝑅
𝐸 of more than 1.0. The kinematic 

feature of pulse-like ruptures is short slip duration compared to the rupture duration. Geometrically-constrained 

pulse-like ruptures are energetically crack-like (i.e., 𝜂𝑅
𝐸 < 1.0 ) but kinematically pulse-like (i.e., short slip 

duration).  

 

(b)(a)
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asperity area is expected to be crack-like. For example, Somerville et al. (1999) found that the average 

rise time is similar to the rupture duration of the largest-asperity area. The numerical simulation results 

by Lambert (2021) demonstrate that the radiation efficiency of a pulse-like rupture whose slip duration 

is short due to arresting wave generated from the rupture boundary is consistent with a crack-like rupture 

rather than a self-healing pulse-like rupture. Thus, the rupture style of the studied small-to-moderate 

earthquakes can be consistent with the pulse-like rupture caused by geometrical constraints due to 

source heterogeneity, which is energetically crack-like.  

 

5.5.2. Source Parameter Scaling Relations  

 

The stress drop and the apparent stress of the earthquakes analyzed in this study increase with the 

seismic moment in 3.2 < 𝑀𝑤 < 5.1 but are independent of the seismic moment in 5.1 < 𝑀𝑤 < 6.0 

(Figures 5.3 and 5.4). Some studies observed that the apparent stress (or the corner-frequency-based 

stress drop) increases with the seismic moment (e.g., Abercrombie, 1995; Abercrombie & Rice, 2005; 

Mayeda et al., 2005 and 2007; Mori et al., 2003; Trugman & Shearer, 2017). On the other hand, some 

other studies suggest the apparent stress does not vary with the seismic moment (e.g., Baltay et al., 

2011; Choy & Boatwright, 1995; Ide & Beroza, 2001; Kanamori et al., 2020; McGarr, 1999; Prieto et 

al., 2004; Shearer et al., 2006; Ye et al., 2016). This study suggests that we should investigate the scaling 

relations separately for small (e.g., 𝑀𝑤 < 5.1) and large earthquakes.  

The rupture speed is an important parameter for investigating the source parameter scaling relations 

in addition to the stress drop (Kanamori & Rivera, 2004). Recently, Ji & Archuleta (2020) suggested 

that the stress drop can increase with the magnitude in 𝑀𝑤 < 5.3 and decrease with increasing the 

magnitude in 𝑀𝑤 > 5.3 if rupture speed is independent of the magnitude. Ji & Archuleta (2020) also 

suggested another possibility that the stress drop is independent of the magnitude if rupture speed 

depends on the magnitude. This study is consistent with the first scenario by Ji & Archuleta (2020). 

This study estimates both stress drop and rupture speed and found that the stress drop depends on the 

magnitude while rupture speed is relatively independent of the magnitude (Figure 5.4). Thus, the results 

of this study are consistent with the first scenario of the stress drop scaling relation by Ji & Archuleta 

(2020). In contrast to the scaling relations of the stress drop and the apparent stress, this study found 

that the radiation efficiency is relatively independent of the magnitude (Figure 5.5). This result is the 
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consequence of the magnitude independence of rupture speed.  

The relation between the fracture energy per unit area and slip predicted by Rice (2006) and Perry 

et al. (2020) are consistent with the observed slip dependency of the fracture energy 𝐺𝐸  for 

earthquakes with 𝑀𝑤 > 5.1  (e.g., the red circles in Figure 5.10). This consistency implies the 

importance of thermal weakening, such as thermal pressurization. Perry et al. (2020) found that 

earthquakes with larger magnitude with enhanced dynamic weakening due to thermal pressurization 

(i.e., a larger amount of slip) weaken the frictional strength further and have lower final stress, i.e., the 

fracture energy increases with increasing slip. They also found that earthquakes with larger magnitudes 

have lower average initial stress levels. Since the frictional strength of large earthquakes is weakened 

further due to dynamic weakening, the rupture of large earthquakes can propagate over regions with 

lower prestress levels. As a consequence of rupturing regions with lower prestress, the average initial 

stress of large earthquakes can become lower compared to small earthquakes. Since both initial and 

final stress levels become lower for large earthquakes with enhanced dynamic weakening due to thermal 

pressurization, the stress drop can be independent of the seismic moment (or slip) while the fracture 

energy increases with slip.  

The slip-weakening model in Figure 5.12c was derived based on the power law scaling of the 

fracture energy 𝐺𝐸  and some assumptions for earthquakes with 𝑀𝑤 < 5.1 . This slip-weakening 

model describes the statistical characteristics of the source parameter scaling relation for earthquakes 

with 𝑀𝑤 < 5.1 consistently. First, the fracture energy 𝐺𝐸 increases with increasing slip. Second, the 

radiation efficiency 𝜂𝑅
𝐸  is independent of the seismic moment and is 0.33. Third, the stress drop 

increases with increasing slip (Figure 5.13b), which is different from the results by Perry et al. (2020). 

The slip-weakening model in Figure 5.12c assumes that while the final stress level becomes lower as 

the slip increases, the average initial stress level does not depend on the amount of slip. Hence, the 

stress drop and the fracture energy increases with slip. A small amount of frictional strength weakening 

for small earthquakes may often be insufficient to rupture the regions with lower prestress levels, unlike 

the case of large earthquakes demonstrated by Perry et al. (2020).  

As we saw in Figure 5.9, the source parameter scaling relations for small earthquakes are more 

complex than those of large earthquakes. At least, Figure 5.9 supports the existence of such scaling 

relations. This study found that the variabilities of the stress drop and apparent stress are higher for 

earthquakes with 𝑀𝑤 < 5.1  than those with 𝑀𝑤 > 5.1  (Figures 5.9a and 5.9b). Malagnini et al. 
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(2014) found a similar trend with the threshold magnitude of 5.5. The source properties of small 

earthquakes are influenced by local fault properties (e.g., friction coefficient, normal stress, pore 

pressure, and permeability) in a heterogeneous fault zone. On the other hand, the source properties of 

large earthquakes are the average over a large area in the fault zone. The variability of average rupture 

characteristics over a large area is expected to be smaller than that of local rupture characteristics in a 

heterogeneous fault zone. Consequently, small earthquakes can have a larger variability of their source 

parameters. 

There is a possibility that for small-to-moderate earthquakes (𝑀𝑤 < 5.1), the following two types 

of scaling relations coexist: (1) the stress drop increases with the seismic moment, and (2) the stress 

drop is relatively independent of the seismic moment (1 to 10 MPa in ∆𝜎𝑠). However, the first scaling 

relation seems to disappear in 𝑀𝑤 > 5.1. From the regression results for the relationship between ∆𝜎𝑠 

and 𝑀0, equation (5.13), the energy-related stress drop ∆𝜎𝐸 (∆𝜎𝐸 = 2.4∆𝜎𝑠) for 𝑀𝑤 = 5.1 is 30.6 

MPa on average, which may be close to fault shear strength (i.e., nearly complete stress drop), see also 

Figure 5.12b. If ∆𝜎𝐸 for 𝑀𝑤 = 5.1 is close to a fault shear strength (the upper limit of stress drop), 

∆𝜎𝐸 is difficult to increase more. Several studies suggest that the influence of thermal effect starts to 

be significant from the average slip of about 0.1 to 0.3 m (e.g., Kanamori & Heaton, 2000; Viesca & 

Garagash, 2015), which corresponds to the average slip of earthquakes with near 𝑀𝑤 = 5.1. Thus, 

thermal weakening effects due to frictional heating can be important for understanding the transition of 

the source parameter scaling relation starting from near 𝑀𝑤 = 5.1. We need further investigation based 

on multiple approaches, such as numerical simulation and experiment, to reveal the cause of the source 

parameter scaling relations observed in this study. Besides, for small earthquakes, some scaling relations 

of the apparent stress (or the corner-frequency-based stress drop) may be artifacts due to observational 

limitations, such as limited frequency bandwidth or analysis methods (Abercrombie, 2021; Ide & 

Beroza, 2001). Therefore, accumulating reliable data on the source parameters for small earthquakes 

(e.g., 𝑀𝑤 < 3.0 ) is necessary for establishing the scaling law of the source parameters for a wide 

magnitude range. 
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5.6. CONCLUSIONS 

 

The energy-related stress drop ∆𝜎𝐸 is required in studying the earthquake energy budget, and the 

moment-based stress drop ∆𝜎𝑠 is inadequate. The single asperity model, whose asperity area is 17.5% 

of the overall rupture area, was introduced to calculate the energy-related stress drop. The use of the 

single asperity model is based on the results in Chapter 4. The single asperity model assumed in this 

study provides the relation ∆𝜎𝐸 = 2.4∆𝜎𝑠.  

This chapter investigated the scaling relation of the source parameters for the shallow crustal 

earthquakes in Japan (Figures 5.3 to 5.7). The stress drop increases with the seismic moment up to near 

𝑀𝑤 = 5.1 and becomes independent of the seismic moment in 𝑀𝑤 > 5.1. Also, the apparent stress 

increases with the seismic moment in 𝑀𝑤 < 5.1 and becomes independent of the seismic moment in 

𝑀𝑤 > 5.1 . The stress drop variability for earthquakes with 𝑀𝑤 > 5.1  is smaller than that for 

earthquakes with 𝑀𝑤 < 5.1. The seismic moment dependency of the product 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 is similar to 

that of the stress drop ∆𝜎𝑠. This result implies that rupture speed is relatively independent of the seismic 

moment. The radiation efficiency 𝜂𝑅
𝐸 = 2𝜎𝑎/∆𝜎𝐸  is relatively independent of the seismic moment. 

This result suggests that the ratio of the radiated energy to the fracture energy is similar in small and 

large earthquakes. The radiation efficiency 𝜂𝑅
𝐸 takes a value typically from 0.1 to 1.0. The (average) 

rupture speed dependency 𝜂𝑅
𝐸 = 0.83𝐶𝑉𝑆

3.0 is comparable to that predicted from typical crack models 

and appears to predict plausible values given 𝐶𝑉𝑆. The stress drop estimation in this study enables us 

to consider the rupture speed dependency of the radiation efficiency, which is an improvement against 

previous corner-frequency-based stress drop estimation. The fracture energy per unit area 𝐺𝐸 

increases with increasing slip.  

This study found that the apparent stress and the stress drop of subduction zone interplate 

earthquakes are lower than those of large crustal earthquakes. The radiation efficiency between large 

crustal earthquakes and large subduction zone interplate earthquakes is relatively similar. The 

difference in the apparent stress of the crustal and subduction zone interplate earthquakes corresponds 

to the difference in the stress drop ∆𝜎𝐸 rather than the radiation efficiency 𝜂𝑅
𝐸. 
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Chapter 6  

 

CONCLUSIONS AND FUTURE STUDIES 

 

6.1. CONCLUSIONS 

 

This dissertation develops a new spectral ratio approach to estimate the stress drop of small-to-

moderate earthquakes considering rupture geometry, speed, and directivity to improve the standard 

corner frequency method. Applying the developed spectral ratio approach to the shallow crustal 

earthquakes in Japan reveals that the rupture area estimated by the spectral ratio analysis corresponds 

to the large-slip asperity area rather than the overall rupture area. The localized rupture with large slip 

controls the shape of source spectra in a broadband frequency range. The results of this study encourage 

us to describe an earthquake source as a simple heterogeneous source model, the single asperity model. 

The localized area with concentrated stress drop, which generates strong ground motions, corresponds 

to the rupture area estimated by the spectral ratio analysis. This study proposes a procedure to calculate 

the energy-related stress drop based on the spectral ratio analysis and the single asperity model. The 

single asperity model consists of a localized area with a concentrated stress drop and the remaining 

region (outside the localized area but within the entire rupture domain) with zero stress drop. The single 

asperity model is more detailed than the standard circular source model but is still simple. The energy-

related stress drop is usually estimated using slip distribution obtained from finite fault inversion. Since 

finite fault inversion is often hard to conduct for small-to-moderate earthquakes, estimating the energy-

related stress drop based on the spectral ratio analysis and the single asperity model is convenient.  

This study introduced three types of stress drops, the local stress drop ∆𝜎𝑙𝑎, the moment-based 
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stress drop ∆𝜎𝑠, and the energy-related stress drop ∆𝜎𝐸. This study implied that a localized area with 

large slip dominates strong motion generation rather than the overall rupture area. Therefore, the local 

stress drop ∆𝜎𝑙𝑎 can be one of the most significant source parameters in ground motion prediction. 

The moment-based stress drop ∆𝜎𝑠 is an effective parameter to characterize the relationship between 

the seismic moment and source dimension, which is important for earthquake engineering. The energy-

related stress drop ∆𝜎𝐸 rather than the moment-based stress drop ∆𝜎𝑠 is appropriate for calculating 

the radiation efficiency. The radiation efficiency can be used to investigate the rupture style of 

earthquakes. For example, the radiation efficiency for self-healing pulse-like rupture tends to be more 

than 1.0, although one for crack-like rupture is less than 1.0 (Lambert et al., 2021). Appropriate 

observational constraints of radiation efficiency are helpful for precise ground motion prediction based 

on dynamic source modeling or physics-based earthquake simulation.  

The developed spectral ratio approach enables us to investigate more detailed source characteristics, 

e.g., rupture speed, of small-to-moderate earthquakes (e.g., 𝑀𝑤 < 6.0) compared with the previous 

corner-frequency-based method. Applying the developed spectral ratio approach to small-to-moderate 

earthquakes is helpful for obtaining the joint probability distribution of the source parameters for 

physics-based probabilistic seismic hazard analysis since the number of small-to-moderate earthquakes 

is greater than that of large earthquakes. For example, understanding the source properties of small-to-

moderate earthquakes can be significant for aftershock seismic hazard assessment. Aftershock seismic 

hazard assessment helps prepare post-earthquake recovery plans for expected earthquakes in advance, 

which is expected to contribute to mitigating social loss due to earthquake disasters. 

Notable conclusions in this dissertation are summarized as follows. 

Chapter 2: Source Spectrum Model Considering Rupture Directivity Effect 

(1) A source spectrum model incorporating the effect of rupture size, geometry, speed, and rupture start 

point was developed. The mathematical representation of the source spectrum for the kinematic 

rectangular source model with bilateral–bidirectional rupture propagation was derived. This source 

spectrum has the 𝜔−⁡2 high-frequency falloff rate. The source spectrum incorporates the effect of 

rupture size, geometry, speed, and rupture start point.  

(2) The source spectrum derived for the rectangular source model was approximated as its envelope 

(the envelope spectrum). The envelope spectrum has a smooth spectral shape (i.e., without spectral 

holes). For example, this smooth spectral shape is advantageous for spectral ratio fitting, in which 
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we often use observed spectral ratios smoothed by applying a tapering or stacking technique.    

Chapter 3: Spectral Ratio Method  

(1) A spectral ratio approach incorporating the envelope spectrum was developed to estimate the stress 

drop of small-to-moderate earthquakes considering rupture geometry, speed, and directivity. The 

source parameters are estimated by fitting the model spectral ratios with the envelope spectrum to 

observed spectral ratios obtained by station and wave type. This spectral ratio fitting is different 

from the standard spectral ratio approach, which fits the model spectral ratio to an observed spectral 

ratio averaged over all stations to estimate the corner frequency. Applying this spectral ratio 

approach to the shallow crustal earthquakes in Japan showed that the model spectral ratio using the 

envelope spectrum could fit observed spectral ratios well. 

(2) The stress drops, calculated from the seismic moment and the rupture area estimated by the spectral 

ratio analysis, were systematically much higher than expected, albeit with good fits of spectral ratios.  

Chapter 4: Seismic Spectra and Source Heterogeneity 

(1) The rupture area estimated by the spectral ratio approach is small compared with the overall rupture 

area. The rupture area obtained by the spectral ratio approach corresponds to the localized rupture 

area with large slip (the largest-asperity area). This localized rupture area dominates the source 

spectral shapes in a broadband range. This conclusion suggests that the idea of the strong motion 

generation area is also significant for small-to-moderate earthquakes (e.g., 𝑀𝑤 < 6.0).  

(2) The comparison of the estimated rupture area 𝐿𝑊  with the result by Somerville et al. (1999) 

suggests that the estimated rupture area can be 17.5% of the total rupture area on average. The 

average static stress drops ∆𝜎𝑠 are estimated using the 17.5% area ratio and are within a typical 

range of 1 to 20 MPa. The consistency with the stress drops estimated for large earthquakes supports 

the validity of the stress drop calculation.  

(3) The rupture speed and stress drop are inversely correlated. The correlation coefficient between the 

log10𝑉𝑟𝑚𝑎𝑥 and log10∆𝜎𝑠 is – 0.55. The depth dependence and focal mechanism dependence of 

the stress drop ∆𝜎𝑠 are not obvious. 

(4) The 𝑘𝑠 values were estimated from the estimated rupture areas and the corner frequencies. The 

median and mean of the 𝑘𝑠 value are 0.400 and 0.433, respectively. The 𝑘𝑠 value of 0.40 provides 

the median value of ∆𝜎𝑓𝑐 similar to that of ∆𝜎𝑠. The corner-frequency-based approach is useful 

to observe the average trend of stress drop if an appropriate 𝑘𝑠 value is used. However, it should 
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be recognized that the between event variability of the kc value is significantly large. The standard 

deviation of the 𝑘𝑠 value is 0.119.   

Chapter 5: Earthquake Energy Budget and Source Parameter Scaling Relations  

(1) The energy-related stress drop ∆𝜎𝐸  is theoretically required in studying the earthquake energy 

budget, and the moment-based stress drop ∆𝜎𝑠 is inadequate. Hence, the single asperity model, 

whose asperity area is 17.5% of the overall rupture area, is introduced to calculate the energy-related 

stress drop. The asperity area corresponds to the rupture area estimated by the spectral ratio analysis 

developed in this study. The single asperity model assumed in this study provides the relation 

∆𝜎𝐸 = 2.4∆𝜎𝑠.  

(2) The stress drop increases with the seismic moment up to near 𝑀𝑤 = 5.1 and becomes independent 

of the seismic moment for earthquakes with 𝑀𝑤 > 5.1. The stress drops of the earthquakes with 

𝑀𝑤 > 5.1 are 1 to 10 MPa. The seismic moment dependency of the product 𝑉𝑟𝑚𝑎𝑥
3 ∆𝜎𝑠 is similar 

to that of the stress drop ∆𝜎𝑠. The apparent stress increases with the seismic moment up to near 

𝑀𝑤 = 5.1 and becomes independent of the seismic moment for earthquakes with 𝑀𝑤 > 5.1. The 

variabilities of stress drop and apparent stress for earthquakes with 𝑀𝑤 > 5.1 is smaller than those 

for earthquakes with 𝑀𝑤 < 5.1. The radiation efficiency 𝜂𝑅
𝐸 = 2𝜎𝑎/∆𝜎𝐸 is relatively independent 

of the seismic moment. The fracture energy 𝐺𝐸 increases with increasing slip. 

(3) The radiation efficiency 𝜂𝑅
𝐸 takes a value typically from 0.1 to 1.0. The short slip duration and 

𝜂𝑅
𝐸 < 1.0 suggest that the rupture mode of the studied earthquakes is consistent with pulse-like 

rupture due to geometrical constraints, such as source heterogeneity. The (average) rupture speed 

dependency 𝜂𝑅
𝐸 = 0.83𝐶𝑉𝑆

3.0  is comparable to that predicted from typical crack models and 

appears to predict plausible values given 𝐶𝑉𝑆. The stress drop estimation in this study enables us to 

consider the rupture speed dependency of the radiation efficiency, which is an improvement against 

previous corner-frequency-based stress drop estimation. 

(4) This study found that the apparent stress and the stress drop of subduction zone interplate 

earthquakes are lower than those of large crustal earthquakes. The radiation efficiency between 

large crustal earthquakes and large subduction zone interplate earthquakes is relatively similar.  
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6.2. FUTURE STUDIES  

 

This study found that the scaling relation of source parameters (e.g., the stress drop) changes around 

𝑀𝑤 = 5.1. Since the scaling law of source parameters is significant for seismic hazard assessment, the 

existence of the source scaling transition should be confirmed by further investigation. Some studies 

found that the relationship between the magnitude and peak ground acceleration (PGA) or peak ground 

velocity (PGV) changes around 𝑀𝑤 of 5.0 to 5.5 (Abrahamson et al., 2014; Boatwright et al., 2003; Ji 

et al., 2021). If the source scaling transition observed in this study is true, it should appear in the 

magnitude dependence of PGA and PGV for shallow crustal earthquakes. Therefore, an important future 

work is investigating he magnitude dependence of PGA and PGV for shallow crustal earthquakes in 

Japan.  

This study demonstrated that the envelope spectrum fits observed spectral ratios effectively. This 

result suggests that a localized area with large slip dominates the shape of seismic spectra. I think the 

conclusion that the spectral ratio approach developed in this study estimates the largest asperity area is 

reasonable and valid. However, the envelope spectrum may become inappropriate at a very high-

frequency range. For example, Somerville et al. (1997) showed that the rupture directivity effect 

diminishes in a high-frequency range for all directions. Gusev (2014) simulated an earthquake with 

heterogeneous slip distribution and a complex rupture front. His result suggested that the rupture 

complexity would diminish the high-frequency rupture directivity effect. Although this study 

considered source heterogeneity, the rupture directivity effect exists at high frequencies since the 

rupture propagation in the rectangular source model is smooth. A deeper understanding of the behavior 

of seismic source spectra over broadband frequencies is essential for engineering seismology and 

earthquake source physics.  
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APPENDICES 

 

A1. CALCULATION NOTES FOR CHAPTER 2 

 

A1.1. Derivation of K  

 

The recommended value of 𝐾 = 3  was derived so that the area of the two slip functions 

represented by equations (2.2) and (2.4) would be equal (Figure A1). 

𝐷1(𝑡) = {

0, 𝑡⁡ ≤ ⁡0
𝐷

𝐾
𝐻(𝑡) ⁡+⁡

⁡𝐾 − 1

𝐾

𝐷

𝜏𝑟
𝑡, 0⁡ < 𝑡⁡ ≤ ⁡𝜏𝑟

𝐷, 𝜏𝑟 < ⁡𝑡

(2.2) 

 

𝐷𝑟(𝑡) ⁡= ⁡{

0, 𝑡⁡⁡ ≤ ⁡⁡0
𝐷

√𝜏𝑟
√𝑡, 0⁡ < ⁡𝑡⁡ ≤ ⁡ 𝜏𝑟

𝐷, 𝜏𝑟 ⁡< ⁡𝑡

(2.4) 

The problem is to determine the value of 𝐾 that Area 1 and Area 2 in Figure A1 become equal. The 

equilibrium of the two area is represented as 

∫ {
𝐷

𝜏𝑟
(
𝐾 − 1

𝐾
) 𝑡 +

𝐷

𝐾
−

𝐷

√𝜏𝑟
√𝑡}

𝑎

0

𝑑𝑡 − ∫ {
𝐷

√𝜏𝑟
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𝐾
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𝑎

𝑑𝑡 = 0 (A1.1) 

where 𝑎 designates the time at the intersection point in Figure A1, and the first and second integrals 

calculate Area 1 and Area 2 in Figure A1, respectively. By substituting 𝜏𝑟 = 𝐷
2/4 , the left side 

becomes 

∫ {
𝐷
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Therefore, we equation (A1.1) becomes,   

𝐷
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−
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3
= 0 (A1.2)

 

Finally, we obtain 𝐾 = 3 by solving equation (A1.2). 

 

 

A1.2. Solution of the Source Spectrum   

 

   The source spectrum was the Fourier transform of equation (2.5) 

Ω(𝒙, 𝑡) ⁡= ⁡𝜇 ∫ ∫ 𝐷1̇[𝑡 −⁡𝑇𝑣 −⁡𝑇𝑟]
𝑝𝐿

−(1−𝑝)𝐿

𝑞𝑊

−(1−𝑞)𝑊

𝑑𝜉1𝑑𝜉2 (2.5) 

where 𝐷1̇[𝑡 −⁡𝑇𝑣 −⁡𝑇𝑟] is the slip velocity with time delays 𝑇𝑣 and 𝑇𝑟. Before taking the Fourier 

transform, equation (2.5) was deformed as ⁡ 

Ω(𝒙, 𝑡) = 𝜇∫ ∫ 𝐷1̇ [𝑡 −
𝜉1 sin 𝜃 + 𝜉2 cos 𝜃

𝑉𝑟
⁡−
𝑟ℎ − (𝜉1 sin Θ cosΦ + 𝜉2 sinΘ sinΦ)

𝑉𝑐
⁡]

𝑝𝐿

0

𝑞𝑊

0

𝑑𝜉1𝑑𝜉2 

+⁡𝜇 ∫ ∫ 𝐷1̇ [𝑡 −
−𝜉1 sin 𝜃 + 𝜉2 cos 𝜃

𝑉𝑟
⁡−
𝑟ℎ − (𝜉1 sinΘ cosΦ + 𝜉2 sin Θ sinΦ)

𝑉𝑐
⁡]

0

−(1−𝑝)𝐿

𝑞𝑊

0

𝑑𝜉1𝑑𝜉2 

+⁡𝜇 ∫ ∫ 𝐷1̇ [𝑡 −
−𝜉1 sin 𝜃 − 𝜉2 cos 𝜃

𝑉𝑟
⁡−
𝑟ℎ − (𝜉1 sinΘ cosΦ + 𝜉2 sinΘ sinΦ)

𝑉𝑐
⁡]

0

−(1−𝑝)𝐿

0

−(1−𝑞)𝑊

𝑑𝜉1𝑑𝜉2 

 
Figure A1 Comparison of the slip functions of equations (2.2) and (2.4). Areas 1 and 2 are enclosed by the red 

line and blue curve.  

Area 1 Area 2

Slip
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+𝜇∫ ∫ 𝐷1̇ [𝑡 −
𝜉1 sin 𝜃 − 𝜉2 cos 𝜃

𝑉𝑟
⁡−
𝑟ℎ − (𝜉1 sin Θ cosΦ + 𝜉2 sinΘ sinΦ)

𝑉𝑐
⁡]

𝑝𝐿

0

0

−(1−𝑞)𝑊

𝑑𝜉1𝑑𝜉2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A1.3) 

For example, we can deform the first integral term as 

𝜇∫ ∫ 𝐷1̇ [𝑡 −
𝜉1 sin 𝜃 + 𝜉2 cos 𝜃

𝑉𝑟
⁡−
𝑟ℎ − (𝜉1 sinΘ cosΦ + 𝜉2 sin Θ sinΦ)

𝑉𝑐
⁡]

𝑝𝐿

0

𝑞𝑊

0

𝑑𝜉1𝑑𝜉2 

= 𝜇𝐷1̇ [𝑡 −⁡
𝑟ℎ
𝑉𝑐
⁡] ∗ ∫ 𝛿𝐷 [𝑡 −

𝜉1 sin 𝜃

𝑉𝑟
+
𝜉1 sinΘ cosΦ

𝑉𝑐
⁡]

𝑝𝐿

0

𝑑𝜉1 ∗ ∫ 𝛿𝐷 [𝑡 −
𝜉2 cos 𝜃

𝑉𝑟
+
𝜉2 sinΘ sinΦ

𝑉𝑐
⁡]

𝑞𝑊

0

𝑑𝜉1 

= ⁡𝜇𝐷1̇ [𝑡 −⁡
𝑟ℎ
𝑉𝑐
⁡] ∗

𝑝𝐿

𝜏𝐿1
(𝐻(𝑡) − 𝐻(𝑡 − 𝜏𝐿1)) ∗

𝑞𝑊

𝜏𝑊1
(𝐻(𝑡) − 𝐻(𝑡 − 𝜏𝑊1))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A1.4) 

where the symbol * is the convolution operator, 𝛿𝐷(𝑡)  is Dirac’s delta function, and 𝐻(𝑡)  is 

Heaviside step function. The apparent rupture times were defined in Chapter 2 as  

𝜏𝐿1 ⁡= ⁡𝑝𝐿 (
sin𝜃

𝑉𝑟
⁡− ⁡

sin𝛩cos𝛷

𝑉𝑐
) (2.9d) 

𝜏𝐿2 ⁡= ⁡ (1⁡ − ⁡𝑝)𝐿 (
sin𝜃

𝑉𝑟
⁡+ ⁡

sin𝛩cos𝛷

𝑉𝑐
) (2.9e) 

𝜏𝑊1⁡ = ⁡𝑞𝑊 (
cos𝜃

𝑉𝑟
⁡− ⁡

sin𝛩sin𝛷

𝑉𝑐
) (2.9f) 

𝜏𝑊2 ⁡= ⁡ (1⁡ − ⁡𝑞)𝑊 (
cos𝜃

𝑉𝑟
⁡+ ⁡

sin𝛩sin𝛷

𝑉𝑐
) (2.9g) 

After deforming the second to fourth integral terms similar to the first integral term, the Fourier 

transform of Ω(𝒙, 𝑡) was calculated as  

Ω(𝒙,𝜔) = 

𝑝𝑞𝑀0exp {𝑖𝜔 (
𝑟ℎ
𝑉𝑐
−
𝜏𝐿1
2
−
𝜏𝑊1
2
)}
sin (

𝜔𝜏𝐿1
2 )

𝜔𝜏𝐿1
2

sin (
𝜔𝜏𝑊1
2 )

𝜔𝜏𝑊1
2

𝐹𝜏(𝜔) 

+(1 − 𝑝)𝑞𝑀0exp {𝑖𝜔 (
𝑟ℎ
𝑉𝑐
−
𝜏𝐿2
2
−
𝜏𝑊1
2
)}
sin (

𝜔𝜏𝐿2
2 )

𝜔𝜏𝐿2
2

sin (
𝜔𝜏𝑊1
2 )

𝜔𝜏𝑊1
2

𝐹𝜏(𝜔) 

+(1 − 𝑝)(1 − 𝑞)𝑀0exp {𝑖𝜔 (
𝑟ℎ
𝑉𝑐
−
𝜏𝐿2
2
−
𝜏𝑊1
2
)}
sin (

𝜔𝜏𝐿2
2 )

𝜔𝜏𝐿2
2

sin (
𝜔𝜏𝑊1
2 )

𝜔𝜏𝑊1
2

𝐹𝜏(𝜔) 

+𝑝(1 − 𝑞)𝑀0exp {𝑖𝜔 (
𝑟ℎ
𝑉𝑐
−
𝜏𝐿2
2
−
𝜏𝑊1
2
)}
sin (

𝜔𝜏𝐿2
2 )

𝜔𝜏𝐿2
2

sin (
𝜔𝜏𝑊1
2 )

𝜔𝜏𝑊1
2

𝐹𝜏(𝜔)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(A1.5) 

where the symbol exp is the exponential function, 𝑖 = √−1, 𝑀0 is the seismic moment 𝑀0 = 𝜇𝐿𝑊𝐷, 

and 𝐹𝜏(𝜔) is the Fourier transform of the slip velocity 𝐷1̇(𝑡) of equation (2.1). 
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𝐹𝜏(𝜔) = (
1

𝐾
−
𝐾 − 1

𝐾
exp (−

𝑖𝜔𝜏𝑟
2
)
sin (

𝜔𝜏𝑟
2
)

𝜔𝜏𝑟
2

) (A1.6) 

By deforming equation (A1.5), we can obtain the mathematical representation of the source spectrum 

with equations (2.8) and (2.9). 

 

A1.3. Envelope Approximation of the Source Spectrum   

 

   The envelope of the source spectrum was derived heuristically rather than rigorously. This section 

provides the derivations of the envelopes 𝐹𝐸𝜏 and 𝐹𝐸𝐿. A basic approach is to find possible functions 

by referring to the original theoretical solution and test them by comparing the derived envelopes with 

the original theoretical spectra.      

   The amplitude spectrum of the slip velocity is  

|𝐹𝜏(𝜔)| = |
1

𝐾
−
𝐾 − 1

𝐾
exp (−

𝑖𝜔𝜏𝑟
2
)
sin (

𝜔𝜏𝑟
2 )

𝜔𝜏𝑟
2

| (A1.7) 

The low-frequency asymptote of |𝐹𝜏(𝜔)| is 1.0. This result can be obtained considering 𝜔 → 0 in 

equation (A1.7). The amplitude spectrum of equation (A3.1) can be deformed as   

|𝐹𝜏(𝜔)| =
1

𝐾
√1⁡ +⁡√(

𝐾⁡ − ⁡1
𝜔𝜏𝑟
2

)

2

⁡+ ⁡(
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2 )

2 )

2

⁡sin(𝜔𝜏𝑟 + 𝛼) +⁡
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2 )

2
(A1.8) 

𝛼 = tan−1 (
1 − 𝐾

4𝜔𝜏𝑟
) 

The term sin(𝜔𝜏𝑟 + 𝛼) suggests that the amplitude spectrum has local maximum values periodically. 

I obtained the envelope of |𝐹𝜏(𝜔)| at a high-frequency range by connecting the local maximum values 

indicated by sin(𝜔𝜏𝑟 + 𝛼) = 1. Thus, the envelope 𝐹𝐸𝜏 at a high-frequency range is   

𝐹𝐸𝜏 ⁡=
1

𝐾
√1⁡ +⁡√(

𝐾⁡ − ⁡1
𝜔𝜏𝑟
2

)

2

⁡+ ⁡(
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2 )

2 )

2

⁡+⁡
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2 )

2
(A1.9) 
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The envelope of equation (A1.9) is inappropriate at a low-frequency range. At a low-frequency range, 

the envelope of |𝐹𝜏(𝜔)| can be approximated well by 𝐹𝐸𝜏 = 1.0. The intersection frequency between 

equation (A1.9) and 𝐹𝐸𝜏 = 1.0 can be derived as  

𝜔 = ⁡
2𝐾

𝜏𝑟(𝐾⁡ + ⁡1)
(𝐴1.10) 

Finally, the envelope of |𝐹𝜏(𝜔)| is proposed as equation (2.11) (also, see Figure 2.2). 

 

𝐹𝐸𝜏 ⁡= ⁡

{
 
 
 

 
 
 1, ⁡⁡𝜔⁡ < ⁡

2𝐾

𝜏𝑟(𝐾⁡ + ⁡1)

1

𝐾
√1⁡ +⁡√(

𝐾⁡ − ⁡1
𝜔𝜏𝑟
2

)

2

⁡+⁡(
(𝐾⁡ − ⁡1)2

2(
𝜔𝜏𝑟
2
)
2 )

2

⁡+ ⁡
(𝐾⁡ − ⁡1)2

2 (
𝜔𝜏𝑟
2
)
2 , ⁡⁡

2𝐾

𝜏𝑟(𝐾⁡ + ⁡1)
⁡≤ ⁡𝜔

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.11)

 

The amplitude spectrum of 𝐹𝐿 is 

|𝐹𝐿| ⁡= |⁡𝑝exp (−⁡𝑖𝜔
𝜏𝐿1
2
)
sin (

𝜔𝜏𝐿1
2 )

𝜔𝜏𝐿1
2

⁡+⁡(1⁡ − ⁡𝑝)exp (−⁡𝑖𝜔
𝜏𝐿2
2
)
sin (

𝜔𝜏𝐿2
2 )

𝜔𝜏𝐿2
2

| (𝐴1.11) 

The envelope of |𝐹𝐿| is more complicated than 𝐹𝐸𝜏, see equation (2.12). The envelope of |𝐹𝐿| could 

be obtained similarly to 𝐹𝐸𝜏  partly. However, the envelope of |𝐹𝐿|  was difficult to obtain if the 

apparent rupture time, 𝜏𝐿1 or 𝜏𝐿2, is less than zero. The derivations of equations (2.12a) and (2.12b), 

which are the case that 𝜏𝐿1  and 𝜏𝐿2  are more than zero, were relatively simple. This appendix 

provides the derivation of equation (2.12a), which is the case of 1⁡ ≤ ⁡ 𝜏𝐿1/𝜏𝐿2, since the derivations of 

equations (2.12a) and (2.12b) are similar. At a low-frequency range, the following approximation holds. 

sin(𝜔𝜏𝐿1/2)

𝜔𝜏𝐿1/2
= 1.0 (𝐴1.12) 

Equations (A1.11) and (A1.12) suggest that the low-frequency asymptote of |𝐹𝐿| is 1.0. On the other 

hand, the following approximation holds at a high-frequency range. 

sin(𝜔𝜏𝐿1/2)

𝜔𝜏𝐿1/2
=

1

𝜔𝜏𝐿1/2
(𝐴1.13) 

The high-frequency asymptote may be obtained from equations (A1.11) and (A1.13) as    

𝐹𝐸𝐿 =
𝑝

𝜔𝜏𝐿1/2
⁡+⁡

1⁡ − ⁡𝑝

𝜔𝜏𝐿2/2
(A1.14) 
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The mathematical representation of the envelope of |𝐹𝐿| at an intermediate frequency range is also 

necessary (see Figure 2.3). The derivation of the envelope of |𝐹𝐿| at an intermediate frequency range 

was based on a somewhat heuristic way. Considering the condition of 𝜏𝐿2 ⁡≤ ⁡ 𝜏𝐿1, I assumed that the 

following equations hold approximately at an intermediate frequency range.   

sin(𝜔𝜏𝐿1/2)

𝜔𝜏𝐿1/2
=

1

𝜔𝜏𝐿1/2
(𝐴1.15) 

sin(𝜔𝜏𝐿2/2)

𝜔𝜏𝐿2/2
= 1.0 (𝐴1.16) 

By assuming exp(−⁡𝑖𝜔𝜏𝐿1/2) = 1.0  and exp(−⁡𝑖𝜔𝜏𝐿2/2) = 1.0  and by using equations (A1.15) 

and (A1.16), we can obtain the envelope of |𝐹𝐿| at an intermediate frequency range as   

𝐹𝐸𝐿 = 1⁡ − ⁡𝑝⁡ +⁡
𝑝

𝜔𝜏𝐿1/2
(A1.17) 

After determining the intersection frequencies, the envelope of |𝐹𝐿| was obtained as 

(𝑖)⁡1⁡ ≤ ⁡ 𝜏𝐿1/𝜏𝐿2 

𝐹𝐸𝐿 ⁡= ⁡

{
 
 
 
 

 
 
 
 1.0, 𝜔⁡ < ⁡

2

𝜏𝐿1

1⁡ − ⁡𝑝⁡ +⁡
𝑝

𝜔𝜏𝐿1/2
,

2

𝜏𝐿1
⁡≤ ⁡𝜔⁡ < ⁡

2

𝜏𝐿2

⁡
𝑝

𝜔𝜏𝐿1/2
⁡+⁡

1⁡ − ⁡𝑝

𝜔𝜏𝐿2/2
,

2

𝜏𝐿2
⁡≤ ⁡𝜔

(2.12a) 

Since equation (2.12a) was derived somewhat heuristically, I confirmed the validity of equation (2.12a) 

by comparing the original theoretical solution of equation (A1.11) to the envelope of equation (2.12a). 

Equation (2.12b) was derived similarly to equation (2.12a). Equations (2.12c) to (2.12g) were derived 

by testing some possible functions prepared by referring to the original theoretical solution of equation 

(A1.11). I compared several functions with the original theoretical solution and obtained the preferred 

representations.   
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A2. SPECTRAL RATIO FITTING RESULTS 

 

   This appendix provides representative results of the spectral ratio fitting to show the effectiveness 

of the envelope spectrum. Figure caption is as follows. 

 

Figure caption  

(a) The stations (blue triangles) and the best-fit rupture model (top-left and top-right). The green arrow 

next to the red dot indicates the strike direction. The green arrow on the top of the best-fit model also 

shows the strike direction. The x1 axis is rotated depending on the rupture orientation angle. If the 

rupture orientation angle is 45 degrees, the x1 axis is rotated 45 degrees from the strike direction in the 

best-fit model. The rupture start point (yellow star) for the best-fit model corresponds to the hypocenter. 

The red dot on the map is the epicenter of a target earthquake. Figure 4.1 may help understand the 

rupture orientation angle. The date of earthquake occurrence, the moment magnitude, and the variance 

reduction are shown at the top of the map.  

 

(b) The box plot of the estimated source parameters. The horizontal red line indicates the median, and 

the bottom and top edges indicate the 25th and 75th percentiles, respectively (the blue lines). The black 

lines indicate the maximum and minimum values. The symbol “+” indicates an outlier.  

 

(c) The spectral ratio fitting results for the average spectral ratios. This spectral ratio analysis is 

conducted to estimate the radiated energy and corner-frequency-based stress drop. The left panel shows 

the spectral ratio fitting result. The red curve is the average observed spectral ratio, and the dashed blue 

curve is the prediction from the omega-square model. The gray curves are the observed spectral ratios 

obtained for each station. The right panel shows the comparison between the observed average spectrum 

(red), the average envelope spectrum (green), and the normalized omega-square model |Ω(𝑓)|/𝑀0. 

The red and blue curves in the right panel are obtained from the average spectral ratio (red and blue 

dashed curves) in the right panel. The green curve is obtained from the spectral ratio fitting shown in 

(d). 
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(d) The result of the fitting to the spectral ratios obtained by station and wave type. The panels show 

the comparison of the envelope spectra, Ω𝐸𝑁(𝒙, 𝑓) , (gray) and synthesized source spectra, 

𝑆𝑅𝑜𝑏𝑠
𝑐 (𝒙, 𝑓) × Ω𝜔2(𝒙, 𝑓), (red) for the representative event (bottom). The synthesized source spectra 

correspond to the observation. The titles of each subplot designate the names of stations and wave type. 

The polar coordinates are shown in each panel.  
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Rake  90

Strike 

L     258 m

W   515 m

Cvs 0.90

Best-fit model



154 

 

 

(d)



155 

 

 

 

x1

x2

(a)

(b)

(c)

Strike 205

Dip     36

Rake  105

L    325 m

W   163 m

Cvs 0.60

Best-fit model

Strike 



156 

 

 

(d)



157 

 

 

x1

x2

(a)

(b)

(c)

Strike 27

Dip     42

Rake  96

L    767 m

W   256 m

Cvs 0.90

Best-fit model

Strike 



158 

 

 

(d)



159 

 

 

x1

x2

(a)

(b)

(c)

Strike 353

Dip     62

Rake  79

L     290 m

W   869 m

Cvs 0.60

Best-fit model

Strike 



160 

 

 

(d)



161 

 

 

x1

x2

(a)

(b)

(c)

Strike 186

Dip     51

Rake  83

L     430 m

W   1289 m

Cvs 0.60

Best-fit model

Strike 



162 

 

 

(d)



163 

 

 

(a)

(b)

(c)

Strike 249

Dip     48

Rake  166

L     1551 m

W   517 m

Cvs 0.85

Best-fit model

Strike 



164 

 

 

(d)



165 

 

 

(a)

(b)

(c)

Strike 163

Dip     41

Rake  -46

Strike 

L     193 m

W   96.4 m

Cvs 0.60

Best-fit model



166 

 

 

(d)



167 

 

 

x1

x2

(a)

(b)

(c)

Strike 240

Dip     68

Rake  -84

Strike 

Best-fit model

L     691 m

W   230 m

Cvs 0.90



168 

 

 

(d)



169 

 

 

(a)

(b)

(c)

Strike 352

Dip     26

Rake  -116

Strike 

Best-fit model

L     104 m

W   313 m

Cvs 0.60

x1

x2



170 

 

 

(d)



171 

 

 

(c)

(a)

(b)

Strike 58

Dip     28

Rake  -96

Strike 

Best-fit model

L     833 m

W   278 m

Cvs 0.90

x1

x2



172 

 

 

(d)



173 

 

 

(c)

(a)

(b)

Strike 339

Dip     38

Rake  -85

Strike 

Best-fit model

L     135 m

W   406 m

Cvs 0.60

x1

x2



174 

 

 

(d)



175 

 

 

(c)

(a)

(b)

Strike 179

Dip     67

Rake  -84

Strike 

Best-fit model

L     153 m

W   458 m

Cvs 0.65

x1

x2



176 

 

 

(d)



177 

 

 

 

(c)

(a)

(b)

Strike 150

Dip     63

Rake  -102

Strike 

Best-fit model

L     958 m

W   319 m

Cvs 0.90

x1

x2



178 

 

 

(d)



179 

 

 

Strike 

Best-fit model

L     1159 m

W   386 m

Cvs 0.90

(c)

(a)

(b)

Strike 157

Dip     47

Rake  -86



180 

 

 

(d)



181 

 

 

Strike 

Best-fit model

L      1754 m

W    585   m

Cvs 0.70

(c)

(a)

(b)

Strike 307

Dip     47

Rake  -122



182 

 

 

(d)



183 

 

 

Best-fit model

L      3495 m

W    1165  m

Cvs 0.85

(c)

(a)

(b)

Strike 155

Dip     53

Rake  -93

Strike 



184 

 

 

(d)



185 

 

 

Best-fit model

L      1549 m

W    4648  m

Cvs 0.80

(c)

(a)

(b)

Strike 180

Dip     57

Rake  -89

Strike 

x1

x2



186 

 

 

(d)



187 

 

 

Best-fit model

L      4381 m

W    1460  m

Cvs 0.60

(c)

(a)

(b)

Strike 167

Dip     51

Rake  -2

Strike 



188 

 

 

(d)



189 

 

 

Best-fit model

L      2281 m

W    6841  m

Cvs 0.80

(c)

(a)

(b)

Strike 160

Dip     62

Rake  -82

Strike 

x1

x2



190 

 

 

(d)



191 

 

 

(d)



192 

 

 

(a)

(b)

(c)

Strike 99

Dip     38

Rake  -160

Strike 

L     177 m

W   532 m

Cvs 0.90

Best-fit model

x1

x2



193 

 

 

(d)



194 

 

 

(a)

(b)

(c)

Strike 265

Dip     63

Rake  -95

L     303 m

W   151 m

Cvs 0.90

Best-fit model

Strike 



195 

 

 

(d)



196 

 

 

(a)

(b)

(c)

Strike 301

Dip     71

Rake  11

L     631 m

W   210 m

Cvs 0.90

Best-fit model

Strike 



197 

 

 

(d)



198 

 

 

(a)

(b)

(c)

Strike 340

Dip     78

Rake  -14

L     409 m

W   136 m

Cvs 0.70

Best-fit model

Strike 



199 

 

 

(d)



200 

 

 

 

(a)

(b)

(c)

Strike 221

Dip     70

Rake  -164

L     658 m

W   219 m

Cvs 0.75

Best-fit model

Strike 

x1

x2



201 

 

 

(d)



202 

 

 

(a)

(b)

(c)

Strike 80

Dip     59

Rake  -115

L    1130 m

W  377 m

Cvs 0.90

Best-fit model

Strike 

x1

x2



203 

 

 

(d)



204 

 

 

(a)

(b)

(c)

Strike 241

Dip     54

Rake  -161

L    495 m

W   1484 m

Cvs 0.90

Best-fit model

Strike 



205 

 

 

(d)



206 

 

 

(a)

(b)

(c)

Strike 213

Dip     74

Rake  171

L    436 m

W   871 m

Cvs 0.60

Best-fit model

Strike 



207 

 

 

(d)



208 

 

 

(a)

(b)

(c)

Strike 221

Dip     60

Rake  -169

L    863 m

W   2588 m

Cvs 0.80

Best-fit model

Strike 



209 

 

 

(d)



210 

 

 

(a)

(b)

(c)

Strike 224

Dip     87

Rake  176

L    1116 m

W   3349 m

Cvs 0.80

Best-fit model

Strike 



211 

 

 

 

 

(d)


