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Chapter 1

Introduction and background

1.1 Overview of structural optimization

Structural design naturally involves optimization at its core. From the perspective of structural engi-

neers, the design objective is to find a structure that minimizes the structural cost under constraints

on structural performance. The structural cost includes costs of materials and other costs for design,

construction, operation, maintenance, and demolition, while the performance is related to the struc-

tural soundness at each stage of the structure’s life cycle. Sometimes the structural performance is

optimized within a limited budget from investors or owners. This research focuses on optimizing the

structural cost and performance which is a main concern of structural engineers in the preliminary

design phase of steel structures. The reader may consult the monograph by Ohsaki [1] for various

technical aspects of design optimization of trusses, building frames, and long-span structures.

The design optimization process facilitating the search for a cost-effective structure without

compromising structural performance might be challenging in view of the traditional design process.

Although the two processes share the incremental refinement of design to improve the structural

performance, as shown in Fig. 1.1, they differ in important features. The optimization design process

starts by specifying an objective function for the design, which is cast in the role of the designer,

and then systematically updates the design using logical optimization concepts and procedures. In

contrast, the traditional design process bypasses the identification of the objective function before

updating the design through designer’s experience. This not only leads the optimization design

process to be more formal than the traditional design process but also can reduce the chance of

human error in design [2].

A basic structural design optimization problem is stated as follows:

minimize
s

f(s)

subject to gi(s, r0) ≤ 0 (i = 1, . . . , I),

s ∈ [sl, su],

(1.1)

where s and r0 are the vectors of design variables and nominal design parameters, respectively;

f(s) is the objective function that represents the structural cost; gi(s, r0) are inequality constraint

functions of mechanical properties of the structure; and sl and su are the pre-specified lower and
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  Figure 1.1: Comparison of (a) traditional design process and (b) optimization design process [2].

upper bounds of s, respectively. Although equality constraints are involved in some problems, they

are omitted for brevity because we can accommodate each equality constraint by decomposing it

into two inequality constraints. Thus, an optimization problem for a steel frame structure may read:

minimize the total mass f(s) of the frame subject to design constraints on the stresses g1(s, r0) in the

structural components, long-term displacements g2(s, r0) of beams, and inter-story drifts g3(s, r0),

where s consists of the steel sections of beams and columns, and r0 represents the design loads and

mechanical properties of steel materials such as Young’s modulus, Poisson’s ratio, and yield stress

values.

Multi-objective optimization problems are of interest if several objective functions are optimized

simultaneously. This arises in structural design because the optimization of a structure is often a

trade-off between the structural cost and structural performance, and it is difficult for designers to

prioritize these objectives. For example, a bi-objective optimization problem is formulated when

the designers try to minimize both the total mass and vertical displacement at the tip of a steel

cantilever beam. The strength-ductility trade-off in structural steels is another classical example. In

essence, multi-objective optimization deals with a vector of different objective functions for finding

a set of design vectors called Pareto-optimal solutions. Such solutions represent the compromise

between the conflicting objective functions, and the best solution for the designers is called the most

preferred solution or the best compromise solution. The reader may consult the monograph by

Ohsaki [1] for a detailed discussion of solutions to structural multi-objective optimization problems.

Discrete optimization problems arise when the design variables take on discrete values. We often

encounter this class of problems in structural design, for example, when selecting the sections for the

members of a steel structure from a pre-assigned list or catalog of available steel sections, such as

the AISC steel shapes database of American wide-flange beams [3]. Different categories of solution

techniques for discrete optimization problems are discussed in the monograph by Arora [2].

Structural optimization approaches fall into optimality criteria methods and search methods,

each class consists of a broad variety of different optimization algorithms. The class of optimal-
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ity criteria methods finds solutions based on optimality criteria that must be satisfied when the

objective function is at its minimum under the constraints. The class of search methods numeri-

cally finds solutions from an initial design using different approaches for exploration of the design

variable space to minimize the objective function in the feasible region. By further transforming a

constrained problem into an unconstrained problem through the use of penalty functions, the opti-

mality criteria methods also permit the implementation of search methods that have been developed

for unconstrained optimization problems.

Selecting a proper algorithm depends on the problem of interest and is subject to the no free

lunch theorem [4]. Accordingly, if an algorithm works better than another algorithm on a class of

problems, it may work worse on another class of problems [5]. The following briefly outlines common

search methods and their applicability to solving structural optimization problems.

� Gradient-based methods rely on the first- or second-order local models constructed from

the gradient and/or Hessian of the objective function to incrementally improve a solution until

some termination criterion is satisfied. The class of gradient-based methods involves many

different optimization algorithms developed based on how the descent direction and the step

size are determined using the local model. The methods are suitable for continuous optimiza-

tion problems where the gradient and/or Hessian of the objective and constraint functions are

easy to evaluate. Common descent direction algorithms include gradient descent [6], quasi-

Newton [7], and adaptive moment estimation [8] methods for unconstrained problems, and

sequential quadratic programming [9] and interior-point methods [10] for constrained prob-

lems.

� Stochastic search methods rely on random numbers generated during the optimization

process by a pseudo-random number generator to help explore the space of design variables.

Such an exploration is desirable because randomness can increase the chance of finding a

global solution. It is also capable of exploring the design space effectively by assigning a

large weight, based on information about past solutions, to regions that are more likely to

contain good solutions [5]. However, a large amount of randomness may be ineffective because

it can prevent the use of information about the past solutions from guiding the search [5].

The stochastic search methods can also improve the performance of gradient-based method

as well as locate approximate global minima for both continuous and discrete mathematical

programming problems if a large amount of time can be expended [2]. Stochastic gradient

descent [11], simulated annealing (SA) [12], and cross-entropy [13] algorithms are common

stochastic search methods.

� Population-based methods rely on a population of candidate solutions to explore the space

of design variables. These candidate solutions are further diversified after each iteration by a

stochastic process. By using the exploration ability of a large number of candidate solutions,

the methods are capable of reducing the chance of premature termination or being trapped in

a local minimum. Because their search mechanism is only governed by the objective function

values, the methods are suitable for both continuous and discrete optimization problems where

calculations of the objective and constraint functions do not arise a major computational cost.

Genetic algorithm (GA) [14] and particle swarm optimization (PSO) algorithm [15] belong to

the family of population-based methods.
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Table 1.1: Probabilistic characteristic of geometric properties of wide-flange beam sections [20–22].

Parameter Nominal value Statistical property

Mean/Nominal COV Distribution

Overall depth d 1.00 0.03 Normal
Flange width bf 1.00 0.02 Normal
Web thickness tw 1.00 0.05 Normal
Flange thickness tf 1.00 0.05 Normal

Table 1.2: Probabilistic characteristics of material and load random parameters [20–22].

Parameter Nominal value Statistical property

Mean/Nominal COV Distribution

Young’s modulus E 1.00 0.04 Normal
Yield stress σy,0 1.10 0.06 Normal
Tensile strength σu 1.07 0.08 Normal
Dead load DL 1.05 0.10 Normal
Live load L 1.00 0.10 Extreme-value type I
Wind load WL 0.92 0.37 Extreme-value type I

1.2 Uncertainty in structural engineering

Uncertainty in the field of structural engineering is characterized as either aleatory or epistemic [16,

17] according to how the uncertainty information is described. The former, which is the focus of

this study, refers to inherently random variations in material properties and external loads. The

information about aleatory uncertainty is encapsulated in a probability density function (PDF), or

equivalently, in a cumulative distribution function (CDF). The latter described by uncertainty sets

(e.g., interval, ellipsoidal, or polyhedral sets) takes into account incomplete knowledge of designers

about simplified models used for structural analysis and design as well as unpredictable factors

emerging during the design, construction, and operation processes. A comprehensive treatment for

epistemic uncertainty can be found in the monographs by Ben-Tal et al. [18] and by Elishakoff and

Ohsaki [19].

The PDFs or CDFs of random resistance and load parameters of a steel structure arise from

the data measured from either onsite or laboratory experiments, which are often corrupted by

observational noise. More specifically, the measured data of each parameter is mathematically

modeled by a best-fit parametric PDF (or CDF) whose underlying parameters are inferred using

a statistics tool [20]. By doing so, we are able to identify the probabilistic characteristics of the

geometric properties of wide-flange beam sections as well as the randomness of material and load

parameters, which are, for example, summarized in Tables 1.1 and 1.2, respectively, where COV is

the coefficient of variation. The main properties of common PDFs defer until Chapter 2.

One of the most important tasks of characterizing the PDFs of random parameters in analysis

and design of steel structures is the inference of material parameters for structural steels under

the effect of noise-corrupted experimental results. This task, however, still limits itself to well-

known parameters and is often independent of finite element (FE) models empowered to analyze the

structures, even though the uncertainty quantification of structural responses is mostly done through

these models. In fact, it is easy to calibrate some material parameters such as Young’s modulus,
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yield stress, and tensile strength from the experimental results of monotonic tension tests. Yet it is

difficult to directly infer some hardening parameters for an FE model that simulates the behavior

of structural steels subjected to cyclic loading conditions. This poses a difficulty in quantifying

uncertainty in the cyclic response of a steel structure. This difficulty is more emphasized by the

substantial computational cost of repeatedly carrying out many nonlinear FE analyses. In this

circumstance, the question is, therefore, how to systematically identify and quantify uncertainty in

all material parameters of the FE model that is intended for structural analysis and design processes

of a steel structure while reducing the number of costly FE simulations as much as possible. This

identification may also be desirable for the analysis and design of reinforced concrete or timber

structures, but these structures are beyond the scope of this study.

1.3 Why structural optimization considering uncertainty mat-

ters?

Although problem (1.1) has been successfully solved to reduce the structural cost and improve the

structural performance systematically, its solution, in the presence of uncertainty, may correspond

to the structural behavior that is far from the desired performance. This arises from the use of a

unique nominal vector r0 derived from partial factors to account for the randomness of mechanical

resistances of structural members and of external loads [23–25]. Since the partial factors have been

calibrated using some oversimplified PDFs of random parameters, they may involve uncertainty in

structural safety measure. Consequently, the use of r0 as a shield against uncertainty may lead to

a poor optimal solution that often lies on the boundary of the feasible region, and accordingly, is

sensitive to even a small fluctuation in the design parameters. The optimal solution obtained from

the deterministic approach also fails to address the cost issue of a specific structure because it only

manages the trade-off between safety and cost aspects in a general context for similar structures

used to derive the partial factors rather than a particular structure of interest [26].

The variance of safety measures may also lead to uncertainty in optimal solutions obtained from

deterministic optimization procedures. This arises because there exist different ways a safety margin

can be established from structural resistances and external loads [27]. In other words, the nominal

vector r0 in problem (1.1) may not be unique, leading to several “optimal” designs that defy our

expectation that only one optimal design should be found for a specified safety level.

1.4 How structural optimization incorporates uncertainty?

The issues listed in Section 1.3 motivate the quest for a unified approach that integrates probabilistic

safety measures and optimization algorithms for handling the structural safety and structural cost

simultaneously. Such a unified approach not only explicitly considers the effect of random parameters

but also should provide a useful way to reduce the resulting computational cost, as a by-product, of

uncertainty consideration. Although this unified approach is desirable for designs of any engineering

structures [27–29], this study only focuses on the design of steel structures.

The literature provides two main methods for the unified approach, namely robust design opti-

mization (RDO) [18, 19, 30–33] and reliability-based design optimization (RBDO) [34–38]. These
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methods differ in how unfavorable effects of uncertainty can be managed. RDO commonly evalu-

ates the sensitivity of uncertain structural responses and uses this information for finding a design

that is less sensitive at an acceptable cost, while RBDO seeks a minimum-cost design that, under

uncertainty, guarantees an allowable probability of occurring structural failures while ignoring the

expected cost due to these failures. Nevertheless, the two methods encounter the same difficulty in

finding a good compromise between processing optimization and propagating uncertainty. Before

developing a series of approaches to overcoming this difficulty in Chapters 5-8, we briefly describe

the optimization formulation of each method in the following.

Let r denote the vector of random parameters (i.e., mechanical properties of structural steels and

external loads) whose uncertainty information is described by the PDF or CDF of each parameter.

Let f1(s) and f(s, r), respectively, denote the structural cost, which is assumed to be independent

of r, and an objective function representing the structural performance, for example, the maximum

inter-story drift of a steel frame structure. Uncertainty in r leads to uncertainty in f(s, r), and

the mean and variance of f(s, r) can be evaluated and denoted as f2(s) = E
[
f(s, r)

]
and f3(s) =

V
[
f(s, r)

]
, respectively. Let gi(s, r) represent a limit-state function (LSF) of a design requirement

on the serviceability or strength of the structure so that gi(s, r) > 0 indicates a failure mode, and

hj(s) denote a deterministic constraint function such as a requirement on the geometry of structural

components. gi(s, r) is commonly defined as the difference of the load effect and the resistance of the

structure. Thus, gi(s, r) takes random values due to the randomness of s and r. Since the reduction

of structural cost often leads to an increase in the inter-story drift, we formulate the following RDO

problem as a multi-objective optimization problem for finding a minimum-cost design at which the

corresponding structural performance is less sensitive to uncertainty:

minimize
s

[f1(s), f2(s), f3(s)]

subject to E[gi(s, r)] ≤ 0 (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su].

(1.2)

Although problem (1.2) is a deterministic optimization problem, it is able to incorporate all realiza-

tions of gi(s, r) into E[gi(s, r)] when r varies on the space of random parameters rather than being

fixed at r0. The problem coincides with the less-variation concept [39] of RDO that simultaneously

minimizes the mean and variance of an objective function under set-based uncertainty.

The RBDO problem incorporating probabilistic safety measures into structural optimization

reads
minimize

s
f1(s)

subject to P[gi(s, r) ≤ 0] ≥ 1− ϵi (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su],

(1.3)

where P[·] denotes the probability of occurring [·] with respect to all realizations of r, and ϵi ∈ (0, 1)

is a prescribed risk level of the i-th probabilistic constraint, for example, ϵi = 0.1, 0.05, or 0.01.

Problem (1.3) is to minimize the structural cost f1(s) so that the probability the structure remains

intact (i.e., probability of safety) under the effect of r is greater than or equal to 1 − ϵi, which is
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intimately related to the so-called reliability index for the case of normal distribution of the LSF [27].

By further incorporating the individual and joint probabilistic constraints into problem (1.2),

other two RDO problems can be formulated as follows:

minimize
s

[f1(s), f2(s), f3(s)]

subject to P[gi(s, r) ≤ 0] ≥ 1− ϵi (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su].

(1.4)

minimize
s

[f1(s), f2(s), f3(s)]

subject to P[gi(s, r) ≤ 0, i = 1, . . . , I] ≥ 1− ϵ,

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su],

(1.5)

where ϵ ∈ (0, 1) is a prescribed risk level of the joint probabilistic constraint. Although problems (1.4)

and (1.5) can be classified as RDO or RBDO problems, they are termed as RDO problems in this

dissertation.

Problems (1.4) and (1.5) simultaneously minimize the structural cost and the sensitivity of struc-

tural performance while preventing the structure from two different ways it reaches an unsafe state.

Problem (1.4) consists of a finite number of statistically independent constraints of random LSFs so

that the structure is unsafe if one of the constraints is violated, while problem (1.5) is formulated

with statistically dependent constraints where the LSFs correlate with each other and the probabil-

ity is taken over the entire system of random LSFs. The two problems also set the basis for further

application to a general case where all possible failure modes for a structure can be anticipated.

1.5 Solution approaches to structural optimization consider-

ing uncertainty

1.5.1 RDO problem

The most important task in solving problem (1.2) is to propagate uncertainty in random parameters

r for estimations of the mean and variance of the performance function f(s, r) and the mean of the

LSF gi(s, r). A simple but powerful approach employs Monte-Carlo simulation (MCS) [40] detailed

in Appendix B through an FE model of the structure, thereby providing sample mean and sample

variance associated with a particular design point. Although this approach can lead to moder-

ately conservative designs, it may be computationally expensive especially when the RDO problem

has many design variables and random parameters. Uncertainty can also be propagated through a

surrogate-based approach that attempts to establish the cause-effect relationship between the ran-

dom parameters and the performance (or LSF) function. After constructing the surrogate model

for the performance function, the associated statistical moments can be estimated using either MCS

or Taylor series expansion [41] about the mean or the most-probable point of random parameters.

A shortcoming of this approach is that a high-fidelity surrogate model itself involves interpolation
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uncertainty [42] that becomes considerable as the number of random parameters increases. An-

other approach relies on the polynomial chaos expansion fitting the performance (or LSF) function

through a linear combination of polynomial basis functions [43]. The resulting approximate model

is used to derive the statistical moments of interest directly. However, the use of polynomial chaos

expansion is subject to the curse of dimensionality that increases the number of multivariate basis

functions as a polynomial order of the number of input variables (i.e., the design variables and

random parameters).

Studies in the field of structural engineering that focus on solving problem (1.2) have not aimed

at statistically understanding the cause-effect relationship between the random parameters and the

performance function for solving the problem directly. Instead, MCS has been a common choice

for uncertainty propagation. Lagaros and Papadrakakis [30] minimized the total mass and standard

deviation of the maximum inter-story drift of a steel structure against seismic motions. MCS was

embedded in the nondominated sorting genetic algorithm II (NSGA-II) for estimating the standard

deviation of the response required for solving the RDO problem. Liu et al. [32] simultaneously

minimized the total mass, mean value of seismic demand, and variation of seismic demand for a

steel moment resisting frame against seismic loading with a log-normal distribution. However, the

evaluation of mean and variation values of seismic demand was not explicitly given.

It is even more difficult to solve problems (1.4) and (1.5) because checking the feasibility of

any candidate solution satisfying the probabilistic constraints intensifies the difficulty in uncertainty

propagation for estimating the objective functions of feasible solutions. Current approaches to

handling the probabilistic constraints are briefly reviewed in the next section.

1.5.2 RBDO problem

Solving problem (1.3) is challenging because its feasible space defined by the probability constraint

functions is generally non-convex with respect to the design variables s. This difficulty is further

emphasized by the calculation of probabilistic constraint functions that is unfortunately an intrin-

sically NP-hard problem [44]. This motivates a rich variety of solution approaches to reformulation

of the RBDO problem to a computationally tractable problem, thereby resulting in a reliable solu-

tion. Depending on how the probability constraints are handled during the optimization process,

the literature classifies the RBDO methods into three main approaches, namely double-loop [45, 46],

single-loop [47–50], and decoupling approaches [51, 52].

The double-loop approach consists of an outer optimization loop exploring the space of s and an

inner loop handling the probabilistic constraints in the space of r. The inner loop estimates the failure

probabilities associated with all design candidates s from the outer loop for confirmation of their fea-

sibility using a classical reliability technique, such as the first-order reliability method (FORM) [53]

or MCS. The double-loop approach unfortunately is endowed with the poor performance of FORM

on highly nonlinear LSFs or the curse of dimensionality of MCS.

The single-loop approach alleviates the shortcoming of the double-loop approach by converting

all probabilistic constraints into the corresponding approximate deterministic constraints evaluated

at a quantile of the random LSF. The quantile is derived according to the threshold failure proba-

bilities and a sensitivity analysis of the LSF gi(s, r). Although this technique is deemed to be more

advantageous than the double-loop approach, it may suffer from the strong effect of selecting the

starting point for the sensitivity analysis on accuracy of the obtained quantile.
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The decoupling approach converts the RBDO problem into a sequence of deterministic opti-

mization problems to avoid the computational cost of the double-loop approach through an inverse

probability calculation of a representative of the random parameters. This approach is familiar to

practicing engineers as its basis is analogous to the limit state design philosophy stated in a form of

problem (1.1) [23].

Recently, the state-of-the-art regression models such as polynomial response surface [54], ar-

tificial neural network [55], radial basis function [56], support vector machine [57], and Gaussian

process (GP) [58] have been developed as surrogates for the probabilistic constraint functions of

the RBDO problem, which are further capable of reducing the inherent high computational cost of

structural simulations. This research direction emerges from the fact that FE methods empowered

to carry out structural analyses are less advantageous to processing optimization as well as prob-

abilistic computations. Once the surrogate models have been developed, the probabilities of the

probabilistic constraints can be obtained using any reliability methods of the double-loop, single-

loop, or decoupling approach. For recent reviews on surrogate-based structural reliability analysis

and RBDO methods, we refer the reader to Saraygord Afshari et al. [59] and Moustapha and Su-

dret [60], respectively.

As seen from the above comments, the decoupling approach is advantageous to reduction of

the computational cost, and it can be improved if the inverse probability calculation becomes more

reliable. The surrogate-based method is promising and likely the most suitable method for solving

RBDO problems of large-scale structures. The method, however, limits itself to relatively small

training sets that is why most of the previous studies have used adaptive surrogate models starting

from a small number of training samples. If the training set becomes larger for well covering the input

variable space, the construction of accurate surrogate models over a large range of high-dimensional

input variables becomes a challenge.

In the field of mathematical optimization, stochastic programming also finds itself challenging

in views of solving a general form of problem (1.3). Existing approaches, including deterministic

model [61], scenario [62], sample average approximation [63], and convex approximation [64], are

only capable of finding approximate solutions to several special forms of problem (1.3). For exam-

ple, the deterministic model approach is well suited for solving problems with linear objective and

constraint functions, and normal random parameters. The scenario approach requires that the ob-

jective and probabilistic constraint functions should be convex with respect to the design variables

s. The sample average approximation approach works well when the objective function is linear

and explicitly given, while the convex approximation approach relies on the assumption that the

LSFs gi(s, r) are convex with respect to s for every instance of r. In addition to the scope of their

applications, the performance of the aforementioned approaches in solving multi-objective problems

(e.g., problems (1.4) and (1.5)) remains unknown as they have been developed for single-objective

problems only.

1.6 Objectives and contributions

This study aims at developing a variety of useful probabilistic approaches to handling challenging

optimization problems of steel structures considering aleatory uncertainty in design parameters

such as mechanical properties of structural steels and external loads. The detail of each approach
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is presented, followed by the verification of its performance against benchmark problems and its

application to solving optimization problems of interest. In particular, we address the following

optimization problems:

(1) Single- and multi-objective identification problems of cyclic elastoplastic parameters for struc-

tural steels from noise-free and noise-corrupted experimental results. These problems are exten-

sions of problem (1.1).

(2) Discrete multi-objective RDO problem of steel frames, i.e., problem (1.2).

(3) Discrete multi-objective RDO problem of steel frames with individual and joint probability

constraints, i.e., problems (1.4) and (1.5).

(4) Discrete and continuous single-objective RBDO problems of steel trusses and steel frames, i.e.,

problem (1.3).

(5) Discrete multi-objective RBDO problem of seismic-resistant steel frames, which is an extension

of problem (1.3).

The main contributions of this study to the structural engineering and optimization communities

are twofold:

(1) Effective probabilistic approaches to deterministically and probabilistically identifying material

parameters for a costly FE model that simulates the cyclic elastoplastic behavior of structural

steels. These approaches, in general, can be extended to identification of parameters for any

costly FE models. In addition, a multi-objective identification method is proposed for reducing

the chance of finding biased material parameters from different sets of experimental results.

(2) Useful optimization algorithms and procedures based upon probabilistic approaches that help

reduce enormous computational costs arising from difficult tasks in optimizing steel structures

in the presence of uncertainty, namely uncertainty propagation, handling individual and joint

probabilistic constraints, dealing with discrete design variables, and handling multiple objective

functions. As mentioned above, there is no preference of using one algorithm over another to

solve different optimization problems unless assumptions are made for the probability distribu-

tion of objective functions, each algorithm proposed in this study is necessary for the problem

of interest.

1.7 Dissertation outline

The remaining chapters of this dissertation and the conceptual dependencies between them are

outlined in Fig. 1.2.

Chapter 2 presents a brief review of probability and probabilistic approaches. It covers common

continuous PDFs and basic rules of probability as well as the foundations of GP modeling, Bayesian

optimization (BO), Gaussian mixture model (GMM), and saddlepoint approximation (SAA) that

are main ingredients for the probabilistic approaches presented in later chapters.

Chapters 3 and 4, respectively, deal with deterministic and probabilistic identification problems

of material parameters for a costly FE model that is used to simulate the cyclic elastoplastic behavior

of structural steels. In essence, the identification results obtained from Chapter 4 can provide
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Figure 1.2: Dependencies for the remaining chapters of this study. Dashed arrows indicate weak
dependencies.

useful uncertainty information about randomness of material parameters used as input to formulate

design optimization problems considering uncertainty, for example, those in Chapters 5−8. Related
probabilistic approaches to these chapters consist of GP modeling, single- and multi-objective BO

approaches, Bayes’s rule, approximate Bayesian computation (ABC), and Markov chain Monte-Carlo

simulation (MCMC).

Chapters 5 and 6 show how to handle the discrete multi-objective RDO problems with determin-

istic and probabilistic constraints, respectively. Related probabilistic approaches to these chapters

include GMM, Taylor series expansion for uncertainty propagation, GP modeling, multi-objective

BO approach, and SAA.

Chapters 7 and 8 introduce solution approaches to solving single- and multi-objective RBDO

problems, respectively. The single-objective RBDO problem in Chapter 7 is formulated for both steel

trusses and steel frames, while the multi-objective RBDO problem in Chapter 8 is formulated for

moment-resisting steel frames subjected to earthquake excitation. The approaches in these chapters

are developed based on GP modeling, GMM, SAA, inverse SAA, and/or MCS.

Chapter 9 summarizes this study and provides possible directions for future research.

1.8 Published works included in the dissertation

This dissertation is the collection of several published papers by the author and co-authors. The

detailed information of these papers and how they are organized in this dissertation are summarized

as follows:

� Chapter 3

Bach Do and Makoto Ohsaki. “Bayesian optimization for inverse identification of cyclic

constitutive law of structural steels from cyclic structural tests”. Structures 38 (2022), pp.

1079–1097.

Bach Do and Makoto Ohsaki. “Proximal exploration multi-objective Bayesian optimization

for inverse identification of cyclic constitutive law of structural steels”. Structural and Multi-

disciplinary Optimization 65(7) (2022), p. 199.
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Chapter 2

Probability and probabilistic

approaches: A brief review

In this chapter, we briefly reviews some basic concepts of probability and probabilistic approaches

that are needed in the later chapters. We also briefly introduce the accompanying relationship

between each concept and the proposed approaches in the later chapters, although we shall fully

cite the related concepts when describing the proposed approaches. For the detail of these concepts,

the reader may consult textbooks by Bertsekas and Tsitsiklis [65], Rasmussen and Williams [58],

Barber [66], Murphy [67], and Butler [68].

2.1 Basic concepts of continuous random parameters

2.1.1 CDF, PDF, and quantile

Consider a continuous random parameter r. The probability that r is less than or equal to any

real value r̄, denoted by P[r ≤ r̄], is called the CDF of r. Since the probability preserves the order

when r̄ increases, P[r ≤ r̄] is a monotonically increasing function. Assume that the CDF of r is

differentiable, the PDF of r, denoted as π(r), is defined by

π(r)dr = P[r̄ ≤ r ≤ r̄ + dr]. (2.1)

Here π(r) ≥ 0 and
∫∞
−∞ π(r) dr = 1 because P[r ≤ r̄] is monotonically increasing and P[r ≤ ∞] = 1.

If π(r) is known, the CDF of r is the area under the PDF from −∞ to r̄ illustrated in Fig. 2.1,

which is mathematically defined as

P[r ≤ r̄] =
∫ r̄

−∞
π(r) dr. (2.2)

Let 0 < γ < 1. The quantile function associated with γ obtained by the PDF π(r) reads

Qπ(γ) = inf{r̄|P[r ≤ r̄] = γ}. (2.3)

The m-th k-tile (1 ≤ m < k) is defined as a value of Qπ(γ) corresponding to γ = m/k. If k = 2,
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Figure 2.1: Illustration of P[r ≤ r̄].

4, 8, or 100 the quantile quantity is called median, quartile, octile, or percentile, respectively. We

will return to the quantile of a dataset in Section 4.4.2 for finding the parameters underlying a

distribution generating the dataset. We will also solve RBDO problems through the quantile of a

random LSF estimated through an inverse SAA approach in Section 7.3.

2.1.2 Moment, mean, variance, and moment and cumulant generating

functions

Let n denote a non-negative integer. The n-th (raw) moment of r is defined as

µr,n =

∫ ∞

−∞
rnπ(r) dr. (2.4)

The mean (i.e., expected value) of r, denoted as µr or E[r], is the first moment, such that

µr = µr,1 =

∫ ∞

−∞
rπ(r) dr. (2.5)

The variance of r, denoted as σ2
r or V[r], measuring “the degree of spread” of its PDF is defined by

σ2
r =

∫ ∞

−∞
(r − µr)

2π(r) dr. (2.6)

The covariance of two random parameters r1 and r1, denoted as cov(r1, r2), reads

cov(r1, r2) = E [(r1 − E[r1]) (r2 − E[r2])] . (2.7)

Let h > 0 denote a real-valued number and ξ denote a variable satisfying |ξ| < h. The moment

generating function of r, denoted as M(ξ), combines the information of its moments in a single

expression. Accordingly, M(ξ) reads

M(ξ) = E[exp(ξr)] =
∫ ∞

−∞
exp(ξr)π(r) dr = E[1 + ξr + · · ·+ ξnrn

n!
+ · · · ] =

∞∑
n=0

µr,nξ
n

n!
. (2.8)

Thus, the n-th moment µr,n is the n-th derivative of M(ξ) evaluated at ξ = 0.
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The cumulant generating function of r, denoted as K(ξ), is defined by

K(ξ) = log[M(ξ)] =

∞∑
n=0

κr,nξ
n

n!
, (2.9)

where κr,n = K(n)(0) are cumulants with κr,0 = 0, which is associated with the zero-th moment

µr,0 = 1. According to Eqs. (2.8) and (2.9), the first three cumulants can be expressed in terms of

the first three moments, such that

κr,1 = µr,1, (2.10a)

κr,2 = µr,2 − µ2
r,1, (2.10b)

κr,3 = µr,3 − 3µr,2µr,1 + µ3
r,1. (2.10c)

A new truncated function of K(ξ) is proposed in Chapter 7 to facilitate the development of an novel

SAA.

2.1.3 Joint probability, conditional probability, and Bayes’ rule

Joint probability of two events r1 and r2 is the probability that the two events occur at the same

time, which is described by the joint PDF π(r1, r2). Conditional probability is the probability that

event r1 occurs given that event r2 occurs. When π(r2) > 0, the conditional PDF, denoted as

π(r1; r2), is evaluated by

π(r1; r2) =
π(r1, r2)

π(r2)
, (2.11)

which is the foundation of the GMM approach presented in Section 2.5 and Chapter 5.

Because π(r1, r2) = π(r2, r1), the conditional probability in Eq. (2.11) underlies Bayes’ rule,

which reads

π(r1; r2) =
π(r2; r1)π(r1)

π(r2)
. (2.12)

This forms the basis of Bayesian inference where π(r1), π(r2; r1), π(r2), and π(r1; r2) are termed

as prior, likelihood, evidence, and posterior, respectively. By adopting Bayes’ rule, the Bayesian

inference translates the probabilistic relationship from π(r2; r1) to π(r1; r2). This underlies the

probabilistic identification approach in Chapter 4.

2.1.4 Correlation and independence

Two random parameters r1 and r2 are correlated if their (Pearson) correlation coefficient ρ(r1, r2)

is not equal to zero, such that

ρ(r1, r2) =
cov(r1, r2)

σr1σr2
=
µr1r2 − µr1µr2

σr1σr2
̸= 0, (2.13)

where cov(r1, r2) is the covariance between r1 and r2 defined in Eq. (2.7); µr1r2 is the mean of r1r2;

and σr1 and σr2 are the standard deviation values of r1 and r2, respectively. The generation of a

finite number of samples of correlated random parameters is detailed in Section 8.4.1.

Let r denote a d2-dimensional vector of random parameters. Its covariance and correlation
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𝜇𝑟=0, 𝜎𝑟=1 

𝜇𝑟=1, 𝜎𝑟=2 

Figure 2.2: Examples of Gaussian PDFs and CDFs.

matrices, respectively, denoted as Σr and Cr, are defined as follows:

Σr =


σ2
r1 · · · cov(r1, rd2)
...

. . .
...

cov(rd2
, r1) · · · σ2

rd2

 , Cr =


ρ(r1, r1) · · · ρ(r1, rd2

)
...

. . .
...

ρ(rd2
, r1) · · · ρ(rd2

, rd2
)

 . (2.14)

Two random parameters r1 and r2 are independent if understanding the uncertainty information

of r1 gives no uncertainty information of r2, and vice versa. This is mathematically expressed by

π(r1, r2) = π(r1)π(r2). (2.15)

If r1 and r2 are independent, they are also uncorrelated because µr1r2 = µr1µr2 , which can be

derived from the definition of mean in Eq. (2.5) and the independence condition in Eq. (2.15).

2.2 Common continuous distributions

The probability distributions listed in this section help the reader to understand the probabilistic

properties of random parameters given in the subsequent chapters.

2.2.1 Gaussian (normal) distribution

Random parameter r is distributed according to a Gaussian if its PDF has the form of

π(r;µr, σ
2
r) = N

(
r;µr, σ

2
r

)
=

1

σr
√
2π

exp

[
− (r − µr)

2

2σ2
r

]
, (2.16)

where N denotes a Gaussian PDF, and mean µr and variance σ2
r completely characterize the dis-

tribution. Figure 2.2 provides examples of PDFs and CDFs for two different univariate Gaussians.

In a general case, the PDF of a d2-variate Gaussian is defined as

π(r;µr,Σr) = N (r;µr,Σr) =
1

det(Σr)1/2(2π)d/2
exp

[
−1

2
(r− µr)

TΣ−1
r (r− µr)

]
, (2.17)

where Σr is given in Eq. (2.14), and det(Σr) denotes the determinant of Σr, and (·)T denotes the
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Figure 2.3: Examples of bi-variate Gaussians.

transpose of matrix (·). Figure 2.3 illustrates the PDFs of bi-variate Gaussians for two different sets

of µr and Σr.

Now suppose N (r;µr,Σr) is defined jointly over two random parameter vectors r1 and r2 whose

dimensions are not necessarily identical, such that

µr =

[
µr1

µr2

]
, Σr =

[
Σr1r1 Σr1r2

Σr2r1 Σr2r2

]
. (2.18)

Here Σr1r2 denotes the cross-covariance matrix between random vectors r1 and r2 with Σr1r2 =

ΣT
r2r1 . The marginal PDF π(r1) and the conditional PDF π(r1; r2) can be evaluated by

π(r1) = N (r1;µr1 ,Σr1r1) , (2.19a)

π(r1; r2) = N
(
r1;µr1 +Σr1r2Σ

−1
r2r2(r2 − µr2),Σr1r1 −Σr1r2Σ

−1
r2r2Σr2r1

)
. (2.19b)

2.2.2 Continuous uniform distribution

The continuous random parameter r uniformly distributed over the interval [a, b] has the following

PDF:

π(r; a, b) = U(r; a, b) =

(b− a)−1 if a ≤ r ≤ b,

0 otherwise,
(2.20)

where U denotes a uniform PDF, and a and b are two parameters characterizing the distribution.

Figure 2.4 shows the PDFs and CDFs for two different continuous uniform distributions.
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a=5, b=10 

a=8, b=12 

Figure 2.4: Examples of continuous uniform PDFs and CDFs.

 

  

𝜇 = log 5, 𝜎 = 1 

𝜇 = log 10, 𝜎 = 1 

Figure 2.5: Examples of lognormal PDFs and CDFs.

2.2.3 Lognormal distribution

The PDF for the lognormal distribution reads

π(r;µ, σ) =
1

rσ
√
2π

exp

[
− (log r − µ)2

2σ2

]
for r > 0, (2.21)

where µ and σ are the mean-of-logarithmic and standard-deviation-of-logarithmic values characteriz-

ing the distribution. Figure 2.5 shows the PDFs and CDFs for two different lognormal distributions.

The mean µr and variance σ2
r of r can be evaluated through µ and σ as

µr = exp(µ+ σ2/2), σ2
r = exp(2µ+ σ2)

[
exp(σ2)− 1

]
. (2.22)

2.2.4 Beta distribution

The beta distribution is supported on the interval [0, 1] and its PDF is given as follows:

π(r; a, b) =
1

B(a, b)
ra−1(1− r)b−1, (2.23)

18
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Figure 2.6: Examples of beta PDFs and CDFs.

  

𝜇 = 0, 𝜎 = 1 

𝜇 = 1, 𝜎 = 2 

Figure 2.7: Examples of extreme-value type I PDFs and CDFs.

where B(·, ·) denotes the beta function, and a and b are the shape parameters of the PDF. Figure 2.6

provides examples of the PDFs and CDFs for two different beta distributions.

2.2.5 Extreme-value type I distribution

The PDF for the extreme-value type I distribution with location parameter µ and scale parameter

σ is

π(r;µ, σ) = σ−1 exp

(
r − µ
σ

)
exp

[
− exp

(
r − µ
σ

)]
. (2.24)

Examples of the PDFs and CDFs for two different extreme-value type I distributions are given in

Fig. 2.7.

2.2.6 Weibull distribution

The PDF for the Weibull distribution reads

π(r; a, b) =W (r; a, b) =
b

a

(x
a

)b−1

exp

[(
−x
a

)b]
, (2.25)

where a > 0 and b > 0 are the scale and shape parameters of the distribution, respectively. Figure 2.8

provides examples of the PDFs and CDFs for two different Weibull distributions.
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a=4, b=2 

a=3, b=6 

Figure 2.8: Examples of Weibull PDFs and CDFs.

2.3 Gaussian process (GP) modeling

The GP model described in this section is a key ingredient of the BO approaches presented in

Section 2.4, Chapters 3, 4, and 6. It also serves as surrogates for the LSFs in Chapters 7 and 8.

The GP modeling aims to construct a probabilistic surrogate model called GP that is capable

of quantifying both the prediction of a function and uncertainty in that prediction using a prob-

ability distribution over functions [58]. Constructing such a model requires an initial set of input

variables and the corresponding output values called training dataset. Given a training dataset

D = {xi, f i}Ni=1, where xi ∈ Rd are d-dimensional vectors of the input variables and fi ∈ R are

the corresponding (noise-corrupted) output values. Here x = [sT , rT ]T if the design variables s is

distinguished from the random parameters r or x = s if r does not exist. The goal is to establish a

relationship between x and f using the mapping f = ŷ(x) + ωf : Rd → R, where ŷ(x) is a Gaussian

conditioned on D and ωf ∼ N
(
0, ω2

)
is additive Gaussian noise.

The GP modeling imposes a prior belief that any finite subset of an infinite set of the output

values has a joint Gaussian PDF [58]. Thus, the output values {f1, . . . , fN} are distributed according

to the following Gaussian:
f1

...

fN

 ∼ N


m(x1)

...

m(xN )

 ,

k(x1,x1) · · · k(x1,xN )

...
. . .

...

k(xN ,x1) · · · k(xN ,xN )

+ ω2I

 , (2.26)

where I is the identity matrix, and m(x) = E[ŷ(x)] and k(x,x′) represent the mean and covariance

kernel functions, respectively. The mean function may be set as m(x) = 0 because the covariance

kernel function is flexible enough to handle the role of m(x) [58]. The covariance kernel function is

defined for any pair of the input variable vectors x and x′ to measure the similarity between two

corresponding values ŷ(x) and ŷ(x′), such that

k(x,x′) = E
[(
ŷ(x)−m(x)

)(
ŷ(x′)−m(x′)

)]
. (2.27)

This study extensively uses the squared exponential kernel as

k(x,x′) = exp

(
− (x− x′)T (x− x′)

2θ2l

)
, (2.28)
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Figure 2.9: Examples of functions sampled from (a) the GP prior and (b) the GP posterior con-
structed from six training points.

where hyperparameter θl denotes the characteristic length-scale parameter determined by maximiz-

ing the marginal likelihood of D [58, 67]. ω can be either specified by the user or determined, as a

hyperparameter, by maximizing the marginal likelihood of D.
Once θl has been determined, the information in Eq. (2.26) is utilized for predicting an output

value f∗ at a new input variable vector x∗, i.e., f∗|f = f̂(x∗), where f = [f1, . . . , fN ]T . Because of

the GP assumption, the joint PDF of f∗ and f is an (N + 1)-variate Gaussian, such that[
f∗

f

]
∼ N

([
m(x∗)

m(X)

]
,

[
k(x∗,x∗) K(x∗,X)

K(x∗,X)T K(X,X)

])
, (2.29)

where X = [x1, . . . ,xN ]T , m(X) = [m(x1), . . . ,m(xN )]T , and

K(x∗,X) =
[
k(x∗,x1), . . . , k(x

∗,xN )
]
, (2.30a)

K(X,X) =


k(x1,x1) · · · k(x1,xN )

...
. . .

...

k(xN ,x1) · · · k(xN ,xN )

+ ω2I. (2.30b)

The conditional Gaussian f∗|f = f̂(x∗) = N
(
µf̂ (x

∗), σ2
f̂
(x∗)

)
can be derived from Eq. (2.29)

using the conditioning rule in Eq. (2.19b). As a result, µf̂ (x
∗) and σ2

f̂
(x∗) read

µf̂ (x
∗) = m(x∗) +K(x∗,X)K(X,X)−1 (f−m(X)) , (2.31a)

σ2
f̂
(x∗) = k(x∗,x∗)−K(x∗,X)K(X,X)−1K(x∗,X)T . (2.31b)

It is worth noting that ŷ(x∗) = f̂(x∗) if ω = 0, leading to ŷ(x∗) = N
(
µŷ(x

∗), σ2
ŷ(x

∗)
)
, which is

called the noise-free GP prediction model.

Figure 2.9 describes the underlying foundation of GP modeling as a Bayesian regression method

for prediction of a uni-variate function f(x). GP first defines a prior PDF of functions and then

converts this prior into a posterior PDF of functions once some data points have been observed.
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Figure 2.9(a) shows 10 functions sampled from the GP prior in Eq. (2.26) with ω2 = 10−15 and the

squared exponential kernel with θl = 1, while Fig. 2.9(b) shows 10 functions sampled from the GP

posterior N
(
µf̂ (x

∗), σ2
f̂
(x∗)

)
constructed from six training points, the GP posterior mean function

in Eq. (2.31a), and 95% confidence interval derived from the GP posterior mean and variance in

Eqs. (2.31a) and (2.31b).

2.4 Bayesian optimization (BO)

In this section, we consider the following bound constrained optimization problem:

minimize
x

f(x)

subject to x ∈ X = [xl,xu],
(2.32)

where X is the feasible region of design variables and the objective function f(x) = y(x)+N
(
0, ω2

)
that is either noise-free if ω = 0 (i.e., f(x) = y(x)) or noise-corrupted if ω > 0. y(x) is called

the objective-value generator, for example, the output of an FE model of a steel specimen or a

steel frame. The BO approaches in this section facilitate the solutions to single-objective inverse

identification problems in Chapter 3 and probabilistic identification problems in Chapter 4. They

also underlie the multi-objective BO approaches proposed in Chapters 3 and 6 based on a so-called

hypervolume measure for solving multi-objective inverse identification problems and multi-objective

RDO problems, respectively.

2.4.1 Noise-free objective function

The standard BO is a sequential global optimization method well suited for solving problem (2.32)

with an expensive-to-evaluate objective function f(x) [69–71]. It starts by constructing from a

(noise-free) training dataset D = {xi, f i}Ni=1 and the GP model f̂(x) = N
(
µf̂ (x), σ

2
f̂
(x)
)

that

approximates f(x). By utilizing the information of this GP model, BO formulates an acquisition

function α(x) that assists the algorithm in selection of a new, good design point in the next iteration

without calling f(x), thereby considerably reducing the number of costly evaluations needed to find

a good solution. BO terminates the optimization process and outputs a best-found solution if the

number of its iterations reaches a pre-specified upper limit smax.

Suppose BO has completed the s-th iteration at which a solution has been found from D. By

maximizing α(x), BO selects a new design point xs+1 for use in the next iteration, i.e., the (s+1)-th

iteration, such that

xs+1 =argmax
x∈X

α(x). (2.33)

Once xs+1 has been found, f(xs+1) is evaluated. Subsequently, xs+1 and f(xs+1) are added to the

current training dataset for updating the solution as well as the GP model.

Figure 2.10 illustrates the process of two consecutive iterations of BO. In Fig. 2.10(a), the GP

model of a uni-variate objective function f(x) is constructed in the first iteration (i.e., s = 1) from

four training points. The associated acquisition function α(x) is then formulated and maximized.

In Fig. 2.10(b), the maximizer of α(x) found in the first iteration is used to update the GP model

in the second iteration (i.e., s = 2) and the updated GP model formulates a new α(x).
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Figure 2.10: Illustration of BO for minimizing an objective function f of a 1-dimensional continuous
variable x.

BO formulates α(x) in Eq. (2.33) based on two main criteria: (1) improving the current best-

found solution (i.e., exploitation) and (2) reducing the uncertainty in GP predictions (i.e., explo-

ration). The literature has provided many acquisition functions developed based on these criteria

[69–71] and three of them are described below.

Let fmin denote the current best value of f associated with the best-found solution, and Φ(·) and
ϕ(·) denote the CDF and PDF of the standard Gaussian, respectively. The first acquisition function

is the probability of improvement (PI), which is defined as [72]

(PI) α(x) = P
[
f(x) ≤ fmin; f̂(x)

]
= Φ

(
fmin − µf̂ (x)

σf̂ (x)

)
. (2.34)

Maximizing PI leads to maximization of the chance that xs+1 is better than the best solution found

so far, which corresponds to fmin.

The second acquisition function is the expected improvement (EI), which is given by [69]

(EI) α(x) = E
[
max (0, fmin − f(x)) ; f̂(x)

]
=
(
fmin − µf̂ (x)

)
Φ

(
fmin − µf̂ (x)

σf̂ (x)

)
+ σf̂ (x)ϕ

(
fmin − µf̂ (x)

σf̂ (x)

)
.

(2.35)

New parameter vector xs+1 obtained by maximizing EI is likely to maximize the expected improve-

ment over the best-found solution fmin. Here EI perfectly balances exploitation (i.e., the first term)

and exploration (i.e., the second term).

The third acquisition function used for minimizing f(x) is the negative lower confidence bound
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(LCB), which is defined by [73]

(LCB) α(x) = −
[
µf̂ (x)− βσf̂ (x)

]
, (2.36)

where β is a tuning parameter defined by the user to control the trade-off between exploitation and

exploration. β = 2 is a common choice. By maximizing LCB, we find xs+1 so that it improves the

solution to the lower bound of f(x) as much as possible.

Algorithm 2.1 summarizes the optimization process that implements BO for minimizing noise-free

objective functions.

Algorithm 2.1 BO for minimizing noise-free objective functions

1: Specify X , ω = 0, smax, N , y(x) expensive-to-evaluate function;
2: Generate N samples of design variable vector xi using Latin hypercube sampling [74];
3: D ← ∅;
4: for i = 1 : N do
5: f i ← y(xi); ▷ Costly step
6: D ← D ∪ {xi, f i};
7: end for
8: fmin ← min{f i, i = 1, . . . , N};
9: for s = 2 : smax do

10: Construct f̂(x) based on D; see Section 2.3;
11: Formulate α(x) (e.g., PI, EI, or LCB);
12: Find xs+1 by maximizing α(x);
13: f(xs+1)← y(xs+1); ▷ Costly step
14: D ← D ∪ {xs+1, f(xs+1)};
15: fmin ← min{f i, i = 1, . . . , N + s};
16: end for
17: return fmin and the corresponding vector of design variables.

2.4.2 Noise-corrupted objective function

Minimizing f(x) in the presence of noise, i.e., ω > 0, is more difficult as the value of f(x) is noise-

corrupted. From the BO perspective, this difficulty arises from the fact that fmin is not known if

ω > 0. Various BO variants [75] have been developed based on the EI acquisition function to address

this issue. The main idea is to replace fmin by an evaluable, efficient representative cmin so that BO

is still capable of using Eq. (2.35) for guiding the optimization process, which is called the “plug-in”

method [75]. Accordingly, the “plug-in” EI reads [76]

EIp(x) =
(
cmin − µf̂ (x)

)
Φ

(
cmin − µf̂ (x)

σf̂ (x)

)
+ σf̂ (x)ϕ

(
cmin − µf̂ (x)

σf̂ (x)

)
. (2.37)

The value cmin can be assigned as the GP mean evaluated at a so-called effective best solution

x∗, hence cmin = µf̂ (x
∗), where x∗ is selected from D so that it minimizes µf̂ (x) + σf̂ (x) [76]. By

doing so, cmin is expected to be less sensitive to noise.

To further enhance exploration, a heuristic multiplier is added to EIp(x), resulting in the fol-
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lowing acquisition function [76]:

α(x) = EIp(x)

1− ω√
σ2
f̂
(x) + ω2

 . (2.38)

This acquisition function strengthens exploration by penalizing points with small variance σ2
f̂
(x) of

GP prediction.

To this end, Algorithm 2.2 summarizes the procedure of using BO for minimizing noise-corrupted

objective functions.

Algorithm 2.2 BO for minimizing noise-corrupted objective functions

1: Specify X , ω > 0, smax, N , y(x) expensive-to-evaluate function;
2: Generate N samples of design variable vector xi using Latin hypercube sampling [74];
3: D ← ∅;
4: for i = 1 : N do
5: f i ← y(xi) +N

(
0, ω2

)
; ▷ Costly step

6: D ← D ∪ {xi, f i};
7: end for
8: cmin ← min{µf̂ (x

i) + σf̂ (x
i), i = 1, . . . , N};

9: for s = 2 : smax do
10: Construct f̂(x) based on D; see Section 2.3;
11: Formulate α(x) as given in Eq. (2.38);
12: Find xs+1 by maximizing α(x);
13: f(xs+1)← y(xs+1) +N

(
0, ω2

)
; ▷ Costly step

14: D ← D ∪ {xs+1, f(xs+1)};
15: cmin ← min{µf̂ (x

i) + σf̂ (x
i), i = 1, . . . , N + s};

16: end for
17: return cmin and the corresponding vector design variables.

2.5 Gaussian mixture model (GMM)

GMM is a probabilistic model that utilizes a weighted sum of Gaussians to approximate the joint

PDF of random input parameters and the corresponding output variable [77–79]. Many powerful

abilities of the GMM have been demonstrated in the field of statistical learning [78]. For example,

it can transform non-Gaussian random input parameters to a weighted sum of Gaussians, thereby

enabling an analytical solution for a moment generating function, which has been used to characterize

probabilistic properties, and employed in further reliability analyses of structural systems [80]. In

Chapter 5, the GMM also finds its success in finding a simple regression function that facilitates the

calculations of the mean, variance, and higher-order central moments of an output variable with a

modest computational cost for evaluating gradient and Hessian of the output variable. The GMM

is characterized by a set of unknown parameters, namely the mixing proportion vector, the number

of Gaussians, the mean vectors, and the covariance matrices.

This section describes the mathematical foundation of GMM and how its parameters can be

determined via an expectation maximization (EM) algorithm, followed by its application to capturing

the probabilistic properties of data points generated from a bi-variate model. The GMM and its

parameters underlie the approach presented Chapter 5 to solving the multi-objective RDO problem
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Figure 2.11: Example of a univariate GMM constructed from two Gaussian components.

of steel frames.

2.5.1 Outline of GMM

We again consider the training dataset D = {xi, f i}Ni=1. Assume that the training dataset emerges

from a joint PDF π(x, f). Our goal is to find a transformation from the space of the random input

parameters to that of the random output variable through a conditional PDF π(f ;x), which is

directly derived from π(x, f) and the marginal PDF π(x) as follows:

π(f ;x) =
π(x, f)

π(x)
. (2.39)

As its name indicates, GMM describes π(x, f) by a weighted sum of ng Gaussian components,

such that

π(x, f) =

ng∑
k=1

wkN (y;µk,Σk) , (2.40)

where

y =
[
xT , f

]T
, (2.41a)

ng∑
k=1

wk =1, 0 ≤ wk ≤ 1, (2.41b)

µk =

[
µx,k

µf,k

]
, Σk =

[
Σxx,k Σxf,k

Σfx,k σ2
f,k

]
. (2.41c)

Figure 2.11 shows a univariate GMM constructed from two Gaussian components, namely Gaussian

1 and Gaussian 2.

The GMM parameters consist of the mixing proportion wk, mean vector µk, and covariance ma-

trix Σk of the k-th Gaussian component. From Eq. (2.41c), we can further decompose N (y;µk,Σk)

as

N (y;µk,Σk) = N
(
f(x);µk(x), σ

2
k(x)

)
N (x;µx,k,Σxx,k) , (2.42)
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which is derived from the conditioning rule in Eqs. (2.19a) and (2.19b), where

µk(x) = µf,k +Σfx,kΣ
−1
xx,k (x− µx,k) , (2.43a)

σ2
k(x) = σ2

f,k −Σfx,kΣ
−1
xx,kΣxf,k. (2.43b)

Substituting Eq. (2.42) into Eq. (2.40) gives

π(x, f) =

ng∑
k=1

wkN
(
f(x);µk(x), σ

2
k(x)

)
N (x;µx,k,Σxx,k) . (2.44)

Thus, the marginal PDF π(x) and conditional PDF π(f ;x) can be derived from the joint PDF

π(x, f) as

π(x) =

ng∑
k=1

wkN (x;µx,k,Σxx,k) , (2.45a)

π(f ;x) =

ng∑
k=1

Wk(x)N
(
f(x);µk(x), σ

2
k(x)

)
, (2.45b)

where

Wk(x) =
wkN (x;µx,k,Σxx,k)

ng∑
k=1

wkN (x;µx,k,Σxx,k)

. (2.46)

2.5.2 Determination of GMM parameters

The unknown parameters of GMM, including wk, µk, and Σk, are determined by the EM algorithm

that is an iterative solver for maximizing the log-likelihood function of a training dataset [78, 79].

Assume that the data points of the training dataset are independent, the log-likelihood function of

GMM measuring how well the GMM model fits the data points is defined as follows:

L =

N∑
i=1

log

[
ng∑
k=1

wkN
(
yi;µk,Σk

)]
. (2.47)

It is difficult to maximize L because “log” is outside of the inner summation. To overcome this diffi-

culty, the EM algorithm introduces a latent variable z = [z1, . . . , zi, . . . , zN ] with zi ∈ {1, , . . . , k, . . . , ng}
so that if zi = k, the i-th data point emerges from the k-th Gaussian component. Therefore, the

joint PDF of the complete set of N data points {xi, f i, zi}Ni=1 can be simplified as [78]

π(x, f, z) =

N∏
i=1

ng∏
k=1

[
wkN

(
yi;µk,Σk

)]zik

, (2.48)

where

zik =

1 if zi = k,

0 if zi ̸= k,
(2.49)

27



which is the probability that the data point yi belongs to the k-th Gaussian component. As a result,

the log-likelihood of the complete data reads

Lc =

N∑
i=1

ng∑
k=1

zik log
[
wkN

(
yi;µk,Σk

)]
. (2.50)

The EM algorithm then maximizes Lc through E- and M-steps as follows [78]:

E-step: Substitute ẑik for zik in Eq. (2.49) that is unknown in advance, where

ẑik =
wkN

(
yi;µk,Σk

)
ng∑
k=1

wkN
(
yi;µk,Σk

) , (2.51)

which is the expectation of zik in Eq. (2.49).

M-step: Maximize Lc =

N∑
i=1

ng∑
k=1

ẑik log
[
wkN

(
yi;µk,Σk

)]
subject to the constraints in Eq. (2.41b)

for updating the mixing proportion, resulting in

wk =
1

N

N∑
i=1

ẑik. (2.52)

The parameters µk and Σk are also updated as follows:

µk =

N∑
i=1

ẑikyi

/
N∑
i=1

ẑik, (2.53a)

Σk =

N∑
i=1

ẑik(yi − µk)(y
i − µk)

T

/
N∑
i=1

ẑik. (2.53b)

Algorithm 2.3 EM algorithm

1: Specify 1 ≤ ng ≤ nc; initial values w
(0)
k , µ

(0)
k , Σ

(0)
k ; tol ← 1; ϵ← 10−6 a small tolerance value;

s← 0 step number; L(0)
c ← −∞;

2: while tol > ϵ do
3: s← s+ 1;

4: Compute ẑik(s) with w
(s−1)
k , µ

(s−1)
k , and Σ

(s−1)
k ; see Eq. (2.51);

5: Compute w
(s)
k with ẑik(s); see Eq. (2.52);

6: Compute µ
(s)
k with ẑik(s); see Eq. (2.53a);

7: Compute Σ
(s)
k with ẑik(s) and µ

(s)
k ; see Eq. (2.53b);

8: Compute L(s)
c ; see Eq. (2.50);

9: tol←
∣∣∣L(s)

c − L(s−1)
c

∣∣∣/ ∣∣∣L(s)
c

∣∣∣;
10: end while
11: return wk, µk, Σk.

The EM algorithm is summarized in Algorithm 2.3. For a specified value of ng, the initial

mixing proportions w
(0)
k are uniform, the initial mean vectors µ

(0)
k are ng vectors that are randomly

selected from the training set, and the initial variance matrices Σ
(0)
k for ng Gaussian components
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Figure 2.12: BIC versus ng for selection of the best GMM.

are diagonal, where the i-th diagonal element is the variance of the i-th input variable. To further

avoid the ill-conditioning of estimated covariance matrices of the GMM during the implementation

of EM algorithm, a small positive regularizer of 0.001 is added to the diagonal components of Σ
(s)
k .

The EM algorithm is assured to terminate after a finite number of iterations since it never reduces

the log-likelihood [78].

To determine a proper number of Gaussian components, we increase ng step by step from 1 to

nc, thereby resulting in a total of nc GMMs for the model selection. nc = 50 is a common choice to

limit the complexity of the GMM [81]. The Bayesian information criterion (BIC) is adopted for the

model selection since its effectiveness in determining the number of components for GMMs has been

verified [82]. Accordingly, the best GMM from among nc GMM candidates minimizes BIC that is

equivalent to selecting the GMM with the largest posterior probability in the Bayesian inference

framework [78].

2.5.3 Test problem: A bi-variate model

Consider the following conditional bi-variate PDF [83]:

π(f ;x) = N (f ;x1 + x2, 0.15 + 0.05x1x2) , (2.54)

where x1 ∼ U(−0.3, 0.3) and x2 ∼ U(−0.3, 0.3).
To verify the performance of GMM, its conditional PDF in Eq. (2.45b) is found to reproduce

the PDF in Eq. (2.54). To do so, we generate a total of 4000 samples, in which 2000 samples

are randomly selected for constructing GMM and the remaining 2000 samples for testing. Nine

pairs of [x1, x2], namely [−0.2, 0.2], [0.0, 0.2], [0.2, 0.2], [−0.2, 0.0], [0.0, 0.0], [0.2, 0.0], [−0.2,−0.2],
[0.0,−0.2], and [0.2,−0.2], are used for obtaining the corresponding nine true conditional PDFs.

By incorporating f values of the test data and each pair of [x1, x2] into Eq. (2.45b), the GMM

conditional PDF for each pair is obtained and plotted versus the associated true PDF. It is found

that the joint PDF π(x, f) in Eq. (2.44) obtained from the trained GMM is a mixture of seven

Gaussian components, i.e., ng = 7, which is associated with the minimum BIC shown in Fig. 2.12.

The mixing proportion, mean vector, and covariance matrix of each component at ng = 7 are listed
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Figure 2.13: Comparison of true and estimated conditional PDFs for the bi-variate model at nine
tested input vectors with ng = 1.

in Table 2.1. Figures 2.13 and 2.14 show comparisons between the estimated and true conditional

PDFs at each pair of [x1, x2] for ng = 1 and ng = 7, respectively. We see that ng = 7 shows better

estimations of the given conditional PDF at each pair of [x1, x2] than ng = 1, indicating a reasonable

selection of the optimal number of Gaussian components from minimum BIC.

2.6 Saddlepoint approximation (SAA)

Let K(ξ), K(1)(ξ), and K(2)(ξ) denote the cumulant-generating function of a random parameter r,

and its first and second derivatives, respectively. The SAA models the PDF of r at a particular

value r̄ by [68]

π(r̄) ≈ exp[K(ξs)− ξsr̄]√
2πK(2)(ξs)

, (2.55)

which is derived based on the Laplace transform to approximate the integral of M(ξ) in Eq. (2.8)

and the Fourier inversion for the approximated integral, where ξs is called the saddlepoint that is

the unique root of the following saddlepoint equation [68]:

K(1)(ξ) = r̄. (2.56)
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Figure 2.14: Comparison of true and estimated conditional PDFs for the bi-variate model at nine
tested input vectors with ng = 7.

Moreover, P[r ≤ r̄] can be approximated by [68]

P[r ≤ r̄] ≈

Φ(q) + ϕ(q)
(
q−1 − v−1

)
if µr ̸= r̄,

0.5 + κr,3

(
6
√
2πκ

3/2
r,2

)−1

if µr = r̄,
(2.57)

where κr,2 and κr,3 are the second and third cumulants of r, respectively; and q and v are given as

q = sign(ξs)
√

2[ξsr̄ −K(ξs)], (2.58a)

v = ξs

√
K(2)(ξs), (2.58b)

where sign(ξs)= 1, −1, or 0 corresponding to ξs > 0, ξs < 0, or ξs = 0, respectively. Thus, an

appropriate cumulant-generating function K(ξ) leads to quick estimations of PDF and CDF of r at

any r̄ through the saddlepoint.

Note that since K(ξ) stated in Eq. (2.9) is a power series expansion of ξ, it should be truncated

by keeping a finite number of low order terms for estimating P[r ≤ r̄]. Gillespie and Renshaw [84]

used the first two or three terms of the power series expansion to approximate the PDF of a ran-

dom variable. Guo [85] proposed an efficient truncated K(ξ) of a random variable by keeping the
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Table 2.1: Mixing proportions, mean vectors, and covariance matrices of seven GMM components
for the bi-variate model.

k wk µk Σk

1 0.1902 [−0.2015,−0.0290,−0.2573]T
 0.0054 -0.0001 0.0035
-0.0001 0.0212 0.0177
0.0035 0.0177 0.0420


2 0.1353 [0.1421, 0.1909, 0.3632]T

0.0106 0.0001 0.0083
0.0001 0.0063 0.0040
0.0083 0.0040 0.0323


3 0.1669 [0.1980,−0.0349, 0.1864]T

 0.0058 -0.0008 0.0029
-0.0008 0.0190 0.0135
0.0029 0.0135 0.0339


4 0.0821 [−0.0014,−0.0130,−0.0167]T

 0.0159 -0.0033 0.0065
-0.0033 0.0153 0.0065
0.0065 0.0065 0.0269


5 0.1826 [−0.0005,−0.2028,−0.2396]T

 0.0226 -0.0001 0.0193
-0.0001 0.0053 0.0032
0.0193 0.0032 0.0418


6 0.1092 [−0.0020,−0.0144,−0.0196]T

 0.0159 -0.0034 0.0064
-0.0034 0.0153 0.0064
0.0064 0.0064 0.0266


7 0.1337 [−0.1074, 0.1921, 0.0993]T

 0.0133 -0.0013 0.0086
-0.0013 0.0063 0.0028
0.0086 0.0028 0.0286



first two terms of the series expansion and introducing an additional logarithmic term to describe

the remaining higher-order terms, while the space of the random variables is transformed into a

standardized space before performing SAA. However, the condition for the unique root of the sad-

dlepoint equation in Eq. (2.56) and the requirement for the existence of q and v in Eqs. (2.58a)

and (2.58b) were not addressed. A new truncated K(ξ) proposed in Chapter 7 is to address the

aforementioned issues.

2.7 Summary

This chapter has presented a brief review of probability and probabilistic approaches. It covers

common continuous PDFs and basic rules of probability as well as the foundations of GP modeling,

BO, GMM, and SAA that are key ingredients for the probabilistic approaches proposed in the

subsequent chapters.
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Chapter 3

Bayesian optimization approaches

to identification of nonlinear

hysteresis curve of structural steels

Accurately modeling the cyclic elastoplastic behavior of structural steel plays an important role in

establishing reliable analyses of steel structures subjected to earthquake excitation. This chapter is

dedicated to inverse problems that infer the cyclic elastoplastic parameters for structural steel based

on experimental datasets measured from cyclic tests of a specimen or a structural component. Two

inverse problems are formulated, namely single- and multi-objective identification problems. As will

be shown in this chapter, the parameters obtained from the single-objective problem are associated

with the so-called dataset-specific bias that may lead the parameters identified from a single loading

condition to inaccurate predictions of structural responses under other loading conditions, while the

parameters obtained from the multi-objective problem can mitigate this dataset-specific bias. Since

the traditional identification processes using conventional optimization algorithms still demand a

substantial computational cost of repeatedly carrying out many nonlinear analyses, this chapter

promotes the use of single-objective Bayesian optimization (SOBO) and multi-objective Bayesian

optimization (MOBO) approaches to solving the single- and multi-objective problems, respectively.

3.1 Identification problems

3.1.1 Single-objective identification problem

The bound constrained optimization problem in Eq. (2.32) is formulated as the single-objective

inverse problem to identify the vector of cyclic elastoplastic parameters x ∈ [xl,xu] from experimental

results. Accordingly, we minimize an error function f(x) that measures the discrepancy between

the structural responses simulated from an FE model of the experiment, characterized by x, and the

corresponding responses measured experimentally. Recall that f(x) = y(x) +N
(
0, ω2

)
, where f(x)

is either noise-free if ω = 0 (i.e., f(x) = y(x)) or noise-corrupted if ω > 0. Thus, y(x) represents the

noise-free error function.

Assume that there exist a total of I experimental datasets measured from I different cyclic tests
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of a steel specimen (or a structural component) with different loading histories. Let dsi,t denote

the simulated value of the response of interest associated with the t-th time step of the i-th cyclic

loading history of Ni discrete steps, and dmi,t denote the corresponding measured value. Following

the root-mean-square deviation, y(x) formulated for the i-th dataset reads [86]

yi(x) =

√√√√ 1

Ni

Ni∑
t=1

(
dsi,t(x)− dmi,t

)2
. (3.1)

The first single-objective identification problem is to find the parameters from each single exper-

imental dataset. Thus, the noise-free error function of this problem reads y(x) = yi(x). Meanwhile,

the second single-objective identification problem is to incorporate some experimental datasets into

an error function as a summation of the associated error functions, which is defined by

y(x) =
Ĩ∑

i=1

yi(x), 1 < Ĩ ≤ I. (3.2)

By minimizing this weighted-sum error function, we expect that the parameters identified from the

second problem is more reliable than those from the first problem.

It is difficult to solve the above single-objective inverse problems effectively because y(x) is

expensive-to-evaluate. This makes common use of population-based optimization algorithms [87,

88] practically inefficient because they require a large number of costly simulations for obtaining

a good set of parameters. In addition, the use of gradient-based algorithms [89, 90] is also hin-

dered by the requirement of calculating the gradient and/or Hessian of y(x). Moreover, minimizing

noise-corrupted error functions (i.e., ω > 0) has not been fully addressed by the aforementioned

optimization algorithms. Since it is desirable to find a good set of parameters while keeping the

number of costly simulations as low as possible, SOBO approaches based on the EI acquisition func-

tion detailed in Algorithms 2.1 and 2.2 are adopted to solve the two single-objective inverse problems

considering noise-free and noise-corrupted error functions, respectively.

3.1.2 Multi-objective identification problem

Another way to find the optimal parameters is to minimize some error functions simultaneously,

hence to formulate the following multi-objective identification problem:

minimize
x

[f1(x), . . . , fĨ(x)]

subject to x ∈ [xl,xu].
(3.3)

Solving this problem provides an approximate Pareto front of parameters that allows designers

to select the material parameters for their designs flexibly while the identification is performed

only once. The Pareto front is commonly found through a population-based algorithm such as

NSGA-II [91]. Such an algorithm directly evaluates the error functions for a population of a large

number of candidate solutions, thereby suffering from the computational cost required for calculating

fi(x). To solve the problem effectively, proximal-exploration MOBO is proposed in the next section.

To further facilitate the development of MOBO, only noise-free error functions are considered for
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problem (3.3). We also drop the subscript of fi(x) hereafter to simplify the exposition because

problem (3.3) treats the error functions equally.

3.2 Identification using proximal-exploration MOBO

3.2.1 Proposed MOBO and identification procedure

The proposed MOBO starts by generating a training dataset D = {xk, fk}Nk=1, where x
k are samples

of material parameters and fk = y(xk). The samples xk are randomly generated using Latin-

hypercube sampling [74]. To evaluate fk, the FE model of the experiment evaluates dsi,t in Eq. (3.1)

using xk as the input of material properties for the i-th loading history. MOBO then finds from the

members of D a set of approximate Pareto-optimal solutions to problem (3.3) using a non-dominated

sorting algorithm [91] and sequentially improves this set until it can no longer be improved or until

the budgeted computational cost is reached.

Let Ω = {f1, ..., fM} ∈ RĨ denote the set of M approximate Pareto-optimal solutions sorted from

D. The improvement of Ω implements the following five steps:

(1) Construct a total of Ĩ GP models as surrogates for the error functions of problem (3.3).

(2) Find the best compromise solution from the members of Ω using a fuzzy-based method.

(3) Formulate an acquisition function based on Ω, the current GP models, and the current best

compromise solution.

(4) Maximize the formulated acquisition function for a new parameter vector that updates D.

(5) Sort new Pareto-optimal solutions from the updated D, check the termination conditions, and

reiterate from (1) if MOBO is still in process.

In the first step of solution improvement, MOBO utilizes the DACE toolbox [92] to construct a

GP model that approximates the error function f(x) ∈ {f1(x), . . . , fĨ(x)}. Following Eqs. (2.31a)

and (2.31b), the GP prediction of the error function f for a particular x reads

f̂(x) ∼ N
(
µf̂ (x), σ

2
f̂
(x)
)
. (3.4)

where µf̂ (x) and σf̂ (x) are the mean and standard deviation of f̂(x), respectively.

The second step for improving Ω is to find its best compromise member, or equivalently, the best

compromise solution of parameters, denoted as x0. This is done through the fuzzy-based method

that computes the following membership function for the i-th error function of each member of the

current solution set Ω [93]:

mi,j =


1 if fi,j = fmin

i

fmax
i − fi,j

fmax
i − fmin

i

if fmin
i < fi,j < fmax

i (i = 1, . . . , Ĩ; j = 1, . . . ,M),

0 if fi,j = fmax
i

(3.5)

where j indicates the j-th solution among M members of Ω; fi,j is the i-th error function value of

the j-th solution; and fmin
i and fmax

i are the minimum and maximum values among M values of
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Figure 3.1: Illustrations of the expected and upper confidence bound HVI measures for a bi-objective
minimization problem. (a) expected HVI; (b) upper confidence bound HVI.

the i-th error function, respectively. Then, a normalized membership function is defined for mi,j , as

mj =

Ĩ∑
i=1

mi,j

M∑
j=1

Ĩ∑
i=1

mi,j

. (3.6)

The best compromise solution x0 corresponds to a member of Ω that has the largest value of mj . If

Ω has only two members, either can be selected. Also, the second-best compromise solution, which

shall be used in Section 3.3, has the second-largest value of mj .

The third step for improving Ω is to formulate a hypervolume-based acquisition function [94,

95] for guiding MOBO. Such a hypervolume-based acquisition function is natural because the

hypervolume (HV) measure is often used in the field of multi-objective design to assess the quality

of different sets of solutions [96, 97]. Let fR ∈ RĨ denote a fixed reference point in the error function

space so that it is dominated by all members of Ω. Each element of fR can be assigned a sufficiently

large value of the corresponding error function at which the prediction error is unacceptable. As an

example, Fig. 3.1 shows the HV defined by a set of four Pareto-optimal solutions to a bi-objective

minimization problem and a reference point dominated by these solutions. Mathematically, the HV

defined by Ω and fR is a Lebesgue measure of the Ĩ-dimensional subspace dominated by Ω and

bounded above by fR [96, 97], such that

HV(Ω, fR) = Λ
({

f ∈ RĨ | ∃fj ∈ Ω : fj ⪯ f and f ⪯ fR

})
, (3.7)

where Λ(·) denotes the Lebesgue measure defined for a set on RĨ as the Ĩ-dimensional volume of

this set, for example, Λ(·) is equivalent to the standard measure of length, area, or volume of set

(·) if Ĩ = 1, 2, or 3, respectively; f is a point in the error function space; and fj ⪯ f indicates fj

dominates f. The HV in this study is evaluated using an algorithm developed by Fonseca et al. [98].

Now suppose MOBO is processing its s-th iteration and has to specify a new parameter vector

xs+1 in the next iteration (i.e., s + 1) at which costly simulations are carried out to update the

current dataset D as well as the current solution set Ω. As it is desirable to reduce the number
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of costly simulations as much as possible, xs+1 should be ideal in the parameter space so that it

maximizes the improvement of Ω. Maximizing the improvement of Ω is equivalent to maximizing

the difference of the HV defined by the union of f(x) and Ω, and that defined by Ω, where f(x)

corresponds to an arbitrary vector x in the parameter space. This difference is represented by the

following hypervolume indicator (HVI) [99, 100]:

HVI(f(x) | Ω, fR) = HV(f(x) ∪ Ω, fR)−HV(Ω, fR), (3.8)

where f(x) ∪ Ω denotes the union of f(x) and Ω.

Since the error functions are evaluated through costly simulations, it is inefficient to maximize

HVI by direct evaluation of HV(f(x) ∪ Ω, fR). An expected value of HVI can be estimated by

integrating HV(f(x)∪Ω, fR) over a non-dominated region of the error function space defined by the

current Ω and the GP prediction models for the error functions (e.g., shading in Fig. 3.1(a)). In

this way, the non-dominated region can be decomposed into a set of small disjoint cells over which

the integral can be approximated using an analytical form [99]. However, the calculation of the

expected HVI using such an integral is not advantageous for quickly finding xs+1. Thus, Chapters 6

and 8 shall replace HV(f(x)∪Ω, fR) with HV(µf̂ (x)∪Ω, fR), leading to an expected measure of HVI

as, for example, illustrated by the hatched area in Fig. 3.1(a), where µf̂ (x) is the Gaussian mean

vector of the error functions at x given in Eqs. (3.4) and (2.31a). This replacement arises because it

is often more computationally efficient to perform more optimization iterations than to do an exact

calculation of HVI at each iteration. Roussel et al. [101] further enhanced exploration by defining

HV(µf̂ (x)− βσf̂ (x) ∪ Ω, fR) as an upper confidence bound HVI, which is depicted by the hatched

area in Fig. 3.1(b), where σf̂ (x) is the Gaussian standard deviation vector of the error functions

at x given in Eqs. (3.4) and (2.31b), and β is a positive scalar that controls the trade-off between

exploration and exploitation of MOBO. A large value of β prioritizes MOBO exploration. In fact,

the upper confidence bound HVI is an extension of the negative LCB acquisition function [73] stated

in Eq. (2.36).

As we aim to use the best compromise solution x0 for structural response predictions, we bias

MOBO exploration toward the non-dominated region surrounding the best compromise member of

Ω and multiply the upper confidence bound HVI by an exponential function of − 1
2∥xn−x0n∥, where

∥ · ∥ denotes the Euclidean norm, and xn and x0n are normalized values of x and x0, respectively.

This is to address the selection of an efficient set of material parameters once the Pareto solutions

have been found, and is inspired by two previous exploration schemes. The first exploration scheme

by Daulton et al. [102] focused on a trust region (in the error function space) surrounding a member

of Ω that has maximum HV contribution. The second exploration scheme by Roussel et al. [101]

carried out exploration in the neighborhood of the most recently observed point (in the parameter

space) for minimizing the traveling distance by the optimization steps. Accordingly, the following

acquisition function is formulated in this study to specify xs+1:

α(x) = HVI(µf̂ (x)− βσf̂ (x)|Ω, fR) exp
(
−1

2
∥xn − x0n∥

)
. (3.9)

Here xn and x0n are the normalized values to prevent dependence of the exponential function value on

the parameter units. The components of xn and x0n are derived from the corresponding components
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of x, x0, xl, and xu as

xn =
x− xl
xu − xl

, x0n =
x0 − xl
xu − xl

. (3.10)

Therefore, the next parameter vector xs+1 is found by solving

xs+1 =argmax
x

α(x)

subject to x ∈ [xl,xu].
(3.11)

The search for xs+1 is likely to focus on the neighborhood of x0 that, as expected, can have

a major contribution to the improvement in the current HV of Ω. This is referred to as proximal

exploration. Note, however, that it is not necessary to restrict xs+1 to the neighborhood of x0

because a new parameter vector that is far from x0 can also be selected if it improves the current

HV considerably.

The fourth step for improving Ω is to solve problem (3.11) using a proper optimization algorithm.

Such an algorithm should avoid using the gradient information of α(x) for finding the search direction

because it is difficult to evaluate the gradient of the upper confidence bound HVI in Eq. (3.9). Thus,

a population-based method (e.g., GA) or a stochastic method (e.g., SA) can be used.

With xs+1, MOBO terminates if it satisfies one of the following termination conditions: (1)

the number of iterations reaches a pre-specified upper limit smax, and (2) xs+1 is identical to any

available sample of parameters in D, i.e., the current HV can no longer be improved. Otherwise,

MOBO updates D and starts a new iteration.

Algorithm 3.1 summaries the procedure of using MOBO for solving the multi-objective identifi-

cation problem.

Algorithm 3.1 Proposed MOBO for solving multi-objective identification problem

1: Specify xl, xu, smax, N , β, fR, (FE) model for evaluation of y(x) = [y1(x), . . . , yĨ(x)];
2: Generate {xk, k = 1, . . . , N} using Latin hypercube sampling [74];
3: D ← ∅;
4: for k = 1 : N do
5: fk ← y(xk); ▷ Costly step
6: D ← D ∪ {xk, fk};
7: end for
8: Sort Ω from D;
9: Find x0 using Eqs. (3.5) and (3.6);

10: for s = 2 : smax do
11: Construct f̂1(x), . . . , f̂Ĩ(x) based on D; see Section 2.3 of Chapter 2;
12: Formulate α(x) as given in Eq. (3.9);
13: Find xs+1 by maximizing α(x);
14: if xs+1 /∈ D then
15: f(xs+1)← y(xs+1); ▷ Costly step
16: D ← D ∪ {xs+1, f(xs+1)};
17: Sort Ω from D;
18: Find x0 using Eqs. (3.5) and (3.6);
19: else
20: exit for
21: end if
22: end for
23: return Ω and the corresponding vectors of material parameters.
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Figure 3.2: Solving the bi-objective minimization problem using MOBO. (a) surfaces of two objective
functions and the exact solutions; (b) histories of HVs for two MOBO attempts; (c) and (d) initial
and additional design points for the first and second MOBO attempts, respectively.

Table 3.1: Parameters for GA.

Parameter Value

Population size 200
Maximum number of generations 50
Crossover fraction 65%
Elite transfer 2
Fitness function tolerance 10−12

3.2.2 Test problem

The performance of the proposed MOBO is verified against a bi-objective minimization problem,

which is stated as [101]

minimize
x

[f1(x), f2(x)]

subject to xi ∈ [−2, 2] (i = 1, 2),
(3.12)

where

f1(x) = ∥x− 1∥, f2(x) = ∥x+ 1∥, (3.13)

and 1 denotes the column vector of ones.

Figure 3.2(a) depicts the exact Pareto-optimal solutions to problem (3.12). Their image in the

objective function space shown in Fig. 3.2(c) is the line segment connecting [f1, f2] = [0, 2
√
2] and

[2
√
2, 0].

MOBO is performed two times, each starts with a random set of ten sampling points. The

numbers of iterations for the first and second MOBO attempts are limited at 20 and 40, respectively.
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Figure 3.3: Example 1: Steel specimen and three loading histories for cyclic tests [103].

The assigned reference point fR = [5, 5] leads to an exact HV of 21 (i.e., 5 × 5 − 0.5 × 2
√
2 ×

2
√
2). Problem (3.11) is solved in each iteration of MOBO using GA whose parameters are listed

in Table 3.1. The parameter β in Eq. (3.9) is assigned as 0.01 since we wish MOBO to focus on

exploitation for improving HV. The effect of β on the convergence speed of MOBO may be of

interest when fixing the initial dataset; however, this is not our focus here. The HV and additional

sampling point after each MOBO iteration are recorded.

Figure 3.2(b) confirms that the HV values during the two MOBO attempts increase as much

as possible and tend to converge to the exact HV as the number of MOBO iterations increases.

As a result, the additional sampling points by MOBO shown in Figs. 3.2(c) and (d) well capture

the exact solutions. These results indicate a good performance of the proposed MOBO in solving

problem (3.12).

3.3 Example 1: A steel specimen

This section identifies the elastoplastic parameters to simulate the uniaxial cyclic behavior of a

steel specimen in Fig. 3.3. The specimen was tested under three different static cyclic loading

histories SS1, SS2, and SS3 by Yamada and Jiao [103]. Test results for the specimen consist of three

experimental datasets of true stress σ and true strain ϵ corresponding to the three loading histories.

The true stress σ and true strain ϵ are derived as follows:

σ = (1 + ϵe)σe, ϵ = log (1 + ϵe), (3.14)

where the engineering stress σe is calculated by dividing the measured axial force by the initial

cross-sectional area of the specimen, and the engineering strain ϵe is estimated by dividing the axial

deformation of the specimen by its initial length.

Since it was axially loaded during the cyclic tests, the specimen is modeled using one Abaqus

linear hexahedral element with reduced integration of type C3D8R [104]. For every time instant of

interest, Abaqus directly extracts the true stress and true strain in the direction of loading at the
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Table 3.2: Example 1: Material parameter intervals for the specimen.

Parameter Lower bound Upper bound

E [GPa] 205.94 −
ν 0.3 −
σy,0 [MPa] 250 260
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100
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  Figure 3.4: Example 1: Histories of SOBO with noise-free error function for different groups of
experimental datasets. (a)–(f) groups 1–6, respectively.

integration point of the element. The nonlinear combined isotropic/kinematic hardening, detailed

in Appendix A, is used as the material model that is characterized by seven parameters, namely

x = [E, ν, σy,0, Q∞, b, C1, γ1], where E is Young’s modulus, ν is Poisson’s ratio, σy,0 [MPa] is the

initial yield stress, Q∞ [MPa] and b are two parameters for isotropic hardening, and C1 [MPa] and

γ1 are two parameters for nonlinear kinematic hardening. For identification, Young’s modulus and

Poisson’s ratio of the specimen are respectively kept constant at E = 205.94 GPa and ν = 0.3, where

E is directly calibrated from the experiment results [103]. Thus, there are five plastic parameters

to be identified for the specimen. The interval for each of these parameters is listed in Table 3.2,

where the interval for σy,0 is derived from the experiment results [103] and those for Q∞, b, C1, and

γ1 are taken from many sources of the literature.

3.3.1 Identification results from SOBO

For noise-free error functions, we assign ω = 0 to the datasets of SS1, SS2, and SS3. For noise-

corrupted error functions, we set ω = 0.40, 0.45, and 0.78 MPa for SS1, SS2, and SS3, respectively.

Empirical calculations of these values from noise involved in each measurement of stress are detailed

in Do and Ohsaki [105].
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  Figure 3.5: Example 1: Comparison of test data and model predictions for parameters identified
from SOBO with noise-free error function and different groups of experimental datasets. (a)–(c)
parameters from groups 1–3, respectively.

To investigate how experimental datasets used for identification affect the resulting parameters

as well as their prediction ability, the three experimental datasets are classified into six groups for

formulation of two single-objective identification problems, which are indexed as 1, 2, 3, 4, 5, and 6

corresponding to SS1, SS2, SS3, (SS1 & SS2), (SS2 & SS3), and (SS3 & SS1), respectively.

To further investigate the robustness of SOBO, we randomly generate three different training

datasets for each group. Thus, three sets of parameters are found from each group corresponding to

the three SOBO attempts. The initial training datasets of SOBO for each group consist of 50 samples

of the parameters and the corresponding error functions obtained by performing FE analyses.

SOBO limits the number of its iterations at 50. Thus, the number of costly simulations required

for SOBO of group 1, 2, or 3 is 100, and for that of group 4, 5, or 6 is 200. In each iteration, SOBO

uses GA with a population size of 4000 for maximizing the acquisition functions. Here, a large

population size is to increase the chance of finding the global optimizer of the acquisition function in

each SOBO iteration that can mitigate the effect of GA’s randomness on the performance of SOBO.

Other parameters characterizing GA are given in Table 3.1.

Figure 3.4 shows the histories of three SOBO attempts of each group with noise-free error func-

tion, where fmin defined in Eq. (2.35) denotes the best value of the error function f in each iteration.

Three SOBO attempts of each group tend to converge to an optimal error function value after 50

iterations, even though they start from different initial training datasets.

Figures 3.5 and 3.6 compare the measured and predicted σ − ϵ curves associated with the best
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  Figure 3.6: Example 1: Comparison of test data and model predictions for parameters identified
from SOBO with noise-free error function and different groups of experimental datasets. (a)–(c)
parameters from groups 4–6, respectively.

Table 3.3: Example 1: Comparison of the identification results obtained from SOBO with noise-free
error function and different groups of experimental datasets.

Group σy,0 [MPa] Q∞ [MPa] b C1 [MPa] γ1 f1 [MPa] f2 [MPa] f3 [MPa]

1 250.004 42.105 5.001 7999.997 69.188 30.372 36.370 42.499
2 250.010 70.283 5.015 7999.769 70.308 37.898 28.840 48.692
3 250.008 11.939 5.000 8000.000 72.634 38.635 54.834 39.986

4 250.011 56.630 5.005 7999.996 69.096 32.627 30.732 45.261
5 250.056 57.661 5.000 8000.000 67.594 33.092 30.397 45.497
6 250.002 34.289 5.003 8000.000 67.985 30.827 40.150 41.389
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Table 3.4: Example 1: Comparison of identification results obtained from SOBO, GA, and PSO.

Group σy,0 Q∞ b C1 γ1 f1 f2 f3 No.
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] simulations

1 (SOBO) 250.004 42.105 5.001 7999.997 69.188 30.372 36.370 42.499 100
1 (GA-1) 250.123 29.700 12.616 7397.003 61.045 34.021 43.787 43.110 100
1 (GA-2) 256.562 32.546 6.265 7409.248 65.632 32.253 44.282 39.747 200
1 (PSO-1) 251.419 41.499 7.598 6940.747 54.853 33.010 39.311 43.911 100
1 (PSO-2) 251.540 37.018 6.139 8000.000 64.631 31.260 37.088 43.217 200

4 (SOBO) 250.011 56.630 5.005 7999.996 69.096 32.627 30.732 45.261 200
4 (GA-1) 250.815 63.098 8.169 6440.088 59.086 35.640 32.788 49.728 200
4 (GA-2) 252.821 51.212 6.885 7536.697 65.882 33.324 32.419 47.323 400
4 (PSO-1) 250.000 55.367 6.836 7979.444 64.027 34.491 30.918 47.514 200
4 (PSO-2) 250.000 55.113 5.000 8000.000 72.489 32.068 31.608 44.957 400

Table 3.5: Example 1: Comparison of the identification results obtained from SOBO with noise-
corrupted error function and different groups of experimental datasets.

Group σy,0 [MPa] Q∞ [MPa] b C1 [MPa] γ1 y1 [MPa] y2 [MPa] y3 [MPa]

1 250.000 41.297 5.000 8000.000 70.058 30.368 36.913 42.373
2 250.000 69.963 5.000 8000.000 74.521 37.422 29.094 48.642
3 250.000 10.000 9.754 8000.000 68.307 38.929 54.451 40.177

4 250.000 56.210 5.000 8000.000 69.732 32.453 30.905 45.161
5 250.000 49.819 5.000 8000.000 69.491 31.045 33.049 43.837
6 250.000 34.486 5.000 8000.000 68.391 30.804 40.112 41.408

set of parameters obtained from each group, where f1, f2, and f3 in the figures denote the error

function values at the identified parameters corresponding to SS1, SS2, and SS3, respectively, and

the boldface value indicates the experimental dataset used for identification. It is observed that the

prediction ability of the obtained parameters is strongly affected by the loading history (i.e., dataset)

used to formulate the identification problem. The bias toward a specific loading history is exhibited

in Fig. 3.5 (see along each column) as the error function corresponding to the loading history used

for identification is smaller than those predicted by the parameters identified from other loading

histories. The parameters identified from a specific loading history (e.g., SS3) may lead to large

errors in prediction of σ−ϵ curves associated with other loading histories (e.g., SS1 and SS2). These

errors can be reduced by using the experimental datasets from two loading histories for identification

as observed in Fig. 3.6.

Table 3.3 lists the identified parameters from each group with noise-free error function, where

the boldface value indicates the error function corresponding to the experimental dataset used for

identification. There is no major difference in values of σy,0, b, C1, and γ1 among the groups.

However, Q∞ is affected by the datasets.

We also compare the identification results by SOBO of groups 1 and 4 with those by minimizing

the corresponding error functions using GA and PSO algorithms. For each group (i.e., 1 or 4),

GA and PSO are performed two times, namely GA-1, GA-2, PSO-1, and PSO-2. Each algorithm

has a population of 20 individuals (or particles) and the numbers of iterations for GA(PSO)-1 and

GA(PSO)-2 are limited at five and ten, respectively. Thus, the numbers of simulations required for

GA(PSO)-1 and GA(PSO)-2 are 100 and 200 when working on group 1, and are 200 and 400 when

working on group 4, respectively. To enable fair comparisons with SOBO, other parameters for

GA and PSO follow default settings of the MATLAB R2018a Global Optimization Toolbox [106].
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  Figure 3.7: Example 1: Histories of SOBO with noise-corrupted error function for different groups
of experimental datasets. (a)–(f) groups 1–6, respectively.

Comparison results in Table 3.4 show that SOBO outperforms GA and PSO in terms of the mini-

mized error function value as well as the prediction ability of identified parameters when expending

the same number of costly simulations. Interestingly, GA and PSO should double the number of

simulations to offer performance approaching that of SOBO.

Figure 3.7 shows the histories of three SOBO attempts of each group with noise-corrupted error

function, where cmin defined in Eq. (2.37) is the representative of fmin. In the presence of noise, three

SOBO attempts of each group result in different error function values after 50 iterations. However,

there is still a good agreement between the predicted σ − ϵ curves at the best set of the parameters

identified from each group and the experimental ones, as shown in Figs. 3.8 and 3.9, where y1, y2,

and y3 are the noise-free error function at the identified parameters corresponding to SS1, SS2, and

SS3, respectively. It is also confirmed in Figs. 3.8 and 3.9 that noise does not affect the bias toward a

set of experimental measures that is enormous when using a specific loading history for identification

and can be reduced when using a pair of loading histories for identification.

Table 3.5 reports the best identified material parameters from each group with noise-corrupted

error functions, where the boldface value indicates the noise-free error function corresponding to the

experimental dataset used for identification. The values of σy,0, b, C1, and γ1 among the groups are

similar, while Q∞ again varies across the groups as it plays an important role in mitigating the bias

toward a set of experimental results.

3.3.2 Identification results from MOBO

To investigate the effect of experimental datasets used to formulate the multi-objective inverse

problem on the resulting parameters, we also classify the three experimental datasets of the specimen

into three groups, namely 7, 8, and 9, corresponding to (SS1 & SS2), (SS2 & SS3), and (SS3 & SS1),

respectively. Problem (3.3) is formulated for each group with two objectives that are the error

functions evaluated using Eq. (3.1) for the measured and simulated σ − ϵ curves of individual tests.
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  Figure 3.8: Example 1: Comparison of test data and model predictions for parameters identified
from SOBO with noise-corrupted error function and different groups of experimental datasets. (a)–
(c) parameters from groups 1–3, respectively.

To examine the dependence of MOBO on the training dataset, ten different training datasets are

generated for each group. Each of these training datasets has 50 random samples of parameters and

the corresponding error function values. Thus, a total of ten Pareto fronts of material parameters

are found from each group. The best Pareto front of each group corresponds to the largest HV value

among ten values associated with the ten Pareto fronts. To further demonstrate their prediction

ability, we use the best and second-best compromise solutions on the best Pareto front of each group

as input to the FE model for evaluating the error function associated with the loading history not

used for identification.

We limit the number of MOBO iterations at 50. Thus, the maximum number of simulations

required for each MOBO attempt is 200 (i.e., 100 for generating the initial training dataset and

maximum 50×2 = 100 for processing MOBO iterations). The reference point fR and the parameter

β in Eq. (3.9) are assigned as fR = [150, 150] MPa and 0.01, respectively. We solve problem (3.11)

in each MOBO iteration using GA whose parameters are the same as those for the GA embedded

in SOBO.

For comparison, we perform NSGA-II ten times, each treats the variables as real numbers and

requires 20 individuals and five generations (i.e., 20 × 2 × 5 = 200 simulation calls) for finding

approximate Pareto fronts for each group. The solutions from NSGA-II are baselines to assess the

quality of the Pareto fronts by SOBO. Moreover, we carry out ParEGO [107], which is an extension

of the single-objective efficient global optimization algorithm to solving multi-objective optimization
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  Figure 3.9: Example 1: Comparison of test data and model predictions for parameters identified
from SOBO with noise-corrupted error function and different groups of experimental datasets. (a)–
(c) parameters from groups 4–6, respectively.
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Figure 3.10: Example 1: Histories of HVs for different groups of experimental datasets. (a)–(c) ten
MOBO attempts of groups 7–9, respectively; (d)–(f) the first five MOBO attempts and five ParEGO
attempts associated with groups 7–9, respectively.
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  Figure 3.11: Example 1: Evolution of solutions during the first three MOBO attempts for different
groups of experimental datasets. (a)–(c) groups 7–9, respectively.
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Figure 3.12: Example 1: Comparison of solutions by ten MOBO attempts and by ten NSGA-II
attempts for different groups of experimental datasets. (a)–(c) groups 7–9, respectively.

problems, five times, each is characterized by 50 iterations using the same training dataset as that

at the beginning of each of the first five MOBO attempts. This is to compare the largest HV values

associated with the final Pareto fronts from MOBO and ParEGO when they start at the same

training dataset.

Figure 3.10 shows the histories of HV from the ten MOBO attempts of each group as well as

the comparison between the HV histories from the first five MOBO attempts and those from the

corresponding five ParEGO attempts. Although starting at different initial values, the HVs from
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Table 3.6: Example 1: Optimized HVs associated with ten MOBO attempts for different groups of
experimental datasets [×103 (MPa)2].

Attempt Group 7 Group 8 Group 9

1 14.477 13.275 13.129
2 14.480 13.261 13.143
3 14.479 13.262 13.109
4 14.402 13.183 13.128
5 14.457 13.262 13.132
6 14.444 13.265 13.123
7 14.454 13.248 13.140
8 14.446 13.259 13.154
9 14.454 13.175 13.044
10 14.383 13.206 13.152

Table 3.7: Example 1: Comparison of the identification results obtained from MOBO for different
groups of experimental datasets. (1) and (2) indicate the best and second-best compromise solutions,
respectively.

Group σy,0 [MPa] Q∞ [MPa] b C1 [MPa] γ1 f1 [MPa] f2 [MPa] f3 [MPa]

7 (1) 250.373 58.208 5.058 7987.986 69.641 33.271 30.298 45.902
8 (1) 250.004 46.273 5.005 7982.653 65.429 30.861 34.236 43.168
9 (1) 250.346 39.932 5.013 7999.983 67.686 30.447 37.028 42.319

7 (2) 251.806 54.956 5.003 7855.806 68.741 32.669 31.147 45.669
8 (2) 250.005 40.323 5.025 7999.934 65.076 30.599 36.794 42.257
9 (2) 250.093 35.395 5.186 7969.030 65.229 30.895 39.244 41.680

each group tend to converge to the similar value as MOBO terminates. Moreover, the final HV

values by most of the MOBO attempts are better than those by the ParEGO attempts when they

start at the same training dataset. The optimized HV values associated with ten MOBO attempts

of each group are reported in Table 3.6.

Figure 3.11 illustrates the evolution of approximate Pareto-optimal solutions during the first

three MOBO attempts of each group. As observed, MOBO considerably improves the solution

quality. Figure 3.12 shows the similarity in shapes of the Pareto fronts at the last iterations of ten

MOBO attempts of each group, regardless of their difference at the very first iterations (see the

first iteration along each row of Fig. 3.11 for the first three MOBO attempts of each group). This

observation is consistent with the convergence of HV in Fig. 3.10. Figure 3.12 also confirms that the

optimization results by all MOBO attempts of each group outperform those by the corresponding

ten NSGA-II attempts, even though the number of simulation calls required for MOBO does not

exceed that required for NSGA-II.

Table 3.7 provides the best (1) and second-best (2) compromise solutions selected from the best

Pareto front of each group. It also provides the error function values associated with SS1, SS2,

and SS3, namely f1, f2, and f3, respectively, where the boldface error value corresponds to the

experimental dataset used for identification. We see that there is no major difference in the values

of σy,0, b, C1, and γ1 for the best and second-best compromise solutions among those obtained from

the three groups. However, Q∞ is dataset-dependent.

Figure 3.13 compares the measured and simulated σ − ϵ curves from each loading history using

the best compromise solution of each group listed in Table 3.7 for the simulation. Although the yield

plateau observed in test SS2 cannot be captured because of the nature of the nonlinear combined
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  Figure 3.13: Example 1: Comparison of test data and model predictions for the best compromise
solutions of parameters identified from MOBO with different groups of experimental datasets. (a)–
(c) parameters from groups 7–9, respectively.
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  Figure 3.14: Example 1: Average sensitivity results over different groups of experimental datasets.
(a)–(c) parameters from groups 7–9, respectively.

isotropic/kinematic hardening model, the identified parameters can reproduce the σ − ϵ curves for

the loading histories not used for identification with good accuracy.

To further rank the importance of the identified material parameters, we assess the sensitivity of

error functions to the variation of each parameter, indicated by the ratio ∆x/x, in the neighborhood

of the best compromise value (in the parameter space) as shown in Fig. 3.14 while keeping other

parameters constant. The sensitivity of each error function is represented by enorm that is the ratio

of the error function of interest to that associated with the best compromise solution. Thus, the

sensitivity result at a particular value of ∆x/x shown in Fig. 3.14 is the average of three enorm values

corresponding to the three error functions f1, f2, and f3. It is found that the error functions are
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Table 3.8: Example 1: Dataset-specific indexes for different sets of identification results evaluated
using the experimental results from tests SS1, SS2, and SS3 of the specimen [MPa].

Set of results ψ1 ψ2 ψ3 η

Single-objective (groups 1− 3) 8.263 25.994 8.706 14.321
Weighted-sum (groups 4− 6) 2.265 9.418 4.109 5.264
Multi-objective (1) (groups 7− 9) 2.823 6.730 3.583 4.379
Multi-objective (2) (groups 7− 9) 2.070 8.096 3.990 4.719

most and least sensitive to the variations of σy,0 and b, respectively.

3.3.3 A dataset-specific index

Using the identification results in Tables 3.3 and 3.7, we now wish to compare the dataset-specific bias

levels for different sets of identification results obtained from different inverse problem formulations.

Here we consider three different types of identification results from three formulations, namely single-

objective (groups 1–3), weighted-sum (groups 4–6), and multi-objective (groups 7–9) formulations.

The multi-objective formulation offers two sets of identification results, i.e., the best compromise

(1) and second-best (2) compromise sets, while each of the remaining two formulations provides

one set of identification results. To enable a rigorous comparison, we propose in the following a

dataset-specific index η for each set of identification results.

Let P ≥ 2 and J ≥ 2, respectively, denote the number of parameter sets in each set of identifica-

tion results and the number of tests in consideration. Let fj,p with j ∈ {1, . . . , J} and p ∈ {1, . . . , P}
indicate the j-th error corresponding to the p-th parameter set. Thus, each set of identification re-

sults in Tables 3.3 and 3.7 reads J = 3 and P = 3 while the best compromise set in Tables 3.7, for

example, reads f1,1 = 33.271, f1,2 = 30.861, f1,3 = 30.447 MPa, and so on. For the j-th test of

each set of identification results, we define

ψj = fmax
j − fmin

j (j = 1, . . . , J), (3.15)

where

fmin
j = min{fj,1, . . . , fj,P }, fmax

j = max{fj,1, . . . , fj,P }. (3.16)

Here fmin
j , due to the dataset-specific bias, is a minimized value of fj (i.e., a boldface value in

Tables 3.3 and 3.7). That means fmin
j is found by minimizing the error function formulated from

the experimental results of test j. Meanwhile, fmax
j in most cases corresponds to a parameter set

that is found by minimizing the error function formulated from the experimental results of other

tests rather than test j. For example, the set of identification results of groups 1–3 in Table 3.3 has

fmin
1 = 30.372, fmin

2 = 28.840, fmin
3 = 39.986, fmax

1 = 38.635, fmax
2 = 54.834, and fmax

3 = 48.692

MPa. Thus, fmin
j and fmax

j represent the quality of the solution to the inverse problem and its

prediction performance, respectively. The larger the difference of fmax
j and fmin

j (i.e., ψj), the

higher the dataset-specific bias level observed on the j-th test. Without loss of generality, we further

assume that the errors of the tests in consideration have the same unit. Normalization can be used

when we have different units of the errors. The following dataset-specific index η is defined for each
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set of identification results based on a total of J tests of consideration:

η =
1

J

J∑
j=1

ψj . (3.17)

As a result, the set of identification results with the smallest value of η has the lowest level of

dataset-specific bias.

Table 3.8 provides the η index value computed for each set of identification results listed in

Tables 3.3 and 3.7, where ψ1, ψ2, and ψ3 are evaluated using tests SS1, SS2, and SS3, respectively.

The η values associated with the two sets of identification results from the multi-objective formulation

are better than those corresponding to the single-objective and weighted-sum formulations. The

single-objective formulation shows the largest value of bias level. These results confirm that the best

and second-best compromise solutions obtained from the multi-objective formulation of the inverse

problem of the specimen can reduce the dataset-specific bias. Thus, the experimental measures from

various loading histories should be used for parameter identification simultaneously.

It is worth noting that the index η can also be evaluated for sets of identification results using

the error function values of tests not used in parameter identification. In this case, η represents the

dispersion of predictions by the associated parameter sets. A small value of η would indicate the

prediction ability of the parameters on the tests being considered.

3.4 Example 2: A bi-material cantilever

In this section, the elastoplastic parameters are identified for a steel cantilever in Fig. 3.15 that

was tested under three different static cyclic loading histories RH1, RH2, and RH3 by Yamada and

Jiao [103]. The cantilever is a built-up wide-flange beam H-244 × 175 × 7 × 11 of two different

materials in which the flange and web have the same Young’s modulus, but different plastic material

parameters. During the cyclic tests, the left end of the cantilever was fixed while forced vertical

displacement was applied at the right end. The deflection angle θ of the cantilever is defined as the

ratio of the vertical tip displacement ∆ mm to the beam length L = 800 mm, i.e., θ = ∆/L. The

test result for the each loading history consists of the bending reaction moment M at the cantilever

support and the associated deflection angle θ.

For identification, Young’s modulus and Poisson’s ratio for the web and flange are fixed at

E = 175.05 GPa, which is directly calibrated from the experiment, and ν = 0.3, respectively. Thus,

a total of ten parameters (i.e., five for the web and five for the flange) are identified for the cantilever.

The interval for each parameter is provided in Table 3.9.

The cantilever is modeled using Abaqus [104] that generates a fine mesh consisting of 4960 nodes

and 3510 linear hexahedral elements of type C3D8 as shown in Fig. 3.15. The maximum increment

size for each loading history is set as 0.01 s. The numerical values of M and ∆ at the time instants

of interest are directly extracted from the Abaqus model.

For noise-free error functions, ω = 0 is assigned to all the datasets. For noise-corrupted error

functions, ω = 0.1, 0.2, and 0.1 kNm are assigned to the datasets of RH1, RH2, and RH3, respec-

tively. Empirical calculations of these values from noise involved in each measurement of bending

moment are detailed in Do and Ohsaki [105].

The experimental datasets from the three loading histories are also classified into a total of six

52



L = 800
D

q = D/L

175

2247

11

[mm]

FE mesh

y

z

x

 

Figure 3.15: Example 2: Bi-material cantilever, its FE mesh, and three loading histories for cyclic
tests [103].
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  Figure 3.16: Example 2: Histories of SOBO with noise-free error function for different groups of
experimental datasets. (a)–(f) groups 1–6, respectively.
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Table 3.9: Example 2: Material parameter intervals for the cantilever.

Parameter Lower bound Upper bound

Web

E [GPa] 175.05 −
ν 0.3 −
σy,0 [MPa] 300 340
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100

Flange

E [GPa] 175.05 −
ν 0.3 −
σy,0 [MPa] 270 290
Q∞ [MPa] 10 100
b 5 25
C1 [MPa] 2000 8000
γ1 10 100

Table 3.10: Example 2: Material parameters and error functions obtained from SOBO with noise-free
error function and different groups of experimental datasets.

Parameter
Group

1 2 3 4 5 6

Web

σy,0 [MPa] 339.957 300.049 339.924 336.672 330.990 339.880
Q∞ [MPa] 99.890 99.827 99.923 99.874 99.972 99.974
b 24.946 24.910 24.952 24.761 24.809 24.869
C1 [MPa] 7160.521 7968.280 3596.024 7766.642 7999.973 7682.000
γ1 99.622 10.178 99.967 99.999 69.775 99.577

Flange

σy,0 [MPa] 271.262 270.004 270.047 270.008 270.001 270.061
Q∞ [MPa] 10.065 10.135 10.000 10.140 10.107 10.001
b 5.008 5.120 5.047 5.534 5.092 5.041
C1 [MPa] 7999.840 5170.983 6636.794 6537.440 5140.712 7998.996
γ1 66.632 62.092 71.565 60.903 69.258 84.763

Error

f1 [kNm] 10.083 14.166 11.469 10.781 12.760 10.107
f2 [kNm] 12.836 10.422 11.377 11.491 10.794 12.380
f3 [kNm] 13.601 14.060 12.590 12.959 12.881 12.961

groups indexed as 1, 2, 3, 4, 5, and 6, corresponding to RH1, RH2, RH3, (RH1 & RH2), (RH2

& RH3), and (RH3 & RH1), respectively. For each value of ω, three different initial training

datasets are created for each group to investigate the performance of SOBO. Each training dataset

is constructed by randomly generating 100 samples of the parameters and performing FE analysis

for each generated sample to evaluate the corresponding error function. The remaining steps of the

identification process using the training datasets from each group are identical to those performed

in Section 3.3.

3.4.1 Identification results from SOBO

Figure 3.16 shows the histories of three SOBO attempts for three different initial training datasets

of each group with noise-free error function. Although SOBO with different initial training datasets

cannot provide a unique set of the parameters after 50 iterations, it considerably reduces the error

function value as it terminates. This result also poses a question for future research on how to find
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Figure 3.17: Example 2: Comparison of test data and model predictions for parameters identified
from SOBO with noise-free error function and different groups of experimental datasets. (a)–(c)
parameters from groups 1–3, respectively.

an optimal experimental design of the initial training dataset. In other words, how do we select the

initial training dataset to minimize the variation of the inferred parameters as observed?

Table 3.10 provides the best set of identified parameters that gives the smallest error function

value among three values obtained from each group. Figures 3.17 and 3.18 compare the predicted

M − θ curves at the parameters identified from each group listed in Table 3.10 and the measured

curves, where f1, f2, and f3 are the error function values corresponding to RH1, RH2, and RH3,

respectively. As expected, all predicted M − θ curves associated with the loading histories not

used for identification are in good agreement with the measured curves. Results in Table 3.10 and

Fig. 3.17 also show that the dataset-specific bias is considerable when the experimental dataset

from a single loading history is used for identification. This bias can be mitigated when using the

experimental datasets from two loading histories as illustrated in Fig. 3.18.

Figure 3.19 shows the histories of three SOBO attempts of each group with noise-corrupted

error function. Under the effect of noise, cmin considerably fluctuates in the very first iterations

of SOBO and becomes stable when approaching the 50th iteration. The values of cmin in some of

the first iterations are less than those at the last iterations because cmin depends on the variance

of the GP model that is updated after new sampling points are added. Regardless of the difference

in three SOBO histories from each group, the identified parameters from all groups still arrive at

a good agreement between the predicted and measured M − θ curves, as shown in Figs. 3.20 and
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  Figure 3.18: Example 2: Comparison of test data and model predictions for parameters identified
from SOBO with noise-free error function and different groups of experimental datasets. (a)–(c)
parameters from groups 4–6, respectively.

Table 3.11: Example 2: Material parameters and error functions obtained from SOBO with noise-
corrupted error function and different groups of experimental datasets.

Parameter
Group

1 2 3 4 5 6

Web

σy,0 [MPa] 339.988 339.952 339.986 339.981 339.851 339.998
Q∞ [MPa] 99.992 99.95 99.909 99.938 99.916 99.998
b 24.988 5.034 24.928 24.910 24.983 24.999
C1 [MPa] 7999.962 7999.989 2000.104 7999.979 7764.107 7999.998
γ1 99.999 10.010 99.968 99.836 10.070 99.998

Flange

σy,0 [MPa] 271.038 270.02 270 270.024 270.055 270.001
Q∞ [MPa] 10.004 10.044 10.012 10.154 10.019 10.000
b 5.011 11.312 5.033 8.434 5.067 5.001
C1 [MPa] 7999.951 4242.334 7388.138 6432.982 5361.751 7999.998
γ1 76.819 59.440 79.299 57.267 90.055 86.975

Error

f1 [kNm] 10.006 14.728 11.242 10.650 10.615 10.115
f2 [kNm] 12.729 10.592 11.659 11.665 10.746 12.382
f3 [kNm] 13.311 14.369 12.582 13.144 12.954 12.941

3.21, where y1, y2, and y3 denote the noise-free error function values corresponding to RH1, RH2,

and RH3, respectively. Table 3.11 lists the best set of material parameters from each group with

noise-corrupted error function. It is observed that Q∞ and b tend to concentrate to their bounds

under the effect of observational noise.
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  Figure 3.19: Example 2: Histories of SOBO with noise-corrupted error function for different groups
of experimental datasets. (a)–(f) groups 1–6, respectively.
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  Figure 3.20: Example 2: Comparison of test data and model predictions for parameters identified
from SOBO with noise-corrupted error function and different groups of experimental datasets. (a)–
(c) parameters from groups 1–3, respectively.
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  Figure 3.21: Example 2: Comparison of test data and model predictions for parameters identified
from SOBO with noise-corrupted error function and different groups of experimental datasets. (a)–
(c) parameters from groups 4–6, respectively.

3.4.2 Identification results from MOBO

To investigate how the experimental datasets used for identification affect the resulting parameters,

the three experimental datasets of the cantilever are also classified into three different groups indexed

as 7, 8, 9, which correspond to (RH1 & RH2), (RH2 & RH3), and (RH3 & RH1), respectively.

To examine the dependence of MOBO on the training dataset, each group generates ten different

training datasets at the beginning of MOBO. Each of these training datasets has 100 random

samples of material parameters and the corresponding error function values.

We carry out MOBO for the ten different training datasets of each group, hence provide ten

Pareto fronts of material parameters from each group. The number of MOBO iterations is limited

at 50. Thus, the maximum number of simulations required for each MOBO attempt is 300 (i.e.,

200 for generation of the initial training dataset and maximum 50× 2 = 100 for MOBO iterations).

The reference point and the parameter β are set as fR = [50, 50] kNm and 0.01, respectively.

Problem (3.11) in each MOBO iteration is solved using GA whose parameters are the same as those

for the GA in Section 3.3.2.

To enable a favorable comparison of the identified parameters, we also perform NSGA-II ten

times for finding Pareto fronts for each group. Each NSGA-II is characterized by a population of 30

individuals and five generations, thereby requiring a total of 30× 2× 5 = 300 simulations, which is

the same as the maximum number of simulations required for MOBO.
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Figure 3.22: Example 2: Histories of HVs associated with ten MOBO attempts of each group. (a)–
(c) groups 7–9, respectively.
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  Figure 3.23: Example 2: Evolution of solutions during the first three MOBO attempts for different
groups of experimental datasets. (a)–(c) groups 7–9, respectively.
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  Figure 3.24: Example 2: Comparison of solutions by ten MOBO attempts and by ten NSGA-II
attempts for different groups of experimental datasets. (a)–(c) groups 7–9, respectively.

WebTop flange
sy,0 = 305.74 MPasy,0 = 273.85 MPa

Figure 3.25: Example 2: Equivalent plastic strain distribution over the top flange and web of the
cantilever at a time instant of RH1 with the best compromise set of parameters obtained from
group 7.

Figure 3.22 shows the histories of HV from the ten MOBO attempts of each group. Although the

MOBO attempts starting at different initial training datasets cannot arrive at a unique value of HV

after 50 iterations, they considerably improve the solution quality. Since the HVs from most of the

MOBO attempts tend to improve in the very last iterations, it is expected that the solutions from

each group can be improved if the number of MOBO iterations increases. This result also poses a

question on how to characterize the properties of an optimal initial training dataset of MOBO.

Figure 3.23 shows the evolution of approximate Pareto-optimal solutions during the first three

MOBO attempts of each group. As is clear, the solutions in the last iteration are much better than

those in the very first iteration. Figure 3.24 compares the Pareto fronts from ten MOBO attempts

and ten NSGA-II attempts of each group. The shapes of the Pareto fronts by the ten MOBO

attempts of the first group are similar (see Fig. 3.24(a)), but those of the other two groups are not

(see Figs. 3.24(c) and (d)). The solutions by the MOBO attempts in each group outperform those

by the NSGA-II attempts, even though the number of costly simulations required for MOBO does

not exceed that required for NSGA-II.

Table 3.12 lists the best (1) and second-best (2) compromise solutions selected from the Pareto

front with the highest HV among the ten Pareto fronts found from each group. The error func-

tion values corresponding to RH1, RH2, and RH3, denoted as f1, f2, and f3, respectively, are also

provided, where the boldface values indicate the experimental datasets used for identification. Iden-

tified values of σy,0, Q∞, and b for the flange among those from different groups are similar, while

those of C1 and γ1 are group-dependent. A change in the dataset (i.e., group) can lead to a major

difference in the identified parameters for the web although these parameters are possible to produce

the simulated responses consistent with the corresponding experimental measures. This is because

the plastic deformation values of web is smaller than those of flange in bending test as illustrated in

Fig. 3.25.
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Table 3.12: Example 2: Comparison of the identification results obtained from MOBO for different
groups of experimental datasets. (1) and (2) indicate the best and second-best compromise solutions,
respectively.

Parameter
Group

7 (1) 8 (1) 9 (1) 7 (2) 8 (2) 9 (2)

Web

σy,0 [MPa] 305.738 325.737 338.125 311.831 326.628 334.007
Q∞ [MPa] 99.938 76.621 99.813 82.085 86.073 99.751
b 15.077 23.777 24.937 19.234 24.933 24.997
C1 [MPa] 6013.083 3405.444 5691.577 5477.573 5946.957 2665.344
γ1 66.381 99.536 99.964 35.927 99.909 99.940

Flange

σy,0 [MPa] 273.851 270.577 270.007 273.761 271.079 270.233
Q∞ [MPa] 12.268 10.315 14.499 10.191 10.517 10.025
b 6.426 8.090 5.001 6.521 5.783 5.220
C1 [MPa] 7502.126 6315.732 7316.046 7410.770 4904.880 7030.846
γ1 73.482 58.928 76.793 73.137 44.959 79.902

Error

f1 [kNm] 11.607 12.571 10.621 11.596 13.360 11.783
f2 [kNm] 11.489 10.937 11.846 11.517 10.672 11.458
f3 [kNm] 13.630 13.163 12.799 13.660 13.390 12.635
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  Figure 3.26: Example 2: Comparison of test data and model predictions for the best compromise
solutions of parameters identified from MOBO with different groups of experimental datasets. (a)–
(c) parameters from groups 7–9, respectively.

Figure 3.26 compares the predicted and measured M − θ curves from each loading history with

use of the best compromise parameters identified from each group for prediction. In general, the

identified parameters well reproduce the M − θ curve corresponding to the loading history that
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Figure 3.27: Example 2: Average sensitivity results over different groups of experimental datasets.
(a)–(c) parameters from groups 7–9, respectively.

Table 3.13: Example 2: Dataset-specific indexes for different sets of identification results evaluated
using the experimental results from tests RH1, RH2, and RH3 of the cantilever [kNm].

Set of results ψ1 ψ2 ψ3 η

Single-objective (groups 1− 3) 4.083 2.414 1.470 2.656
Weighted-sum (groups 4− 6) 2.653 1.586 0.080 1.440
Multi-objective (1) (groups 7− 9) 1.950 0.909 0.831 1.230
Multi-objective (2) (groups 7− 9) 1.765 0.844 1.025 1.211

is not used for identification. Although there exists the bias toward the loading history used for

identification, its effect on the prediction performance of identified parameters is not significant as

the corresponding minimized error function value is slightly smaller than that predicted from the

parameters identified from the other loading histories (see along each column of Fig. 3.26).

From the results in Tables 3.10 and 3.12, η index in Eq. (3.17) is evaluated for the parameter sets

obtained from the single-objective (groups 1–3) and weighted-sum (groups 4–6) formulations, and

for the best (1) and second-best (2) compromise solutions of the multi-objective formulation. Results

in Table 3.13 indicate that η values for the best and second-best compromise sets of identification

results from the multi-objective formulation are better than those from the single-objective and

weighted-sum formulations. The single-objective formulation again shows the largest value of the

dataset-specific bias level.

Figure 3.27 shows the sensitivity results for each best compromise parameters identified from the

three experimental dataset groups of the cantilever. The high-sensitivity parameters include σy,0 of

the flange and web, and C1 of the flange, in which σy,0 of the flange has the greatest influence on the

sensitivity of the error functions. Other parameters can be classified as low-sensitivity parameters.

3.5 Conclusions

The cyclic response of a steel structure depends on the constitutive laws of its materials. If this

cyclic response can be measured experimentally, single- and multi-objective inverse problems can be

formulated for identification of the underlying material parameters. This chapter has successfully

applied SOBO to solving the single-objective inverse problem with noise-free and noise-corrupted

error function, and proposed a proximal-exploration MOBO approach to solving the multi-objective

inverse problem. The main conclusions of this chapter are summarized as follows:

(1) SOBO demonstrates its good ability to identify the parameters for the nonlinear combined
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isotropic/kinematic hardening model for structural steel. The material parameters obtained by

SOBO with noise-free and noise-corrupted error functions can reliably predict the cyclic behavior

of steel subjected to different loading conditions.

(2) Identification results confirm that SOBO outperforms GA and PSO in terms of the prediction

performance of identified parameters when the number of simulation calls is small. This promotes

the use of SOBO to solving single-objective parameter identification problems with expensive-

to-calculate error functions at a small number of simulation calls.

(3) A multi-objective inverse problem is formulated for identifying the material parameters to reduce

the dataset-specific bias that may lead the elastoplastic parameters for the cyclic constitutive

law identified from a single loading history to inaccurate predictions of structural responses

under other loading histories. Accordingly, an efficient proximal-exploration MOBO approach

is proposed for solving the formulated multi-objective inverse problem.

(4) The proposed MOBO demonstrates its good performance in solving a simple bi-objective min-

imization problem. As also confirmed in the identification examples, MOBO outperforms

NSGA-II in terms of solution quality when the number of simulation calls is small. This promotes

the use of MOBO to solving multi-objective parameter identification problems with expensive-

to-calculate error functions at a small number of simulation calls.

(5) Identification results show that the best compromise solution of parameters obtained by MOBO

well captures the cyclic behavior of the steel under different loading conditions. Nevertheless,

designers are free to select the material parameters for their designs according to the loading

conditions.

(6) A dataset-specific index η is proposed for assessing the dataset-specific bias levels for different

sets of identification results obtained from different inverse problem formulations. Based on η, we

have shown in two identification examples that the best and second-best compromise solutions

to the multi-objective inverse problem can reduce the dataset-specific bias, while the solution

to the single-objective formulation shows an enormous bias level. Thus, measures from various

loading histories should be simultaneously used for parameter identification.

(7) The identification results for the bi-material cantilever also suggest a possibility of identifying

material parameters from cyclic tests of a structural component. This is notable because cyclic

material tests are difficult and usually not carried out before structural tests.
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Chapter 4

Bayesian optimization-assisted

approximate Bayesian computation

and its application to identifying

nonlinear hysteresis curve of

structural steels

The single-objective inverse problem in Chapter 3 minimizes an error function for finding a best-fit

material parameter vector. Although SOBO enables the minimization of a noise-corrupted error

function, the resulting best-fit parameter vector is not very useful in characterizing the effects of

observational noise on identification results because many parameter vectors consistent with the

measured dataset can be found within the noise, especially for an ill-posed inverse problem. This

circumstance motivates the implementation of Bayesian inference for solving the inverse problem that

transforms observational noise into uncertainty in identified parameters. However, it is too costly

to perform a posterior sampling technique directly for the Bayesian inference in this case because

the likelihood function associated with simulating the cyclic elastoplastic behavior of structural

steels is computationally intractable. As a continuation of Chapter 3, this chapter introduces BO-

assisted approximate Bayesian computation (ABC) to the Bayesian inference of cyclic elastoplastic

parameters for structural steels.

4.1 Problem formulation

Consider an inverse problem to infer the vector of material parameters x incorporated into an FE

model for simulating the cyclic elastoplastic behavior of a steel specimen. Let d(x) ∈ Rm denote the

vector of responses of interest simulated from the FE model that inputs x as material parameters,

and do denote the corresponding vector measured from a cyclic test of the steel specimen. For
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formulation of the inverse problem, d(x) and do formulate the following discrepancy:

δ = ∥d(x)− do∥+ e, (4.1)

where ∥ · ∥ denotes a distance measure, e.g., the Euclidean distance, and e is the discrepancy noise

that describes random corruptions of the measured dataset do. Note that e can be evaluated in

an average scheme using noise involved in each element of do; see Ref. [105]. If e is modeled by a

Gaussian with zero mean and a given standard deviation value, the PDF of δ given x reads

π(δ;x) = N
(
y(x), τ2

)
, (4.2)

where y(x) = ∥d(x) − do∥ and τ is a standard deviation value in the space of δ. Note that the

uncertainty due to idealization and discretization errors is not considered in this study.

The literature categorizes methods for solving inverse problems into deterministic and proba-

bilistic approaches [108]. The deterministic approach presented in Chapter 3 minimizes y(x) for

obtaining a best-fit vector of the parameters. However, it is not very useful to use the best-fit pa-

rameter vector for capturing the effects of observational noise e on the identification results because

many parameter vectors within the noise can well reproduce do [109, 110]. In this circumstance, it

is preferable to adopt the probabilistic approach that formulates the inverse problem to transform

observational noise into uncertainty in the identified parameters. By updating a prior PDF, which

represents our belief about the parameters before the dataset is measured, based upon a likelihood

of the FE model, which encodes how likely that a given parameter set captures the measured dataset

do, the probabilistic approach provides a posterior PDF describing distributions of the parameters

when conditioned on do. Then, the samples of parameters are generated from the posterior using

a posterior sampling technique, for example, MCMC method [111]. Based on these samples, the

sample mean, sample variance, maximum a posteriori (MAP) estimate, or confidence intervals of

each uncertain parameter can be found for decision-making or for uncertainty quantification of the

FE model. It is worth noting that the deterministic approach is a special case of the probabilistic

approach that assigns a constant and the MAP estimate as the prior and the best-fit parameter

vector, respectively. This allows a reasonable assessment of the quality of posterior samples if the

best-fit parameter vector is available.

The probabilistic approach in this chapter infers x by the following two steps. The first step

expresses our prior belief about x via the prior PDF π(x). The second step updates the prior π(x)

based upon the likelihood function p(do;x) of the FE model, resulting in the posterior PDF π(x;do).

In essence, if the likelihood function p(do;x) is available in closed form, π(x;do) is estimated from

Bayes’ rule in Eq. (2.12), which reads

π(x;do) =
π(x)p(do;x)

π(do)
=

π(x)p(do;x)∫
π(x)p(do;x) dx

∝ π(x)p(do;x), (4.3)

where the denominator π(do) is called evidence that is a normalizing constant to ensure that π(x;do)

is a PDF. Thus, π(x;do) is proportional to π(x)p(do;x).

For model validation or decision making, the standard Bayesian inference generates thousands

or millions of parameter samples from Eq. (4.3) using a posterior sampling technique [112], and

hence requires a huge number of p(do;x) evaluations. For our purpose, however, it is difficult
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to comply with this requirement because the likelihood function is computationally intractable as

modeling the cyclic elastoplastic behavior of structural steels demands a substantial computational

cost. Consequently, it is impractical to directly employ the posterior sampling technique using

Eq. (4.3).

To deal with this difficulty, recent studies approximated the likelihood using surrogate models

and performed MCMC or MCS based upon approximate likelihoods [113, 114]. Thus, it is very

important to achieve sufficient accuracy of the surrogate models for having reliable posterior samples.

Yet the use of either the goodness-of-fit coefficient evaluated for a test dataset [113] or a space-

filling experimental design [114] may not be the best choice for handling the trade-off between the

required number of costly training samples and the reliability of MCMC samples. This is due to

the fact that neither of these methods incorporates the information from each parameter sample

into the improvement of the approximate likelihood accuracy, and it is more efficient if improving

the reliability of MCMC samples can totally ignore the parameter region that is unlikely to be

consistent with the measured dataset. Thus, the remaining issue is how to distinguish the region

the approximate likelihood should be constructed carefully from that should be ignored to reduce

the number of costly simulations based on the information from the parameter sample. This is the

focus of the subsequent sections.

4.2 Approximate Bayesian computation (ABC)

ABC appears as one of the posterior approximation methods [112, 115–117]. It bypasses the evalua-

tions of p(do;x) using samples generated from the FE model. The main idea is to draw a parameter

sample x from the prior π(x), evaluate the numerical dataset d(x) using the FE model, generate δ

from Eq. (4.2), and accept x as a sample constituting the posterior PDF in Eq. (4.3) if δ is small

enough. The underlying foundation of this idea is the generation of sample (x, δ) from the following

joint PDF:

πABC
ξ (x, δ;do) ∝ π(x)π(δ;x)Kξ(δ), (4.4)

where Kξ(δ) is a kernel function indicating whether a parameter sample x is accepted or not. Most

implementations of ABC algorithms use Kξ(δ) = I [δ ≤ ξ] with the indicator function I[·] as detailed
in Eq. (B.3) and a small threshold value ξ > 0. As a result, the ABC posterior can be derived from

Eq. (4.4) as

πABC
ξ (x;do) ∝ π(x)

∫
π(δ;x)Kξ(δ) dδ. (4.5)

This can be interpreted as conditioning the joint PDF in Eq. (4.4) on the measured dataset do. The

kernel function allows us to assign larger weights for parameter samples with smaller δ.

A high dimensional dataset do and a small threshold value ξ may result in a small probability

of accepting a parameter sample at which the associated vector of simulated responses is close to

do [112]. In this case, a large ξ may be needed for an increase in the acceptance probability. A

relatively large ξ, however, can lead to a poor approximation of the posterior because the simulated

response vector corresponding to the accepted parameter sample is not actually close to do. To deal

with this issue, let z(x) = η(d(x)) : Rm → Rq be a mapping (or summary statistics [112]) to reduce

the dimension of d, where q ≪ m. Here z(x) serves as an informative feature of d(x). By choosing
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an appropriate mapping η(·), the ABC posterior in Eq. (4.5) can be approximated by

πABC
ξ (x;do) ≈ πABC

ζ (x; zo) ∝ π(x)
∫
π(∆;x)Kζ(∆) d∆, (4.6)

where zo = η(do), π(∆;x) = N
(
f(x), ω2

)
with f(x) = ∥z(x)− zo∥, ω is a standard deviation value

in the space of ∆, and Kζ(∆) = I [∆ ≤ ζ] with a small threshold value ζ > 0.

By further generating a total of n∆ samples {∆1, . . . ,∆n∆} from π(∆;x) for a given parameter

vector x, the ABC posterior can be estimated by replacing the integral in Eq. (4.6) with the Monte-

Carlo approximation, such that

πABC
ζ (x; zo) ∝

π(x)

n∆

n∆∑
t=1

I
[
∆t ≤ ζ

]
≈ π(x)P [∆(x) ≤ ζ] , (4.7)

where P [∆(x) ≤ ζ] is the approximate likelihood. Applying Markov’s inequality to P [∆(x) ≤ ζ] =
1− P [∆(x) ≥ ζ] gives [118]

πABC
ζ (x; zo) ∝∼ π(x)P [∆(x) ≤ ζ] ≥ π(x)

[
1− E[∆(x)]

ζ

]
, (4.8)

where “∝∼” denotes “approximately proportional”.

The approximation in Eq. (4.8) implies that a large error due to the estimation of P [∆(x) ≤ ζ]
can lead to substantial uncertainty in the posterior estimate. This error can be reduced by adopting

one of the following refinement approaches developed in the community of statistical modeling. The

first approach explores the important region of the parameter space that corresponds to a high

probability of accepting a parameter sample x [118]. This approach is equivalent to maximizing the

lower bound of the approximate likelihood or minimizing E[∆(x)] in Eq. (4.8). The second approach

sequentially reduces the variance of πABC
ζ (x; zo) [119]. Each of these approaches can be formulated

as an optimization problem with a costly objective function, and therefore, can be handled by BO.

4.3 Bayesian optimization-based approximate Bayesian com-

putation

At the beginning of the BO-assisted ABC approach, we approximate the mean f(x) = E[∆(x)] of

the discrepancy ∆(x) using a GP model; see Section 2.3. This GP model is constructed from a

training dataset D = {xi, f i}Ni=1, where xi is a set of parameters, f i = ∥z(xi) − zo∥, and N is the

number of training samples. The sample xi is randomly generated from the prior π(x). In case π(x)

is a uniform PDF, it can be better to generate xi using Latin-hypercube sampling [74] that provides

a good space-filling training dataset. The value f i is calculated through d(xi), or equivalently z(xi),

by performing the FE analysis that inputs xi as the vector of material parameters.

The GP model describes the relationship between f and x using a conditional Gaussian f̂(x).

Following Eqs. (2.31a) and (2.31b), the GP model for f(x) reads

f̂(x) ∼ N
(
µf̂ (x), σ

2
f̂
(x)
)
, (4.9)
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where µf̂ (x) and σf̂ (x) are the mean and standard deviation of f̂(x), respectively.

The costly simulation of cyclic elastoplastic behavior of structural steels motivates the use of

BO to intelligently guide the approximation of ABC posterior. The mathematical foundation BO

is detailed in Section 2.4. Suppose BO has completed the s-th iteration at which a solution has

been found from a training dataset. By maximizing an acquisition function formulated from the

GP model for the objective function, BO strategically selects a new, good design vector (parameter

vector) for updating the current solution in the next iteration, i.e., the (s + 1)-th iteration. In

particular, the new parameter vector xs+1 is found by solving

xs+1 = argmax
x∈X

α(x), (4.10)

where α(x) and X are the acquisition function and the space of parameters, respectively.

After obtaining xs+1, the corresponding objective function is computed by the FE analysis. xs+1

and the corresponding objective function are then added to the current training dataset for updating

the solution as well as the GP model.

As discussed in Chapter 2, BO formulates the acquisition function α(x) based on two main

criteria: (1) improving the current best-found solution (i.e., exploitation) and (2) reducing the

uncertainty in GP predictions (i.e., exploration). In addition to these criteria, this chapter formulates

α(x) based on other two approaches that aim to reduce the error in approximating the ABC posterior.

The first approach to reducing the error in the ABC posterior approximation refines f̂(x) in

the region that minimizes the discrepancy mean f(x) for an increase in the probability of accepting

parameter samples generated from the prior [118]. This is similar to the exploitation of BO when

conditioning the objective function on the associated GP model. Three acquisition functions for

solving such a problem are provided in Eqs. (2.34), (2.35), and (2.36), namely PI, EI, and LCB,

respectively.

The second approach to reducing the error in the ABC posterior estimation refines f̂(x) in

the region that reduces the variance of πABC
ζ (x; zo) approximation as given in Eq. (4.7) [119]. To

formulate an acquisition function for this approach, we first evaluate the mean and variance of

πABC
ζ (x; zo) when conditioned on the GP model f̂(x), such that

E
[
πABC
ζ (x; zo)

]
∝∼ π(x)Φ

 ζ − µf̂ (x)√
ω2 + σ2

f̂
(x)

 , (4.11)

V
[
πABC
ζ (x; zo)

]
∝∼ π

2(x)

Φ
 ζ − µf̂ (x)√

ω2 + σ2
f̂
(x)

Φ

 µf̂ (x)− ζ√
ω2 + σ2

f̂
(x)

− 2T

 ζ − µf̂ (x)√
ω2 + σ2

f̂
(x)

,
ω√

ω2 + 2σ2
f̂
(x)

 ,
(4.12)

where T (·, ·) denotes the Owen’s T-function as

T (x1, x2) =
1

2π

∫ x2

0

e−0.5x2
1(1+x2)

1 + x2
dx. (4.13)

Note that Eq. (4.11) is derived from the assumption that π(∆;x) = N
(
f(x), ω2

)
, while the deriva-

tion of Eq. (4.12) is detailed in Ref. [119].

To reduce the uncertainty in πABC
ζ (x; zo) approximation, we wish to generate new parameter
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samples in the region that has a large value of V
[
πABC
ζ (x; zo)

]
[119], which is similar to exploration

of the standard BO when conditioning the objective function on the associated GP model. Thus,

the following acquisition function named VAR is utilized for specifying the new parameter vector:

α(x) = π2(x)

Φ
 ζ − µf̂ (x)√

ω2 + σ2
f̂
(x)

Φ

 µf̂ (x)− ζ√
ω2 + σ2

f̂
(x)

− 2T

 ζ − µf̂ (x)√
ω2 + σ2

f̂
(x)

,
ω√

ω2 + 2σ2
f̂
(x)

 .
(4.14)

Algorithm 4.1 BO-assisted ABC

1: Specify d0, π(·), η(·), ζ, smax, N , Ns, ω (optional);
2: z0 ← η(d0);
3: D ← ∅;
4: Generate N samples of parameter vector xi ∼ π(x);
5: for i = 1 : N do
6: Evaluate d(xi) using the FE model; ▷ Costly step
7: z(xn)← η(d(xi));
8: f i ← ∥z(xi)− zo∥;
9: D ← D ∪ {xi, f i};

10: end for
11: for s = 0 : smax do
12: Construct f̂(x) in Eq. (4.9) from D;
13: Find xs+1 by solving problem (4.10);
14: if xs+1 /∈ D then
15: Evaluate d(xs+1) using the FE model; ▷ Costly step
16: z(xs+1)← η(d(xs+1));
17: fs+1 ← ∥z(xs+1)− zo∥;
18: D ← D ∪ {xs+1, fs+1};
19: else
20: exit for
21: end if
22: end for
23: Generate Ns parameter samples from Eq. (4.11) using the adaptive MCMC [120];
24: return Ns samples of material parameters from the approximate posterior.

To this end, Algorithm 4.1 summaries the identification procedure utilizing the BO-assisted ABC

approach, where smax and Ns in step 1 are the pre-specified limit of the number of BO iterations

and the number of approximate posterior samples to be generated, respectively. Specifying ω is

optional because an optimal ω can be determined in each BO iteration, as a hyperparameter, by

maximizing the approximate marginal likelihood of π(∆;x) derived from the GP model f̂(x); see

Section 2.3. The BO nested in the algorithm (i.e., steps 11−22) terminates if either the number of

its iterations reaches smax or xs+1 is identical to any member of D, i.e., the condition in step 14 is

not satisfied. Step 13 requires an optimization algorithm for solving problem (4.10). For this task,

any conventional optimization algorithm can be used because the form of α(x) is explicitly given.

GA with a population size of 4000 is used in this study. Other parameters for GA are listed in

Table 3.1.

After the refinement process is completed, the final GP f̂(x) from step 12 and the prior π(x)

incorporated in Eq. (4.11) are used in step 23 as input to an adaptive MCMC [120] for generating

a total of Ns parameter samples that are representatives of the posterior samples. The associated
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MCMC toolbox is available at https://github.com/mjlaine/mcmcstat.git (Accessed on May

10, 2022). Note that the initial parameter vector for starting the MCMC takes the value of new

parameter vector obtained from the very last BO iteration of step 13.

4.4 Benchmarks and identification example

In this section, we first verify the performance of Algorithm 4.1 against the benchmark analyses of

two datasets generated from a Gaussian model [119] (Section 4.4.1) and a g-and-k distribution [121]

(Section 4.4.2). We then carry out the algorithm to identify the approximate posteriors of elastoplas-

tic parameters used for modeling the cyclic elastoplastic behavior of a steel specimen tested under

different cyclic loading conditions (Section 4.4.3).

4.4.1 Benchmark 1: Analysis of Gaussian model data

The approximate posterior of x = [x1, x2]
T ∈ X = [0, 8]2 is found once the associated dataset

do =
∑5

i=1 di/5 has been observed, where di ∼ p(d;x) = N (d;x,Σ) (i = 1, . . . , 5) and the co-

variance matrix Σ is known. If x ∼ π(x) = N (x;a,B) truncated to X for given a and B, the

true posterior can be derived as π(x;do) = N (a⋆,B⋆), where a⋆ = B⋆
(
B−1a+ 5Σ−1do

)
and

B⋆ =
(
B−1 + 5Σ−1

)−1
; see Ref. [119]. The true posterior is the baseline to assess the accuracy of

the approximate posterior obtained from Algorithm 4.1.

To generate the dataset do and specify the prior π(x), we set x = [2, 2]T , Σ11 = Σ22 = 1,

Σ12 = Σ21 = 0.5, a = [5, 5]T , and B = I. The summary statistics and the discrepancy are defined by

z(x) = d(x) and f(x) =

√
(z(x)− zo)

T
Σ−1 (z(x)− zo), respectively. The parameters for Algorithm

4.1 include ζ = {1, 0.25}, ω = 0.5, N = 10 samples, smax = 100 iterations, and Ns = 5×104 samples.

In addition to using only one of the four acquisition functions stated in Sections 2.4 and 4.3 (i.e.,

PI, EI, LCB, and VAR) for each ABC attempt, we employ another strategy named LCB-VAR that

switches the acquisition function from LCB to VAR during the ABC attempt. Accordingly, LCB

and VAR guide BO in specifying new parameter vectors for the first half and second half of smax

iterations, respectively. To further assess the accuracy of the approximate posterior, we define a

distance criterion d =
∑J

j=1

∣∣∣πABC
ζ (xj ; zo)− π(xj ; zo)

∣∣∣, where xj are the node coordinate vectors of

grid [0, 0.1, . . . , 8]2 and J = 812 is the number of nodes.

Figure 4.1 shows the histories of d for different acquisition functions with two levels of discrepancy

threshold ζ = 1 and 0.25. For both threshold levels, the refinement of GP model for the discrepancy

mean improves the accuracy of ABC posterior approximations considerably. The approximate ABC

posterior is better when using the smaller discrepancy threshold as the final values of d associated

with ζ = 0.25 are much smaller than those associated with ζ = 1. For ζ = 0.25, similar accuracy

levels of the approximate posterior are obtained from LCB and VAR. Switching the acquisition

function from LCB to VAR during the ABC attempt can slightly improve the approximate posterior

for ζ = 0.25 in Fig. 4.1(b).

Figure 4.2 compares the approximate and true posteriors for different acquisition functions with

two discrepancy threshold levels ζ = 1 and 0.25 . It is confirmed that all the approximate posteriors

can reproduce the true posterior with an acceptable accuracy. For the same discrepancy threshold

level, the posterior approximations brought by LCB, VAR, and LCB-VAR are more accurate than
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Figure 4.1: Benchmark 1: Histories of the distance criterion d for different acquisition functions with
two levels of discrepancy threshold. (a) ζ = 1; (b) ζ = 0.25.
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Figure 4.2: Benchmark 1: Comparison of identification results for different acquisition functions
with two levels of discrepancy threshold. (a) PI; (b) EI; (c) LCB; (d) VAR; (e) LCB-VAR.

those by PI and EI.

Figure 4.2 also provides insights into how new parameter samples are added to the training

dataset when using each acquisition function for a specific threshold level. Accordingly, EI and

LCB tend to draw new samples both in the likelihood area where the discrepancy is small, and on

the boundary where the uncertainty in GP predictions is large due to the lack of training points.

VAR, on the other hand, draws new samples in the prior area only because it incorporates the prior

information as stated in Eq. (4.12). We see that the new samples associated with two levels of ζ

are identical when using PI, EI, or LCB because of their independence on ζ, but are different when

using VAR because of its dependence on ζ. Thus, different levels of discrepancy threshold can share

the same GP refinement process if PI, EI, or LCB is the acquisition function of interest.
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Figure 4.3: Benchmark 1: Comparison of approximate and true marginal posterior PDFs of each
parameter for different acquisition functions with ζ = 1. (a) PI; (b) EI; (c) LCB; (d) VAR; (e)
LCB-VAR.
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  Figure 4.4: Benchmark 1: Comparison of approximate and true marginal posterior PDFs of each
parameter for different acquisition functions with ζ = 0.25. (a) PI; (b) EI; (c) LCB; (d) VAR; (e)
LCB-VAR.

Figures 4.3 and 4.4 compare the approximate and true marginal posteriors of each parameter

for ζ = 1 and 0.25, respectively. These figures again confirm that the improvement of approximate

ABC posterior is achieved when using the smaller discrepancy threshold.

4.4.2 Benchmark 2: Analysis of g-and-k data

This example carries out Algorithm 4.1 to capture the true parameters for a univariate g-and-k

distribution, which is a flexible unimodal PDF describing data with large amounts of skewness and

kurtosis. Although it has no closed form, the distribution can be defined through a quantile function
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  Figure 4.5: Benchmark 2: Approximate posteriors of each parameter for different acquisition func-
tions with three levels of discrepancy threshold. (a) PI; (b) EI; (c) LCB; (d) VAR; (e) LCB-VAR.

(i.e., inverse CDF) as [121]

Qgk (λ(q);x) = a+ b
(
1 + c

1− exp(−gλ(q))
1 + exp(−gλ(q))

) (
1 + λ2(q)

)k
λ(q), (4.15)

where λ(q) = Φ−1(q) is the q-th quantile of the standard Gaussian; x = [a, b, g, k]T is the vector

of four parameters of the distribution characterizing its location, scale, skewness, and kurtosis,

respectively; and c is fixed at 0.8 measuring the overall asymmetry. Our goal is to identify the

parameter vector x = [a, b, g, k]T that best fits the g-and-k distribution to an observed dataset do.

A synthetic dataset do of 104 independent samples is generated from Eq. (4.15) with x =

[3, 1, 2, 0.5]T . More specifically, 104 independent samples of λ(q) are generated from the standard

Gaussian, and each sample is then substituted into Eq. (4.15) for obtaining the corresponding sam-

ple of do. By employing Algorithm 4.1, we wish to find the approximate posterior of x so that the

associated MAP estimate is close to the true parameter vector x = [3, 1, 2, 0.5]T . For our purpose,

let π(x) = π(a)π(b)π(g)π(k) = U(0, 5)U(0, 2)U(0, 5)U(0, 1) and z(x) = [z1, z2, z3, z4]
T with

z1 = l2; z2 = l3 − l1; z3 = (l3 + l1 − 2l2)/z2; z4 = (o7 − o5 + o3 − o1)/z2. (4.16)

Here li and oj denote the i-th quartile and the j-th octile of d(x) ∈ R104 ,respectively. The vector

z(x), following Ref. [121], is called robust summary statistics with z1, z2, z3, and z4 representing

the median, interquartile range, skewness, and kurtosis of the dataset do, respectively. If a random

seed is used throughout the identification process, each sample of x drawn from π(x) yields a unique

vector z(x) through d(x) generated from Eq. (4.15).
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  Figure 4.6: Benchmark 2: Comparison of approximate posteriors obtained from different acquisition
functions for a specific level of discrepancy threshold. (a) ζ = 0.5; (b) ζ = 0.1; (c) ζ = 0.05.

Table 4.1: Benchmark 2: Comparison of MAP estimates of each parameter for different acquisition
functions with ζ = 0.5 and 0.05.

ζ Parameter PI EI LCB VAR LCB-VAR true

0.5

a 2.939 2.981 2.967 2.963 2.972 3.00
b 0.956 1.004 0.969 0.952 0.959 1.00
g 2.893 2.896 2.759 2.873 2.838 2.00
k 0.415 0.340 0.366 0.436 0.474 0.50

0.05

a 2.962 2.985 2.958 2.973 2.974 3.00
b 0.951 0.990 0.987 1.002 0.986 1.00
g 2.743 2.852 2.735 2.863 2.710 2.00
k 0.361 0.409 0.479 0.451 0.458 0.50

Table 4.2: Benchmark 2: Comparison of standard deviation values of each parameter for different
acquisition functions with ζ = 0.5 and 0.05.

ζ Parameter PI EI LCB VAR LCB-VAR

0.5

a 0.297 0.284 0.284 0.270 0.273
b 0.236 0.226 0.222 0.206 0.205
g 0.838 0.790 0.816 1.188 1.098
k 0.237 0.238 0.234 0.223 0.229

0.05

a 0.203 0.191 0.190 0.192 0.181
b 0.165 0.154 0.144 0.152 0.137
g 0.524 0.480 0.514 0.469 0.460
k 0.188 0.195 0.186 0.186 0.178

The discrepancy is defined by the Euclidean norm f(x) = ∥z(x)−zo∥2. Parameters for Algorithm

4.1 include ζ = {0.5, 0.1, 0.05}, N = 100 samples, smax = 100 iterations, and Ns = 105 samples.

Because our goal is to find the best-fit parameter vector, ω is automatically optimized in each BO

iteration by maximizing the approximate marginal likelihood of π(∆;x) derived from f̂(x).
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  Figure 4.7: Benchmark 2: Additional sampling for different acquisition functions with ζ = 0.05. (a)
PI; (b) EI; (c) LCB; (d) VAR; (e) LCB-VAR.

As depicted in Fig. 4.5, Algorithm 4.1 successfully identifies the approximate posterior of each

parameter for different acquisition functions with three levels of discrepancy threshold. The MAP

estimate of each parameter, as expected, can be found in the neighborhood of the true value. The

PDF values at the MAP estimates of all parameters associated with ζ = 0.5 are much smaller than

those associated with ζ = 0.1 and 0.05 because there is a large number of accepted samples found

from the prior when using a larger ζ, which flattens the approximate posteriors.

Figure 4.6 compares the approximate posteriors of each parameter obtained from different ac-

quisition functions for a specific discrepancy threshold level. For parameters a and b, there is no

major difference between the approximate posteriors obtained from different acquisition functions

at the same discrepancy threshold level. However, those of parameters g and k are strongly affected

by the acquisition function used. LCB provides good approximate posteriors for the three levels of

discrepancy threshold.

Tables 4.1 and 4.2 quantitatively compare the MAP estimates and standard deviation values,

respectively, associated with the approximate posteriors of each parameter for different acquisition

functions. The MAP estimate of each parameter is close to the true parameter as expected. The

smaller discrepancy threshold value, i.e., ζ = 0.05, can provide a more accurate MAP estimate as

well as a smaller standard deviation value of the approximate posterior. Among the five acquisition

function schemes, LCB-VAR with ζ = 0.05 offers the most accurate posterior approximation.

The success of Algorithm 4.1 in identifying the parameters for the g-and-k distribution lies in the

special locations of additional samples found by BO. As depicted in Fig 4.7, the additional samples

from all the acquisition functions tend to concentrate in the neighborhood of the true parameter

vector, where any sample drawn from the prior has a high chance to be accepted as a posterior

sample.
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Figure 4.8: Example: Approximate posteriors of each parameter obtained from different acquisition
functions, four levels of discrepancy threshold, and dataset SS1.

4.4.3 Example: Parameters for a steel specimen

Algorithm 4.1 is employed to infer the cyclic elastoplastic parameters for the steel specimen in

Section 3.3. The specimen was tested under three different loading histories SS1, SS2, and SS3. Three

experimental datasets of σ − ϵ curves were obtained corresponding to the three loading histories,

where σ and ϵ are the axial true stress and axial true strain, respectively. This section, however,

only uses the experimental datasets from SS1 and SS2 for illustration of the identification process.

The material behavior of the specimen is modeled by the nonlinear combined isotropic/kinematic

hardening that is characterized by a total of seven parameters. For identification, Young’s modu-

lus and Poisson’s ratio of the specimen are kept constant as E = 205.94 GPa and ν = 0.3, re-

spectively. Thus, there are five material parameters to be identified for the specimen, i.e., x =

[σy,0, C1, γ1, Q∞, b].

Let σs
i,t(x) denote the simulated value of σ at the t-th time step of the i-th cyclic loading history

of Ni discrete steps, and σm
i,t denote the corresponding measured value. Therefore, the measured

dataset do for the i-th cyclic loading history is a vector of Ni values of σ. Let z(x) = d(x). The

discrepancy mean associated with the i-th cyclic loading history for the identification problem of

the specimen can be defined by the root-mean-square deviation as

fi(x) =

√√√√ 1

Ni

Ni∑
t=1

(
σs
i,t(x)− σm

i,t

)2
. (4.17)
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Figure 4.9: Example: Approximate posteriors of each parameter obtained from different acquisition
functions, four levels of discrepancy threshold, and dataset SS2.

Using the interval for each parameter in Table 3.2, we define a prior of independent material

parameters as π(x) = π(σy,0)π(C1)π(γ1)π(Q∞)π(b), where π(σy,0) = U(250, 260) MPa, π(C1) =

U(2000, 8000) MPa, π(γ1) = U(10, 100), π(Q∞) = U(10, 100) MPa, and π(b) = U(5, 25). For

identification, the parameters characterizing Algorithm 4.1 are set as ζ = {20, 10, 5, 2} MPa, ω = 3

MPa, N = 100 samples, smax = 100 iterations, and Ns = 105 samples. Algorithm 4.1 inputs the

experimental dataset from SS1 or SS2 for finding the approximate posterior of each parameter.

Then, the MAP estimate found from the resulting approximate posterior for each loading history is

compared with the corresponding optimal deterministic value (i.e., reference value) given in Table 3.3.

Approximate posteriors and MAP estimates

Figures 4.8 and 4.9 show the approximate posteriors of each parameter, respectively, obtained from

the datasets SS1 and SS2 with four discrepancy threshold levels and five acquisition function strate-

gies. The approximate posteriors of each parameter brought by PI, EI, LCB, and LCB-VAR are

similar for each threshold level, while the posterior by VAR is quite different from those by the other

acquisition functions when the discrepancy threshold level becomes smaller.

Tables 4.3 and 4.4, respectively, show the MAP estimates and standard deviation values of each

parameter for different combinations of the acquisition function and measured dataset with ζ = 20

and 2 MPa. The reference value in the last column of Table 4.3 obtained from the deterministic

approach in Section 3.3 is the baseline to reasonably assess the accuracy of the corresponding MAP

estimate. The results in Table 4.3 show that the MAP estimates of all parameters from different
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Table 4.3: Example: Comparison of MAP estimates of each parameter for different combinations of
the acquisition function and measured dataset with ζ = 20 and 2 MPa.

Dataset Parameter PI EI LCB VAR LCB-VAR ref. (Table 3.3)

SS1 (ζ = 20 MPa)

σy,0 [MPa] 251.24 251.21 250.65 251.45 251.19 250.00
C1 [MPa] 8000.00 7804.99 8000.00 7848.57 7790.70 8000.00
γ1 65.50 65.22 64.64 66.51 65.50 69.19
Q∞ [MPa] 38.64 38.41 39.64 37.66 38.68 42.11

SS1 (ζ = 2 MPa)

σy,0 [MPa] 250.71 250.64 250.56 250.49 250.28 250.00
C1 [MPa] 7967.22 7880.43 8000.00 8000.00 7915.22 8000.00
γ1 68.03 67.42 68.19 69.61 67.25 69.19
Q∞ [MPa] 40.27 39.55 41.15 37.53 39.91 42.11
b 5.25 5.20 5.22 5.00 5.28 5.00

SS2 (ζ = 20 MPa)

σy,0 [MPa] 251.81 251.10 250.75 251.30 251.25 250.01
C1 [MPa] 7714.71 7807.73 8000.00 7671.86 7741.45 7999.77
γ1 64.83 64.79 65.50 64.11 65.60 70.31
Q∞ [MPa] 66.58 64.81 65.92 65.73 64.68 70.28
b 5.70 5.77 5.65 5.57 5.56 5.01

SS2 (ζ = 2 MPa)

σy,0 [MPa] 251.12 251.23 250.67 250.05 251.33 250.01
C1 [MPa] 7868.71 7881.34 7906.98 7948.73 7847.83 7999.77
γ1 68.08 67.68 67.36 68.80 67.94 70.31
Q∞ [MPa] 67.15 66.73 67.92 72.52 68.46 70.28
b 5.30 5.31 5.29 5.18 5.35 5.01

Table 4.4: Example: Comparison of the standard deviation values of each parameter for different
combinations of the acquisition function and measured dataset with ζ = 20 and 2 MPa.

Dataset Parameter PI EI LCB VAR LCB-VAR

SS1 (ζ = 20 MPa)

σy,0 [MPa] 2.62 2.72 3.10 2.69 2.75
C1 [MPa] 539.87 539.50 558.73 534.93 990.65
γ1 7.73 8.31 7.93 7.84 10.67
Q∞ [MPa] 3.67 3.94 3.85 3.61 3.56

SS1 (ζ = 2 MPa)

σy,0 [MPa] 1.88 2.22 3.92 2.30 1.98
C1 [MPa] 341.99 464.31 322.63 957.01 542.55
γ1 4.50 4.95 8.65 9.62 5.27
Q∞ [MPa] 5.17 5.91 12.60 9.96 5.99
b 1.37 1.06 5.16 2.04 8.84

SS2 (ζ = 20 MPa)

σy,0 [MPa] 2.84 2.96 3.21 2.88 2.86
C1 [MPa] 692.79 601.52 593.90 1254.92 600.37
γ1 7.53 7.11 6.77 10.20 6.94
Q∞ [MPa] 9.12 8.87 9.18 11.16 9.01
b 3.24 3.79 3.96 3.76 3.49

SS2 (ζ = 2 MPa)

σy,0 [MPa] 2.60 2.68 3.06 0.47 2.94
C1 [MPa] 504.51 543.85 315.44 525.99 713.21
γ1 5.10 5.56 3.97 5.44 6.07
Q∞ [MPa] 6.38 7.00 6.02 6.02 8.55
b 1.12 1.33 1.32 0.75 1.15
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Figure 4.10: Example: Comparison of approximate posteriors of each parameter from four levels of
discrepancy threshold and dataset SS1. (a) result from PI; (b) result from LCB-VAR.

acquisition functions are close to the reference values in both cases ζ = 20 and 2 MPa. The results

in Table 4.4 confirm that the standard deviation of each parameter tends to be small when using

a small discrepancy threshold with PI and EI, indicating an increase in the reliability of posterior

approximation. This, however, is not apparent when using LCB, VAR, and LCB-VAR.

Effect of discrepancy threshold

Figures 4.10 and 4.11 compare the approximate posteriors of each parameter, respectively, obtained

from datasets SS1 and SS2 with four levels of discrepancy threshold. A large value of the discrepancy

threshold flattens the approximate posterior of each parameter because many parameter samples

that are not consistent with the measured dataset are accepted as samples of the posterior. The

increasing order of PDF values at the MAP estimate of each parameter from both PI and LCB-VAR

corresponds to ζ = 20, 10, and (5 & 2) MPa. The difference between the posteriors of each parameter
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Figure 4.11: Example: Comparison of approximate posteriors of each parameter from four levels of
discrepancy threshold and dataset SS2. (a) result from PI; (b) result from LCB-VAR.

by ζ = 5 and 2 MPa in most cases is not pronounced, indicating that it may be impossible to improve

the posterior approximation when the discrepancy threshold reaches a small-enough value.

Effect of initial training dataset

Since the GP model for the discrepancy mean function is constructed from the training dataset D,
it is desirable to investigate how different initial training datasets affects the resulting approximate

posteriors. For this purpose, we generate three different initial training datasets, namely Dataset1,

Dataset2, and Dataset3, and then perform ABC based on these datasets. Figures 4.12 and 4.13

compare the posteriors of each parameter associated with the three initial training datasets when

ABC is performed using the experimental results from SS1 and SS2, respectively. As observed, there

is no major difference in the approximate posteriors obtained from the three initial training datasets

when using PI; see Figs. 4.12(a) and 4.13(a). Different initial training datasets, however, can lead
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Figure 4.12: Example: Comparison of approximate posteriors of each parameter from dataset SS1,
ζ = 2 MPa, and three ABC attempts with different initial training datasets. (a) result from PI; (b)
result from LCB-VAR.

to different approximate posteriors when using LCB-VAR; see Figs. 4.12(b) and 4.13(b).

Posterior update

When the experimental datasets from different loading histories are available, we wish to update

the approximate posterior of each parameter in an online fashion when each dataset is sequentially

observed. For this purpose, we carry out two updating schemes with PI and ζ = 2 MPa, namely

SS1-SS2 and SS2-SS1, and the evolution of approximate posteriors during each scheme is shown in

Fig. 4.14. More specifically, the SS1-SS2 scheme uses the approximate posterior obtained from SS1

as prior to infer the posterior when the dataset of SS2 is observed. A similar interpretation can

be made for the SS2-SS1 scheme. In most cases of Fig. 4.14, adding more experimental datasets

can reduce the variance of the posterior of each parameter. An interesting observation is that the
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Figure 4.13: Example: Comparison of approximate posteriors of each parameter from dataset SS2,
ζ = 2 MPa, and three ABC attempts with different initial training datasets. (a) result from PI; (b)
result from LCB-VAR.

posteriors of Q∞ obtained from the two schemes are capable of representing the trade-off between

the reference values found from individual measured datasets.
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Figure 4.14: Example: Approximate posteriors obtained from two updating schemes with PI and
ζ = 2 MPa. (a) SS1-SS2 scheme; (b) SS2-SS1 scheme.

Prediction

To illustrate one of their applications to predictions of the cyclic elastoplastic behavior of the spec-

imen, the approximate posteriors obtained from PI with ζ = 2 MPa are used to reproduce the

σ − ϵ curves of SS1 and SS2. For this purpose, we consider three sets of parameter values found

from the posterior of each parameter, namely the MAP set as listed in Table 4.3, and the upper

and lower sets of the 95% confidence interval of each parameter. Accordingly, the prediction of σ

shown in Fig. 4.15 for the σ − ϵ curves of SS1 and SS2 at a specific time instant includes MAP,

lower-bound, and upper-bound values. We also see that the MAP, lower-bound, and upper-bound

curves, especially in Fig. 4.15(b), are capable of capturing the measured cure from each loading

condition.
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Figure 4.15: Example: Comparison of test data and model predictions for cyclic tests of the specimen
with the posteriors obtained from PI. (a) parameters from dataset SS1; (b) parameters from dataset
SS2.

4.5 Conclusions

This chapter has presented a BO-assisted ABC approach and its application to inversely identifying

the distributions of parameters underlying statistical models as well as the distributions of cyclic

elastoplastic parameters for structural steels from noise-corrupted experimental datasets. The ap-

proach may be useful for the structural engineering community as it facilitates the Bayesian inference

of the parameters for a costly FE model. At the heart of the approach, ABC addresses the compu-

tationally intractable likelihood function of the Bayesian inference framework, while BO embedded

in ABC tackles the costly simulation for intelligently reducing the uncertainty in the approximation

of ABC posterior. The findings of this chapter are summarized as follows:

(1) Results from the illustrative examples show that the BO-assisted ABC approach successfully of-

fers approximate posteriors that not only reproduce the true posterior with acceptable accuracy

but also capture the true deterministic parameters of a known statistical model. They also con-

firm the prediction ability of the approximate posteriors of material parameters in modeling the

cyclic elastoplastic behavior of a steel specimen subjected to different cyclic loading conditions.

These results are brought by the performance of BO in refining the GP model approximating

the discrepancy mean in important regions of the parameter space that improve the accuracy of

approximate ABC posterior.

(2) The identification results indicate that the ABC posterior approximation can be better under

a smaller discrepancy threshold. When using a sufficiently large number of MCMC samples,

a small discrepancy threshold leads to the acceptance of more good samples from the prior as
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samples constituting the posterior. However, it may be impossible to improve the posterior

approximation when the discrepancy threshold reaches a small-enough value.

(3) It is found that the accuracy of approximate posteriors is affected by the acquisition function used

in each ABC attempt. However, it is not clear to point out which acquisition function provides

the best approximate posterior from the results of three illustrative examples. In addition,

switching the acquisition function from LCB to VAR during an ABC attempt may improve the

accuracy of approximate posteriors when using a proper value of discrepancy threshold.

(4) The new samples associated with different levels of discrepancy threshold are identical when BO

is guided by PI, EI, or LCB from the same initial training dataset. Thus, the same refinement

scheme is used for different levels of discrepancy threshold if PI, EI, or LCB is the acquisition

function of interest. This facilitates the investigation of how different levels of discrepancy

threshold affect the accuracy of the approximate posteriors.
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Chapter 5

Robust design optimization of

planar steel frames using Gaussian

mixture model

This chapter focuses on the multi-objective RDO problem stated in Eq. (1.2) that is formulated for

a planar steel frame under aleatory uncertainty in material properties, external loads, and discrete

design variables. The RDO problem simultaneously minimizes the total mass of the frame, and

the mean and variance values of its maximum inter-story drift, subject to constraints on design

strength and serviceability requirements. The statistical estimates required for solving the problem

is estimated through GMMs that are trained based upon a dataset to capture the underlying joint

PDF of random input variables and the corresponding random structural responses.

5.1 Uncertainty propagation using Gaussian mixture model

5.1.1 Mean and variance of uncertain structural responses

Consider a planar steel frame structure subjected to uncertainty in random input variables x =

[sT , rT ]T , where s and r are vectors of random design variables and random parameters, respectively.

Let f denote the structural response of interest. The goal of this section is to establish the cause-effect

relationship between x and f by which the uncertainty information of f can be directly extracted

from the uncertainty information of x.

As detailed in Section 2.5, the above cause-effect relationship can be established through a GMM

that captures the joint PDF π(f,x) of f and x using a weighted sum of ng Gaussian components.

More specifically, the GMM joint PDF π(f,x) is first constructed from a training dataset D =

{xi, f i}Ni=1, where xi is a vector of random input variables and f i is the corresponding structural

response. Then, the cause-effect relationship as a conditional PDF π(f ;x) is derived from π(f,x).

Following Eq. (2.45b), π(f ;x) reads

π(f ;x) =

ng∑
k=1

Wk(x)N
(
f(x);µk(x), σ

2
k(x)

)
, (5.1)
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where Wk(x), µk(x), and σ2
k(x) stated in Eqs. (2.46), (2.43a), and (2.43b) are the mixing weight,

conditional mean, and conditional variance, respectively. They are characterized by a set of GMM

parameters including the number of Gaussian components ng, and the mixing proportion wk, mean

vector µk, and covariance matrix Σk of the k-th Gaussian component. Selecting a proper number

of Gaussian components ng is a task of model selection that can be done through BIC, while the

mixing proportion, mean vector, and covariance matrix of each Gaussian component are determined

for a particular ng by the EM algorithm; see Algorithm 2.3.

Once π(f ;x) has been obtained, the conditional mean function (i.e., regression function) of f ,

denoted by f̂(x), can be derived as

f̂(x) = E [f ;x] =

ng∑
k=1

Wk(x)µk(x). (5.2)

To estimate the mean and variance of f̂(x) under the effect of the randomness in the input

variables x = [x1, . . . , xd]
T , we utilize the second-order Taylor expansion [31, 41] with respect to x

at the mean vector µx = [µx1 , . . . , µxd
]T , such that

E
[
f̂(x)

]
= f̂(µx) +

1

2

d∑
i=1

d∑
j=1

∂2f̂

∂xixj

∣∣∣∣∣
µx

σij , (5.3)

V
[
f̂(x)

]
=

d∑
i=1

d∑
j=1

∂f̂

∂xi

∣∣∣∣∣
µx

∂f̂

∂xj

∣∣∣∣∣
µx

σij +

d∑
i=1

d∑
j=1

d∑
k=1

∂f̂

∂xi

∣∣∣∣∣
µx

∂2f̂

∂xjxk

∣∣∣∣∣
µx

σijk

+

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

∂2f̂

∂xixj

∣∣∣∣∣
µx

∂2f̂

∂xkxl

∣∣∣∣∣
µx

(σijkl − σijσkl),

(5.4)

where σij is the covariance of xi and xj ; σijk is the third-order co-moment of xi, xj , and xk; and

σijkl is the fourth-order co-moment of xi, xj , xk, and xl. The co-moments σijk and σijkl are defined

in a similar way of σij in Eq. (2.7). The calculations of the mean and variance of f̂(x) are based on

the gradient and Hessian of the GMM of interest, which is the focus of the next section.

5.1.2 Gradient and Hessian of GMMs

Let y = [y1, . . . , yM ]T denote an M -dimensional vector generated from the M -variate Gaussian

π(y) = N (y;µy,Σy), which reads

π(y) =
1

det(Σy)1/2(2π)M/2
exp

[
−1

2
(y− µy)

TΣ−1
y (y− µy)

]
. (5.5)

Let Σy = UΛUT be the singular value decomposition of the covariance matrix Σy, where U

is an orthogonal matrix and Λ is a non-singular diagonal matrix with λm at the m-th diagonal

component. Let z = UT (y − µy) so that ∂ze/∂ym = ume, where e ∈ {1, . . . ,M} and ume denotes
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the (m, e)-th element of U. The first derivatives of π(y), therefore, read

∂π(y)

∂ym
=π(y)

∂

∂ym

[
−1

2
(y− µy)

TΣ−1
y (y− µy)

]
= π(y)

∂

∂ym
(−1

2
zTΛ−1z)

=π(y)

M∑
e=1

∂

∂ze

(
−1

2

M∑
m=1

z2m
λm

)
∂ze
∂ym

= −π(y)
M∑
e=1

ze
λe
ume,

(5.6)

which is the m-th element of vector −π(y)UΛ−1z. Thus, the gradient of π(y) reads

∇π(y) = π(y)Σ−1
y (µy − y). (5.7)

Let l ∈ {1, . . . ,M}. Taking the second derivatives of π(y) leads to

∂

∂yl

(
∂π(y)

∂ym

)
=
∂

∂yl

(
−π(y)

M∑
e=1

ze
λe
ume

)

=− π(y) ∂
∂yl

(
M∑
e=1

ze
λe
ume

)
− ∂π(y)

∂yl

M∑
e=1

ze
λe
ume

=− π(y)

(
M∑
e=1

ume

λe

∂ze
∂yl

)
+ π(y)

(
M∑
e=1

ze
λe
ule

)(
M∑
e=1

ze
λe
ume

)

=− π(y)

(
M∑
e=1

ume

λe
ule

)
+ π(y)

(
M∑
e=1

ze
λe
ule

)(
M∑
e=1

ze
λe
ume

)
,

(5.8)

which is the (l,m)-th element of the matrix−π(y)UΛ−1UT+[π(y)]
−1

[∇π(y)] [∇π(y)]T ; see Ref. [122].
Thus, the Hessian of π(y) reads

(∇∇T )π(y) = −π(y)Σ−1
y +[π(y)]

−1
[∇π(y)] [∇π(y)]T = −π(y)Σ−1

y

[
−Σy + (y− µy)(y− µy)

T
]
Σ−1

y .

(5.9)

Utilizing the results in Eqs. (5.7) and (5.9), the gradient and Hessian of the GMM

ng∑
k=1

wkN (x;µx,k,Σxx,k)

in Eq. (2.45a) can be derived as

g =

ng∑
k=1

wkN (x;µx,k,Σxx,k)Σ
−1
xx,k(µx,k − x), (5.10)

H =

ng∑
k=1

wkN (x;µx,k,Σxx,k)Σ
−1
xx,k

[
−Σxx,k + (x− µx,k)(x− µx,k)

T
]
Σ−1

xx,k. (5.11)

By substituting Wk(x) and µk(x), respectively, from Eqs. (2.46) and (2.43a) into Eq. (5.2) and

then utilizing the results in Eqs. (5.10) and (5.11), the gradient and Hessian of f̂(x) can be derived

easily. Since the mixing weight Wk(x) in Eq. (2.46) is a fraction of two GMMs, i.e., Wk(x) =
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  Figure 5.1: Two-bar truss.

g(x)/h(x), the following quotient rules are used to calculate the gradient and Hessian of f̂(x):

∂Wk

∂x
=
h∂g/∂x− g∂h/∂x

h2
, (5.12a)

∂2Wk

∂x2
=
∂2g/∂x2 − 2[∂Wk/∂x][∂Wk/∂h]

T −Wk[∂
2h/∂x2]

h
. (5.12b)

5.2 Test problems

5.2.1 Two-bar truss

The statistical estimates by GMM are used to solve the RDO problem of a simple two-bar truss in

Fig. 5.1, which is taken from Ref. [123]. The cross-sectional area of the truss members s1 and the

horizontal span of the truss s2 are considered as two design variables s. The density of truss material

ρ, the external load P , and the material’s yield stress σy,0 are three random parameters r. Statistical

properties of the design variables and random parameters are given in Table 5.1. The deterministic

optimization problem of the truss formulated to minimize its total mass under constraints on the

axial stress of the truss members reads

minimize
s

f(s, r) = 10−4ρs1

√
1 + s22

subject to g1(s, r) = 1− 5P√
65s1σy,0

√
1 + s22

(
8 +

1

s2

)
≥ 0,

g2(s, r) = 1− 5P√
65s1σy,0

√
1 + s22

(
8− 1

s2

)
≥ 0,

s1 ∈ [0.2, 20] cm2, s2 ∈ [0.1, 1.6]m.

(5.13)

The RDO problem of the truss is formulated with a single function defined as a weighted sum

of the mean and standard deviation values of the objective function in problem (5.13). This RDO
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Table 5.1: Probabilistic characteristics of random variables of the two-bar truss.

Variable Description Mean COV Distribution

s1 Cross-sectional area [cm2] µs1 0.02 Normal
s2 Horizontal span [m] µs2 0.02 Normal
ρ Material density [kg/m3] 104 0.20 Beta*
P External load [kN] 800 0.25 Extreme-value type I
σy,0 Tensile strength [MPa] 1050 0.24 Lognormal

* Shape parameters of beta distribution are a = b = 5; see Section 2.2.4

ng

B
IC

 

  Figure 5.2: Selection of three GMMs for the two-bar truss.

problem reads

minimize
µs1

,µs2

F (µs1 , µs2) = 0.5
µf

10
+ 0.5

σf
2

subject to G1(µs1 , µs2) = βσg1 − µg1 ≤ 0,

G2(µs1 , µs2) = βσg2 − µg2 ≤ 0,

µs1 ∈ [0.2, 20] cm2, µs2 ∈ [0.1, 1.6]m,

(5.14)

where µ(·) and σ(·) denote the mean and standard deviation of (·), respectively; the weight factors

associated with the mean and standard deviation of the objective function are 0.5; the scaling factors

assigned for the mean and standard deviation of the objective are 10 and 2, respectively; and the

risk attitude factor β = 3.

To develop three GMMs for f , g1, and g2, a total of 8000 training samples are randomly generated

by MCS. The resulting GMMs for f , g1, and g2 shown in Fig. 5.2 are mixtures of 45, 30, and 31

Gaussian components, respectively. The computational times required for training the GMMs for

f , g1, and g2, using a PC with an Intel(R) i7-7700HQ 2.80 GHz CPU and 8.0 GB memory, are 142,

115, and 132 s, respectively.

Based on the obtained GMMs, Eqs. (5.3) and (5.4) are respectively used to estimate the mean

and variance values of the objective and constraint functions of problem (5.14). The RDO solution

to this problem is then found by a pattern search.

Table 5.2 compares the resulting RDO solution with those obtained from previous studies [123,
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Table 5.2: Comparison of robust optimization results for two-bar truss.

Results Gaussian quadrature (TPQ) MCS with 105 samples GMM
[123] [124] [this study]

µs1 [cm2] 11.5655 11.6795 11.5297
µs2 [m] 0.3771 0.3771 0.3586
F 1.2393 (1.2428) 1.2516 1.2463 (1.2292)
G1 0 (0.0096) (0.0012) 0 (0.0116)
G2 −0.4978 (−0.4931) (−0.4973) −0.4922 (−0.5084)
No. of function calls 3672 > 105 894

Numbers in parentheses are confirmed values using MCS with 105 samples

124], where a tensor product Gaussian quadrature (TPQ) [123] and MCS [124] were used to esti-

mate statistical moments of the objective and constraint functions. All RDO solutions are further

confirmed by MCS with 105 samples. It is shown that GMM can quickly provide a reasonable RDO

solution without using a complex analysis as the Gaussian quadrature method and an enormous

computer resource as MCS.

It is desirable to find a more reliable solution to the RDO problem because the current RDO

solutions shown in Table 5.2 still violate the constraint G1. To do so, we replace G1 in problem (5.14)

with a new constraint function as

G1(µs1 , µs2) = βσg1 − µg1 − 0.1. (5.15)

With the new G1, the solution to problem (5.14) is µs1 = 11.4146 cm2 and µs2 = 0.4063m. The

corresponding objective and constraint values are F = 1.2540, G1 = 0, and G2 = −0.4650. This

indicates the successful application of GMM to solving problem (5.14) with different bounds of

constraints as it equally handles the randomness of design variables and parameters during its

construction, and training should be carried out only once before solving the optimization problem

with various bounds of constraints.

5.2.2 Steel frame

This section examines the regression and probabilistic modeling performances of GMM through

characterizing the uncertain structural response of a four-story three-bay steel frame in Fig. 5.3,

which is taken from Ref. [125]. External loads acting on the frame consist of dead loads DL, short-

term live load S, long-term live load L, snow load on the roof SL, and wind loadWL. They constitute

different vertical loads acting on the beam members of the frame, which are indicated in Fig. 5.2

and described in Table 5.3. The structural response of interest is incorporated into a LSF related

to the maximum inter-story drift of the frame, which reads

g(s, r) =
δmax(s, r)

δa
− 1, (5.16)

where δmax is the maximum inter-story drift; δa = 11.7 mm is the allowable upper bound for δmax; s

is the vector of design variables, including four pairs of the cross-sectional area and moment of inertia

{(A1, I1), (A2, I2), (A3, I3), (A4, I4)} of four groups of structural members indicated in Fig. 5.3; and
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Figure 5.3: Four-story three-bay steel frame.

r is the vector of random parameters, including Young’s modulus E and external loads WL, and

(Q11, Q12, . . . , Q43). The uncertainty information of r is specified in Table 5.4.

A training dataset of 3×104 samples of the design variables, random parameters, and g values is

created for constructing the GMM. In particular, the samples of the design variables s are uniformly

drawn over eight predefined intervals provided in Table 5.5, while those of the random parameters

r are generated using MCS for the PDFs given in Table 5.4.

Table 5.3: Vertical loads applied to each beam of the four-story three-bay steel frame.

Load Combination

Q11, Q13, Q21, Q23, Q31, Q33 DL + S1 + L1

Q12, Q22, Q32 DL + S2 + L2

Q41, Q42, Q43 DL + SL

Table 5.4: Probabilistic characteristics of random parameters for the four-story three-bay steel frame.

Variable Description Mean COV Distribution

E Young’s Modulus [GPa] 210 0.08 Normal
DL Dead load [kN/m] 20 0.10 Normal
S1 Short term live load 1 [kN/m] 10 0.10 Extreme-value type I
S2 Short term live load 2 [kN/m] 5 0.30 Extreme-value type I
L1 Long term live load 1 [kN/m] 10 0.30 Extreme-value type I
L2 Long term live load 2 [kN/m] 5 0.30 Extreme-value type I
SL Snow load [kN/m] 5 0.26 Extreme-value type I
WL Wind load [kN] 8 0.37 Extreme-value type I
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Table 5.5: Predefined intervals for the design variables for the four-story three-bay steel frame.

Design variable Interval [cm2] Design variable Interval [cm4]

A1 [46, 122] I1 [2118, 12949]
A2 [29, 90] I2 [735, 6551]
A3 [39, 97] I3 [4922, 26599]
A4 [24, 62] I4 [1652, 9610]

A test dataset of 2× 104 samples is also created for obtaining a comparison between the perfor-

mances of GMM and MCS using FE analyses of the frame. The mean value for each design variable

is first randomly picked within the corresponding interval. Then, the samples of each design variable

are randomly generated based on the assumption that each design variable is normally distributed

around the corresponding picked mean with a COV of 0.05 for both the cross-sectional area and

the moment of inertia. The samples of the random parameters r are generated in the same way as

creating the training set.

Figure 5.4(a) shows the process of automatically selecting the number of Gaussians ng using BIC.

The optimal number of Gaussians found in this experiment is 14 when BIC gets its minimum value.

Results in Figs. 5.4(b), (c), and (d) show that the obtained GMM has an ability to accurately extract

the LSF g and characterize its probabilistic property for the frame in the presence of uncertainty

in design variables s and random parameters r. In particular, Fig. 5.4(b) provides a scatter of

g values computed by using Eq. (5.2) (estimated) over those obtained from FE analyses (true). A

high coefficient of determination R2 = 0.996 indicates a good regression performance of the obtained

GMM. Figures 5.4(c) and (d) show a good agreement between the true and estimated PDFs and

CDFs, respectively, of the LSF g. Moreover, the mean values for the true and estimated g are 0.2342

and 0.2335, respectively, and the corresponding variance values are 0.0822 and 0.0901.

5.3 Robust design optimization of steel frames

5.3.1 Formulation of robust design optimization (RDO) problem

In this section, we extend the deterministic design optimization problem of steel frames subject to

constraints on design strength, serviceability, and constructional requirements specified by the load

and resistance design approach [126–128] to incorporate uncertainty and state our multi-objective

RDO problem for a planar steel frame of interest. In addition to the total mass of the frame,

the mean and variance of the maximum inter-story drift measuring an expected damage level are

considered as other two objective functions.

In the RDO problem, the design variable vector, denoted as s0, represents the set of nominal

values of cross-sectional area and moment of inertia of structural members, while the vector of

random parameters r represents Young’s modulus, the yield and tensile strengths, and the external

loads. Since the sections for structural members are selected from a list of standard steel sections, the

components of s0 are integer and deterministic, and the values of cross-sectional area and moment

of inertia as well as the elastic and plastic sectional moduli are linked. The random vector s is

generated in the neighborhood of s0 based on the specified PDF of geometric parameters such as

the overall depth, flange width, web thickness, and flange thickness; see Section 5.3.2.
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Figure 5.4: Results of GMM performances test for four-story three-bay steel frame. (a) BIC versus
ng; (b) Scatter plot; (c) PDF; (d) CDF.

Let ne, Wi, and Li denote the number of structural members including beams and columns of

the frame, the nominal mass [kg/m] of the steel section for the i-th member, and the length of the

i-th member, respectively. The first objective function of the RDO problem reads the nominal value

of the total structural mass f1(s
0) of the frame as

f1(s
0) =

ne∑
i=1

Wi(s
0)Li. (5.17)

Let δj and Hj , respectively, denote the j-th inter-story drift and the height of the j-th story of

the frame with ns stories. If the assigned allowable value of the inter-story drift is Hj/300, the LSF

f(s, r) related to the maximum inter-story drift of the steel frame is defined as

f(s, r) = max

(
|δ1|

H1/300
, . . . ,

|δns
|

Hns
/300

)
− 1. (5.18)

Thus, the mean f2(s
0) and variance f3(s

0) of f(s, r) read

f2(s
0) = E [f(s, r)] , f3(s

0) = V [f(s, r)] . (5.19)

The constraint on the mean performance of the i-th beam-column member is defined based on
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the AISC-LRFD interaction formula [24], such that

g1,i(s
0) = E [g1,i(s, r)] ≤ 0, g1,i(s, r) =


Pr,i

Pc,i
+ 8

9

(
Mrx,i

Mcx,i
+

Mry,i

Mcy,i

)
− 1 if

Pr,i

Pc,i
≥ 0.2,

Pr,i

2Pc,i
+
(

Mrx,i

Mcx,i
+

Mry,i

Mcy,i

)
− 1 if

Pr,i

Pc,i
< 0.2,

(5.20)

where Pr and Pc denote the required and available axial strengths of the structural member (either

tension or compression), respectively; Mrx and Mry are the required flexural strengths about the

major axis x and the minor axis y, respectively; andMcx andMcy are the available flexural strengths

about the major axis x and the minor axis y, respectively. The available axial and flexural strengths

are estimated in accordance with chapters E and F of ANSI/AISC 360-16 [24], respectively. They

require the evaluation of effective length factors Kc for columns of an unbraced frame. In this study,

Kc is evaluated through the French rule [129] as

Kc =

√
1.6GAGB + 4(GA +GB) + 7.5

GA +GB
, (5.21)

where

G =

∑
Ic/Lc∑
Ib/Lb

. (5.22)

The subscripts A and B refer to the joints at the lower and upper ends of the column being considered,

respectively; and Ic(b) and Lc(b) are the moment of inertia and length of the column (beam) members

connected to that joint, respectively. For a column in the first story, GA = 10 if the column is pin-

supported, while GA = 1 if it is fixed to a strong foundation.

The constraint on the mean value of the total drift ∆t of the frame is

g2(s
0) = E [g2(s, r)] ≤ 0, g2(s, r) =

|∆t|
Ht/400

− 1, (5.23)

where Ht/400 is the allowable value of |∆t| with the overall height Ht of the frame.

The constraint on the mean value of the long-term deflection ∆b,k of the k-th beam member is

defined by

g3,k(s
0) = E [g3,k(s, r)] ≤ 0, g3,k(s, r) =

|∆b,k|
lb,k/360

− 1, (5.24)

where lb,k and lb,k/360 are the span and the allowable long-term deflection of the k-th beam,

respectively.

The strong column-weak beam constraints ensure that the columns are strong enough so that

the frame exhibits a desirable yielding mechanism over multiple stories of the frame, rather than

an inelastic action concentrated in column hinges at a single story [130]. Accordingly, the strong

column-weak beam constraints defined for the frame are stated as

g4,m(s0) = E [g4,m(s, r)] ≤ 0, g4,m(s, r) = 1−

∑
Mpc,m∑
Mpb,m

, (5.25)

where
∑

Mpc,m is the sum of the flexural strengths of the upper and lower columns that constitute
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the m-th joint; and
∑

Mpb,m is the sum of the flexural strengths of beams connected to the m-th

joint. The readers may refer to ANSI/AISC 341-16 [130] for detailed calculations of these strengths.

The geometric constraints that ensure the flange width bbf of beam members connected to a

column should not exceed the flange width bcf of the column are defined as

h1,n(s
0) =

bbf,n
bcf,n

− 1 ≤ 0. (5.26)

Other geometric constraints are defined to ensure the depth dcu of section for a column on the

upper story of a column-column joint should not exceed the depth dcl for the column in the lower

story, such that

h2,v(s
0) =

dcu,v
dcl,v

− 1 ≤ 0. (5.27)

Let nb, nj, nbc, and ncc denote the number of beams, number of joints between beams and

columns, number of beam-column connections, and number of column-column joints, respectively.

Then, the multi-objective RDO problem formulated for the frame can be stated as

minimize
s0

[f1(s
0), f2(s

0), f3(s
0)]

subject to g1,i(s
0) ≤ 0 (i = 1, . . . , ne),

g2(s
0) ≤ 0

g3,k(s
0) ≤ 0 (k = 1, . . . , nb),

g4,m(s0) ≤ 0 (m = 1, . . . , nj),

h1,n(s
0) ≤ 0 (n = 1, . . . , nbc),

h2,v(s
0) ≤ 0 (v = 1, . . . , ncc).

(5.28)

In our design optimization problem, column and beam members of the frame are further classified

into b1 and b2 groups, respectively. The design variables s0 represent the nominal values of the cross-

sectional area and moment of inertia that are linked. Without compromising the structural integrity,

we only construct GMMs corresponding to f(s, r), g1(s, r) values associated with b1 column groups

(each is the maximum value among those for columns in the same group), g1(s, r) values associated

with b2 beam groups, g2(s, r), and g3(s, r) values corresponding to b2 beam groups. Since it is trivial

to calculate g4, h1, and h2 from the list of standard steel sections, they are assigned as inequality

constraints to the optimization problem directly. Moreover, the nominal values linked with s0

are simply used for calculating the total mass f1(s
0) because the uncertainty of cross-sectional

dimensions are normally distributed around the these values.

5.3.2 Uncertainty characteristic

We limit uncertainty considered in our optimization problem to aleatory type that is associated with

the randomness of the random variables s and r. The randomness properties of geometric properties

related to the design variable vector s, including the overall depth d, flange width bf, web thickness

tw, and flange thickness tf of standard steel sections, are specified in Table 1.1. Those of the random

parameters r, i.e., material properties and external loads are reported in Table 1.2.
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Table 5.6: Parameters for NSGA-II.

Parameter Value

Population size 1000
Probability of mutation 20%
Maximum number of generations 100
Fitness function tolerance 10−6

Constraint tolerance 10−6

Parallel computing true

5.3.3 Preparation of training dataset

As previously mentioned, the construction of GMM requires a training dataset of samples of random

vectors s, random parameters r, and the corresponding structural response of interest, which is

obtained through a linear elastic analysis of frame structures.

The training samples of the design variables s, including geometric properties for the column and

beam groups, are uniformly generated over associated intervals. MCS is then performed to generate

data around each of these samples to characterize the probabilistic property of the sectional geometric

dimensions given in Table 1.1. In other words, the sampling technique here consists of two stages: (1)

generate uniformly a random set of samples and (2) draw data around these samples. Alternatively,

only the first stage may be used because the variance values of the sectional geometric dimensions are

very small. Meanwhile, the random samples of Young’s modulus, yield strength, tensile strength,

and external loads are generated by MCS according to their probabilistic distributions listed in

Table 1.2.

To determine a proper value of the number of training samples for a particular problem, a total of

five training datasets of design variables and random parameters with different numbers of samples,

i.e., 104, 2× 104, 3× 104, 4× 104, and 5× 104, are used for training GMMs. Since problem (5.28)

is formulated in a high dimensional space of s and r, a large number of training samples is required

to effectively generalize the design space. After GMMs are obtained, a total of 2 × 104 samples of

an independent test dataset are generated and used to compute the coefficient of determination R2,

which evaluates the goodness-of-fit of each GMM and MCS using FE analyses. As a result, the

GMMs associated with 5×104 samples provide the highest R2 values for all design examples. Thus,

they are used for solving problem (5.28).

5.3.4 Best compromise design

It is desirable to find a compromise design for verifying the structural performance after solving

problem (5.28) as the objective functions f2 and f3 are totally conflicting. The best compromise

solution can be selected from the obtained Pareto-optimal solutions using the fuzzy-based method

described in Section 3.2.1. Accordingly, each value of the normalized membership function mj

in Eq. (3.6) represents a level of trade-off between the values of objective functions and the best

compromise solution corresponds to the largest value of mj .
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5.3.5 Optimization procedure

To this end, the optimization procedure for solving problem (5.28) using GMMs follows four main

steps.

� Step 1: Define and characterize the random variable vector s and random parameter vector

r for the steel frame of interest; see Section 5.3.2. Randomly generate the training data for

constructing GMM; see Section 5.3.3.

� Step 2: Set the limit nc for the number of Gaussian components, e.g., nc = 50. Start GMM

for the LSF of interest at the number of Gaussian ng = 1 that increases step by step to ng = nc,

thereby producing a total of nc GMMs. Among them, select the best GMM according to the

minimum BIC; see Section 2.5. Generate independent samples of a test dataset and use them

for obtaining the discrepancy (or R2) between the performance of the obtained GMM and

MCS using FE analyses. The accuracy of the obtained GMM performance is verified by an

value of R2 > 0.9 to decide whether more training data points should be added.

� Step 3: Employ NSGA-II for finding approximate Pareto-optimal solutions to problem (5.28).

NSGA-II calls Eqs. (5.3) and (5.4) derived from the trained GMMs for estimation of f2 and

f3, and the mean values of g1, g2, and g3 at a particular candidate solution.

� Step 4: Find the best compromise solution among Pareto-optimal solutions based on the

fuzzy set theory in Section 3.2.1 and use it for verification of structural performance.

Step 3 utilizes an elitist-strategy NSGA-II [91], available in the MATLAB R2018a Global Op-

timization Toolbox [106], for finding the approximate Pareto-optimal solutions to problem (5.28).

Parameters characterizing NSGA-II are listed in Table 5.6. To further examine its stochastic prop-

erty, NSGA-II is performed several times for each design example using PC with an Intel(R) Xeon(R)

E5-2643V4 3.40 GHz CPU and 64 GB memory.

To carry out NSGA-II for the discrete optimization problem, an array of integers assigned as the

initial population is randomly generated at the beginning of the algorithm. A mapping function is

defined to transform the integer decision vector s0 to the linked random vector s, namely the cross-

sectional dimensions, cross-sectional area, moment of inertia, elastic and plastic sectional moduli.

The crossover and mutation functions are also modified to guarantee that the offsprings of NSGA-II

generated after each iteration are integers.

5.4 Design examples

5.4.1 Example 1: Three-story two-bay steel frame

Problem (5.28) is formulated for a three-story two-bay steel frame in Fig. 5.5. Although many

deterministic optimal designs have been found for a minimum total mass of this frame using vari-

ous conventional optimization algorithms [126–128], a robust design is not available for addressing

uncertainty in material, geometry, and load parameters simultaneously.

The frame consists of 15 members classified into two groups: group (1) for columns and group (2)

for beams, which are indicated Fig. 5.5. The cross-sectional dimensions, external loads, and material

properties (i.e., yield strength, tensile strength, and Young’s modulus) are sources of uncertainty.
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  Figure 5.5: Example 1: Three-story two-bay steel frame.

Table 5.7: Example 1: List of column and beam sections for three-story two-bay steel frame.

Column Beam

W18× 86 W12× 72 W24× 94 W18× 65
W18× 76 W12× 65 W24× 84 W18× 60
W18× 65 W12× 58 W24× 76 W16× 77
W18× 60 W12× 53 W24× 68 W16× 67
W18× 55 W12× 50 W24× 62 W16× 57
W16× 89 W12× 45 W24× 55 W16× 50
W16× 77 W12× 40 W21× 93 W16× 45
W16× 67 W10× 77 W21× 83 W16× 40
W16× 57 W10× 68 W21× 73 W14× 61
W16× 50 W10× 60 W21× 68 W14× 53
W14× 90 W10× 54 W21× 62 W14× 48
W14× 82 W10× 49 W21× 57 W14× 38
W14× 74 W10× 45 W21× 55 W14× 34
W14× 68 W8× 40 W21× 50 W14× 30
W14× 61 W8× 35 W21× 48 W14× 26
W14× 53 W8× 31 W18× 71 W14× 22

The nominal values of cross-sectional dimensions of the members in each group are extracted from

a list of American wide flange standard steel sections in Table 5.7. The nominal mass [kg/m] of

each section can be found in the AISC shapes database [3]. The nominal values of the yield stress,

tensile strength, and Young’s modulus of the steel material are 250 MPa, 400 MPa, and 200 GPa,

respectively. The mean values of external loads are provided in Fig. 5.5. The probabilistic properties

of these parameters are described in Table 1.2.

The intervals of the cross-sectional dimensions for the column group are d ∈ [150, 500] mm,

bf ∈ [140, 400] mm, tw ∈ [5.5, 16.0] mm, and tf ∈ [6, 24] mm, and those for the beam group include d ∈
[350, 620] mm, bf ∈ [160, 250] mm, tw ∈ [5.5, 16.0] mm, and tf ∈ [9, 24] mm. After a training dataset

is generated for the frame, a total of five GMMs are constructed for f (GMM-1), g1,1 for the column

group (GMM-2), g1,2 for the beam group (GMM-3), g2 (GMM-4), and g3 (GMM-5). Figure 5.6
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Figure 5.6: Example 1: Selection of five GMMs for three-story two-bay steel frame.
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  Figure 5.7: Example 1: Pareto front and the best compromise design for three-story two-bay steel
frame.

Table 5.8: Example 1: Comparison of optimization results for three-story two-bay steel frame.

Group ID Deterministic NSGA-II

Ref. [126] Ref. [127] Ref. [128] min. mass best compromise

Column (1) W10× 60 W10× 49 W10× 68 W14× 53 W18× 65
Beam (2) W24× 62 W24× 62 W21× 55 W24× 62 W24× 62
f1 [kg] 8504 8069 8174 8229 8724
f2 − − − −0.319 −0.561
f3 − − − 0.023 0.010
f2 (MCS) − − − −0.317 −0.560
f3 (MCS) − − − 0.028 0.012
g1,1 (MCS) − − − −0.128 −0.303
g1,2 (MCS) − − − −0.108 −0.149
g2 (MCS) − − − −0.617 −0.739
g3 (MCS) − − − −0.317 −0.395
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Figure 5.8: Example 1: Statistical properties of the maximum inter-story drift for the min. mass
and robust designs of three-story two-bay steel frame. (a) PDFs; (b) CDFs.

shows the selection of the optimal number of Gaussian components for each GMM using BIC.

Accordingly, the optimal numbers of Gaussian components are 33, 28, 20, 26, and 27, respectively,

for GMM-1, GMM-2, GMM-3, GMM-4, and GMM-5. The variation ranges of the mixing proportions

for GMM-1, GMM-2, GMM-3, GMM-4, and GMM-5 are found as [0.0077, 0.0599], [0.0098, 0.0954],

[0.0266, 0.1083], [0.0074, 0.0963], and [0.0103, 0.0596], respectively.

After the GMMs are obtained, Eq. (5.3) is used to evaluate f2 and the mean values of g1, g2,

and g3 when the steel section is fixed, while the mean values of the design variables and random

parameters are directly determined from the corresponding nominal values. The variance f3 is

computed using Eq. (5.4).

NSGA-II is performed three times. A set of 19 resulting Pareto-optimal solutions, the best

compromise solution, and a solution with the minimum value of the structural mass are identically

obtained as depicted in Fig. 5.7. Table 5.8 lists the sets of steel sections for the column and beam

groups of the minimum mass and best compromise designs. They are also compared with the

previous deterministic optimal designs. It is found that the minimum total mass of the frame is

8229 kg that outperforms the design by Pezeshk et al. [126] and is 2% and 0.7% larger than the

designs by Toğan [127] and Maheri and Narimani [128], respectively. The best compromise design

has the largest total mass of 8724 kg. This design, however, shows a trade-off between the three

objective functions, and hence provides a very small variance f3 = 0.010 and reasonable structure

design performance with f2 = −0.561, which is far enough from the limit state value f2 = 0.

To confirm their actual robustness and feasibility, the obtained robust optimal designs are used

to characterize the probabilistic property of the LSF regarding the maximum inter-story drift f in

Eq. (5.18). The mean f2, variance f3, and LSFs of g1,1, g1,2, g2, and g3 for the minimum mass

and the best compromise designs are evaluated by MCS with 105 samples. Results in Table 5.8

confirm the feasibility of the obtained robust optimal designs as the associated constraint values are

all negative. The mean f2 and variance f3 by MCS, respectively, are −0.560 and 0.012 for the best

compromise design, and −0.317 and 0.028 for the minimum structural mass design, which are very

close to those obtained from the GMM-1. Figure 5.8 compares the PDFs and CDFs of the maximum

inter-story drift limit state for the min. mass and best compromise designs generated by MCS and

GMM-1. A good agreement between the PDFs and CDFs generated by GMM-1 and those by MCS
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is observed. The robustness levels of the two designs are clearly distinguished.

5.4.2 Example 2: Six-story two-bay steel frame

This design example formulates problem (5.28) for a six-story two-bay steel frame in Fig. 5.9, which

is taken from Ref. [131]. The frame includes 30 members classified into six column groups [(1) to

(6)] and two beam groups [(7) and (8)]. The cross-sections for the members in beam and column

groups are selected from the list in Table 5.9. Uncertainty and its characteristic for all random

input variables are described in the same way as those for the three-story two-bay steel frame in

Example 1.
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  Figure 5.9: Example 2: Six-story two-bay steel frame.
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Table 5.9: Example 2: List of column and beam sections for six-story two-bay steel frame.

Column Beam

W24× 84 W16× 50 W12× 50 W24× 62 W16× 50 W12× 40
W24× 76 W16× 40 W12× 45 W24× 55 W16× 45 W12× 35
W24× 68 W14× 99 W12× 40 W21× 62 W16× 40 W12× 30
W24× 62 W14× 90 W10× 68 W21× 55 W16× 36 W12× 26
W21× 93 W14× 82 W10× 60 W21× 48 W16× 31 W12× 22
W21× 83 W14× 74 W10× 54 W21× 57 W16× 26 W12× 19
W21× 73 W14× 68 W10× 49 W21× 50 W14× 43 W12× 16
W21× 68 W14× 61 W10× 45 W18× 71 W14× 38 W12× 14
W18× 86 W14× 53 W10× 39 W18× 65 W14× 34 W10× 33
W18× 76 W14× 48 W8× 40 W18× 60 W14× 30 W10× 30
W18× 65 W12× 79 W8× 35 W18× 55 W14× 26 W10× 26
W18× 60 W12× 72 W8× 31 W18× 50 W14× 22 W10× 22
W18× 55 W12× 65 W6× 25 W18× 46 W12× 53 W10× 19
W16× 77 W12× 58 W6× 20 W18× 40 W12× 50 W10× 17
W16× 67 W12× 53 W6× 15 W18× 35 W12× 45 W10× 15
W16× 57 W16× 57

ng
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Figure 5.10: Example 2: Selection of GMMs for f and g2 of six-story two-bay steel frame.

Figure 5.10 shows the selection of the GMMs associated with f and g2 using BIC. Accordingly,

the mixtures of seven and five Gaussian components are constructed for modeling f and g2. The

GMMs associated with the remaining LSFs of the frame are constructed in a similar way.

Since there are many groups of columns and beams in this design example, NSGA-II is per-

formed 25 times to examine the statistical characteristics of the resulting robust optimal solutions.

Figure 5.11 shows the variation in the total structural mass for the minimum mass and best com-

promise solutions. The variation ranges for the total mass values associated with the minimum mass

and best compromise solutions are [7460, 7739] and [8520, 8694] kg, respectively. Although there

exists a variation in the solution of 25 NSGA-II attempts, the differences in the minimum mass and

in the best compromise solutions among the obtained solutions are not much higher than 3.7% and

2.0%, respectively.

Figures 5.12(a), (b), and (c) show a set of 303, 218, and 284 Pareto-optimal solutions obtained

from the 1st, 2nd, and 3rd NSGA-II attempts, respectively. Although there are differences in the
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Figure 5.11: Example 2: Variation in the total structural mass due to different NSGA-II trials for
six-story two-bay steel frame.
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Figure 5.12: Example 2: Pareto front and the best compromise design for six-story two-bay steel
frame. (a) 1st NSGA-II; (b) 2nd NSGA-II; (c) 3rd NSGA-II.
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Table 5.10: Example 2: Comparison of optimization results for six-story two-bay steel frame.

Group ID Deterministic 1st NSGA-II 2nd NSGA-II 3rd NSGA-II

Ref. [131] Ref. [131] min. best min. best min. best
mass compromise mass compromise mass compromise

Column (1) W16× 57 W18× 55 W18× 60 W18× 60 W18× 60 W24× 62 W18× 55 W24× 62
Column (2) W16× 40 W12× 50 W16× 40 W16× 40 W14× 48 W16× 40 W16× 40 W14× 53
Column (3) W10× 39 W8× 31 W12× 45 W12× 50 W12× 40 W12× 40 W14× 48 W12× 50
Column (4) W24× 62 W21× 73 W18× 55 W18× 60 W18× 55 W18× 55 W18× 60 W24× 62
Column (5) W24× 62 W18× 65 W16× 40 W16× 40 W16× 40 W16× 50 W16× 40 W18× 60
Column (6) W8× 40 W12× 40 W14× 48 W14× 53 W14× 48 W14× 48 W14× 48 W18× 55
Beam (7) W14× 30 W16× 40 W18× 35 W21× 50 W18× 35 W21× 50 W18× 35 W18× 40
Beam (8) W18× 65 W14× 22 W12× 35 W12× 35 W12× 35 W12× 40 W12× 35 W14× 34
f1 [kg] 7533 7829 7460 8649 7530 8574 7477 8568
f2 − − −0.147 −0.367 −0.140 −0.384 −0.148 −0.333
f3 − − 0.101 0.036 0.101 0.034 0.103 0.037
f2 (MCS) − − −0.172 −0.410 −0.168 −0.391 −0.175 −0.337
f3 (MCS) − − 0.093 0.042 0.095 0.037 0.087 0.041
max. g1,1−6 (MCS) − − −0.119 −0.223 −0.118 −0.216 −0.163 −0.197
max. g1,7−8 (MCS) − − −0.040 −0.009 −0.040 −0.289 −0.004 −0.079
g2 (MCS) − − −0.243 −0.457 −0.239 −0.482 −0.245 −0.423
max. g3,1−2 (MCS) − − −0.135 −0.177 −0.134 −0.181 −0.162 −0.277

numbers of solutions and in the solutions themselves, the shapes of Pareto fronts obtained from the

three attempts are similar.

As listed in Table 5.10, the minimummass of the frame is 7460 kg (1st NSGA-II) that outperforms

the previous deterministic optimal designs obtained using PSO (7533 kg) and harmony search (7829

kg). Meanwhile, the best compromise solution is 8568 kg (3rd NSGA-II) that is 14.9% heavier than

that of the minimum mass design. The trade-off between the three objective functions is apparent.

The minimum mass design although has a smaller mass, it is both un-safer, with f2 = −0.147, and
more sensitive, with f3 = 0.101, than the best compromise design, with f2 = −0.333 and f3 = 0.037.

It is worth noting that a larger number of candidate steel sections assigned to each group, as

listed in Table 5.9, leads to a difficulty in finding the best compromise solution because many

Pareto-optimal solutions correspond to similar values of normalized membership function defined in

Eq. (3.5). In this circumstance, some rules of thumb for selection of both column and beam members

may be used to shorten the candidate list.

To further confirm their robustness and feasibility, the minimum mass and the best compromise

designs obtained from the first three NSGA-II attempts are used to characterize the probabilistic

property of the LSF related to the maximum inter-story drift and those of the constraint functions

using MCS with 105 samples. Results in Table 5.10 confirm the feasibility of the obtained robust

optimal designs as all constraint function values associated with these designs are negative. Fur-

thermore, Fig. 5.13 shows an agreement between the PDF and CDF generated by GMM for the

best compromise designs obtained from the first three NSGA-II attempts and those generated by

MCS. Note that the GMM curves in Figs. 5.13(b) and (c) show slight disturbances around f = 0

because the mean value of a Gaussian component of the GMM is f = −0.074 and the associated

input variables correspond to large values of mixing weight Wk(x) of that component.
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Figure 5.13: Example 2: Statistical property of the maximum inter-story drift for the robust design
of six-story two-bay steel frame: (a) PDF and CDF from 1st NSGA-II; (b) PDF and CDF from 2nd
NSGA-II; (c) PDF and CDF from 3rd NSGA-II.

5.5 Conclusions

This chapter has presented an application of GMM to solving the multi-objective RDO problem

of planar steel frames. The RDO problem is formulated to minimize three conflicting objective

functions, namely the total mass, and the mean and variance values of the maximum inter-story

drift of the frames, under some constraints on the design strength and serviceability requirements.

Uncertainty in the discrete design variables is modeled in the wide range between the smallest and

largest values in the catalog of the cross-sectional areas. The main idea of the application is to

let random input variables and the corresponding structural response behave according to a joint

distribution. GMM aims at statistically understanding this joint distribution based on a sampled
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training dataset for both characterizing the probabilistic property of the structural response and

providing a simple regression function to facilitate the calculation of the response and its statistical

estimates required for solving the RDO problem. Uncertainty in the small ranges of the discrete

design variables can also be easily extracted from GMM trained only once before carrying out

optimization under various conditions. The main conclusions are summarized as follows:

(1) GMM demonstrates its ability to quickly provide a reasonable RDO design for a two-bar truss

and accurately characterize the probabilistic property of a LSF for a steel frame structure before

being applied to solving the RDO problem of interest. The latter may be further beneficial for

uncertainty quantification of structural responses of a structure that has experienced deteriora-

tion or retrofitting in which the GMMs of the responses have been constructed only once.

(2) Approximate Pareto-optimal solutions to the RDO problem are found using NSGA-II with

support from the trained GMMs in calculation of the objective and constraint functions. The

best trade-off solution is recommended to relieve the conflicting objective functions from the

perspective of fuzzy-based compromise programming.

(3) Two numerical design examples have demonstrated the robustness and feasibility of the pro-

posed method. It is confirmed that the GMM-based RDO are capable of finding good optimal

solutions that well represent different levels of the trade-off between the conflicting objective

functions. Based on these solutions, structural engineers can specify their design according to

their preferences and the best compromise solution is one reasonable choice.
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Chapter 6

Bayesian optimization approach to

robust design optimization of steel

frames with joint and individual

probabilistic constraints

This chapter integrates joint and individual probabilistic constraints into the multi-objective RDO

problem presented in Chapter 5, and hence formulates two new multi-objective RDO problems.

These problems are of interest because they are capable of exploring the space of uncertain constraint

functions for confirming the feasibility of a candidate solution, rather than a point estimate as

presented in Chapter 5. The basis of these problems is also intimately related to the limit state

design philosophy that has adopted the so-called reliability indices to derive the partial factors

specified by design codes [23, 25].

Although considering the probabilistic constraints makes the RDO problem more realistic, it

considerably increases the complexity of the problem because the calculation of each probabilistic

constraint function is NP-hard [44]. In this chapter, a constrained BO approach is proposed to

facilitate solutions to the RDO problems with joint and individual probabilistic constraints.

6.1 Robust design optimization of steel frames with proba-

bilistic constraints

Consider a steel frame structure subjected to aleatory uncertainty in design parameters r that consist

of material properties and external loads. Let s = [s1, ..., sd1
]
T ∈ Nd1 denote a d1-dimensional

deterministic vector of discrete design variables of the frame. Each element of s is selected from a

given list of standard steel sections, i.e., sk ∈ Sk (k = 1, . . . , d1). Let f1(s) and f(s, r) represent the

total mass and the LSF associated with the maximum inter-story drift of the frame, respectively. The

mean and variance of f(s, r) are denoted by f2(s) = E [f(s, r)] and f3(s) = V [f(s, r)], respectively.

Also, let gi(s, r) represent the LSFs of certain requirements on the serviceability and strength of
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the frame, and hj(s) indicate deterministic constraints on the geometry of the structural members.

By incorporating the joint and individual probabilistic constraints into the multi-objective RDO

problem of the frame stated in Eq. (5.28), the following two RDO problems are formulated:

(Problem J) minimize
s

[f1(s), f2(s), f3(s)]

subject to P[gi(s, r) ≤ 0, i = 1, . . . , I] ≥ 1− ϵ,

hj(s) ≤ 0 (j = 1, . . . , J),

sk ∈ Sk (k = 1, . . . , d1).

(6.1)

(Problem I) minimize
s

[f1(s), f2(s), f3(s)]

subject to P[gi(s, r) ≤ 0] ≥ 1− ϵi (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

sk ∈ Sk (k = 1, . . . , d1),

(6.2)

where ϵ ∈ (0, 1) and ϵi ∈ (0, 1) are the prescribed risk levels of the joint probabilistic constraint and

the i-th probabilistic constraint, respectively. Common choices of ϵ and ϵi are 0.1 and 0.05. For

simplicity, problems (6.1) and (6.2) are termed as problems J and I, respectively.

As mentioned in Section 1.4, problems J and I correspond to two different ways the frame

approaches its collapse state. Problem J with a joint probabilistic constraint takes the probability

over the entire system of dependent uncertain LSFs, while problem I focuses on the violation of

each of statistically independent uncertain LSFs. The two problems also set the basis for further

application to a general case where all possible failure modes for a structure can be anticipated,

which may consist of both joint and individual failure modes.

Although the two problems are important for finding robust designs of the frame, solving them

effectively is hindered by the following four issues. First, it is difficult to check the feasibility of a

candidate solution s because the calculation of probabilistic constraints is intrinsically an NP-hard

problem [44]. Second, propagating uncertainty in r to evaluate the mean and variance of f(s, r), as

discussed in Section 1.5.1, is a challenging task. Third, a search that directly evaluates the objective

and constraint functions during the optimization process may be impossible because FE analyses

empowered to evaluate these functions are less advantageous to processing optimization as well as

probabilistic computations. Finally, it may be impossible to obtain exact optimal solutions to the

two problems because their feasible regions defined by the probability functions are non-convex in

general. Existing approaches addressing these issues, as reviewed in Section 1.5, are only applicable

to special forms of the uncertain objective and probabilistic constraint functions.

In the subsequent sections of this chapter, a constrained BO approach is proposed for solving

the two problems as it does not require special forms of the uncertain objective and probabilistic

constraint functions. In this way, the non-linear and FE-implicit nature of the problems can be

addressed through the mean functions of the GP models that are surrogates for the uncertain

objective and probabilistic constraint functions. These surrogates, in turn, facilitate the evaluation

of probabilistic constraint functions for a particular candidate solution s using the SAA presented

in Section 2.6 and Chapter 7. Thus, the feasibility of s can be reasonably confirmed in each BO

iteration. Furthermore, the mean and variance of the objective function f(s, r) for a specific s can
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be estimated using the second-order Taylor series approximation in which the gradient and Hessian

of f(s, r) with respect to r are evaluated based on the mean function of the corresponding GP

surrogate. With reasonable calculations of the objectives and constraints, an optimization strategy

is devised to guide BO toward better candidate solutions and to offer good Pareto-optimal solutions

to each problem when the optimization process terminates. In particular, an acquisition function

is proposed and maximized by solving a mixed-integer nonlinear programming (MINLP) problem

using a novel random sampling method coupled with SA.

6.2 Proposed Bayesian optimization

6.2.1 Surrogates for uncertain objective and probabilistic constraint func-

tions

In the proposed BO, the objective function f(s, r) and the constraint functions gi(s, r) are first

approximated by GP models. The construction of these GP models from a training dataset D can

be found in Section 2.3. Since it is desirable to obtain highly accurate GP models for f(s, r) and

gi(s, r) over the region of non-positive LSFs f(s, r) ≤ 0 and gi(s, r) ≤ 0, the feasible samples for

creating D are defined as those associated with the non-positive LSF values. After training, the GP

models f̂(s, r) and ĝi(s, r) are obtained for f(s, r) and gi(s, r), respectively. f̂(s, r) is characterized

by its mean µf̂ (s, r) and its variance σ2
f̂
(s, r), while ĝi(s, r) is captured by µĝi(s, r) and σ

2
ĝi
(s, r).

6.2.2 Acquisition functions

The proposed BO guides optimization of each of the two RDO problems through an acquisition

function developed based on f̂(s, r), ĝi(s, r), and the MOBO proposed in Section 3.2. Let Ω =

{f1, ..., fM} ∈ R3 and fR ∈ R3, respectively, denote the current set of M Pareto-optimal solutions

in the space of three objective functions of problem I (or J) and a fixed reference point that is

dominated by all elements of Ω. Let f(s) denote an arbitrary vector in the objective function space.

BO improves the solutions to each RDO problem after each iteration by finding a new sampling

point xn = [sTn , r
T
n ]

T in the input variable space so that xn maximizes HVI(f(s) | Ω, fR) stated in

Eq. (3.8).

Although HVI(f(s) | Ω, fR) can be used to assess improvement in the current solutions after BO

obtains the new design sn, it becomes useless if sn is infeasible. This requirement, in the presence

of uncertainty, can be transformed into maximizing the chance that a candidate solution s satisfies

both the probabilistic and deterministic constraints of each RDO problem.

For problem J, let ∆J(s, r) be a function expressing the probability that s satisfies the joint

probabilistic constraint computed from the GP models. Here r is referred to as a particular point

in the space of random parameters. ∆J(s, r) can be formulated as

∆J(s, r) = P
[
ḡ(s, r) ≤ 0

]
− 1 + ϵ, (6.3)

where ϵ is given in problem (6.1), and

ḡ(s, r) = max
{
g1(s, r), . . . , gI(s, r)

}
≈ max

{
µĝ1(s, r), . . . , µĝI (s, r)

}
. (6.4)
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If xn maximizes ∆J, it therefore increases the chance that sn satisfies the joint probabilistic constraint

of problem J.

For problem I, let ∆I(s, r) be a function expressing the chance that s satisfies all individual prob-

abilistic constraints computed from the GP models. Since gi(s, r) is represented by the GP model

ĝi(s, r) with mean µĝi(s, r) and variance σ2
ĝi
(s, r), and all probabilistic constraints are statistically

independent in this problem, ∆I(s, r) can be defined as

∆I(s, r) =

I∏
i=1

[P [gi(s, r) ≤ 0]− 1 + ϵi] ≈
I∏

i=1

{
1

2

[
1 + erf

(
−µĝi(s, r)√
2σĝi(s, r)

)]
− 1 + ϵi

}
, (6.5)

where erf(·) indicates the Gauss error function to evaluate the CDF of the Gaussian variable ĝi(s, r).

If xn maximizes ∆I, it also increases the chance for sn to satisfy all individual probabilistic constraints

of problem I.

For both problems, the following feasibility indicator function IFI(s) is formulated to indicate

whether s satisfies all deterministic constraints hj(s) ≤ 0 or not:

IFI(s) =

1 if hj(s) ≤ 0 (j = 1, . . . , J),

0 otherwise.
(6.6)

By incorporating the HIV and feasibility criteria into a single improvement criterion, the following

acquisition functions α1(s, r) and α2(s, r) are formulated for problems J and I, respectively:

α1(s, r) = HVI(f(s) | Ω, fR)∆J(s, r)IFI(s), (6.7a)

α2(s, r) = HVI(f(s) | Ω, fR)∆I(s, r)IFI(s). (6.7b)

Thus, the next sampling point xn for problem J or I is the maximizer of α1(s, r) or α2(s, r),

respectively. Maximizing α1(s, r) or α2(s, r) is associated with solving an MINLP problem because

the acquisition function is nonlinear, and s and r are discrete and continuous vectors, respectively.

An optimization strategy is developed in the next section for solving such an MINLP problem.

6.3 Solution approach

6.3.1 Sorting Pareto-optimal solutions

Let Ωa denote a set of already-generated candidate solutions that consists of all design points of the

initial training dataset at the first iteration of BO. Based on Ωa, an elitist non-dominated sorting

approach [91] is employed to find a set Ω of approximate Pareto-optimal solutions to the RDO

problems in each BO iteration. For obtaining a set of feasible solutions, the sorting approach requires

efficient evaluations of the mean f2(s) and variance f3(s) of the uncertain objective function, and the

probabilities in the probabilistic constraints of problems J and I. Since f(s, r) in each BO iteration

is approximated by f̂(s, r), Eqs. (5.3) and (5.4), which are derived from the second-order Taylor

expansion, use µf̂ (s, r) as the regression function for evaluation of f2(s) and f3(s), respectively.

Furthermore, the joint and individual probabilistic constraints in each iteration of the BO can be

estimated using the SAA detailed in Section 2.6 of Chapter 2 and Algorithm 7.2 of Chapter 7, which
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is developed based upon the GP surrogates ĝi(s, r) for the probabilistic constraint functions.

6.3.2 Maximizing the acquisition functions

The MINLP problem of two acquisition functions in Eqs. (6.7a) and (6.7b) reads

[sn, rn] = argmax
s,r

[α1(2)(s, r)]

subject to HVI(f(s) | Ω, fR) > 0,

sk ∈ Sk (k = 1, . . . , d1),

r ∈ R,

(6.8)

where α1(s, r) and α2(s, r) correspond to problems J and I, respectively; and the set R is assigned

as the 95% confidence interval of the random parameters r.

Although several techniques are available for solving a convex MINLP problem [132], for exam-

ple, branch-and-bound method, single-tree method, multi-tree method, cutting plane method, and

mixed-integer second-order cone program, they are not applicable for solving problem (6.8) because

it is difficult to detect whether α1(s, r) and α2(s, r) are convex functions. One approach is to replace

α1(s, r) and α2(s, r) with piecewise linear approximations [132] and to solve the resulting approxi-

mate problem using a mixed-integer linear programming algorithm. However, as both α1(s, r) and

α2(s, r) are multivariate and black-box functions, modeling their piecewise linear approximations

may be impossible. Another approach is to directly employ population-based methods, for exam-

ple, GA or PSO, but they would significantly increase the computational burden for the task of

maximizing the acquisition function, especially when either s or r is a high-dimensional vector.

Since HVI(f(s) | Ω, fR) and IFI(s) are functions of s, and r only appears in ∆J(s, r) and ∆I(s, r),

an optimization strategy that couples a random sampling method with SA is developed for solving

problem (6.8). This strategy is an extension of a two-stage random search by Do and Ohsaki [133]

that includes a stage of determining r, followed by a stage of determining s for solving upper- and

lower-level optimization problems of a single-objective discrete RDO problem with deterministic

constraints and unknown-but-bounded uncertainty in the design parameters, respectively. In this

study, these two stages are further divided into the following four steps:

(1) Generate a set Ωs of a finite number of new candidate solutions s.

(2) Calculate HVI(f(s) | Ω, fR) and IFI(s) for each member of Ωs, and retain in Ωs the members

that yield positive HVI(f(s) | Ω, fR), IFI(s) = 1, and negative values of µĝi(s, r), where µĝi(s, r)

is evaluated using Eq. (5.3).

(3) Formulate problem (6.8) for each retained member of Ωs and solve it using SA [1] for obtaining

the associated random parameters r.

(4) Select the set of s and r that maximizes α1(s, r) or α2(s, r) and assign it as the next sampling

point xn = [sTn , r
T
n ]

T .

Note that any gradient-based or population-based algorithms can be used for solving problem (6.8)

formulated in step (3) with a given s. The SA is selected here because it is able to overcome

the drawbacks of both the gradient-based and population-based algorithms that are premature

termination and computationally demanding, respectively.
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Step (1) generates two groups of new candidate solutions s for forming Ωs. The first group

consists of points drawn by random perturbations (in the design variable space) surrounding each

of the current Pareto-optimal solutions, which can be regarded as a neighborhood search [133].

In fact, each integer element of every Pareto-optimal solution is randomly increased or decreased

by an integer value such as 1, 2, 3, or 4. It is expected that a significant improvement in the

solution quantity can be achieved by performing the neighborhood search in the design variable

space of the current Pareto-optimal solutions, even though the neighborhood in this space differs

from that in the objective function space. Note that the generation of the first group may slow the

proposed BO if the current Pareto-optimal solutions involve many members, say, more than 20. In

this circumstance, the Pareto-optimal solutions in the objective function space can be first divided

into a moderately small number of disjoint clusters using the GMM clustering method, which will

be discussed in Chapter 7. In this way, the solutions from the same cluster can be referred to as

the samples generated from a Gaussian of which the mean vector is defined as the center of the

cluster. Then, a representative member for each cluster can be selected as it is nearest to the center

of the cluster. Hence, the random perturbations, in the design variable space, can be performed

surrounding each of the representative members. The second group constituting Ωs is generated by

uniformly sampling points from the design domain, which can be regarded as a global search [133].

Once Ωs is created, its members that already appear in the training dataset D are discarded. To

form a new set Ωa of already-generated solutions that is used in the next iteration of the BO, the

current set of new candidate solutions Ωs is appended to the current set Ωa.

In summary, the optimization procedure for solving problem J or I using the proposed BO follows

six main steps.

� Step 1: Generate samples of s and r using Latin hypercube sampling [74]. Also generate the

training dataset D by performing FE analyses for the generated samples.

� Step 2: Based on D, construct the GP models f̂(s, r) and ĝi(s, r).

� Step 3: Sort the Pareto-optimal solutions from the set Ωa of already-generated candidate solu-

tions Ωa, which consists of members of D at the first iteration of BO. Perform the neighborhood

and global searches to generate the set Ωs used for maximizing the acquisition function.

� Step 4: Terminate BO and output the Pareto-optimal solutions if one of the following criteria

is satisfied: (1) the number of BO iterations reaches an upper limit, which is specified by

the user to manage the trade-off between the solution quality and the computational cost for

carrying out BO; (2) the difference of the current HV and that of the previous iteration is less

than a small positive value, e.g., 10−9; and (3) the set Ωs has no feasible solution. Otherwise,

proceed to Step 5.

� Step 5: Maximize the acquisition function corresponding to each RDO problem using the

optimization strategy described above to obtain the sampling point xn for the next iteration

of BO and let Ωa = Ωa ∪ Ωs.

� Step 6: Add xn obtained from Step 5 to the training dataset, determine the associated LSF

values, update the GP models, and reiterate from Step 3.
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Table 6.1: Assigned random parameters for the two-bar truss.

Parameter Description Mean COV Distribution

ρ Mass density [kg/m3] 104 0.20 Lognormal
P External load [kN] 800 0.25 Lognormal
σy,0 Yield stress [MPa] 1050 0.24 Normal

6.3.3 Test problem

To demonstrate the feasibility of the proposed BO in solving a simple multi-objective RDO problem

with probabilistic constraints, this section investigates the two-bar truss in Fig. 5.1. The truss is

subjected to an external load P whose projections onto the horizontal and vertical axes are Px and

Py, respectively, which satisfy Py = 8Px. As stated in Section 5.2.1, two design variables for the truss

are the cross-sectional area s1 of the truss members and the horizontal span s2, i.e., s = [s1, s2]
T .

The random parameters include the magnitude of the external load P , and the mass density ρ and

yield stress σy,0 of the truss material, i.e., r = [ρ, P, σy,0]
T . Probabilistic characteristics of these

parameters are given in Table 6.1.

A bi-objective RDO problem is formulated for the truss with two conflicting objective functions,

namely the mean and standard deviation of its total mass under individual probabilistic constraints

on the axial stresses in the members. Let f̃(s, r) denote the total mass of the truss, and g1(s, r)

and g2(s, r) denote the LSFs associated with the axial stresses in its members. The mean and

standard deviation of f̃(s, r) are f1(s) = E
[
f̃(s, r)

]
and f2(s) =

√
V[f̃(s, r)], respectively. Thus,

the bi-objective RDO problem formulated for the truss reads

minimize
s

[f1(s), f2(s)]

subject to P
[
g1(s, r) ≤ 0

]
≥ 1− ϵ1,

P
[
g2(s, r) ≤ 0

]
≥ 1− ϵ2,

s1 ∈ S1 = {1.0, 1.5, . . . , 20.0} cm2,

s2 ∈ S2 = {0.1, 0.2, . . . , 2.0}m,

(6.9)

which has the form of problem I, where S1 and S2 are the lists of possible values of s1 and s2,

respectively, and

f̃(s, r) = 10−4ρs1

√
1 + s22, (6.10a)

g1(s, r) =
5P√

65s1σy,0

√
1 + s22

(
8 +

1

s2

)
− 1, (6.10b)

g2(s, r) =
5P√

65s1σy,0

√
1 + s22

(
8− 1

s2

)
− 1. (6.10c)

Note that the mean f1(s) can be derived as a linear function of the standard deviation f2(s),

i.e., f1(s) = E[ρ]/
√
V[ρ]f2(s) = 0.2−1f2(s) = 5f2(s), where 0.2 stated in Table 6.1 is the COV of ρ.

This derivation relies on the fact that f̃(s, r) stated in Eq. (6.10a) is a linear function of the random

parameter ρ, and s1 and s2 are deterministic. The set of Pareto-optimal solutions to problem (6.9),

therefore, has only one solution.
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Figure 6.1: Histories of HVI, acquisition function, and objective functions for the two-bar truss with
two risk levels. (a)–(b) ϵi = 0.1; (c)–(d) ϵi = 0.05.
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Figure 6.2: Verification of the obtained robust designs for the two-bar truss with two risk levels. (a)
ϵi = 0.1; (b) ϵi = 0.05.
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As the first step for solving problem (6.9), a total of 200 samples are generated for the initial

training dataset. However, only 140 feasible samples are kept for training because the other 60 sam-

ples associated with either positive g1(s, r) or positive g2(s, r) are discarded. The DACE toolbox [92]

are then used together with a second-degree polynomial mean function for constructing the GP sur-

rogates for f̃(s, r), g1(s, r), and g2(s, r). Based on these surrogates, the proposed BO is employed to

solve problem (6.9) for two risk levels, namely ϵi = 0.1 and ϵi = 0.05 (i = 1, 2). The SA incorporated

in BO is carried out using MATLAB R2018a Global Optimization Toolbox [106]. Default settings

for the acceptance probability function, annealing schedule, initial annealing temperature, and max-

imum number of evaluations of the objective function are ‘acceptancesa’, ‘annealingfast’, 100, and

3000 times the dimension of r, respectively. The maximum number of iterations and the objective

function tolerance of SA are assigned as 500 and 10−6, respectively. In each iteration of BO, a total

of 200 new candidate solutions are generated for the set Ωs. Furthermore, the reference point and

the maximum iteration of the BO are assigned as fR = [50, 10] kg and 20, respectively. Here fR is

chosen from (1) the maximum value of the truss total mass computed from possible combinations

of S1 and S2 elements, and (2) the relation f1(s) = 5f2(s).

Figure 6.1 shows the maximum value of acquisition function α2, the corresponding HVI, and the

objective functions f1(s) and f2(s) at each iteration of BO for ϵi = 0.1 and ϵi = 0.05. The respective

robust designs of the truss found at the 20th iteration of the BO are s = [8.5, 0.4] and [10, 0.4]. The

computational times required for ϵi = 0.1 and ϵi = 0.05 are 905 s and 973 s using a PC with an

Intel(R) i7-7700HQ 2.80 GHz CPU and 8.0 GB memory.

To further verify the obtained robust designs, the exact robust solution to problem (6.9) is

found for each risk level. Since the sets S1 and S2, respectively, have 39 and 20 elements, a total

of 39 × 20 = 780 possible designs can be assigned for the truss using a full factorial sampling.

Then, 105 samples of the random parameters r are generated by MCS and used to calculate f1(s),

f2(s), P
[
g1(s, r) ≤ 0

]
, and P

[
g2(s, r) ≤ 0

]
for each possible design. This process is performed three

times for each risk level with different sets of MCS samples, which may lead to different solutions.

Nevertheless, the solutions by the three trials are identical for each risk level, and therefore they can

be regarded as the exact solution. Figure 6.2 confirms that the obtained robust design for each risk

level is identical to the exact design, even though the number of function evaluations used by BO

(1.30122× 105 evaluations) is much less than that by the combination of the full factorial sampling

and MCS (3× 780× 105 evaluations).

6.4 Design examples

6.4.1 LSFs of serviceability and strength requirements for steel frame

designs

The designs of two planar steel frames in this section comply with the serviceability and strength

requirements stated in ANSI/AISC 360-16 [24]. The serviceability requirements are concerned with

the inter-story drifts, total drift of the frame, and long-term vertical displacements of the beam

members, while the strength requirements are associated with strengths of column and beam mem-

bers.
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  Figure 6.3: Example 1: Three-story two-bay steel frame, groups of members, and external loads.

Table 6.2: Example 1: List of column and beam sections for the three-story two-bay steel frame.

ID Column S1 ρ1 [kg/m] Beam S2 ρ2 [kg/m]

1 W18×86 128.0 W24×68 101.0
2 W18×76 113.0 W24×62 92.0
3 W16×77 114.0 W24×55 82.0
4 W16×67 100.0 W21×57 85.0
5 W14×82 122.0 W21×55 82.0
6 W14×74 110.0 W21×50 74.0
7 W14×68 101.0 W18×65 97.0
8 W14×61 91.0 W18×60 89.0
9 W14×53 79.0 W18×40 60.0
10 W14×48 72.0 W18×35 52.0
11 W12×58 86.0 W16×57 85.0
12 W12×53 79.0 W16×50 75.0
13 W12×50 74.0 W16×45 67.0
14 W12×45 67.0 W16×40 60.0
15 W10×54 80.0 W14×61 91.0
16 W10×49 73.0 W14×53 79.0
17 W10×45 67.0 W14×48 72.0
18 W8×40 59.0 W14×38 57.8
19 W8×35 52.0 W14×34 51.0
20 W8×31 46.1 W14×30 44.0

The LSFs corresponding to the maximum inter-story drift f(s, r) of the frame, the total drift

g1(s, r) of the frame, and the maximum long-term vertical displacement among beams in the same

group are detailed in Section 5.3.1. Let nb denote the number of beam groups of the frame. The LSFs

of long-term vertical displacements among beams in the same group are g2(s, r), . . . , g1+nb
(s, r), i.e.,

g1+k(s, r) (k = 1, . . . , nb).

Let q(s, r) denote the strength LSF for a column or a beam, which is normalized using the AISC-

LRFD interaction formula in Eq. (5.20), and qmax(s, r) denote the maximum of q(s, r) among the
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Table 6.3: Example 1: Assigned random parameters for the three-story two-bay steel frame.

Parameter Description Nominal Mean/Nominal COV Distribution

q Vertical load [kN/m] 40.9 1.00 0.20 Normal
W1 Lateral load [kN] 22.2 1.00 0.37 Lognormal
W2 Lateral load [kN] 11.1 1.00 0.37 Lognormal
E Young’s Modulus [GPa] 200 1.00 0.04 Normal
σy,0 Yield stress [MPa] 250 1.05 0.06 Normal
σu Tensile strength [MPa] 400 1.05 0.08 Normal

values for the columns or beams in the same group. Thus, the LSFs corresponding to the combined

axial-flexural strength of column and beam members of the frame can be defined as

g1+nb+j(s, r) = qmax,j(s, r) (j = 1, . . . , nm), (6.11)

where nm is the number of column and beam groups.

6.4.2 Example 1: Three-story two-bay steel frame

Problems J and I are formulated for the three-story two-bay steel frame in Section 5.4.1 with modi-

fying the probabilistic properties of random parameters. The frame, as shown in Fig. 6.3, consisting

of 15 members classified into column (1) and beam (2) groups is subjected to static loads q, W1, and

W2. The steel section for the members in each group is selected from the list of American wide-flange

steel sections in Table 6.2. The independent random parameters r, including the vertical load q,

lateral loads W1 and W2, and material properties (i.e., Young’s modulus E, yield stress σy,0, and

ultimate tensile strength σu), are described in Table 6.3 with their probabilistic properties. Note

that the mass density of steel is not considered as an random parameter because the nominal mass

of the standard column or beam section is well controlled by the manufacturers and provided by a

deterministic value in Table 6.2.

The total mass f1(s), and the mean f2(s) and variance f3(s) of the LSF regarding the maximum

inter-story drift f(s, r) are considered as three objective functions, where the total mass f1(s) reads

f1(s) = 27.45ρ1 + 65.88ρ2. (6.12)

Here ρ1 and ρ2 provided in Table 6.2 are the nominal mass [kg/m] of the column and beam sections,

respectively.

Four probabilistic constraint functions correspond to the total drift g1(s, r) of the frame, maxi-

mum long-term vertical displacement g2(s, r) of the beams, combined axial-flexural strength g3(s, r)

of the columns, and combined axial-flexural strength g4(s, r) of the beams. One deterministic geo-

metric constraint h(s) ≤ 0 is also applied to beam-column connections to guarantee that the flange

width of the beam connected to a column should not exceed the flange width of the column.

A total of 150 feasible samples are generated to construct five GP models for f(s, r) and four

probabilistic constraint functions g1(s, r), g2(s, r), g3(s, r), and g4(s, r). The number of new candi-

date solutions generated in each iteration of BO is 200. A PC with an Intel(R) Xeon(R) E5-2643V4

3.40 GHz CPU and 64 GB memory is used to implement the proposed BO that solves problems J
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Figure 6.4: Example 1: Histories of HVI and acquisition functions for different RDO problems of
the three-story two-bay steel frame. (a) problem J-0.1; (b) problem I-0.1; (c) problem J-0.05; (d)
problem I-0.05.

and I with two risk levels 0.1 and 0.05. For convenient description, we refer problem J formulated

for ϵ = 0.1 and ϵ = 0.05 as problems J-0.1 and J-0.05, respectively, and problem I formulated for

ϵi = 0.1 and ϵi = 0.05 (i = 1, . . . , 4) as problems I-0.1 and I-0.05, respectively. The reference point

and the maximum number of iterations of BO are fR = [14000 kg, 0.5, 0.5] and 20, respectively. As

a note to facilitate the selection of fR, the first element is selected from the maximum value of the

frame total mass derived from the list of sections in Table 6.2; the second element associated with

the mean of f(s, r) can be assigned as any positive value so that it bounds from above the expected

value of f(s, r), which should be non-positive to ensure the structural performance; and the last

element corresponding to the variance of f(s, r) should be positive and small enough to ensure the

robustness of the frame.

Figure 6.4 shows the histories of HVI and acquisition functions obtained from solving the afore-

mentioned four RDO problems. The graphs in Fig. 6.4(c) associated with the maximum acquisition

function and the HVI are similar with respect to an appropriate scale because they are proportional

to each other at each iteration of BO; see Eq. (6.7a). Since problems I-0.1 and I-0.05 involve the

probability of simultaneously meeting all probabilistic constraints, α2 is much less than α1 at the

same risk level. BO terminates at the 16th iteration when solving problems J-0.1 and I-0.1, and

at the 10th iteration when solving problems J-0.05 and I-0.05, even though its maximum number

of iterations is assigned as 20. These early terminations arise from the fact that the set Ωs used

to maximize the acquisition function in each problem has no feasible solution; see Step 4 in Sec-
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  Figure 6.5: Example 1: Pareto-optimal solutions to different RDO problems of the three-story two-
bay steel frame. (a) problem J-0.1; (b) problem I-0.1; (c) problem J-0.05; (d) problem I-0.05.

tion 6.3.2. In addition, the computational times for BO to complete 16 and 10 iterations are 2.68

and 1.81 hours, respectively.

Figure 6.5 provides four sets of Pareto-optimal solutions corresponding to the mentioned four

RDO problems. The sets of solutions to problems J and I are identical for each risk level. Interest-

ingly, four Pareto-optimal solutions associated with the risk level 0.05 can be obtained by removing

the solution with minimum total mass f1(s) from the set of five Pareto-solutions for the risk level

0.1. Moreover, as the objective function f2(s) for all obtained solutions is negative, the mean value

of the maximum inter-story drift of each robust design, as expected, is less than the allowable value.

Exact solutions to each RDO problem of the frame are found for verifying the obtained solutions.

Because the RDO problems of the frame have only two design variables and each variable has 20

possible values as listed in Table 6.2, it is able to generate a total of 20×20 = 400 possible solutions to

each problem. Then, the objective functions f2(s), f3(s), and the probabilistic constraint functions

are calculated for all possible solutions to each RDO problem using 105 samples of the random

parameters r generated by MCS. These values enable the sorting of the exact Pareto-optimal

solutions to each RDO problem. Note that the process for finding the exact solutions to each RDO

problem takes around 10.02 hours to complete, which is much more than that required for BO. For

further comparison, a multi-objective RDO problem for the frame is formulated with considering

f1(s), f2(s), and f3(s) as three objective functions, and E [gi(s, r)] +
√

V [gi(s, r)] ≤ 0 (i = 1, . . . , 4)

as four constraints. This problem is solved using the GMM-based method presented in Chapter 5

with an expectation that the resulting Pareto-optimal solutions can capture all solutions by BO.
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  Figure 6.6: Example 1: Verification of the obtained Pareto-optimal solutions to different RDO
problems of the three-story two-bay steel frame. (a) problem J-0.1; (b) problem I-0.1; (c) problem J-
0.05; (d) problem I-0.05.

The comparison results in Fig. 6.6 show that the solutions to each RDO problem by BO agree

with the exact solutions, even though there exists a slight difference in the objective functions f2(s)

and f3(s). The GMM-based method, as expected, provides a total of six solutions that include all

solutions by BO.

Tables 6.4 and 6.5 provide values of the objective and probabilistic constraint functions associated

with the solutions to each RDO problem. Figure 6.7 illustrates the CDF and PDF of the uncertain

objective function f(s, r), and the CDFs of four probabilistic constraint functions calculated at

solution 1 (i.e., minimum-mass solution) to each RDO problem. Since the design with the larger

risk level is less robust than that with the smaller risk level, the PDF in Fig. 6.7(a) is broader than

that in Fig. 6.7(c). Moreover, as each solution offers a safety margin in all probabilistic constraints,

the obtained Pareto-optimal solutions are feasible.
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Table 6.4: Example 1: Pareto-optimal solutions to problems J-0.1 and I-0.1 of the three-story two-
bay steel frame and corresponding values of the objective and probabilistic constraint functions.

Variable, objective, and Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
constraint functions

Column (1) W12×58 W14×61 W16×67 W18×76 W18×86
Beam (2) W24×68 W24×68 W24×68 W24×68 W24×68
f1 [kg] 9015 9152 9399 9756 10167
f2 (BO–J0.1) −0.332 −0.445 −0.563 −0.636 −0.670
f3 (BO–J0.1) 0.031 0.025 0.014 0.008 0.005
f2 (BO–I0.1) −0.333 −0.449 −0.564 −0.637 −0.660
f3 (BO–I0.1) 0.034 0.025 0.013 0.008 0.005
f2 (GMM) −0.320 −0.413 −0.573 −0.619 −0.648
f3 (GMM) 0.031 0.022 0.012 0.010 0.004
f2 (MCS) −0.325 −0.444 −0.563 −0.634 −0.659
f3 (MCS) 0.039 0.025 0.015 0.010 0.007
P
[
g1,...,4(s, r) ≤ 0

]
(MCS) 0.903 0.951 0.967 0.976 0.979

P
[
g1(s, r) ≤ 0

]
(MCS) 0.999 1.000 1.000 1.000 1.000

P
[
g2(s, r) ≤ 0

]
(MCS) 0.999 1.000 1.000 1.000 1.000

P
[
g3(s, r) ≤ 0

]
(MCS) 0.908 0.974 0.998 1.000 1.000

P
[
g4(s, r) ≤ 0

]
(MCS) 0.935 0.953 0.967 0.976 0.979

Table 6.5: Example 1: Pareto-optimal solutions to problems J-0.05 and I-0.05 of the three-story
two-bay steel frame and corresponding values of the objective and probabilistic constraint functions.

Variable, objective, and Solution 1 Solution 2 Solution 3 Solution 4
constraint functions

Column (1) W14×61 W16×67 W18×76 W18×86
Beam (2) W24×68 W24×68 W24×68 W24×68
f1 [kg] 9152 9399 9756 10167
f2 (BO–J0.05) −0.445 −0.564 −0.637 −0.666
f3 (BO–J0.05) 0.025 0.014 0.008 0.006
f2 (BO–I0.05) −0.446 −0.564 −0.637 −0.666
f3 (BO–I0.05) 0.026 0.014 0.008 0.006
f2 (GMM) −0.413 −0.573 −0.619 −0.648
f3 (GMM) 0.022 0.012 0.010 0.004
f2 (MCS) −0.444 −0.482 −0.634 −0.659
f3 (MCS) 0.025 0.022 0.010 0.007
P
[
g1,...,4(s, r) ≤ 0

]
(MCS) 0.951 0.967 0.976 0.979

P
[
g1(s, r) ≤ 0

]
(MCS) 1.000 1.000 1.000 1.000

P
[
g2(s, r) ≤ 0

]
(MCS) 1.000 1.000 1.000 1.000

P
[
g3(s, r) ≤ 0

]
(MCS) 0.974 0.998 1.000 1.000

P
[
g4(s, r) ≤ 0

]
(MCS) 0.953 0.967 0.976 0.979
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Figure 6.7: Example 1: PDF and CDF of the uncertain objective function f(s, r), and CDFs of four
probabilistic constraint functions at the minimum-mass solutions. (a)–(b) problem J-0.1 (or I-0.1);
(c)–(d) problem J-0.05 (or I-0.05).

6.4.3 Example 2: Six-story two-bay steel frame

In this design example, problems J and I are formulated for the six-story two-bay steel frame in

Fig. 6.8, which is taken from Section 5.4.2 with modifications of the number of beam groups and the

probabilistic properties of random parameters. The frame has 30 members classified into six column

groups, i.e., groups (1) to (6), and three beam groups, i.e., groups (7), (8), and (9). Steel section

for members in each group is selected from Table 6.2. The independent random parameters r for

the frame and their probabilistic characteristics are described in Table 6.6, where the vertical load

q consists of dead and live loads from the floor.

Table 6.6: Example 2: Assigned random parameters for the six-story two-bay steel frame.

Variable Description Nominal Mean/Nominal COV Distribution

q Vertical load [kN/m] 50 1.00 0.20 Normal
WL Wind load [kN] 25 1.00 0.37 Lognormal
E Young’s Modulus [GPa] 200 1.00 0.04 Normal
σy,0 Yield stress [MPa] 250 1.05 0.06 Normal
σu Tensile strength [MPa] 400 1.05 0.08 Normal
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  Figure 6.8: Example 2: Six-story two-bay steel frame, groups of members, and external loads.

Let g1(s, r), g2(s, r), g3(s, r), and g4(s, r) denote the LSFs associated with the total drift of the

frame, and the maximum vertical long-term displacements of beams (7), (8), and (9), respectively.

Let g5(s, r), g6(s, r), g7(s, r), g8(s, r), g9(s, r), and g10(s, r), respectively, indicate the LSFs of the

combined axial-flexural strength of columns (1), (2), (3), (4), (5), and (6). Also let g11(s, r), g12(s, r),

and g13(s, r) represent the LSFs regarding the combined axial-flexural strength of beams (7), (8),

and (9), respectively. In addition to the constraints on the structural responses, 10 deterministic

constraints, i.e., hj(s) ≤ 0 (j = 1, . . . , 10), are imposed at beam-column connections and column-

column joints of the frame to ensure that (1) the flange width of the beam connected to a column

should not exceed the flange width of the column, and (2) the depth of the column section in the

upper story should be less than or equal to the depth of the column section in the lower story.

Thus, problems J and I of the frame are formulated with 13 probabilistic constraint functions and
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  Figure 6.9: Example 2: Histories of HVI and acquisition functions for different RDO problems of
the six-story two-bay steel frame. (a) problem J-0.1; (b) problem I-0.1; (c) problem J-0.05; (d)
problem I-0.05.

10 deterministic constraint functions. The total mass f1(s) of the frame is also given as

f1(s) = 15ρ1 + 14(ρ2 + ρ3) + 7.5ρ4 + 7(ρ5 + ρ6) + 18(ρ7 + ρ8 + ρ9), (6.13)

where ρi (i = 1, . . . , 9) is the nominal mass [kg/m] of the steel section for the i-th group.

To construct a total of 14 GP models for the structural responses of the frame, i.e., one for the

uncertain objective function associated with the LSF of the maximum inter-story drift f(s, r) and

13 others for g1(s, r) to g13(s, r), a set of 1000 feasible samples of s and r is randomly generated.

The proposed BO is then carried out for solving problems J and I with two risk levels 0.1 and

0.05. Similarly to the frame in Example 1, problems J-0.1 and J-0.05, and I-0.1 and I-0.05 refer

to problem J formulated with ϵ = 0.1 and ϵ = 0.05, and problem I formulated with ϵi = 0.1

and ϵi = 0.05 (i = 1, . . . , 13), respectively. The reference point and the maximum number of BO

iterations are fR = [15000 kg, 0.5, 0.5] and 20, respectively.

Figure 6.9 shows the histories of HVI and acquisition function obtained from solving each RDO

problem. BO completes 20 iterations to offer the solutions to problems J-0.1, J-0.05, and I-0.05,

while 17 iterations are required for solving problem I-0.1. For the same risk level, the maximum value

of the acquisition function α2 is considerably less than that of α1 because problems I-0.1 and I-0.05

consider 13 probabilistic constraints independently. The computational times for solving problems

J-0.1, J-0.05, I-0.1, and I-0.05 are 11.75, 11.68, 10.19 and 10.56 hours, respectively.
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  Figure 6.10: Example 2: Pareto-optimal solutions to different RDO problems of the six-story two-
bay steel frame. (a) problem J-0.1; (b) problem I-0.1; (c) problem J-0.05; (d) problem I-0.05.

Figure 6.10 shows the Pareto-optimal solutions to the RDO problems of the frame. The number

of solutions to problems J-0.1, I-0.1, J-0.05, and I-0.05, respectively, are 54, 66, 60, and 56, even

though they are 1, 7, 1, and 4 after BO completes its first iteration. The shapes of Pareto fronts

to the same RDO problem are similar, regardless of the difference in the solution distributions due

to different risk levels. It is worth noting that the number of solutions and the solutions themselves

may vary when the proposed BO is carried out using different stopping criteria or even when using

a unique set of stopping criteria with different random seeds. This can be explained by the following

two facts. First, the list of steel sections in Table 6.2 consists of many feasible solutions to each

RDO problem of the frame, which are referred to as the dominated solutions in Fig. 6.10. Second,

the proposed BO is random in nature because it is governed by a random search method to solve the

MINLP problem of the acquisition functions. From the obtained solutions, however, the designer

is still able to specify a robust design for the frame by handling the trade-off between the three

objective functions. Once a robust design has been specified, the remaining task is simply to verify

that it satisfies all probabilistic constraints using MCS.

From the set of obtained Pareto-optimal solutions to each RDO problem, the designer, for ex-

ample, may wish to select the solution with minimum robustness or maximum robustness as the

design for the frame. With each selected design, MCS generates a total of 105 samples of the random

parameters r that are further used to compute the associated objective and probabilistic constraint

functions. Figure 6.11 compare the PDFs of the uncertain objective function f(s, r) associated with

the minimum- and maximum-robustness designs for each RDO problem of the frame. Figures 6.12

and 6.13 show the CDFs of 13 probabilistic constraint functions, respectively, calculated at the
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Figure 6.11: Example 2: PDFs the uncertain objective function f(s, r) at the minimum- and
maximum-robustness designs to different RDO problems of the six-story two-bay steel frame. (a)
problem J-0.1; (b) problem I-0.1; (c) problem J-0.05; (d) problem I-0.05.

minimum- and maximum-robustness designs to each RDO problem. Since the design associated

with the larger risk level is less robust than that corresponding to the smaller risk level, the PDFs

in Figs. 6.11(a) and (b) are broader than those in Figs. 6.11(c) and (d), respectively. In addition, all

probabilistic constraints shown in Figs. 6.12 and 6.13 are associated with a safety margin, demon-

strating that the minimum-mass solution is a reasonable choice for each RDO problem. The same

verification process can be done for any design selected from the obtained Pareto-optimal solutions.

6.5 Conclusions

Although the robust design of steel frames under the effects of random design parameters has been

investigated extensively, solving the joint and individual probabilistic constrained RDO problems is

still a challenging task. The proposed BO in this chapter is capable of handling this task with a

reasonable computational cost by addressing challenges arising from solving these RDO problems

such as the implicit objective and constraint functions, discrete nature of the problems formulated

for steel frame structures, and difficulty in evaluation of the probabilistic constraint functions. The

feasibility of the proposed BO has been demonstrated through a test problem of a two-bar truss and

two design examples of two planar steel frames. The main findings are summarized as follows:
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Figure 6.12: Example 2: CDFs of 13 probabilistic constraint functions at the minimum-robustness
designs to different RDO problems of the six-story two-bay steel frame. (a) problem J-0.1; (b)
problem I-0.1; (c) problem J-0.05; (d) problem I-0.05.

(1) Two new acquisition functions have been developed for the joint and individual probabilistic

constrained RDO problems to guide BO toward better solutions once it completes an iteration.

These acquisition functions address the improvement of current solutions and the feasibility of

new sampling points simultaneously. This is not only applicable to the RDO problems considered

in this chapter but also suggests a basis for the development of constrained BO approaches to

solving multi-objective optimization problems with costly objective and/or constraint functions,

for example, the approach in Chapter 8.

(2) A new two-stage optimization strategy has been devised for solving the maximization problem

of the acquisition functions that decides where the GP surrogates for the structural responses

should be refined. Based on this strategy, similar surrogate-based approaches can be proposed

for sequentially solving optimization problems that involve uncertain objective and/or constraint

functions.

(3) An optimization procedure integrating the proposed BO is introduced to solving the joint and

individual probabilistic constrained RDO problems of steel frame structures with discrete design

variables.

(4) The optimization results show that the proposed BO can offer exact or good approximate Pareto-

optimal solutions to the RDO problems with affordable computational costs.
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Figure 6.13: Example 2: CDFs of 13 probabilistic constraint functions at the maximum-robustness
designs to different RDO problems of the six-story two-bay steel frame. (a) problem J-0.1; (b)
problem I-0.1; (c) problem J-0.05; (d) problem I-0.05.

(5) Although the shapes of Pareto fronts to the same RDO problem are similar, different BO trials

may lead to different sets of solutions because the proposed method is random in nature. The

effect of this randomness is pronounced when the feasible region of the RDO problems is large.

It is, therefore, prudent to select a candidate list of both column and beam sections using design

rules of thumb to reduce the discrepancy in the obtained solutions.
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Chapter 7

Sequential mixture of Gaussian

processes and saddlepoint

approximation for reliability-based

design optimization of structures

This chapter addresses the RBDO problem stated in Eq. (1.3) using mixture of Gaussian processes

(MGP) models and a novel SAA. MGP models serve as surrogates for structural responses that

help to reduce the number of structural analysis calls required for processing optimization. MGP

is capable of extending the application of GP to large training datasets for well covering the space

of input variables, significantly reducing the training time, and improving the overall accuracy of

regression models. To handle the probabilistic constraints, the novel SAA is proposed based on

the SAA methodology in Section 2.6 and the first three cumulants of LSFs associated with the

probabilistic constraints of the RBDO problem. Decoupling the RBDO problem is then processed

through a sequential deterministic optimization (SDO) problem in which the MGP models represent

the LSFs while the proposed SAA carries out inverse probability evaluations. The SDO problem is

strategically solved for exploring a promising region that may contain the optimal solution, refining

the MGP models in that region, and offering a reliable optimal solution as it terminates.

7.1 Reliability-based design optimization problem

Recall that problem (1.3) aims to minimize the cost f(s) of a structure so that the probability the

structure remains intact P[gi(s, r) ≤ 0] (i.e., probability of safety) under the effect of r is greater

than or equal to a value specified by 1− ϵi, where s and r denote vectors of the design variables and

random parameters, respectively, ϵi is an allowable risk level, and gi(s, r) denotes the i-th LSF of a

design requirement on the serviceability or strength of the structure with gi(s, r) ≥ 0 indicating a

failure state.

For a clear description of the reliability method proposed in this chapter, let li(s, r) = −gi(s, r).
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Thus, li(s, r) ≤ 0 indicates a failure state, and problem (1.3) can be rewritten as

minimize
s

f(s)

subject to P[li(s, r) ≤ 0] ≤ ϵi (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su],

(7.1)

where P[li(s, r) ≤ 0] is the probability of occurring the i-th failure state and hj(s) denotes the j-

th deterministic constraint function. The design variables s in this chapter are either continuous

or discrete. Since all the probabilistic functions li(s, r) are treated equally, we drop the subscript

hereafter to simplify the exposition.

Handling the probabilistic constraints is the most important task of solving problem (7.1). As

discussed in Section 1.5.2, this can be done through the decoupling approach that is advantageous to

reduction of computational cost by the evaluation of inverse probabilities. The decoupling approach

can also be combined with a surrogate-based method for solving RBDO problems of large-scale

structures [60]. Such a method, however, limits itself to relatively small training datasets. When

the training dataset becomes larger for well covering the input variable space (i.e., space of s and r),

the construction of accurate surrogate models over a large range of high-dimensional input variables

becomes a challenge. This chapter presents a reliable method for evaluating the inverse probabilities

as well as an approach to scaling up the application of the surrogate-based method to large training

datasets.

7.2 Mixture of Gaussian processes

7.2.1 Clustering training set using Gaussian mixture model

Consider a training dataset D = {xn, ln}Nn=1, where xn =
[
snT , rnT

]T
and ln = l(xn). Since its

effectiveness has been verified by a series of successful applications in the previous chapters, the GP

model also serves as surrogate for l(x) in this chapter. The GP modeling, however, limits itself to

relatively small training sets as it requires O(N3) time for training, which is due to the computation

of the inversion and determinant of the N×N kernel matrix [58]. To extend the application of GP to

a larger training dataset D, it is desirable to split D into a finite number of subsets. For this purpose,

we isolate relevant samples from other irrelevant samples of D by grouping them into a subset using

the GMM-based clustering method [78]. In this way, D can be divided into a finite number of

independent subsets that have a small number of samples as compared with N , and each subset

corresponds to a Gaussian component constituting GMM. From these subsets, the corresponding

local GP models are constructed and mixed up to form the MGP.

Clustering a training dataset is to distribute its similar samples to an independent group in which

the samples share a general property. Two fundamental steps of clustering a training dataset are

measuring the similarity of the samples and selecting a clustering algorithm. Different similarity

measures and clustering algorithms can be found in Ref. [134]. This chapter premises that two

training samples are similar if they emerge from the same PDF. It is, therefore, convenient to split the

joint PDF π(x, l) into different Gaussian components using the GMM presented in Section 2.5, assign
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Figure 7.1: Illustration of the construction of an MGP for a given training set.

each component as a subset, and then distribute the training samples into each subset accordingly.

Suppose a GMM has been constructed from D that is a weighted sum of ng Gaussian components

and characterized by the parameters wk, µk, and Σk (k = 1, . . . , ng). Following Eq. (2.51), the

probability that an input variable vector x emerges from the k-th Gaussian component can be

determined (without knowing the corresponding l(x)) by

zk(x) =
wkN (x;µx,k,Σxx,k)

ng∑
k=1

wkN (x;µx,k,Σxx,k)

, (7.2)

where µx,k and Σxx,k are directly extracted from µk and Σk using Eq. (2.41c).

7.2.2 Mixture of Gaussian processes (MGP)

Figure 7.1 illustrates the process of constructing an MGP model for l(x) from D [135]. After D
is split into ng independent subsets using the GMM clustering method, i.e., D = D1 ∪ · · · ∪ Dng

,

we construct the local GP model associated with the k-th subset, denoted by l̂{k}(x). The MGP

model, denoted by l̂(x), is defined as a weighted average function of the resulting local GP models.

By doing so, the overall accuracy of the regression model, as will be shown in Section 7.5, can be

improved. The computation time required for training the MGP can also be reduced by carrying

out parallel computation for the training process of the independent subsets of D.
To this end, the MGP model is mathematically expressed as

l̂(x) =

ng∑
k=1

Wk(x)l̂{k}(x), (7.3)

where the weightWk(x) evaluated by Eq. (7.2) denotes the probability that the input variable vector

x belongs to the k-th subset. Algorithm 7.1 details the process of constructing the MGP for l(x)

from the training dataset D.
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Algorithm 7.1 GMM-based MGP

1: Input D = {xn, ln}Nn=1;
2: Construct GMM from D using EM algorithm (Algorithm 2.3) and BIC;
3: return ng, wk, µk, and Σk;
4: Extract µx,k and Σxx,k from µk and Σk using Eq. (2.41c);
5: Dk ← ∅ (k = 1, . . . , ng);
6: for n = 1 : N do
7: for k = 1 : ng do
8: Compute zk(xn) for (xn, ln) using Eq. (7.2);
9: end for

10: k ← max{zk(xn), k = 1, . . . , ng};
11: Dk ← Dk ∪ {xn, ln}; ▷ Distribute each sampling point to suitable subset
12: end for
13: for k = 1 : ng do

14: Construct l̂{k}(x) from Dk;
15: end for
16: return l̂(x) using Eq. (7.3) with Wk(x) given in Eq. (7.2).

7.3 Proposed saddlepoint approximation

7.3.1 Saddlepoint approximation using the first three cumulants of un-

certain LSFs

Based on the MGP l̂(x) and the SAA methodology presented in Section 2.6, this section addresses the

following forward and inverse probability problems. Forward probability problem: given a threshold

value of l, denoted as l̄, evaluate Pf = P[l(x) ≤ l̄]. Inverse probability problem: given Pf, evaluate

l̄ so that P[l(x) ≤ l̄] = Pf, which is indeed the calculation of the quantile function value associated

with Pf; see Eq. (2.3).

Let µl, σ
2
l , and σl,3 denote the mean, variance, and third central moment of l(x). The first three

cumulants of l(x), under the effects of uncertainty in independent input variables, can be estimated

through the first-order Taylor series expansion with respect to x = [x1, . . . , xd]
T at the mean µx,

such that

κl,1 = µl ≈ l̂(µx), (7.4a)

κl,2 = σ2
l ≈

d∑
j=1

 ∂l̂

∂xj

∣∣∣∣∣
µx

2

σ2
xj
, (7.4b)

κl,3 = σl,3 ≈
d∑

j=1

 ∂l̂

∂xj

∣∣∣∣∣
µx

3

σxj ,3, (7.4c)

where σ2
xj

and σxj ,3 denote the variance and third central moment of xj , respectively.

To develop the SAA and its inverse, respectively, for handling the forward and inverse probability

problems, we first propose the following truncated cumulant generating function Kl(ξ) based on the
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first two terms of the power series expansion and a logarithmic term by Guo [85]:

Kl(ξ) = (κl,1 − 2ab)ξ +
1

2
(κl,2 − 2ab2)ξ2 − a log

[
(1− bξ)2

]
, (7.5)

where a and b are unknowns to be determined based on (1) the relations between Kl(ξ) and the first

three cumulants of of l(x), and (2) the condition for the unique root of the saddlepoint equation in

Eq. (2.56).

The first, second, and third derivatives of Kl(ξ) are derived as follows:

K
(1)
l (ξ) = (κl,1 − 2ab) + (κl,2 − 2ab2)ξ +

2ab

1− bξ
, (7.6a)

K
(2)
l (ξ) = (κl,2 − 2ab2) +

2ab2

(1− bξ)2
, (7.6b)

K
(3)
l (ξ) =

4ab3

(1− bξ)3
. (7.6c)

The relations between Kl(ξ) and the first three cumulants of l(x), as described in Section 2.1.2,

give

K
(1)
l (0) = κl,1, K

(2)
l (0) = κl,2, K

(3)
l (0) = κl,3. (7.7)

By letting ξ in Eqs. (7.6a), (7.6b), and (7.6c) be zero, the proposed truncatedKl(ξ) automatically

satisfies the first two conditions in Eq. (7.7). The remaining condition leads to

4ab3 = κl,3. (7.8)

Substituting K
(1)
l (ξ) in Eq. (7.6a) into Eq. (2.56), the saddlepoint equation reads

− b(κl,2 − 2ab2)ξ2 + (−bκl,1 + κl,2 + l̄b)ξ + κl,1 − l̄ = 0. (7.9)

As mentioned above, the saddlepoint equation should have a unique real root for any value l̄.

Therefore, the following condition should be satisfied:

− b(κl,2 − 2ab2) = 0. (7.10)

By solving the system of Eqs. (7.8) and (7.10), a and b can be found as

a =
2κ3l,2
κ2l,3

, b =
κl,3
2κl,2

. (7.11)

If κl,3 = 0, then a = b = 0.

The saddlepoint ξs as the root of Eq. (7.9) reads

ξs =
l̄ − κl,1

−bκl,1 + κl,2 + l̄b
. (7.12)

By substituting ξs, Kl(ξs), and K
(2)
l (ξs) into Eq. (2.57), we obtain Pf = P[l(x) ≤ l̄]. Note that

the terms inside the square root in Eqs. (2.58a) and (2.58b) for evaluation of q and v depend on l̄ and

must be non-negative to ensure the existence of q and v. Thus, l̄ in Eq. (7.12) should be bounded.
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In our problems, the proposed Kl(ξ) is valid in the interval l ∈ [ll, lu], where P[l(x) ≤ ll] = 0 and

P[l(x) ≤ lu] = 1. The probability of failure is equal to 0 if l < ll and 1 if l > lu.

Algorithms 7.2 and 7.3 are proposed, respectively, for addressing the forward probability problem

that calculates Pf when l̄ is specified, and for calculating the inverse probability problem that

estimates l̄ so that P[l(x) ≤ l̄] = Pf. To implement Algorithm 7.3, we should specify the interval

[ll, lu] over which l varies under the effects of the random parameters. To make the determination

of [ll, lu] easier, we normalize the LSF and add to the normalized LSF an offset value so that if the

LSF value is negative at a particular input variable point, a failure occurs at that point. Yet exact

values of ll and lu are not necessary for calculating the inverse probability. We can simply select a

wide range of [ll, lu] with a small value of ll and then increase l from ll step by step for tracking l̄. If

either q and v does not exist, we set the corresponding probability as zero and continue increasing

l until we meet Pf.

Algorithm 7.2 Forward probability using the proposed SAA

1: Input l̂(x), µx, and l̄;
2: Compute κl,1, κl,2, and κl,3 using Eqs. (7.4a), (7.4b), and (7.4c), respectively;
3: Compute a and b using Eq. (7.11);
4: Compute ξs using Eq. (7.12);

5: Compute Kl(ξs) and K
(2)
l (ξs) using Eqs. (7.5) and (7.6b), respectively;

6: Compute q and v using Eqs. (2.58a) and (2.58b), respectively;
7: return Pf = P[l(x) ≤ l̄] using Eq. (2.57).

Algorithm 7.3 Inverse probability using the proposed SAA

1: Input l̂(x), µx, Pf, [ll, lu], and a small step size δl = 0.001;
2: l0 ← ll, P

0
f ← 0, j ← 1;

3: while P j−1
f < Pf do

4: lj ← lj−1 + δl;
5: Compute κl,1, κl,2, and κl,3 using Eqs. (7.4a), (7.4b), and (7.4c), respectively;
6: Compute a and b using Eq. (7.11);

7: Compute Kl(ξs) and K
(2)
l (ξs) using Eqs. (7.5) and (7.6b), respectively;

8: if q and v in Eqs. (2.58a) and (2.58b) exist then
9: P j

f ← P[l(x) ≤ lj ] using Eq. (2.57);
10: else
11: P j

f ← 0;
12: end if
13: j ← j + 1;
14: end while
15: return l̄← lj .

7.3.2 Application to structural reliability analysis

The proposed SAA is applied to estimating the failure probability of a cantilever beam with a circular

hollow section in Fig. 7.2, which is adapted from Ref. [136]. The beam is subjected to the diagonal

loads F1 and F2, axial load P , and torsion T . The failure mode of the beam is associated with the

violation of allowable value of the von Mises stress evaluated at point A located at the upper edge

of the fixed support. The random parameters for the beam include the external loads F1, F2, P ,
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  Figure 7.2: Cantilever hollow tube.

Table 7.1: Probabilistic properties of random parameters for the cantilever hollow tube.

Variable Distribution Mean Standard deviation Unit
(*lower bound) (*upper bound)

th Normal 4.0 0.04 mm
dh Normal 40.0 0.4 mm
L1 Uniform 120⋆ 125⋆ mm
L2 Uniform 60⋆ 65⋆ mm
F1 Normal 17.0 1.7 kN
F2 Normal 17.0 1.7 kN
P Normal 19.0 1.9 kN
T Normal 90.0 9.0 Nm
σy,0 Normal 220 22 MPa
θ1 Normal π/36 π/360 rad
θ2 Normal π/18 π/180 rad

and T ; the locations of the external loads L1 and L2; the load directions θ1 and θ2; the diameter

dh and thickness th of the hollow tube section; and the yield stress σy,0 of the tube material. These

random variables are assumed to be independent and their probabilistic properties are described in

Table 7.1.

The LSF corresponding to the von Mises stress at A is defined by

l = 1− σA
σy,0

= 1−

√
σ2
A,x + 3τ2A,xz

σy,0
, (7.13)

where

σA,x =
P + F1 sin θ1 + F2 sin θ2
π [d2h − (dh − 2th)2] /4

+
(F1L1 cos θ1 + F2L2 cos θ2)dh
π [d4h − (dh − 2th)4] /32

, (7.14a)

τA,xz =
Tdh

π [d4h − (dh − 2th)4] /16
. (7.14b)

Algorithm 7.2 is called to generate the CDF of the highly-nonlinear LSF l in Eq. (7.13). The

resulting CDF is compared with the CDFs generated by the mean-value first-order SAA [137],

MCS with 105 samples, and a special case of the SAA by Guo [85] when the unique real root

condition of the saddlepoint equation in the standardized space is satisfied. The comparison results

in Fig. 7.3 show that the CDFs generated by the proposed SAA and the special case of SAA by

Guo [85] are almost identical, which indicates that the transformation of the random parameters from
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  Figure 7.3: Comparison of CDFs of the LSF for the maximum von Mises stress at A.

their physical space into a standardized space [85] is unnecessary if the unique real root condition

of the saddlepoint equation is taken into account. The failure probability of the cantilever tube

by the mean-value first-order SAA is 0.0003 that underestimates the value 0.0036 by MCS. The

failure probability by the proposed SAA is 0.0028, which is 78% of that by MCS. This difference is

acceptable since it can represent a trade-off between the error for estimation of the failure probability

and the computational cost. This difference, however, should be considered when using a gradient-

based algorithm to solve the optimization problem whose probabilistic constraints are estimated

by the proposed SAA because the optimal solution in this circumstance is on the boundary of

the feasible region, which becomes infeasible due to even a small error in the calculation of the

probabilistic constraints.

 

  
Figure 7.4: SDO problem scheme.
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7.4 Design optimization procedure

7.4.1 A sequential deterministic optimization (SDO) for RBDO problem

To explore a promising region that may contain the optimal solution and to improve the accuracy of

the MGP models for li(s, r) in that region, we replace problem (7.1) with an SDO problem that is

developed by taking the idea of using the partial factors in structural analysis and design, namely,

simultaneously increasing the load effects and reducing the structural resistances. In particular, we

offset the LSFs at the nominal values of design and random variables to a safe region for consid-

ering uncertainty in the load effects and structural resistances. Similar shift approaches to solving

RBDO problems can be found in Refs. [51, 138]. Accordingly, the SDO problem associated with

problem (7.1) is stated as

st =argmin
s

f(s)

subject to lti(s,µr)− λti ≥ 0 (i = 1, . . . , I),

hj(s) ≤ 0 (j = 1, . . . , J),

s ∈ [sl, su],

(7.15)

where t denotes the current cycle of the SDO problem, µr is the mean vector of r, lti(s,µr) is the

current nominal value of the i-th LSF that is approximated by the MGP model at the mean vector

of input variables, λti is the current i-th constraint-offset value, and st is the current solution to the

SDO problem. The idea is to offset the nominal LSF value evaluated at the mean vector of the input

variables, under the effect of random parameters r, to the safe region by at least an amount of λti,

which is depicted in Fig. 7.4. As a result, the most probable point moves discontinuously during the

optimization process as the solutions to SDO cycles are generally different.

The update of constraint-offset values is given by

λt+1
i = lti(s

t,µr)− ϵ−1
i (i = 1, . . . , I), (7.16)

where ϵ−1
i denotes the inverse value of ϵi estimated by Algorithm 7.3, which is to ensure that the

probability of failure is sequentially approaches the risk level by offsetting the nominal LSFs. At the

initial cycle of the sequence of SDO problem, we set l0i as the initial MGPs and λ0i = 0.

To obtain a new sample for updating the MGP of the current cycle, we perform the FE analysis

with the obtained st to determine l(st,µr). The new sample, consisting of st, µr, and l(s
t,µr), is

added to the cluster that maximizes zk(x) in Eq. (7.2). Subsequently, only local GP corresponding

to such a cluster is reconstructed for updating the current MGP. The updated MGP starts a new

cycle of the SDO problem.

The SDO problem terminates when ||λt+1−λt|| ≤ ϵo or t > tmax, where λ = [λ1, . . . , λI ]
T is the

constraint-offset vector, ϵo is a small positive value, and tmax is the specified limit of the number of

SDO cycles.

7.4.2 Summary of the optimization procedure

The optimization procedure for solving the RBDO problem performs the following steps:
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� Step 1: Generate samples of s and r using Latin hypercube sampling [74]. Also generate the

training data set D by performing FE analyses for the generated samples.

� Step 2: Based on D, call Algorithm 7.1 for obtaining the initial MGP models for the LSFs

li(s, r).

� Step 3: Formulate the RBDO problem and its associated SDO problem. Describe the initial

cycle of the SDO problem using the MGP models obtained in Step 2 as surrogates for the

LSFs of the probabilistic constraints.

� Step 4: Solve the current SDO problem using an appropriate optimization algorithm. Gener-

ate new data samples from the resulting optimal solution and the corresponding LSF values,

and add them to the training set for updating the current MGPs. Terminate the SDO pro-

cess when at least one of the stopping conditions is satisfied and output the final solution.

Otherwise, formulate the new SDO and solve it with the updated MGP models.
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  Figure 7.5: Example 1: Ten-bar truss.

7.5 Design examples

7.5.1 Example 1: Ten-bar truss

Problem (7.1) is formulated to minimize the total cross-sectional area of a ten-bar truss in Fig. 7.5.

Cross-sectional areas of the truss members are considered as the design variables, namely s =

[s1, . . . , s10]
T with si ∈ [1, 20] × 10−4 m2. External loads P1 and P2, Young’s modulus E of the

truss material, and the dimension L constitute vector r of independent random parameters whose

probabilistic properties are given in Table 7.2. The probability that the vertical displacement at

node 3, denoted as ∆3(s, r), exceeds an allowable value of 4× 10−3 m should be less than or equal

to ϵ = 6.21× 10−3 [139]. Thus, the RBDO problem of the truss is formulated as follows:
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Table 7.2: Example 1: Probabilistic properties of random parameters for the ten-bar truss.

Parameter Distribution Mean value COV

P1 [kN] Normal 60 0.20
P2 [kN] Normal 40 0.20
P3 [kN] Normal 10 0.20
E [GPa] Normal 200 0.10
L [m] Normal 1 0.05
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Figure 7.6: Example 1: Selection of GMMs for clustering five training datasets generated for the
ten-bar truss.

minimize
s

f(s) =

10∑
i=1

si

subject to P[l(s, r) ≤ 0] ≤ ϵ,

si ∈ [1, 20]× 10−4 m2 (i = 1, . . . , 10),

(7.17)

where l(s, r) = 4× 10−3 −∆3(s, r).

The MGP for l(s, r) is found for formulation of the SDO problem associated with problem (7.17).

To select a proper MGP model, we construct five MGP models from a total of five training datasets

with different numbers of samples, namely 104, 2 × 104, 3 × 104, 4 × 104, and 5 × 104, using a PC

with an Intel(R) Xeon(R) E5-2643V4 3.40 GHz CPU and 64 GB memory. Parallel computation

is applied to the construction of MGP models. After training, the prediction performance of the

resulting MGP models is assessed through the coefficient of determination R2 for an independent

test set of 2× 104 random samples.

We also construct a global GP model from each training dataset to obtain a comparison with

the corresponding MGP model. This comparison is to examine the computation times required for

training the MGP and global GP, and the prediction performance of these models.

Figure 7.6 show the selection of the number of clusters (i.e., components of GMM) for splitting

each training dataset generated for the truss. Accordingly, the training datasets of 104, 2 × 104,

3× 104, 4× 104, and 5× 104 samples are divided into 7, 10, 13, 18, and 21 clusters, respectively.
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Table 7.3: Example 1: Comparison of the training computation time and prediction performance of
MGP with those of global GP.

No. sample Computation time Computation time Testing R2 Testing R2

global GP [s] MGP [s] global GP MGP

104 4701 1386 0.982 0.991
2× 104 32364 3208 0.970 0.998
3× 104 not available 6383 not available 0.995
4× 104 not available 8502 not available 0.996
5× 104 not available 12922 not available 0.994
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  Figure 7.7: Test set prediction performance of the trained global GPs and corresponding MGPs for
the ten-bar truss. (a) Global GP trained by 104 samples; (b) MGP trained by 104 samples; (c)
global GP trained by 2× 104 samples; (d) MGP trained by 2× 104 samples.

Table 7.3 reports the computation time and R2 value for MGP and global GP associated with

each training dataset. The computation time required for training the MGP (including time for

clustering the training dataset) is considerably less than that required for training the corresponding

global GP. Although training the global GP is impossible for the mentioned PC specifications when

the training dataset becomes larger with 3×104, 4×104, or 5×104 samples, training the associated
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Figure 7.8: Example 1: Histories of the constraint-offset value and objective function with respect
to the cycles of the SDO problem of the ten-bar truss.

Table 7.4: Example 1: Comparison of optimization results of the ten-bar truss.

Variable FE and FORM RSM2, FORM, and MCS MGP and SA
[10−4 m2] [139] [139] [This study]

s1 10.493 10.705 10.333
s2 5.772 5.914 5.371
s3 14.098 14.424 13.579
s4 1.000 1.000 1.000
s5 1.000 1.000 1.000
s6 1.000 1.000 1.000
s7 5.460 5.531 6.418
s8 11.586 11.853 11.273
s9 1.000 1.000 1.000
s10 10.958 11.223 10.508
f(s) [10−4 m2] 62.367 63.649 61.482
P[l(s, r) ≤ 0] 8.51× 10−3 6.19× 10−3 4.34× 10−3

MCS 4.22× 10−3 2.95× 10−3 5.64× 10−3

MGP is still possible. Moreover, the testing R2 value by the trained MGP is higher than that

by the corresponding global GP, indicating a better prediction performance of the MGP, which is

visualized by scatter plots in Fig. 7.7. Since the trained MGP associated with 2× 104 samples offers

the highest R2 with a reasonable computation time, it is used for formulating the SDO problem.

The SDO problem associated with problem (7.17) is solved by a sequential quadratic program-

ming (SQP) algorithm, available in the function fmincon of MATLAB R2018a Optimization Tool-

box [140]. The gradient required by SQP is evaluated using the finite difference approximation.

Since the solution to each step of the SDO problem obtained using SQP is on the boundary of

the feasible region, and the probabilistic constraint is satisfied with equality, the solution is usually

infeasible due to a small error tolerance of the inequality constraint. Without loss of generality, we,

therefore, use 70% of the risk level ϵ to enforce overestimated λt in Eq. (7.16).

Figure 7.8 shows the histories of the constraint-offset value and the objective function during

the process of solving the SDO problem. With ϵo = 10−9 and tmax = 50, the optimal solution

is found when the SDO problem terminates at its 16th cycle. The constraint value of the SDO
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Figure 7.9: Example 1: PDF and CDF of l at the optimal design of the ten-bar truss. (a) PDF; (b)
CDF.

problem at the optimal solution is less than a specified constraint tolerance of 10−6, corresponding

to P[l(s, r) ≤ 0] = 4.34 × 10−3 (i.e., 70% of the threshold value ϵ). Table 7.4 shows that the total

cross-sectional area by the SDO problem outperforms the results from previous RBDO designs by

Zhao and Qiu [139], where FORM and a response surface method named RSM2 were adopted.

To further verify the feasibility of the obtained optimal design, we generate the associated PDF

and CDF of l using MCS with 105 samples. Those by the combination of the proposed SAA and the

initial MGP (at the first cycle of SDO) are also generated to confirm the improvement of accuracy

in calculating the PDF and CDF for the optimal design through processing the SDO problem.

Reliability analysis results are provided in Table 7.4 and illustrated in Fig. 7.9. It is found that

failure probability of the optimal design by MCS is 5.64 × 10−3, which is very close to the risk

level 6.21 × 10−3. The PDFs and CDFs generated by MCS, and the combination of the proposed

SAA and the final MGP over the range l ≤ 0 are almost identical. This is due to the gradual

improvement of accuracy in calculation of the PDF and CDF for the optimal design after each cycle

of the SDO problem is processed for obtaining a near-optimal design, as depicted in Fig. 7.9. The

MGP contributes to such an improvement by well covering the input variable space so that the LSF

l and its gradient at the mean vector of input variables are reasonably evaluated for calculating the

first three cumulants of l, and in turn, updating the constraint-offset values.

7.5.2 Example 2: Four-story three-bay steel frame

This section formulates problem (7.1) for the four-story three-bay steel frame in Fig. 7.10, which is

taken from Section 5.2.2 with modifications of the beam groups, material properties, and external

loads. The frame consists of 28 structural members classified into seven groups of columns and

beams. The design variables s are the sections of column and beam groups, chosen from a list of

standard steel sections in Table 7.5, where ρ [kg/m] is the nominal mass of the section, and HBE and

IPE represent the standard wide flange and universal beam sections, respectively. External loads and

properties of the steel material, including Young’s modulus E, yield stress σy,0, and ultimate tensile

strength σu, are considered as the independent random parameters r. The probabilistic properties
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Figure 7.10: Example 2: Four-story three-bay steel frame, groups of structural members, and exter-
nal loads.

Table 7.5: Example 2: List of column and beam sections for the four-story three-bay steel frame.

ID Column ρ [kg/m] Beam ρ [kg/m]

1 HEB 140 33.7 IPE 200 22.4
2 HEB 160 42.6 IPE 220 26.2
3 HEB 180 51.2 IPE 240 30.7
4 HEB 200 61.3 IPE 270 36.1
5 HEB 220 71.5 IPE 300 42.2
6 HEB 240 83.2 IPE 330 49.1
7 HEB 260 93.0 IPE 360 57.1
8 HEB 280 103.1 IPE 400 66.3
9 HEB 300 117.0 IPE 450 77.6
10 HEB 320 126.7 IPE 500 90.7
11 HEB 340 134.2 IPE 550 105.5
12 HEB 360 141.8 IPE 600 122.4

of these parameters are described in Table 7.6. The combinations of vertical loads applied to beam

members, namely Q11, . . . , Q43, depicted in Fig. 7.10, are detailed in Table 5.3.

The RBDO problem of the frame is to minimize its total mass f(s) under probabilistic and

deterministic constraints on the design strength, serviceability, and constructional requirements

specified in ANSI/AISC 360-16 [24]. The total mass of the frame reads

f(s) =

28∑
i=1

ρi(si)Li, (7.18)
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Table 7.6: Example 2: Probabilistic properties of random parameters for the four-story three-bay
steel frame.

Parameter Description Nominal Mean/ Nominal COV Distribution

DL Dead load [kN/m] 20 1.00 0.10 Normal
S1 Short term live load 1 [kN/m] 10 1.00 0.30 Lognormal
S2 Short term live load 2 [kN/m] 5 1.00 0.30 Lognormal
L1 Long term live load 1 [kN/m] 10 1.00 0.30 Lognormal
L2 Long term live load 2 [kN/m] 5 1.00 0.30 Lognormal
SL Snow load [kN/m] 5 1.00 0.30 Lognormal
WL Wind load [kN] 8 1.00 0.30 Lognormal
E Young’s Modulus [GPa] 210 1.00 0.04 Normal
σy,0 Yield stress [MPa] 235 1.10 0.06 Normal
σu Tensile strength [MPa] 360 1.07 0.08 Normal

where Li and ρi denote the length of the i-th member and the nominal mass of the section for

that member, respectively. si and the corresponding ρi are selected from the list of steel sections in

Table 7.5.

A total of 12 uncertain LSFs are formulated for the strength and serviceability of the frame, which

are summarized as follows: l1(s, r) to l7(s, r), respectively, correspond to the maximum strength

performance of column or beam member among members of groups 1 to 7; l8(s, r) and l9(s, r) are

associated with the maximum inter-story drift and total drift of the frame, respectively; l10(s, r),

l11(s, r), and l12(s, r), respectively, correspond to the maximum long-term displacements (set as 1.5

times the corresponding elastic displacements) among beams in groups 5, 6, and 7. The detail of

each uncertain LSFs for the strength and serviceability of a planar steel frame can be found in

Chapters 5 and 6.

In addition to the probabilistic constraints, other 16 deterministic constraints, i.e., hj(s) ≤ 0 (j =

1, . . . , 16), are imposed at beam-column connections and column-column joints to guarantee that (1)

the flange width of a beam connected to a column should be less than or equal to the flange width

of the column and (2) the depth of the column section on the upper story at a column-column joint

should not exceed the depth of the column section in the lower story. The detail of such deterministic

constraints can also be found in Chapters 5 and 6.

Assume that the frame is a part of a residential building. According to design codes [23, 25],

the risk levels regarding the ultimate and irreversible serviceability limit state failure modes within

a 50 years reference period can be assigned as 1.35× 10−3 and 6.68× 10−2, respectively. Thus, the

RBDO problem of the frame can be stated as follows:

minimize
s

f(s)

subject to P[li(s, r) ≤ 0] ≤ 1.35× 10−3 (i = 1, . . . , 7),

P[li(s, r) ≤ 0] ≤ 6.68× 10−2 (i = 8, . . . , 12),

hj(s) ≤ 0 (j = 1, . . . , 16).

(7.19)

We generate a training set of 2 × 104 samples to construct the initial MGPs for 12 LSFs in

the probabilistic constraints of problem (7.19). The random parameters r in Table 7.6 and the

prediction intervals in Table 7.7 for the dimensions of steel sections associated with the design
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Table 7.7: Example 2: Empirical relations between bf and d, and between tf and tw for beam and
column sections.

Group d [mm] tw [mm] bf [mm] tf [mm]

Column (HBE) [140, 360] [6, 13] d 2.0910tw − 3.3595
Beam (IPE) [200, 600] [5, 12] −0.0004d2 + 0.6384d− 6.3582 1.6522tw − 0.8304
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Figure 7.11: Example 2: Selecting GMMs for clustering the datasets of (l1 to l7) and (l8 to l12).

variables s together define the space of the input variables for generating the training set. Note that

the lower and upper bounds of the depth d and the web thickness tw of the column or beam section

in Table 7.7 correspond to the smallest and largest values in the list of sections in Table 7.5. The

flange width bf and the flange thickness tf of each section are empirically determined according to

their relations to d and to tw, respectively. These relations are established by employing polynomial

regressions on the available database of HBE (for columns) and IPE (for beams) sections.

Figure 7.11 shows the clustering process of two training datasets associated with the strength

and serviceability LSFs. The first dataset consists of the input variables and the LSFs from l1 to l7,

while the second dataset consists of the input variables and the LSFs from l8 to l12. Accordingly,

the MGP models for l1 to l7 are constructed from 11 clusters and those for l8 to l12 from 13 clusters.

The histories of normalized BIC for the two training datasets are similar because they share the

same set of input variable samples.

Table 7.8: Example 2: Optimization results for the four-story three-bay steel frame.

Group ID 1st GA 2nd GA 3rd GA

Column (1) HEB 220 HEB 220 HEB 220
Column (2) HEB 180 HEB 200 HEB 180
Column (3) HEB 220 HEB 220 HEB 240
Column (4) HEB 220 HEB 200 HEB 200
Beam (5) IPE 400 IPE 400 IPE 400
Beam (6) IPE 360 IPE 330 IPE 360
Beam (7) IPE 300 IPE 300 IPE 220
f(s) [kg] 7298 7201 7172
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Figure 7.12: Example 2: Test set prediction performance of the MGPs for the steel frame. (a) l1;
(b) l8; (c) l9; (d) l10.

Once the MGPs are obtained, we randomly generate a total of 2 × 104 samples of a test set to

assess their prediction performance. We use the MGPs to predict the LSFs l1, l8, l9, and l10 for the

input values in the test set. The prediction results are compared with those by FE analyses. A good

agreement is observed in Fig. 7.12 between the MGP predictions and FE analysis results. Hence,

the obtained MGPs can be used to formulate the SDO problem associated with problem (7.19).

Since the design variables s are discrete, we use GA, available in the MATLAB R2018a Global

Optimization Toolbox [106], for solving the SDO problem. We set ϵo = 10−3 and tmax = 50 as the

stopping criteria for the optimization procedure. The SDO problem also terminates if its current

solution is the same as the solution to its previous cycle. GA is performed three times to investigate

the effect of its stochastic property on the resulting solutions.

Figure 7.13 shows the histories of the constraint-offset values corresponding to 12 probabilistic

constraints and the norm of the constraint-offset vector during the process of solving the SDO

problem with three GA attempts. Although there exists a difference in the histories of the SDO

problem by the three GA implementations, the SDO problem can quickly terminate as the norm of

the constraint-offset vector meets the threshold value.

Table 7.8 reports the optimal solutions obtained from three GA attempts. The difference in the

total mass of the frame among the three solutions is insignificant. The minimum mass of the frame
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Figure 7.13: Example 2: Histories of the constraint-offset values with respect to the cycles of the
SDO problem for the steel frame. (a) 1st GA; (b) 2nd GA; (c) 3rd GA.

is 7172 kg corresponding to the 3rd GA.

To further confirm the feasibility of the obtained optimal designs, we carry out a reliability

analysis for each of them. Both the proposed SAA in Algorithm 7.2 and MCS with 105 samples are

used for calculation of the failure probabilities regarding the LSFs associated with 12 probabilistic

constraints of problem (7.19). Results of the reliability analyses are provided in Table 7.9, where Pf,1

to Pf,12 correspond to the LSFs l1 to l12, respectively. It is found that all failure probability values

by the proposed SAA and MCS are less than the corresponding risk levels, indicating the feasibility

of the obtained optimal designs. The boldface values in Table 7.9 show that the maximum failure

probabilities associated with the ultimate and serviceability limit state failure modes refer to the

failure probability of column (1) or (3) and the violation of long-term displacement of beam (5) or

(6). Figure 7.14 compares the CDFs of the LSFs corresponding to these boldface values generated by

the proposed SAA and MCS. A similarity is observed between the CDFs by the proposed SAA and

those by MCS over the whole range of the LSFs, which demonstrates the efficiency of the proposed

SAA in combination with the MGP to estimate the failure probability of the frame structure.

7.6 Conclusions

This chapter has presented an efficient optimization procedure for solving the RBDO problem of

truss and frame structures under aleatory uncertainty in material properties and external loads. The
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Table 7.9: Example 2: Probability of failures associated with each probabilistic constraint of the
three-story two-bay steel frame.

Pf Risk level 1st GA 2nd GA 3rd GA

ϵ SAA MCS SAA MCS SAA MCS

Pf,1 1.35× 10−3 0.29× 10−3 0.34× 10−3 0.19× 10−3 0.19× 10−3 0.37× 10−3 0.34× 10−3

Pf,2 1.35× 10−3 0.09× 10−3 0.06× 10−3 0.02× 10−3 0 0.34× 10−3 0.20× 10−3

Pf,3 1.35× 10−3 1.26× 10−3 1.32× 10−3 0.89× 10−3 0.96× 10−3 0.05× 10−3 0.01× 10−3

Pf,4 1.35× 10−3 0 0 0 0 0.06× 10−3 0.10× 10−3

Pf,5 1.35× 10−3 0.06× 10−3 0.02× 10−3 0 0.06× 10−3 0.04× 10−3 0.03× 10−3

Pf,6 1.35× 10−3 0 0 0 0 0 0
Pf,7 1.35× 10−3 0 0 0 0 0.10× 10−3 0.19× 10−3

Pf,8 6.68× 10−2 0 0 0 0 0 0
Pf,9 6.68× 10−2 0 0 0 0 0 0
Pf,10 6.68× 10−2 0.43× 10−2 0.53× 10−2 0.28× 10−2 0.20× 10−2 1.30× 10−2 1.55× 10−2

Pf,11 6.68× 10−2 0.02× 10−2 0.06× 10−2 3.33× 10−2 3.21× 10−2 0.32× 10−2 0.34× 10−2

Pf,12 6.68× 10−2 0 0 0 0 0 0

Boldface values are maximum failure probabilities corresponding to the ultimate and irreversible serviceability
limit state failure modes.

main findings are summarized as follows:

(1) To reduce the number of structural analysis calls during the optimization process and overcome

the prominent weakness of the GP in applying to relatively small training datasets, the MGP

models are constructed for prediction of structural responses. A large training dataset of input

variables and corresponding LSF values is generated and divided into independent subsets using

the GMM clustering method. The GP corresponding to each subset is developed to produce

a set of independent GP models. These GP models then together define the MGP as their

weighted average function. It is demonstrated in the examples that the MGPs can significantly

reduce the computation time required for the training process and provide the predictions with

high accuracy.

(2) To handle the probabilistic constraints of the RBDO problem effectively, a novel SAA is proposed

based on the first three cumulants of the uncertain LSFs so that the unknown coefficients of their

cumulant generating functions are directly derived in the physical space of the LSFs, and the

condition for the unique root of the saddlepoint equation and the requirement for the existence

of the solution can be addressed. The efficiency of the proposed SAA in calculation of failure

probabilities has been verified in comparison with existing SAA formulations and MCS. Thus,

the proposed SAA can be a useful technique for a quick implementation of structural reliability

analyses or a the determination of quantile of a random LSF. In addition, the combination

of the proposed SAA and the MGP has demonstrated itself as a viable choice for solving the

RBDO problem.

(3) To improve the optimization strategy, the SDO problem is developed to replace the original

RBDO problem. In the SDO problem, the MGP models serve as surrogates for the LSFs in

the probabilistic constraints of the RBDO problem. The MGP models are then locally refined

after each cycle of solving the SDO problem. The SDO problem is strategically solved, with

support from the proposed SAA in calculation of the inverse failure probabilities, for exploring

the region that is deemed to contain the optimal solution and improving the accuracy of the
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Figure 7.14: Example 2: CDFs of some LSFs at the optimal design of the steel frame. (a) 1st GA,
performance of column (3)–l3; (b) 1st GA, displacement of beam (5)–l10; (c) 2nd GA, performance
of column (3)–l3; (d) 2nd GA, displacement of beam (6)–l11;(e) 3rd GA, performance of column
(1)–l1; (f) 3rd GA, displacement of beam (5)–l10.

MGP models in that region. Optimization results for a ten-bar truss and a four-story three-bay

steel frame show the effectiveness of the proposed SDO problem in quickly providing a reliable

solution to the original RBDO problem.

(4) Since the proposed MGP aims to scale up the application of GP to large training sets for

increasing the accuracy of GP predictions, Algorithm 7.1 should be applied to a problem with

a large training set that has, for example, 104 − 5× 104 samples. For problems associated with
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a small or medium number of training samples, say, less than 1000, the global GP may be

an alternative. Yet the update of the GP, especially for a medium-size training set, becomes

computationally expensive since the size of the training set increases after each SDO cycle.

Choosing either the MGP or GP for the training purpose would depend on the nature of available

dataset.
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Chapter 8

Sequential sampling approach to

multi-objective reliability-based

design optimization of

seismic-resistant steel frames

8.1 Introduction

This chapter, as an extension of Chapter 7, formulates a multi-objective RBDO for a moment-

resisting steel frame subjected to earthquake excitation. The optimization problem is formulated

with two objective functions, namely the total mass and the plastic energy dissipated by beam

members of the frame, and subject to uncorrelated probabilistic constraints on dynamic responses

under the effect of correlated random parameters of floor masses, external loads, and material

properties. The dynamic responses of the frame are evaluated using nonlinear response history

analysis (NRHA), hence enables an accurate simulation of the plastic mechanism of the frame.

NRHA, however, increases the complexity of the formulated RBDO problem considerably as it

demands a substantial computational cost for estimating the uncertain energy dissipation of beams

and probabilistic constraints on dynamic structural responses. Therefore, it is desirable to devise a

new optimization strategy to keep the advantages of NRHA while reducing the computational cost

due to incorporating uncertainty propagation into optimization.

A sequential batch sampling method is proposed in this chapter for solving the formulated multi-

objective RBDO problem. Main features of the proposed method are as follows:

1. The dynamic responses for a small number of designs are evaluated using NRHA. The corre-

sponding uncertain LSFs are approximated by GP models for carrying out the optimization

process. These GP models facilitate the use of MCS that evaluates the expected value of the

uncertain dissipation energy of beam members as well as the probabilistic constraints of the

RBDO problem.

2. Approximate solutions to the RBDO problem sorted from the existing candidate solutions

153



are strategically updated after each optimization iteration. The updated candidate solutions

consist of the existing candidates and new candidates generated by performing discrete random

local and global searches.

3. The GP models for the uncertain LSFs are refined after each optimization iteration by specify-

ing a batch of new sampling points that lie on the Pareto front of a bi-objective deterministic

maximization problem formulated for addressing the improvement in the current solutions and

the feasibility of the new sampling points simultaneously. This refinement scheme differs from

those of other sequential optimization methods such as BO and SDO, respectively, in Chap-

ters 6 and 7, where only one new sampling point is specified after each optimization iteration.

As will be demonstrated in a test problem, the new sampling points tend to distribute in the

neighborhood of exact solutions, leading to the robustness of the refinement scheme as well as

a quick termination of the optimization process.

8.2 Energy-based RBDO of moment-resisting steel frame

Consider a moment-resisting steel frame subjected to vertical and earthquake loads. The frame is

designed according to the capacity-design principle by which the structural components are classified

into dissipative and non-dissipative members. The dissipative members, through their inelastic

deformations, are primarily responsible for dissipating seismic energy. The failure of these members

must occur prior to that of the non-dissipative members to prevent brittle collapse of the whole

structure. As beam members of the frame serve as the dissipative members [141], they are expected

to experience large inelastic deformations during the earthquake.

This section first describes the evaluation of energy dissipated by the beams using their internal

force-deformation histories obtained from NRHA. It then formulates the bi-objective RBDO problem

for the frame based on such dissipation energy.

8.2.1 Dissipation energy of beam members

The energy balance equation of the multi-degree-of-freedom system for the frame during the earth-

quake excitation reads [142]

Et
k + Et

d + Et
p = Et

i , (8.1)

where Et
k, E

t
d, E

t
p, and E

t
i represent the kinetic, damping, dissipation, and input energies at a time

instant t, respectively.

The dissipation energy Et
p including recoverable-elastic strain and irrecoverable-plastic energies

of all structural members can be evaluated based on the force-deformation histories of the members.

Note that Et
p excludes viscous dissipation. In case the elastoplastic behavior of each member is

simulated using an elastic beam-column element in the middle and two semi-rigid rotational springs

with hysteretic properties at the member ends [143], Et
p can be estimated from moment-rotation

histories of these springs.

It is reasonable that the cyclic behavior of the rotational springs follows a bilinear hysteretic

response incorporated in the modified Ibarra Krawinkler (mIK) deterioration model depicted in

Figure 8.1 [144]. This model specifies strength bounds for the spring using a monotonic curve and a

cyclic damage rule that captures the deterioration of the bounds as the cyclic excursion accumulates.
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  Figure 8.1: Modified IK deterioration model for semi-rigid rotational springs. (a) monotonic curve;
(b) basic modes for cyclic deterioration (adapted from Ref. [144]).

The monotonic curve is characterized by three strength parameters and four deformation parameters.

Three strength parameters include (1) the effective yield moment My, equal to 1.1 times the fully

plastic moment of the section obtained from plastic section modulus and the material yield stress

σy,0 [144]; (2) the capping moment strength Mc, described by a post-yield strength ratio Mc/

My; and (3) the residual moment Mr, defined by a residual strength ratio κr, i.e., Mr = κrMy.

Four deformation parameters include (1) the yield rotation θy; (2) the pre-capping plastic rotation

for monotonic loading θp; (3) the post-capping plastic rotation θpc; and (4) the ultimate rotation

capacity θu, commonly assigned as 0.06 rad [144, 145].

Let Er = λrMy denote a reference hysteretic energy dissipation capacity of each rotational spring,

where λr is the so-called reference cumulative rotation capacity. The rate of cyclic deterioration of the

spring in the current excursion can be expressed as a function of Er, the hysteretic energy dissipated

in the current excursion, and the total energy dissipated in past excursions. Detailed expression for

such a cyclic deterioration rate can be found in the seminal work by Lignos and Krawinkler [144].

Since the energy dissipated by the mentioned beam-column element is primarily due to flexure,

the dissipation energy of the i-th beam and that of the i-th column at time t, respectively, denoted

as Et
pb,i and E

t
pc,i, can be evaluated using the following discrete expressions:

Et
pb,i = Et−∆t

pb,i +
M t

b1,i +M t−∆t
b1,i

2
∆θb1,i +

M t
b2,i +M t−∆t

b2,i

2
∆θb2,i, (8.2a)

Et
pc,i = Et−∆t

pc,i +
M t

c1,i +M t−∆t
c1,i

2
∆θc1,i +

M t
c2,i +M t−∆t

c2,i

2
∆θc2,i, (8.2b)

where t−∆t and t represent two consecutive time instants;Mb(c)1 andMb(c)2, respectively, stand for

internal moments of the first (1) and second (2) semi-rigid rotational springs of the beam (column)

element; and ∆θb(c)1(2),i = θtb(c)1(2),i − θ
t−∆t
b(c)1(2),i with θb(c)1 and θb(c)2 represent rotation angles of

the first (1) and second (2) rotational springs of the beam (column) element, respectively.

Let Epb and Epc represent the energies dissipated by nb beams and nc columns of the frame at
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the end of the earthquake, respectively. The dissipation energy ratio of the beams reads

β =
Epb

Epb + Epc
=

nb∑
i=1

Epb,i

nb∑
i=1

Epb,i +

nc∑
j=1

Epc,j

. (8.3)

8.2.2 Formulation of the RBDO problem

Let s = [s1, ..., sd1 ]
T ∈ Nd1 denote a d1-dimensional vector of discrete design variables of the frame

and r = [r1, ..., rd2 ]
T ∈ Rd2 denote a d2-dimensional vector of continuous random parameters of floor

masses, vertical loads, and material properties. Each element of s corresponds to a section number

in a list of American wide-flange steel sections, hence sk ∈ Sk (k = 1, . . . , d1), while probabilistic

characteristics of r are described by the marginal PDFs, or equivalently, CDFs of its elements. The

elements of r correlate with each other according to a given correlation matrix Cr; see Section 2.1.4.

The RBDO problem formulated for the frame is to optimize the steel section of its members

considering its total mass and the dissipation energy of beam members. The first objective function

associated with the normalized total mass of the frame reads

f1(s) =

ne∑
i=1

ρi(si)Li

mmax
, (8.4)

where ρi, Li, and ne denote the nominal mass [kg/m] of the steel section for the i-th member, the

length of that member, and the number of members, respectively; and mmax is the maximum value

of the total mass. Thus, f1(s) ranges from 0 to 1.

The second objective function corresponds to the expected dissipation energy ratio of all beam

members as given in Eq. (8.3). For a minimization problem, this objective function is formulated

with the minus sign as

f2(s) = −E[β(s, r)]. (8.5)

Since 0 < β(s, r) < 1, f2(s) ranges from −1 to 0. When using a total of nm ground motions for the

design, which are assumed to have the same duration, β(s, r) can be defined as the mean value of

the dissipation energy ratios for these motions.

To ensure the frame remains intact during the earthquake, the maximum inter-story drift and

maximum plastic rotation of the member ends are limited by some thresholds. Conventionally, plas-

tic deformations are not allowed for the columns. However, we allow the columns to have minor

plastifications because minimizing their dissipation energy is consistent with maximizing the dissipa-

tion energy of the beams. Let g1(s, r), g2(s, r), and g3(s, r) represent uncertain LSFs corresponding

to the absolute maximum of the inter-story drift ratios, absolute maximum of the beam-end plastic

rotations, and absolute maximum of the column-end plastic rotations during the earthquake, respec-

tively; and δa, φa, and ωa represent the respective allowable thresholds. The LSFs corresponding to
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the inter-story drift and member-end plastic rotations read

g1(s, r) = max (|δ1|, . . . , |δns
|) /δa − 1, (8.6a)

g2(s, r) = max (|φ1|, . . . , |φ2nb
|) /φa − 1, (8.6b)

g3(s, r) = max (|ω1|, . . . , |ω2nc
|) /ωa − 1, (8.6c)

where δi is the inter-story drift ratio of the i-th story, defined as the ratio of the story drift to the

corresponding story height; and ns represents the number of stories. The inter-story drift ratio,

beam-end rotation, and column-end rotation at a particular time instant are evaluated as the mean

value of the corresponding responses for nm ground motions.

To ensure a column or a beam member can sustain the plastic moment without exhibiting local

buckling, the width-thickness ratio of all plates composing the steel section of that member should be

constrained. In accordance with Chapter B of ANSI/AISC 360-16 [24], the following two constraints

are applied, respectively, to the web and flange plates of the section:

g̃1(s) =
d− 2tf
tw

− 3.76

√
E[E]

E[σy,0]
≤ 0, (8.7a)

g̃2(s) =
bf
2tf
− 0.38

√
E[E]

E[σy,0]
≤ 0, (8.7b)

where d, bf, tf, and tw are the height, flange width, flange thickness, and web thickness, respectively;

and E and σy,0 are Young’s modulus and the yield stress of the steel material, respectively.

Moreover, a total of J deterministic constructional constraints hj(s) ≤ 0 (j = 1, . . . , J) are

imposed at beam-column connections and column-column joints. They ensure (1) the flange width

of a beam connected to a column is less than or equal to the flange width of the column and (2) the

depth of the column section in the upper story should not exceed that in the lower story.

Using the above objective and constraint functions, the bi-objective RBDO problem formulated

for the frame to optimize its total mass and the dissipation energy of its beams can be stated as

follows:
minimize

s
[f1(s), f2(s)]

subject to P [gl(s, r) ≤ 0] ≥ 1− ϵl (l = 1, 2, 3),

g̃i(s) ≤ 0 (i = 1, . . . , 2d1),

hj(s) ≤ 0 (j = 1, . . . , J),

sk ∈ Sk (k = 1, . . . , d1),

(8.8)

where the prescribed risk levels ϵl (l = 1, 2, 3) are small positive values. As a connection to current

design codes, these risk levels can be derived from corresponding target reliability values specified

in each design code.

Moving the left-side terms of the probabilistic constraints in problem (8.8) to the right side and

let

gl(s) = 1− ϵl − P [gl(s, r) ≤ 0)] (l = 1, 2, 3). (8.9)
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Problem (8.8) can be rewritten as

minimize
s

[f1(s), f2(s)]

subject to gl(s) ≤ 0 (l = 1, 2, 3),

g̃i(s) ≤ 0 (i = 1, . . . , 2d1),

hj(s) ≤ 0 (j = 1, . . . , J),

sk ∈ Sk (k = 1, . . . , d1).

(8.10)

Exact Pareto-optimal solutions to problem (8.10) are difficult to obtain because f2(s) and gl(s)

(l = 1, 2, 3) are generally nonlinear, nonconvex, and implicit within the NRHA program. A new

optimization strategy is proposed for finding approximate Pareto-optimal solutions the problem.

8.3 Design response spectrum and scaling recorded ground

motions

According to ASCE 7-16 [23], the design spectral response acceleration Sa can be evaluated using

the risk-targeted maximum considered earthquake (MCER). The MCER is constructed based on

the uniform-hazard (2% in 50-year) ground motions, which underline the ASCE 7-16 MCER ground

motion maps. Let S(S) and S(1), respectively, denote the mapped MCER, 5%-damped, spectral

response acceleration parameters at short periods and at a period of 1 s. Design values of S(S) and

S(1), denoted as SDS and SD1, are determined as follows [23]:

SDS =
2

3
FaS(S), SD1 =

2

3
FvS(1), (8.11)

where Fa and Fv are two coefficients considering the site soil properties.

Once SDS and SD1 have been obtained, Sa can be evaluated as [23]

Sa =



SDS (0.4 + 0.6T/T0) if T ≤ T0,

SDS if T0 < T ≤ TS,

SD1/T if TS < T ≤ TL,

SD1TL/T
2 if T > TL,

(8.12)

where T denotes the fundamental natural period of the structure, T0 = 0.2SD1/SDS, TS = SD1/SDS,

and TL is the long-period transition period [23].

When different recorded earthquake ground motions are used for the design, they should be

scaled such that the mean of 5%-damped response spectra for the scaled motions is not less than the

design MCER spectrum over the period range of 0.2T − 1.5T [23]. For designing the frame in this

study, a total of six recorded earthquake ground motions are selected from the Pacific Earthquake

Engineering Research Center (PEERC) database [146] as listed in Table 8.1. The acceleration

spectra of the selected ground motions are scaled to simulate the target MCER acceleration spectrum

using a scaling procedure by Reyes and Kalkan [147]. The design acceleration time histories of the

selected motions are then evaluated by multiplying the recorded acceleration time histories by the
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Table 8.1: Six ground motions selected from PEERC database [146].

ID Event Year Station Magnitude Fault normal component

PGA [g] PGV [cm/s] PGD [cm]

1 Imperial Valley-06 1979 Delta 6.53 0.6 63.6 30.8
2 Loma Prieta 1989 Gilroy Array ̸= 4 6.93 1.0 100.8 32.5
3 Northridge-01 1994 Canoga Park 6.69 0.8 132.2 56.7
4 Kobe Japan 1995 Kakogawa 6.90 0.5 39.2 12.8
5 Kobe Japan 1995 Shin-Osaka 6.90 0.6 89.9 26.3
6 Chi-Chi Taiwan 1991 CHY036 7.62 0.9 101.0 47.8

PGA = peak ground acceleration, PGV = peak ground velocity, PGD = peak ground displacement

corresponding scale factors.

8.4 Proposed sequential batch sampling approach

8.4.1 Generating correlated random parameters

As previously mentioned, the vector of random parameters r = [r1, . . . , rd2
]
T

is described by the

marginal PDFs or CDFs of its elements, namely π(ri) or F (ri), respectively. The correlations

between these elements are characterized by the following correlation matrix:

Cr =


1 ρ(r1, r2) · · · ρ(r1, rd2)

ρ(r2, r1) 1 · · · ρ(r2, rd2)
...

...
. . .

...

ρ(rd2
, r1) ρ(rd2

, r2) · · · 1

 , (8.13)

where ρ(ri, rj) (i, j = 1, . . . , d2) is the correlation coefficient between ri and rj so that ρ(ri, ri) = 1

and ρ(ri, rj) = ρ(rj , ri). The goal is to generate a finite number of r samples for processing the

optimization using π(ri), F (ri), and Cr.

Let c = [c1, . . . , cd2
]
T ∼ N (0,Cr) denote a d2-variate Gaussian vector in the standardized space.

The samples of c can be generated using the built-in MATLAB function normrnd [148]. It is also

trivial to evaluate the CDF for each sample of the element ci (i = 1, . . . , d2), denoted as F (ci),

because ci ∼ N (0, 1).

Suppose there exists an iso-probabilistic mapping that transforms the physical space of r into

the standardized space of c. This mapping preserves the CDFs at two corresponding points ri and

ci, i.e., F (ri) = F (ci). Thus, the random samples of ri can be generated by

ri = F−1 (F (ci)) , (8.14)

where F−1(·) denotes the inverse CDF function with respect to ri. It is worth noting that Eq. (8.14)

is applicable to any distributions of r and can also be used for generating samples of uncorrelated

random parameters.

To further demonstrate its performance in generating samples of random parameters, Eq. (8.14)

is used to draw a total of 5×104 samples of two Weibull random parameters r1 ∼W (r; a = 4, b = 2)
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Figure 8.2: Samples of r1 and r2 generated from Eq. (8.14) for Weibull distribution.

Table 8.2: Comparison of sampled mean, variance, and correlation matrix estimates of r1 and r2
with exact ones.

Estimated using Eq. (8.14) Exact

E[r1] 3.5449 3.5449
V[r1] 3.4101 3.4336
E[r2] 2.7822 2.7832
V[r2] 0.2908 0.2908

Cr

[
1 0.4924

0.4924 1

] [
1 0.5
0.5 1

]

and r2 ∼W (r; a = 3, b = 6) with Cr = [1, 0.5; 0.5, 1].

Figure 8.2 shows the samples of r1 and r2 generated using Eq. (8.14). Table 8.2 shows a good

performance of Eq. (8.14) as the sample mean, sample variance, and sample correlation matrix of

r1 and r2 well agree with the exact ones.

8.4.2 Approximate uncertain objective and probabilistic constraint func-

tions

As the first step for solving problem (8.10), β(s, r) and gl(s, r) (l = 1, 2, 3) are approximated by

the corresponding GP models trained based upon a finite number of sampling points. To do so,

a training dataset D = {xi, yi}Ni=1 is generated, where xi = [si
T
, ri

T
]T ∈ Rd (d = d1 + d2) are

d-dimensional vectors of uncertain input variables, and yi ∈ R are the corresponding outputs (i.e.,

βi or gil). The number of initial training samples N depends on the number of input variables d.

Samples of s and r are generated using Latin-hypercube sampling [74] and Eq. (8.14), respectively.

Integer samples of s are obtained by rounding the corresponding real samples by Latin-hypercube

sampling to the nearest integers. Each sample xi then serves as an input to NRHA for evaluation

of the corresponding dynamic responses. The sample that provides non-positive values of the LSFs

gl(s, r) (l = 1, 2, 3) is retained in D as a feasible training sample, which is used for constructing the

GP models.
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Figure 8.3: Illustration of the trade-off between maximizing HVI and maximizing FI.

Once D has been created, the GP models for β(s, r) and gl(s, r) (l = 1, 2, 3) can be constructed;

see Section 2.3, and the resulting GP models at each realization of the input variable vector are,

respectively, the Gaussians β̂(s, r) and ĝl(s, r) (l = 1, 2, 3). The mean and variance characterizing

each of these GP models, for example, µĝl(s, r) and σ2
ĝl
(s, r) of ĝl(s, r), follow Eqs. (2.31a) and

(2.31b), respectively.

8.4.3 Sorting approximate Pareto-optimal solutions

Let Ωa denote the existing candidate solutions that are the samples of D at the beginning of the

optimization process and enriched after each optimization iteration, which is discussed later. Among

the members of Ωa, a non-dominated sorting approach [91] seeks a set of approximate Pareto-optimal

solutions to problem (8.10) once β̂(s, r) and ĝl(s, r) (l = 1, 2, 3) have been obtained. In this way,

f2(s) and gl(s) for each member of Ωa can be evaluated through MCS using the mean functions of

the corresponding GP models, such that

f2(s) = −E [β(s, r)] ≈ − 1

nr

nr∑
i=1

µβ̂(s, ri), (8.15a)

gl(s) = 1− ϵl − P [gl(s, r) ≤ 0] ≈ 1− ϵl −
1

nr

nr∑
i=1

I[µĝl(s, ri) ≤ 0] (l = 1, 2, 3), (8.15b)

where nr is the number of r realizations and I[·] = 1 if [·] is true and I[·] = 0 otherwise. Parallel

computation is also carried out to speed up the solution-sorting process.

8.4.4 Next sampling points of discrete design variables

Since the current approximate solutions to problem (8.10) are found based on the GP models β̂(s, r)

and ĝl(s, r) (l = 1, 2, 3), it is desirable to update these solutions by sequentially specifying a promising

region of the input variables in which the current solutions and the accuracy of the current GP

models are deemed to be improved. It follows that the input variable vectors belonging to this

promising region should have the following three properties: (1) they improve the current solutions

considerably; (2) they have a high chance for being feasible solutions to problem (8.10); and (3) they
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do not appear in the current training dataset. As the input variable space consists of the spaces

of the discrete design variables s and continuous random parameters r, it is natural to divide the

exploration of the promising region into two phases as presented in Chapter 6. The first phase,

discussed in this section, specifies new sampling vectors of s, denoted as sn, which are responsible

for the three aforementioned properties. The second phase, discussed in the next section, finds new

sampling vectors of r, denoted as rn, for addressing the third property.

The hypervolume-based approach presented Sections 3.2.1 and 6.2.2 is adopted for finding the

new sampling points sn that improve the current solutions. Let Ω = {f1, ..., fM} ∈ R2 and fR ∈ R2

denote the current set of M approximate Pareto-optimal solutions to problem (8.10) and a fixed

reference point dominated by all elements of Ω, respectively. Ω and fR together define the HV

measure for the confined space surrounded by them.For two arbitrary sets of solutions, the set

with the larger HV is better than the other one. Therefore, if each of the new sampling points

sn improves the current approximate solutions to problem (8.10), the union of the corresponding

objective function vector f(s) and Ω should form a new HV greater than that of the current Ω.

This improvement is further represented by HVI(f(s) | Ω, fR) detailed in Eq. (3.8). As a result, HVI

should be maximized for finding the new sampling points sn that correspond to a major improvement

in the current HV.

Another important requirement for the vectors sn is that they should have a high chance to

become feasible solutions to the problem (8.10). Accordingly, sn must satisfy the deterministic

constraints of problem (8.10) and belong to a region in which gl(s) (l = 1, 2, 3) are minimized

simultaneously. In other words, P [gl(s, r) ≤ 0] (l = 1, 2, 3) in Eq. (8.9) should be simultaneously

maximized, which is further transformed to maximizing the following feasibility indicator:

FI(s) =

3∏
l=1

P [gl(s, r) ≤ 0] . (8.16)

Here FI is formulated from the fact that gl(s) (l = 1, 2, 3) are independent, and P [gl(s, r) ≤ 0]

always take positive values. It is apparent that FI conflicts with HVI because its maximizer tends

to minimize the HV; see Fig. 8.3. Thus, it is rational to formulate a bi-objective deterministic

maximization problem for managing these conflicting criteria.

The last property of the promising region requires that the vectors sn do not belong to the current

training dataset D. Thus, sn can be found after each optimization iteration by solving the following

bi-objective deterministic maximization problem:

sn = argmax
s/∈D

[HVI(f(s) | Ω, fR),FI(s)]

subject to g̃i(s) ≤ 0 (i = 1, . . . , 2d1),

hj(s) ≤ 0 (j = 1, . . . , J),

sk ∈ Sk (k = 1, . . . , d1).

(8.17)

Problem (8.17) is solved using NSGA-II [91] whose parameters including the population size,

maximum number of generations, crossover fraction, tolerance for the objective and constraint func-

tions are, respectively, assigned as 2000, 100, 80%, and 10−6. Since the exact values of FI at sn are

not important for solving problem (8.10), problem (8.17) can be quickly solved by using the SAA in
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Chapter 7 for reasonable estimations of the probabilities incorporated in the FI rather than using

MCS. Solutions to problem (8.17) are then added to the current training dataset D and the set Ωa

for updating the current GP models and for sorting the solutions in the next optimization iteration,

respectively.

8.4.5 Next sampling points of correlated random parameters

Once the sampling points sn have been found, the new sampling points rn of the correlated random

parameters are specified accordingly. Since the vectors rn address the last property of the promising

region, they are randomly generated using Eq. (8.14) so that they do not belong to the current

training dataset D. The number of rn equals that of sn.

8.4.6 Enrichment of the existing candidate solutions

The set Ωa of the existing candidate solutions is enriched before starting a new optimization iteration.

The enriched Ωa consists of three different groups of the discrete candidate solutions s. The first

group includes the samples of the updated training dataset D because the new sampling points

sn, which improve the solution quality, are expected to become the solutions to problem (8.10).

The second group consists of the new candidates generated by performing a total of k1 random

perturbations (in the design variable space) surrounding each of the current approximate Pareto-

optimal solutions of the set Ω, which can be regarded as performing discrete local searches. Each

perturbation randomly increases or decreases each integer element of every approximate Pareto-

optimal solution by an integer value, such as 1, 2, 3, or 4. Thus, the random perturbations can be

expected to improve the solutions through the discrete local searches in the design variable space of

the current solutions even though the neighborhood in this space differs from that in the objective

function space. With the same expectation for the solution improvement, the third group consists

of a total of k2 new candidates generated uniformly over the design domain, which can be regarded

as performing discrete global searches.

8.4.7 Optimization procedure

In summary, the proposed optimization procedure for solving problem (8.10) sequentially executes

the following six steps:

� Step 1: Generate samples of s and r. Then, create the training dataset D by performing

NRHA for each sample.

� Step 2: Construct GP models for β(s, r) and gl(s, r) (l = 1, 2, 3).

� Step 3: Sort the approximate Pareto-optimal solutions among the existing candidate solutions

of the set Ωa.

� Step 4: Terminate the optimization process and output the approximate Pareto-optimal

solutions if one of the following stopping criteria is satisfied: (1) the number of optimization

iterations reaches an upper limit tmax specified the user, and (2) the relative difference of the

HVs at the current and previous iterations is less than or equal to a small positive value ϵHV.

Otherwise, proceed to Step 5.
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� Step 5: Find new sampling points sn and rn. If no new sampling point is found, i.e., prob-

lem (8.17) has no solution, terminate the optimization process. Otherwise, enrich Ωa and go

to Step 6.

� Step 6 Evaluate the LSFs of interest for sn and rn found in Step 5 using NRHA; update D
and the current GP models for β(s, r) and gl(s, r) (l = 1, 2, 3); and reiterate from Step 3.

8.5 Test problem: Two-bar truss

To carefully assess its performance, the proposed optimization method is used for optimizing the

two-bar truss shown in Fig. 5.1, which is taken from Sections 5.2.1 and 6.3.3. The vector s = [s1, s2]
T

of design variables consists of the cross-sectional area s1 of the truss members and the horizontal

span s2. The random parameters r include the magnitude of the external load P , the mass density

ρ and yield stress σy,0 of the truss material. They are assumed to be uncorrelated as Cr = I.

Probabilistic characteristics of r are described in Table 6.1.

A bi-objective RBDO problem whose formulation is similar to that of problem (8.10) is formulated

for the truss. The mean and standard deviation of the total mass of the truss are considered as

two objective functions, while the probabilistic constraints are associated with the axial stress in

the truss members. Let f1(s, r) indicate the total mass of the truss, f11(s) = E [f1(s, r)] and

f12(s) =
√
V [f1(s, r)] represent the mean and standard deviation of f1(s, r), respectively. Also, let

g1(s, r) and g2(s, r) indicate the LSFs corresponding to the axial stress in the truss members. For

simplification, g1(s, r) and g2(s, r) do not account for the self-weight of the truss. The bi-objective

RBDO problem of the truss is stated as

minimize
s

[f11(s), f12(s)]

subject to P
[
g1(s, r) ≤ 0

]
≥ 1− ϵ1,

P
[
g2(s, r) ≤ 0

]
≥ 1− ϵ2,

s1 ∈ S1 = {1.0, 1.5, . . . , 20.0} cm2,

s2 ∈ S2 = {0.1, 0.15, . . . , 2.0}m.

(8.18)

where S1 and S2 are candidate lists for selecting s1 and s2, respectively; and f1(s, r), g1(s, r), and

g2(s, r), respectively, derived from Eqs. (6.10b), (6.10c), and (6.10a) read

f1(s, r) =
10−4ρs1

√
1 + s22

mmax
, (8.19a)

g1(s, r) =
5P√

65s1σy,0

√
1 + s22

(
8 +

1

s2

)
− 1, (8.19b)

g2(s, r) =
5P√

65s1σy,0

√
1 + s22

(
8− 1

s2

)
− 1. (8.19c)

Here mmax = 45 kg is the maximum nominal mass of the truss. Since f1(s, r) is a linear function of

ρ, f11(s) is derived as f11(s) =
(
E[ρ]/

√
V[ρ]

)
f12(s) = 5f12(s). Therefore, the set of Pareto-optimal

solutions to problem (8.18) has only one solution.

To examine the robustness of the proposed method, three different training datasets are generated
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Figure 8.4: Histories of the optimization process for solving the two-bar truss with ϵl = 0.1. (a) HV;
(b) objective functions.
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Figure 8.5: Histories of the optimization process for solving the two-bar truss with ϵl = 0.05. (a)
HV; (b) objective functions.

for processing optimization of the truss. The first, second, and third training datasets having 50,

100, and 200 samples of the input variables, respectively, are used for calculating f1(s, r), g1(s, r),

and g2(s, r). However, only 34, 69, and 143 samples offering non-positive values of f1(s, r), g1(s, r),

and g2(s, r) serve as the feasible training samples. To develop the GP models for f1(s, r), g1(s, r),

and g2(s, r), the DACE toolbox [92] is used together with a first-degree-polynomial mean function.

It is desirable to validate the accuracy of the GP models against a test dataset if only one set of the

models is used throughout the optimization process. Yet it is not necessary to do so because the

GP models are updated sequentially during the optimization process. In the proposed optimization

method, the accuracy of the GP models is refined intelligently in the promising region of the input

variable space, and therefore, the improvement in the solutions indicates the improvement in the

GP models in such a region.

Problem (8.18) is solved for two risk levels ϵl = 0.1 and 0.05 (l = 1, 2). For each risk level,

the optimization process is carried out three times corresponding to the three training datasets. In

each optimization iteration, MCS uses nr = 4 × 104 samples of r for evaluating the objective and

probabilistic constraint functions. To update Ωa, we set k1 = 100 and k2 = 500. The reference point

is fR = [1, 0.2]. The stopping criteria include tmax = 20 iterations and ϵHV = 10−9.

Figures 8.4 and 8.5 show the histories of the optimization process for ϵl = 0.1 and 0.05, respec-
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Figure 8.6: Histories of specifying new sampling points of the design variables for the two-bar truss
with ϵl = 0.1. (a) 1st attempt; (b) 2nd attempt; (c) 3rd attempt.
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Figure 8.7: Histories of specifying new sampling points of the design variables for the two-bar truss
with ϵl = 0.05. (a) 1st attempt; (b) 2nd attempt; (c) 3rd attempt.

tively. Although the evolution of HV and that of the objective functions for the three optimization

trials of each risk level follow different patterns due to the use of different training datasets, the

optimization process is still able to quickly terminate and provides a unique solution. The designs

of the truss for ϵl = 0.1 and 0.05 are s = [8.5, 0.4] and [10.0, 0.4], respectively. The maximum

computational times required for ϵl = 0.1 and 0.05 are 5257 and 4058 s using an Intel(R) i7-1165G7

2.80 GHz CPU and 8.0 GB memory, respectively.

Figures 8.6 and 8.7 show the histories of specifying the new sampling points sn during the

optimization process for ϵl = 0.1 and 0.05, respectively. As is clear, the new sampling points sn

distribute in the neighborhood of the exact solution to problem (8.18), leading to quick termination

of the optimization process as observed.

To further verify the obtained designs, the exact solution to problem (8.18) is found for each risk

level. Since both S1 and S1 have 39 elements, a total of 39 × 39 = 1521 possible designs can be

assigned for the truss. A total of 105 samples of r are then generated for evaluating f11(s), f12(s),

P [g1(s, r) ≤ 0], and P [g2(s, r) ≤ 0] associated with each design. In this way, the exact solution can

be sorted for each risk level. Table 8.3 indicates a good agreement between the designs by the

proposed method and the exact ones to which the associated PDFs of f1, and CDFs of g1 and g2

are illustrated in Fig. 8.8. As the CDFs of g1 at the exact solutions reach the specified risk levels,

the probabilistic constraint associated with g1 is the active constraint of problem (8.18).

The performance of the proposed method is compared with that of the BO method presented

in Chapter 6 because the bi-objective problem turned out to have a single optimal solution. Fig-
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Table 8.3: Comparison of optimization results for the two-bar truss.

Variable/ ϵ1 = ϵ2 = 0.1 ϵ1 = ϵ2 = 0.05

Objective 1st 2nd 3rd Exact 1st 2nd 3rd Exact

s1 [cm2] 8.5 8.5 8.5 8.5 10.0 10.0 10.0 10.0
s2 [m] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
f11 0.2034 0.2001 0.2034 0.2033 0.2393 0.2393 0.2394 0.2397
f12 0.0407 0.0400 0.0407 0.0407 0.0479 0.0479 0.0479 0.0480
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Figure 8.8: PDFs of the objective LSF and CDFs of constraint LSFs corresponding to exact optimal
solutions of the two-bar truss. (a) CDF of f1; (b) PDFs of g1 and g2.
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Figure 8.9: Comparison of optimization results for the two-bar truss by the proposed method and
by Bayesian optimization. (a) ϵl = 0.1; (b) ϵl = 0.05.

ure 8.9 shows that the proposed method requires less number of optimization iterations than BO.

Furthermore, it generates dominated solutions with high density in the neighborhood of the exact

solutions.
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  Figure 8.10: (a) Six-story two-bay frame and (b) its finite element model.

8.6 Design example: Six-story two-bay frame

This section investigates a six-story two-bay frame in Fig. 8.10(a), which is taken from Sections 5.4.2

and 6.4.3. The frame is considered as a lateral load resisting system for a residential building.

The site soil is assumed to be stiff as the property of site class D according to ASCE 7-16 [23].

Parameters for the mapped MCER, 5%-damped, spectral response acceleration involve TS = 1.250g

and S(1) = 0.4g. The long-period transition period is TL = 10 s.

The design ground motions are evaluated using an upper bound value of the fundamental natural

period of the frame T = 1.2 s, which is derived from equation (12.8-7) of ASCE 7-16 [23]. Once the

preliminary design of the frame is specified, the nominal value of its fundamental natural period can

be evaluated, and that should not exceed 1.2 s.

The scale factor for each of the selected ground motions in Table 8.1 and the associated scaled

acceleration spectrum are given in Fig. 8.11. The design acceleration history of each ground motion

is determined by multiplying the recorded acceleration history by the corresponding scale factor.
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ID  Event Scale factor

1  Imperial Valley-06 1.187

2  Loma Prieta 0.930

3  Northridge-01 0.921

4  Kobe Japan (Kakogawa) 0.859

5  Kobe Japan (Shin-Osaka) 0.879

6  Chi-Chi Taiwan 1.108

T [s]

S
a
 [g

]

 
Figure 8.11: Comparison of the mean, 5%-damped response spectrum of scaled ground motions with
ASCE 7-MCER spectrum.

8.6.1 Numerical model

The frame has 30 members classified into six column groups, i.e., groups (1) to (6), and three beam

groups, i.e., groups (7), (8), and (9). Possible steel sections for the columns and beams in each group

are given in Table 8.4.

Table 8.4: List of sections for the columns and beams of the frame.

ID Column S1,...,6 ρ1,...,6 Beam S7,8,9 ρ7,8,9
[kg/m] [kg/m]

1 W16×77 114.0 W24×55 82.0
2 W16×67 100.0 W21×57 85.0
3 W14×82 122.0 W21×55 82.0
4 W14×74 110.0 W21×50 74.0
5 W14×68 101.0 W18×65 97.0
6 W14×61 91.0 W18×60 89.0
7 W14×53 79.0 W18×40 60.0
8 W14×48 72.0 W18×35 52.0
9 W12×58 86.0 W16×57 85.0
10 W12×53 79.0 W16×50 75.0
11 W12×50 74.0 W16×45 67.0
12 W12×45 67.0 W16×40 60.0
13 W10×54 80.0 W14×61 91.0
14 W10×49 73.0 W14×53 79.0
15 W10×45 67.0 W14×48 72.0
16 W8×40 59.0 W14×38 57.8
17 W8×35 52.0 W14×34 51.0
18 W8×31 46.1 W14×30 44.0

The OpenSees [149] is used to develop a numerical model for the frame as shown in Fig. 8.10(b).

In this model, a leaning column with gravity load F is linked to the frame at each floor by a rigid

truss element to account for P-∆ effects, where F vertically acts on a generic floor of the building for
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Table 8.5: Assigned random parameters for the frame.

Parameter Description Mean COV Distribution

q Distributed mass [t/m] 3.06 0.20 Normal
F Gravity load [kN] 500 0.10 Normal
E Young’s modulus [GPa] 200 0.04 Normal
σy,0 Yield stress [MPa] 262.50 0.06 Normal
θp Pre-capping plastic rotation [rad] 0.022 0.27 Lognormal∗

θpc Post-capping plastic rotation [rad] 0.17 0.35 Lognormal∗

θu Ultimate rotation capacity [rad] 0.06 − −
λr Reference cumulative rotation capacity [rad] 1.10 0.44 Lognormal∗

Mc/My Post-yield strength ratio 1.11 0.05 Normal
κr Residual strength ratio 0.40 0.10 Normal

* Mean and standard deviation of logarithmic value

producing overturning action and secondary internal forces to the frame members through the inter-

story drift. The leaning column is modeled using a rigid elastic beam-column element connected by

two rotational springs with very small rotational stiffness. Geometric nonlinearity is also considered

in structural analysis.

The distributed mass q of the floor acting on each beam member is divided into two equal parts

assigned to the end nodes of the element; see Fig. 8.10(b). The mass of each structural member

is also assigned to the end nodes of the corresponding element. Thus, the lumped masses m1

and m2 in the earthquake direction, as depicted in Figure 8.10(b), are derived from the masses of

the connecting structural members, the distributed mass q, and the mass associated with F . The

probabilistic characteristics of q and F are assumed as provided in Table 8.5. Furthermore, the

Rayleigh damping matrix is formulated based on a linear combination of the mass and stiffness

matrices. The damping coefficients are calculated by using 5% damping ratio for the first two modes

of the frame. The stiffness damping coefficient due to the use of the elastic beam-column element

with rotational springs at both ends is also modified according to equation (9) of the work by Zareian

and Medina [143]. The time increment for NRHA is 0.01 s.

8.6.2 Random parameters for deterioration model

As described in Section 8.2.1, the material properties for the mIK deterioration model include the

Young’s modulus E; the yield stress σy,0; the rotation capacities θp, θpc, and θu ; the reference

cumulative rotation capacity λr; and the strength ratios Mc/My and κr. The yield rotation θy is

directly evaluated from E, σy,0, and the section modulus. The probabilistic characteristics of these

material parameters and their correlations taken from the works by Lignos and Krawinkler [144]

and Liu et al. [145] are listed in Tables 8.5 and 8.6, respectively.

8.6.3 Optimization results

Problem (8.10) is formulated for the frame with two risk levels ϵl = 0.1 and 0.05 (l = 1, 2, 3). The

limit of the inter-story drift ratios is δa = 2%. The allowable plastic rotation angles for the columns

and beams are assigned as φa = 0.002 rad and ωa = 0.015 rad, respectively. The objective function
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Table 8.6: Correlation coefficients for the random parameters [145].

E σy,0 θp θpc λr

E 1.00 0.71 0 0 0
σy,0 0.71 1.00 0 0 0
θp 0 0 1.00 0.69 0.44
θpc 0 0 0.69 1.00 0.67
λr 0 0 0.44 0.67 1.00

Iteration

H
V

Iteration

H
V

(a) (b)

e l =0.1 e l =0.05

Figure 8.12: Histories of the HVs by different optimization trials for the frame with two risk levels.
(a) ϵl = 0.1; (b) ϵl = 0.05.

f1 for the frame is

f1(s) =
15ρ1 + 14(ρ2 + ρ3) + 7.5ρ4 + 7(ρ5 + ρ6) + 18(ρ7 + ρ8 + ρ9)

mmax
, (8.20)

where ρi (i = 1, . . . , 9) and mmax = 13107 kg are selected and derived from the list of sections in

Table 8.4, respectively.

Two different training datasets are generated for performing the optimization process. The first

and second datasets with 500 and 1000 feasible sampling points of the input variables, respectively,

are used as inputs to NRHA for evaluating β(s, r) and gl(s, r) (l = 1, 2, 3).

For each risk level, the optimization process is performed two times corresponding to the two

training datasets using a PC with an Intel(R) Xeon(R) E5-2643V4 3.40 GHz CPU and 64 GB

memory. f2(s) and gl(s) (l = 1, 2, 3) are evaluated for each candidate solution using a total of

nr = 4 × 104 samples of r. To update Ωa, k1 and k2 are set as 200 and 1000, respectively. The

reference point and stopping criteria for the optimization process are, respectively, fR = [1, 0], and

tmax = 20 iterations and ϵHV = 10−9. The obtained solutions are further compared with reference

solutions that are found by performing NSGA-II without sequential framework and with the GP

models for β(s, r) and gl(s, r) constructed based upon a total of 1000 training samples and the

probabilistic constraints evaluated using SAA in Chapter 7.

Figures 8.12(a) and (b) show the HV histories by the two optimization trials for ϵl = 0.1 and

0.05, respectively. The HVs are considerably improved in the very first optimization iterations and

gradually increased in the later iterations. For each risk level, the final HV corresponding to the
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  Figure 8.13: Histories of approximate Pareto-optimal solutions for the frame with ϵl = 0.1. (a) 1st
attempt; (b) 2nd attempt; (c) comparison of solutions by the two attempts and the reference ones.

second training dataset is slightly greater than that associated with the first one. Notably, the

approximate Pareto-optimal solutions are always found for each risk level as the corresponding HV

converges.

Figures 8.13 and 8.14 compare the obtained solutions by the two optimization trials for ϵl = 0.1

and 0.05, respectively. It is clear that the solution quality is guaranteed to improve after each opti-

mization iteration. The Pareto fronts for each risk level by the two optimization trials are different

due to the use of different initial training datasets and the randomness of the proposed optimiza-

tion method. The Pareto front can be further improved by taking the union of solutions by both

trials, as shown in Figures 8.13(c) and 8.14(c). More interestingly, the obtained solutions for each

risk level completely dominate the corresponding reference solutions, highlighting the importance

of the proposed refinement scheme. For ϵl = 0.1, the numbers of solutions by the first and second

optimization trials are 45 and 69, respectively, and those for ϵl = 0.05 are 43 and 82, respectively.

The computational times required for the first and second trials with ϵl = 0.1 are 8.22 and 12.03

hours, respectively, and those with ϵl = 0.05 are 9.88 and 16.52 hours, respectively.

As it is impossible to find the global solutions to problem (8.10), it is not known whether the

solutions obtained by the proposed method are the best optimal ones or not. Here the proposed

method can only provide the best solutions for a particular setting of the initial training dataset and

its underlying parameters (i.e., k1, k2, tmax, and ϵHV) because the solutions are always found when

their quality can no longer be improved. This is analogous with gradient-based algorithms that are

always guaranteed to converge to a local solution. Thus, it is desirable to perform optimization
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  Figure 8.14: Histories of approximate Pareto-optimal solutions for the frame with ϵl = 0.05. (a) 1st
attempt; (b) 2nd attempt; (c) comparison of solutions by the two attempts and the reference ones.

several times with different settings of the algorithm so that the best solutions among those from

the attempts can be found.

8.6.4 Selection of preliminary design

From the Pareto front obtained for each risk level, the solution with maximum energy dissipa-

tion ratio of the beams may be assigned as the preliminary design of the frame. In this way,

the designs corresponding to the first and second optimization trials for ϵl = 0.1 are, respec-

tively, s1 = [2, 6, 6, 1, 2, 4, 18, 8, 18] and s2 = [2, 2, 3, 3, 5, 12, 15, 17, 18], and those for ϵl = 0.05 are

s1 = [2, 9, 9, 3, 6, 6, 18, 8, 18] and s2 = [2, 2, 3, 4, 4, 11, 15, 18, 18], respectively.

To verify the feasibility of these designs, the nominal fundamental natural period, mean of the

energy dissipation of the beams, and uncertain LSFs corresponding to each design are evaluated

using NRHA with 1000 samples of r. As a result, the nominal fundamental natural period values

corresponding to s1 and s2 for ϵl = 0.1 are 1.04 and 1.08 s, respectively, and those for ϵl = 0.05 are

1.09 and 1.09 s, respectively, which are all less than 1.2 s. The expected energy dissipation ratio of

the beams and uncertain constraint functions associated with each design by the proposed method

agree with those evaluated by NRHA, as shown in Table 8.7. The preliminary designs are feasible as

the corresponding probabilistic constraints provide safety margins, which is illustrated by the CDFs

of gl (l = 1, 2, 3) corresponding to each design in Fig. 8.15.
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Figure 8.15: CDFs of probabilistic constraint functions at the selected designs for each risk level.
(a) ϵl = 0.1; (b) ϵl = 0.05.

Table 8.7: Comparisons of the energy dissipation ratios of beam members and the uncertain con-
straints between different selected designs of the frame.

Design Objective/ ϵl = 0.1 (l = 1, 2, 3) ϵl = 0.05

constraint Proposed method NRHA Proposed method NRHA

s1
f2(s1) 0.808 0.819 0.806 0.808
gl(s1) (l = 1, 2, 3) −0.1 −0.1 −0.05 −0.05

s2
f2(s2) 0.847 0.854 0.844 0.859
gl(s2) −0.1 −0.1 −0.05 −0.05

8.7 Conclusions

This chapter has introduced a novel sequential batch sampling approach to solving a discrete bi-

objective RBDO problem of moment-resisting steel frames subjected to earthquake excitation. The

problem is formulated to optimize the total mass of the frame and energy dissipation of the beam

members under unfavorable effects of correlated random parameters of floor masses, external loads,

and material properties. The probabilities of exceeding allowable values of both the maximum

inter-story drift and the rotational angles of the structural members are constrained, while the

compactness of the steel sections is required for fully sustaining plastic deformations. The main

conclusions of this chapter are summarized as follows:

(1) Approximations of the dynamic responses using the corresponding GP models facilitate solving

the bi-objective RBDO problem of the frame, which may be computationally intractable if

NRHA is directly used for uncertainty propagation.

(2) A quick termination and the robustness of the proposed method arise from the fact that the

new sampling points of the design variables to refine the accuracy of the GP models tend to

distribute in the neighborhood of the exact solutions to the RBDO problem. In other words,

the bi-objective deterministic maximization problem formulated for specifying the new sampling

points of the proposed refinement scheme is suitable for sequentially solving the RBDO problem.
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The proposed refinement scheme may further accelerate the optimization process if one can carry

out parallel computation for NRHA associated with the new sampling points.

(3) The approximate solutions to the RBDO problem are always found when their quality can no

longer be improved, regardless of using a very small number of 10−9 as the termination condition

on the change in the solution quality and considering the maximum number of optimization

iterations as another stopping criterion for the proposed method.
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Chapter 9

Conclusion and future direction

9.1 Summary

This dissertation has introduced various probabilistic approaches to inverse identification of material

parameters for costly FE models that simulate the cyclic elastoplastic behavior of structural steels

and to solving RDO and RBDO problems formulated for steel frame structures under aleatory

uncertainty in design parameters. The ultimate goal is to reduce enormous computational costs

arising from repeatedly carrying out many costly FE simulations during solving the parameter

identification problems with and without considering observational noise as well as from carrying out

difficult tasks in optimization of steel structures in the presence of uncertainty, namely uncertainty

propagation, handling individual and joint probabilistic constraints, dealing with discrete design

variables, and handling multiple objective functions. The background of this study is described in

Chapter 1, followed by a selective review of basic concepts of probability theory and some important

probabilistic approaches in Chapter 2. Chapters 3–8 detail the approaches to solving parameter

identification, RDO, and RBDO problems. The findings and contributions of this dissertation are

summarized as follows.

9.1.1 For identification problems of cyclic elastoplastic parameters for

structural steels

Single- and multi-objective inverse problems are formulated and, respectively, solved by SOBO and

MOBO approaches in Chapter 3 for identifying the elastoplastic parameters used to simulate the

cyclic behavior of structural steels subjected to different cyclic loading conditions. Reliable cyclic

elastoplastic parameters can be found by SOBO with considering noise-free and noise-corrupted

error functions. When expending the same number of simulation calls, SOBO outperforms GA and

PSO in terms of the prediction performance of identified parameters. Nevertheless, the parameters

identified from SOBO exhibit the dataset-specific bias that may lead the elastoplastic parameters

for the cyclic constitutive law identified from a single loading history to inaccurate predictions of

structural responses under other loading histories. The best and second-best compromise solutions

of parameters on the Pareto front obtained from MOBO can mitigate this bias. A dataset-specific

index has also been proposed for a rigorous assessment of the dataset-specific bias levels for different
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sets of identification results obtained from different inverse problem formulations.

A BO-assisted ABC approach introduced in Chapter 4 can facilitate the Bayesian inference of

cyclic elastoplastic parameters for structural steels from noise-corrupted experimental datasets. ABC

addresses the computationally intractable likelihood function of the Bayesian inference framework,

while BO nested in ABC handles the costly simulation for intelligently reducing the uncertainty in

the approximation of ABC posterior. As demonstrated in the illustrative examples, the BO-assisted

ABC approach is capable of providing approximate posteriors that not only reproduce the true pos-

terior with acceptable accuracy and capture the true deterministic parameters of a known statistical

model but also reliably predict the cyclic elastoplastic behavior of a steel specimen subjected to

different cyclic loading conditions. These results are brought by the performance of BO in intelli-

gently refining the approximate likelihood function in important regions of the parameter space that

substantially contributes to the improvement of the accuracy of approximate ABC posterior. When

using a sufficiently large number of MCMC samples, a small discrepancy threshold leads to the

acceptance of more good samples from the prior as samples constituting the posterior. However, it

may be impossible to improve the posterior approximation when the discrepancy threshold reaches

a small-enough value. Although their potential in probabilistically modeling the cyclic elastoplastic

parameters has been demonstrated, the accuracy of approximate posteriors by the BO-assisted ABC

approach is strongly affected by the acquisition function used for guiding BO.

9.1.2 For RDO problems

An important task for solving the less-variance RDO problems is to understand the cause-effect

relationship between the random input variables and the performance function that, in turn, fa-

cilitates the propagation of uncertainty for estimating the mean and variance of the performance

function for solving the problems. By letting the random input variables and the corresponding

structural response behave according to a joint PDF under the presence of uncertainty, GMM pre-

sented in Chapter 5 is capable of approximating such a joint PDF based on a training dataset, and

hence characterizing the probabilistic property of the structural response and providing a simple

regression function for calculation of this response as well as its statistical estimates. The method

also incorporates uncertainty in the small ranges of discrete design variables before carrying out

optimization under various conditions. Results in Chapter 5 show the GMM ability not only to

accurately characterize the probabilistic property of a LSF for a steel frame structure but also to

find good optimal solutions that well represent different levels of the trade-off between the conflicting

objective functions of the multi-objective RDO problem formulated for planar steel frames.

Although considering the joint and individual probabilistic constraints makes the multi-objective

RDO problem more realistic, it increases the complexity of the resulting two multi-objective RDO

problems, namely joint and individual probabilistic constrained multi-objective RDO problems. The

proposed BO approach in Chapter 6 is able to address challenges arising from solving these RDO

problems such as the implicit objective and constraint functions, discrete nature of the problems

formulated for steel frame structures, and difficulty in evaluation of the probabilistic constraints

with a reasonable computational cost. Guided by two new acquisition functions developed for the

two RDO problems, the proposed BO approach can quickly offer exact or good approximate Pareto-

optimal solutions to the RDO problems of steel frame structures. Nevertheless, different BO trials

may lead to different approximate Pareto-optimal solutions because the proposed method is random
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in nature. The effect of this randomness is pronounced when the feasible region of the formulated

RDO problems is large. Thus, it is important to select a candidate list of both column and beam

sections using some design rules of thumb for reduction of the discrepancy in the obtained solutions.

9.1.3 For RBDO problems

An efficient optimization procedure combining MGP modeling, decoupling approach, and SAA is

proposed in Chapter 7 for solving continuous and discrete RBDO problems of truss and frame

structures under aleatory uncertainty in material properties and external loads. With support

from GMM in splitting a training dataset into independent subsets, MGP modeling scales up the

application of GP to a large training dataset using a weighted average function of local GP models

constructed from the subsets. By doing so, MGP models can well cover the input variable space for

improving the overall accuracy of the regression models and significantly reduce the computation

time required for the training process. This further enables the development of a novel SAA and

its inverse based upon the first three cumulants of the uncertain LSFs to handle the probabilistic

constraints of the RBDO problem effectively. The efficiency of the proposed SAA in calculation of

failure probabilities has also been verified in comparison with MCS. An important contribution of

Chapter 7 is the replacement of the original RBDO problem with a SDO problem that uses the MGP

models as surrogates for the LSFs in the probabilistic constraints. The SDO problem is strategically

solved, with support from the proposed SAA in calculation of the inverse failure probabilities, for

exploring the region that is deemed to contain the optimal solution and improving the accuracy of

the MGPs in that region. As shown in the optimization results for a ten-bar truss and a four-story

three-bay steel frame, the proposed SDO problem can quickly provide a reliable solution to the

original RBDO problem.

As an extension of Chapter 7, Chapter 8 introduces a novel sequential batch sampling approach

to solving a discrete bi-objective RBDO problem of moment-resisting steel frames subjected to

earthquake excitation. The RBDO problem is formulated to optimize the total mass of the frame

and the energy dissipation of its beam members under unfavorable effects of correlated random

parameters of floor masses, external loads, and material properties. The dynamic responses are

approximated by the corresponding GP models to facilitate solving the RBDO problem, which

may be computationally intractable if NRHA is directly incorporated into MCS for uncertainty

propagation. A bi-objective deterministic maximization problem is then proposed for specifying the

new sampling points that refine the accuracy of the GP models. This bi-objective deterministic

maximization problem is formulated based on two conflicting criteria, namely the improvement of

the current solutions and the feasibility of new sampling points. To this end, the approximate

solutions to the bi-objective RBDO problem are always found when their quality can no longer be

improved. This is due to the fact that the new sampling points of the design variables to refine

the accuracy of the GP models tend to distribute in the neighborhood of the exact solutions to the

RBDO problem. In other words, the bi-objective deterministic maximization problem formulated

for specifying the new sampling points of the proposed refinement scheme is suitable for sequentially

solving the RBDO problem.
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9.2 Possible directions for future research

Aside from the proposed probabilistic approaches, this dissertation initiates some problems related

to the applications of these approaches to real-world optimization problems that require further

research.

Since its feasibility has only been verified against simple problems of a steel specimen and a

cantilever beam, it is desirable to apply the SOBO approach in Chapter 3 to complicated parameter

identification problems in the field of system identification. All we need before the implementation of

the SOBO approach is to formulate an error function as a function of the parameters to be identified

and specify the noise involved in each measurement of the response of interest.

The multi-objective inverse problem in Chapter 3 is formulated based on only three sets of

experimental results. It is, therefore, desirable to scale up the application of the multi-objective

formulation to the case where many sets of experimental results are available. Either of the following

two strategies may be applicable. First, the experimental sets can be split into disjoint clusters

based on the similarity or the correlation between the test results. In this way, improving the

objective value of a set may not worsen the objective values of other sets in the same cluster and

therefore, each cluster can be represented by a single objective function, which is formulated from

a representative set or from individual objectives of the sets in that cluster using the weighted-

sum approach. Second, if it is not clear to determine the similarity or correlation between the

experimental sets, the multi-objective inverse problem can also be formulated for every combination

of three sets, and the remaining sets are used for validation. Three sets for each combination are

recommended because they allow us to visualize how the solutions are distributed in the objective

function space. Then, the dataset-specific bias index values for the solutions to each problem can

be evaluated using the associated validation sets. Different sets of dataset-specific bias index values

can be found based on the validation sets for rational decision-making.

Since the BO-assisted ABC in Chapter 4 is still in the first stage of the development of a robust

posterior approximation method facilitating the Bayesian inference of costly FE models, it is outside

the realm of the following important aspects.

� It is desirable to develop a scalable method for BO over high-dimensional parameter spaces

because BO often limits itself to problems with less than 20 parameters [71].

� It is also important to characterize robust priors to ensure the consistency of the approximate

posterior. For this, hierarchical or conjugate priors may be viable choices.

� Post-processing of parameters characterizing the approximate posterior is needed to further

consider the discrepancy between simulated and measured summary statistics. This process

adjusts the obtained approximate posteriors based on a regression model, such as local linear

or nonlinear model [116].

� Modeling errors can be incorporated by defining the standard deviation of the discrepancy as

a function of material parameters, observational noise, and modeling errors.

� The problem of selecting an appropriate constitutive law may be of interest because the ABC

approach has been widely used for statistical model selection [115] while many cyclic elasto-

plastic constitutive laws are available.

The GMM in Chapter 5 can be further developed with multi-objective functions so that the
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performances of all structural members can be fully taken into account instead of using maximum

response values for particular member groups. That means, f(x) in Eq. (2.42) becomes a vector

of structural responses, rather than a scalar. In addition, it is possible to start the construction of

GMM based on a small number of training samples that can be further enriched to refine the GMM

accuracy intelligently by utilizing the variance information of the GMM model.

The proposed BO approach in Chapter 6 may be computationally expensive if it is developed

based on a large training dataset for increasing the accuracy of the optimization results because the

GP surrogates for the structural responses are extremely sensitive to the number of samples [58].

The GMM clustering approach presented in Chapter 7 is a viable choice to increase the scalability

of the proposed BO approach.

The RDO problem in Chapter 6 is limited to the strength requirements for individual structural

members and does not consider the local and global collapse mechanisms of the frames. It is possible

to formulate a new RDO problem by providing additional probabilistic constraints on the local and

global collapse mechanisms. Such a new optimization problem may include both correlated and

uncorrelated LSFs of different collapse mechanisms. Thus, a new optimization method addressing

both the joint and individual probabilistic constrained RDO problems may be of interest.

As an extension of Chapter 7, future studies may focus on using more flexible clustering methods,

e.g., Dirichlet process mixture model [150], to replace the GMM clustering method if the size of the

training data tends to grow for a real-world problem. Also to further enhance the accuracy of

the proposed SAA method, it is possible to use either higher-order derivatives of the LSFs, e.g.,

the Hessian, for calculating the first three cumulants of the random variables or the higher-order

cumulants of the random input variables.

A nontrivial extension to the RBDO problem in Chapter 8 is to incorporate uncertainty in the

earthquake ground motions and damping ratio into the design optimization process. The service-

ability, repairability, and ultimate limit state verifications should also be carried out for the frame

under different seismic intensities. The proposed optimization method in Chapter 8 can be extended

to solving either continuous multi-objective or discrete/continuous single-objective RBDO problems.

For continuous multi-objective RBDO problems, Gaussian local searches [151] may be employed for

enrichment of the existing candidate solutions instead of the random perturbations as presented in

Chapter 8. For discrete/continuous single-objective RBDO problems, the acquisition function for

SOBO may be a viable choice to replace the HVI. Besides, the use of precise numerical models for

predictions of dynamic responses or the combination of low fidelity models and high fidelity models

may be another opportunity for future research.
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Appendix A

Nonlinear combined

isotropic/kinematic hardening

model

Let σ, α, and σy denote the stress tensor at a point of the steel specimen, the back-stress tensor, and

the yield stress, respectively. Assume that our focus is on a small strain problem. The relationship

between strain and stress states of structural steel is described by its current status that is either

elastic or plastic, and can be detected using the following von Mises yield criterion:

F =

√
3

2
(ξ : ξ)1/2 − σy = 0, (A.1)

where ξ = dev[σ] − dev[α] is the shifted-stress tensor, dev[·] denotes the deviatoric part of [·], and
the symbol ‘:’ is the double dot product of two second-order tensors.

We commonly use isotropic and kinematic hardening models to describe the strain hardening

process of structural steels subjected to cyclic loading. The isotropic hardening model only increases

the size of the yield surface F = 0 during the evolution of plastic deformations. As a result, α does

not appear in Eq. (A.1), leading the yield surface to be an isotropic function of the stress that cannot

capture the Bauschinger effect [152]. As structural steels exhibit a saturation point of the stress at

large deformation, the isotropic hardening model can describe the increment of the size of the yield

surface using the following Voce hardening law [153]:

σy = σy,0 +Q∞[1− exp(−bϵpeq)], (A.2)

where σy,0 denotes the initial yield stress, Q∞ is the difference of the stress saturation and σy,0, b

is the isotropic saturation rate, and ϵpeq is the current equivalent plastic strain determined based on

its previous state and the rate ϵ̇peq.

The kinematic hardening model does not change the size and shape of the yield surface. Instead,

it updates the center of the yield surface using a rigid translation in the evolution direction of

the plastic strain. This enables the kinematic hardening model to capture the Bauschinger effect.

The back-stress tensor α can be further decomposed into nk back-stress components for a better
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approximation as [154]

α =

nk∑
k=1

αk, (A.3)

where the rate of αk can be described by a the following nonlinear kinematic hardening rule [155]:

α̇k =

√
2

3
Ck ϵ̇

p
eqn− γk ϵ̇peqαk, (A.4)

where n = ξ/∥ξ∥ denotes the unit normal vector of the yield surface; and Ck and γk are the

translation and relaxation rates of αk, respectively.

The nonlinear combined isotropic/kinematic hardening model was developed using both Eqs. (A.2)

and (A.4). Let x = [x1, . . . , xd] ∈ Rd denote the vector of n material parameters for this com-

bined hardening model. Thus, x = [E, ν,Q∞, b, σy,0, C1, γ1] if we use one back-stress component in

Eq. (A.3), where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively.
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Appendix B

Monte-Carlo approximations

In general, it is difficult to directly use the integrals in Eqs. (2.5) and (2.6) for calculation of the mean

and variance of r. One simple but powerful alternative is to carry out Monte-Carlo integration, which

is described as follows. We first randomly generate a total nr independent and identical distributed

samples of r, namely r1, . . . , rnr . Then, we can approximate the distribution of π(r) by using the

empirical distribution of {π(ri)}nr
i=1. As a result, the sample mean µr and empirical variance σ2

r of

r are given by

µr ≈ µ̄r =
1

nr

nr∑
i=1

ri, (B.1a)

σ2
r ≈

1

nr

nr∑
i=1

(ri − µ̄r)
2. (B.1b)

The integral in Eq. (2.2) for calculation of P[r ≤ r̄] can also be approximated by

P[r ≤ r̄] ≈ 1

nr

nr∑
i=1

I
[
ri − r̄

]
, (B.2)

where indicator function I[ri − r̄] reads

I
[
ri − r̄

]
=

1 if ri − r̄ ≤ 0,

0 otherwise.
(B.3)
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