
Development of Data Assimilation System

for Toroidal Plasmas

MORISHITA Yuya

2023





Contents

1 Introduction 1

1.1 Fusion energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Magnetically confined plasma . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Integrated transport simulation . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contents of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Data Assimilation System, ASTI 7

2.1 Data assimilation for state estimation . . . . . . . . . . . . . . . . . . . 7

2.1.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Sequential Bayesian filter . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Kalman filter and smoother . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Ensemble Kalman filter and smoother . . . . . . . . . . . . . . . 14

2.1.6 Comparison of ensemble Kalman filter and particle filter . . . . . 17

2.2 System model of fusion plasma . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 TASK3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 HFREYA and GNET . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 ASTI as an analysis system . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Settings of observation data . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Assimilation results . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Rapid simulation of NBI heating . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 FIT3D-RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Performance of FIT3D-RC . . . . . . . . . . . . . . . . . . . . . 35

i



3 Prediction and Model Parameter Estimation for NBI Heated Plas-

mas 40

3.1 Data assimilation to heat transport simulation in LHD . . . . . . . . . . 40

3.1.1 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Initial distribution and noise . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Assimilation results . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Data assimilation to particle and heat transport simulation in LHD . . . 50

3.2.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Initial distribution and noise . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Prediction by the EnKF . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Estimation of model parameters by the EnKS . . . . . . . . . . . 59

3.2.5 Prediction performance . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Data Assimilation for Control 66

4.1 Data assimilation and control system . . . . . . . . . . . . . . . . . . . . 67

4.1.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Steps for control input estimation and system model update . . . 69

4.1.3 Construction of control algorithm . . . . . . . . . . . . . . . . . . 73

4.2 ASTI as a control system . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Numerical Experiments to Control Virtual LHD Plasma 77

5.1 Settings of numerical experiments . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.2 Virtual LHD plasma . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Control results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Control results of virtual plasma . . . . . . . . . . . . . . . . . . 82

5.2.2 Dependence of control performance on hyper parameters . . . . . 84

5.2.3 Limitation of adaptation . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions and Future Perspectives 89

Acknowledgement 92

Publication List 93

References 94

ii



Chapter 1

Introduction

1.1 Fusion energy

In today’s world, with problems of fossil fuel depletion and CO2 emissions, power
generation via nuclear fusion is attracting attention as a next-generation electricity
source. Nuclear fusion is a reaction in which a new nucleus is produced by nuclear
force when light nuclei approach each other, overcoming electrostatic repulsive force.
As a result, the reaction reduces the total mass, and the corresponding energy is
extracted as the kinetic energy of the charged particles and neutrons produced in the
reaction. Fusion power generation converts this energy into electricity and has the
following advantages compared with conventional power generation methods:

• Since we can extract the fuels from seawater (described below), they can be a
semi-permanent source of electricity.

• Runaway reactions that can occur in fission reactors do not happen in fusion
reactors because the core temperature must be very high to cause fusion reactions.

• Fusion reactors do not produce high-level long-lived radioactive wastes and do
not emit CO2.

The fusion reaction between the hydrogen isotopes: deuterium (D) and tritium (T),

D + T→ He4 + n + 17.6 MeV, (1.1)

is considered as the most promising reaction for the power generation in terms of
reaction cross section. Deuterium can be obtained from seawater, whereas tritium is
rarely found in nature. However, we can produce tritium from the lithium isotopes,
Li6 and Li7, through the reactions:

Li6 + n → He4 +T+ 4.8 MeV, (1.2)

Li7 + n + 2.5 MeV → He4 +T+ n. (1.3)

Fortunately, seawater contains large amounts of these lithium isotopes; thus, we can
obtain the fuels of the power generation from seawater semi-permanently.

Many scientists worldwide are still working on various approaches to realize power
generation by fusion reactors. Magnetic confinement fusion is one of the prevailing
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Figure 1.1: A magnetic surface (a) and a nested structure of magnetic surfaces (b) in
LHD.

approaches and utilizes the fusion reaction caused by the thermal motion of the fuels.
To sustain a fusion reaction, we must maintain the fuels at high temperatures and
densities. The fusion reaction’s temperature is extremely high (exceeding 100 million
degrees Celsius), and the fuel enters a plasma state. Since no containers can withstand
the ultra-high temperature, the plasma is confined using a magnetic field. The following
section will briefly mention the magnetically confined plasma (fusion plasma).

1.2 Magnetically confined plasma

The basic idea of the magnetic confinement is to confine plasma using closed surfaces
made of magnetic field lines, taking advantage of the property of charged particles to
wind around magnetic field lines. This surface is called ”magnetic surface”, and is
created by single magnetic field line orbiting a torus as shown in Fig. 1.1(a). These
magnetic surfaces create a multilayered nested structure toward the center of the torus,
as shown in Fig. 1.1(b). As a variable representing the radial position, the normalized
minor radius ρ is often used. Here, ρ is determined by the magnetic surface, where 0
and 1 correspond to the center and edge of the plasma, respectively.

Magnetically confinement devices can be broadly classified into two types based on
the way to create the confinement magnetic field. One is the helical device, in which
the confinement magnetic field is created only by the external coils, and the other is the
tokamak, in which the field is created by the toroidal current flowing in the plasma in
addition to the external coils. This thesis focuses specifically on Large Helical Device
(LHD) [1, 2], which is classified as a helical device.

LHD is one of the world’s largest helical devices using superconducting coils and
is located in Toki city, Japan. The magnetic configuration of LHD is produced by two
superconducting helical coils and three pairs of superconducting poloidal coils. The
magnetic field strength of LHD is 3 T and the typical major and minor radii are 3.6
m and 0.6 m, respectively, as shown in Fig. 1.2. Helical devices can be operated in
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Figure 1.2: Basic concept of LHD [3].

steady-state compared to tokamaks, which require toroidal current. LHD has a long
operating record of 54 minutes.

1.3 Integrated transport simulation

Fusion plasma, which is confined in a magnetic field and should be maintained un-
der extremely high temperature and density conditions, is a typical complex system
containing physical phenomena with various spatiotemporal scales [4]. To simulate
the behavior of the entire fusion plasma, integrated simulation is often employed. In-
tegrated simulation is a method of simulating the behavior of an entire system by
combining modules that represent each physical phenomenon. Integrated simulation
codes for fusion plasmas are being developed around the world for the prediction and
analysis of entire fusion plasmas, operation scenario development, and reactor design,
e.g., [5–9]. In addition, operation of future fusion reactors will require a system that
continuously monitors and controls the state of the fusion plasma. Model predictive
control, in which control decisions are based on predictions by simulations, is con-
sidered necessary for the control, and the integrated codes are also important as the
predictive model.

Although the integrated simulation codes are expected to be utilized in various
situations, they face some severe problems as follows.

• Physical models comprising the codes contain uncertainties, and their entangle-
ments significantly reduce the predictive and analytical capabilities. Especially
for turbulent transport, a model with high prediction accuracy has not been
established, and the large uncertainty exists.

• To accurately predict fusion plasma behavior, the models must consider condi-
tions outside the plasma (e.g., wall condition [10]) as well as inside the plasma,
further increasing the uncertainty of the simulation [11].
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• More than one simulation model cannot be optimized simultaneously. When we
try to estimate a turbulent model parameter to reproduce experimental observa-
tions, other employed models in the simulation are assumed to be validated and
fixed.

• Present integrated simulation codes have difficulty achieving fast and accurate
calculations required for real-time prediction and control.

To overcome these problems and realize a numerical system that can analyze, pre-
dict, and control the behavior of fusion plasma with high accuracy, we introduce data
assimilation techniques into the integrated simulation.

1.4 Data assimilation

In general, data assimilation is a technology that integrates observations and simulation
models by optimizing state variables from limited observed information [12]. It finds
the optimum combination of a numerical model and observations to estimate the state
of a system more accurately. It allows us to optimize variables by quantifying the
uncertainties using probability distributions. Data assimilation enhances the predictive
and analytical capabilities of simulation models and is generally used for the following
applications.

• Highly accurate and fast prediction.

• Model optimization.

• Estimation of unobserved quantities and state reconstruction.

• Inverse problem.

• Uncertainty quantification.

Data assimilation is mainly employed for large complex systems such as weather fore-
casting and ocean analysis [13–18].

The purpose of this study is to develop a numerical system that can predict and
control the behavior of fusion plasma with high accuracy employing the data assim-
ilation. Data assimilation can also improve simulation models involving turbulence
models. We have been developing a data assimilation system, referred to as ASTI, as
a comprehensive system for analysis, prediction, and control of fusion plasma based
on an integrated code as shown in Fig. 1.3. ASTI stands for Assimilation System
for Toroidal plasma Integrated simulation. ASTI is built independently of the system
model code (simulation code) and can perform data assimilation on any experimental
devices based on the observed data and simulation code. In this thesis, we employ
the integrated transport simulation code TASK3D [19] as the system model, which is
developed to predict and analyze the behavior of helical fusion plasmas [20–22].

The main feature of ASTI is that it attempts to realize predictive control of complex
behavior of fusion plasmas by applying data assimilation. For this purpose, we also
develop a new data assimilation framework, named as ”Data Assimilation and Control
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System” (DACS), which includes the bidirectional interaction between the data assim-
ilation system and the real system (fusion reactor). Of course, ASTI also works as an
analysis system of fusion plasma, which enables us to develop higher performance mod-
els by using a wide variety of measurement data accumulated in experimental fusion
devices. ASTI is expected to become a comprehensive system that connects numerical
space and real space as Fig. 1.4.

In this thesis, the data assimilation method and system model underlying ASTI
are described, and the analysis and control of LHD plasmas using ASTI are discussed
in detail.

1.5 Contents of this thesis

There are two major objectives of this thesis. The first is to introduce typical data
assimilation methods into the integrated simulation of fusion plasmas and to investigate
the effectiveness. This corresponds to the development of ASTI as an analysis system.
The second is to develop a data assimilation framework including control processes
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to provide a foundation of flexible and powerful control systems for fusion reactors.
The developed framework allows ASTI to be extended to a control system of fusion
plasmas. These topics are described in the first half (Chapter 2 and 3) and the second
half (Chapter 4 and 5), respectively.

In Chapter 2, the sequential Bayesian filter, a basic data assimilation framework,
and data assimilation methods based on it (ensemble Kalman filter and smoother) are
explained. In addition, details of the ASTI implementation and the system model
(TASK3D) will be discussed. In the last part of Chapter 2, we also present a rapid
calculation code of neutral beam injection (NBI) heating developed for ASTI.

In Chapter 3, The effectiveness and validity of the estimations by ASTI are inves-
tigated by several experimental data sets of NBI heated plasmas in LHD. Two cases
are shown: assimilation of the experimental data into the integrated simulation of only
heat transport and heat and particle transport. This chapter also discusses fast and
accurate prediction and analysis by combining data assimilation and simplified models
(fast models).

We propose a new data assimilation framework, DACS, developed for control of
complex systems in Chapter 4. DACS integrates system model updates and optimal
control-input estimation and can be applied to fusion plasma control and a wide range
of other control problems in which system models can be prepared even in a simplified
manner. This chapter also discusses the construction of a specific control algorithm
and the implementation in ASTI.

In Chapter 5, we demonstrate the effectiveness of DACS through numerical experi-
ments in controlling virtual (numerically created) fusion plasma. In addition, we reveal
the characteristics of the control performance related to the choice of hyper parameters
and the discrepancies between the system model and the real system.

In the final chapter, we summarize this thesis and discuss the future prospects of
this study.
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Chapter 2

Data Assimilation System, ASTI

In recent years, with advances in computer performance, numerical simulation has been
developed as a major research method in natural science in addition to experimental
and theoretical approaches. Computer simulation enables us to understand and predict
complex phenomena. In addition, data-driven science (statistical science), in which in-
ductive inferences are made from data, has also made great progress, and machine
learning including neural networks has achieved significant results. Data assimilation
is a technique that combines simulation science (deductive inference) and data-driven
science (inductive inference). Data assimilation estimates the state of a target system
based on information from observation data and simulation models, and was originally
developed for large-scale integrated simulations in meteorology and oceanography. In
recent years, data assimilation has been used in a variety of fields, partly due to im-
provements in computer performance [13–18,23,24].

Data assimilation methods are roughly divided into two types. The first type,
represented by Kalman filter (KF) [25], is based on sequential Bayesian filter (esti-
mation) [26, 27]. The second type, represented by the four-dimensional variational
method [28], is based on the maximum a posteriori (MAP) estimation. ASTI as an
observation system is based on the former, sequential Bayesian filter, and the inte-
grated transport simulation code for helical fusion plasmas, TASK3D is employed as
the system model.

In this chapter, we explain the sequential Bayesian filter and data assimilation
methods based on it (ensemble Kalman filter and smoother). In addition, details of
the system model (TASK3D) and the models developed for high-speed calculations are
discussed.

2.1 Data assimilation for state estimation

In this section, we introduce the sequential Bayesian filter, one of the typical data
assimilation methods. In ASTI, the data assimilation methods for state estimation
based on the sequential Bayesian filter: ensemble Kalman filter and smoother [29] and
particle filter [27] are implemented.
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2.1.1 State-space model

In general, simulation models are developed to compute the time evolution of a single
state of the system. In other words, the time evolution of the system is calculated
deterministically by the simulation model. However, in order to sequentially optimize
simulation models by observation, it is necessary to consider uncertainty in the simula-
tion to assimilate the observed data. In data assimilation, we consider a probabilistic
distribution of a state vector (state distribution). Here, state vector is a vector whose
components are variables that define a state of a target system (state variable). We
calculate the time evolution of the probability distribution in the state space using the
system model. In other words, we follow multiple solutions in the form of probability
distribution. Note that a general deterministic simulation corresponds to taking the
state distribution as a delta function.

The framework of the sequential Bayesian filter assumes the state-space model
consisting of a system model and an observation model shown as Eqs. (2.1) and (2.2),
respectively.

xt = ft(xt−∆t,vt), (2.1)

yt = ht(xt,wt). (2.2)

The vectors xt and yt denote the state vector and the observation vector at a time t.
The system model represents the temporal evolution of state vector from time t−∆t
to t by the nonlinear operator ft. Since the operator ft (simulation model) is generally
incomplete, the uncertainty of x should increase with time evolution. This uncertainty
associated with time evolution is considered as the system noise vt. In this thesis,
TASK3D is employed as the nonlinear operator ft. The observation model, Eq. (2.2),
represents the relationship between the state vector xt and the observation vector yt

considering the observation noise wt. The observation model allows the state vector
and the observation vector to be compared. It is noted that the observation noise is not
only determined by measurement errors caused by the instruments, but also includes
errors caused by phenomena that cannot be represented by the simulation model (ft).
The observation model is often written as a linear model:

yt = Htxt +wt. (2.3)

This observation model projects the state vector on the observation space by the matrix
Ht called the observation matrix, and the observation noisewt is added to the projected
vector. This thesis also assumes the linear observation model.

In typical data assimilation frameworks, the state-space model is defined by cou-
pling the system model and observation model. The cooperation of these two models
provides a foundation for optimizing the state vector by combining the observed data
with the simulation. To perform data assimilation using the state-space model, the
probability distributions of the initial state (p(x0)), system noise (p(vt)), and obser-
vation noise (p(wt)) must be determined in advance. The specific data assimilation
process is described in the next section and beyond.
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2.1.2 Sequential Bayesian filter

In this chapter, we assume that observation data are available at time ti (i ≥ 1). When
a time point is written in a subscript, it is denoted as Ai, which indicates variable A
at time ti. In addition, we use the multiple time notation A1:i ≡ {A1, A2, · · · , Ai}.

The state distributions at a given time ti are divided into the following three types,
depending on up to which time the observation information was assimilated.

• Predicted distribution, p(xi | y1:i−1)

• Filtered distribution, p(xi | y1:i)

• Smoothed distribution, p(xi | y1:I) (I > i)

The predicted and filtered distributions appear in the filter procedure shown below.
The smoothed distribution is discussed in the next subsection.

The procedure of the sequential Bayesian filter comprises two steps on the state
distribution, i.e., prediction and filtering (assimilation of observation into the distribu-
tion). The change in the probability distribution of state vector at each step can be
summarized as follows.

• Prediction
p(xi | y1:i)→ p(xi+1 | y1:i). (2.4)

• Filter
p(xi+1 | y1:i)→ p(xi+1 | y1:i+1). (2.5)

Here, y1:i ≡ {y1, · · · ,yi}, and p(xi | y1:i) means the distribution of xi including the
observed information from t = 1 to t = i. Given an initial distribution p(x0), the data
assimilation process can proceed by repeating the prediction step and filtering step
alternately, as shown in Fig. 2.1.

Prediction step

In this step, we predict the state distribution p(xi+1|y1:i) from p(xi | y1:i) using the
system model, Eq. (2.1). The state distribution p(xi+1 | y1:i) is calculated by

p(xi+1|y1:i) =

∫
p(xi+1,xi|y1:i)dxi

=

∫
p(xi+1|xi,y1:i)p(xi|y1:i)dxi

=

∫
p(xi+1|xi)p(xi|y1:i)dxi. (2.6)

Here, we assumed the Markov property attached to the system model, Eq. (2.1):

p(xi+1|xi,y1:i) = p(xi+1|xi). (2.7)

This first-order Markov property is just a condition imposed on the state vector, and
higher-order Markov chains can be realized by including state variables at multiple

9



制御への拡張
11

x1 x2 x3 x4x0

y1

y2

y3

y4

State vector

O
bs

er
va

tio
n

p(x0) p(x1)

p(x1 |y1)
p(x2 |y1)

p(x2 |y2)
p(x3 |y2)

p(x3 |y3)

Prediction

Filtering

Figure 2.1: Data assimilation process of sequential Bayesian filter.

time points in the state vector. Using the system model, the conditional distribution
p(xi+1|xi) in Eq. (2.6) is given as

p(xi+1|xi) =

∫
p(xi+1,vi+1|xi)dvi+1

=

∫
δ(xi+1 − fi+1(xi,vi+1))p(vi+1)dvi+1. (2.8)

Filtering step

Once the predicted distribution p(xi+1|y1:i) is computed and the observation data at
time i+ 1 is available, the filtered distribution can be computed from Bayes’ theorem
as follows:

p(xi+1|y1:i+1) = p(xi+1|y1:i,yi+1)

=
p(xi+1,yi+1|y1:i)

p(yi+1|y1:i)

=
p(yi+1|xi+1,y1:i)p(xi+1|y1:i)

p(yi+1|y1:i)

=
p(yi+1|xi+1)p(xi+1|y1:i)

p(yi+1|y1:i)

=
p(yi+1|xi+1)p(xi+1|y1:i)∫
p(yi+1,xi+1|y1:i)dxi+1

=
p(yi+1|xi+1)p(xi+1|y1:i)∫

p(yi+1|xi+1)p(xi+1|y1:i)dxi+1
. (2.9)

10



Time

Probability

Filter

Filter

Filter
Prediction Prediction Prediction

p(xi+1 |yi)

p(xi+1 |yi+1)

yi+1yi

Prediction 
True time evolution 

p(xi |yi)

p(xi |yi−1)

State variable

Figure 2.2: Changes in state distribution in the sequential Bayesian filter.

Here, we assumed the Markov property attached to the observation model, Eq. (2.2):

p(yi+1|xi+1,y1:i) = p(yi+1|xi+1). (2.10)

The numerator at the rightmost side of Eq. (2.9) is given by the predicted distribution
p(xi+1|y1:i) multiplied by the likelihood function p(yi+1|xi+1).

We start the data assimilation procedure from the initial distribution p(x0) and
repeat the prediction and filtering steps. This procedure allows us to perform the
system state prediction while optimizing the simulation model so that the prediction
is always successful. Figure 2.2 illustrates the changes in state distribution in the
procedure of sequential Bayesian filter.

2.1.3 Smoother

The filter optimizes the state vector to enhance the prediction capability of the simula-
tion model based on the observation data. The filtered estimate includes information
that should be considered in the simulation model. However, it is known that there
is a time difference (delay) between the filtered estimate and observation, because the
filtered estimate is based on the observation data prior to the time of filtering [30].
To estimate the state vector in a reasonable manner both temporally and spatially,
smoothing procedure is required. The smoother corrects the filtered distribution using
observation data posterior to the time of filtering (future data).

There are several methods of the smoothing, here we describe the fixed-interval
smoothing, implemented in ASTI. This method optimizes the state distributions back-
ward from time I (I > i) in sequence like p(xI |y1:I)→ p(xI−1|y1:I)→ · · · → p(xi|y1:I).
This method uses the observed data up to time I to estimate all smoothed distributions
up to time I as shown in Fig. 2.3.

Assume that the filtering up to time I has been completed and the predicted and fil-
tered distributions up to time I have been obtained. The smoothed distribution at time

11
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i, p(xi|y1:I), can be written using the predicted distribution p(xi+1|y1:i), the filtered
distribution p(xi|y1:i), and the smoothed distribution one time ahead, p(xi+1|y1:I), as
follows.

p(xi|y1:I) =

∫
p(xi,xi+1|y1:I)dxi+1

=

∫
p(xi|xi+1,y1:i)p(xi+1|y1:I)dxi+1

=

∫
p(xi,xi+1|y1:i)

p(xi+1|y1:i)
p(xi+1|y1:I)dxi+1

=

∫
p(xi|y1:i)p(xi+1|xi)

p(xi+1|y1:i)
p(xi+1|y1:I)dxi+1

= p(xi|y1:i)

∫
p(xi+1|xi)p(xi+1|y1:I)

p(xi+1|y1:i)
dxi+1. (2.11)
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Here, we assumed the Markov property,

p(xi|xi+1,y1:I) = p(xi|xi+1,y1:i,yi+1:I)

=
p(yi+1:I |xi,xi+1,y1:i)p(xi|xi+1,y1:i)

p(yi+1:I |xi+1,y1:i)

=
p(yi+1:I |xi+1,y1:i)p(xi|xi+1,y1:i)

p(yi+1:I |xi+1,y1:i)

= p(xi|xi+1,y1:i). (2.12)

From Eq. (2.11), the smoothing procedure can be interpreted as correcting the filtered
distribution p(xi|y1:i) with future observations. Equation (2.11) propagates observed
information from the future to the past. Combination of the prediction, filter, and
smoother allows us to estimate the state distribution at any given time based on ob-
servation data up to an arbitrary time.

Up to here, we have discussed the data assimilation procedure without assuming
any specific form of probability distribution or any specific state-space model. In the
next subsection, we introduce specific algorithms of the sequential Bayesian filter.

2.1.4 Kalman filter and smoother

Assuming that the system model and observation model are linear models, and the
noises are white noises following Gaussian distributions, Eqs. (2.1) and (2.2) are written
as

xi+1 = Fi+1xi + vi+1, vi+1 ∼ N(0, Qi+1), (2.13)

yi = Hixi +wi, wi ∼ N(0, Ri), (2.14)

where the matrices Fi+1 and Hi are a time evolution matrix of xi → xi+1 and an
observation matrix, respectively. Matrices Q and R are covariance matrices of the
system noise and observation noise, respectively, where N(0,Σ) denotes the Gaussian
distribution with zero mean and covariance matrix Σ. The sequential Bayesian filter
under the state-space model, Eqs. (2.13) and (2.14), is specifically called ”Kalman
filter” (KF). A major feature of KF is that the sate distribution remains Gaussian
throughout the data assimilation processes.

The prediction step of the sequential Bayesian filter can be calculated as follows:

xi+1|y1:i ∼ N(xi+1|i, Vi+1|i), (2.15)

xi+1|i = Fi+1xi|i, (2.16)

Vi+1|i = Fi+1Vi|iF
T
i+1 +Qi+1, (2.17)

where the matrix V is the covariance matrix of state distribution and the superscript
T denotes the matrix transposition. The variables with subscript a|b indicate the
parameters related to the distribution p(xa|y1:b).
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From the assumption of Gaussian distribution, the filtering step is given by

xi+1|y1:i+1 ∼ N(xi+1|i+1, Vi+1|i+1), (2.18)

xi+1|i+1 = xi+1|i +Ki+1(yi+1 −Hi+1xi+1|i), (2.19)

Vi+1|i+1 = Vi+1|i −Ki+1Hi+1Vi+1|i, (2.20)

Ki+1 = Vi+1|iH
T
i+1(Hi+1Vi+1|iH

T
i+1 +Ri+1)

−1. (2.21)

Here, the matrixK, which plays an important role in this calculation, is called ”Kalman
gain”. The modification of the mean vector by the filter depends on Ki+1 and the
difference between prediction and observation, yi+1−Hi+1xi+1|i, as shown in Eq. (2.19).
The variables without observations are also optimized by the filter through K. As can
be seen from the calculations of prediction and filtering, The KF procedure is closed
with the mean and covariance matrix of the Gaussian distribution. See [26, 31] for
details of the formula transformations.

Similarly, the smoother can be calculated as follows:

xi|y1:I ∼ N(xi|I , Vi|I), (2.22)

xi|I = xi|i +Ai(xi+1|I − xi+1|i), (2.23)

Vi|I = Vi|i +Ai(Vi+1|I − Vi+1|i)A
T
i , (2.24)

Ai = Vi|iF
T
i+1V

−1
i+1|i. (2.25)

This smoothing calculation is called ”Kalman smoother” (KS).
Although KF is a powerful state estimation technique, its target systems are limited

to linear systems. In general, simulation models are rarely linear, and systems in which
data assimilation is introduced often require nonlinear and complex simulation models.
The ensemble Kalman filter (EnKF), which will be discussed in the next section, is an
extension of KF and performs data assimilation to nonlinear systems using an ensemble
approximation.

2.1.5 Ensemble Kalman filter and smoother

The ensemble Kalman filter (EnKF) [29] approximates the state distribution by an en-
semble and constructs the ensemble sequentially so that its sample mean and covariance
matrix asymptotically match the conditional mean and covariance matrix expected by
the KF. Since the prediction step is approximated by computing the time evolution of
each ensemble member using the simulation model, the EnKF can perform the sequen-
tial Bayesian filter even for nonlinear system models, as shown in Fig. 2.4. In addition,
the smoothing process can also be performed by ensemble Kalman smoother (EnKS).

EnKF

The EnKF assumes a state-space model consisting of a nonlinear system model and a
linear observation model shown as Eqs. (2.26) and (2.27), respectively.

xi+1 = fi+1(xi,vi+1), vi+1 ∼ N(0, Qi+1), (2.26)

yi = Hixi +wi, wi ∼ N(0, Ri). (2.27)
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Figure 2.4: Changes in ensemble members at each step of the EnKF: prediction (a)
and filter (b).

The EnKF works even for system noise that is not Gaussian distributed. The state
distribution p(x) is approximated by an ensemble consisting of {x(n)}n=N

n=1 as follows:

p(x) ≃ 1

N

N∑
n=1

δ
(
x− x(n)

)
, (2.28)

where N is the number of ensemble members, and n is the index of them. The predic-
tion is executed by calculating the time evolution of each ensemble member based on
the system model:

x
(n)
i+1|i = fi+1(x

(n)
i|i ,v

(n)
i+1). (2.29)

It is noted that x
(n)
t|s is the n-th ensemble member that approximates the state dis-

tribution at the time t given y1:s ≡ {y1, · · · ,ys}, p(xt|y1:s). Therefore, x
(n)
i+1|i is an

ensemble member approximating the predicted state distribution p(xi+1|y1:i), and x
(n)
i|i

is an ensemble member approximating the filtered state distribution at the previous

time step, p(xi|y1:i). The vector v
(n)
i+1 is the n-th sample drawn from the system noise

distribution p(vi+1), i.e., N(0, Qi+1). In this study, the system noise, v
(n)
i+1, is added

before the time evolution, i.e., x
(n)
i+1|i = fi+1(x

(n)
i|i + v

(n)
i+1). Each ensemble member

examines a time evolution with different initial values and model parameters.
The current filtered distribution is obtained in the filtering step by calculating

Eq. (2.30) for each ensemble member [29].

x
(n)
i+1|i+1 = x

(n)
i+1|i + K̂i+1(yi+1 −Hi+1x

(n)
i+1|i +w

(n)
i+1), (2.30)

K̂i+1 = V̂i+1|iH
T
i+1(Hi+1V̂i+1|iH

T
i+1 +Ri+1)

−1. (2.31)

Here, w
(n)
i+1 is the n-th sample drawn from the observation noise distribution p(wi+1),
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and V̂i+1|i is a sample covariance matrix of the ensemble for the predicted distribution:

V̂i+1|i =
1

N − 1

N∑
n=1

(x
(n)
i+1|i − x̂i+1|i)(x

(n)
i+1|i − x̂i+1|i)

T, (2.32)

x̂i+1|i =
1

N

N∑
n=1

x
(n)
i+1|i. (2.33)

The matrixRi+1 is a covariance matrix of the observation noise, i.e.,wi+1 ∼ N(0, Ri+1).
Since the matrix K̂i+1 is determined by the covariance matrix of the predicted distri-
bution, V̂i+1|i, and the covariance matrix of the observation noise, Ri+1, in Eq. (2.31),
the EnKF optimizes the entire state vector using limited observation information based
on the correlation between the state variables generated through the time evolution by
system model. This mechanism allows the EnKF to enhance the prediction capability
of the simulation model using the data observed sequentially.

The filtering can be performed by matrix calculation. We introduce the following
matrices to derive the matrix representation of the filtering:

Xi|∗ =
(
x
(1)
i|∗ ,x

(2)
i|∗ , · · ·x

(N)
i|∗

)
,

X̆i|∗ =
(
x
(1)
i|∗ − x̂i|∗, x

(2)
i|∗ − x̂i|∗, · · · , x

(N)
i|∗ − x̂i|∗

)
,

Wi =
(
w

(1)
i ,w

(2)
i , · · · ,w(N)

i

)
,

Yi = (yi,yi, · · · ,yi) ,

where, x̂i|∗ is the sample mean of x
(n)
i|∗ , and the matrix Yi has N columns. The filtering

calculation given by Eq. (2.30) can be written as follows:

Xi+1|i+1 = Xi+1|iZi+1, (2.34)

Zi+1 = IN + X̆T
i+1|iH

T
t (Hi+1V̂i+1|iH

T
i+1 +Ri+1)

−1

×(Yi+1 +Wi+1 −Hi+1Xi+1|i). (2.35)

Here, IN is an N ×N identity matrix.

EnKS

The EnKS corrects the filtered estimate by the EnKF using observation data posterior
to the time of filtering (future data). The EnKS can estimate the state vector more
reasonably, not only spatially but also temporally. The smoothing calculation by the
EnKS can be easily performed by storing a matrix that reconstructs the ensemble
members at the filtering step.

The smoothed ensemble at time ti reflecting the observation data until time ti+1,
Xi|i+1, can be obtained by Eq. (2.36) using the filtered ensemble at time ti, Xi|i, and
the reconstruction matrix given by Eq. (2.34) at time ti+1, Zi+1 [29].

Xi|i+1 = Xi|iZi+1. (2.36)

16



Using Eq. (2.36), the recursion formula of the smoothed ensemble is obtained as

Xi|k+1 = Xi|kZk+1, (2.37)

where k > i. Using the recursion formula, we can obtain the smoothed estimate at
time ti, based on the observation data up to an arbitrary time tk(> ti) as follows:

Xi|k = Xi|iZi+1Zi+2 · · ·Zk. (2.38)

This smoothing calculation can be executed only by storing the reconstruction matrix
Zi at every filtering step.

When the time-series observation data y1:I are given, the smoothed ensemble ma-
trices can be calculated efficiently by the following procedure (fixed-interval smoother)
[32].

(a) Determine the initial ensemble matrix X0|0 and store this matrix.

(b) Execute the EnKF procedure until the time tI storing the filtered ensemble matrix
Xi|i and the reconstruction matrix Zi at every filtering step (i = 1, 2, · · · , I).

(c) Initialize a matrix A to an identity matrix and set i← I − 1.

(d) At time ti, set A← Zi+1A and calculate the smoothed ensemble matrix at time
ti by Xi|I = Xi|iA.

(e) Set i← i−1 and repeat step 4 until all smoothed ensemble matrices are obtained.

2.1.6 Comparison of ensemble Kalman filter and particle filter

The EnKF assumes the state distribution to be Gaussian (i.e., uses up to the second-
order moments of the approximated distribution: mean and covariance matrix), and
the filter can be performed by matrix calculations. If the target system is highly
nonlinear and the relationships between state variables are far from linear, or if the
observation model is nonlinear, the estimation by the EnKF does not always work.

The particle filter (PF) [27] is also a powerful data assimilation technique for non-
linear systems based on the sequential Bayesian filter. Like the EnKF, the PF ap-
proximates a state distribution with a finite number of ensemble members. The PF
performs the filtering step by random sampling from the ensemble members approxi-
mating the predicted distribution. The ensemble members are weighted by a likelihood
function determined by the observation. Thus, the PF can optimize state distributions
of arbitrary shape by preferentially sampling ensemble members with high likelihood
weights. However, the PF requires more ensemble members than the EnKF because
it is more sensitive to the approximation of the distribution with a finite number of
ensemble members

Although both the EnKF and the PF are implemented in ASTI, we have confirmed
that EnKF is sufficient in many cases. In this thesis, we focus on the estimation results
employing the EnKF.
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Figure 2.5: The module structure of TASK3D.

2.2 System model of fusion plasma

Fusion plasma is a complex system containing physical phenomena with various spatial
and temporal scales, and it is virtually impossible to simulate the behavior of the entire
fusion plasma with a single model. Thus, the simulations require integrated simulation
codes, which integrate elemental codes (modules) describing physical phenomena in
limited time and space scales.

TASK3D is an integrated simulation code for helical fusion plasmas and has been
developed based on the TASK code [33, 34], which is applicable for tokamak config-
urations. We employ the TASK3D code as the system model of ASTI. TASK3D is
composed of a variety of modules as shown in Fig. 2.5. Since TASK and TASK3D
have an interface to exchange simulation results with external codes, various codes
can be connected to TASK3D depending on the simulation target. In this section,
we discuss the system model, TASK3D, and external codes for neutral beam injection
heating: HFREYA and GNET.

2.2.1 TASK3D

Generally, actual fusion plasma has a torus shape and is confined in the nested magnetic
flux surface, as shown in Fig. 1.1. In integrated simulations of toroidal plasmas, the
time evolution of spatial distributions of plasma density, temperature, current density,
etc. is governed by transport processes whose characteristic time is the confinement
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time of particles, momentum, energy, magnetic flux, etc. Since the characteristic times
of many phenomena other than transport are much shorter than those of the transport
process, we can say that the long-time behavior of the plasma is described by the
transport phenomena. In addition, the flow of heat and particles across magnetic field
lines (magnetic surfaces) is slower than the flow along the field; thus, we can assume
that plasma temperature T and density n are constant on a magnetic surface, i.e., T (ρ)
and n(ρ). In TASK3D, the radial heat transport and particle transport are treated as
issues in a torus-shaped plasma as one-dimensional (1D) problems for the normalized
minor radius ρ.

The core of TASK3D is the following particle and heat transport equations for each
electron and ion species [35]:

∂

∂t

(
nsV ′

)
= − ∂

∂ρ

(
V ′Γs

)
+ SsV ′, (2.39)

∂

∂t

(
3

2
nsTsV ′5/3

)
= −V ′2/3 ∂

∂ρ

(
V ′Qs

)
+ PsV ′5/3, (2.40)

where

Γs = ⟨|∇ρ|⟩nsVs − ⟨|∇ρ|2⟩Ds
∂ns

∂ρ
, (2.41)

Qs = ⟨|∇ρ|⟩nsTs

(
VKs +

3

2
Vs

)
− ⟨|∇ρ|2⟩nsχs

∂Ts

∂ρ
− ⟨|∇ρ|2⟩3

2
DsTs

∂ns

∂ρ
.(2.42)

Here, ns and Ts are the density and temperature of the s-species. In addition, ⟨ ⟩ repre-
sents the magnetic flux surface average, V denotes the plasma volume, and V ′ = dV/dρ.
The equilibrium magnetic field is calculated by VMEC [36], which is a code to calcu-
late the three-dimensional magnetohydrodynamics equilibrium. TASK3D integrates
various plasma phenomena (modules) through the transport parameters (Vs, Ds, VKs ,
and χs) and the source terms (Ss and Ps), as shown in Fig. 2.6.

Coefficients Ds and χs are the particle and thermal diffusivities, which are assumed
to be given by the sum of turbulent (TB) transport and neoclassical (NC) transport
(collisional transport including the effect of magnetically trapped orbits):

Ds = DTB
s +DNC

s , (2.43)

χs = χTB
s + χNC

s . (2.44)

The convection velocities Vs and VKs are the particle and heat pinch velocities, re-
spectively, and these velocities are assumed to be determined via only neoclassical
transport. The neoclassical components of particle and heat fluxes, ΓNC

s and QNC
s , are

written by

ΓNC
s = −nsD

NC
s

{
1

ns

∂ns

∂r
− qsEr

Ts
+

(
Dod

s

DNC
s

− 3

2

)
1

Ts

∂Ts

∂r

}
, (2.45)

QNC
s = −nsTsD

od
s

{
1

ns

∂ns

∂r
− qsEr

Ts
+

(
χNC
s

Dod
s

− 3

2

)
1

Ts

∂Ts

∂r

}
, (2.46)
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Figure 2.6: An example of module relationships in TASK3D.

where Dod
s is the off-diagonal coefficient, and Er is the radial electric field. Thus, the

convection velocities Vs and VKs are given as follows.

Vs =
1

ns

(
ΓNC
s +DNC

s

∂ns

∂r

)
, (2.47)

VKs =
1

nsTs

{
QNC

s + nsD
od
s

∂Ts

∂r

(
χNC
s

Dod
s

− 3

2

)}
. (2.48)

The neoclassical transport coefficients are evaluated using the DGN/LHD module
[37]. This module enables fast estimation of the neoclassical transport parameters
using a neural network which regressed a database of the parameters evaluated by
the DCOM [38] and GSRAKE [39] codes. In addition, the radial electric field Er in
Eqs. (2.45) and (2.46) is determined by the ambipolar condition in the Er module [40],

ΓNC
e −

∑
i

ZiΓ
NC
i = 0, (2.49)

where i denotes ion species, and Zi is the charge number of ion i.
On the other hand, the turbulent components involve large uncertainties and sim-

ple functional models are employed. For NBI heated plasmas in LHD, we employ the
constant model for particle diffusion, the gyro-Bohm model for electron thermal diffu-
sion, and the gyro-Bohm+gradT model for ion thermal diffusion, based on the previous
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study for NBI plasmas in LHD [21,41]:

DTB
s = Dconst, (2.50)

χTB
e = Ce

Te

eB

ρi
a
, (2.51)

χTB
i = Ci

Ti

eB

ρi
a

(
∇Ti

Ti
a

)
, (2.52)

where B, ρi, and a are the magnetic field strength, the ion Larmor radius, and the
plasma minor radius, respectively. Here, the gyro-Bohm model is the heuristic model
based on the gyro-Bohm scaling of energy confinement [42, subsection 4.15 and 4.16].
The parameters Dconst, Ce, and Ci are constant factors estimated by the best fitting
of the experimental results. Based on the previous studies [21, 41], we employ the
constant factors: Dconst = 0.60, Ce = 1.44, and Ci = 0.57.

The Ss and Ps terms are the particle and heat source terms, respectively. The par-
ticle source Ss is primarily determined by the ionization of neutral particles evaluated
by the AURORA module [21, 43] of TASK3D. AURORA calculates the component of
S coming from the ionization of neutral particles using the plasma profiles and the
density and temperature of neutral particles at the plasma edge. In the case of NBI
heated plasma, we should consider the component from the beam ions which slowed
down to the thermal velocity. The heat source term Ps comprises the heating power,
the power exchange between particle species, and the loss term by interaction with
neutrals. In the next subsection, we discuss simulation codes to evaluate the particle
source and the heating power in the case of NBI heating.

2.2.2 HFREYA and GNET

Neutral Beam Injection (NBI) heating [42] is a heating method by injecting neutral
beams into the plasma. The beam particles slip through the magnetic field and ionize
in the plasma. The beam ions collide with thermal particles and heat the plasma.
Finally, the beam ions slow down to the thermal velocity and become part of the bulk
plasma as thermal ions.

The simulation code of NBI heating [44–48] is indispensable for the transport anal-
ysis and prediction of the behavior of NBI-heated plasma [20,49,50]. HFREYA [47] and
GNET [48] are simulation codes to simulate the NBI heating and have been developed
to analyze energetic particles. These two codes correspond to two physics processes
of NBI heating, i.e., the beam ion birth process and the slowing-down process. The
HFREYA code computes the birth position and velocity of the beam ions resulting
from the beam ion birth process. The GNET code simulates the slowing down process
of the beam ions. These codes have been applied to the NBI heating analysis for helical
fusion plasmas including LHD [51–53].

The HFREYA code, which is a part of the FIT3D code [47], is used to calculate the
NBI beam ion birth profile in a plasma using a Monte Carlo algorithm. The HFREYA
code follows the test particles generated at the ion source in the beam injector along
their trajectories until they are ionized or go through the plasma. The plasma geometry
is introduced using the MHD equilibrium with the VMEC code. Figure 2.7(a) shows
an ion birth profile calculated by HFREYA.
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Figure 2.7: (a) An ion birth profile calculated by HFREYA and (b) test particles in
the slowing-down process calculated by GNET.

GNET is used to solve the drift kinetic equation in a five-dimensional phase space
(3-D in real and 2-D in velocity space),

∂f

∂t
+ (v∥ + vD) · ∇f + v̇ · ∇vf = C(f) + L+ S, (2.53)

where f is the fast ion distribution function, v∥ is the velocity parallel to the mag-
netic field line, and vD is the perpendicular drift velocity. The term C(f) is the linear
Coulomb collision operator, L is the particle loss term consisting of the orbit loss and
charge exchange loss, and S is the particle source term calculated using the HFREYA
code. Similarly to HFREYA, the GNET code is based on the Monte Carlo method
where a large number of test particles are followed until they go out of the plasma
(the real space boundary) or their kinetic energy reaches the thermal energy (the ve-
locity space boundary). Figure 2.7(b) shows test particles in the slowing-down process
calculated by GNET. GNET can evaluate various physical quantities including the
power deposition of NBI heating. Furthermore, GNET has been extended to take into
account the time evolution of the plasma (GNET- TD [54]).

HFREYA and GNET have made great contributions to the analysis of NBI heating,
but has the issue of high computational costs. It takes tens of hours to evaluate the
radial profiles of NBI power deposition for a second in actual plasma. Therefore, it
is difficult to employ GNET for the analysis of many discharges in a short time. In
Section 2.4, we introduce a rapid simulation model of NBI heating.
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Figure 2.8: Data assimilation process based on the EnKF and TASK3D.

2.3 ASTI as an analysis system

The analysis and prediction by ASTI are based on the sequential Bayesian filter. In
this thesis, we focus on the EnKF and EnKS employing TASK3D as the system model
as shown in Fig. 2.8. Simpler techniques based on Bayesian methods or KFs have been
applied for the analysis of tokamak plasmas [55–57] to make the integrated simulation
codes more useful. The EnKF has several advantages for the application to the fusion
plasma integrated simulation. For example, the EnKF does not need the linear approx-
imation and is strong for nonlinear systems, while the extended Kalman filter, which is
employed in [56,57], requires that and does not always work well for nonlinear systems.
Furthermore, the EnKF allows non-gaussian noise distribution. Although the compu-
tational cost of EnKF often matters, parallel computing and modern high-performance
computing can overcome this problem. In this section, we examine the performance
of the EnKF and EnKS in ASTI using simple examples through estimations of the
factors of turbulent heat transport models [32].

2.3.1 State-space model

To demonstrate the estimation performance of ASTI, we estimate the factors of the
turbulent heat transport models, which can reproduce a time series data-set of plasma
temperature, using the EnKF and EnKS. We assume an NBI heated plasma in LHD
and consider the uncertainties of temperature Ts, density ns, the constant factor in
the turbulent transport models, Cs, and NBI heat deposition term PNBI

s . Here, we
consider two particle species: electron (s = e) and light hydrogen ion (s = i). The
state vector is defined as follows:

xt = (TT
e,t,T

T
i,t,n

T
e,t,n

T
i,t,C

T
e,t,C

T
i,t,k

T
e,t,k

T
i,t)

T. (2.54)

Every state variable is defined on 60 computational grid points (radial direction, 1D)
and has a similar structure as follows:

Te = (T 1
e , T

2
e , · · · , T 60

e )T. (2.55)
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Table 2.1: Rates of the standard deviation of the initial distribution and system noise.

State variable Initial distribution System noise

Te 5% 10%
Ti 5% 10%
ne 5% 10%
ni 5% 10%
Ce 20% 20%
Ci 20% 20%
ke 5% 5%
ki 5% 5%

The superscript on each element in Eq. (2.55) indicates the grid point. In Eq. (2.54),
T,n,C, and k denote the temperature, density, numerical factor of the turbulence
models in Eqs. (2.51) and (2.52), and the factor for the NBI heat deposition, with i
and e for ion and electron, respectively.

Although TASK3D can solve the time evolution of the particle density and the
temperature, in this section, TASK3D solves only the time evolution of the tempera-
ture. In other words, we investigate cases where the temporal variation of density is
relatively small. The observations of electron and ion densities have the same values,
that is, ne = ni. The density is assumed to be stationary in the prediction step but
is updated in the filtering step. Since factor Cs is assumed to be grid-dependent, as
Eq. (2.55), C is allowed to have spatial variation. The factor kis is defined to adjust
the NBI heat deposition evaluated by GNET-TD. The following P ∗

s is used instead of
Ps in Eq. (2.40):

P ∗i
s = kisP

i
s . (2.56)

The initial ensemble mean is set to the observed data for Ts and ns, and to the
conventional values for Cs and ks in Eqs. (2.51) and (2.52) ( ke = 1, and ki =
1). The initial standard deviation of the ensemble and the system noise are set to
be proportional to the ensemble mean, and their rates are listed in Table 2.1. The
noise of ks is assumed to be smaller than that of Cs. This means that the NBI heat
deposition model (GENT-TD) is more reliable than the turbulent transport models.
This assumption distinguishes the roles of ks and Cs, and allows stable estimation of
these terms. The standard deviation of observation noise is assumed to be proportional
to the difference between the prediction and the observation data [58] (See Section 3.1
for details). The covariance matrix of observation noise, Rt, is estimated before every
filtering step. We employ the rate of 0.8.

2.3.2 Settings of observation data

For the assessment of the estimation by the EnKF and EnKS, assimilation experiments
are performed for four time series data-sets of temperature and density simulated
by TASK3D (Cases 1 through 4). The simulated observation data are generated by
TASK3D for four different time-space distributions of factor Ce and Ci. The noise
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Figure 2.9: Time-space distributions of Ce/Ce0 and Ci/Ci0 for Cases 1 through 4 in
Table 2.2.

Table 2.2: Setup of data assimilation experiments

Case Observation data True Cs/Cs0 τDA[ms]

1 Simulated data constant : 1.5 80
2 Simulated data 1 + 0.5× sin(2πt/1.0) 80
3 Simulated data 1 + 0.25× sin(2πt/0.1) 160
4 Simulated data 1 + 0.5× cos(2πρ) 80

generated from the Gaussian distribution, whose mean is zero and standard deviation
is 5% of the simulated value, is added to the simulated data as a measurement error.
In all cases, the NBI heat deposition precalculated by GNET-TD for LHD discharge
(No. 114053) is used.

In Case 1, Ce and Ci are constants and Cs/Cs0 = 1.5, as shown in Fig. 2.9(a),
where Cs0 denotes the conventional values of Ce and Ci. In Case 2, Ce and Ci have
the temporal variation Cs/Cs0 = 1 + 0.5 × sin(2πt/1.0), as in Fig. 2.9(b), where t
is the time in seconds. This case corresponds to slow temporal variation compared
with the cycle of assimilation τDA = 80 ms. In Case 3, Ce and Ci have the temporal
variation Cs/Cs0 = 1 + 0.25 × sin(2πt/0.1). This case corresponds to fast temporal
variation compared with the cycle of assimilation τDA = 160 ms. In Case 4, Ce and
Ci have the spatial variation Cs/Cs0 = 1 + 0.5× cos(2πρ) as in Fig. 2.9(c), where ρ is
the normalized minor radius. These assimilations are performed with 2000 ensemble
members for τDA = 80 ms (Cases 1, 2, and 3) and τDA = 160 ms (Case 4). A summary
of these assimilations are shown in Table 2.2.
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2.3.3 Assimilation results

The temporal changes of filtered estimates and smoothed estimates of Cs/Cs0 in Cases
1 through 4 are shown in Fig. 2.10. In Case 1, the filtered estimates approach the true
values within the first few times of assimilation and stay around the true values. In
this case, it is found that the EnKS estimates do not differ much form those of the
EnKF, because the true values of Ce and Ci are stationary. In Case 2, it seems that the
EnKF and EnKS can follow the slow temporal change of Cs, however, the estimates of
EnKF have 0.04-0.08 s delays from the true values (for example, at t = 0.96, 1.04, and
1.12 in both Ce/Ce0 and Ci/Ci0). The EnKS correcting the time delays, almost all the
smoothed estimates are close to the true curve lines. In Case 3, the estimates, especially
by the EnKS, are around Cs/Cs0 = 1. The EnKS corrects the filtered estimates toward
the average of the Cs/Cs0 temporal change, Cs/Cs0 = 1. This indicates that the EnKS
follows the temporal trend of Cs in the time scale longer than the assimilation cycle.
In Case 4, the smoothed estimates reproduce the true spatial variation of Cs/Cs0 and
stay around the true values. We have confirmed that the estimates of EnKS do not
differ much form those of the EnKF for the same reason as Case 1.

Figure 2.11 shows the TASK3D simulation results of Te and Ti using the smoothed
estimates of Cs and ks (dashed lines labeled ’TASK3D*’) for Cases 1 to 4. In all cases,
the results of both Te and Ti agree reasonably with the observations. These results
indicate the validity of the estimation by the EnKS.

Figure 2.12 shows the smoothed estimates of the radial profiles of Cs/Cs0 and χTB
s

in Cases 1 and 4 at time 1.0 s. The smoothed estimates around the center (ρ < 0.2)
have larger uncertainties than in the other region (ρ > 0.2). This indicates that the
influence of Cs around the center region on the radial profiles of temperature is smaller
than that of Cs in the other region because the temperature gradients around the
center tend to zero. We can also see the large errors between the true values and
the smoothed estimates of Ci/Ci0 around ρ = 1 in Cases 1 and 4. It is considered
that the boundary condition in TASK3D affects the EnKF and EnKS estimate. Since
the Dirichlet boundary condition is employed to solve Eq. (2.40) in TASK3D, the
temperature around ρ = 1 is determined independently of χs. However, the estimates
of Cs and χTB

s in 0.2 < ρ < 0.8 agree well with the true values.
The smoothed estimate of Cs includes information that should be considered in

turbulent transport models to predict the temperature of plasma more accurately. If
the smoothed estimates of Cs for various plasmas can be reproduced by a regression
model, a more valid turbulent transport model can be obtained with relevant physical
interpretation.

We confirmed that the EnKS can estimate the radial profile of Cs with high accuracy
for 0.2 < ρ < 0.8 and that temporal trend of Cs, in a time scale longer than the
assimilation cycle, from the assimilation of the simulated data sets. Furthermore, the
TASK3D simulation using the smoothed estimates has reproduced the experimental
temperature data with high accuracy. These results indicate the effectiveness and
validity of the EnKF and EnKS approach for accurate estimation of plasma parameters
and the possibility of advanced turbulence modeling using the smoothed estimates of
Cs for various plasmas.
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Figure 2.10: Assimilation results of temporal change of Ce/Ce0 and Ci/Ci0 in Cases
1 through 4. The highlighted areas around the smoothed estimates represent the
standard deviations of the smoothed ensemble.
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Figure 2.11: TASK3D simulation results of Te and Ti using the smoothed estimates of
Cs and ks for ρ = 0.1 and ρ = 0.6 in Cases 1 through 4.
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Figure 2.12: Smoothed estimates of radial profile of Ce/Ce0,Ci/Ci0,χ
TB
e and χTB

i at
time 1.0 s for Cases 1 and 4. The highlighted areas around the smoothed estimates
represent the standard deviations of the smoothed ensemble.
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2.4 Rapid simulation of NBI heating

Neutral beam injection (NBI) heating is one of the effective heating methods for fusion
devices including LHD. The simulation code of NBI heating is indispensable for the
transport analysis and prediction of the behavior of NBI-heated plasma, as described in
Section 2.2.2. However, in general, the simulation codes (for example, GNET) require
high computational costs to evaluate various physical quantities related to NBI heating
including the power deposition.

For easy simulation of NBI heating, as a simplified version of GNET, FIT3D [19,47,
59] has also been developed. This code calculates the beam ion birth profile considering
the prompt orbit effect by the Monte Carlo method and evaluates the power deposition
profiles in the steady state using the simple analytical solution of the Fokker-Planck
equation. FIT3D has been extended to evaluate the time evolution considering the
beam slowing-down effect (conv-FIT3D [60]). The conv-FIT3D code can calculate the
time evolution of the power deposition profiles for a second of actual plasma in tens
of minutes. However, even applying conv-FIT3D, it is difficult to predict the plasma
heating at the real-time level and to perform many NBI heating simulations for the
heating scenario optimization.

In the system model of ASTI, GNET and FIT3D have been employed as the NBI
heating model. However, even FIT3D takes at least 10 minutes for a second in actual
plasma. Thus, a faster calculation model of the NBI heating is required to simulate
plasma behavior at the real-time level. Of course, the uncertainty contained in the
NBI heating model can increase as the calculation is simplified. However, the uncer-
tainty inherent in the NBI heating model can be compensated by adjusting the model
parameters through data assimilation. It is expected that high-speed and accurate sim-
ulation of NBI-heated plasma is achieved by combining the reduced model and data
assimilation.

In this section, we introduce a rapid simulation code of NBI heating, named
”FIT3D-RC” [61], to evaluate the NBI power deposition. This code estimates the
beam ion birth profile using the Gaussian process regression (GPR) model applied to
precomputation results by the Monte Carlo simulation (HFREYA and MCNBI [47])
and calculates the slowing-down process of the beam ion using the analytical solu-
tion of the Fokker-Planck equation. Figure 2.13 shows an overview of the calculation
process in FIT3D-RC. We describe the details of the developed code, FIT3D-RC, in
Section 2.4.1 and demonstrate the high-speed calculation of the NBI power profile while
keeping the accuracy level of the previous code (FIT3D) in Section 2.4.2.

2.4.1 FIT3D-RC

FIT3D-RC is based on the FIT3D models. The high computational cost of the previous
codes is mainly due to using the Monte Carlo method throughout or in part of the
simulation. The Monte Carlo calculation for the beam ion birth profile in FIT3D,
which accounts for most of the computational cost in FIT3D, is replaced by the GPR
prediction in FIT3D-RC. FIT3D-RC consists of two parts: one is the part of evaluating
the beam ion birth profile, called ”ion-birth part”, and another is the part of calculating
the slowing-down process of the beam ion, called ”slowing-down part”.

30



ASTI: Data Assimilation System for Fusion Plasma

‣ Temperature  
‣ Density 
‣ Port through power

Slowing-down part 
Slowing down of beam ions

Ion-birth part 
Beam ion birth & orbit effect

P#*(t)

NBI power source 

Integrated transport simulation 
or experimental time series data

Radial profiles 
of beam ion  

(40 &180 keV for 
hydrogen in LHD)

The slowing down process is 
calculated to evaluate the 
heating power deposition 
based on the simple analytical 
solution of the Fokker-Planck 
equation

For each NB (1MW injection), 
the GPR model predicts the 
beam ion birth profile based 
on the precomputation results 
(HFREYA and MCNBI) 

23

fEkeV

FIT3D-RC

TASK3D

Figure 2.13: An overview of the calculation process in FIT3D-RC.

Beam ion birth (ion-birth part)

The ion-birth part evaluates the beam ion birth profile for NBI using the GPR [62].
HFREYA and MCNBI calculate the beam ion birth process and the prompt orbit effect,
respectively. These codes have been validated with the LHD experimental results,
e.g., the neutron emission data [63]. We assume that the birth profile is determined
depending on the radial profiles of electron density and temperature. Representing the
density and temperature radial profiles in polynomial form:

g(ρ) = (g0 − g1)(1− ρa) + g1, (2.57)

the sample data used for the regression are generated by the HFREA and the MCNBI
code for 360 patterns of electron density and temperature profiles (20 (ne) × 18 (Te)
= 360): ne,0 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} [1019m−3], ne,1 = 0.5 [1019m−3], ane ∈ {4, 8},
Te,0 ∈ {1, 2, 3, 4, 5, 6} [keV], Te,1 = 0.5 [keV], and aTe ∈ {2, 4, 8} as shown in Fig. 2.14.
It seems that using a regression method other than GPR, such as neural network, also
works well. Since the beam ion birth profile does not change in a complicated manner
with change in the radial profile of plasma density and temperature, we employ GPR,
which is a relatively simple regression method. The cost of predictive calculation by
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Figure 2.14: The profiles of electron temperature and density employed to generate
the sample data for the GPR.

the GPR often matters; however, the cost with 360 samples and an input dimension
of about 10 is negligible. The GPR predicts a Gaussian distribution, i.e., can estimate
the uncertainties of the prediction and compatible with data assimilation.

The GPR model predicts the beam ion birth profile (in this study, 30 radial grid
points) due to 1 MW of injection (port-through power), and the input vector x consists
of electron density and temperature profiles defined on 6 radial points (ρ=0, 1/6, 2/6,
3/6, 4/6, 5/6):

x = (ñe,ρ=0, · · · , ñe,ρ= 5
6
, T̃e,ρ=0, · · · , T̃e,ρ= 5

6
). (2.58)

The input dimension is 12. The components with the superscript˜denote the values
normalized by the mean and standard deviation of the samples, i.e., x̃ji = (xji − x̄i)/σi,

where xji is the i-th component of the j-th sample, x̄i is the mean of xji , and σi is the

standard deviation of xji . The output is also normalized by the same way. The kernel
function is defined by the radial basis function:

k(x,x′) = V exp

(
−(x− x′)2

2L2

)
, (2.59)

where x and x′ are the input vectors, and V and L are the parameters that control
the kernel function. Considering the Gaussian noise with zero mean and variance σ2

on the observed values (the beam ion birth profiles calculated by HFREYA-MCNBI),
the GPR model has three hyper parameters, V , L, and σ2. These parameters are
optimized by the Scaled Conjugate Gradient (SCG) method [64].

In LHD, three negative ion based NBI heating systems (NB#1-3, beam energy of
180 keV) and two positive-ion ones (NB#4 and 5, beam energy of 40 keV for hydrogen)
are installed [1]. Therefore, for each beam, we build the GPR model to predict the
birth profile for 1 MW injection.
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For each beam energy, the beam ion birth profile caused by the beam injection at
time t′ can be evaluated as

f t′
Eb

(ρ) =
∑
k

Ht′
k W

t′
k (ρ), (2.60)

where the superscript t′ denotes the injection timing and k is the index of beam whose
energy is Eb. In addition, fE(ρ) is the birth profile of beam ion with energy Eb, Hk

is the port-through power [MW] of NB#k, and Wk(ρ) is the birth profile for 1 MW
injection of NB#k which the GPR model predicts. In the case of LHD, Eq. (2.60) is
written as

f t′
180keV(ρ) =

∑
k∈{1,2,3}

Ht′
k W

t′
k (ρ), (2.61)

f t′
40keV(ρ) =

∑
k∈{4,5}

Ht′
k W

t′
k (ρ). (2.62)

Slowing down of the beam ions (slowing-down part)

In this part, the slowing down of beam ions is calculated to evaluate the heating power
deposition based on the simple analytical solution of the Fokker-Planck equation [65] in
common with FIT3D and conv-FIT3D. The slowing down of the beam ion in a plasma
from v(t) to v(t+∆t) is deduced from

v(t+∆t) =
{
v3(t)e−

3∆t
τs − v3c

(
1− e−

3∆t
τs

)} 1
3
, (2.63)

τs [sec] = 0.12
(Te[keV])

3
2

Z2
f ne[1019m−3]

mf

mp
, (2.64)

where v(t) is the beam ion (beam ion) velocity at time t, and τs is the slowing-down
time. The quantities Zf , mf , and mp are the charge and mass of the beam ion, and
the proton mass, respectively. In addition, vc is the critical velocity calculated from
the critical energy Ec by vc =

√
(2Ec)/mf . The critical energy is given by

Ec[keV] = Te[keV]

(
9π

16

mf

me

) 1
3
(
mf

mp
Z1

) 2
3

, (2.65)

and

Z1 =
∑
i

z2i ni

Aine
, (2.66)

where me is the mass of electron, zi is the ion charge, and Ai is the ion mass number.
The power deposition to electron, PNBI

e , and that to ion, PNBI
i , at time t can be

calculated by

PNBI
e (ρ) =

∑
Eb

∑
t′∈SEb,ρ

Gt′
e,Eb

(ρ)× f t′
Eb

(ρ) (2.67)

and
PNBI
i (ρ) =

∑
Eb

∑
t′∈SEb,ρ

Gt′
i,Eb

(ρ)× f t′
Eb

(ρ). (2.68)
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Here, SEb,ρ is the set of the injection times of beam ions with higher energy than E∗

at time t. E∗ is the threshold at which the beam ion is considered to have finished
slowing down to the thermal velocity. The fraction of power deposition added to the
electron, Gt′

e,Eb
, and that to the ion, Gt′

i,Eb
, during ∆t are calculated from

Gt′
e,Eb

(ρ) =
2

v20,Eb

∫ vt′,Eb
(t,ρ)

vt′,Eb
(t+∆t,ρ)

v4

v3 + v3c (ρ)
pcx(v)dv (2.69)

and

Gt′
i,Eb

(ρ) =
2

v20,Eb

∫ vt′,Eb
(t,ρ)

vt′,Eb
(t+∆t,ρ)

v3cv

v3 + v3c (ρ)
pcx(v)dv, (2.70)

where vt′,Eb
(t, ρ) is the beam ion velocity injected at time t′ (t > t′), and v0,Eb

is the
velocity corresponding to the energy Eb, i.e., vt′,Eb

(t′, ρ) = v0,Eb
. The pcx(v) is the

probability that a beam ion will slow down to velocity v without charge exchange on
the background neutral density nn, written as

pcx(v) =

(
v30,Eb

+ v3c

v3 + v3c

)−τs/3τcx

, (2.71)

τcx =
1

nnv0,Eb
σcx

, (2.72)

where σcx is the charge exchange cross section at the initial beam ion velocity, v0,Eb
.

The calculation procedure to evaluate the power deposition profiles of NBI heating
at time t is summarized as follows:

(a) Initialize the power deposition profiles, PNBI
e and PNBI

i , to zero.

(b) Calculate the beam ion birth profiles for each beam energy, f t
Eb

(ρ), by Eq. (2.60)
and add the time t into the set SEb,ρ.

(c) Update the beam ion velocities for the time step ∆t, vt′,Eb
(t, ρ)→ vt′,Eb

(t+∆t, ρ)
calculating the slowing-down process represented by Eq. (2.63), for all radial grids
(ρ positions), beam energies Eb, and injection times t′ in the set SEb,ρ.

(d) Calculate the power deposition profiles, PNBI
e and PNBI

i , using Eqs. (2.67) and
(2.68).

(e) If vt′,Eb
(t, ρ) ≤ v∗, where v∗ =

√
(2E∗)/mf , remove the injection time t′ from the

set SEb,ρ.

The set SEb,ρ and the velocities vt′,Eb
at the start of simulation are determined by

slowing-down calculation of the beam ions injected before the start, using the profiles
of density and temperature at the start of simulation.
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2.4.2 Performance of FIT3D-RC

We apply FIT3D-RC to an NBI-heated plasma of LHD. The major radius of the
magnetic axis is Rax = 3.6 m and the field strength at the plasma centre is B0 = 2.85
T. The equilibrium magnetic field is calculated by VMEC. In this study, the resulting
bootstrap and beam currents are not included. In addition, it is assumed that the
magnetic field and the background plasma profiles do not change in the HFREYA-
MCNBI simulation.

Table 2.3 shows the values of the GPR hyper parameters (V,L, σ2) optimized by the
SCG method. In addtion, Table 2.4 shows the coefficient of determination (R2), the
root mean square error (RMSE), and the root mean square percentage error (RMSPE)
of the ion-birth part. Figure 2.15 shows the comparison of the beam ion birth profile
[MW/m3] between the HFREYA-MCNBI and the GPR results for NB#1, 3, and 5.
In Table 2.4, R2 of NB#1-3 reach around 0.98, and R2 of NB#4 and 5 get around
0.9. The regression models reproduce the simulation results with high accuracy. The
RMSPE is 5∼7 % for NB#1-3 and about 10 % for NB#4 and 5. These differences
include calculation errors of the Monte Carlo method by HFREYA-MCNBI. Since the
values of the power deposition in NB#4 and 5 are lower than NB#1-3, it is considered
that the RMSPE of NB#4 and 5 are evaluated more greatly. This difference between
NB#1-3 and NB#4 and 5 also seems to be related to the difference in the beam energy
and the injection angle: tangential for NB#1-3 and perpendicular for NB#4 and 5.

Table 2.3: The hyper parameters of the GPR model in the ion-birth part optimized by
the SCG method.

NB# V L σ2

1 10.50 5.590 0.06970
2 14.64 5.695 0.09003
3 12.94 5.741 0.06980
4 7.779 5.305 0.1612
5 10.49 5.758 0.1782

Table 2.4: The coefficients of the determination (R2), the root mean square error
(RMSE), and the root mean square percentage error (RMSPE) of the GPR models for
the beam ion birth profile.

NB# R2 RMSE [MW/m3] RMSPE [%]

1 0.976 0.00270 7.07
2 0.990 0.00359 5.08
3 0.982 0.00290 5.57
4 0.903 0.00316 9.92
5 0.910 0.00298 10.37

Figure 2.16 shows the prediction results of the birth profiles for typical radial profiles
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Figure 2.15: The comparison of the beam ion birth profile (W (ρ) in Eq. (2.60) for
all radial grid points) between the HFREYA-MCNBI simulation, Wsim, and the GPR
prediction, WGPR, for NB#1 (left), NB#3 (middle), NB#5 (right)

of temperature and density. Case 1 is a low density and high temperature case, Case
2 is a medium density and temperature case, and Case 3 is a high density and low
temperature case. The profiles shown in Fig. 2.16 are f180keV and f40keV given by
Eqs. (2.61) and (2.62) for H1 = H2 = H3 = H4 = H5 = 1 [MW]. It seems that, in
all cases, the predicted profiles agree well with the calculation results by HFREYA-
MCNBI.

Next, we demonstrate an application of FIT3D-RC to experimental time series data
of NBI-heated plasma in LHD (shot number: 117100). Figure 2.17 shows the time
evolution of port-through power of NBI, and Fig. 2.18 shows the measured time-series
data of density and temperature as the result of the heating. The experimental time
series data are fitted by a polynomial with 8th order (only even degrees) in the radial
direction and linearly interpolated in the time direction, for use as the background
plasma information. This simulation starts at 4.1 s, and we set ∆t = 10 [ms] and
E∗ = 0 [keV].

Figure 2.19 shows the calculated radial profiles of power deposition at 3 timings:
t =4.17, 4.63, and 5.00. For comparison, the calculation results by conv-FIT3D [60]
are also shown in the same figures. The conv-FIT3D code has been developed based on
the FIT3D code and can evaluate the NBI power deposition and induced momentum
considering beam slowing-down effect. In Fig. 2.19, it can be seen that the deposition
profiles calculated by FIT3D-RC are in good agreement with that by conv-FIT3D,
although there are slight errors. These errors are at a level that is not problematic for
prompt transport analysis and the data assimilation.

In these cases, the calculation using FIT3D-RC takes 10 seconds for a second in
actual plasma (∆t = 10 [ms] and 30 radial grids), using single core of a standard
laptop (2.9 GHz Intel Core i5). The calculation time has been significantly reduced
compared to the previous codes: GNET-TD taking dozens of hours, and conv-FIT3D
taking dozens of minutes. Calculations at the real-time level are also possible by taking
a larger time interval and a larger radial grid. FIT3D-RC is expected to be used for
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Figure 2.16: The prediction results of the beam ion birth profile by the GPR model
for the 3 cases. The profiles labeled ”GPR” are the birth profiles given as Eqs. (2.61)
and (2.62) for all Hk = 1 [MW] calculated by the GPR model. The profiles labeled
”sim” are those by HREYA and MCNBI.

the high-speed analysis and prediction of NBI-heated plasmas. We will discuss the
integrated transport simulation using FIT3D-RC as the system model of ASTI in
Section 3.2. Data assimilation can compensate the uncertainties inherent in the NBI
heating model (including the uncertainty increased by the reduced computational cost)
based on the observation data. Therefore, the data assimilation and FIT3D-RC can
realize high-speed and accurate integrated transport simulation.
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Figure 2.17: The time evolution of port-through power of NBI (shot number: 117100).

Figure 2.18: Experimental time series data of density and temperature (shot number:
117100). The solid lines are the interpolated data.
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Figure 2.19: The simulation results of the power deposition of NBI heating at 3 timings.
The profiles labeled ”FIT3D-RC” are the deposition profiles calculated by FIT3D-RC.
The profiles labeled ”conv-FIT3D” are those by conv-FIT3D.
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Chapter 3

Prediction and Model Parameter
Estimation for NBI Heated
Plasmas

In this chapter, we demonstrate applications of ASTI to experimental data of NBI-
heated plasmas in LHD. Through the applications to actual discharges, we confirm
the effectiveness and validity of the estimation by ASTI and investigate the prediction
and analysis capabilities. In addition, we provide perspectives on transport model
development by ASTI. In Section 3.1, the data assimilation using the EnKF and EnKS
for heat transport in an NBI-heated plasma is discussed. Section 3.2 describes the
data assimilation for particle and heat transport in LHD. In the same section, we
also describe the reduction in computation time by using the rapid simulation code,
FIT3D-RC, introduced in Section 2.4.

3.1 Data assimilation to heat transport simulation in LHD

We apply ASTI to a typical high ion temperature plasma in LHD (shot number 114053).
The time series data of experimentally measured temperature and density profiles are
assimilated into the TASK3D simulation. In this section, we discuss the prediction of
electron and ion temperature and the estimation of the turbulent heat transport coeffi-
cients. This section also describes models to adjust noise parameters and optimization
of hyper parameters using likelihood.

3.1.1 State vector

The state vector employed in this section is almost the same as the one employed in
Section 2.3:

xt = (TT
e,t,T

T
i,t,n

T
e,t,n

T
i,t, c

T
e,t, c

T
i,t,k

T
e,t,k

T
i,t)

T. (3.1)

Every state variable is defined on 60 computational grid points (radial direction, 1D)
and has a similar structure as follows:

Te = (T 1
e , T

2
e , · · · , T 60

e )T. (3.2)
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Table 3.1: The rates of the standard deviation of initial distribution and system noise.

State variable Initial distribution System noise

Te 3% 8%
Ti 3% 6%
ne 3% 4%
ni 3% 4%
ce 15% 10%
ci 15% 8%
ke 5% 4%
ki 5% 3%

The superscript on each element in Eq. (3.2) indicates the grid point. In this section,
TASK3D solves only the time evolution of the temperature, and the observations of
electron and ion densities have the same values, that is, ne = ni. The density is
assumed to be stationary in the prediction step but is updated in the filtering step.
The state variables to adjust the turbulent heat diffusivities: ce and ci are defined as

χTB∗
e = ceχ

TB
e , χTB∗

i = ciχ
TB
i . (3.3)

These diffusivities with ∗ are used instead of χTB
s in Eq. (2.44). The factor cs is assumed

to be grid-dependent, i.e., has spatial variation. The factor ks is defined to adjust the
NBI heat deposition evaluated by GNET-TD. The following P ∗

s is used instead of Ps

in Eq. (2.40):
P ∗
e = kePe, P ∗

i = kiPi. (3.4)

The factor ks also has spatial variation. The system model is optimized to repro-
duce temperature profiles through both the NBI heat deposition term and transport
coefficients.

3.1.2 Initial distribution and noise

The initial ensemble mean is set to the observed data for Ts and ns, and to the conven-
tional values for cs and ks, i.e., ce = ci = ke = ki = 1. The initial standard deviation
of the ensemble and the system noise are set to be proportional to the ensemble mean,
and their rates are listed in Table 2.1. Here, we assume that the uncertainty associated
with ks is smaller than the uncertainty associated with cs. If we assume that ks has
uncertainty as large as cs, ks and cs cannot be uniquely optimized. This means that the
NBI heat deposition model (GENT-TD) is more reliable than the turbulent transport
models. This assumption distinguishes the roles of ks and cs, and allows stable estima-
tion of these terms. In addition, the noise of the variables about electron is assumed to
be larger than that about ion because the temporal variation and measurement error
of ion temperature are larger than those of electron temperature in the NBI-heated
plasma.

The standard deviation of observation noise is assumed to be proportional to the
difference between the prediction and the observation data. The covariance matrix of

41



Figure 3.1: The time evolution of power through port of NBI (shot number: 114053).

observation noise, Rt, is estimated before every filtering step. This assumption keeps
the variance of filtered ensemble in an adequate magnitude. For large prediction error,
this assumption works to enlarge the variance and leads to more flexible optimization
for state variables. On the other hand, for small prediction error, this assumption works
to reduce the variance and prevents the variance from becoming excessively large. In
addition, we set the upper limit of the standard deviation of observation noise to that
of the predicted distribution, and the lower limit to 5% of the observation.

The rate which determines the standard deviation of observation noise can be
optimized by likelihood. When using an ensemble approximation, the log-likelihood
for the hyper parameters θ can be approximated as follows:

l(θ) =
M∑
i=1

log p(yi|θ,y1:i−1)

≃
M∑
i=1

log

(
N∑

n=1

α
(n)
i

)
−M logN, (3.5)

where

α
(n)
i =

1√
(2π)l|Ri|

exp

{
−1

2
(yi −Hx

(n)
i|i−1)

TR−1
i (yi −Hx

(n)
i|i−1)

}
. (3.6)

Here, t1, · · · , tM indicate the times assimilating observation data, and l is the dimension
of y. The rate of the observation model is determined to be 0.8, at which the maximum
likelihood is obtained among the values: 0.5, 0.8, 1.0 and 1.2.

3.1.3 Assimilation results

We apply ASTI to a typical high ion temperature plasma in LHD (shot number:
114053). The time evolution of NBI heating (port through power) is shown in Fig. 3.1.
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Figure 3.2: The log likelihood for the number of ensemble members

NB#1-#3 are injected tangentially to the magnetic field line with the beam energy
ENB ∼ 180 keV, and NB#4, #5 are injected perpendicularly to the magnetic field line
with the beam energy ENB ∼ 40 keV. NB#4 and #5 undergo power modulation to
obtain the plasma background information for the ion temperature measurement. To
make the observed data easy to be implemented, the time series of observed radial pro-
files are fitted by a polynomial with 6th order (only even degrees) in the radial direction
and linearly interpolated in the time direction. Thus, we can define the observation
vector as

y = (TT
e ,T

T
i ,n

T
e ,n

T
i )

T, (3.7)

and the observation matrix as

Ht = (I240×240 O240×240). (3.8)

where, I240×240 is a 240× 240 identity matrix and O240×240 is a 240× 240 zero matrix.
This assimilation starts at 3.4 sec in the discharge, and this time is set to 0.0 sec in
this simulation.

Prediction by the EnKF

We performed this assimilation with 2000 ensemble members for 2 cycles of assimilation
(τDA): τDA = 80 msec (Case 1) and τDA = 160 msec (Case 2). The number of the
ensemble members is determined by the log-likelihood. Figure 3.2 shows the log-
likelihood for various numbers of ensemble members (τDA = 80 msec and M=10 in
Eq. (3.5)). From Fig. 3.2, the number of ensemble members is found to be sufficient
for 2000. Figure 3.3 shows the assimilation results of Te and Ti and the case without
the data assimilation (simple simulation). Since the Ti measurement starts at 0.3 sec,
the Te data are assimilated instead of Ti data (gray hatching in Fig. 3.3). In the
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Figure 3.3: Prediction and filtered estimate of temporal change of Te and Ti for ρ = 0.0
and ρ = 0.6. The two graphs in the first row are the simulation result without data
assimilation, and the graphs in the second and third rows are the simulation results
of case 1 and case 2. The bar graphs show the estimated standard deviations of
background error and observation noise before filtering.
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Figure 3.4: Ensemble correlation matrix of state variables at 160 msec in case 1.

simple simulation case, we use the time series of observed density data as the temporal
evolution of electron and ion density in TASK3D.

As shown in Fig. 3.3, in both Te and Ti, the prediction results by ASTI correspond
reasonably with the observations better than those of simple simulation. The predic-
tions agree well with the observations even in Case 2. This indicates that ASTI can
follow the temporal change of numerical coefficients of the turbulent transport model in
this plasma even for τDA = 160 msec. In other words, the nature of ce and ci behaviors
do not largely change in 160 msec in this plasma.

Figure 3.4 shows an ensemble correlation matrix of state variables in Case 1. We
can see a negative correlation between cs and Ts, and a positive correlation between ks
and Ts. The correlation represents the relationship between the state variables in the
simulation model (heat transport model). In the Te-ce and Ti-ci parts of Fig. 3.4, we
can see strong negative correlations in the upper triangular region. This means that
the outer transport coefficients have a strong influence on the inner temperature. The
correlation enables us to optimize unobserved variables as well as observed variables.
The correlation information affects the optimization in Eq. (2.30) through the Kalman
gain term, K̂t.

Figure 3.5 shows the filtered estimate of Ce and Ci, and the values of χTB as a result
of the c adjustments are shown in Fig. 3.6. In addition, Fig. 3.7 shows the temperature
profiles of prediction using data assimilation and only TASK3D at 960 msec in case
1. We can see that the temporal change of ce is smooth, and the radial profile have
been optimized to reproduce the observed profile of Te, whose gradients are smaller
around ρ = 0.5, and larger around ρ = 0.8 as in Fig. 3.7. The filtered estimate of ci
tends to become larger in the central region of the plasma. This is because that the Ti

predictions without data assimilation are higher than the observation as in Fig. 3.3, and
ci is optimized to lower the ion temperature considering that the NBI heat deposition
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Figure 3.5: Filtered estimates of ce and ci in case 1, which are divided by the conven-
tional values. Blue planes (c = 1) correspond to the conventional values in Eqs. (2.51)
and (2.52).

Figure 3.6: χTB
e and χTB

i calculated by using the ce and ci in Fig. 3.5.

is the largest in the central region.
The filtered estimate of cs can include key information to predict the plasma behav-

ior with high accuracy and to develop higher-performance transport models. However,
the filter can not necessarily optimize the state vector uniquely. If a state vector can
not be optimized uniquely like ks and cs in this assimilation, we must assimilate other
observed data or must impose appropriate physical restrictions on state variables.

This data assimilation calculation takes about five hours for one simulation run
(two seconds in actual plasma), using 2000 cores of Plasma Simulator at NIFS (Fu-
jitsu PRIMEHPC FX100). Including the pre-calculation of the NBI heating terms, it
takes more than ten hours. However, most of them are spent by the simulation code
(TASK3D). The calculation time can be shortened drastically by making the computa-
tional grid rougher and the time step longer, and using simplex simulation models. In
Section 3.2, we will discuss data assimilations when the number of spatial grid points
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Figure 3.7: Radial profiles of Te and Ti at 960 msec in case 1.

included in the state vector is reduced and fast computation models are employed.

Estimation of model parameters by the EnKS

We execute the smoothing procedure by the EnKS to the filtered distribution (ensem-
ble) discussed in the previous section. Figure 3.8 shows the temporal change of cs at
ρ = 0.25. As shown in Fig. 3.8, the estimates of ce and ci by the EnKF are corrected
and smoothed by the EnKS. In particular, the peak position of ci moves downward
from 1.1 s in the filtered estimate to 0.9 s in the smoothed estimate. This is the result
of the EnKS correcting the filtered estimates to be reasonable both temporally and
spatially using future data. Figure. 3.9 shows the TASK3D simulation results of Te

and Ti using the smoothed estimates of cs and ks (curves labeled ”TASK3D*”). We
can confirm that the TASK3D simulation using the smoothed estimates can reproduce
experimental temperature data with high accuracy.

The smoothed estimate of cs includes the information which should be taken into
account in the turbulent transport models to predict the temperature of plasma more
accurately. If we can reproduce the estimates of cs for various plasmas using a paramet-
ric or nonparametric model, we obtain a more valid turbulent transport model with
relevant physical interpretation. ASTI is expected to be a powerful tool to analyze
fusion plasmas, which should consider many variables simultaneously and consistently.

In the next section, we will discuss the application of ASTI to the particle and
heat transport in NBI-heated plasmas. There, we employ a system model where the
prediction step can be calculated in a reasonable computation time. We investigate the
performance and validity of ASTI through the data assimilations to some time-series
experimental data.
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Figure 3.8: The temporal change of smoothed estimates of ce and ci at ρ = 0.25. The
highlighted areas around the smoothed estimates represent the standard deviations of
the smoothed ensemble.
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Figure 3.9: TASK3D simulation results of Te and Ti using the smoothed estimates of
cs and ks for ρ = 0.1 and ρ = 0.6.
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3.2 Data assimilation to particle and heat transport sim-
ulation in LHD

In this section, we apply ASTI to 12 time-series data sets of NBI-heated hydrogen plas-
mas in LHD (shot number: 111366, 116126, 116195, 117100, 119801, 119802, 119803,
119804, 119979, 119789, 120035, 120051), and investigate the capability of the pre-
diction and the estimation [66]. These discharges are the typical stable NBI-heated
plasmas without break down of the NBI heating and sufficient time series data. The
range of NBI power in these discharges is 13-24 MW (4-16 MW tangential injection
and 8-11 MW perpendicular injection). The range of electron temperature at the
plasma center is 1-4 keV, that of ion temperature is 2-7 keV, and that of density is
1.0-2.0×1019 m−3. In common with all the discharges, the major radius of the mag-
netic axis at the vacuum is 3.6 m and the magnetic field strength at the plasma center
is 2.85 T.

3.2.1 State-space model

We accelerate the prediction calculation utilizing the reduced NBI heating model,
FIT3D-RC, described in Section 2.4. The uncertainties increased by employing the
reduced model are suppressed by data assimilation optimizing the parameters in the
model. Conventional simulation codes of NBI heating take a long calculation time
from dozens of minutes [47] to dozens of hours [54] to evaluate the NBI heating power
for a second in an actual plasma, depending on the accuracy the simulation needs.
When these codes are coupled with an integrated code to solve for the transport and
the heating simultaneously, even more calculation time is required. The combination
of simplified models and data assimilation enables fast and accurate prediction and
analysis. Such speeding up of simulation is also one of the advantages of employ-
ing data assimilation. Furthermore, unlike the assimilation to optimize the factor for
pre-computed power deposition (ks) in Section 3.1, the transport simulation can be
optimized from the inside of the NBI heating model.

state vector

In this study, we consider the uncertainties of plasma density, temperature, parameters
in the transport model, parameters in the reduced NBI heating model (FIT3D-RC),
and parameters in the particle source model. The state variables are listed in Table 3.2.
The variables n, Te, and Ti are the density, electron temperature and ion temperature,
respectively. We assume that the densities of electron and ion are the same, that is,
ne = ni = n, De = Di = D, and Ve = Vi = V . The variables d, v, ce, and ci are
the numerical factors to optimize the transport coefficients using data assimilation,
and the variables ξ180keV, ξ40keV, ξc, and ξsd are the numerical factors to optimize the
parameters in the FIT3D-RC model. The following parameters with * are used in the
prediction calculation by TASK3D instead of the parameters without * :

DTB∗ = dDTB, V ∗ = V + v, χTB∗
e = ceχ

TB
e , χTB∗

i = ciχ
TB
i , (3.9)

f∗
180keV = ξ180keVf180keV, f∗

40keV = ξ40keVf40keV, v∗c = ξcvc, τ∗sd = ξsdτsd. (3.10)
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Table 3.2: State variables, their dimension in the state vector (Mi), and their rates of
the standard deviation of initial distribution (σI) and system noise (σQ).

No. State variable (target of optimization) Mi σI σQ

1 n Density 7 10% 10%
2 Te Electron temperature 7 10% 10%
3 Ti Ion temperature 7 10% 10%
4 d Particle turbulent diffusivity 7 20% 20%
5 v Particle convection velocity 6 1.0 [m/s] 1.0 [m/s]
6 ce Electron thermal turbulent diffusivity 7 20% 20%
7 ci Ion thermal turbulent diffusivity 7 20% 20%
8 ξ180keV Beam ion birth profile (180 keV) 7 10% 5%
9 ξ40keV Beam ion birth profile (40 keV) 7 10% 5%
10 ξc Critical velocity 7 10% 5%
11 ξsd Slow down time of beam ion 7 10% 5%
12 nn Neutral density at plasma edge 1 10% 10%
13 Tn Neutral temperature at plasma edge 1 10% 10%

These variables are allowed to have spatial variation. The dimension (Mi) in Table
3.2 refers to the number of points in the radial profile. The values of parameters
without * are determined by the employed models in normal TASK3D simulations
(e.g., Eqs. (2.50)-(2.52)). The variables f180keV and f40keV are the heat deposition
of 180 keV beam and 40 keV beam evaluated by the ion-birth part of the FIT3D-
RC model (Eqs. (2.61) and (2.62)). The variables vc and τsd are the critical velocity
and slowing-down time, respectively, in the slowing-down part of the FIT3D-RC model
(Section 2.4.1). The variables nn and Tn are the parameters in the particle source model
(AURORA module). Through these state variables, we quantify the uncertainties
contained in the transport coefficients and source terms as probability distributions
like Fig. 3.10. The time evolution of the variables 1-3 (n, Te, Ti) is affected by the
variables 4-13 through the employed model, like the parameters with * in Eqs. (3.9) and
(3.10), while the variables 4-13 do not change (constant) in the prediction calculation
by TASK3D. The values of variables 4-13 for each ensemble member are changed only
by filtering or adding the system noise.

The state vector has a structure as follows:

x = (xT
1 ,x

T
2 , · · · ,xT

S )
T, (3.11)

xi = (x1i , x
2
i , · · · , x

Mi
i )T, (3.12)

where S denotes the number of state variables, i.e., S = 13, and Mi denotes the
dimension which the state variable xi has in the state vector. In this section, the radial
profile in the state vector is defined on 7 grid points (ρ′j=0, 1/6, 2/6,· · · ,1) to reduce
calculation costs of the filter and the smoother, while that is defined on 60 grid points
in TASK3D. In addition, it also allows us to perform the data assimilation processes
with a smaller number of ensemble members. The radial profiles in the state vector are
interpolated using the basis functions βρ′j (ρ) and converted to the profiles on TASK3D
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Figure 3.10: An example of the probability distributions of density, temperature, trans-
port coefficients, and source terms. The highlighted areas around prediction profiles
represent the standard deviations.

grid as

ϕTASK3D(ρ) =

7∑
j=1

βρ′j (ρ)ϕSV(ρ
′
j), (3.13)

where ϕTASK3D and ϕSV are the radial profiles defined on the grid in TASK3D and
the state vector, respectively. The basis functions βρ′j (ρ) are chosen as non-uniform

quadratic B-spline basis functions [67] as shown in Fig. 3.11. The B-spline basis func-
tions in Fig. 3.11(a) are chosen such that the boundary values (ρ = 0 and 1) are
determined only by the values at ρ′ = 0 and 1. These functions are used to interpo-
late the profiles of model parameters: d, v, ce, ci, ξ180keV, ξ40keV, ξc, and ξsd. The
basis functions in Fig. 3.11(b) are furthermore chosen such that all basis functions
have zero derivative at ρ = 0 to satisfy the Neumann boundary condition in TASK3D,
∂ϕTASK3D/∂ρ|ρ=0 = 0. These functions are used to interpolate the profiles of variables
n, Te, and Ti. It has been confirmed that the typical radial profiles on the 60 grid
points in TASK3D can be sufficiently reproduced from the profile on the 7 grid points.
The value of v at ρ=0 is fixed at 0 [m/s] because there is no particle flux at ρ=0.
Therefore, the dimension of v in the state vector is 6.

To calculate the time evolution using TASK3D, the radial profiles need to be smooth
after adding the noise to them. Thus, The spatial correlation of the noise (covariance
component of the covariance matrix) is required to generate the smooth noise sam-
ples from the Gaussian distribution. In this case, we can employ a diagonal matrix
for the covariance matrix of the noise because the B-spline interpolation guarantees
the smoothness of the radial profiles and allows the noise to be spatially independent.
This dimensionality reduction also saves the computational cost of Cholesky decompo-
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Figure 3.11: The non-uniform quadratic B-spline basis functions on the ρ grid.

sition of the covariance matrix required to generate noise samples from the Gaussian
distribution.

Observation model

The experimental time-series data of radial profiles of density and electron and ion
temperatures are assimilated into the integrated transport simulation of NBI-heated
plasma in LHD. To make it easy to assimilate the observed data, the time-series data
are fitted by a sixth-order polynomial (only even degrees) in the radial direction and
linearly interpolated in the time direction. Since n, Te, and Ti are represented by three
7-dimensional vectors x1, x2, and x3 in Eq. (3.11), respectively, the observation matrix
Ht is given by

Ht = (I21×21 O21×58) (3.14)

to extract observable variables from x. Here, I21×21 is a 21 × 21 identity matrix and
O21×58 is a 21× 58 zero matrix.

3.2.2 Initial distribution and noise

The initial ensemble mean is set to the observation data at the start of simulation for
density and temperatures, and to the conventional values for other state variables, that
is, d = ce = ci = ξ180keV = ξ40keV = ξc = ξsd = 1, v = 0 [m/s], nn = 1016 [m−3], and
Tn = 10 [eV]. The covariance matrices V0|0, Qt, and Rt are assumed to be diagonal
matrices as mentioned above. The standard deviations of initial ensemble and system
noise are set to be proportional to the ensemble mean, and their rates are listed in
Table 3.2. Since the initial mean of v is assumed to be zero, the standard deviations
of the noises for v are set to fixed values of 1 [m/s]. The standard deviations of
the noises for the transport coefficients are assumed to be larger than those for other
model parameters because the transport coefficients have greater uncertainties and
more unreliable than the other model parameters. This assumption distinguishes the
roles of the model parameters and realizes stable estimation. The standard deviation of
observation noise is assumed to be proportional to the difference between the prediction
and the observation data as in Section 3.1. We employ the rate of 0.8.
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Table 3.3: RMSE and RMSPE between the observed values and the predicted values
of electron temperature, ion temperature, and density by TASK3D and ASTI.

RMSE RMSPE
ρ TASK3D ASTI TASK3D ASTI

Electron temperature 0.1 0.310 0.0869 9.99% 2.86%
[keV] 0.6 0.321 0.0770 12.25% 3.06%

Ion temperature 0.1 0.860 0.310 20.85% 7.97%
[keV] 0.6 0.605 0.196 31.29% 9.31%

Density 0.1 0.322 0.0534 26.49% 4.56%
[1019m−3] 0.6 0.410 0.0755 34.53% 6.26%

3.2.3 Prediction by the EnKF

We apply ASTI to 12 time-series data sets of NBI-heated hydrogen plasmas in LHD.
All assimilations are performed with 500 ensemble members. Figures 3.12 and 3.13
show the prediction and the filtered estimates of electron and ion temperatures by
ASTI (EnKF) for 5 shots out of the 12 shots (the columns labeled “ASTI”). These
assimilations are performed for the assimilation cycle τDA=40 ms. For comparison, the
simulation results by TASK3D (without data assimilation) are shown in the columns
labeled “TASK3D”. Figure 3.14 is similar graphs about the density. We can see that
ASTI’s predictions agree well for observation data at all of the electron temperature, ion
temperature, and density, while TASK3D’s predictions have large discrepancies with
respect to the observed values, especially in the ion temperature and density. The
state variables have been greatly improved in the first few times of filter, especially
in Fig. 3.13 (shot: 117100, 119801, and 120035). Although the modification of the
electron temperature at each filtering step (the differences between the prediction and
the filtered estimate in Fig. 3.12) seems small, the model parameters for electron heat
transport are optimized (e.g., ce in Fig. 3.17, which will be mentioned in Section
3.2.4). As a result, the ASTI’s prediction of the electron temperature can reproduce
the experimental time series data with high accuracy, even for the discharges with
relatively large errors in the TASK3D simulation (e.g., shot: 117100, 119801, and
119802 in Fig. 3.12).

Figure 3.15 shows the comparisons between the observed value and the prediction by
TASK3D (left column) and by ASTI (right column). The points in Fig. 3.15 represent
the values at ρ=0.1 and 0.6 for all 262 timings in the 12 shots. Table 3.3 shows the
root mean square error (RMSE) and root mean square percentage error (RMSPE)
between the observed value and the prediction of density, electron temperature and
ion temperature at ρ=0.1 and 0.6. From Fig. 3.15 and Table 3.3, it is confirmed
that the prediction errors of the density, electron temperature, and ion temperature
are significantly reduced by the EnKF. The RMSE at ρ=0.1 are reduced by 72% for
electron temperature, by 64% for the ion temperature, and by 83% for the density. The
RMSPEs of the ion temperature predicted by ASTI are larger than those of the electron
temperature and density. This is because the temporal variation and measurement
error of ion temperature are larger than those of electron temperature and density in
the 12 data sets.
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Figure 3.12: Simulation results of time evolution of electron temperature profile by
TASK3D (column labeled “TASK3D”) at ρ=0.1 and 0.6, and the prediction and filtered
estimate by ASTI (column labeled “ASTI”) for 5 shots. The highlighted areas around
predictions represent the standard deviations of predicted ensemble.
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Figure 3.13: As Fig. 3.12, but ion temperature.
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Figure 3.14: As Fig. 3.12, but density.
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Figure 3.15: Comparisons between the observed and predicted values by TASK3D
(column labeled “TASK3D”) and ASTI (column labeled “ASTI”) at ρ=0.1 and 0.6 for
all the 12 shots. The error bars at the scatter plots in the column labeled “ASTI” are
the standard deviations of predicted ensemble.
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Figure 3.16: Part of ensemble correlation matrix in the data assimilation for shot:
117100 (4.19 s).

It is considered that the introduction of the NBI heating model, FIT3D-RC, con-
tributes to the good agreement between ASTI’s predictions and observations. The
introduction of FIT3D-RC allows for finer optimization of the simulation model by the
data assimilation compared to the data assimilation discussed in Section 3.1, where the
NBI heating power profiles are pre-computed by a high cost model (GNET-TD). The
time evolution curves predicted by ASTI shown in Figs. 3.12, 3.13, and 3.14 appear
to be smoother than the curves shown in Fig. 3.3. As TASK3D simulation can be
optimized in more detail than the previous study, the prediction capability of ASTI
increases, and the differences between prediction and filtered estimate become smaller.

Figure 3.16 shows a part of the ensemble correlation matrix in the data assimilation
for shot number: 117100. It represents the correlations between observed variables
(three rows) and unobserved variables (ten columns). The relationship between the
state variables in the simulation model appears as a correlation. The correlation enables
the EnKF and EnKS to optimize the entire state vector using limited observation
information. In common with all the data sets, the correlations between the observed
variables and the transport model parameters (ce, ci, d and v) are particularly strong,
and those with the other model parameters are ±0.2-0.5. In the Te-ce, Ti-ci, and n-
v parts of Fig. 3.16, we can see strong correlations in the upper triangular region.
This means that the outer transport coefficients have a strong influence on the inner
temperature or density. The n-d correlation is strong in the lower right region because
the density gradient is larger in the outer radial points.

3.2.4 Estimation of model parameters by the EnKS

The upper panels in Fig. 3.17 show the smoothed estimates of the parameters in trans-
port models at all assimilation timings for the 12 shots and the lower panels show the
kernel density estimation of the upper panel. We can see that the smoothed estimates
have a common structure in each radial profile of v, ce, and ci. The smoothed estimates
of ce has a structure that enhances the turbulent diffusivity around the center (ρ = 0)
and the edge (ρ = 0.9) and reduces it around ρ = 0.6. The estimates of ci has a struc-
ture similar to ce, but reduces the diffusivity (smaller than one) around ρ = 0. The
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Figure 3.17: Smoothed estimates of the parameters in transport coefficient models
at all assimilation timings for the 12 shots. The upper panels plot all the estimates
as curves, and the lower panels are the color maps of the kernel density estimation
corresponding to the upper figure.

radial profile of v has a structure that peaks near ρ = 0.5 and becomes negative near
the edge. The variation of the estimated v is large near the edge as shown in the lower
panel. On the other hand, no clear characteristic structure is found in the radial profile
of d. This large variation of d profiles and v values near the plasma edge would be due
to no model assumption for the particle turbulent diffusivity, DTB, and the additional
convection velocity, v, on the plasma profiles. These variables do not change by them-
selves during discharge, and thus they change only by data assimilation. Therefore, it
is considered that the uncertainties included in d and v are larger than those in ce and
ci. The smoothed estimates of model parameter indicate the elements missing in the
employed simulation model and required to predict or reproduce the time evolution of
the system. The estimates also give the key to improve the employed simulation model
for higher performance.

To examine the validity of the estimated model parameters (variables 4-13 in Table
3.2), we perform the TASK3D simulations using the time series of estimated param-
eters and verify if the experimental time series data can be reproduced. Figure 3.18
shows the simulation results of electron and ion temperatures by TASK3D for 5 dis-
charges out of the 12 discharges. The simulation results using the smoothed estimates
can reproduce the experimental time-series data with high accuracy. Figure 3.19 shows
the comparisons between the smoothed estimates and the simulation results using the
smoothed estimates of model parameters. Table 3.4 lists the RMSE and RMSPE be-
tween smoothed estimates and the simulation results of density, electron temperature,
and ion temperature at ρ=0.1 and 0.6. It is confirmed that the estimated model param-
eters can reproduce the experimental time-series data with low error, and these results
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Figure 3.18: Simulation results of electron and ion temperatures by TASK3D using
the smoothed estimates of the model parameters.
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Figure 3.19: Comparisons between the smoothed estimates and the TASK3D simula-
tion using the smoothed estimates of the model parameters at ρ=0.1 and 0.6 for all
the 12 shots. The error bars are the standard deviations of smoothed ensemble.

Table 3.4: RMSE and RMSPE between the smoothed estimates and the TASK3D
simulation using the smoothed estimates of the model parameters.

ρ RMSE RMSPE

Electron temperature 0.1 0.123 3.17%
[keV] 0.6 0.0958 3.19%

Ion temperature 0.1 0.323 5.29%
[keV] 0.6 0.165 4.52%

Density 0.1 0.109 11.32%
[1019m−3] 0.6 0.137 12.75%

reinforce the validity of the estimation by ASTI (EnKS). The RMSPEs of density are
larger than those of electron and ion temperatures. This is also thought to be due to
the constant model for the particle turbulent diffusivity, which does not change even
if the density and temperature profiles change. It is considered that the accuracy can
be further enhanced by improving the assumed model.

We can see that ASTI is able to estimate reasonable model parameters that satisfy
the dynamic constraints by the system model and reproduce the experimental data.
In order to verify the effectiveness of the estimated model parameters for other dis-
charges or to build a model that can predict other discharges, it is necessary to regress
the estimation results of many discharges or to assimilate observation data of many
discharges simultaneously to extract properties common to the discharges. These are
issues that we would like to address in the future.

3.2.5 Prediction performance

To investigate the prediction performance, we vary the data assimilation cycle τDA

from 40 ms to 560 ms for the 12 discharges. Figure 3.20 shows the τDA dependence
of the prediction error (RMSE between the prediction and the smoothed estimate) for
density, electron temperature, and ion temperature. Prediction performance depends
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Figure 3.20: Prediction errors (RMSE between the prediction and the smoothed esti-
mates) at ρ=0.1 and 0.6 when changing the data assimilation cycle.

on the time scale in which the model parameters should change by data assimilation.
For shorter assimilation cycle than the time scale, the EnKF can follow the temporal
change of the model parameters and predict the time evolution of the system with high
accuracy. On the other hand, for longer assimilation cycle than the time scale, the
EnKF can not follow the temporal change of the model parameters and the prediction
error becomes large. Figure 3.20 shows that the prediction error of electron temperature
stays low (around 0.1 keV at ρ=0.1) up to 0.4 s, but rises beyond it. The EnKF can
follow the change of the parameters associated with electron heat transport if the data
assimilation cycle is shorter than 0.4 s. It indicates that the time scale of the parameter
changes required to predict and reproduce the time evolution of electron temperature
is around 0.4 s. The prediction error of ion temperature stays low up to 0.1 s, rises
from there, and saturates around 0.4 s, where the error is 0.35 keV (ρ=0.1). Thus,
we can infer that the time scale of the parameters associated with ion heat transport
is around 0.1 s. These time scales correspond to the temporal variation of electron
and ion temperatures in the 12 shots of NBI-heated plasma. In fact, the electron
temperature changes slowly, while the ion temperature changes significantly on the
order of 0.1 seconds at the start of heating as shown in Fig. 3.18.

The prediction error of density monotonically increases with the assimilation cycle.
It is partly because the constant model is employed for the turbulent particle diffusivity.
It indicates that the state variables associated with particle transport need to change
in a faster time scale than the assimilation cycle and the uncertainty contained in the
particle transport models is larger than that in the heat transport models.

These prediction calculations takes four minutes for a second in actual plasma
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including the calculation of the NBI heating (the assimilation cycle is 40 ms and the
time step of TASK3D’s transport simulation is 1 ms). For these calculations, we have
used 500 cores of IFERC-CSC (Intel Xeon Gold 6148) and assigned one core to one
ensemble member. The calculation time has been significantly reduced compared to
the calculation in Section 3.1 (more than ten hours including the calculation for NBI
heating), using the reduced NBI heating model, FIT3D-RC, and saving the dimension
of the state vector by B-spline interpolation. However, further speeding up is required
to use ASTI for the real-time prediction of the fusion plasma behavior. We plan
to introduce reduced models like the NBI heating model and parallel computing to
TASK3D. In addition, as described in Section 3.1, we can also shorten the calculation
time by making the computational grid coarser and the time step longer according to
the actual application.

3.3 Summary

We have applied ASTI to the experimental time-series data of NBI-heated plasmas
in LHD. In Section 3.1, we assimilated the observation data into only heat transport
simulation and estimated mainly the thermal turbulent diffusivities. In Section 3.2, we
assimilated the observation data into particle and heat transport simulation and esti-
mated the parameters of turbulent transport and NBI heating. There, the reduced NBI
heating model has been employed to speed up the prediction calculation by TASK3D,
and the uncertainty increased by the reduction is compensated by data assimilation
adjusting the model parameters. In both cases, the predicted radial profiles of den-
sity, electron temperature, and ion temperature by ASTI (EnKF) have agreed well
with the observed profiles, and the errors between the prediction and observation are
significantly reduced from the TASK3D simulation (without data assimilation).

In addition, we have obtained the radial profiles and temporal changes of the model
parameters that can reproduce the experimental time-series data using the EnKS.
For all the discharges, it has been confirmed that the TASK3D simulations using
the smoothed estimates of the model parameters reproduce the experimental time-
series data with high accuracy. Furthermore, the estimates of the transport model
parameters have characteristic structures and suggest missing elements in the transport
models. Such information is useful for improving the transport models. Through these
assimilatios, we have demonstrated the effectiveness and validity of ASTI for accurate
prediction and analysis of fusion plasmas.

The prediction performance of ASTI has been examined by changing the data
assimilation cycle in Section 3.2.5. We have seen that the prediction performance
strongly depends on the time scale in which the model parameters in the state vector
should change to approximate the behavior of the real system. This time scale can be
extended by improving the employed simulation model. We plan to develop a method
to build high-performance transport models using data assimilation.

The calculation of ASTI took about four minutes for a second in actual plasma
using FIT3D-RC. High-speed and accurate integrated transport simulation is realized
by the data assimilation and the reduced model compared to conventional simulations.
Data assimilation can also be used for the purposes of transport analyses such as model
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comparison, quantification of model deviations, estimation of unobservable variables,
correction of observed values, and interpolation of observation data. Therefore, it is
possible to employ ASTI as an analysis system for the transport analyses such as
estimation of turbulent transport model, verification of isotope effect, spatiotemporal
interpolation of time series data of radial profile. It is expected that data assimilation
plays important roles also in the field of fusion research.
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Chapter 4

Data Assimilation for Control

The ultimate goal of this study is to construct a system that continuously monitors and
controls the state of fusion plasma for operation of future fusion reactors. However,
fusion plasmas, which are confined in a magnetic field and should be maintained under
extremely high temperature and density conditions, are typical complex systems [4]
and their behavior is difficult to predict and control. Predicting the behavior of com-
plex systems with simulation models generally involves large uncertainties, because it
is inherently difficult to model all the components of a complex system and their in-
teractions with sufficient accuracy [68–70]. Therefore, model-based control of complex
systems is a challenging task, particularly when the system model is nonlinear and
involves many uncertain elements. In the case of fusion plasmas, we must consider
conditions outside the plasma (e.g., wall condition [10]) as well as inside the plasma,
further increasing the uncertainty of the simulation [11].

To achieve model-based control of complex systems, we require a method to esti-
mate optimal control inputs that can produce the target state while suppressing the
model uncertainties. This control is classified as adaptive model predictive control
and a challenging and open problem when the system is nonlinear and contains many
uncertain elements [71].

In this section, to address this control problem, we propose a data assimilation
framework, named as ”data assimilation and control system” (DACS) [72]. The DACS
framework includes system model updates and optimal control-input estimation. In
general, data assimilation is a technology that integrates observations and simulation
models by optimizing state variables from limited observed information. Thus, the
existing data assimilation framework does not include control processes. The DACS
framework is an extension of the sequential Bayesian filter (Section 2.1) to realize an
adaptive model predictive control. It can also be one approach to achieve a digital
twin [73–76]. In addition, since the DACS framework does not require additional
prediction steps, the framework can even be applied to a large system in which iterative
model prediction is prohibitive due to computational burden. This framework can be
applied to fusion plasma control and a wide range of other control problems in which
system models can be prepared even in a simplified manner.
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4.1 Data assimilation and control system

The DACS framework is an extension of the sequential Bayesian filter to include control
processes as shown in Fig.4.1. The procedure of the sequential Bayesian filter comprises
two steps on the state distribution, i.e., prediction and filtering. The DACS framework
differs from the sequential Bayesian filter mainly in the following two points.

(a) Real system behavior is controlled to approach a given target-state time series.

(b) The time in numerical space is always ahead of that in real space because control
systems must constantly predict future system states and estimate control inputs.

The DACS framework involves control estimation by assimilating target-state infor-
mation and model optimization by assimilating observed information. The second
constraint above requires the assimilation of observed information into the latest pre-
dicted distribution. Furthermore, simulation models for complex systems generally
require non-negligible prediction time compared to the time scale of control, and iter-
ative prediction is computationally prohibitive. Therefore, it is desirable to construct
control algorithms with as few predictive calculations as possible. The DACS frame-
work allows us to construct a control algorithm without overlapping prediction inter-
vals, i.e., with only one forward computation. In addition, a simplified system model
can be employed on condition that the model is updated sequentially via observation
information. We believe that the DACS framework is also applicable to large-scale
complex systems, e.g., traffic control, virus spread prevention measures, and river level
control.

4.1.1 State-space model

Consider a situation where control input is adjusted at every time interval ∆tz, and
system state is observed at every time interval ∆ty. In this situation, we control the
system behavior to approach a given target-state time series. For simplicity, we assume
that ∆ty = n∆tz (n ∈ N) and introduce the time notation,

ti,j = t0,0 + i∆ty + j∆tz, (4.1)

where t0,0 is the initial time, and i and j are integers. Here, ∆ty = n∆tz; thus,
ti,n = ti+1,0. When time is written in a subscript, it is denoted as A(i,j), which indicates
variable A at time ti,j . Variables related to the observations are denoted by omitting j,
because j = 0. For example, let yi be the observation vector at time ti,0. In addition, we
use the multiple time notation A(0,0):(i,j) ≡ {A(0,0), A(0,1), A(0,2), · · · , A(1,0), · · · , A(i,j)}.

The state vector at time ti,j , x(i,j), is defined as follows:

x(i,j) =

(
x̃(i,j)

u(i,j)

)
, (4.2)

where x̃(i,j) is the part of the state vector containing the system state and model
parameters, which is used as the state vector in typical data assimilation. Vector u(i,j)

is the control input that determines the time evolution of the system from time ti,j−1 to
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Figure 4.1: Concept of data assimilation and control system.

ti,j = ti,j−1 +∆tz. The target state of system z is prepared as time-series data in ∆tz
increments, and the target-state time series can be either predetermined throughout
all time steps or set adaptively at each time step depending on the operation. Here,
we define the vector u∗

(i,j) as the control input estimated to produce the target state
z(i,j).

The DACS framework is based on the following state-space model:

x(i,j+1) = f(i,j+1)(x(i,j), v(i,j+1)), (4.3)

z(i,j) = hz(i,j)(x(i,j),w
z
(i,j)), (4.4)

u∗
(i,j) = Hux(i,j) +wu

(i,j), (4.5)

yi = hyi (x(i,0),w
y
i ). (4.6)

Eq. (4.3) is the system model which describes the time evolution of the system, x(i,j) →
x(i,j+1), considering the effect of system noise v(i,j+1). We assume that the value of ut

is constant during the prediction interval (∆tz), i.e.,

u(i,j+1) = u(i,j) + vu
(i,j+1), (4.7)

x̃(i,j+1) = f(i,j+1)(x̃(i,j), u(i,j+1), ṽ(i,j+1)). (4.8)

Here, the system noise for control input vu
(i,j+1) is added to the distribution p(u(i,j))

before the time evolution calculation. Eq. (4.4) represents the relationship between the
state vector x(i,j) and target-state vector z(i,j) considering the target-state noise wz

(i,j).
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In the same manner, Eqs. (4.5) and (4.6) represent the relationships between x(i,j) and
control input u∗

(i,j) with control-input noise wu
(i,j), and that between x(i,j) and observa-

tion vector yi with observation noise wy
i , respectively. Note that Eqs. (4.4), (4.5) and

(4.6) are referred to as ”target-state model”, ”control-input model”, and ”observation
model”, respectively. Here, from Eq. (4.2), the control-input model is written using a
matrix Hu. In this section, we also assume that the ensemble approximation of the
state distribution is employed.

4.1.2 Steps for control input estimation and system model update

The characteristic feature of the DACS framework is to control the time evolution
of the system state by allowing the target state to act on the predicted distribution.
In addition, the system model is optimized based on observed information to reduce
prediction uncertainty. The DACS framework involves four main steps on the state dis-
tribution: prediction, z-filter, u-filter, and y-filter steps. The change in the probability
distribution of state vector for each step can be summarized as follows.

• Prediction

p(x(i,j)|y0:k,u
∗
(0,1):(i,j))→ p(x(i,j+1)|y0:k,u

∗
(0,1):(i,j)). (4.9)

• z-filter

p(x(i,j+1)|y0:k,u
∗
(0,1):(i,j))→ u∗

(i,j+1) = E(u(i,j+1)|y0:k,u
∗
(0,1):(i,j), z(i,j+1)).

(4.10)

• u-filter
p(x(i,j+1)|y0:k,u

∗
(0,1):(i,j))→ p(x(i,j+1)|y0:k,u

∗
(0,1):(i,j+1)). (4.11)

• y-filter
p(x(i,j)|y0:k,u

∗
(0,1):(i,j))→ p(x(i,j)|y0:k+1,u

∗
(0,1):(i,j)). (4.12)

Here, in Eq. (4.12), the time relation ti,j = tk+1+h holds, using the prediction horizon
h(≥ ∆tz) as described below.

In the prediction step, Eq. (4.9), the state distribution ∆tz ahead is predicted based
on the system model (ti,j → ti,j+1). Given the distribution p(x(i,j)|y0:k,u

∗
(0,1):(i,j)), the

predicted distribution p(x(i,j+1)|y0:k,u
∗
(0,1):(i,j)) is calculated, where tk,0 is the latest

observation time (tk,0 < ti,j). When employing an ensemble approximation of the
state distribution, prediction step is performed by computing the time evolution of the
ensemble members by the system model [29], as shown in Fig 4.2(a). Here, the pre-
dicted distribution contains uncertainties in the system state before the time evolution,
the parameters of the employed models, and the control inputs.

The z-filter, Eq. (4.10), estimates the control input u∗
(i,j+1) from the predicted distri-

bution and the target state z(i,j+1). The distribution p(u(i,j+1)|y0:k,u
∗
(0,1):(i,j), z(i,j+1))

is obtained from the distribution p(x(i,j+1)|y0:k,u
∗
(0,1):(i,j), z(i,j+1)) via the following
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Figure 4.2: Changes in ensemble members at the prediction (a), z-filter and u-filter
(b).

marginalization:

p(u(i,j+1)|y0:k,u
∗
(0,1):(i,j), z(i,j+1))

=

∫
p(u(i,j+1), x̃(i,j+1)|y0:k,u

∗
(0,1):(i,j), z(i,j+1))dx̃(i,j+1),

=

∫
p(x(i,j+1)|y0:k,u

∗
(0,1):(i,j), z(i,j+1))dx̃(i,j+1). (4.13)

When using an ensemble approximation of the state distribution, this marginalization
can be performed by simply removing x̃ part from the ensemble of the distribution
p(x(i,j+1)|y0:k, u

∗
(0,1):(i,j), z(i,j+1)). The distribution p(x(i,j+1)|y0:k,u

∗
(0,1):(i,j), z(i,j+1))

can be calculated by assimilating the target state z(i,j+1) to the predicted distribution
p(x(i,j+1)|y0:k, u

∗
(0,1):(i,j)) using the target-state model, Eq. (4.4). This procedure is a

Bayesian filter that can be implemented using the EnKF or the PF. Here, we define
the optimal control input u∗

(i,j+1) as the expected value (ensemble mean) as follows:

u∗
(i,j+1) =

∫
u(i,j+1)p(u(i,j+1)|y0:k,u

∗
(0,1):(i,j), z(i,j+1))du(i,j+1). (4.14)

This control-input estimation is robust against the uncertainties in the system state at
time ti,j and the model parameters [77,78].

The u-filter, Eq. (4.11), estimates the predicted distribution controlled by u∗
(i,j+1),

p(x(i,j+1)|y0:k,u
∗
(0,1):(i,j+1)), from the predicted distribution. The u-filter is executed

by assimilating the estimated input u∗
(i,j+1) to the predicted distribution p(x(i,j+1)|y0:k,

u∗
(0,1):(i,j)) using a Bayesian filter with the target-state model, Eq. (4.5), as shown in

Fig. 4.2(b). The u-filtered distribution corresponds to the expected state distribution
when u∗

(i,j+1) is input, in other words, the predicted distribution without the uncer-
tainty of the control input. The remaining uncertainties work to carry the observed
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Figure 4.3: Changes in ensemble members in 1○ prediction and control-input estima-
tion (focuses on control inputs (a); focuses on model parameters (b)), and 2○ y-filter
(focuses on control inputs (c); focuses on model parameters (d)) for n = 3 case.

information into the future state distribution at the y-filter step. For the estimation of
the predicted distribution controlled by u∗

(i,j+1), it is more accurate to recalculate the
prediction step from ti,j using u∗

(i,j+1) than to perform this filtering. Note that the u-
filter eliminates this second prediction calculation, thereby reducing the computational
cost of control algorithms. Repeated execution of the prediction, z-filter, and u-filter
steps evolves the state distribution over time while estimating the control inputs that
produce the target state as shown in Fig 4.3 1○.

The newly observed data yk+1 is reflected in the latest u-filtered distribution by the
y-filter, Eq. (4.12). The y-filter estimates the distribution p(x(i,j)|y0:k+1,u

∗
(0,1):(i,j)),

where ti,j is the time of the latest u-filtered distribution. Since it is necessary to
predetermine control ahead of the observation time, the latest u-filtered distribution
represents the future state beyond the given observation time (ti,j > tk+1,0). We define
this time difference as the prediction horizon h (≥ ∆tz), i.e.,

h = ti,j − tk+1. (4.15)
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Figure 4.4: Time relationships in control algorithm. An application example of fusion
plasma (LHD) control is illustrated. The time relationship to control a state variable
(e.g., electron temperature) is shown separately in numerical space (state space) and
real space for the ∆ty = 3∆tz and h = ∆ty case. In this case, when the plasma in real
space is controlled by u∗

(i+1,1):(i+2,0), the control inputs u∗
(i+2,1):(i+3,0) are estimated in

the numerical space.

At time t in the real space, the control input has been estimated previously and deter-
mined up to at least t+h; thus, the observed information at t is reflected to the control
estimation from t + h. The y-filter is executed by the assimilation of the observation
data to the joint distribution of state vectors at two time points, i.e., the observation
time tk+1 and the time of the latest u-filtered distribution ti,j , as shown in Fig 4.3 2○.
By concatenating the u-filtered ensemble at ti,j and the stored ensemble at tk+1, the
ensemble approximating the joint distribution p(x(i,j),x(k+1,0)|y0:k,u

∗
(0,1):(i,j)) can be

obtained. The filtered distribution p(x(i,j),x(k+1,0)|y0:k+1,u
∗
(0,1):(i,j)) can be calculated

by assimilating yk+1 to p(x(i,j),x(k+1,0)|y0:k,u
∗
(0,1):(i,j)), and we obtain the ensemble

of the distribution p(x(i,j)|y0:k+1,u
∗
(0,1):(i,j)) by marginalization of x(k+1,0). Note that

the y-filter also eliminates the computational cost of recalculating the system time
evolution from the observation time to the latest prediction time. Using the u-filter
and y-filter, we can construct a control algorithm without overlapping prediction inter-
vals. Therefore, it can be applied even to systems where prediction is computationally
expensive.
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4.1.3 Construction of control algorithm

We can construct a control algorithm by setting the parameters n(≥ 1) and h(≥ ∆tz).
To determine these parameters, we should consider the processing of the observed
information, the communication time, and the computational costs of the prediction
and filtering. In this section, we discuss a control algorithm constructed for n =
3 (∆ty = 3∆tz) and h = ∆ty, as a specific example. Figure 4.4 shows the time
relationship in this case. In the control algorithm, each step functions as follows.

• Prediction

p(x(i,j)|y0:i−1,u
∗
(0,1):(i,j))→ p(x(i,j+1)|y0:i−1,u

∗
(0,1):(i,j)). (4.16)

• z-filter

p(x(i,j+1)|y0:i−1,u
∗
(0,1):(i,j))→ u∗

(i,j+1) = E(u(i,j+1)|y0:i−1,u
∗
(0,1):(i,j), z(i,j+1)).

(4.17)

• u-filter

p(x(i,j+1)|y0:i−1,u
∗
(0,1):(i,j))→ p(x(i,j+1)|y0:i−1,u

∗
(0,1):(i,j+1)). (4.18)

• y-filter

p(x(i+1,0)|y0:i−1,u
∗
(0,1):(i+1,0))→ p(x(i+1,0)|y0:i,u

∗
(0,1):(i+1,0)). (4.19)

The flow of state distributions absorbing the observed and target-state information
is illustrated in Fig. 4.5. Given p(x(i,0)|y0:i−1,u

∗
(0,1):(i,0)) (♡ in Fig. 4.5), the u-filtered

distribution ∆ty ahead, p(x(i+1,0)|y0:i−1,u
∗
(0,1):(i+1,0)) (♠), can be calculated by re-

peating the prediction, z-filter, and u-filter steps, while estimating the control inputs
u∗
(i,1):(i+1,0). When observation yi is obtained, the u-filtered distribution is modified by

the y-filter to p(x(i+1,0)|y0:i,u
∗
(0,1):(i+1,0)) (♣). From this distribution, the predictive

calculation is performed again to ti+2,0, and control can proceed. Projecting the 3D
flow in Fig. 4.5 onto the xy-plane, the 2D flow (gray solid line) appears. This 2D
flow is the same as that shown in Fig. 2.1 (procedure of the sequential Bayesian filter),
except that the times of observation are shifted. It follows from this that the DACS
framework is a data assimilation framework where the prediction step of the sequen-
tial Bayesian filter is extended to the three steps, i.e., prediction, z-filter, and u-filter.
Under the assumption that the observations are available from t0,0, the procedure of
the control algorithm can be summarized as follows.

Generate the initial ensemble members and store them as the initial y-filtered ensemble.
For i = 0, · · · , imax:

1. Estimate control inputs u∗
(i,1):(i+1,0) and u-filtered ensemble at ti+1,0 (Fig 4.3 1○):

For j=0,1,2:
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Figure 4.5: Assimilation flow of observation data and target state for a control algo-
rithm (∆ty = 3∆tz and h = ∆ty).

(a) Calculate time evolution of ensemble members from ti,j to ti,j+1 (ti,3 =
ti+1,0).

(b) Execute z-filter using target z(i,j+1) and ensemble obtained at 1-(a) and
estimate control input u∗

(i,j+1).

(c) Execute u-filter using u∗
(i,j+1) and ensemble obtained at 1-(a).

2. Observe the system state at ti,0 and obtain yi.

3. Update latest u-filtered ensemble (Fig 4.3 2○):

(a) Concatenate y-filtered ensemble at ti,0 stored at previous y-filter and u-
filtered ensemble at ti+1,0.

(b) Execute y-filter using yi and the concatenated ensemble.

(c) Extract the part of ti+1,0 from the filtered concatenated ensemble as the
y-filtered ensemble and store it for the next y-filter.

4.2 ASTI as a control system

We implement the control algorithm discussed in Section 4.1.3 in ASTI. In this thesis,
we implement all the filters using the EnKF. When the state variables are linked to each
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other via strong nonlinearities, and the state distribution deviates significantly from a
Gaussian distribution, we should employ other filters (e.g., the PF) for implementation.
In the case of EnKF, the state space model (Eqs. (4.3)-(4.6)) is expressed as follows:

x(i,j+1) = f(i,j+1)(x(i,j), v(i,j+1)), (4.20)

z(i,j) = Hzx(i,j) +wz
(i,j), (4.21)

u∗
(i,j) = Hux(i,j) +wu

(i,j), (4.22)

yi = Hyx(i,0) +wy
i . (4.23)

Here, the matrices Hz and Hy are the linear operators to project the state vec-
tor in each corresponding space. It is assumed that system noise v(i,j+1) follows a
Gaussian distribution with zero mean and covariance matrix Q(i,j+1), i.e., v(i,j+1) ∼
N(0, Q(i,j+1)). Similarly, noises wz

(i,j), w
u
(i,j), and wy

i are assumed to follow the proba-

bility distributions N(0, Rz
(i,j)), N(0, Ru

(i,j)), and N(0, Ry
i ), respectively. These covari-

ance matrices, Q(i,j+1), R
z
(i,j), R

u
(i,j), and Ry

i are key hyper parameters that determine
overall control performance of the constructed algorithm. In addition, we can deter-
mine the priority of each variable in the target state and the importance of the observed
variables through the target and observation noise. In this thesis, we use diagonal ma-
trices for these covariance matrices, i.e., the covariance component of the noise is not
considered. Spatial smoothness of the state variables is guaranteed by the B-spline
interpolation discussed in Section 3.2.

The covariance matrix Q(i,j+1) controls the uncertainty of the state distribution.
The system noise to u determines the magnitude of the state change and the focused
region of u to look for the optimal control input. Note that a larger variance of Q for
u is required to realize global estimation for control problems with jumps in optimal
control input values. On the other hand, when the target state changes slowly or
when the control input changes at a finite speed, such as the steering wheel of a car,
a relatively small variance is sufficient for the system noise. The system noise to u is
added before each prediction step is performed, and the system noise to x̃ is only added
after the y-filter is executed to prevent shrinkage of the distribution. Here, Q(i,j+1)

should be determined considering the sophistication of the employed system model,
the time series of the scheduled target state, and the control constraints due to the
corresponding devices.

Covariance matrix Rz
(i,j) affects the performance of the z-filter and determines how

close the system state gets to the target state in the control estimation. A large variance
of Rz

(i,j) weakens the z-filter’s force to attract the predicted distribution to the target

state. As a result, the u-filtered distribution changes gradually (with a slower rate of
change). Here, we determine the diagonal components of Rz

(i,j) at each z-filtering step

as Eq. (4.24) using the proportionality coefficient rz:(
Rz

(i,j)

)
ll
= r2z

(
HzV(i,j)(H

z)T
)
ll
, (4.24)

where V(i,j) is the covariance matrix of the ensemble that approximates the predicted

distribution at ti,j , ( )ll denotes the l-th diagonal component, and superscript T denotes
matrix transposition.
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Uncertainties in the control input can be considered through the covariance matrix
Ru

(i,j). The rate of change of the control input u can be adjusted independently of
the z filter, but the resulting effect is almost the same as the effect of the target state
noise. Note that this uncertainty does not need to be considered in many cases, and
the variance of Ru

(i,j) can be set sufficiently small. In the case of EnKFs, the variance
can even be set to 0 if the dimension of u is sufficiently smaller than the number of
ensemble members. When using the PF, care should be taken with this matrix to avoid
degeneracy of the ensemble.

The covariance matrix Ry
i affects the performance of the y-filter and determines

the impact of the observations on the state distribution, as with that in the sequential
Bayesian filter. Here, the standard deviation of the observation noise is assumed to be
proportional to the difference between the observation data and the mean of the state
distribution as Section 3.1 and 3.2,(

Ry
i

)
ll
= r2y

(
yi −Hyx̂(i,0)

)2
l
, (4.25)

where ry is the proportional coefficient, x̂(i,0) is the mean of the ensemble approximat-
ing p(x(i,0)|y0:i−1,u

∗
(0,1):(i,0)), and ( )l represents the l-th element of the vector. Under

this assumption, the variance of the y-filtered ensemble is maintained at an adequate
magnitude. For a large difference between the predicted and observed responses, this
assumption works to increase the variance of the observation noise, which results in
more flexible state variable optimization. In contrast, for a small difference, this as-
sumption works to reduce variance of the observation noise and prevents the variance
of the state distribution from becoming excessively large. This assumption is also ef-
fective in terms of constructing a stable control system that is robust against observed
values with large measurement errors.

In the next chapter, we discuss numerical experiments in controlling virtual (nu-
merically created) fusion plasma. Though the numerical experiments, we demonstrate
the control performance of ASTI and investigate the dependence of the control per-
formance on the choice of hyper parameters and the discrepancies between the system
model and the real system.
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Chapter 5

Numerical Experiments to
Control Virtual LHD Plasma

To demonstrate a practical application of the DACS framework, we consider the control
of temperature and density in fusion plasma in LHD. In this section, we demonstrate
the effectiveness of the DACS framework through numerical experiments to control a
virtual LHD plasma (hydrogen plasma). We also investigate the dependence of control
accuracy on noise parameters, which are key hyper parameters of the DACS framework,
and on the discrepancy between the assumed system model and actual behavior.

5.1 Settings of numerical experiments

Again, we employ the integrated transport simulation code TASK3D as the system
model of ASTI. We consider a problem of controlling the electron density and tem-
perature at the plasma center when the radial profiles of electron density, electron
temperature, and ion temperature are observed every ∆ty=0.6 s. We assume that
∆tz=0.2 s and h = ∆ty=0.6 s in consideration of the computational costs of the
prediction and filters, communication time, and processing time of the observed in-
formation. The virtual plasma is generated in numerical space using TASK3D and
controlled by ASTI, which implements the control algorithm discussed in Section 4.1.3
(n = 3 and h = ∆ty).

5.1.1 State-space model

Table 5.1 defines the state variables, target-state variables, and observation variables.
The state vector x comprises x̃ and u, as in Eq. (4.2). In addition, x̃ comprises the
plasma state (n, Te, Ti), and model parameters (d, ce, ci, ξT ). In Table 5.1, the values
with % as the unit represent the rate to determine the standard deviation in proportion
to the mean of the state distribution. The variables with ∗ are the numerical factors
to optimize the corresponding model parameters, i.e., their value of 1 corresponds to a
simple simulation with no modification by data assimilation. The following parameters
with ′ are used in the prediction calculation by TASK3D instead of the parameters
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Table 5.1: State variables, target variables, and observation variables for numerical
experiments to control virtual fusion plasma. Their dimension in the vectors (Mi),
and their standard deviation of the initial state distribution (σI) and system noise
(σQ) are also shown.

Variable Mi σI σQ

x̃

n Density 11 3% 3%
Te Electron temperature 11 3% 3%
Ti Ion temperature 11 3% 3%
d Turbulent particle diffusivity∗ 11 0.2 0.1
ce Turbulent electron thermal diffusivity∗ 11 0.2 0.1
ci Turbulent ion thermal diffusivity∗ 11 0.2 0.1
ξT Temperature of neutral particles at plasma edge∗ 1 0.1 0.05

u
ξn Density of neutral particles at plasma edge∗ 1 0 0.4
PECH ECH input power 1 0 0.7 MW

z
nρ=0 Density at plasma center 1
Te,ρ=0 Electron temperature at plasma center 1

y
n Density 11
Te Electron temperature 11
Ti Ion temperature 11

without ′ :

DTB′ = dDTB, χTB′
e = ceχ

TB
e , χTB′

i = ciχ
TB
i , T ′

n = ξTTn, n′
n = ξnnn.

The radial profiles of the state variables are defined on 11 grid points (ρ = 0, 0.1, 0.2,
· · · , 1) in the state vector, and the radial profile in TASK3D is defined on 60 grid
points. The radial profiles of the state variables are transformed to the profiles on the
TASK3D’s grid using the B-spline interpolation introduced in Section 3.2.

The control input u comprises the numerical factor for neutral density at the plasma
edge ξn and the electron cyclotron heating (ECH) input power PECH. Here, ξn deter-
mines the particle source term and primarily affects the density profile, and PECH

determines the heat source term and primarily affects the electron temperature profile.
Although the equivalent of ξn in actual control is the intensity of the gas puff, for sim-
plicity, we consider the density of neutral particles at the plasma edge in the numerical
experiments. The ECH input power PECH takes discrete values from 0.5 to 5 MW in
0.5 MW increments due to equipment constraints.

In this example application, we control the density and electron temperature at the
plasma center to increase along the predetermined target-state time series. The target
state z = (nρ=0, Te,ρ=0) starts at (1× 1019 m−3, 2 keV), begins to increase from 2.4 s,
and remains at (2× 1019 m−3, 5 keV) from 4.8 s, as shown in Figs. 5.1.

In the numerical experiments for the virtual plasma control, PECH and ξn affect the
density and temperature profiles through the source terms Pe and S, respectively. The
particle source S is primarily determined by the ionization of neutral particles evaluated
by the AURORA module of TASK3D. AURORA calculates the component of S coming
from the ionization of neutral particles using the plasma profiles and the density and
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Figure 5.1: Target state of the numerical experiments

temperature of neutral particles at the plasma edge (nn and Tn). The heating power
Ps comprises the externally applied ECH, the power exchange between species, and
the loss term by interaction with neutrals. Note that the ECH only contributes to the
heating term of the electron. In this experiment, the following simple ECH model is
employed:

PECH
e (ρ) = A exp

(
−1

2

(µECH − ρ)2

σ2
ECH

)
, (5.1)

where µECH = 0.1 and σECH = 0.05, which are reasonable values from detailed ray-
tracing calculations. The coefficient A is determined from ECH total input power given
by

PECH =

∫ 1

0
PECH
e (ρ)V ′(ρ)dρ. (5.2)

The standard deviation of the system noise is fixed at the values shown in Table
5.1. We assume that uncertainties of the system model are mainly in the transport
parameters. The standard deviations of the control-input noise are set to sufficiently
small values, i.e., 0.05 MW for PECH and 0.02 for ξn, as described in Section 4.2. The
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parameters, rz and ry, which determine the target-state noise and observation noise,
respectively, are described with the control results in Section 5.2

5.1.2 Virtual LHD plasma

To validate the adaptive capacity of DACS, we create a difference between the system
model and the actual system. For this purpose, we assume that the transport models
in the virtual plasma are different from that employed in the system model in ASTI.
In this numerical experiment, we add 1/n dependent terms to the turbulent particle
diffusivity DTB and the turbulent electron thermal diffusivity χTB

e in the transport
model of the virtual plasma. For DTB in Eq. (2.43), the constant model,

DTB = dconst × d, (5.3)

is employed in ASTI, whereas in the virtual plasma, the model with a 1/n dependent
term,

DTB = 2dAlc

(
(1− µ) + µ

1

n

)
, (5.4)

is employed, where dconst = 1.4 and dAlc = 0.4. Here, parameter µ is the parameter
that can vary the difference between the system model and real system continuously.
When the value of µ is 1, the properties of the constant model disappear, and the model
becomes perfectly proportional to 1/n. For the turbulent electron thermal diffusivity
in Eq. (2.44), the gyro-Bohm model [42, Sections 4.15 and 4.16],

χTB
e = CgB

Te

eB

ρi
a
× ce, (5.5)

is employed in ASTI’s system model, whereas in the virtual plasma, the model with a
1/n dependent term,

χTB
e =

1

2

(
CgB

Te

eB

ρi
a
+ CAlc

1

n

)
, (5.6)

is employed, where CgB = 1.5 and CAlc = 1.61. Here, B, ρi, and a are the magnetic
field strength, ion Larmor radius, and plasma minor radius, respectively. The values
of dconst, dAlc, CgB, and CAlc are set to reasonable values from previous studies [21,79].
Parameter d in Eq. (5.3) and parameter ce in Eq. (5.5), which are introduced for data
assimilation and are optimized by the y-filter to enhance the prediction capability of
the plasma response. The time step of TASK3D as the virtual plasma is set to 10−3

seconds, while that of TASK3D as the system model in ASTI is set to 10−2 seconds.

5.2 Control results

In this section, we discuss the control results by ASTI and the dependence of control
accuracy on the noise parameters in the DACS framework and on the discrepancy
between the system model and actual system behavior.
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Figure 5.2: Results of a numerical experiment to control virtual plasma. (a) and (b),
Control result of density and electron temperature at plasma center, respectively. Error
bars represent one standard deviation of the state distribution. (c) and (d), Estimation
results for control inputs ξn and PECH, respectively. (e) and (f), Time variation of state
variables for transport model. The distributions (mean and one standard deviation)
used in prediction step are shown. (g) and (h), Time variation of diffusivities DTB and
χTB
e calculated in prediction step (scattered points) and those in the virtual plasma

(solid and dashed lines).
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Figure 5.3: RMSPEs between the observation and target state (a) in the transient
section (2.4-4.8 s) and (b) in the steady-state section (4.8 s-).

5.2.1 Control results of virtual plasma

Figure 5.2 shows the results for the numerical experiment where rz=0.6 and ry=0.8
for the virtual plasma with µ=0.5. Figures 5.2(a) and (b) show that the plasma
state follows the target state with high accuracy in the steady-state section (4.8 s-)
while there is a slight difference in the transient section (2.4-4.8 s). These differences
between the observation and target state arise from differences between the employed
system model and the real system (virtual plasma). The y-filter optimizes the model
parameters in x̃ such that the difference between the predicted response (i.e., the u-
filtered distribution) and the actual response (i.e., the observation) becomes small.
Figures 5.2(e) and (f) show the model parameters d and ce adjusted to bridge the
gap between the system model and real system. The model parameters are primarily
optimized in the transient section, where the difference between the predicted and
actual responses is expected to increase, and the diffusivities DTB and χTB

e calculated
in ASTI and the virtual plasma are close from approximately 4 s (Figs. 5.2(g) and (h)).

The number of ensemble members was set to 420 for the above control experiment.
Figure 5.3 shows the root mean square percentage error (RMSPE) between the obser-
vation and target state for varying the number of ensemble members. We confirmed
that the control performance saturates at approximately 200 members form Fig. 5.3(b)
(the change in the RMSPE in the steady-state section). The valid number of ensemble
members cannot be determined from the change in the transient section because of the
large error in the control itself.

Figure 5.4 shows how the ensemble approximating the state distribution at time ti =
4.2 is affected at each step. In the algorithm constructed in Section 4.1.3, the ensemble
at an observation time undergoes three assimilations from the predicted distribution
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Figure 5.4: Changes in the ensemble members approximating the state distribution at
time ti = 4.2 in the control experiment.
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p(x(i,0) | y0:i−2,u
∗
(0,1):(i−1,2)):

p (x(i,0) | y0:i−2,u
∗
(0,1):(i−1,2))

→ p(x(i,0) | y0:i−2,u
∗
(0,1):(i,0)) (5.7)

→ p(x(i,0) | y0:i−1,u
∗
(0,1):(i,0)) (5.8)

→ p(x(i,0) | y0:i,u
∗
(0,1):(i,0)) (5.9)

Figures 5.4(a) and (b) show the first assimilation, Eq. 5.7, where the predicted dis-
tribution (”Prediction”) absorbs the optimal control input and becomes the u-filtered
distribution (”u-filtered”) by the u-filter. Figure 5.4(a) is a scatter plot for the electron
temperature and density at the plasma center, and (b) is that for the control input
variables. We can see that the u-filtered distribution gets close to the target (”Tar-
get”) by the z-filter and u-filter. In addition, the variation of the ensemble members
approximating the u-filtered distribution is reduced to a practically acceptable level
because we employ a small variance of the control-input noise.

Figures 5.4(c) and (d) show the second assimilation, where the u-filtered distribu-
tion (”u-filtered”) is optimized to the y-filtered distribution (”y-filtered (yi−1)”) by
the observation at ti−1 = 3.6 s (yi−1). Figure 5.4(c) is a scatter plot for the electron
temperature and density, and (d) is that for the transport model parameters (ce at
ρ = 0.2 and d at ρ = 0.5). In addition, Fig. 5.4(e) shows the changes in the ensemble
members at ti−1 = 3.6 s by the same y-filter. The y-filter based on yi−1 optimizes the
u-filtered ensemble at ti = 4.2 s through the y-filtered ensemble at ti−1 = 3.6 s (e).

The y-filtered ensemble at ti = 4.2 s is also used to optimize the u-filtered ensemble
at ti+1 = 4.8 s by the y-filter based on the observation at yi. Figures 5.4(f) and
(g) show the third assimilation; (f) shows the ensemble for the electron temperature
and density, and (g) shows the transport model parameters. The y-filter reflects the
information of yi to the u-filtered ensemble at ti+1 = 4.8 s through the the y-filtered
ensemble at ti = 4.2 s. Figure 5.4(h) shows the changes in the ensemble members at
ti+1 by the y-filter.

The noise setting where the control-input noise is sufficiently small makes the corre-
lation in the u-filtered distribution between u and x quite small (about 0). Therefore,
the distribution of u is little affected by the y-filter. However, when a larger control-
input noise is required for some reason (e.g., when we want to employ the PF), the
distribution p(u(i+1,0)|y0:i−1,u

∗
(0,1):(i+1,0)) can be affected by the y-filter based on yi,

and the mean of u(i+1,0) can be shifted from u∗
(i+1,0). One possible countermeasure for

the problem is to generate ensemble members for u part from a new Gaussian each
time before the prediction step to eliminate the correlation between u and x̃.

5.2.2 Dependence of control performance on hyper parameters

The control algorithm constructed in the DACS framework involves the following hy-
per parameters: number of ensemble members, initial state distribution, system noise,
target noise, control-input noise, and observation noise. Here, we investigate the de-
pendence of control accuracy on the hyper parameters, focusing on target noise and
observation noise. We introduced parameters rz in Eq. (4.24) and ry in Eq. (4.25) in
Section 4.2 to determine the target-state noise in the z-filter and the observation noise
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Results of numerical experiments with various rz and ry values: RMSPEs
between the observation and target state for density (a) and electron temperature (b)
in the transient section (2.4-4.8 s). (c) Log-likelihoods of observation for u-filtered
distribution in the transient section. (d)-(f) as (a)-(c), respectively, but in the steady-
state section (4.8-9.0 s).

in the y-filter, respectively. Parameter rz can be used to adjust how close the predicted
distribution gets to the target state at the control-input estimate (z-filter). For a large
rz value, the z-filter’s force to attract the predicted distribution to the target state
is weakened and the change in the u-filtered distribution becomes small. In contrast,
parameter ry controls the impact of the observation in the y-filter. A larger ry value
results in a smaller effect of the observed information to the state distribution.

Figure 5.5 shows the root mean square percentage error (RMSPE) between the
observation and target state, as well as the log-likelihood of the observation for the
corresponding u-filtered distribution in the transient section (2.4-4.8 s) and steady-
state section (4.8-9.0 s). The RMSPE value represents pure control accuracy, and the
log-likelihood represents the difference between the predicted and actual responses.

First, we focus on the rz-dependence of the RMSPE and the log-likelihood. In the
transient section, the rz-dependence of the RMSPEs is strong, whereas in the steady-
state section, the RMSPEs are low (approximately 3%) over a wide parameter range.
For n in the transient section (Fig. 5.5(a)), the RMSPE is lower for large rz, while it
is higher for Te (Fig. 5.5(b)). The log-likelihood is relatively low in the small rz region
in Fig 5.5(c). We can see a similar tendency in the RMSPE of n (Fig. 5.5(a)). These
results indicate that the prediction of n is more strongly affected by model imperfection

85



(uncertainties) than that of Te, and optimization of the particle transport model in
ASTI do not maintain pace with changes in virtual plasma. This can be also observed
by comparing the Figs. 5.2(a) and (b). The difference between the u-filtered prediction
and filter estimate using the corresponding observation (”Obs filtered”) in Fig. 5.2(a)
(n) is greater than that in Fig. 5.2(b) (Te). Thus, the RMSPE of n decreases when the
large rz slows down the state change rate. For Te, where the prediction uncertainty is
relatively small, a greater rz value simply increases the RMSPE as the state change rate
slows relative to the target-state time series. Of course, the RMSPE of n also increases
due to this effect when rz further increases, although this effect is more pronounced for
Te because the target state of Te has a wider change range, and the control input PECH

takes discrete values. It is considered that the change in the RMSPE of Te relative to rz
occurs within the prediction by the system model, while the change in the RMSPE of n
occurs outside the prediction. In situations where the system model is unsophisticated
or its ability to approximate the real system is unknown, it is safe to select a large rz
value (≳ 0.5).

On the other hand, a small ry value reduces the log-likelihood significantly, as
shown in Figs. 5.5(c) and (f). This occurs because the variance of the state distribu-
tion becomes excessively small for a small ry value, and the state distribution cannot
maintain sufficient uncertainty for sequential adaptation and robust control estimation.
Note that it is also safe to select a reasonably large ry value (≳ 0.5).

5.2.3 Limitation of adaptation

Note that the control systems based on the DACS framework have certain limitations
in terms of the actual systems that can be approximated even with a system model
optimized via observation. In this section, we investigate the dependence of ASTI’s
control performance on the discrepancy between the employed system model and actual
system behavior. Figure 5.6 shows the results of numerical experiments conducted with
various µ introduced in Section 5.1.2 and rz values. Here, the parameter ry is fixed at
0.8. Figure 5.6 shows the root mean square percentage error (RMSPE) between the
observation and target state, as well as the log-likelihood of the observation for the
corresponding u-filtered distribution in the transient section (2.4-4.8 s) and steady-state
section (4.8-9.0 s). The RMSPE values for density and electron temperature increase
significantly near µ = 1 regardless of the transient section (Figs. 5.6(a) and (d)) or
steady-state section (Figs. 5.6(b) and (e)). A similar tendency is observed in terms
of the log-likelihood (Figs. 5.6(c) and 5.6(f)), i.e., the prediction accuracy drops near
µ=1, where the system model behavior deviates significantly from the virtual plasma
behavior. In the vicinity of µ = 1, the real system changes on a time scale faster
than the observation cycle ∆ty. Therefore, even a system model whose parameters
are optimized sequentially based on observation information cannot approximate the
real system adequately, and the data assimilation system fails to estimate the control
inputs.

Next, we focus on the rz-dependence of the RMSPE and the log-likelihood. The rz-
dependence found in Fig. 5.6 is the same as the dependence mentioned in the previous
section. In the transient section, the rz-dependence of the RMSPEs is strong, whereas
in the steady-state section, the RMSPEs are low (approximately 5%) over a wide rz
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Figure 5.6: Results of numerical experiments with various rz and µ values: RMSPEs
between the observation and target state for density (a) and electron temperature (b)
in the transient section (2.4-4.8 s). (c) Log-likelihoods of observation for u-filtered
distribution in the transient section. (d)-(f) as (a)-(c), respectively, but in the steady-
state section (4.8-9.0 s).

range. For n in the transient section (Fig. 5.6(a)), the RMSPE is lower for large rz,
while it is higher for Te (Fig. 5.6(b)). The log-likelihood is relatively low in the small
rz region in Fig 5.6(c).

The range of systems that can be stably controlled is primarily determined by the
assumed system model, the observation cycle ∆ty, and the prediction horizon h. Thus,
the range of target systems can be expanded by employing more expressive models in
the system model or by constructing a control algorithm for smaller ∆ty and h. In
addition, the target noise parameter rz can reduce the difference between the predicted
and actual responses. As shown in Fig. 5.6(a) (or 5.6(c)), for large rz, a system with a
large µ value can be controlled with high accuracy by reducing the rate of state change.
We can construct a more robust control system by developing methods to adjust the
hyper parameters for the given situation, e.g., the difference between the predicted and
actual responses.

5.3 Summary

We have established a data assimilation framework to integrate system model updates
and estimation of control inputs. The DACS framework comprises a prediction step
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and three filtering steps and provides adaptive model predictive control algorithms, i.e.,
effective control methods even when the system model involves large uncertainties.
Since the DACS framework does not require additional prediction steps for control
processes, we can construct a control algorithm without overlapping the prediction
intervals. Thus, we can apply this framework to a large system in which iterative
model prediction is prohibitive due to computational burden. In other words we can
employ simulation models with non-negligible computational costs for the control time
scale as the system model.

In this chapter, we presented an example application of the DACS framework with
a focus on fusion plasma control. In the numerical experiments to control the virtual
LHD plasma using ASTI based on the DACS framework, we have seen that the behavior
of the virtual plasma followed the time series of target state with high accuracy. On
the other hand, we have observed limitations of adaptation, which lead to a situation
where the gap between the system model and the real system cannot be completely
bridged. Through this application example, we have demonstrated the effectiveness
and the performance characteristics of the DACS framework. This application is only
one example of the DACS framework’s applicability to a much wider range of model-
based control problems.
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Chapter 6

Conclusions and Future
Perspectives

The purpose of this study is to develop a numerical system that can analyze and
control the behavior of fusion plasma with high accuracy applying data assimilation.
Through this thesis, we have presented the concepts and details of the data assimilation
system for fusion plasmas, ASTI, and demonstrated the effectiveness and validity of
ASTI. ASTI can enhance the predictive and analytical capabilities of the system model
(integrated simulation code) by connecting numerical space and real space.

ASTI as an analysis system

In Chapter 2 and 3, we have discussed the analytical applications of ASTI based
on the sequential Bayesian filter. The EnKF and EnKS were employed as the data
assimilation methods. First, we have assimilated the density, electron temperature,
and ion temperature data of an NBI-heated plasma in LHD and estimated the thermal
turbulent diffusivities. We have confirmed that ASTI can estimate reasonable model
parameters that satisfy the dynamic constraints by the system model and reproduce the
experimental data. Data assimilation has been successfully introduced into integrated
transport simulation of fusion plasmas.

Next, we have applied ASTI to the 12 experimental time-series data sets of NBI-
heated plasmas in LHD. In this case, we solved particle and heat transport by TASK3D
and considered the uncertainties included in the density, temperature, transport mod-
els, NBI heating model, and particle source model. In addition, we employed the
reduced NBI heating model to speed up the prediction calculation expecting that the
uncertainty increased by the reduction is compensated by data assimilation adjusting
the model parameters. The predicted radial profiles of density, electron temperature,
and ion temperature by ASTI (EnKF) have agreed well with the observed profiles for
all the 12 discharges, and the errors between the prediction and observation have been
significantly reduced from the TASK3D simulation (without data assimilation). Using
the EnKS, we have obtained the radial profiles and temporal changes of the model pa-
rameters that can reproduce the experimental time-series data. It has been confirmed
that the TASK3D simulations using the smoothed estimates of the model parameters
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reproduce the experimental time-series data with high accuracy. These results indicate
the effectiveness and validity of ASTI for accurate prediction and analysis of particle
and heat transport in fusion plasmas. Furthermore, it was found that the calculation
by ASTI can be performed in about four minutes for a second in actual plasma, while
the previous case takes more than 10 hours. A high-speed and accurate analysis system
has been realized by using the data assimilation.

The estimates of the transport model parameters have characteristic structures and
suggest missing elements in the transport model. Such information is useful for improv-
ing the transport model. In order to build a valid model for many other discharges, it
is necessary to extract properties common to a large number of discharges and combine
them into a model. These are issues that we would like to address in the future. We are
now developing a transport model built by regressing the estimated model parameters
for a large number of discharges. At the same time, we are also developing a method for
multi-discharge data assimilation, which directly extracts common information from a
large number of discharges and creates a high-performance transport model.

ASTI as a control system

In Chapter 4 and 5, we have discussed the control application of ASTI. We have pro-
posed a data assimilation framework, referred to as DACS, to integrate system model
updates and estimation of control inputs and investigated the control performance.
This framework is the foundation for ASTI as a control system. The DACS frame-
work provides effective control methods even when the system model involves large
uncertainties. With this framework, we can construct a control algorithm without
overlapping the prediction intervals. Thus, we can employ simulation models with
non-negligible computational costs for the control time scale as the system model.

To demonstrate the effectiveness of DACS and reveal the characteristics of the
control performance related to the hyper parameters and the discrepancies between
the system model and the real system, we have performed the numerical experiments
to control the virtual LHD plasma. As a result of the numerical experiments, we
have confirmed that the behavior of the virtual plasma followed the time series of
target state with high accuracy. Moreover, it has been found that the control is more
stable when the target-state noise and observation noise are sufficiently large. When
the gap between the system model and the real system is large, it is important to
increase the flexibility of the system model by taking larger variances for the target-
state and observation noise. Through this application example, we have demonstrated
the effectiveness and the performance characteristics of the DACS framework.

Note that this application is only one example of the DACS framework’s applicabil-
ity to a much wider range of model-based control problems. The DACS framework can
handle various types of sate variables, observed data, controlled variables, and control
constraints in an integrated manner. We believe that the DACS framework provides a
foundation to build flexible and powerful control systems for a wide variety of complex
control problems including fusion plasma control

Particularly important issue to be addressed in the future is the development of
methods to mitigate loss of control accuracy due to limitations relative to the adapt-
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ability of the system model. For system models with large uncertainties, it is necessary
to prepare highly expressive models or adjust the observation cycle in consideration
of the intensity of changes in the target state, amount of observation information and
computational cost. In addition, we should introduce state variables that express the
state stability and safety for an actual control situation. Fusion plasma, in particular,
has many unstable states and may disappear if the control is improper. Data-driven re-
searches are being conducted to sustain or enhance fusion plasma performance [80–83],
and cooperation with such approaches is important for actual control.

Data assimilation connects real space and numerical space and enables us to con-
struct a comprehensive system in which the simulation code and the actual fusion
plasma are integrated. ASTI is both a powerful analysis system and a powerful control
system and can be flexibly applied to a variety of analysis and control problems. We
believe that ASTI (or data assimilation) will play an important role in both analysis
and control in the fusion field.
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