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Synthetic organic chemistry has enriched our modern lives by enabling the 

creation of a wide variety of valuable molecules such as pharmaceuticals, agrochemicals, 

and functional materials. Remarkable advances in synthetic technology in recent decades 

have made manufacturing processes more efficient and produced novel molecules that 

are difficult to synthesize by conventional methods. In order to ensure a stable supply of 

useful molecules for modern human life in the future, it is necessary to produce them 

massively and inexpensively while taking environmental impacts into consideration. In 

other words, the development of clean, selective, and highly efficient catalytic reactions 

has become essential science and technology in modern synthetic organic chemistry. In 

this regard, organocatalysts1 and enzyme catalysts,2 which have won the recent Nobel 

Prize in Chemistry, have attracted much attention in recent years, whereas transition-

metal catalysts also still play indispensable roles in organic synthesis thanks to their 

versatile reactivity, chemoselectivity, and thermal stability.3 

To date, transition metal-catalyzed reactions have focused mainly on introducing 

functional groups through activation of relatively weak σ-bonds such as C–Br, C–I, and 

C–OTs bonds. One of the greatest advances in Pd-catalyzed cross-coupling over the past 

two decades has been the development of ligands that facilitate elementary processes such 

as oxidative addition and reductive elimination. For example, Buchwald and co-workers 

have developed dialkyl(biaryl)phosphine ligands,4 that allow the Suzuki–Miyaura 

reaction and Buchwald–Hartwig reaction using unactivated aryl chloride as substrates. 

Thus, the invention of new ligands has enabled the use of various organohalides in a wide 

range of transformations to broaden their scopes. To further enable the use of inert 

substrates, it is necessary to design novel catalysts based on an unconventional approach. 
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The author has focused on the catalytic reactions of organofluorides, the most stable 

organohalides, which have the strongest σ-bonds that can be formed with carbon atoms. 

 

1. The character of C–F bonds 

A C–F bond is much more robust than other C–Halo, C–H, and C–O bonds 

(Scheme 1-1).5 A fluorine atom has the highest Pauling electronegativity among all 

elements.6 This property leads C–F bonds highly polarized and thus ionic.7 The strength 

of C–F bonds can be attributed to the large electrostatic attractive interaction between Cδ+ 

and Fδ–. 

 

Scheme 1-1. Bond dissociation energy of various C–element bonds. 

 

 

In the case of SN2 reactions, there is a negative correlation between the strength 

of C–Halo bonds and the reaction rates (Scheme 1-2, A),7 but this trend is completely 

reversed for the SNAr reaction (Scheme 1-2, B).8 This is because the strong inductive 

effect of a fluorine atom makes the aromatic ring electrophilic, facilitating the rate-

limiting dearomative addition step. 
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Scheme 1-2. Relative rates of nucleophilic substitution of organo(pseudo)halides. 

 

 

In the reactivity of oxidative addition reactions of aryl halides (Scheme 1-3, A)9 

and alkyl halides (Scheme 1-3, B)10 to low-valent transition metal complexes, 

organofluorine compound has been found to be the least reactive among different 

organo(pseudo)halides. 

 

Scheme 1-3. Relative rates of oxidative addition of organo(pseudo)halides. 
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Catalytic transformations of C–F bonds are not only scientifically interesting but 

also important from the viewpoint of synthetic organic chemistry. For example, by taking 

advantage of the high stability of C–F bonds, which do not react under conventional 

reaction conditions, it is possible to convert C–F bonds at a late stage of synthesis. On the 

other hand, it is necessary to decompose and effectively utilize materials and persistent 

pollutants bearing C–F bonds through “breaking bond” in terms of sustainability, while 

modern catalysis has focused on "making new bonds”. To pursue these challenges, the 

author has studied the development of catalytic transformations of C–F bonds of aryl and 

alkyl fluorides using precisely designed transition metal complexes as catalysts as 

described in this thesis.  
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2. Aryl fluorides 

Transformation of C(sp2)–F bonds 

Although aryl fluorides are relatively more reactive in the SNAr reactions than 

other aryl halides, harsh reaction conditions using strong bases are required for 

unactivated aryl fluorides.11 In general, in order to carry out the SNAr reactions of 

unactivated aryl fluorides under mild conditions, 1) the aromatic ring should be activated 

through coordination to an electron-deficient metal (e.g., Cr(CO)3 complexes,12 Ru or Rh 

catalysts13) or 2) single-electron oxidation (e.g., photocatalysts,14 electrophotocatalysts,15 

oxidants16) is necessary to produce electrophilic radical cation species (Scheme 1-4, A). 

Aryl cations can also be generated from aryl fluorides by using strong Lewis acids such 

as silylium cations and aluminum compounds, which have a high fluoride ion affinity 

(FIA; Me3Si+ 953 kJ/mol17, AlCl3 505 kJ/mol18) (Scheme 1-4, B). Single-electron 

reduction using strong reductant19 (E°red vs. SCE: Li –3.2 V, Na –2.9 V, K –3.1 V)20 can 

also convert the C(sp2)–F bonds of aryl fluorides (E°red ≈ –2.97 V vs. SCE)21 (Scheme 1-

4, C). Recently, hydrodefluorination22 and defluorinative borylation23 reactions have been 

developed by using photo-excited reductants. Many other transformations triggered by 

the oxidative addition of C–F bonds to low-valent metals have also been actively 

investigated (Scheme 1-4, D). This strategy is relevant to this thesis and described in more 

detail.  
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Scheme 1-4. General strategies for transformation of aryl fluorides. 

 

 

The first catalytic conversion of unactivated aryl fluorides was invented five 

decades ago by Kumada, Tamao, and co-workers.24 They reported the so-called KTC 

cross-coupling reaction of aryl fluorides by using an electron-rich Ni catalyst. Recently, 
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Nakamura and co-workers developed an efficient catalytic system based on 

Ni(acac)2 and a PO-ligand, which bears a hydroxyl group, for the KTC coupling reactions 
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Scheme 1-5. Ni-catalyzed KTC coupling reaction through a push-pull mechanism. 

 

 

This report has led to a series of studies utilizing the push-pull strategy by 

bringing Lewis acidic metals close to a transition metal center by using well-designed 

ligands such as a diaminophosphine oxide ligand.27 In addition to the KTC reaction, 
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acidic metals have been developed (Scheme 1-6). 

 

Scheme 1-6. Ni-catalyzed defluorophosphonylation of aryl fluorides. 
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Although some Pd catalysts have also been developed for catalytic 

transformations of C–F bonds, they require harsh reaction conditions and directing 

groups.30 By utilizing the push-pull mechanism, the KTC coupling31 reaction under mild 

conditions has been achieved by Pd catalysts (Scheme 1-7). 

 

Scheme 1-7. Pd-catalyzed KTC coupling reaction with aryl fluorides. 
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Scheme 1-8. Pd-catalyzed borylation of aryl fluorides. 

 

 

Crimmin and co-workers have recently developed the Pd-catalyzed alumination 

of aryl fluorides with an Al(I) reagent (Scheme 1-9).35 Cooperative activation of the C–F 

bonds by Pd and Al is highly effective to allow the reaction to proceed at even –50 °C 

and high site-selectivity with polyfluoroarenes. 

 

Scheme 1-9. Pd-catalyzed alumination of aryl fluorides. 
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3. Alkyl fluorides 

Transformation of C(sp3)–F bonds 

Alkyl fluorides are extremely stable compounds and are generally difficult to 

further transform. Strong reductants such as alkaline metals and activated magnesium can 

reduce alkyl fluorides (Scheme 1-10, A).36 Other strategies include (B) oxidative addition 

reaction to a low-valent metal center, (C) α- and β-fluorine elimination through transition 

metal intermediates, and (D) nucleophilic substitution reactions promoted by Lewis acids 

(Scheme 1-10). 

 

Scheme 1-10. General strategies for transformations of alkyl fluorides. 
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3-1. Oxidative addition of C(sp3)–F bonds 

The direct oxidative addition reaction of a C(sp3)–F bond of simple alkyl 

fluorides has been achieved by using an Al(I) complex (Scheme 1-11).37 Nikonov and co-

workers reported that this reaction proceeded at –60 °C. Their theoretical calculations 

have revealed that a stepwise fluoride ion transfer mechanism is favored for the cleavage 

process.38 

 

Scheme 1-11. Oxidative addition of fluorocyclohexane to the Al(I) center. 
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Scheme 1-12. C(sp3)–F bond cleavage enabled by a dimeric Mg(I) complex. 

 

 

Transition-metal catalyzed substitution reactions of allylic fluorides have been 

developed (Scheme 1-13).40 More recently, the asymmetric desymmetrization of a 

benzylic difluoromethylene moiety was developed by Hartwig and co-workers.41 

 

Scheme 1-13. Pd-catalyzed allylic substitution of allyl fluorides. 
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Ir complex (Scheme 1-14).44 In this reaction, the C(sp3)–H bond at the α-position of 

fluorine is cleaved first, and α-fluorine elimination takes place to give a carbene complex. 

Subsequent hydrogen atom transfer gives a formal oxidative addition complex. 

 

Scheme 1-14. Net oxidative addition of fluoromethane through α-fluorine elimination. 

 

 

Ichikawa and co-workers have described a Ni-catalyzed defluorinative [3 + 2] 
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Scheme 1-15. [3 + 2]-Cycloaddition reaction through double β-fluorine eliminations. 
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3-3. Lewis acid-promoted nucleophilic substitution reactions 

Lewis acids such as boron, aluminum, silylium cations, phosphonium cations, 

and hydrogen-bond donors have been reported to abstract fluorine atoms from alkyl 

fluorides, allowing the SN1-type reaction to proceed (Scheme 1-16).46 It has also been 

reported that halogen exchange reactions can proceed by metal halides such as MgI2 and 

YbI3 via SN2 or SNi mechanisms. 

 

Scheme 1-16. Lewis acid-catalyzed/mediated substitution reactions. 
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Scheme 1-17. Ni-catalyzed dimerizative alkylarylation of 1,3-butadiene. 
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Scheme 1-18. Ni-catalyzed intramolecular cross-electrophile coupling. 
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4. Polarized metal–metal bonds in inert bond activation 

The combination of a Lewis acid and an electron-rich transition metal has found 

to be effective to achieve C–F bond transformation reactions in many cases as described 

above. For more efficient catalytic conversions of C–F bonds, it can be necessary not only 

to place such Lewis acidic metals close to the transition metal center, but also to make 

the transition metal center electron-richer to promote the bond cleavage steps. Therefore, 

the author has envisioned that by connecting a Lewis acidic metal and a transition metal, 

the strong σ-donicity of the electropositive metal would generate the electron-rich 

transition metal complex, and a cooperative action of these two metals would facilitate 

the activation of C–F bonds. Therefore, the author has focused on the potential of 

heterobimetallic complexes,49 which have a Lewis acidic metal and an electron-rich 

transition metal for activating inert C–F bonds.  

Thomas and co-workers have demonstrated that a heterobimetallic Zr–Co 

complex can cleave the carbonyl C=O double bond of benzophenone to form Co-carbene 

complex (Scheme 1-19).50 They have proposed that the oxygen atom of benzophenone 

initially coordinate to the Lewis acidic Zr center to give ketyl radicals through a single-

electron transfer. Afterward, the C=O bond cleavage by the Zr–Co bond proceeds through 

possible intermediate ZrCoINT to give the Co-carbene complex. 

Camp and co-workers have found that a bimetallic Al–Ir complex activates the 

C=O double bond of carbon dioxide (Scheme 1-20).51 Theoretical calculations have 

indicated that the metal–metal bond is polarized in an Al+–Ir– form and the C=O bond 

can be activated in a cooperative manner across the polarized bond. The reactivity of the 

metal–metal bonds derived from a Lewis acidic metal and a late transition metal in 

activating small molecules has also been reported in many other studies.49 
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Scheme 1-19. Carbonyl C=O bond activation by a bimetallic Zr–Co complex. 

  

 

Scheme 1-20. Activation of carbon dioxide by a bimetallic Al–Ir complex. 
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C–H alkylation and silylation reactions at the C2-position of pyridines using their Rh 

complexes (Scheme 1-21).53 The X-type PAlP-pincer ligands are characterized by a high 

Lewis acidity due to the vacant p-orbital of Al and strong σ-donicity thanks to its high 

electronegativity. As a result, a pyridine substrate can be captured at the Al center, and 

the adjacent electron-rich Rh can activate the C–H bond at C2-position through oxidative 

addition.  

 

Scheme 1-21. Catalytic C–H functionalization by an Al–Rh bimetallic complex. 

 

 

The author’s group has also investigated the electronic structure of the Al–Rh 

bimetallic complex by theoretical calculations and shown that the Al–Rh bond is highly 

polarized in an Al+–Rh− form (Scheme 1-22).54 The author has envisioned that such 

unusual reversed E+–TM− bond polarization (E = group 13 element; TM = transition-

metal) could allow the cleavage of polarized strong bonds such as C–F bonds to enable 

novel catalytic transformation of C–F bonds. 
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Scheme 1-22. Polarization of Al–Rh bonding for cooperative C–F bond activation. 

 

 

5. Overview of this Thesis 

The author has focused on the unique property of the Al–Rh heterobimetallic 

complexes to develop catalytic transformations of C–F bonds through their cooperative 
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Al–Rh bond. The unique mode of C–F activation allows controlling a site-selectivity in 
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5-1. Magnesiation of C(sp2)–F bonds of aryl fluorides catalyzed by Al–Rh bimetallic 

complexes (Chapter 2) 

In Chapter 2, the author describes the magnesiation reaction of C(sp2)–F bonds 

of aryl fluorides catalyzed by Al–Rh bimetallic complexes (Scheme 1-23). As mentioned 

above, the cleavage of C–F bonds is usually difficult due to their high chemical stability. 

Conventional methods to magnesiate C(sp2)–F bonds have required a stoichiometric 

amount of highly reactive and pyrophoric reagents. The author demonstrates the strongly 

polarized Al–Rh bond readilly activates a C(sp2)–F bond of aryl fluorides under mild 

conditions in a cooperative manner, that has fully been proved by theoretical calculations 

and stoichiometric experiments.  

 

Scheme 1-23. Magnesiation of aryl fluorides catalyzed by Al–Rh complexes (Chapter 2). 

 

 

5-2. Kumada–Tamao–Corriu cross-coupling reaction catalyzed by Al–Rh bimetallic 

complexes (Chapter 3) 

The author shows the Kumada–Tamao–Corriu (KTC) cross-coupling reaction 
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arylmagnesiums thus formed with added aryl halides to furnish unsymmetrical biaryls. 

This method allows to use aryl fluorides, which have been uncommon as a source of 

arylmagnesium reagents, to participate in the KTC coupling reactions.  

 

Scheme 1-24. The Kumada–Tamao–Corriu cross-coupling reaction catalyzed by Al–Rh 

complexes (Chapter 3). 

 

 

5-3. Site-selective magnesiation of C(sp2)–F bond of multi-fluorinated arenes 

catalyzed by Al–Rh bimetallic complexes (Chapter 4) 

Chapter 4 shows catalyst-controlled site-selective magnesiation of a C(sp2)–F 

bond of multi-fluorinated arenes, taking advantage of the steric repulsion between arene 

substituents and the Al–Rh catalyst (Scheme 1-25). Fluorine-containing arylmagnesium 

reagents thus formed are shown to be useful to access some of fluorine-containing 

materials and drugs through the site-selective magnesiation reaction. 
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Scheme 1-25. Site-selective magnesiation of multi-fluorinated arenes (Chapter 4). 

 

 

5-4. Magnesiation of C(sp3)–F bonds of alkyl fluorides catalyzed by Al–Rh bimetallic 

complexes (Chapter 5) 

In Chapter 5, the author describes that the Al–Rh bimetallic complexes catalyze 

the magnesiation of C(sp3)–F bonds of alkyl fluorides using Mg powder (Scheme 1-26). 

The catalytic magnesiation also works with secondary and tertiary alkyl fluorides, which 

have been highly challenging to be reacted by conventional methods. The cooperative C–

F activation by the polarized Al–Rh bond is thus shown to be a general strategy to allow 

novel catalytic transformations of fluoroorganic molecules. 

 

Scheme 1-26. Magnesiation of alkyl fluorides catalyzed by Al–Rh complexes (Chapter 

5). 
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Chapter 2 

 

 

Magnesiation of Aryl Fluorides Catalyzed by a Rhodium–Aluminum 

Complex 

 

The author reports the magnesiation of aryl fluorides catalyzed by an Al–Rh 

heterobimetallic complex. The author shows that the complex is highly reactive to cleave 

the C–F bonds across the polarized Al–Rh bond under mild conditions. The reaction 

allows the use of an easy-to-handle magnesium powder to generate a range of 

arylmagnesium reagents from aryl fluorides, which are conventionally inert to such 

metalation compared with other aryl halides. 
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Introduction 

Complexes that contain metal–metal bonds have received considerable attention 

in organometallic chemistry due to their unique electronic properties, which differ 

significantly from those of single-metal systems, especially with respect to achieving 

novel organic transformations.1 Among complexes with metal–metal bonds, 

heterobimetallic metal–metal bonding motifs are particularly reactive towards the 

cleavage of conventionally inert bonds due to their inherent polarization. In a pioneering 

study, Bergman showed that Zr–Ir complexes can activate a variety of thermodynamically 

strong bonds including O–H and N–H bonds.2 B–Rh3 and Si–Rh4 manifolds have been 

reported to effectively activate C–F bonds5 in perfluorinated organic molecules such as 

pentafluoropyridine and hexafluorobenzene. Moreover, a Zr–Co complex realizes the 

challenging activation of the C=O bond in benzophenone to afford a cobalt carbene 

complex.6 However, catalytic transformations that include these bond-activation events 

remain elusive. Recently, the author’s group has developed an Al–Rh heterobimetallic 

complex in which an X-type Al moiety7 is ligated to the Rh center, and demonstrated its 

reactivity in the alkylation of pyridines.8a An NBO analysis suggested a polarized Ald+–

Rhd– bond, and this result prompted us to test the reactivity of such Al–Rh bonds in the 

context of cleaving s-bonds, which usually exhibit high bond-dissociation energies. The 

author’s group previously reported that the energy level of the orbital containing the Al–

Rh bond in (Me2Al)Rh(PMe3)2 was higher than those containing the B–Rh bond in 

(Me2B)Rh(PMe3)2 and the Si–Rh bond in (Me3Si)Rh(PMe3)2.8b The author thus expected 

reactivity of the Al–Rh bonds toward the C–F bond activation higher than that of B–Rh 

and Si–Rh bonds based on these results. Herein, the author reports the activation of C–F 

bonds in fluor arenes by means of an Al–Rh bond under very mild conditions, which 
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results in an unprecedented catalytic magnesiation of fluoroarenes using easy-to-handle 

Mg powder.9 

 

Results and discussion 

The reaction of Al–Rh complex 1a, which was generated in situ by the reduction 

of Al–Rh complex 2a8a with KC8, and fluorobenzene (3a) under N2 resulted in the 

activation of the C–F bond at the Al–Rh bond to afford complex 4a in 95% yield (Scheme 

2-1). The solid-state structure of 4a was determined unequivocally by single-crystal x-

ray diffraction analysis. In 4a, the Al(III) moiety coordinates to the Rh center as an 

electron-accepting Z-type ligand10 with trigonal bipyramidal geometry. The Rh center 

adopts a square-pyramidal geometry stabilized by an end-on N2 ligand. It is noteworthy 

that the C–F-bond activation proceeds even at –30 °C (Eq. S2-1, Figures S2-5 and S2-6). 

To the best of the author’s knowledge, these are the mildest hitherto reported conditions 

for the activation of unactivated C–F bonds by a homogeneous metal complex. 
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Scheme 2-1. C–F bond activation by Al–Rh complex 1a. 

 
To gain mechanistic insights into the C–F-bond activation by 1a, the reaction 

pathway was theoretically modelled by DFT calculations (Figures 2-1, S2-12, and S2-13, 

Tables S2-2 and S2-3). The C2=C3 bond of fluorobenzene coordinates to the Rh atom 

and the F atom occupies the position close to the Al atom in Al–Rh s-complex 1AD1. 

The C–F bond of 1AD1 then changes its orientation to give adduct 1AD2. The activation 

of the C–F bond occurs at the Al–Rh s-bond in a cooperative fashion to afford Rh–phenyl 

complex 4b via transition state TS. After isomerization, which includes a positional 

change of the Ph group, followed by coordination of N2, another Rh–phenyl complex 4a 

is generated. The Gibbs energy of activation (DGº‡) and the Gibbs energy of reaction 

(DGº) were estimated to be 3.7 kcal mol–1 and –63.5 kcal mol–1, respectively (blue line in 

Figure 2-1). The very small DGº‡ stands in sharp contrast to the considerably large DGº‡ 

required for the activation of the C–F bond by Rh alone (24.2 kcal mol–1; red lines in 
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Figure 2-1). The small DGº‡ value obtained for the cooperative activation of the C–F bond 

matches well with the experimentally observed reaction, which proceeds at low 

temperature. 

 

 

Figure 2-1. Energy diagram of the C–F bond activation of 3a by 1a. 
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center of 4 (Mg2+/Mg = –2.4 V; Al3+/Al = –1.7 V vs SHE).12 In contrast to the 

magnesiation of Ar–X bonds (X = I, Br, Cl),13 that of Ar–F bonds is extremely difficult, 

even for highly dispersed Mg.14 For example, the magnesiation of p-fluorotoluene 

proceeds only in moderate efficiency, even when a large excess of Rieke magnesium is 

used in refluxing THF.14a Although the magnesiation of the C–F bond with Mg(I)–Mg(I) 

complexes has recently been reported,5h–k precedents of the magnesiation of C–F bonds 

using readily available and easy-to-handle Mg powder remain elusive. 

 

 

Scheme 2-2. A plausible catalytic cycle for the magnesiation of aryl fluorides using Al–

Rh complexes such as 2. 
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dibromoethane (5.0 mol%), was attempted in the presence of various catalysts in THF at 

room temperature (Scheme 2-3). Gratifyingly, 1-napthoic acid (5a) was obtained in 88% 

NMR yield using 2a (5.0 mol% Rh) after quenching of the reaction with CO2 (1 atm), 

followed by acidic work-up using 3 M HCl. Al–Rh complex 2b, which bears phenyl 

groups on the phosphorus atoms instead of isopropyl groups, also furnished 5a in high 

yield. The reaction did not proceed in the absence of an Al–Rh complex. Catalytic systems 

based on [RhCl(nbd)]2 (5.0 mol% Rh; nbd = 2,5-norbornadiene)/phosphorus ligands (10 

mol% P)/Et2AlCl (20 mol%) did not afford 5a. Adding LiCl, which facilitates the 

magnesiation of C–Br bonds,15 or adding a catalytic amount of anthracene, to generate 

magnesium anthracene,16 did not show any effect. Using i-PrMgCl·LiCl led to the 

magnesiation of 3b to afford 5a in low yield, albeit that this approach is unsuitable for 

simple aryl fluorides such as 3a.17 Accordingly, it can be concluded that only Al–Rh 

complexes 2a and 2b catalyze the magnesiation of aryl fluorides. 
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Scheme 2-3. Screening catalysts for the catalytic magnesiation of 3b. 
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The magnesiation of various aryl fluorides 3 was examined at the 0.50-mmol-

scale under the optimized conditions (Scheme 2-4). Under these conditions, 1-naphthoic 

acid (5a) was obtained from 1-fluoronaphthalene (3b) and isolated in 99% yield, while 

benzoic acid (5b) was isolated in 86% yield from the reaction involving fluorobenzene 

(3a). 5a could be also prepared in 82% yield on a 10 mmol-scale. Electron-donating 

substituents at the para- or meta-position of fluorobenzene were tolerated to afford the 

corresponding benzoic acids (5c–5g) in good to high yield, whereas the reaction 

efficiency was decreased with 4-fluorobiphenyl (3h). It should also be noted here that the 

C–S bond of 4-fluorothioanisole (3f), which is easily functionalized by palladium or 

nickel catalysts,18 was tolerated in this transformation. Sterically demanding 2-

fluorotoluene (3i) and 2,6-dimethylfluorobenzene (3j) furnished the corresponding 

carboxylic acids (5i and 5j) in 92% and 48% yield, respectively. D2O, B(Oi-Pr)3, and N-

methoxy-N-methylbenzamide19 can also serve as quenching electrophiles to generate the 

corresponding deuterated, borylated, and acylated products (5k–5m).  
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Scheme 2-4. Scope of the reaction with respect to aryl fluorides 3. 
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To evaluate the plausible catalytic cycle shown in Scheme 2-2, stoichiometric 

reactions were conducted. To gain insights into the reduction of 2 to 1 in Scheme 2-2, the 

reaction of 2a (30 µmol) with Mg powder (0.60 mmol) in the presence of nbd (90 µmol) 

was examined. It proceeded at 60 °C to afford nbd-coordinated Al–Rh complex 1a-nbd 

in high yield (Eq. 2-1). The catalytic magnesiation of p-fluorotoluene (3c, 0.25 mmol) 

with Mg powder (0.75 mmol) in the presence of 4a (20 mol%, 50 µmol) afforded p-toluic 

acid (5c) in 70% yield (0.18 mmol) based on 3c under concomitant formation of benzoic 

acid (5b) in 48% yield (24 µmol) based on 4a (Eq. 2-2). These results support the 

generation of phenylmagnesium species from 4a under the applied conditions, and thus 

corroborate the catalytic cycle proposed in Scheme 2-2. In fact, the formation of 

diphenylmagnesium was implied by 1H and 13C NMR spectroscopies of the crude mixture 

upon magnesiation of 3a under the optimized conditions (Eq. S2-2, Figures S2-7, S2-8, 

and S2-9).20 
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Conclusion 

In conclusion, the author has developed a catalytic magnesiation of Ar–F bonds 

through the C–F bond activation across the X-type heterobimetallic Al–Rh center. It is 

worth mentioning that the cooperative activation allows the functionalization of C–F 

bonds in unactivated fluoroarenes under very mild conditions. This is a rare example of 

successful applications of heterobimetallic catalysis. Further developments of catalytic 

functionalization of other strong polar s-bonds by the heterobimetallic systems are 

currently under investigation. 
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Experimental section 

General remarks compatible to all the experimental parts in the present thesis. 

All manipulations of oxygen- and moisture-sensitive materials were conducted 

with a standard Schlenk technique under an argon atmosphere or in a glove box under a 

nitrogen atmosphere. Medium pressure liquid chromatography (MPLC) was performed 

with a Yamazen EPLC-W-Prep 2XY. Preparative recycling high performance liquid 

chromatography (HPLC) was performed with a SHIMADZU Prominence System 

equipped with COSMOSIL 5SL-II (Nacalai Tesque, 20 mm x 250 mm, spherical, 5 µm) 

with hexane–EtOAc as an eluent. Recycling preparative HPLC (LC-908; column, 

JAIGEL-1H; solvent, CHCl3) was used. Analytical thin layer chromatography (TLC) was 

performed on Merck TLC silica gel 60 F254 (0.25 mm) plates. Visualization was 

accomplished with UV light (254 nm).  

Proton, boron, carbon, fluorine, and phosphorus nuclear magnetic resonance 

spectra (1H, 2H, 11B, 13C, 19F, and 31P NMR) were recorded on a JEOL ECS-400 (1H NMR, 

400 MHz; 2H NMR 61 MHz; 11B NMR, 128 MHz; 13C NMR 101 MHz; 19F NMR 376 

Hz; 31P NMR 162 MHz) spectrometer with solvent resonance as the internal standard (1H 

NMR, CDCl3 at 7.26 ppm, C6D6 at 7.16 ppm, (CD3)2SO at 2.49 ppm, CD2Cl2 at 5.32 ppm, 

Acetone-d6 at 2.05 ppm; 13C NMR, CDCl3 at 77.0 ppm, C6D6 at 128.0 ppm, (CD3)2SO at 

39.5 ppm, CD3 of Acetone-d6 at 29.8 ppm; 19F NMR, CDCl3, DMSO-d6, and Acetone-d6 

at –162.20 ppm with C6F6 as an internal standard). NMR data are reported as follows: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, 

sext = sextet, sept = septet, br = broad, m = multiplet, vt = virtual triplet), coupling 

constants (Hz), and integration. High-resolution mass spectra were obtained with Thermo 

Fischer Scientific MS: Exactive Plus HPLC: UltiMate 3000 (ESI, APCI), JEOL JMS-
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SX102A (EI), and Bruker Daltonics ultraflexXtreme (MALDI). Gas chromatography 

(GC) analyses were performed on a Shimadzu GC-2014 equipped with a BP1 column 

(SGE Analytical Science, 0.25 mm x 30 m, pressure = 149.0 kPa, detector = FID, 290 °C) 

with helium gas as a carrier. Elemental analyses were performed on a J-Science Micro 

corder JM11, and a YANACO Micro corder MT-5. IR analysis was performed on an 

Agilent Cary 630 FTIR spectrometer. Heating and stirring were performed with a KPI 

HHE-19G-US II and aluminum blocks. 

 

Chemicals 

Unless otherwise noted, commercially available chemicals were distilled under 

argon atmosphere in the presence of CaH2 and stored in a glovebox. If commercially 

available chemicals are solids, the chemicals are used without purification. AlCl3 

(99.999%) was purchased from Aldrich and used without further purification. Pd/C and 

paraformaldehyde were purchased from Wako Pure Chemical Industries. These were 

used without further purification. Diphenylphosphine was purchased from Tokyo 

Chemical Industry Co., Ltd.. The aluminum–rhodium bimetallic complex 2a8a was 

prepared according to literature procedures. [Rh(nbd)(µ-Cl)]2 (nbd = 2,5-

norbornadiene)21 was synthesized following the reported procedures. Anhydrous hexane, 

toluene and THF were purchased from Kanto Chemical and purified by passage through 

activated alumina under positive argon pressure as described by Grubbs et al..22 

Magnesium powder used for reductant was purchased from Sigma-Aldrich (product 

number 13112) or Alfa Aesar (product number 10233). All other commercially available 

reagents were purchased from common sources (e.g. Tokyo Chemical Industry Co., Ltd., 

FUJIFILM Wako Pure Chemical Corporation, Sigma-Aldrich, Alfa-Aesar, Nacalai 
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Tesque INC. etc.).  

 

 

Figure S2-1. List of fluoroarenes 3 and products 5 in this study. 
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To a THF (5.0 mL) solution of 2a (403 mg, 0.30 mmol) and fluorobenzene (3a, 

58 mg, 0.60 mmol), a suspension of potassium graphite (176 mg, 1.3 mmol) in THF (5.0 

mL) was slowly added at –78 °C. The mixture was warmed up to room temperature and 

stirred for 12 h at the same temperature. After the reaction, THF was evaporated and 

benzene (10 mL) was added to the residue. After filtration through a KIRIYAMA filter 

paper (No. 5A), the filtrate was concentrated to afford a brown precipitate. The precipitate 

was washed with n-pentane (3.0 mL) x 2 and dried under reduced pressure to give 4a as 

a brown solid in 95% yield. Yellow crystals of 4a for X-ray crystallography were obtained 

from a saturated n-pentane solution of 4a at –35 °C. 4a: 1H NMR (400 MHz, C6D6, 

24 °C): d 0.77 (q, J = 6.1 Hz, 6H), 0.95 (q, J = 7.0 Hz, 6H), 1.06 (q, J = 6.7 Hz, 6H), 1.25 

(q, J = 6.7 Hz, 6H), 1.48 (br s, 2H), 2.42 (br s, 2H), 3.14 (s, 3H), 3.15 (d, J = 12.8 Hz, 

2H), 3.30 (d, J = 12.8 Hz, 2H), 6.56–6.62 (m, 3H), 6.65–6.72 (m, 3H), 6.91 (t, J = 7.3 Hz, 

1H), 7.19 (t, J = 7.3 Hz, 3H), 7.36 (d, J = 7.3 Hz, 2H), 7.68 (d, J = 7.3 Hz, 1H). 13C{1H} 

NMR (101 MHz, C6D6, 24 °C): d 18.0, 19.9 (two signals were overlapped), 20.2, 22.7 (d, 

J = 11.6 Hz), 22.8 (d, J = 10.4 Hz ), 23.3 (d, J = 9.3 Hz), 23.4 (d, J = 9.3 Hz), 41.5 (d, J 

= 19.7 Hz), 41.7 (d, J = 19.7 Hz), 47.5 (d, J = 8.1 Hz), 110.3, 114.3, 121.5, 123.0, 125.6, 

127.9, 128.6, 132.0, 137.2, 137.7, 151.0 (t, J = 8.1 Hz). 31P{1H} NMR (162 MHz, C6D6, 

24 °C): d 39.9 (d, JP–Rh = 144 Hz). 19F{1H} NMR (376 MHz, THF-d8, 24 °C): d –149 (br). 

The signal of fluorine directly attached to the aluminum atom was broadened due to 

quadrupolar relaxation. IR (solid state): νNN = 2214 cm–1. m.p. 170 ºC (decomp.). 

MALDI–MS C33H48AlFN3P2Rh•+: Calcd. 697.2172, Found: 697.2172. Anal. Calcd. 

C33H48AlFN5P2Rh: C, 54.62; H, 6.67; N, 9.65. Found: C, 52.54; H, 7.04; N, 7.07. The 

experimental values did not agree with calculated values. This is because N2 ligand has 

come off during vacuum drying. IR spectrum of the crystals of 4a that were dried in vacuo 
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at room temperature, the strength of absorption of νNN (2214 cm–1) decreased. 

 

 

Figure S2-2. IR spectrum of complex 4a in solid state. 

 

 

Figure S2-3. IR spectrum of complex 4a in solid state after evacuation for 12 h. 
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General procedures for Scheme 2-3. 
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standard. 

Al–Rh complexes 

 

  

catalyst

Mg (0.90 mmol)
BrCH2CH2Br (5.0 mol%)

THF, rt, 22 h

CO2

then H+

3b, 0.30 mmol 5a

F CO2H

yield of 5a (conv. of 3b)

2a
88% (>95%)

2b (@–15 ºC)
89% (>95%)

none

<5% (<5%)

N
N Al

Me

P(i-Pr)2

Rh
P(i-Pr)2

N

Cl Cl

2

N
N Al

Me

PPh2

Rh
PPh2

N

Cl Cl

2



Chapter 2 

48 

In-situ generated catalysts: In a glove box, a 4 mL vial (vial A) with a stirring 

bar was charged with magnesium powder (22 mg, 0.90 mmol), THF (500 µL), and 1,2-

dibromoethane (2.8 mg, 15 µmol), and the resulting mixture was stirred for 20 min at 

room temperature. Another vial (vial B) was charged with 3b (44 mg, 0.30 mmol), 

[Rh(nbd)(µ-Cl)]2 (3.5 mg, 8.0 µmol, 2.5 mol%), a phosphine ligand (P/Rh = 2), and THF 

(500 µL) and the resulting mixture was stirred for 10 min at room temperature. To vial A 

were added the solution in vial B and 1.03 M Et2AlCl in n-hexane (15 µL, 15 µmol). The 

mixture was stirred for 22 h at room temperature and then, stirred under atmospheric 

pressure of CO2 at room temperature for 30 min. To the mixture was added 3 M HCl aq. 

(2.0 mL). The mixture was extracted with EtOAc and combined organic layers were 

washed with H2O. All of the volatiles were removed by rotary evaporator. Yield of 5a 

was determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene (50 mg, 0.30 

mmol) as an internal standard. 
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mixture was stirred for 22 h at room temperature and then stirred under atmospheric 

pressure of CO2 at room temperature for 30 min. To the mixture was added 3 M HCl aq. 

(2.0 mL). The mixture was extracted with EtOAc and combined organic layers were 

washed with H2O. All of the volatiles were removed by rotary evaporator. Yield of 5a 

was determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene (50 mg, 0.30 

mmol) as an internal standard. 
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Others 

 

 

Under argon atmosphere: In a glove box, a 20 mL Schlenk tube with a stirring 
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The mixture was stirred for 22 h at –20 °C and then, stirred under atmospheric pressure 

of CO2 at room temperature for 30 min. To the mixture was added 3 M HCl aq. (2.0 mL). 

The mixture was extracted with EtOAc and combined organic layers were washed with 

H2O. All of the volatiles were removed by rotary evaporator. Yield of p-toluic acid (5c) 

was determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene (50 mg, 0.30 

mmol) as an internal standard. 

 

 

We investigated the purity of Mg powder (Sigma Aldrich; #13112) that stored in 

the glove box for 3 months because Mg could react with dinitrogen to generate 

magnesium nitride at high temperature.23 Elemental Analysis, Mg powder: H, C, N were 

not detected. Mg3N2: Calcd. N, 27.76. Found: C, 0.15; H, 0.25; N, 24.99. According to 

the elemental analysis and the color of them, the Mg powder did not contain magnesium 

nitride.  

 

Figure S2-4. The picture of magnesium nitride (left) and magnesium powder (right). 
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General procedures for Scheme 2-4. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (36 mg, 1.5 mmol), THF (500 µL), and 1,2-dibromoethane (4.7 mg, 25 µmol), 

and the resulting mixture was stirred for 20 min at room temperature. Aryl fluoride 3 

(0.50 mmol), 2b (20 mg, 13 µmol), and THF (1.0 mL) were put into the vial. The mixture 

was stirred for 22 h at –30 °C and then, reacted with an indicated electrophile. 

 

1-Naphthoic acid (5a): The reaction of 1-fluoronaphthalene (3b, 73 mg, 

0.50 mmol) at room temperature was followed by being stirred under 

atmospheric pressure of CO2 at room temperature for 30 min. To the 

mixture, 3 M HCl aq. (2.0 mL) was added. The mixture was extracted with EtOAc and 

combined organic layers were washed with H2O. All of the volatiles were removed by 

rotary evaporator. After MPLC purification (Biotage® SNAP Ultra 25 g, n-hexane:EtOAc 

= 2:3), the title compound (85 mg, 0.50 mmol, 99%) was obtained as a white solid. Rf 

0.59 (n-hexane/EtOAc = 3:4). 1H NMR (400 MHz, CDCl3, 24 °C): d 7.54–7.60 (m, 2H), 

7.67 (t, J = 7.6 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.43 (d, J = 

6.9 Hz, 1H), 9.10 (d, J = 8.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 124.5, 

2b (5.0 mol%Rh)

Mg (1.5 mmol)
BrCH2CH2Br (5.0 mol%)

THF, –30 ºC, 22 h

E+

3, 0.50 mmol
Ar F
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125.5, 125.9, 126.3, 128.1, 128.7, 131.6, 131.9, 133.9, 134.6, 172.9. All the resonances 

of 1H and 13C NMR spectra were consistent with the reported values.24 

 

Benzoic acid (5b): The reaction of fluorobenzene (3a, 48 mg, 0.50 mmol) 

at –30 °C was followed by being stirred under atmospheric pressure of 

CO2 at room temperature for 30 min. To the mixture, 3 M HCl aq. (2.0 mL) was added. 

The mixture was extracted with EtOAc and combined organic layers were washed with 

H2O. All of the volatiles were removed by rotary evaporator. After MPLC purification 

(Biotage® SNAP Ultra 25 g, n-hexane:EtOAc = 2:3), the title compound (53 mg, 0.43 

mmol, 86%) was obtained as a white solid. Rf 0.53 (n-hexane/EtOAc = 3:4). 1H NMR 

(400 MHz, CDCl3, 24 °C): d 7.49 (t, J = 7.3 Hz, 2H), 7.62 (t, J = 6.6 Hz, 1H), 8.12 (d, J 

= 7.3 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 128.5, 129.3, 130.2, 133.8, 

172.3. All the resonances of 1H and 13C NMR spectra were consistent with the reported 

values.25 

 

p-Toluic acid (5c): The reaction of 4-fluorotoluene (3c, 55 mg, 0.50 

mmol) at –30 °C was followed by being stirred under atmospheric 

pressure of CO2 at room temperature for 30 min. To the mixture, 3 M HCl aq. (2.0 mL) 

was added. The mixture was extracted with EtOAc and combined organic layers were 

washed with H2O. All of the volatiles were removed by rotary evaporator. After MPLC 

purification (25 g of silica gel, n-hexane:EtOAc = 2:3), the title compound (58 mg, 0.43 

mmol, 86%) was obtained as a white solid. Rf 0.56 (n-hexane/EtOAc = 3:4). 1H NMR 

(400 MHz, CDCl3, 24 °C): d 2.44 (s, 3H), 7.28 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 8.2 Hz, 

CO2H

Me

CO2H



Chapter 2 

54 

2H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 21.7, 126.5, 129.2, 130.3, 144.6, 171.6. 

All the resonances of 1H and 13C NMR spectra were consistent with the reported values.25  

 

4-Benzylbenzoic acid (5d): The reaction of 1-benzyl-4-

fluorobenzene (3d, 93 mg, 0.50 mmol) at –30 °C was followed by 

being stirred under atmospheric pressure of CO2 at room temperature for 30 min. To the 

mixture, 3 M HCl aq. (2.0 mL) was added. The mixture was extracted with EtOAc and 

combined organic layers were washed with H2O. All of the volatiles were removed by 

rotary evaporator. After MPLC purification (25 g of silica gel, n-hexane:EtOAc = 1:1), 

the title compound (105 mg, 0.50 mmol, 99%) was obtained as a white solid. Rf 0.59 (n-

hexane/EtOAc = 3:4). 1H NMR (400 MHz, CDCl3, 24 °C): d 4.07 (s, 2H), 7.20 (d, J = 6.9 

Hz, 2H), 7.25–7.34 (m, 5H), 8.06 (d, J = 8.2 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3, 

24 °C): d 42.0, 126.4, 127.2, 128.6, 129.0, 129.1, 130.5, 139.9, 147.6, 172.3. All the 

resonances of 1H and 13C NMR spectra were consistent with the reported values.26 

 

p-Anisic acid (5e): The reaction of 4-fluoroanisole (3e, 63 mg, 0.50 

mmol) at –30 °C was followed by being stirred under atmospheric 

pressure of CO2 at room temperature for 30 min. To the mixture, 3 M HCl aq. (2.0 mL) 

was added. The mixture was extracted with EtOAc and combined organic layers were 

washed with H2O. All of the volatiles were removed by rotary evaporator. After MPLC 

purification (Biotage® SNAP Ultra 25 g, n-hexane:EtOAc = 2:3), the title compound (76 

mg, 0.46 mmol, 91%) was obtained as a white solid. Rf 0.44 (n-hexane/EtOAc = 3:4). 1H 

NMR (400 MHz, CDCl3, 24 °C): d 3.88 (s, 3H), 6.95 (d, J = 8.2 Hz, 2H), 8.07 (d, J = 8.2 

Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 55.5, 113.8, 121.7, 132.4, 164.1, 

CO2H

Bn

CO2H

MeO
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171.5. All the resonances of 1H and 13C NMR spectra were consistent with the reported 

values.25 

 

4-(Methylthio)benzoic acid (5f): The reaction of 4-

fluorothioanisole (3f, 71 mg, 0.50 mmol) at –30 °C was followed 

by being stirred under atmospheric pressure of CO2 at room temperature for 30 min. To 

the mixture, 3 M HCl aq. (2.0 mL) was added. The mixture was extracted with EtOAc 

and combined organic layers were washed with H2O. All of the volatiles were removed 

by rotary evaporator. After MPLC purification (25 g of silica gel, n-hexane:EtOAc = 2:3), 

the title compound (67 mg, 0.40 mmol, 79%) was obtained as a pale yellow solid. Rf 0.44 

(n-hexane/EtOAc = 3:4). Yield of 4,4'-Bis(methylthio)-1,1'-biphenyl was estimated in 8% 

yield by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene (6.1 mg, 36 mmol) as an 

internal standard. 5f: 1H NMR (400 MHz, CDCl3, 24 °C): d 2.53 (s, 3H), 7.28 (d, J = 7.8 

Hz, 2H), 8.01 (d, J = 7.8 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 14.8, 124.9, 

125.2, 130.5, 146.8, 171.4.27a 4,4'-Bis(methylthio)-1,1'-biphenyl: 1H NMR (400 MHz, 

CDCl3, 24 °C): d 2.52 (s, 6H), 7.32 (d, J = 7.3 Hz, 4H), 7.50 (d, J = 7.3 Hz, 4H). 13C{1H} 

NMR (101 MHz, CDCl3, 24 °C): d 15.9, 127.0, 127.1, 137.3, 137.5.27b All the resonances 

of 1H and 13C NMR spectra were consistent with the reported values.27 

 

m-Toluic acid (5g): The reaction of 3-fluorotoluene (3g, 55 mg, 0.50 

mmol) at –30 °C was followed by being stirred under atmospheric 

pressure of CO2 at room temperature for 30 min. To the mixture, 3 M HCl 

aq. (2.0 mL) was added. The mixture was extracted with EtOAc and combined organic 

layers were washed with H2O. All of the volatiles were removed by rotary evaporator. 

CO2H

MeS

CO2H
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After MPLC purification (Biotage® SNAP Ultra 25 g, n-hexane:EtOAc = 2:3), the title 

compound (61 mg, 0.45 mmol, 90%) was obtained as a white solid. Rf 0.56 (n-

hexane/EtOAc = 3:4). 1H NMR (400 MHz, CDCl3, 24 °C): d 2.43 (s, 3H), 7.37 (t, J = 7.8 

Hz, 1H), 7.43 (d, J = 7.3 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.94 (s, 1H). 13C{1H} NMR 

(101 MHz, CDCl3, 24 °C): d 21.3, 127.4, 128.4, 129.2, 130.7, 134.6, 138.3, 172.1. All the 

resonances of 1H and 13C NMR spectra were consistent with the reported values.25 

 

4-Phenylbenzoic acid (5h): The reaction of 4-fluorobiphenyl (3h, 86 

mg, 0.50 mmol) at –30 °C was followed by being stirred under 

atmospheric pressure of CO2 at room temperature for 30 min. To the mixture, 3 M HCl 

aq. (2.0 mL) was added. The mixture was extracted with EtOAc (40 mL) due to low 

solubility of 5h and combined organic layers were washed with H2O. All of the volatiles 

were removed by rotary evaporator. Purification of the crude mixture by MPLC (25 g of 

silica gel, n-hexane:EtOAc = 3:4) gave the title compound (82 mg, 0.41 mmol, 83%) as 

a white solid. Rf 0.37 (n-hexane/EtOAc = 3:4). Biphenyl was also isolated in 11% yield. 

5h: 1H NMR (400 MHz, (CD3)2SO, 24 °C): d 7.41 (t, J = 6.6 Hz, 1H), 7.49 (t, J = 7.1 Hz, 

2H), 7.72 (d, J = 7.3 Hz, 2H), 7.79 (d, J = 7.3 Hz, 2H), 8.02 (d, J = 7.8 Hz, 2H). 13C{1H} 

NMR (101 MHz, (CD3)2SO, 24 °C): d 126.8, 127.0, 128.3, 129.1, 129.6, 130.0, 139.0, 

144.3, 167.1.28a Biphenyl: 1H NMR (400 MHz, CDCl3, 24 °C): d 7.37 (t, J = 7.1 Hz, 2H), 

7.47 (t, J = 7.3 Hz, 4H), 7.62 (d, J = 7.8 Hz, 4H). 13C{1H} NMR (101 MHz, CDCl3, 

24 °C): d 127.15, 127.23, 128.7, 141.2.28b All the resonances of 1H and 13C NMR spectra 

were consistent with the reported values.28 
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o-Toluic acid (5i): The reaction of 2-fluorotoluene (3i, 55 mg, 0.50 

mmol) at room temperature was followed by being stirred under 

atmospheric pressure of CO2 at room temperature for 30 min. To the mixture, 3 M HCl 

aq. (2.0 mL) was added. The mixture was extracted with EtOAc and combined organic 

layers were washed with H2O. All of the volatiles were removed by rotary evaporator. 

After MPLC purification (Biotage® SNAP Ultra 25 g, n-hexane:EtOAc = 2:3), the title 

compound (62 mg, 0.46 mmol, 92%) was obtained as a white solid. Rf 0.56 (n-

hexane/EtOAc = 3:4). 1H NMR (400 MHz, CDCl3, 24 °C): d 2.64 (s, 3H), 7.23–7.28 (m, 

2H), 7.43 (t, J = 7.3 Hz, 1H), 8.05 (d, J = 7.3 Hz, 1H), 12.03 (br s, 1H). 13C{1H} NMR 

(101 MHz, CDCl3, 24 °C): d 22.1, 125.9, 128.3, 131.6, 131.9, 132.9, 141.4, 172.9. All the 

resonances of 1H and 13C NMR spectra were consistent with the reported values.25 

 

2,6-Dimethylbenzoic acid (5j): The reaction of 2-fluoro-1,3-

dimethylbenzene (3j, 62 mg, 0.50 mmol) at 50 °C was followed by being 

stirred under atmospheric pressure of CO2 at room temperature for 30 min. 

To the mixture, 3 M HCl aq. (2.0 mL) was added. The mixture was extracted with EtOAc 

and combined organic layers were washed with H2O. All of the volatiles were removed 

by rotary evaporator. After MPLC purification (Biotage® Sfär Silica High Capacity Duo 

20 mm, 25 g,, n-hexane:EtOAc = 2:3), the title compound (36 mg, 0.24 mmol, 48%) was 

obtained as a white solid. Rf 0.44 (n-hexane/EtOAc = 3:4). 1H NMR (400 MHz, CDCl3, 

24 °C): d 2.46, (s, 6H), 7.08 (d, J = 7.8 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 11.13 (br s, 1H). 

13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 20.1, 127.9, 129.9, 132.3, 135.6, 175.5. All 

the resonances of 1H and 13C NMR spectra were consistent with the reported values.29 
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Naphthalene-1-d (5k): The reaction of 1-fluoronaphthalene (3b, 73 mg, 

0.50 mmol) at room temperature was followed by addition of deuterium 

oxide (2.0 g, 100 mmol). Purification of the crude mixture by MPLC (25 g 

of silica gel, n-hexane) gave the title compound (64 mg, 0.50 mmol, 99%) as a white solid. 

Rf 0.70 (n-hexane). 1H NMR (400 MHz, CDCl3, 24 °C): d 7.50 (d, J = 4.6 Hz, 4H), 7.87 

(t, J = 3.9 Hz, 3H). 2H NMR (61 MHz, CDCl3, 24 ºC): d 7.86 (s). 13C{1H} NMR (101 

MHz, CDCl3, 24 °C): d 125.7, 125.8, 127.5 (t, J = 26.0 Hz), 127.9, 127.9, 127.9, 133.4, 

133.5. All the resonances of 1H and 13C NMR spectra were consistent with the reported 

values.30 

 

4,4,5,5-Tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane (5l): 

The reaction of 1-fluoronaphthalene (3b, 73 mg, 0.50 mmol) in the 

presence of triisopropyl borate (141 mg, 0.75 mmol) at room temperature 

was followed by addition of 3 M HCl aq. (2.0 mL). The mixture was 

extracted with EtOAc and combined organic layers were washed with H2O. All of the 

volatiles were removed by rotary evaporator. A 15 mL vial with a stirring bar was charged 

with the resulting mixture, pinacol (65 mg, 0.55 mmol), and n-hexane (10 mL), and the 

resulting mixture was stirred for 24 h at room temperature. After evaporation of volatiles, 

purification of the crude mixture by MPLC (Biotage® Sfär Silica High Capacity Duo 20 

mm, 25 g, n-hexane:EtOAc = 5:1) gave the title compound (85 mg, 0.34 mmol, 67%) as 

a white solid. Rf 0.49 (n-hexane/EtOAc = 5:1). 1H NMR (400 MHz, CDCl3, 24 °C): d 

1.45 (s, 12H), 7.50 (t, J = 7.3 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 

7.96 (d, J = 7.8 Hz, 1H), 8.12 (d, J = 6.4 Hz, 1H), 8.81 (d, J = 8.2 Hz, 1H). 13C{1H} NMR 

(101 MHz, CDCl3, 24 °C): d 24.9, 83.7, 124.9, 125.4, 126.3, 128.3, 128.4, 131.6, 133.2, 

D

B
OO
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135.6, 136.9, the carbon directly attached to the boron atom was not detected due to 

quadrupolar relaxation. 11B{1H} NMR (128 MHz, CDCl3, 24 °C): d 30.7. All the 

resonances of 1H, 11B and 13C NMR spectra were consistent with the reported values.31 

 

4-Dimethylaminobenzophenone (5m): The reaction of 1-fluoro-

4-dimethyl- aminobenzene (3k, 70 mg, 0.50 mmol) at 50 °C was 

followed by addition of N-methoxy-N-methylbenzamide (165 mg, 

1.0 mmol). After being stirred at room temperature for 3 h, purification of the mixture by 

MPLC (Biotage® Sfär Silica High Capacity Duo 20 mm, 25 g, n-hexane:EtOAc = 5:1) 

gave the title compound (25 mg, 0.11 mmol, 22%) as a yellow solid. Rf 0.29 (n-

hexane/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3, 24 °C): d 3.07 (s, 6H), 6.68 (d, J = 7.8 

Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.81 

(d, J = 8.2 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3, 24 °C): d 40.0, 110.5, 124.8, 128.0, 

129.4, 131.1, 132.7, 139.3, 153.3, 195.1. All the resonances of 1H and 13C NMR spectra 

were consistent with the reported values.32 

 

Gram-scale synthesis 

 

 

2b (5.0 mol% Rh)

Mg (30 mmol)
BrCH2CH2Br (5.0 mol%)

THF, rt, 22 h

CO2

then H+

3b, 10 mmol 5a

F CO2H

82%, 1.41 g

N
N Al

Me

PPh2

Rh
PPh2

N

Cl Cl

2

Me2N

Ph

O



Chapter 2 

60 

In a glove box, a 80 mL Schlenk tube with a stirring bar was charged with 

magnesium powder (730 mg, 30 mmol), THF (5.0 mL), and 1,2-dibromoethane (94 mg, 

0.5 mmol), and the resulting mixture was stirred for 20 min at room temperature. 3b (10 

mmol), 2b (404 mg, 0.25 mmol), and THF (15 mL) were put into the Schlenk tube. The 

Schlenk tube was taken out of the glove box and the mixture was stirred for 22 h at room 

temperature and then, stirred under atmospheric pressure of CO2 at room temperature for 

30 min. To the mixture was added 3 M HCl aq. (20 mL). The mixture was extracted with 

EtOAc and combined organic layers were washed with H2O. All of the volatiles were 

removed by rotary evaporator. The mixture was extracted with EtOAc and combined 

organic layers were washed with H2O. All of the volatiles were removed by rotary 

evaporator. After MPLC purification (40 g of silica gel, n-hexane:CH2Cl2 = 1:2 then n-

hexane:EtOAc = 3:4), the title compound (1.4 g, 8.2 mmol, 82%) was obtained as a white 

solid. Rf 0.59 (n-hexane/EtOAc = 3:4).  

 

General procedures for Eq. 2-1. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with 2a (40 mg, 30 

µmol), magnesium powder (15 mg, 0.60 mmol), 2,5-norbornadiene (nbd, 8.3 mg, 90 

µmol), and THF (1.0 mL) and the resulting mixture was stirred for 3 h at 60 °C. After 

filtration through a KIRIYAMA filter paper (No. 5A), the filtrate was concentrated to 

Mg (0.60 mmol)
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afford a brown precipitate. The precipitate was analyzed by 1H and 31P NMR 

spectroscopies. Spectroscopic data for 1a-nbd match those previously reported in the 

literature.8a 

 

General procedures for Eq. 2-2. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol), THF (500 µL), and 1,2-dibromoethane (2.3 mg, 13 µmol) 

and the resulting mixture was stirred for 20 min at room temperature. 3c (28 mg, 0.25 

mmol), 4a (36 mg, 50 µmol), and THF (500 µL) were put into the vial. The mixture was 

stirred for 22 h at –15 °C. The resulting mixture was stirred under CO2 (1 atm) at room 

temperature for 30 min. To the mixture was added 3 M HCl (1.5 mL). The mixture was 

extracted with EtOAc and combined organic layers were washed with H2O. All of the 

volatiles were removed by rotary evaporator. The crude mixture was analyzed by 1H 

NMR spectroscopy with 1,3,5-trimethoxybenzene (13 mg, 76 µmol) as an internal 

standard. According to the 1H NMR spectrum, yields of p-toluic acid (5c) and benzoic 

acid (5b) were estimated in 70% yield (0.18 mmol) based on 3c and 48% yield (24 µmol) 

based on 4a, respectively.  
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Carbon–fluorine bond activation at –30 °C (Eq. S2-1). 

 

 

To a d8-THF (1.0 mL) solution of 2a (71 mg, 50 µmol) and fluorobenzene (3a, 

10 mg, 0.10 mmol), a suspension of potassium graphite (28 mg, 0.21 mmol) in d8-THF 

(2.0 mL) was slowly added at –78 °C. After the reaction mixture was stirred at –30 °C for 

16 h, 19F NMR spectroscopy of the resulting mixture was measured at –30 °C. Formation 

of 4a was not confirmed by 19F NMR spectroscopy at –30 °C because of broadness of the 

signal of 4a at –30 °C. However, we concluded that cooperative activation of the C–F 

bond of 3a by in situ generated 1a occurred at –30 ºC based on the results as follows: 1) 

When the same sample was measured at room temperature, 4a was clearly observed 

(Figure S2-5). 2) The conversion of 3a at –30 ºC was estimated in 90% by 19F NMR 

spectroscopy with n-octyl fluoride (13 mg, 0.10 mmol) as an internal standard (Figure 

S2-6). 3) The catalytic magnesiation of 3a proceeded at –30 ºC. 
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Figure S2-5. 19F NMR spectra of the reaction mixture related to Eq. S2-1 (green: 

measured at –30 °C, brown: measured at room temperature) and 4a (blue: measured at –

30 °C, purple: measured at room temperature). 

 

 
Figure S2-6. A 19F NMR spectrum of Eq. S2-1 with n-octyl fluoride as an internal 

standard.  
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Identification of the generated organomagnesium species (Eq. S2-2). 

  

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (15 mg, 0.60 mmol), THF (500 µL), and 1,2-dibromoethane (1.9 mg, 10 µmol) 

and the resulting mixture was stirred for 20 min at room temperature. Fluorobenzene (3a, 

19 mg, 0.20 mmol), 2a (6.7 mg, 5.0 µmol), and THF (500 µL) were put into the vial. The 

mixture was stirred for 22 h at room temperature. All of the volatiles were removed. 

Internal standard (1,3,5-trimethoxybenzene, 39 mg, 0.23 mmol) and C6D6 (500 µL) were 

added to the resulting mixture. According to 1H and 13C NMR spectra of the mixture, 

generation of diphenylmagnesium (77% yield) was confirmed by comparing with 1H and 

13C NMR spectra of independently synthesized diphenylmagnesium with 2a (5.0 mol% 

Rh) or 4a (5.0 mol% Rh) in C6D6.20a In addition, independently synthesized 

phenylmagnesium fluoride20b has very low solubility toward THF and C6D6. 
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Figure S2-7. 1H NMR spectra related to Eq. S2-2. 

 

 

Figure S2-8. 13C NMR spectra related to Eq. S2-2. 
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Figure S2-9. 1H NMR spectrum of Eq. S2-2 with 1,3,5-trimethoxybenzene. 

 

Synthesis of Al–Rh complex 2b. 

PNNNP ligand (LH2): Formaldehyde (0.60 g, 20 mmol) and 

diphenylphosphine (3.7 g, 20 mmol) were charged in an 80 mL 

Schlenk tube and the reaction mixture was stirred for 2 h at 100 °C. 

After being cooled to room temperature, to the reaction mixture was 

added toluene (150 mL) and N-(2-aminophenyl)-N-methylbenzene-1,2-diamine (2.1 g, 

10 mmol). The mixture was stirred for 16 h at 80 °C. After cooling the solution to room 

temperature, it was dried over MgSO4. After filtration of MgSO4, the filtrate was 

concentrated under reduced pressure. Diethyl ether (10 mL) x 2 was added and evaporated 

under reduced pressure to remove toluene. The desired product was obtained as light 

brown powder (5.5 g, 9.1 mmol, 91% yield). The obtained product was used in the next 
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step without further purifications. crude NMR data: 1H NMR (400 MHz, CDCl3, 24 °C): 

d 2.67 (s, 3H, NCH3), 3.64 (s br, 4H, PCH2–NH), 4.37 (s br, 2H, PCH2–NH), 6.66 (d, J 

= 6.9 Hz, 4H, overlapped one doublet signal (2H) and one triplet signal (2H)), 6.93 (d, J 

= 7.3 Hz, 2H), 7.00 (t, J = 7.6 Hz, 2H), 7.22–7.39 (20H). 13C{1H} NMR (101 MHz, 

CDCl3, 24 °C): d 40.2, 43.6 (d, JP-C = 9.3 Hz), 110.8, 117.1, 121.6, 125.1, 128.5 (d, JP-C 

= 6.9 Hz), 128.7, 132.7 (d, JP-C = 19 Hz), 136.2, 136.8 (d, JP-C = 14 Hz), 142.0 (d, JP-C = 

6.9 Hz). 31P{1H} NMR (162 MHz, CDCl3, 24 °C): d –18.8. HRMS–[ESI(+)] (m/z): Calcd. 

for [C39H37N3P2+Na]+, 632.2353; found, 632.2355. 

 

L(AlCl): To a Et2O (60 mL) solution of LH2 (12 g, 20 mmol) in an 

80 mL Schlenk tube, a solution of t-BuLi in pentane (1.53 M, 27 

mL, 41 mmol) was added dropwise at room temperature. The 

resulting solution was stirred for 15 min and then, it was added dropwise to a suspension 

of AlCl3 (2.6 g, 20 mmol) in toluene (60 mL) at room temperature. After stirring the 

reaction mixture for 3 h at room temperature, the solution was evaporated under reduced 

pressure and the target compound was extracted with toluene (ca. 200 mL). The toluene 

solution was evaporated again under reduced pressure, and the precipitate was washed by 

hexane (20 mL, 10 mL x 2) to afford L(AlCl) as a gray powder (7.0 g, 10 mmol, 53%). 

L(AlCl) was used in next step without further purifications. crude NMR data of L(AlCl); 

1H NMR (400 MHz, C6D6, 24 °C): d 2.76 (s, 3H, NCH3), 3.49 (d, J = 12.8 Hz, 2H, PCH2–

NH), 3.88 (d, J = 12.8 Hz, 2H, PCH2–NH), 6.52 (t, J = 7.8 Hz, 2H), 6.58 (d, J = 7.8 Hz, 

2H), 6.90–7.11 (m br, 16H), 7.37 (m br, 4H), 7.53 (m br, 4H). 13C{1H} NMR (101 MHz, 

C6D6, 24 °C): d 45.7, 47.1, 112.1, 115.5, 122.2, 128.7 (t, JP-C = 3.5 Hz), 128.8, 128.9 (t, 
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JP-C = 3.5 Hz), 129.0, 129.5, 132.4 (t, JP-C = 8.1 Hz), 134.0 (t, JP-C = 8.7 Hz), 136.2, 136.9, 

137.2, 149.3 (t, JP-C = 8.7 Hz). 31P{1H} NMR (162 MHz, C6D6, 24 °C): d –18.8. 

 

2b: To a toluene (2.0 mL) solution of [Rh(nbd)(µ-Cl)]2 (688 

mg, 1.5 mmol), L(AlCl) (2.0 g, 3.0 mmol) in toluene (18 mL) 

was added dropwise at room temperature. The resulting deep 

dark-red solution was stirred at 80 °C for 16 h to generate dull 

yellow precipitates. The precipitates were collected by filtration and then, washed with 

toluene (2.0 mL) x 3, THF (2.0 mL) x 3, and pentane (2.0 mL) x 3 in this order. After 

drying it under reduced pressure, yellow crystals (1.5 g, 1.9 mmol, 62%, calculated as 

monomer) were obtained. m.p. 289 °C (decomp). Yellow crystals of 2b, which are 

suitable for x-ray diffraction analysis and elemental analysis, were obtained from a 

saturated dichloromethane solution of 2b at –35 °C. It was difficult to identify 2b by 

NMR spectroscopies completely because it showed low solubility of 2b toward common 

organic solvents and the signals from 2b is almost broad since it may adopt 

unsymmetrical forms in solution similar to the almost same complex we previously 

reported.8a 1H NMR (400 MHz, CD2Cl2, 24 °C): d 3.29 (br, 3H), 3.50 (s, 4H), 6.18 (br, 

2H), 6.71 (br, 2H), 6.94–7.34 (m br, 16H), 7.40–7.92 (br, 8H). 13C NMR could not be 

measured because of low intensity of signals at room temperature. 31P{1H} NMR (162 

MHz, CD2Cl2, –80 °C): d 48.6/60.0 (JP-Rh = 161.3/161.3 Hz, JP-P = 39.2/39.2 Hz), 

50.9/58.3 (JP-Rh = 174.4/170.0 Hz, JP-P = 34.9/34.9 Hz). Anal. Calcd. 

C79H72Cl6N6P4Al2Rh2 (2b + 1.0 dichloromethane): C, 55.75; H, 4.26; N, 4.94. Found: C, 

55.79; H, 4.52; N, 4.87. 

  

N
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X-ray diffraction study and X-ray crystallographic analysis. 

The crystals of 2b and 4a were mounted on the CryoLoop (Hampton Research 

Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 143(1) K. The 

X-ray structural determinations of 2b were performed on a Rigaku/Saturn724+ CCD 

diffractometers using graphite-monochromated Mo Ka radiation (l = 0.71075 Å) at 153 

K, and processed using CrysAlisPro (Agilent).33 The X-ray structural determinations of 4a 

were performed on a Rigaku/Saturn724+ CCD diffractometers using graphite-

monochromated Mo Ka radiation (l = 0.71075 Å) at 153 K, and processed using 

CrystalClear (Rigaku, Tokyo, Japan).34,35 The structures were solved by a direct method 

and refined by full-matrix least-square refinement on F2. The structure of 2b was solved 

by SHELXT and refined by SHELXL.36,37 The structure of 4a was solved by SIR9238 and 

refined by SHELXL (Version 2018/3).36,37 Non-hydrogen atoms were anisotropically 

refined. Hydrogen atoms were included in the refinement on calculated positions riding 

on their carrier atoms. The function minimized was [Sw(Fo2– Fc2)2] (w = 1 / [s2(Fo2) + 

(aP)2 + bP]), where P = (Max(Fo2,0) + 2Fc2) / 3 with s2(Fo2) from counting statistics. The 

function R1 and wR2 were (S||Fo| – |Fc||) / S|Fo| and [Sw(Fo2 – Fc2)2 / S(wFo4)]1/2, 

respectively. CCDC 2000480 (for 2b) and 1999655 (for 4a) contain the supplementary 

crystallographic data. These data can be obtained from The Cambridge Crystallographic 

Data Centre. A B alert in the CIF file of 4a could not be solved because crystals require 

a long exposure time due to their low crystallinity. 
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Figure S2-10. Crystal structure of 2b (atomic displacement parameters set at 30% 

probability; all hydrogen atoms and solvent molecules are omitted for clarity). Selected 

bond lengths [Å] and angles [°]: Complex 2b: Rh–Al 2.6117(9), Rh–P1 2.2198(9), Rh–

P2 2.2124(8), Rh–Cl1 2.4468(9), Al–Cl2 2.182(2), Al–N1 1.863(2), Al–N2 2.152(2), Al–

N3 1.868(3), P1–Rh–P2 97.31(3), N2–Al–Rh 177.21(8), N1–Al–N3 114.8(1). 
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Figure S2-11. Crystal structure of 4a (atomic displacement parameters set at 30% 

probability; all hydrogen atoms and solvent molecules are omitted for clarity). Selected 

bond lengths [Å] and angles [°]: Complex 4a: Rh–Al 2.6098(8), Rh–P1 2.3342(8), Rh–

P2 2.3090(8), Rh–C 2.039(3), Rh–N4 2.000(3), Al–F 1.687(2), Al–N1 2.105(2), Al–N2 

1.883(2), Al–N3 1.873(2), N4–N5 1.090(4), P1–Rh–P2 164.58(3), Rh–Al–N1 172.88(7), 

N2–Al–N3 124.1(1). 
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Table S2-1. Crystallographic data of 2b and 4a. 

——————————————————————————————————— 

compound 2b 4a 
empirical formula C78H70Al2Cl4N6P4Rh2 C33H48AlFN5P2Rh 

formula weight 1616.91 725.61 

crystal system monoclinic triclinic 

space group P 1 21/n 1 (#14) P 1" (#2) 

a, Å 14.3121(5) 10.079(2) 

b, Å 19.2665(6) 11.873(2) 

c, Å 15.4196(5) 15.392(3) 

a, deg. 90 67.234(6) 

b, deg. 112.521(4) 80.582(7) 

g, deg. 90 87.293(9) 

V, Å3 3927.6(2) 1675.3(6) 

Z 4 2 

Dcalcd, g/cm-3 1.511 1.438 

µ [Mo-Ka], mm-1  0.845 0.667 

T, K  143 143 

crystal size, mm  0.140 x 0.120 x0.110 0.090 x 0.070 x 0.060 

q range for data collection (deg.) 2.552 to 25.350 3.20 to 27.50 

no. of reflections measured  27345 13581 

unique data  7179 7303 

data / restraints / parameters  7179 / 0 / 461 7303 / 0 / 388 

R1 (I > 2.0s(I))  0.0356 0.0381 

wR2 (I > 2.0s(I))  0.0733 0.0768 

R1 (all data)  0.0495 0.0489 

wR2 (all data)  0.0787 0.0812 

GOF on F2  1.031 1.006 

——————————————————————————————————— 

a) R1 = (S||Fo| - |Fc||)/(S|Fo|) b) wR2 = [{Sw(Fo2-Fc2)2}/{Sw(Fo4)}]1/2 
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Computational details. 

Geometries were optimized by the DFT method with the B3PW9139-D340 

functional in gas phase using small basis set system (BS-I). In BS-I, 6-31G(d)41 basis sets 

were used for H, C, N, and F atoms and LANL2DZ42 basis sets were used for Al, P, and 

Rh atoms with corresponding effective core potentials (ECPs), where one 3d 

polarization43 function was added to Al and P atoms. The B3PW91-D3 functional was 

employed herein because the geometry of the Al–Rh complex could be reproduced well 

using this functional, as shown in Figure S2-12 and Table S2-2. 

The potential energy was re-evaluated using the same functional with a better 

basis set system (BS-II); in BS-II, 6-311G(d)44 basis sets were used for H, C, N, F, and P 

atoms, 6-311+G(2d)45 basis set was used for Al atom, and the Stuttgart-Dresden-Bonn 

(SDB)46 basis set (311111/22111/411/11) with the corresponding ECPs was used for Rh 

atom. Solvation effect of THF was considered using PCM model.47 We selected the 

B3PW91-D3 functional for energy evaluation because the DFT calculation with this 

functional reproduced well the CCSD(T)-calculated energy changes in C–F bond 

activation by a model Al–Rh complex; the model reaction is shown in Figure S2-13 and 

the energy changes are presented in Table S2-3. 

In this work, the discussion is presented using the Gibbs energy (298.15 K, 1 

atm), where the translation entropy in solution was corrected with the method developed 

by Whitesides et al.48 All these calculations were carried out with the Gaussian 16 

program.49 
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Figure S2-12. Rh(PAlP)(CO)2 used for test calculation of geometry optimization. 

 

Table S2-2. Comparison of optimized bond distances (Å) with the experimental values 

of Rh(PAlP)(CO)2. 

 Rh-Al Rh-P1 Rh-P2 Rh-C1 Rh-C2 Al-N1 Al-N2 Al-N3 C1-O1 C2-O2 RMSE 

Exp. 2.439 2.362 2.344 1.935 1.874 1.812 2.094 1.837 1.139 1.149  

B3PW91 2.457 2.410 2.399 1.934 1.890 1.868 2.141 1.879 1.157 1.165 0.037 

B3PW91-D3 2.435 2.381 2.368 1.931 1.891 1.861 2.118 1.873 1.158 1.166 0.025 

B3LYP-D3 2.447 2.415 2.402 1.954 1.901 1.862 2.123 1.873 1.158 1.167 0.036 

BP86-D3 2.448 2.389 2.390 1.932 1.896 1.884 2.112 1.875 1.175 1.183 0.035 

ωB97XD 2.441 2.406 2.391 1.940 1.897 1.856 2.124 1.870 1.153 1.161 0.030 

M06 2.466 2.454 2.429 1.964 1.913 1.860 2.116 1.871 1.157 1.165 0.048 

 

As shown in Table S2-2, the RMSE (root mean squared error) by the B3PW91-

D3 functional is the smallest, suggesting that this functional can be used for geometry 

optimization of the Al–Rh complex. 
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Figure S2-13. Geometry changes in a C–F bond cleavage of fluorobenzene using a model 

PAlP ligand.a  

a In the model complex, phenyl groups on the N atoms were replaced with vinyl groups and iso-propyl 

groups on the P atoms were replaced with H atoms to reduce the size. The geometry of the other moiety 

was taken to be the same as the corresponding structure in the C–F bond activation of PhF by Rh(MePAlP), 

in which iso-propyl groups on the P atoms were replaced with methyl groups for simplicity. Bond length is 

in angstrom and bond angle is in degree. 

 

Table S2-3. Comparison of energy changes (kcal mol−1) between CCSD(T) and DFT 

calculations using various functionals in the model reaction shown in Figure S2-13. 

 1AD1 TS 4b RMSE 

CCSD(T) 0.0 3.7 -40.9 Ref. 

B3PW91 0.0 6.2 -38.0 2.7 

B3PW91-D3 0.0 3.7 -40.7 0.1 

B3LYP-D3 0.0 2.4 -45.8 3.6 

BP86-D3 0.0 1.2 -37.8 2.8 

ωB97XD 0.0 4.2 -43.6 2.0 

M06 0.0 2.3 -41.9 1.2 

 

As shown in Table S2-3, the RMSE is the smallest in the case of the B3PW91-

D3 calculation in various DFT functionals examined here, suggesting that this functional 

is useful for investigating this C–F bond activation reaction.  
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Figure S2-14. Geometry changes in the C–F bond activation of PhF by Rh(i-PrPAlP) 

complex, where the superscript i-Pr represents isopropyl phosphine. Bond length is in 

angstrom and bond angle is in degree. 
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Chapter 3 

 

 

The Kumada–Tamao–Corriu Coupling Reaction Catalyzed by 

Rhodium–Aluminum Bimetallic Complexes 

 

Rhodium–aluminum bimetallic complexes catalyze the Kumada–Tamao–Corriu (KTC) 

cross-coupling reaction using aryl-magnesium compounds that are generated from the 

corresponding aryl fluorides or chlorides in situ by these catalysts. This method allows 

carrying out the challenging KTC coupling reaction using aryl fluorides as nucleophiles, 

which affords various biaryls.  
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Introduction 

Transition-metal-catalyzed cross-coupling reactions are a powerful tool for the 

formation of C–C bonds.1 Among these, cross-coupling reactions that use 

organomagnesium reagents, i.e., the Kumada–Tamao–Corriu (KTC) cross-coupling 

reactions,2 have become established as a key C–C-bond-forming reaction to prepare 

pharmaceuticals and functional materials3 due to their practicality and the ease of access 

to organomagnesium reagents and the broad scope of readily available electrophiles 

(Scheme 3-1, A). Arylmagnesium compounds are usually prepared from the 

corresponding aryl iodides and bromides, while the commercially more readily available 

aryl chlorides and fluorides are less common starting materials.4 In contrast with the high 

reactivity of C–I and C–Br bonds in a variety of reactions, C–Cl and C–F bonds often 

remain intact under comparatively milder reaction conditions due to their intrinsically 

higher bond-dissociation energy.5 This lower reactivity provides access to multiply 

substituted arenes via subsequent KTC cross-coupling of C–Cl and C–F bonds after 

modifications of fluoro- and chloroarenes. 

Recently, the author has reported that PAlP–Rh complexes catalyze the 

magnesiation of the C–F bonds of aryl fluorides to generate the corresponding aryl 

Grignard reagents (Scheme 3-1, B).6 The author anticipated that the magnesiation and 

subsequent KTC cross-coupling reaction could both be catalyzed by the same PAlP–Rh 

complexes to allow rapid access to biaryls starting from aryl chlorides or fluorides 

(Scheme 3-1, C). Although KTC cross-coupling reactions catalyzed by Ni,2f–l Pd,2m,2n 

Fe,2o and other complexes2p,2q have been well established, Rh catalysis of the KTC cross-

coupling reaction has been rare.7 The Ozerov group has reported that a less-donating 

pincer POCOP ligand accelerates the reductive-elimination step to promote a Rh-
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catalyzed KTC cross-coupling reaction.7a 

 

 

Scheme 3-1. Kumada–Tamao–Corriu cross-coupling reaction and working hypothesis of 

this work. 
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Results and discussion 

The author initially focused his efforts on the catalyst screening for the KTC 

cross-coupling reaction of diphenyl magnesium (1, 0.10 mmol, 1.0 eq.) with 4-

chlorotoluene (2a, 0.10 mmol, 1.0 eq.) in THF at 60 °C for 12 h (Scheme 3-2, top). When 

Z-type PAlP–Rh complex 4a (5.0 mol% of Rh) was used, cross-coupling product 3a was 

obtained in 98% yield. X-type PAlP−Rh complex 4b also catalyzed the KTC cross-

coupling efficiently, whereas PAlP–Rh complexes 4c and 4d, which bear i-propyl groups 

instead of phenyl groups on the phosphorus atoms, did not furnish 3a. These are because 

a less electron-rich rhodium center in 4a and 4b would facilitate reductive elimination to 

form a C–C bond.8 The Ozerov group reported that C–C bond forming reductive 

elimination from a (PCP)Rh(III)Ph2 complex is slower than oxidative addition of 

bromobenzene toward (PCP)Rh(I),7b and a less electron-donating pincer ligand is 

effective for the rhodium-catalyzed KTC cross-coupling reaction.7a The reaction did not 

proceed in the absence of the Al−Rh complexes. Catalytic systems based on [RhCl(nbd)]2 

(5.0 mol% of Rh; nbd = 2,5-norbornadiene)/ligand (10 mol% of L)/Et2AlCl (20 mol%) 

did not afford 3a (Scheme 3-2, bottom). Accordingly, it can be concluded that the 

bimetallic Al−Rh complexes 4a and 4b are crucial for the KTC cross-coupling reaction. 
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Scheme 3-2. Catalyst screening and control experiments. 
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The author then investigated the C–F-bond magnesiation/KTC cross-coupling 

reaction sequence using PAlP–Rh complex 4a (Scheme 3-3). The magnesiation of 4-

fluorodiphenylmethane (2b, 0.50 mmol, 1.0 eq.) with Mg powder (0.75 mmol, 1.5 eq.), 

which was preactivated upon treatment with 1,2-dibromoethane (5.0 mol%), was carried 

out in the presence of 4a (5.0 mol% of Rh) in THF (0.33 M) at –15 °C for 22 h. After 

filtration, the filtrate was treated with chlorobenzene (2c, 0.75 mmol, 1.5 eq.), and after 

stirring for 22 h at 60 °C, 4-benzylbiphenyl (3b) was isolated in 80% yield. 3b could be 

also synthesized in 72% yield on a 1.0 mmol scale. Notably, less-reactive electrophiles, 

such as fluorobenzene (2d)2h–k,9 and phenyl diethylcarbamate (2e),2i,10 were also suitable 

under the applied conditions. Thioanisole (2f)11 could also participate in the reaction as 

an electrophile. 

 

 

Scheme 3-3. Screening of leaving groups. 
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Subsequently, the author investigated the substrate scope (Scheme 3-4). 

Substituent effects on the benzene ring of electrophiles were investigated with 

fluorobenzene (2d) as a precursor of phenylmagnesium. Aryl halides that bear an 

electron-donating group at the para- or meta-positions (2a, 2g–i, 2k) were tolerated well 

and afforded the corresponding products 3 in good yield. It is worth noting here that the 

C–S bond of 2h, which could potentially be functionalized under the applied conditions 

(2f, Scheme 3-3), remained intact. Electron-poor 4-trifluoromethylfluorobenzene (2j) and 

3-trifluoromethylchlorobenzene (2l) gave the corresponding products in moderate yield. 

Aryl chloride 2m and heteroaryl chloride 2n are also viable electrophiles, demonstrating 

that the cyclic acetal and pyridine cores are compatible with catalysts that bear a strongly 

Lewis-acidic site. Next, the author surveyed scope of the arylmagnesium sources using 

chlorobenzene (2c) as an electrophile. Aryl fluorides bearing an electron-donating group 

at para- or meta-positions 2h, 2o–r were applicable under the optimized conditions. 

Furthermore, chlorobenzene (2c) could be used as a precursor of nucleophile to afford 3-

methylbiphenyl in 63% yield after KTC cross-coupling with 3-fluorotoluene (2r). When 

the reaction of 2b and 2q was carried out without filtration to remove the residual Mg 

powder in a one-pot manner, the desired product was obtained in 57% yield with 

concomitant formation of 4,4’-dimethoxybiphenyl in 26% yield. In contrast, the standard 

conditions gave the desired product in 75% yield without formation of 4,4’-

dimethoxybiphenyl. 

 



Chapter 3 

 91 

 

Scheme 3-4. Substrate Scope. 
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A plausible catalytic cycle for the KTC cross-coupling is shown in Scheme 3-5. 

The cooperative activation of the C–X bond of the aryl halides by the Al–Rh bond of the 

active X-type complex I generates Z-type complex II.6 Transmetalation of the in-situ-

generated aryl Grignard reagent6 with complex II could occur at the aluminum site to 

afford Z-type complex III, which bears two aryl–metal bonds. The oxidative addition of 

the Al–Ar bond toward the Rh center could afford X-type complex IV,12 which gives 

biaryls through C–C bond-forming reductive elimination to regenerate the active Al–Rh 

complex I. 

 

 

Scheme 3-5. Proposed Reaction Mechanism. 
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Conclusion 

In conclusion, the author has developed a Kumada–Tamao–Corriu (KTC) cross-

coupling reaction catalyzed by Al–Rh complexes. These Al–Rh complexes efficiently 

catalyze both the magnesiation of aryl fluorides or chlorides and the subsequent KTC 

cross-coupling with the resulting arylmagnesiums to afford a variety of biaryls. Further 

studies to reveal more information on the mechanism will be pursued to determine the 

details underlying the proposed transmetalation and the C–C-forming reductive 

elimination events at the bimetallic site.  
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Experimental section 

 

Figure S3-1. A list of compounds in this study.  
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General procedure for Scheme 3-2.  

 

 

Al–Rh complexes: In a glove box, a 4 mL vial with a stirring bar was charged 
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was stirred for 10 min at room temperature. To the vial, diphenylmagnesium (1, 18 mg, 

0.10 mmol, 1.0 eq.), 4-chlorotoluene (2a, 13 mg, 0.10 mmol, 1.0 eq.), and 1.03 M Et2AlCl 

in n-hexane (19 μL, 20 μmol, 20 mol%) were added. The mixture was stirred for 12 h at 

60 °C. The yield of 3a was determined by GC analysis of reaction mixture using the 

calibration curve with n-tridecane as an internal standard (Figure S3-2). 

In-situ-generated catalysts 

[Rh(nbd)(μ-Cl)]2 (2.5 mol%)/ligand (10 mol% L)/Et2AlCl (20 mol%) 
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Table S3-1. Data for the GC calibration curve obtained using an authentic sample of 4-

methylbiphenyl (3a). 

mass (mg) 
x = 

mass of 3a/mass 

of C13H28 

 GC area 
y = 

GC area of 3a/GC 

area of C13H28 3a C13H28  3a C13H28 

8.5 5.0  1.70000  203361 135891  1.496500872 

17.5 5.6  3.12500  327344 117253  2.791775051 

33.7 6.1  5.52459  812102 158361  5.128169183 

 

 

Figure S3-2. GC calibration curve to determine the yield of 4-methylbiphenyl (3a). 
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General procedure for Scheme 3-3. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL, 0.33 M) were added to the vial 

followed by 4-fluorodiphenylmethane (2b, 93 mg, 0.50 mmol, 1.0 eq.). The mixture was 

stirred at –15 °C for 22 h to generate 4-benzylphenylmagnesium. After that, insoluble 

solids of the resulting mixture were filtered through the Pasteur pipette filter, which is 

filled with a glass fiber filter (GB-100R ADVANTEC®), with THF (1.0 mL). The 

obtained filtrate was put into another 4 mL vial with a stirring bar and an indicated 

electrophile 2c–f (0.75 mmol, 1.5 eq.). The reaction mixture was stirred at 60 °C for 22 

h. To the mixture, 3 M HCl aq. (2.0 mL) was carefully added. The organic layer was 

separated. The remained aqueous layer was extracted with EtOAc (4.0 mL) three times. 

All volatiles were removed in vacuo and the residue was purified by MPLC using 
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Biotage® Sfär Silica High Capacity Duo to obtain 4-benzylbiphenyl (3b). 

 

4-benzylbiphenyl (3b): The reaction of the generated Grignard 

reagent and chlorobenzene (2c, 84 mg, 0.75 mmol) followed by 

purification by MPLC (n-hexane) afforded the title compound (98 mg, 

0.40 mmol, 80%) as a white powder. Rf 0.23 (n-hexane). 1H NMR (400 MHz, CDCl3): δ 

7.64 (d, J = 7.7 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.40–7.26 (m, 

8H), 4.09 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 141.2, 140.4, 139.2, 129.5, 129.1, 

128.9, 128.7, 127.4, 127.2, 127.2, 126.3, 41.7. All the resonances of 1H and 13C NMR 

spectra were consistent with the reported values.13 The reaction with fluorobenzene (2d, 

72 mg, 0.75 mmol, 1.5 eq.) afforded 3b in 76% yield (93 mg, 0.38 mmol) as a white solid. 

The reaction with phenyl diethylcarbamate (2e, 145 mg, 0.75 mmol, 1.5 eq.) afforded 3b 

in 64% yield (78 mg, 0.32 mmol) as a white solid. The reaction with thioanisole (2f, 93 

mg, 0.75 mmol, 1.5 eq.) afforded 3b in 79% yield (96 mg, 0.39 mmol) as a white solid. 

The reaction with anisole (81 mg, 0.75 mmol, 1.5 eq.) did not afford 3b. 

 

Procedures for the 1.0 mmol scale reaction.  
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In a glove box, a 15 mL vial with a stirring bar was charged with magnesium 

powder (36 mg, 1.5 mmol, 1.5 eq.), THF (1.0 mL), and 1,2-dibromoethane (9.4 mg, 50 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

A THF (2.0 mL, 0.33 M) solution of 4a (40 mg, 25 μmol, 5.0 mol% of Rh) and 4-

fluorodiphenylmethane (2b, 186 mg, 1.0 mmol, 1.0 eq.) were added to the vial in this 

order. The mixture was stirred at –15 °C for 22 h to generate 4-benzylphenylmagnesium 

and insoluble solids of the resulting mixture were filtered off through the Pasteur pipette 

filter, which is filled with a glass fiber filter (GB-100R ADVANTEC®), with THF (2.0 

mL). The obtained filtrate was put into another 15 mL vial with a stirring bar and 

chlorobenzene 2c (169 mg, 1.5 mmol, 1.5 eq.). The reaction mixture was stirred at 60 °C 

for 22 h. To the mixture, 3 M HCl aq. (3.0 mL) was carefully added. The organic layer 

was separated. The remained aqueous layer was extracted with EtOAc (8.0 mL) x 3. All 

volatiles of the combined organic layers were removed in vacuo and the residue was 

purified by MPLC using 20 g iLOKTM-SL. 4-Benzylbiphenyl (3b) was isolated (175 mg, 

0.72 mmol, 72%) as a white powder. 
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General procedure of Magnesiation and KTC coupling in Scheme 3-4. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL, 0.33 M) were added to the vial 

followed by fluorobenzene (2d, 48 mg, 0.50 mmol, 1.0 eq.). The mixture was stirred at –

15 °C for 22 h to generate diphenylmagnesium. Insoluble solids of the resulting mixture 

were filtered off through the Pasteur pipette filter, which is filled with a glass fiber filter 

(GB-100R ADVANTEC®), with THF (1.0 mL). The obtained filtrate was put into another 
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4 mL vial with a stirring bar and an indicated electrophile 2 (0.75 mmol, 1.5 eq.). The 

reaction mixture was stirred at 60 °C for 24 h. To the mixture, 3 M HCl aq. (2.0 mL) was 

carefully added. The organic layer was separated. The remained aqueous layer was 

extracted with EtOAc (4.0 mL) x 3. All volatiles were removed in vacuo and the residue 

was purified by MPLC using Biotage® Sfär Silica High Capacity Duo to obtain the 

corresponding product 3. 

 

4-Methylbiphenyl (3a): The reaction of in situ prepared 

phenylmagnesium and 4-chlorotoluene (2a, 95 mg, 0.75 mmol) 

followed by purification by MPLC (n-hexane) afforded the title 

compound (72 mg, 0.43 mmol, 86%) as a white powder. Rf 0.52 (n-hexane). 1H NMR 

(400 MHz, CDCl3): δ 7.54 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 

Hz, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.35 (s, 3H). 13C{1H} NMR 

(101 MHz, CDCl3): δ 141.3, 138.5, 137.2, 129.6, 128.9, 127.1 (3 peaks were overlapped), 

21.2. All the resonances of 1H and 13C NMR spectra were consistent with the reported 

values.2h 

 

4-Methoxybiphenyl (3c): The reaction of in situ prepared 

phenylmagnesium and 4-chloroanisole (2g, 107 mg, 0.75 mmol) 

followed by purification by MPLC (n-hexane/EtOAc = 95:5) 

afforded the title compound (80 mg, 0.44 mmol, 87%) as a white powder. Rf 0.10 (n-

hexane). 1H NMR (400 MHz, CDCl3): δ 7.54–7.50 (m, 4H), 7.39 (t, J = 7.6 Hz, 2H), 7.29 

(t, J = 7.4 Hz, 1H), 6.96 (d, J = 8.2 Hz, 2H), 3.81 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3): δ 159.3, 141.0, 133.9, 128.8, 128.3, 126.8, 126.8, 114.3, 55.4. All the resonances 

OMe

Me
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of 1H and 13C NMR spectra were consistent with the reported values.14 

 

4-Methylthiobiphenyl (3d): The reaction of in situ prepared 

phenylmagnesium and 4-fluorothioanisole (2h, 107 mg, 0.75 

mmol) followed by purification by MPLC (n-hexane) afforded the 

title compound (56 mg, 0.28 mmol, 56%) as a white powder. Rf 0.25 (n-hexane). 1H NMR 

(400 MHz, CDCl3): δ 7.58 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.44 (t, J = 7.7 

Hz, 2H), 7.31–7.38 (m, 3H), 2.53 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 140.7, 

138.2, 137.7, 128.9, 127.6, 127.3, 127.1, 127.0, 16.0. All the resonances of 1H and 13C 

NMR spectra were consistent with the reported values.11c 

 

4-N,N-Dimethylaminobiphenyl (3e): The reaction of in situ 

prepared phneylmagnesium and 4-fluoro-N,N-dimethylaniline (2i, 

104 mg, 0.75 mmol) followed by purification by MPLC (n-

hexane/EtOAc = 9:1) afforded the title compound (61 mg, 0.31 mmol, 62%) as a white 

powder. Rf 0.71 (n-hexane/EtOAc = 5:1). 1H NMR (400 MHz, CDCl3): δ 7.60–7.54 (m, 

2H), 7.54–7.48 (m, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.33–7.19 (m, 1H), 6.84–6.79 (m, 2H), 

3.00 (s, 6H).	13C{1H} NMR (101 MHz, CDCl3): δ 150.1, 141.4, 129.4, 128.8, 127.8, 126.4, 

126.1, 112.9, 40.7. All the resonances of 1H and 13C NMR spectra were consistent with 

the reported values.15 

 

4-Trifluoromethylbiphenyl (3f): The reaction of in situ prepared 

phenylmagnesium and 4-fluorobenzotrifluoride (2j, 123 mg, 0.75 

mmol) followed by purification by MPLC (n-hexane) afforded the 

SMe

CF3

NMe2
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title compound (30 mg, 0.13 mmol, 27%) as a white powder. Rf 0.72 (n-hexane). 1H NMR 

(400 MHz, CDCl3): δ 7.70 (s, 4H), 7.60 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.6 Hz, 2H), 

7.48–7.37 (m, 1H). 13C{1H} NMR (101 MHz, CDCl3): δ 144.9, 139.9, 129.5 (q, J = 32.5 

Hz), 129.1, 128.3, 127.6, 127.4, 125.9 (q, J = 3.5 Hz), 124.5 (q, J = 272.2 Hz). 19F NMR 

(376 MHz, CDCl3): δ –62.89. All the resonances of 1H and 13C NMR spectra were 

consistent with the reported values.14 

 

3-Methoxylbiphenyl (3g): The reaction of in situ prepared 

phenylmagnesium and 3-chloroanisole (2k, 107 mg, 0.75 mmol) 

followed by purification by MPLC (n-hexane/EtOAc = 9:1) 

afforded the title compound (69 mg, 0.38 mmol, 75%) as a yellow oil. Rf 0.30 (n-hexane). 

1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.27–

7.22 (m, 2H), 7.07 (d, J = 7.7 Hz, 1H), 7.02 (bs, 1H), 6.79 (dd, J = 8.2, 2.4 Hz, 1H), 3.74 

(s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 160.1, 142.9, 141.2, 129.9, 128.9, 127.5, 

127.3, 119.8, 113.0, 112.8, 55.4. All the resonances of 1H and 13C NMR spectra were 

consistent with the reported values.16 

 

3-Trifluoromethylbiphenyl (3h): The reaction of in situ prepared 

phenylmagnesium and 3-chlorobenzotrifluoride (2l, 135 mg, 0.75 

mmol) followed by purification by MPLC (n-hexane) afforded the 

title compound (26 mg, 0.12 mmol, 23%) as a yellow oil. Rf 0.71 (n-hexane). 1H NMR 

(400 MHz, CDCl3): δ 7.85 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.62–7.54 (m, 4H), 7.49 (t, 

J = 7.6 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3): δ 142.2, 

139.9, 131.3 (q, J = 32.2 Hz) 130.6, 129.4, 129.1, 128.2, 127.3, 125.9 (q, J = 3.5 Hz), 

OMe

CF3
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124.3 (q, J = 273.0 Hz), 124.1 (q, J = 3.8 Hz). 19F NMR (376 MHz, CDCl3): δ –63.14. 

All the resonances of 1H and 13C NMR spectra were consistent with the reported values.17 

 

5-Phenylbenzo[d][1,3]dioxole (3i): The reaction of in situ prepared 

phenylmagnesium and 5-chlorobenzo[d][1,3]dioxole (2m, 117 mg, 

0.75 mmol) followed by purification by MPLC (n-hexane/EtOAc = 

9:1) afforded the title compound (57 mg, 0.29 mmol, 57%) as a yellow oil. Rf 0.29 (n-

hexane). 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 

7.33 (t, J = 7.3 Hz, 1H), 7.09 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 6.90 (dd, J = 7.9, 1.9 Hz, 

1H), 6.01 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 148.2, 147.2, 141.1, 135.8, 128.9, 

127.06, 127.03, 120.8, 108.7, 107.8, 101.3. All the resonances of 1H and 13C NMR spectra 

were consistent with the reported values.17 

 

2-Phenylpyridine (3j): The reaction of in situ prepared 

phenylmagnesium and 2-chloropyridine (2n, 85 mg, 0.75 mmol) 

followed by purification by MPLC (n-hexane/EtOAc = 5:1) afforded the 

title compound (30 mg, 0.19 mmol, 39%) as a colorless oil. Rf 0.49 (n-hexane/EtOAc = 

5:1). 1H NMR (400 MHz, CDCl3): δ 8.70 (dt, J = 5.0, 1.4 Hz, 1H), 8.08–7.96 (m, 2H), 

7.75–7.64 (m, 2H), 7.48 (dd, J = 8.3, 6.6 Hz, 2H), 7.45–7.38 (m, 1H), 7.19 (td, J = 5.0, 

3.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3): δ 157.4, 149.7, 139.4, 136.7, 128.9, 128.7, 

126.9, 122.1, 120.5. All the resonances of 1H and 13C NMR spectra were consistent with 

the reported values.18 
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In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL) were added to the vial followed 

by indicated aryl fluoride 2 (0.50 mmol, 1.0 eq.). The mixture was stirred at –15 °C for 

22 h to generate diarylmagnesium. Insoluble solids of the resulting mixture were filtered 

off through the Pasteur pipette filter, which is filled with a glass fiber filter (GB-100R 

ADVANTEC®), with THF (1.0 mL). The obtained filtrate was put into another 4 mL vial 

with a stirring bar and chlorobenzene (2c, 84 mg, 0.75 mmol, 1.5 eq.). The reaction 

mixture was stirred at 60 °C for 24 h. To the mixture, 3 M HCl aq. (2.0 mL) was carefully 

added. The organic layer was separated. The remained aqueous layer was extracted with 

EtOAc (4.0 mL) x 3. All volatiles were removed in vacuo and the residue was purified by 

MPLC using 20 g iLOKTM-SL to obtain the corresponding product 3. 
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4-Methylbiphenyl (3a): The reaction with 4-fluorotolune (2o, 55 mg, 

0.50 mmol, 1.0 eq.) followed by purification by MPLC (n-hexane) 

afforded the title compound (60 mg, 0.36 mmol, 72%) as a white 

powder. All the resonances of 1H and 13C NMR spectra were consistent with the reported 

values.2h 

 

p-Terphenyl (3k): The reaction with 4-fluorobiphenyl (2p, 86 

mg, 0.50 mmol) followed by purification by MPLC (n-hexane) 

afforded the title compound (91 mg, 0.40 mmol, 79%) as a white 

solid. Rf 0.70 (n-hexane:EtOAc = 10:1). 1H NMR (101 MHz, 

CDCl3): δ 7.70 (s, 4H), 7.69–7.63 (m, 4H), 7.48 (t, J = 7.6 Hz, 4H), 7.38 (tt, J = 6.6, 1.3 

Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 140.8, 140.3, 129.0, 127.6, 127.5, 127.2. 

All the resonances of 1H and 13C NMR spectra were consistent with the reported values.19 

 

4-Methoxybiphenyl (3c): The reaction with 4-fluoroanisole (2q, 

63 mg, 0.50 mmol) followed by purification by MPLC (n-

hexane/EtOAc = 10:1) afforded the title compound (29 mg, 0.16 

mmol, 31%) as a white solid. All the resonances of 1H and 13C NMR spectra were 

consistent with the reported values.14 

 

4-Methylthiobiphenyl (3d): The reaction with 4-fluorothioanisole 

(2h, 71 mg, 0.50 mmol) followed by purification by MPLC (n-

hexane/EtOAc = 10:1) afforded the title compound (70 mg, 0.35 

mmol, 70%) as a white solid. All the resonances of 1H and 13C NMR spectra were 

Me

OMe

SMe
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consistent with the reported values.11c 

 

3-Methylbiphenyl (3l): The reaction with 3-fluorotoluene (2r, 55 

mg, 0.50 mmol) followed by purification by MPLC (n-hexane) 

afforded the title compound (60 mg, 0.36 mmol, 71%) as a colorless 

liquid. Rf 0.55 (n-hexane). 1H NMR (101 MHz, CDCl3): δ 7.63 (d, J = 7.6 Hz, 2H), 7.49–

7.43 (m, 4H), 7.37 (t, J = 7.5 Hz, 2H), 7.21 (d, J = 7.4 Hz, 1H), 2.46 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3): δ 141.5, 141.4, 138.5, 128.9, 128.82, 128.79 128.1, 127.4, 

127.3, 124.4, 21.7. All the resonances of 1H and 13C NMR spectra were consistent with 

the reported values.20 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL) were added to the vial followed 

by chlorobenzene (2c, 56 mg, 0.50 mmol, 1.0 eq.). The mixture was stirred at –15 °C for 

22 h to generate diphenylmagnesium. Insoluble solids of the resulting mixture were 

filtered off through the Pasteur pipette filter, which is filled with a glass fiber filter (GB-
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100R ADVANTEC®), using THF (1.0 mL). The obtained filtrate was put into another 4 

mL vial with a stirring bar and an indicated 3-fluorotolune (2r, 83 mg, 0.75 mmol, 1.5 

eq.). The reaction mixture was stirred at 60 °C for 24 h. To the mixture, 3 M HCl aq. (2.0 

mL) was carefully added. The organic layer was separated. The remained aqueous layer 

was extracted with EtOAc (4.0 mL) x 3. All volatiles of the combined organic layers were 

removed in vacuo and the residue was purified by MPLC using Biotage® Sfär Silica High 

Capacity Duo to obtain 3-methylbiphenyl (3l). 

 

3-Methylbiphenyl (3l): The reaction purified by MPLC (n-hexane) 

afforded the title compound (53 mg, 0.32 mmol, 63%) as a colorless 

liquid. All the resonances of 1H and 13C NMR spectra were consistent 

with the reported values.20 

 

Procedures for the reaction with filtration. 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL) were added to the vial followed 

by 4-fluorodiphenylmethane (2b, 93 mg, 0.50 mmol, 1.0 eq.). The mixture was stirred at 
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–15 °C for 22 h to generate diarylmagnesium. Insoluble solids of the resulting mixture 

were filtered off through the Pasteur pipette filter, which is filled with a glass fiber filter 

(GB-100R ADVANTEC®), with THF (1.0 mL). The obtained filtrate was put into another 

4 mL vial with a stirring bar and an indicated 4-fluoroanisole (2q, 95 mg, 0.75 mmol, 1.5 

eq.). The reaction mixture was stirred at 60 °C for 24 h. To the mixture, 3 M HCl aq. (2.0 

mL) was carefully added. The organic layer was separated. The remained aqueous layer 

was extracted with EtOAc (4.0 mL) x 3. All volatiles of the combined organic layers were 

removed in vacuo and the residue was purified by MPLC using 20 g iLOKTM-SL to obtain 

4-benzyl-4’-methoxybiphenyl (3m). 

 

4-Benzyl-4’-methoxybiphenyl (3m): The reaction followed 

by purification by MPLC (n-hexane:EtOAc = 10:1) afforded 

the title compound (102 mg, 0.37 mmol, 75%) as a white solid. 

Rf 0.45 (n-hexane:EtOAc = 10:1). 1H NMR (101 MHz, CDCl3): δ 7.51 (d, J = 8.7 Hz, 

2H), 7.48 (d, J = 8.2 Hz, 2H), 7.38–7.27 (m, 2H), 7.27–7.17 (m, 5H), 6.97 (d, J = 8.7 Hz, 

2H), 4.02 (s, 2H), 3.85 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 159.1, 141.2, 139.7, 

138.8, 133.7, 129.4, 129.1, 128.6, 128.1, 126.9, 126.3, 114.3, 55.5, 41.7. All the 

resonances of 1H and 13C NMR spectra were consistent with the reported values.21 

 

Procedures for the reaction without filtration. 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (18 mg, 0.75 mmol, 1.5 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

4a (20 mg, 13 μmol, 5.0 mol% of Rh) and THF (1.0 mL) were added to the vial followed 

OMe

Bn
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by 4-fluorodiphenylmethane (2b, 93 mg, 0.50 mmol, 1.0 eq.). The mixture was stirred at 

–15 °C for 22 h to generate diarylmagnesium. To the resulting mixture, 4-fluoroanisole 

(2q, 95 mg, 0.75 mmol, 1.5 eq.) was added in a one-pot manner. The reaction mixture 

was stirred at 60 °C for 24 h. To the mixture, 3 M HCl aq. (2.0 mL) was carefully added. 

The organic layer was separated. The remained aqueous layer was extracted with EtOAc 

(4.0 mL) x 3. All volatiles of the combined organic layers were removed in vacuo and the 

residue was purified by MPLC using 20 g iLOKTM-SL and recycling preparative HPLC 

to isolate the cross-coupling product 3m and the homo-coupling product 3n. 

 

4-Benzyl-4’-methoxybiphenyl (3m): The reaction purified by 

MPLC (n-hexane:EtOAc = 10:1) followed by recycling 

preparative HPLC afforded the title compound (78 mg, 0.29 

mmol, 57%) as a white solid. Rf 0.45 (n-hexane:EtOAc = 10:1). All the resonances of 1H 

and 13C NMR spectra were consistent with the reported values.21 

 

4,4’-Dimethoxybiphenyl (3n): The reaction of in situ 

prepared 4-benzylphenyl magnesium from 4-

fluorodiphenylmethane (2b, 93 mg, 0.50 mmol), and 4-

fluoroanisole (2q, 95 mg, 0.75 mmol) followed by purification by MPLC (n-

hexane:EtOAc = 10:1) and recycling preparative HPLC afforded the title compound (21 

mg, 0.10 mmol, 26%) as a white solid. Rf 0.40 (n-hexane:EtOAc = 10:1). 1H NMR (101 

MHz, CDCl3): δ 7.48 (d, J = 8.7 Hz, 4H), 6.96 (d, J = 8.9 Hz, 4H), 3.85 (s, 6H). 13C{1H} 

NMR (101 MHz, CDCl3): δ 158.8, 133.6, 127.9, 114.3, 55.5. All the resonances of 1H 

and 13C NMR spectra were consistent with the reported values.22  

OMe

MeO
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Site-Selective Magnesiation of Multi-Fluorinated Arenes Catalyzed by 

Rhodium–Aluminum Bimetallic Complexes 

 

The author reports the site-selective C–F magnesiation of multi-fluorinated arenes 

catalyzed by Rh–Al bimetallic complexes to prepare synthetically important fluorine-

containing organomagnesium reagents. The author clarifies that the catalyst-control stems 

from steric and electronic environments of the substrates. The protocol has been applied 

to the efficient synthesis of fluorine-containing pharmaceuticals and liquid crystal 

molecules.  
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Introduction 

Fluorine is the most electronegative atom and able to form the strongest single 

bond with carbon.1 These special features provide unique properties with fluorine-

containing compounds. Fluoroarenes are often found as key structural motifs in 

pharmaceuticals,2 agrochemicals,3 and organic materials4 (Scheme 4-1, A). In fact, 22% 

of small-molecule drugs registered globally in the past three decades contain fluorine 

atom,2a and the percentages are getting higher in recent years (2015: 34%, 2019: 43%).2a 

Hence, efficient methods to prepare substituted fluoroarenes are highly desired in modern 

organic synthesis.5 

Fluorine-containing organometallic reagents are useful tools for the synthesis of 

fluorine-containing compounds thanks to diverse transformations available with their 

carbon–metal bonds.6 Two complementary routes are potentially available to access these 

reagents (Scheme 4-1, B). Conventionally, fluorine-containing organometallics are 

prepared by the Balz–Schiemann reaction (step a)7 followed by halogenation8 (step b) 

and subsequent oxidative insertion,9 halogen/metal exchange reaction,10 or C–H bond 

metalation reactions (step c).11 However, harsh reactions conditions for the Balz–

Schiemann reaction and an issue of site-selectivity in the C–H bond metalation reaction 

have hampered their practical use. 

The other route starting from perfluoroarenes can be more attractive according 

to the following reasons: 1) Perfluoroarenes such as hexafluorobenzene (C6F6) and 

pentafluoropyridine (C5F5N) can be transformed by aromatic nucleophilic substitution 

(SNAr) reactions12 and transition-metal catalyzed cross-coupling reactions13 in a site-

selective manner thanks to the relatively weakened C–F bonds in perfluoroarenes14 (step 

d). 2) Perfluoroarenes can be prepared from upstream fluorine feedstocks such as F2/CoF2 
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or KF through direct perfluorination of arenes using CoF3 (Fowler process)15 or 

perchlorination wtih Cl2 followed by SNAr reaction with metal fluorides (Halex process)16 

(step e). However, this route has been hampered by a lack of site-selective C–F bond 

metalation (step f) of multi-fluoroarenes (C6FnX6-n: n = 2–4).14  

 

Scheme 4-1. Importance and synthetic strategies of functionalized aryl fluorides. 
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Although site-selective C–F bond metalation reactions of multi-fluoroarens were 

achieved through coordination of directing groups (Scheme 4-2, A),17 the site-selectivity 

in their absence has been difficult to control. Recently, Crimmin and coworkers developed 

the site-selective magnesiation of fluoroarenes using a dimeric Mg(I)–Mg(I) reagent 

(Scheme 4-2, B)18 and the alumination of multi-fluoroarenes using an Al(I) reagent by Pd 

catalysis (Scheme 4-2, C).19 However, these systems require stoichiometric amounts of 

reactive Mg(I) or Al(I) reagents, which are prepared from alkaline metals. Marder and 

Radius group reported the site-selective photocatalytic C–F bond borylation of multi-

fluoroarenes by Rh/Ni dual catalysis (Scheme 4-2, D).20 They have achieved the high site-

selectivity by promoting the rate-determining transmetalation step with the Rh 

photocatalyst at room temperature to afford fluorine-containing organoboron 

compounds.6 Nevertheless, modest catalyst efficiency, especially for di- or tri-

fluoroarenes, has been noted. 
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Scheme 4-2. Selected reports of site-selective metalation of multi-fluorinated arenes. 
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Scheme 4-3. Previous work and this work. 
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Results and discussion 

The author examined the site-selective magnesiation of 2,4-difluorotoluene (2a, 

0.50 mmol, 1.0 eq.) with Mg powder (1.5 mmol, 3.0 eq.), which was preactivated upon 

treatment with 1,2-dibromoethane (5.0 mol%), in the presence of Rh–Al complex 1a (5.0 

mol% Rh) in THF (1.5 mL, 0.33 M) at –15 °C (Eq. 4-1). Interestingly, 3-fluoro-4-toluic 

acid (3a), was selectively obtained in 78% yield through C(4)–F functionalization without 

formation of C2-carboxylated product 4a after quenching the reaction with CO2 followed 

by 3 M HCl aq. This result indicated that less sterically hindered C4-position underwent 

the magnesiation exclusively. Rh–Al complex 1b, which bears i-Pr groups on the 

phosphorus atoms instead of phenyl groups, also gave 3a in a site-selective manner, albeit 

in moderate yield. The observed site-selectivities were governed by the Rh–Al complexes. 

When the reaction was carried out with Rieke Mg23 in the absence of the catalyst, a 

mixture of 2-fluorotoluene (3a’) and 4-fluorotoluene (4a’) was obtained in low yield in a 

ratio of 3a’:4a’ = 1:2 after protonation with NH4Cl aq. These results demonstrate the 

potential of the present catalytic method for the selective preparation of fluorine-

containing building blocks from readily available multi-fluorinated arenes. 
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Next, the author investigated the scope of substrates in a 0.50 mmol scale under 

the optimized conditions using 1a (Scheme 4-4). 2,4-Difluorobiphenyl (2b) afforded the 
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iso-propoxy group to the Lewis acidic Al center. However, in the case of 2l, the C5-

position was predominantly magnesiated. This was probably because the C–F bond at the 

C5-position of 2l was electronically activated by the negative inductive effect of Oi-Pr 

(Hammett parameter; sm = 0.10, sp = –0.45),24 whereas the C–F bond at C4-position of 

2k was electronically deactivated by a positive resonance effect of Oi-Pr. In addition to 

the site-selective magnesiatioin, the reactions of di- and tri-fluorobenzenes 2m–2p 

proceeded in a mono-selective manner. For examples, 4-fluorobenzoic acid (3m) was 

selectively formed in 87% yield without forming products derived from further 

magnesiation. 1,3-Difluorobenzene (2n) and 1,3,5-trifluorobenzene (2p) afforded 3-

fluorobenzoic acid (3n) in 99% yield and methyl 3,5-difluorobenzoate (3p) in 60% yield, 

respectively. On the other hand, 1,2-difluorobenzene (2o) gave a complex mixture and 

did not form the desired product. 
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Scheme 4-4. Substrate scope. 
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67:6:27 as estimated by 19F NMR spectroscopies of the crude product. The subsequent 

purification gave a mixture of 3q and 3q’ in 58% yield (3q:3q’ = 6.2:1), and 3q” in 17% 

yield. A slightly better site-selectivity was observed (3r:3r’:3r” = 83:13:4) when 2,3’,4-

trifluorobiphenyl (2r) was reacted. In both cases, the less sterically demanding and 

electron-deficient C–F bonds were activated. Calculated electrostatic potential (ESP) 

maps and the natural populations on the fluorinated carbons of 2q and 2r showed that the 

most reactive sites were the most positive. As reported previously,21 η2-coordination of 

the arene to the electron-rich Rh center precedes the C–F bond cleavage, and more 

electron-deficient arenes are preferred in the η2-coordination to discriminate the reaction 

site. Rh–Al catalyst 1a can thus selectively activate the C–F bond, which is sterically less 

hindered and more electrophilic.  
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Scheme 4-5. Site-selectivity of trifluorobiphenyl. 

 

 

The synthetic utility of the site-selective magnesiation reaction can be 

demonstrated through the synthesis of a fluorine-containing liquid crystal molecule and 

a drug molecule (Scheme 4-6). 2,5-Difluoro-1,3-dimethoxybenzene (2t) was prepared 
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C C

C
F

FF C

C C

F

F

+0.432

+0.423

+0.434

+0.425
2q 2r

δ+ δ+

ESP map of 2q

F

FR

R

FF

R

FR
3q
67

3q’
  6

3q”
27

17%

F

FF

C4’

C4

FF

F
C3’

C4
FR FF FR

3r
83

30%

3r’
13
2%

3r”
  4
3%

F R R

aAryl fluoride 2 (0.50 mmol), Mg powder (1.5 mmol), which is activated using 1,2-dibromoethane 
(5.0 mol%) beforehand, and 1a (5.0 mol% Rh) in THF (1.5 mL) at –30 ºC for 22 h. The resulting 
mixture treated with CO2 (1 atom). The methyl esters were isolated after reacting with TMSCHN2. 
bThe site-selectivity was estimated from 19F NMR spectroscopy of the crude mixture. cThe ratio 
was estimated from 1H NMR spectroscopy of the purified mixture of 3q and 3q’. dThe natural 
populations and ESP maps were calculated  by using Gaussian 16 and B3LYP/6-31G(d). 2q (–
0.003000 au (red) to 0.024000 au (blue)) and 2r (–0.002000 au (red) to 0.034000 au (blue)). 
Isovalue is 0.005000 au.

2q
site-selectivityb

isolated yield

2r
site-selectivityb

isolated yield
NBO Analysis and ESP Mapsd

Site-Selectivity of Trifluorobiphenyla

C4 C4’ C4-C4’R = CO2Me

C4 C3’ C4-C3’

: :

: :

58% (3q:3q’ = 6.2:1)c

F

F
F

F

F

F F

ESP map of 2r

+0.450

+0.448

–0.328

–0.330 –0.334
–0.332

–0.331

–0.328



Chapter 4 

129 

with MeOH,12b and then was subjected to the present magnesiation reaction. The less 

hindered C–F bond was reacted in a site-selective manner to give a fluoroarylmagnesium 

species, which was successfully transformed to a substructure 3s, which can be found as 

a substructure of a liquid crystal molecule,25 in 66% yield through the Kumada–Tamao–

Corriu (KTC) cross-coupling reaction.26 The magnesiation of 2b was followed by the Fe-

catalyzed cross-coupling reaction27 with tert-butyl 2-bromopropionate gave a synthetic 

precursor 3t in 61% yield (without Fe cat. 44%) of flurbiprofen, a nonsteroidal anti-

inflammatory drug.28  

 

Scheme 4-6. Synthetic application: materials and pharmaceuticals. 

  

2t
0.42 mmol

F Mg

Ph

1. site-selective
magnesiation

1a (5.0 mol% Rh) 
BrCH2CH2Br (5.0 mol%)

Mg powder (1.50 mmol)
THF, –15 °C, 22 h

R–Br (0.75 mmol)
Fe(acac)3 (3 mol%)

L (6 mol%)

THF, 0 °C, 1 h

2. Fe-catalyzed
cross-coupling

2b
0.50 mmol

3t
61% yield

Ph

F

t-BuO O

Ph

F F

flurbiprofen
Ph

F

HO O
L  =R–Br =

t-BuO O

Br

2s

F

F

F

F

MeO–H
KHMDS

MeO

OMe

F

F

MeO

OMe

Mg

F

2. site-selective
magnesiation

Cl
MeO

OMe
F

99%
yield

3s
66% yield

1a (5.0 mol% Rh) 
BrCH2CH2Br (5.0 mol%)

Mg powder (1.26 mmol)
THF, rt, 22 h

(5.0 eq.)

60 °C, 36 h

3. sequential
KTC coupling

MeO

OMe
F

liquid crystal molecules

1. SNAr

P P
t-Bu

Met-Bu

Me



Chapter 4 

130 

Conclusion 

In conclusion, the author has developed a site-selective magnesiation of multi-

fluorinated arenes catalyzed by Rh–Al bimetallic complexes to prepare fluorinated 

arylmagnesium reactants, which allow rapid access to various fluoroarenes through 

diverse transformations of the Grignard reagents. It is worth mentioning that the catalyst 

could precisely recognize the steric and electronic environments of fluoroarene substrates 

to control the reaction site. 

 

Experimental section 

Figure S4-1. A list of aryl fluorides in this study. 
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Figure S4-2. A list of products in this study.  
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General procedure for Scheme 4-4. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (37 mg, 1.5 mmol, 3.0 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

Aryl fluoride 2 (0.50 mmol, 1.0 eq.), 1a (20 mg, 13 µmol, 5.0 mol% of Rh), and THF (1.0 

mL) were put into the vial. The mixture was stirred for 22 h at –15 ºC and then, the 

resulting mixture was stirred under atmospheric pressure of CO2 at room temperature for 

20 min. To the mixture, 3 M HCl aq. (1.0 mL) was added. The mixture was extracted with 

EtOAc (4.0 mL) x 3 and combined organic layers were washed with H2O. All volatiles 

were removed in vacuo and the residue was purified by MPLC using Biotage® Sfär Silica 

High Capacity Duo to obtain the corresponding product 3. 
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Fn

CO2H
Fn

F 1a (5.0 mol% Rh) 

BrCH2CH2Br (5.0 mol%)
Mg powder (1.5 mmol)

THF, –15 ºC, 22 h

CO2 (1 atm)

then HCl aq.

2
0.50 mmol

3
isolated yield

N
N Al

Me

PPh2

Rh
PPh2

N

Cl Cl

2

CO2H

Me

F



Chapter 4 

133 

7.73 (d, J = 10.0 Hz, 1H), 7.29 (t, J = 7.4 Hz, 1H), 2.36 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3): δ 170.9 (d, J = 2.7 Hz), 161.1 (d, J = 246.2 Hz), 131.9 (d, J = 16.9 Hz), 131.7 (d, 

J = 5.1 Hz), 128.9 (d, J = 7.7 Hz), 125.9 (d, J = 3.5 Hz), 116.8 (d, J = 24.2 Hz), 15.1 (d, 

J = 4.0 Hz). 19F NMR (376 MHz, CDCl3): δ –116.85. All the resonances of 1H NMR 

spectrum was consistent with the reported values.29 

 

Methyl 3-fluoro-4-phenylbenzoate (3b): The reaction of 2,4-

difluorobiphenyl (2b, 95 mg, 0.50 mmol) was followed by being 

stirred under atmospheric pressure of CO2. To the mixture, 3 M 

HCl aq. (6.0 mL) was added. The mixture was extracted with EtOAc (4.0 mL) x 3 and 

combined organic layers were washed with H2O. All volatiles were removed in vacuo and 

the residue was diluted with diethyl ether (4.0 mL) and methanol (2.0 mL). Trimethylsilyl 

diazomethane was added dropwise into the solution at room temperature until no bubbles 

appeared for 20 min. After the work-up using acetic acid to consume the residual 

trimethylsilyl diazomethane,30 MPLC purification [silica gel, n-hexane/EtOAc (4:1)] 

afforded the title compound (58 mg, 0.25 mmol, 50%) as a colorless solid. Rf 0.69 [n-

hexane/EtOAc (4:1))]. 1H NMR (400 MHz, CDCl3): δ 7.90 (d, J = 8.0 Hz, 1H), 7.82 (d, 

J = 11.0 Hz, 1H), 7.58 (d, J = 7.7 Hz, 2H), 7.52 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 7.3 Hz, 

2H), 7.44 – 7.37 (m, 1H), 3.95 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 166.0 (d, J 

= 2.5 Hz), 159.5 (d, J = 248.7 Hz), 134.9, 133.8 (d, J = 13.0 Hz), 131.1 (d, J = 8.0 Hz), 

130.9 (d, J = 3.8 Hz), 129.1 (d, J = 3.3 Hz), 128.7 (2 peaks were overlapped), 128.5, 125.6 

(d, J = 3.8 Hz), 117.5 (d, J = 25.2 Hz), 52.5. 19F NMR (376 MHz, CDCl3): δ –117.65. 

m.p. 65 °C. HRMS (APCI) m/z: [M + H]+ Calcd. for C14H12F1O2 231.0816; Found, 

231.0815. 

CO2MeF
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4-(4-Anisyl)-3-fluorobenzoic acid (3c): The reaction of 

2,4-difluoro-4’-methoxybiphenyl (2c, 110 mg, 0.50 mmol) 

was followed by being stirred under atmospheric pressure 

of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the title 

compound (82 mg, 0.33 mmol, 67%) was obtained as a colorless solid. Rf 0.41 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, DMSO-d6): δ 7.82 (d, J = 8.0 Hz, 1H), 7.73 

(d, J = 11.4 Hz, 1H), 7.63 (t, J = 7.9 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 

Hz, 2H), 3.81 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6): δ 166.1, 159.6, 158.7 (d, J 

= 246.3 Hz), 132.3 (d, J = 12.9 Hz), 131.3 (d, J = 7.7 Hz), 130.7 (d, J = 3.4 Hz), 130.2 (d, 

J = 2.8 Hz), 126.3, 125.7 (d, J = 2.3 Hz), 116.7 (d, J = 24.3 Hz), 114.3, 55.3. 19F NMR 

(376 MHz, DMSO-d6): δ –117.40. m.p. 198 °C. HRMS (ESI) m/z: [M – H]– Calcd. for 

C14H10F1O3, 245.0619; Found, 245.0616.  

 

3-Fluoro-4-(4-thiomethylphenyl)benzoic acid (3d): The 

reaction of 2,4-difluoro-4’-thiomethylbiphenyl (2d, 118 mg, 

0.50 mmol) was followed by being stirred under 

atmospheric pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 

gradient)], the title compound (101 mg, 0.38 mmol, 77%) was obtained as a colorless 

solid. Rf 0.34 [n-hexane/EtOAc (4:3)]. 1H NMR (400 MHz, DMSO-d6): δ 7.84 (d, J = 8.0 

Hz, 1H), 7.74 (d, J = 11.3 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.38 

(d, J = 8.0 Hz, 2H), 2.52 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6): δ 166.1, 158.8 

(d, J = 247.3 Hz), 139.3, 132.0 (d, J = 12.8 Hz), 131.8 (d, J = 7.9 Hz), 130.8 (d, J = 3.1 

Hz), 130.3, 129.3 (d, J = 2.5 Hz), 125.8, 125.8 (d, J = 2.4 Hz), 116.7 (d, J = 24.3 Hz), 

14.4. 19F NMR (376 MHz, DMSO-d6): δ –117.12. m.p. 214 °C. HRMS (ESI) m/z: [M – 

CO2HF

MeO

CO2HF

MeS
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H]– Calcd. for C14H10F1O2S1 261.0391; Found, 261.0387. 

 

4-(4-tert-Butylphenyl)-3-fluorobenzoic acid (3e): The 

reaction of 2,4-difluoro-4’-tert-butylbiphenyl (2e, 123 mg, 

0.50 mmol) was followed by being stirred under atmospheric 

pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the 

title compound (105 mg, 0.39 mmol, 77%) was obtained as a colorless solid. Rf 0.50 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, DMSO-d6): δ 7.84 (d, J = 8.0 Hz, 1H), 7.75 

(d, J = 11.3 Hz, 1H), 7.66 (t, J = 7.9 Hz, 1H), 7.53 (s, 4H), 1.32 (s, 9H). 13C{1H} NMR 

(101 MHz, DMSO-d6): δ 166.1, 158.8 (d, J = 247.3 Hz), 151.2, 132.4 (d, J = 12.9 Hz), 

131.8 (d, J = 7.6 Hz), 131.1 (d, J = 28.7 Hz), 131.0, 128.6 (d, J = 3.5 Hz), 125.7 (d, J = 

3.2 Hz), 125.6, 116.7 (d, J = 24.3 Hz), 34.4, 31.0. 19F NMR (376 MHz, DMSO-d6): δ –

117.25. m.p. 257 °C. HRMS (ESI) m/z: [M – H]– Calcd. for C17H16F1O2 271.1140; Found, 

271.1138.  

 

3-Fluoro-4-mesitylbenzoic acid (3f): The reaction of 1-

mesityl-2,4-difluorobenzene (2f, 116 mg, 0.50 mmol) was 

followed by being stirred under atmospheric pressure of CO2. 

After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the title compound (128 

mg, 0.50 mmol, 99%) was obtained as a colorless solid. Rf 0.56 [n-hexane/EtOAc (4:3)]. 

1H NMR (400 MHz, DMSO-d6): δ 7.84 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 9.8 Hz, 1H), 7.32 

(t, J = 7.6 Hz, 1H), 6.97 (s, 2H), 2.27 (s, 3H), 1.93 (s, 6H). 13C{1H} NMR (101 MHz, 

DMSO-d6): δ 166.2 (d, J = 2.2 Hz), 158.8 (d, J = 243.5 Hz), 137.3, 135.5, 132.3 (d, J = 

7.5 Hz), 132.2 (d, J = 6.9 Hz), 132.1 (d, J = 7.6 Hz), 131.1, 128.1, 125.5 (d, J = 3.4 Hz), 

CO2HF

t-Bu
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Me
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116.2 (d, J = 24.1 Hz), 20.6, 19.9. 19F NMR (376 MHz, DMSO-d6): δ –114.27. m.p. 

195 °C. HRMS (ESI) m/z: [M – H]– Calcd. for C16H14F1O2 257.0983; Found, 257.0983. 

 

3-Fluoro-4-(2,4-dimethoxyphenyl)benzoic acid (3g): The 

reaction of 2,4-difluoro-2’,4’-dimethoxybiphenyl (2g, 125 

mg, 0.50 mmol) was followed by being stirred under 

atmospheric pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 

gradient)], the title compound (98 mg, 0.36 mmol, 71%) was obtained as a colorless solid. 

Rf 0.23 [n-hexane/EtOAc (4:3)]. 1H NMR (400 MHz, DMSO-d6): δ 7.78 (d, J = 7.9 Hz, 

1H), 7.67 (d, J = 10.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.69 (s, 

1H), 6.63 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H). 13C{1H} NMR (101 MHz, 

DMSO-d6): δ 166.3 (d, J = 2.7 Hz), 161.2, 159.2 (d, J = 246.4 Hz), 157.6, 132.3 (d, J = 

3.8 Hz), 131.5 (d, J = 7.4 Hz), 131.4, 130.5 (d, J = 15.9 Hz), 125.0 (d, J = 3.4 Hz), 116.0, 

115.8, 105.3, 98.7, 55.6, 55.4. 19F NMR (376 MHz, DMSO-d6): δ –112.97. m.p. 209 °C. 

HRMS (ESI) m/z: [M – H]– Calcd. for C15H12F1O4, 275.0725; Found, 275.0725.  

 

3-Fluoro-4-(3-anisyl)benzoic acid (3h): The reaction of 

2,4-difluoro-3’-methoxybiphenyl (2h, 110 mg, 0.50 mmol) 

was followed by being stirred under atmospheric pressure 

of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the title 

compound (92 mg, 0.37 mmol, 75%) was obtained as a colorless solid. Rf 0.20 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, DMSO-d6): δ 7.84 (d, J = 8.0 Hz, 1H), 7.75 

(d, J = 11.4 Hz, 1H), 7.68 (t, J = 7.9 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.8 Hz, 

1H), 7.13 (s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H). 13C{1H} NMR (101 MHz, 

CO2HF

MeO OMe

CO2HF

MeO
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DMSO-d6): δ 166.1 (d, J = 2.5 Hz), 159.4, 158.7 (d, J = 247.4 Hz), 135.5, 132.4 (d, J = 

13.1 Hz), 132.1 (d, J = 7.5 Hz), 131.2 (d, J = 3.3 Hz), 129.8, 125.7 (d, J = 3.3 Hz), 121.2 

(d, J = 2.8 Hz), 116.7 (d, J = 24.2 Hz), 114.4 (d, J = 2.6 Hz), 114.2, 55.2. 19F NMR (376 

MHz, DMSO-d6): δ –116.82. m.p. 202 °C. HRMS (ESI) m/z: [M – H]– Calcd. for 

C14H10F1O3 245.0619; Found, 245.0618. 

 

4-Fluoro-3-toluic acid (3i): The reaction of 2,5-difluorotoluene (2i, 

64 mg, 0.50 mmol) was followed by being stirred under atmospheric 

pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 5:4 gradient)], the 

title compound (52 mg, 0.34 mmol, 67%) was obtained as a white solid. Rf 0.47 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, Acetone-d6): δ 7.95 (d, J = 7.9 Hz, 1H), 7.91 

(t, J = 7.0 Hz, 1H), 7.18 (t, J = 9.0 Hz, 1H), 2.32 (s, 3H). 13C{1H} NMR (101 MHz, 

Acetone-d6): δ 166.8, 165.1 (d, J = 250.1 Hz), 134.3 (d, J = 6.7 Hz), 130.6 (d, J = 9.9 Hz), 

127.7 (d, J = 3.4 Hz), 125.9 (d, J = 17.4 Hz), 115.9 (d, J = 23.2 Hz), 14.3. 19F NMR (376 

MHz, Acetone-d6): δ –109.93. The resonance of 1H spectrum was consistent with the 

reported values. m.p. 159 °C. HRMS (ESI) m/z: [M – H]– Calcd. for C8H6F1O2 153.0357; 

Found, 153.0358.  

 

4-Fluoro-3-phenylbenzoic acid (3j): The reaction of 2,5-

difluorobiphenyl (2j, 95 mg, 0.50 mmol) was followed by being 

stirred under atmospheric pressure of CO2. After MPLC 

purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the title compound (77 mg, 0.36 

mmol, 72%) was obtained as a colorless solid. Rf 0.32 [n-hexane/EtOAc (4:3)]. 1H NMR 

(400 MHz, DMSO-d6): δ 8.04 (d, J = 7.7 Hz, 1H), 8.03–7.95 (m, 1H), 7.57 (d, J = 7.6 Hz, 

CO2H

F

Me
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2H), 7.51 (t, J = 7.5 Hz, 2H), 7.47–7.42 (m, 2H). 13C{1H} NMR (101 MHz, DMSO-d6): 

δ 166.3, 161.8 (d, J = 252.7 Hz), 134.2, 132.1 (d, J = 4.8 Hz), 130.9 (d, J = 9.7 Hz), 

128.83, 128.80, 128.5 (d, J = 14.2 Hz), 128.3, 127.7 (d, J = 3.3 Hz), 116.7 (d, J = 23.9 

Hz). 19F NMR (376 MHz, DMSO-d6): δ –111.81. m.p. 187 °C. HRMS (ESI) m/z: [M – 

H]– Calcd. for C13H8F1O2 215.0514; Found, 215.0515. 

 

The reaction of 2,4-difluoro-1-iso-propoxybenzene (2k, 86 mg, 0.50 mmol) was 

carried out at –20 °C and followed by being stirred under atmospheric pressure of CO2. 

MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)] gave a mixture of isomers 3k 

and 3k’ (82 mg, 0.41 mmol, 83%) as a colorless solid. The site-selectivity was estimated 

based on 1H NMR analysis of the crude mixture (3k:3k’ = 1.7:1, Figure S4-1). 

 

 

Figure S4-1. 1H NMR spectrum of the reaction mixture of 2k. 
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3-Fluoro-4-iso-propoxybenzoic acid (3k): Rf 0.40 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, CDCl3): δ 7.86 (dd, J 

= 8.2, 1.5 Hz, 1H), 7.80 (dd, J = 11.8, 2.1 Hz, 1H), 7.00 (t, J = 8.2 Hz, 1H), 4.69 (hept, J 

= 6.0 Hz, 1H), 1.41 (d, J = 5.9 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 170.7, 152.5 

(d, J = 262.4 Hz), 151.2 (d, J = 26.7 Hz), 127.5 (d, J = 3.0 Hz), 121.7 (d, J = 4.1 Hz), 

118.3 (d, J = 20.2 Hz), 115.0, 72.1, 22.0. 19F NMR (376 MHz, CDCl3): δ –133.41. 

colorless solid. m.p. 168 °C. HRMS (ESI) m/z: [M – H]– Calcd. for C10H10F1O3 197.0619; 

Found, 197.0620. 

 

5-Fluoro-2-iso-propoxybenzoic acid (3k’): Rf 0.53 [n-hexane/EtOAc 

(4:3)]. 1H NMR (400 MHz, CDCl3): δ 11.23 (br s, 1H), 7.83 (dd, J = 

8.7, 3.3 Hz, 1H), 7.24 (ddd, J = 9.1, 7.3, 3.4 Hz, 1H), 7.03 (dd, J = 9.1, 4.1 Hz, 1H), 4.81 

(hept, J = 6.1 Hz, 1H), 1.46 (d, J = 6.1 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 

164.5 (d, J = 1.9 Hz), 157.2 (d, J = 242.6 Hz), 152.6 (d, J = 2.8 Hz), 121.8 (d, J = 23.9 

Hz), 120.2 (d, J = 6.9 Hz), 119.6 (d, J = 24.4 Hz), 116.1 (d, J = 7.5 Hz), 75.1, 22.0. 19F 

NMR (376 MHz, CDCl3): δ –120.47. colorless solid. m.p. 59 °C. HRMS (ESI) m/z: [M – 

H]– Calcd. for C10H10F1O3 197.0619; Found, 197.0619. 

 

The reaction of 2,5-difluoro-1-iso-propoxybenzene (2l, 86 mg, 0.50 mmol) was 

carried out at –20 °C and followed by being stirred under atmospheric pressure of CO2. 

MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)] gave a mixture of isomers 3l 

and 3l’ (68 mg, 0.34 mmol, 69%) as a colorless solid. The site-selectivity was estimated 

based on 1H NMR analysis of the crude mixture (3l:3l’ = 11:1, Figure S4-2).  
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Figure S4-2. 1H NMR spectrum of the reaction mixture of 2l. 

 

4-Fluoro-3-iso-propoxybenzoic acid (3l): Rf 0.39 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, CDCl3): δ 7.75–7.69 

(m, 2H), 7.15 (dd, J = 10.7, 8.7 Hz, 1H), 4.65 (hept, J = 6.0 Hz, 1H), 1.40 (d, J = 6.2 Hz, 

6H). 13C{1H} NMR (101 MHz, CDCl3): δ 171.7, 157.4 (d, J = 255.1 Hz), 146.1 (d, J = 

11.4 Hz), 125.7 (d, J = 3.0 Hz), 124.2 (d, J = 8.1 Hz), 118.7 (d, J = 3.6 Hz), 116.6 (d, J = 

20.0 Hz), 72.5, 22.0. 19F NMR (376 MHz, CDCl3): δ –124.59. colorless solid. m.p. 135 °C. 

HRMS (ESI) m/z: [M – H]– Calcd. for C10H10F1O3 197.0619; Found, 197.0619. 

 

4-Fluoro-2-iso-propoxybenzoic acid (3l’): Rf 0.42 [n-hexane/EtOAc 

(4:3)]. 1H NMR (400 MHz, CDCl3): δ 10.94 (br, 1H), 8.17 (dd, J = 8.8, 

6.9 Hz, 1H), 6.80 (ddd, J = 8.8, 7.6, 2.3 Hz, 1H), 6.75 (dd, J = 10.3, 2.3 Hz, 1H), 4.80 
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(hept, J = 6.1 Hz, 1H), 1.49 (d, J = 6.1 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 

166.6 (d, J = 255.6 Hz), 164.8, 158.0 (d, J = 10.8 Hz), 136.0 (d, J = 11.3 Hz), 114.9 (d, J 

= 2.9 Hz), 109.5 (d, J = 21.4 Hz), 102.0 (d, J = 26.1 Hz), 74.7, 22.0. 19F NMR (376 MHz, 

CDCl3): δ –101.73. colorless solid. m.p. 81 °C. HRMS (ESI) m/z: [M – H]– Calcd. for 

C10H10F1O3 197.0619; Found, 197.0620. 

 

Synthesis of authentic samples.31,32 

 

 

To a stirred suspension of 3-fluoro-4-hydroxybenzoic acid (1.0 g, 6.4 mmol) and 

K2CO3 (2.7 g, 19 mmol) in anhydrous DMF (13 mL) was added 2-bromopropane (3.1 g, 

26 mmol) dropwise at room temperature under nitrogen atmosphere. After the addition 

was completed, the suspension was stirred at 60 °C for 24 h. After the reaction, the 

mixture was cooled to room temperature, quenched with 10 mL water, and then 

evaporated to dryness. The resulting residue were reacted with KOH (0.72 g, 13 mmol) 

in MeOH (4.0 mL) at 35 °C for 2 h. After the reaction, the mixture was cooled to room 

temperature and evaporated to dryness. To the reaction mixture was added water (10 mL) 

followed by 3 M HCl aq. to acidify to pH = 1. The organic layer was extracted with Et2O 

(5.0 mL) x 3 and combined organic layers were washed with H2O followed by brine, and 

dried over anhydrous MgSO4. Insoluble materials were filtered off and the filtrate was 

evaporated to dryness to afford 3k as a colorless solid (0.80 g, 4.0 mmol, 63%). Other 

authentic samples 3k’, 3l, and 3l’ were also synthesized using the above procedure [3k’ 

HO

F CO2H
iPrBr (4.0 eq.)

K2CO3 (3.0 eq.)

DMF (13 mL)
60 °C, 24 h

KOH  (2.0 eq.)

MeOH (4.0 mL)
35 °C, 2 h

iPrO

F CO2H

6.4 mmol 63%
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(1.1 g, 5.4 mmol, 84%), 3l (0.90 g, 4.6 mmol, 71%), 3l’ (1.1 g, 5.3 mmol, 83%)]. 

 

4-Fluorobenzoic acid (3m): The reaction of 1,4-difluorobenzene (2m, 

57 mg, 0.50 mmol) was followed by being stirred under atmospheric 

pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the 

title compound (60 mg, 0.43 mmol, 86%) was obtained as a colorless solid. Rf 0.34 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, CDCl3): δ 8.14 (t, J = 6.8 Hz, 2H), 7.15 (t, J 

= 8.4 Hz, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 171.3, 166.5 (d, J = 254.9 Hz), 133.1 

(d, J = 9.4 Hz), 125.6 (d, J = 2.6 Hz), 115.9 (d, J = 22.1 Hz). 19F NMR (376 MHz, CDCl3): 

δ –104.52. All the resonances of 1H and 13C NMR spectra were consistent with the 

reported values.33,34 

 

3-Fluorobenzoic acid (3n): The reaction of 1,3-difluorobenzene (2n, 

57 mg, 0.50 mmol) was followed by being stirred under atmospheric 

pressure of CO2. After MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)], the 

title compound (63 mg, 0.45 mmol, 90%) was obtained as a colorless solid. Rf 0.37 [n-

hexane/EtOAc (4:3)]. 1H NMR (400 MHz, CDCl3): δ 7.92 (d, J = 7.7 Hz, 1H), 7.80 (d, J 

= 9.2 Hz, 1H), 7.47 (q, J = 7.4 Hz, 1H), 7.33 (t, J = 8.4 Hz, 1H). 13C{1H} NMR (101 

MHz, CDCl3): δ 171.2, 162.7 (d, J = 247.4 Hz), 131.5 (d, J = 7.2 Hz), 130.4 (d, J = 7.9 

Hz), 126.1 (d, J = 3.3 Hz), 121.2 (d, J = 21.3 Hz), 117.2 (d, J = 23.1 Hz). 19F NMR (376 

MHz, CDCl3): δ –112.48. All the resonances of 1H and 13C NMR spectra were consistent 

with the reported values.35 

 

F

CO2H

CO2HF
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Methyl 3,5-difluorobenzoate (3p): The reaction of 1,3,5-

trifluorobenzene (2p, 66 mg, 0.50 mmol) was followed by being 

stirred under atmospheric pressure of CO2. To the mixture, 3 M HCl 

aq. (6.0 mL) was added. The mixture was extracted with EtOAc (4.0 mL) x 3 and 

combined organic layers were washed with H2O. All volatiles were removed in vacuo and 

the residue was diluted with diethyl ether (4.0 mL) and methanol (2.0 mL). Trimethylsilyl 

diazomethane was added dropwise into the solution of the residue at room temperature 

until no bubbles appeared for 20 min. Acetic acid was added to consume the residual 

trimethylsilyl diazomethane.30 After MPLC purification [silica gel, n-hexane/EtOAc 

(5:1)], the title compound (52 mg, 0.30 mmol, 60%) was obtained as a colorless liquid. 

Rf 0.71 [n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, CDCl3): δ 7.48 (br s, 2H), 6.95 (br 

s, 1H), 3.88 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 164.8 (br s), 162.9 (dd, J = 

250.0, 11.9 Hz), 133.5 (t, J = 9.1 Hz), 112.6 (dd, J = 24.1, 9.2 Hz), 108.3 (t, J = 25.4 Hz), 

52.6 (br s). 19F NMR (376 MHz, CDCl3): δ –109.07. All the resonances of 1H, 13C and 

19F NMR spectra were consistent with the reported values.36 

 

Rieke magnesium conditions (Eq. 4-1).23 

 

MgCl2

1.0 mmol

+ K

1.8 mmol

KI (0.50 mmol)

THF (30 mL)
reflux, 3 h

Rieke Mg*

R

FF
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1.0 mmol

reflux, 3 h
then 

NH4Cl aq.

R

HF

0.2% 
(NMR yield)

R

FH

0.4% 
(NMR yield)

+

R = Me
1% conversion

1.7% 
(GC yield)

2.9% 
(GC yield)

R = Ph
39% conversion

3’ 4’

CO2MeF

F
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Freshly cut potassium (70 mg, 1.8 mmol, 1.8 eq.), MgCl2 (95 mg, 1.0 mmol, 1.0 

eq.), KI (83 mg, 0.50 mmol, 0.50 eq.), and THF (30 ml) were placed in an oven-dried 80 

mL Schlenk flask equipped with a condenser, a magnetic stirring bar, and N2 atmosphere. 

After the mixture was stirred and heated to reflux for 3 h to ensure complete reaction of 

potassium, the mixture was then cooled to rt for 30 min. Aryl fluorides 2a or 2b were 

added into the dark grey Rieke Mg suspension. After refluxing for 3 h, the resulting 

mixture was quenched by sat. NH4Cl aqueous solution.  

 

1. 2,4-Difluorotoluene (2a, R = Me). 

The yields of products were estimated based on 19F NMR analysis of a crude 

product (internal standard: C6F6). 2-Fluorotoluene (3a’) and 4-fluorotoluene (4a’) were 

observed in 0.2% and 0.4% yield, respectively (3a’:4a’ = 1:2, Figure S4-3). 99% of 

starting material 2a was recovered.  
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Figure S4-3. 19F NMR spectra of the reaction mixture of 2a and Rieke Mg. 

 

2. 2,4-Difluorobiphenyl (2b, R = Ph). 

The yields of products were estimated by gas chromatography analysis (internal 

standard: C13H28). 2-Fluorobiphenyl (3b’) and 4-fluorobiphenyl (4b’) were obtained in 

1.7% and 2.9% yield, respectively (3b’:4b’ = 37:63). 61% of starting material 2b was 

recovered.  
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mass (mg)entry

0

1

2

3

3b’

0

24.3

45.5

98.6

C13H28

0

99.8

98.3

106.5

y =
mmol of 3b’

mmol of C13H28

GC ratio

3b’

0

18.996

31.630

48.276

C13H28

0

81.004

68.370

51.724

x =
GC ratio of 3b’

0

0.23451

0.46263

0.93334

GC ratio of C13H28

Table S4-1. Data for the GC calibration curve to determine yield of 2-fluorobiphenyl (3b’)

0
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0
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0
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Table S4-2. Data for the GC calibration curve to determine yield of 4-fluorobiphenyl (4b’)
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General procedure for Scheme 4-5. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (37 mg, 1.5 mmol, 3.0 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 
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Table S4-3. Data for the GC calibration curve to determine yield of 2,4-difluorobiphenyl (2b)
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μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

Trifluorobiphenyl 2q or 2r (104 mg, 0.50 mmol, 1.0 eq.), 1a (20 mg, 13 µmol, 5.0 mol% 

of Rh), and THF (1.0 mL) were put into the vial. The mixture was stirred for 22 h at –30 

ºC and then, the resulting mixture was stirred under atmospheric pressure of CO2 at room 

temperature for 20 min. To the mixture, 3 M HCl aq. (6.0 mL) was added. The mixture 

was extracted with EtOAc (4.0 mL) x 3 and combined organic layers were washed with 

H2O. All volatiles were removed in vacuo and the residue was diluted with diethyl ether 

(6.0 mL) and methanol (2.0 mL). Trimethylsilyl diazomethane was added dropwise into 

the solution of the residue at room temperature until no bubbles appeared for 20 min. 

After addition of acetic acid to consume the residual trimethylsilyl diazomethane,30 all 

volatiles were removed in vacuo and the residue was purified by MPLC using Biotage® 

Sfär Silica High Capacity Duo to obtain the corresponding product 3q (3q’ and 3q”) or 

3r (3r’ and 3r”). 

 

Reaction of 2q: MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)] gave a 

mixture of isomers 3q and 3q’ (72 mg, 0.29 mmol, 58%, 3q:3q’ = 6.2:1) as a colorless 

solid (Figure S4-4). The dicarboxylated product 3q” was isolated in 17% (25 mg, 0.087 

mmol) as a colorless solid.  
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Figure S4-4. 1H NMR spectra of a mixture of isomers 3q and 3q’ and the authentic 

samples. 

 

The site-selectivity before isolation was estimated as 3q:3q’:3q” = 67:6:27 from 

19F NMR spectrum of the crude mixture (Figure S4-5). 
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Figure S4-5. 19F NMR spectra of the reaction mixture of 2q and the authentic samples. 

 

Methyl 2,4’-difluorobiphenyl-4-carboxylate (3q): Rf 0.68 

[n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, CDCl3): δ 7.88 

(dd, J = 7.8, 1.7 Hz, 1H), 7.81 (dd, J = 11.0, 1.7 Hz, 1H), 7.55 

(ddd, J = 8.9, 5.2, 1.8 Hz, 2H), 7.48 (t, J = 7.9 Hz, 1H), 7.24–7.10 (m, 2H), 3.95 (s, 3H). 

13C{1H} NMR (101 MHz, CDCl3): δ 166.0 (d, J = 2.7 Hz), 163.0 (d, J = 248.3 Hz), 159.4 

(d, J = 248.6 Hz), 132.7 (d, J = 13.5 Hz), 131.1 (d, J = 7.9 Hz), 131.0 (d, J = 3.2 Hz), 

130.9, 130.7 (d, J = 3.4 Hz), 125.7 (d, J = 3.7 Hz), 117.5 (d, J = 25.0 Hz), 115.8 (d, J = 

21.3 Hz), 52.6. 19F NMR (376 MHz, CDCl3): δ –113.62, –117.74. colorless solid. m.p. 

84 °C. HRMS (APCI) m/z: [M + H]+ Calcd. for C14H11F2O2 249.0722; Found, 249.0721. 
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Methyl 2’,4’-difluorobiphenyl-4-carboxylate (3q’): Rf 

0.68 [n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, CDCl3): 

δ 8.10 (d, J = 8.6 Hz, 2H), 7.56 (dd, J = 8.3, 1.8 Hz, 2H), 7.41 

(td, J = 8.7, 6.4 Hz, 1H), 7.02–6.86 (m, 2H), 3.93 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3): δ 166.9, 162.8 (dd, J = 250.2, 11.6 Hz), 159.9 (dd, J = 251.7, 11.8 Hz), 139.6, 

131.5 (dd, J = 9.6, 4.8 Hz), 129.9, 129.4, 129.0 (d, J = 3.0 Hz), 124.4 (dd, J = 13.4, 3.9 

Hz), 111.9 (dd, J = 21.4, 3.9 Hz), 104.7 (t, J = 25.9 Hz), 52.3. 19F NMR (376 MHz, 

CDCl3): δ –110.42, –113.40. colorless solid. m.p. 92 °C. HRMS (APCI) m/z: [M + H]+ 

Calcd. for C14H11F2O2 249.0722; Found, 249.0721. 

 

Dimethyl 2-fluorobiphenyl-4,4’-dicarboxylate 

(3q”): Rf 0.50 [n-hexane/EtOAc (4:1)]. 1H NMR (400 

MHz, CDCl3): δ 8.13 (dt, J = 8.0, 1.5 Hz, 2H), 7.91 (dd, 

J = 8.0, 1.7 Hz, 1H), 7.83 (dd, J = 11.0, 1.7 Hz, 1H), 7.65 (dd, J = 8.3, 1.8 Hz, 2H), 7.53 

(t, J = 7.8 Hz, 1H), 3.95 (s, 3H), 3.95 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 166.8, 

165.8 (d, J = 2.7 Hz), 159.5 (d, J = 250.2 Hz), 139.4, 132.6 (d, J = 13.4 Hz), 131.8 (d, J 

= 7.7 Hz), 130.8 (d, J = 3.4 Hz), 130.1, 129.9, 129.2 (d, J = 3.5 Hz), 125.8 (d, J = 3.7 Hz), 

117.6 (d, J = 24.7 Hz), 52.6, 52.4. 19F NMR (376 MHz, CDCl3): δ –117.07. colorless solid. 

m.p. 140 °C. HRMS (APCI) m/z: [M + H]+ Calcd. for C16H14F1O4 289.0871; Found, 

289.0872. 

 

Reaction of 2r: MPLC purification [n-hexane/EtOAc (4:1 to 3:2 gradient)] and HPLC 

[n-hexane/EtOAc (98:2)] gave 3r (37 mg, 0.15 mmol, 30%), 3r’ (2.3 mg, 0.010 mmol, 

2%), and 3r” (3.7 mg, 0.013 mmol, 3%) as a colorless solid. 
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The site-selectivity was estimated as 3r:3r’:3r” = 83:13:4 from 19F NMR 

spectrum of the crude mixture (Figure S4-6). 

 

 

Figure S4-6. 19F NMR spectra of the reaction mixture of 2r and the authentic samples. 

 

Methyl 2,3’-difluorobiphenyl-4-carboxylate (3r): Rf 0.65 

[n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, CDCl3): δ 7.89 

(dd, J = 8.2, 1.8 Hz, 1H), 7.82 (dd, J = 11.0, 1.8 Hz, 1H), 7.51 

(t, J = 7.8 Hz, 1H), 7.43 (td, J = 8.0, 5.6 Hz, 1H), 7.35 (dq, J = 7.6, 1.5 Hz, 1H), 7.29 (ddt, 

J = 10.0, 3.0, 1.8 Hz, 1H), 7.11 (tdd, J = 8.4, 2.7, 1.2 Hz, 1H), 3.95 (s, 3H). 13C{1H} NMR 

(101 MHz, CDCl3): δ 165.9 (d, J = 2.3 Hz), 162.9 (d, J = 246.2 Hz), 159.5 (d, J = 249.9 

Hz), 136.9 (d, J = 7.8 Hz), 132.5 (dd, J = 13.3, 1.9 Hz), 131.7 (d, J = 7.7 Hz), 130.7 (d, J 

= 3.1 Hz), 130.3 (d, J = 8.1 Hz), 125.8 (d, J = 3.7 Hz), 124.9 (dd, J = 3.8, 1.9 Hz), 117.6 

�������������������������������	���
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������������
�������

CO2MeF

F

CO2MeF

F

FF

MeO2C

crude mixture  

CO2MeF

MeO2C



Chapter 4 

153 

(d, J = 24.4 Hz), 116.2 (dd, J = 22.9, 3.7 Hz), 115.5 (d, J = 21.1 Hz), 52.6. 19F NMR (376 

MHz, CDCl3): δ –113.25, –117.31. colorless solid. m.p. 60 °C. HRMS (APCI) m/z: [M + 

H]+ Calcd. for C14H11F2O2 249.0722; Found, 249.0721. 

 

Methyl 2’,4’-difluorobiphenyl-3-carboxylate (3r’): Rf 

0.68 [n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, CDCl3): 

δ 8.17 (s, 1H), 8.05 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 7.8 Hz, 

1H), 7.52 (t, J = 7.8 Hz, 1H), 7.43 (q, J = 7.9 Hz, 1H), 7.02–6.88 (m, 2H), 3.94 (s, 3H). 

13C{1H} NMR (101 MHz, CDCl3): δ 166.9, 162.7 (dd, J = 249.7, 12.0 Hz), 159.9 (dd, J 

= 250.9, 12.1 Hz), 135.4, 133.5 (d, J = 3.4 Hz), 131.6 (dd, J = 9.6, 4.8 Hz), 130.7, 130.1 

(d, J = 2.1 Hz), 129.0, 128.7, 124.5 (dd, J = 13.8, 4.2 Hz), 111.9 (dd, J = 21.1, 3.8 Hz), 

104.6 (t, J = 25.9 Hz), 52.4. 19F NMR (376 MHz, CDCl3): δ –111.01, –113.99. colorless 

solid. m.p. 66 °C. HRMS (APCI) m/z: [M + H]+ Calcd. for C14H11F2O2 249.0722; Found, 

249.0721. 

 

Dimethyl 2-fluorobiphenyl-3’,4-dicarboxylate (3r”): 

Rf 0.53 [n-hexane/EtOAc (4:1)]. 1H NMR (400 MHz, 

CDCl3): δ 8.24 (q, J = 1.6 Hz, 1H), 8.09 (dt, J = 7.8, 1.5 

Hz, 1H), 7.91 (dd, J = 8.2, 1.7 Hz, 1H), 7.83 (dd, J = 11.0, 1.8 Hz, 1H), 7.78 (dq, J = 7.9, 

1.5 Hz, 1H), 7.55 (td, J = 7.8, 1.7 Hz, 2H), 3.95 (s, 3H), 3.95 (s, 3H). 13C{1H} NMR (101 

MHz, CDCl3): δ 166.9, 165.9 (d, J = 2.7 Hz), 159.5 (d, J = 249.6 Hz), 135.2, 133.6 (d, J 

= 4.0 Hz), 132.7 (d, J = 13.5 Hz), 131.6 (d, J = 7.5 Hz), 130.9, 130.8, 130.2, 129.7, 128.9, 

125.8 (d, J = 3.3 Hz), 117.6 (d, J = 24.6 Hz), 52.6, 52.5. 19F NMR (376 MHz, CDCl3): δ 

–117.58. colorless solid. m.p. 99 °C. HRMS (APCI) m/z: [M + H]+ Calcd. for C16H14F1O4 
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289.0871; Found, 289.0872. 

 

Synthesis of authentic samples. 

 

 

A 15 mL vial was charged with 1-bromo-4-fluorobenzene (0.81 g, 4.7 mmol, 1.0 

eq.), 2-fluoro-4-methoxycarbonylphenylboronic acid (0.92 g, 4.7 mmol, 1.0 eq.), 

Pd(PPh3)4 (54 mg, 47 µmol, 1.0 mol%) and K2CO3 (1.3 g, 9.4 mmol, 2.0 eq.). 

Subsequently, 1,4-dioxane (7.5 mL) and H2O (2.5 mL) were introduced into the reaction 

vessel under N2 atmosphere. The reaction mixture was stirred at 90 °C for 8 h. After 

completion of the reaction, it was allowed to cool to room temperature. The residue was 

purified by MPLC [n-hexane/EtOAc (4:1)] on silica gel to give the 3q (0.34 g, 1.4 mmol, 

29%) as a colorless solid. Other authentic samples 3q’, 3q”, 3r, 3r’, and 3r” were also 

synthesized using the above procedure.  

3q’: The reaction of methyl 4-bromobenzoate (1.0 g, 4.7 mmol, 1.0 eq.) and 2,4-

difluorophenylboronic acid (0.88 g, 5.6 mmol, 1.2 eq.) gave 3q’ (1.1 g, 4.4 mmol, 94%) 

as a colorless solid.  

3q”: The reaction of 2-fluoro-4-methoxycarbonylphenylboronic acid (0.92 g, 4.7 mmol, 

1.0 eq.) and methyl 4-bromobenzoate (1.1 g, 4.9 mmol, 1.1 eq.) gave 3q” (1.1 g, 3.7 mmol, 

80%) as a colorless solid.   

3r: The reaction of 1-bromo-3-fluorobenzene (0.82 g, 4.7 mmol, 1.0 eq.) and 2-fluoro-4-

B(OH)2

MeO2C F
+

Br

F

MeO2C F

FPd(PPh3)4 (1.0 mol%)
K2CO3 (2.0 eq.)

1,4-dioxane (7.5 mL)
H2O (2.5 mL)

90 °C, 8 h
1.0 eq.4.7 mmol 29% yield
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methoxycarbonylphenylboronic acid (0.92 g, 4.7 mmol, 1.0 eq.) gave 3r (0.41 g, 1.7 

mmol, 36%) as a colorless solid.   

3r’: The reaction of methyl 3-bromobenzoate (1.0 g, 4.7 mmol, 1.0 eq.) and 2,4-

difluorophenylboronic acid (0.88 g, 5.6 mmol, 1.2 eq.) gave 3r’ (1.1 g, 4.4 mmol, 96%) 

as a colorless solid. 

3r”: The reaction of 2-fluoro-4-methoxycarbonylphenylboronic acid (0.92 g, 4.7 mmol, 

1.0 eq.) and methyl 3-bromobenzoate (1.1 g, 4.9 mmol, 1.1 eq.) gave 3r” (0.89 g, 3.1 

mmol, 66%) as a colorless solid. 

 

General procedure for Scheme 4-6. 

1-1. Aromatic nucleophilic substitution of 1,2,3,5-tetrafluorobenzene.12b 

 

 

To a solution of methanol (0.85 g, 27 mmol) and 1,2,3,5-tetrafluorobenzene (2s, 

1.8 g, 12 mmol) in anhydrous DMF (30 mL) at 0 °C, was added anhydrous KHMDS (27 

mmol, 1.0 M in THF, 2.2 eq.) dropwise. The reaction was allowed to warm to room 

temperature, stirred for 48 h, and then quenched with sat. aq. NaHCO3 (2.0 mL). The 

solvent was removed in vacuo and the residue was suspended in EtOAc (15 mL) and 

brine (5.0 mL), and the phases were separated. The aqueous phase was further extracted 

with EtOAc (15 mL). The combined organic phases were dried over Na2SO4 and 

concentrated to afford the crude material. The residue was purified by MPLC on silica 

gel [n-hexane/EtOAc (99:1)] to give 2,5-difluoro-1,3-dimethoxybenzene (2t) in 99% 

F

F F

+
KHMDS (2.2 eq.)

DMF (30 mL)
0 °C to rt, 48 h

F

MeOH
F

F OMe

OMe

2s
12 mmol

2.2 eq. 2t
99% (2.1 g)
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yield (2.1 g, 12 mmol) as a pale yellow solid.  

 

2,5-Difluoro-1,3-dimethoxybenzene (2t): Rf 0.51 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 6.34 (dd, J = 10.1, 6.0 Hz, 2H), 

3.86 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.7 (dd, J = 240.6, 

3.8 Hz), 148.9 (dd, J = 12.4, 9.7 Hz), 139.4 (dd, J = 239.5, 4.7 Hz), 93.7 (d, J = 27.7 Hz), 

56.7. 19F NMR (376 MHz, CDCl3): δ –115.70, –164.97. pale yellow solid. m.p. 95 °C. 

HRMS (APCI) m/z: [M + H]+ Calcd. for C8H9F2O2 175.0565; Found, 175.0566. 

 

1-2. Site-selective magnesiation and Kumada–Tamao–Corriu cross-coupling. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (31 mg, 1.3 mmol, 3.0 eq.), THF (500 μL), and 1,2-dibromoethane (4.0 mg, 21 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

1a (17 mg, 11 µmol, 5.0 mol% of Rh) and THF (1.0 mL) were added to the vial followed 

by 2t (73 mg, 0.42 mmol, 1.0 eq.). The mixture was stirred for 22 h at rt to generate the 

corresponding arylmagnesium. Insoluble solids of the resulting mixture were filtered off 

MeO

OMe

F

F
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Cl
MeO

OMe
F

3s
66% yield

1a (5.0 mol% Rh) 
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(5.0 eq.)
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0.42 mmol

N
N Al

Me

PPh2

Rh
PPh2

N

Cl Cl

2

FMeO

F
OMe



Chapter 4 

157 

through the Pasteur pipette filter, which is filled with a glass fiber filter (GB-100R 

ADVANTEC®), with THF (1.0 mL). The obtained filtrate was put into another 4 mL vial 

with a stirring bar and chlorobenzene (236 mg, 2.1 mmol, 5.0 eq.). The reaction mixture 

was stirred at 60 °C for 36 h. To the mixture, 3 M HCl aq. (2.0 mL) was carefully added. 

The organic layer was separated. The remained aqueous layer was extracted with EtOAc 

(4.0 mL) x 3. All volatiles were removed in vacuo and the residue was purified by MPLC 

using Biotage® Sfär Silica High Capacity Duo [n-hexane/EtOAc (100:0 to 95:5 gradient)] 

to obtain the title compound 3s (64 mg, 0.28 mmol, 66%) as a colorless solid. 

 

3,5-Dimethoxy-4-difluorobiphenyl (3s): Rf 0.76 [n-

hexane:EtOAc (9:1)]. 1H NMR (400 MHz, CDCl3): δ 7.55 (d, J = 

7.7 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 6.81 

(dd, J = 7.2, 1.8 Hz, 2H), 3.95 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 148.6 (d, J = 

8.5 Hz), 142.4 (d, J = 244.9 Hz), 141.0, 137.1 (d, J = 4.8 Hz), 128.9, 127.6, 127.2, 105.2, 

56.7. 19F NMR (376 MHz, CDCl3): δ –155.07. colorless solid. m.p. 77 °C. HRMS (APCI) 

m/z: [M + H]+ Calcd. for C14H14F1O2 233.0972; Found, 233.0971. 

 

 

 

 

 

 

 

 

MeO

F
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2. Site-selective magnesiation and Fe-catalyzed cross-coupling reaction. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (37 mg, 1.5 mmol, 3.0 eq.), THF (500 μL), and 1,2-dibromoethane (4.7 mg, 25 

μmol, 5.0 mol%), and the resulting mixture was stirred for 20 min at room temperature. 

1a (20 mg, 13 µmol, 5.0 mol% of Rh) and THF (1.0 mL) followed by 2b (95 mg, 0.50 

mmol, 1.0 eq.) were added to the vial. The mixture was stirred for 22 h at room 

temperature to generate the corresponding arylmagnesium. Insoluble solids of the 

resulting mixture were filtered off through the Pasteur pipette filter, which is filled with 

a glass fiber filter (GB-100R ADVANTEC®), with THF (1.0 mL). The obtained filtrate 

was slowly added over 60 min using a syringe into a THF solution (1.0 mL) of Fe(acac)3 

(5.3 mg, 15 µmol, 3.0 mol%), (R,R)-(+)-1,2-bis(tert-butylmethylphosphino)benzene (8.5 

mg, 30 µmol, 6.0 mol%), and tert-butyl 2-bromopropanoate (157 mg, 0.75 mmol, 1.5 eq.) 

at 0 °C.27 After stirring for 10 min, the reaction was quenched by addition of 3 M HCl aq. 

(2.0 mL). The mixture was extracted with diethyl ether (4.0 mL) x 3 and combined 

organic layers were washed with H2O. After MPLC purification [n-hexane/EtOAc (100:0 

to 95:5 gradient)], the title compound 3t (92 mg, 0.31 mmol, 61%) was obtained as a 

F Mg

Ph
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colorless solid. 

 

tert-Butyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3t): Rf 

0.69 [n-hexane/EtOAc (9:1)]. 1H NMR (400 MHz, CDCl3) δ 7.58–

7.56 (m, 2H), 7.47–7.35 (m, 2H), 7.42–7.33 (m, 2H), 7.18–7.13 (m, 

2H), 3.67 (q, J = 7.3 Hz, 1H), 1.51 (d, J = 7.2 Hz, 3H), 1.46 (s, 9H). 

13C{1H} NMR (101 MHz, CDCl3) δ 173.3, 159.8 (d, J = 248.1 Hz), 142.6 (d, J = 7.9 Hz), 

135.7, 130.7 (d, J = 3.6 Hz), 129.1 (d, J = 3.3 Hz), 128.5, 127.7, 127.5, 123.6 (d, J = 3.4 

Hz), 115.3 (d, J = 23.4 Hz), 81.0, 46.1, 28.1, 18.5. 19F{1H} NMR (376 MHz, CDCl3) δ –

118.57. colorless solid. m.p. 47 °C. HRMS (ESI) m/z: [M + Na]+ Calcd. for C19H21F1O2Na 

323.1418; Found, 323.1419. All the resonances of 1H spectrum were consistent with the 

reported values.37 

 

  

F

Ot-BuO
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General procedure for synthesis of multi-fluorinated arenes. 

 

 

A reaction vessel was charged with aryl halide (1.0 eq.), arylboronic acid (1.0–

1.3 eq.), Pd(OAc)2 (1.0–2.0 mol%), phosphine ligand (2.0–4.0 mol%, PPh3 for 2e, 2j; 

SPhos for 2f, 2g, 2h, 2q, 2r; or dppf for 2c, 2d), K3PO4·nH2O (2.0 eq.). Subsequently, 

toluene or toluene/THF/H2O (3/1/1) were introduced into the reaction vessel under N2 

atmosphere. The reaction mixture was stirred at 80 °C for 24–48 h. After completion of 

the reaction, it was allowed to cool to room temperature. The residue was purified by 

MPLC on silica gel to give the corresponding biaryls. 

 

2,4-Difluoro-4’-methoxybiphenyl (2c): The reaction with 1-

bromo-2,4-difluorobenzene (2.0 g, 10 mmol, 1.0 eq.) and 4-

anisylboronic acid (1.9 g, 12 mmol, 1.2 eq.) was carried out. 

After MPLC purification [n-hexane/EtOAc (100:0 to 95:5 gradient)], the title compound 

2c (1.4 g, 6.4 mmol, 61%) was obtained as a colorless solid. Rf 0.74 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.1 Hz, 2H), 7.38 (dd, J = 8.3, 7.6 Hz, 

1H), 7.00 (d, J = 6.4 Hz, 2H), 6.97–6.89 (m, 2H), 3.87 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3): δ 162.0 (dd, J = 248.0, 12.1 Hz), 159.8 (dd, J = 249.4, 11.7 Hz), 159.4, 131.2 

(dd, J = 9.4, 4.9 Hz), 130.1 (d, J = 2.9 Hz), 127.4, 125.1 (dd, J = 13.9, 3.9 Hz), 114.1, 

111.6 (dd, J = 21.1, 3.8 Hz), 104.4 (t, J = 26.0 Hz), 55.4. 19F NMR (376 MHz, CDCl3): δ 

–112.85, –114.36. m.p. 71 °C. All the resonances of 1H and 13C NMR spectra were 

X
Pd(OAc)2 (1.0–2.0 mol%)

phosphine ligand (2.0–4.0 mol%)

K3PO4·nH2O (2.0 eq.)
toluene (THF/H2O)

80 °C, 24–48 h

R
(HO)2B

R’+
R

R’

1.1 eq.

FF
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consistent with the reported values.38 

 

2,4-Difluoro-4’-thiomethylbiphenyl (2d): The reaction with 

4-bromothioanisole (0.70 g, 3.5 mmol, 1.0 eq.) and 2,4-

difluorophenylboronic acid (0.60 g, 3.8 mmol, 1.1 eq.) was 

carried out. After MPLC purification [n-hexane/EtOAc (100:0 to 95:5 gradient)], the title 

compound 2d (0.60 g, 2.5 mmol, 73%) was obtained as a colorless solid. Rf 0.68 [n-

hexane/EtOAc (95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.43 (dt, J = 8.7, 1.9 Hz, 2H), 

7.40–7.35 (m, 1H), 7.32 (d, J = 8.3 Hz, 2H), 6.98–6.87 (m, 2H), 2.53 (s, 3H). 13C{1H} 

NMR (101 MHz, CDCl3): δ 162.3 (dd, J = 248.0, 11.9 Hz), 159.8 (dd, J = 249.4, 11.8 

Hz), 138.5, 131.7, 131.3 (dd, J = 9.6, 4.8 Hz), 129.4 (d, J = 2.1 Hz), 126.5, 124.9 (dd, J 

= 13.6, 3.2 Hz), 111.7 (dd, J = 21.3, 3.8 Hz), 104.5 (t, J = 25.9 Hz), 15.8. 19F NMR (376 

MHz, CDCl3): δ –112.02, –114.02. m.p. 99 °C. HRMS (EI) m/z: [M]·+ Calcd. for 

C13H10F2S1 236.0466; Found, 236.0464. 

 

2,4-Difluoro-4’-tert-butylbiphenyl (2e): The reaction with 1-

bromo-2,4-difluorobenzene (0.37 g, 1.9 mmol, 1.0 eq.) and 4-

tert-butylphenylboronic acid (0.34 g, 1.9 mmol, 1.0 eq.) was 

carried out. After MPLC purification [n-hexane/EtOAc (100:0 to 99:1 gradient)], the title 

compound 2e (0.43 g, 1.7 mmol, 91%) was obtained as a colorless solid. Rf 0.89 [n-

hexane/EtOAc (95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.57–7.32 (m, 5H), 7.00–6.86 (m, 

2H), 1.38 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.2 (dd, J = 248.4, 12.1 Hz), 

159.9 (dd, J = 250.3, 11.9 Hz), 150.9, 132.2, 131.5 (dd, J = 9.5, 5.1 Hz), 128.7 (d, J = 2.5 

Hz), 125.6, 125.3 (dd, J = 13.8, 3.8 Hz), 111.6 (dd, J = 21.0, 4.0 Hz), 104.3 (dd, J = 26.0, 
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25.1 Hz), 34.7, 31.5. 19F NMR (376 MHz, CDCl3): δ –112.54, –114.14. m.p. 75 °C. All 

the resonances of 1H and 13C NMR spectra were consistent with the reported values.38 

 

1-Mesityl-2,4-difluorobenzene (2f): The reaction with 1-bromo-

2,4-difluorobenzene (3.0 g, 16 mmol, 1.0 eq.) and mesitylboronic 

acid (2.8 g, 17 mmol, 1.1 eq.) was carried out. After MPLC 

purification [n-hexane/EtOAc (100:0 to 99:1 gradient)], the title compound 2f (1.3 g, 5.6 

mmol, 36%) was obtained as a colorless oil. Rf 0.81 [n-hexane/EtOAc (95:5)]. 1H NMR 

(400 MHz, CDCl3): δ 7.15 (td, J = 8.4, 6.5 Hz, 1H), 7.02 (s, 2H), 7.01–6.91 (m, 2H), 2.39 

(s, 3H), 2.08 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.4 (dd, J = 247.9, 11.9 Hz), 

159.8 (dd, J = 247.2, 12.3 Hz), 137.8, 136.9, 132.3 (dd, J = 9.3, 5.3 Hz), 131.5, 128.3, 

124.1 (dd, J = 18.1, 4.1 Hz), 111.5 (dd, J = 20.8, 3.8 Hz), 104.2 (t, J = 26.0 Hz), 21.2, 

20.5. 19F NMR (376 MHz, CDCl3): δ –110.92, –112.18 HRMS (EI) m/z: [M]·+ Calcd. for 

C15H14F2 232.1058; Found, 232.1061. All the resonances of 1H NMR spectrum was 

consistent with the reported values.39 

 

2,4-Difluoro-2’,4’-dimethoxybiphenyl (2g): The reaction 

with 1-bromo-2,4-difluorobenzene (3.0 g, 16 mmol, 1.0 eq.) 

and 2,4-dimethoxyphenylboronic acid (3.1 g, 17 mmol, 1.1 eq.) 

was carried out. After MPLC purification [n-hexane/EtOAc (100:0 to 9:1 gradient)], the 

title compound 2g (3.2 g, 13 mmol, 81%) was obtained as a colorless solid. Rf 0.43 [n-

hexane/EtOAc (95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.31 (q, J = 6.4 Hz, 1H), 7.17 (dd, 

J = 8.6, 3.1 Hz, 1H), 6.90 (dt, J = 12.4, 9.1 Hz, 2H), 6.59–6.57 (m, 2H), 3.86 (s, 3H), 3.80 

(s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.2 (dd, J = 248.4, 11.3 Hz), 161.1, 160.2 
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(dd, J = 249.5, 12.2 Hz), 158.0, 132.7 (dd, J = 9.4, 5.0 Hz), 131.8, 122.2 (dd, J = 16.3, 

3.8 Hz), 116.8, 110.9 (dd, J = 21.1, 3.8 Hz), 104.5, 103.9 (t, J = 25.9 Hz), 98.9, 55.7, 55.5. 

19F NMR (376 MHz, CDCl3): δ –110.49, –112.85. m.p. 75°C. HRMS (APCI) m/z: [M + 

H]+ Calcd. for C14H13F2O2 251.0878; Found, 251.0882.  

 

2,4-Difluoro-3’-methoxybiphenyl (2h): The reaction with 1-

bromo-2,4-difluorobenzene (2.0 g, 10 mmol, 1.0 eq.) and 3-

anisylboronic acid (1.7 g, 11 mmol, 1.1 eq.) was carried out. 

After MPLC purification [n-hexane/EtOAc (100:0 to 95:5 gradient)], the title compound 

2h (2.1 g, 9.5 mmol, 92%) was obtained as a colorless liquid. Rf 0.69 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.32–7.22 (m, 2H), 6.99–6.96 (m, 2H), 6.84–6.77 

(m, 3H), 3.72 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.4 (dd, J = 248.6, 11.7 

Hz), 159.8 (dd, J = 250.5, 11.8 Hz), 159.7, 136.4, 131.5 (dd, J = 9.4, 4.9 Hz), 129.6, 125.3 

(dd, J = 13.5, 4.0 Hz), 121.4, 114.8 (d, J = 2.9 Hz), 113.3, 111.6 (dd, J = 21.0, 3.9 Hz), 

104.4 (t, J = 26.0 Hz), 55.2. 19F NMR (376 MHz, CDCl3): δ –111.90, –113.71. HRMS 

(EI) m/z: [M]·+ Calcd. for C13H10F2O1 220.0694; Found, 220.0697.  

 

2,5-Difluorobiphenyl (2j): The reaction with 1-bromo-2,5-

difluorobenzene (1.9 g, 10 mmol, 1.0 eq.) and phenylboronic acid (1.6 

g, 13 mmol, 1.3 eq.) was carried out. After MPLC purification [n-

hexane/EtOAc (100:0 to 99:1 gradient)], the title compound 2j (1.5 g, 8.1 mmol, 81%) 

was obtained as a colorless solid. Rf 0.73 [n-hexane/EtOAc (95:5)]. 1H NMR (400 MHz, 

CDCl3): δ 7.69 (dt, J = 8.1, 1.3 Hz, 2H), 7.59 (tt, J = 8.1, 1.8 Hz, 2H), 7.58–7.49 (m, 1H), 

7.29 (ddd, J = 9.1, 6.1, 3.2 Hz, 1H), 7.23 (td, J = 9.4, 4.6 Hz, 1H), 7.11 (ddt, J = 9.1, 7.2, 

F

F

FF

MeO
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3.3 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.9 (d, J = 241.7 Hz), 155.8 (d, J = 

243.4 Hz), 134.9, 130.5 (dd, J = 16.1, 7.8 Hz), 129.0 (d, J = 3.5 Hz), 128.7, 128.3, 117.2 

(dd, J = 27.0, 7.7 Hz), 117.0 (dd, J = 25.3, 4.9 Hz), 115.2 (dd, J = 24.0, 8.6 Hz). 19F NMR 

(376 MHz, CDCl3): δ –119.64, –124.68. All the resonances of 1H and 13C NMR spectra 

were consistent with the reported values.40 

 

2,4,4’-Trifluorobiphenyl (2q): The reaction with 1-bromo-2,4-

difluorobenzene (3.0 g, 16 mmol, 1.0 eq.) and 4-

fluorophenylboronic acid (2.4 g, 17 mmol, 1.1 eq.) was carried out. 

After MPLC purification [n-hexane/EtOAc (100:0 to 99:1 gradient)], the title compound 

2q (2.8 g, 13 mmol, 86%) was obtained as a colorless solid. Rf 0.83 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.55–7.41 (m, 2H), 7.37 (td, J = 8.7, 6.4 Hz, 1H), 

7.22–7.07 (m, 2H), 7.01–6.85 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3): δ 162.6 (d, J 

= 247.3 Hz), 162.4 (dd, J = 249.1, 11.7 Hz), 159.8 (dd, J = 250.2, 11.6 Hz), 131.4 (dd, J 

= 9.6, 4.8 Hz), 131.1 (d, J = 3.4 Hz), 130.7 (dd, J = 8.0, 2.4 Hz), 124.5 (dd, J = 13.6, 3.8 

Hz), 115.6 (d, J = 21.6 Hz), 111.8 (dd, J = 21.0, 3.9 Hz), 104.6 (t, J = 26.1 Hz). 19F NMR 

(376 MHz, CDCl3): δ –111.78, –114.20, –114.91. m.p. 89 °C. HRMS (EI) m/z: [M]·+ 

Calcd. for C12H7F3 208.0494; Found, 208.0499. All the resonances of 1H and 19F NMR 

spectra were consistent with the reported values.41 

 

2,3’,4-Trifluorobiphenyl (2r): The reaction with 1-bromo-2,4-difluorobenzene (1.0 g, 

5.2 mmol, 1.0 eq.) and 3-fluorophenylboronic acid (0.65 g, 5.7 mmol, 1.1 eq.) was carried 

out. After MPLC purification [n-hexane/EtOAc (100:0 to 99:1 gradient)], the title 

FF

F
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compound 2r (1.0 g, 4.7 mmol, 91%) was obtained as a colorless 

solid. Rf 0.83 [n-hexane/EtOAc (95:5)]. 1H NMR (400 MHz, 

CDCl3): δ 7.44–7.37 (m, 2H), 7.29 (dq, J = 7.9, 1.4 Hz, 1H), 7.23 

(ddt, J = 10.2, 2.8, 1.6 Hz, 1H), 7.08 (tdd, J = 8.3, 2.5, 0.9 Hz, 1H), 7.01–6.89 (m, 2H). 

13C{1H} NMR (101 MHz, CDCl3): δ 162.9 (d, J = 245.5 Hz), 162.7 (dd, J = 249.7, 11.9 

Hz), 159.8 (dd, J = 251.1, 11.5 Hz), 137.1 (d, J = 8.2 Hz), 131.5 (dd, J = 9.6, 4.7 Hz), 

130.1 (d, J = 8.5 Hz), 124.7, 124.3 (d, J = 13.5 Hz), 116.1 (dd, J = 22.5, 3.1 Hz), 114.8 

(d, J = 21.1 Hz), 111.9 (dd, J = 21.1, 3.9 Hz), 104.7 (t, J = 25.9 Hz). 19F NMR (376 MHz, 

CDCl3): δ –111.01, –113.53, –113.77. m.p. 30 °C. HRMS (EI) m/z: [M]·+ Calcd. for 

C12H7F3 208.0494; Found, 208.0496. All the resonances of 1H NMR spectrum was 

consistent with the reported values.42 

 

iso-Propoxide-substituted substrate synthesis.43 

 

 

2,4-Difluorophenol (5.2 g, 40 mmol, 1.0 eq.), 2-bromopropane (5.9 g, 48 mmol, 

1.2 eq.), and sodium hydroxide (1.9 g, 48 mmol, 1.2 eq.) were combined in DMF (15 mL) 

and heated at 70 °C. After 24 h, the reaction was cooled to room temperature. The product 

was extracted with diethyl ether, and then washed with water and brine. The combined 

organic layers were dried over MgSO4. Removal of solvent under reduced pressure and 

vacuum distillation from CaH2 provided 2,4-difluoro-1-iso-propoxybenzene (2k) as a 

colorless liquid (2.7 g, 16 mmol, 40%, volatile).  

F

i-PrO

FF

HO
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+

Br NaOH (1.2 eq.)

DMF (15 mL)
70 °C, 24 h

1.2 eq.40 mmol 40%
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2,4-Difluoro-1-iso-propoxybenzene (2k): Rf 0.90 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 6.92 (td, J = 9.1, 5.5 Hz, 1H), 

6.82 (ddd, J = 11.4, 8.5, 3.0 Hz, 1H), 6.74 (dddd, J = 9.4, 8.0, 3.2, 1.8 Hz, 1H), 4.41 (hept, 

J = 6.1 Hz, 1H), 1.32 (d, J = 6.1 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 156.9 (dd, 

J = 242.1, 10.5 Hz), 154.0 (dd, J = 248.6, 12.0 Hz), 142.3 (dd, J = 10.6, 3.7 Hz), 119.3 

(dd, J = 9.7, 3.1 Hz), 110.5 (dd, J = 21.9, 4.5 Hz), 104.9 (dd, J = 26.5, 22.8 Hz), 73.6, 

22.0. 19F NMR (376 MHz, CDCl3): δ –119.92, –128.64. colorless liquid. HRMS (EI) m/z: 

[M]·+ Calcd. for C9H10F2O1 172.0694; Found, 172.0698.  

 

 

 

2,5-Difluorophenol (5.0 g, 38 mmol, 1.0 eq.), 2-bromopropane (6.6 g, 54 mmol, 

1.4 eq.), and sodium hydroxide (2.2 g, 30 mmol, 3.0 eq.) were combined in DMF (13 mL) 

and heated at 70 °C. After 24 h, the reaction was cooled to room temperature. The mixture 

was extracted with diethyl ether, washed with water and brine, and dried over MgSO4. 

Removal of solvent under reduced pressure and vacuum distillation over CaH2 provided 

2,5-difluoro-1-iso-propoxybenzene (2l) as a colorless viscous liquid (6.0 g, 35 mmol, 

92%, volatile).  

 

2,5-Difluoro-1-iso-propoxybenzene (2l): Rf 0.90 [n-hexane/EtOAc 

(95:5)]. 1H NMR (400 MHz, CDCl3): δ 6.99 (ddd, J = 10.6, 8.9, 5.3 Hz, 

1H), 6.69 (ddd, J = 9.9, 6.7, 3.0 Hz, 1H), 6.56 (ddt, J = 9.0, 7.8, 3.2 Hz, 1H), 4.50 (hept, 

F
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F
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J = 6.0 Hz, 1H), 1.36 (d, J = 6.0 Hz, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.8 (d, 

J = 241.5 Hz), 150.0 (dd, J = 240.6, 3.5 Hz), 146.7 (t, J = 11.4 Hz), 116.4 (dd, J = 21.3, 

10.3 Hz), 106.8 (dd, J = 23.8, 7.0 Hz), 104.7 (d, J = 27.0 Hz), 72.5, 21.9. 19F NMR (376 

MHz, CDCl3): δ –117.71, –139.86. colorless liquid. HRMS (EI) m/z: [M]·+ Calcd. for 

C9H10F2O1 172.0694; Found, 172.0697. 

 

Unsuccessful substrates in this study. 
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Computational details. 

The geometry optimization was performed by the DFT method with the B3LYP 

functional in the gas phase, using 6-31G(d) basis sets.44 Natural bond orbital (NBO) 

analysis45 and electrostatic potential (ESP) mapping46 were carried out using the same 

functional using the same basis sets. The natural populations were calculated by NBO6.47 

All DFT calculations were performed using Gaussian 16.48  
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Cartesian coordinates for calculated structures.

 

 

 

 

2q 

C 2.936434 -1.205316 -0.521937 

C 1.543106 -1.195863 -0.519153 

C 0.818922 -0.123304 0.029128 

C 1.540415 0.955522 0.570462 

C 2.933175 0.961220 0.573982 

C 3.611131 -0.122439 0.028038 

H 3.498640 -2.028301 -0.950779 

H 1.009156 -2.027502 -0.969600 

H 1.008438 1.796324 1.000321 

H 3.494923 1.788014 0.996132 

C -0.665393 -0.161998 0.050126 

C -1.360947 -1.352312 0.328236 

C -1.457632 0.964131 -0.218450 

C -2.752377 -1.421963 0.334665 

H -0.788081 -2.243044 0.567079 

C -2.846134 0.940311 -0.220437 

C -3.474122 -0.266958 0.058108 

H -3.275445 -2.344903 0.559405 

H -3.414960 1.835560 -0.441843 

F -0.861442 2.142356 -0.505102 

F -4.820263 -0.310672 0.063843 

F 4.960356 -0.120832 0.028224 

 

 

 

 

2r 
C 3.126095 -0.744366 -0.216296 

C 1.748703 -0.906133 -0.274378 

C 0.909841 0.143751 0.133841 

C 1.497786 1.338717 0.584494 

C 2.884562 1.472632 0.631649 

C 3.720098 0.429051 0.231161 

H 1.343782 -1.836503 -0.657987 

H 0.868084 2.159640 0.905850 

H 3.321939 2.400833 0.988572 

C -0.563486 -0.044397 0.108382 

C -1.147634 -1.268688 0.479418 

C -1.450775 0.964713 -0.294486 

C -2.524194 -1.479343 0.450956 

H -0.499057 -2.069711 0.820325 

C -2.828814 0.797559 -0.337881 

C -3.344719 -0.435604 0.039538 

H -2.962003 -2.425614 0.748829 

H -3.474075 1.604176 -0.665021 

F -0.964429 2.164473 -0.678819 

F -4.678571 -0.616468 0.007641 

F 3.913576 -1.764890 -0.619434 

H 4.801373 0.511787 0.256555 
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F

FF

F
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Chapter 5 

 

 

Magnesiation of Alkyl Fluorides  

Catalyzed by Rhodium–Aluminum Bimetallic Complexes 

 

Since the pioneering work by Grignard in 1900, organomagnesium reagents, so-called 

Grignard reagents, have been considered as indispensable reactive reagents for building 

various organic molecules. Conventionally, alkyl Grignard reagents are prepared from 

the corresponding alkyl iodides, bromides, or chlorides with Mg, whereas the reaction of 

alkyl fluorides are usually not viable due to the high stability of the C–F bonds. Herein, 

the author describes that the Al–Rh bimetallic complexes catalyze the magnesiation of 

C(sp3)–F bonds of alkyl fluorides using Mg powder as an easy-to-handle reducing agent. 

The magnesiation of secondary and tertiary alkyl fluorides has also been achieved under 

the same conditions. 
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Introduction 

Since the seminal discovery of organomagnesium reagents (Grignard reagents) 

by Grignard, the reagents have been indispensable in organic synthesis due to their high 

reactivity toward various electrophiles to construct a wide variety of organic molecules.1 

Alkylmagnesium reagents are conventionally prepared from alkyl halides (R–X; X = Cl, 

Br, or I) and Mg turnings or powder (Scheme 5-1, A). Knochel and co-workers have 

pioneered the halogen/magnesium exchange reaction of the alkyl halides with i-

PrMgCl•LiCl (turbo Grignard reagent) as another reliable and practical method to prepare 

the Grignard reagents, enabling the preparation of alkylmagnesiums bearing functional 

groups.2 

On the other hand, preparation of alkylmagnesium reagents from alkyl fluorides 

has been difficult due to the high bond-dissociation energy of C–F bonds (BDE of CH3–

X; X = F: 115 kcal/mol vs. X = Br: 72 kcal/mol, X = H: 105 kcal/mol,).3 In order to 

magnesiate a C–F bond of alkyl fluorides, harsh reaction conditions (high temperature 

and prolonged time)4 or pyrophoric highly dispersed magnesium reagents are required 

(Scheme 5-1, B). For example, the magnesiation of 1-fluorooctane proceeds reportedly 

in moderate efficiency even with a large excess amount of Rieke Mg in THF.5 These 

protocols allow the magnesiation of primary alkyl fluorides, whereas that of secondary 

and tertiary ones are elusive. Recently, Crimmin and co-workers have demonstrated the 

magnesiation of primary, secondary, and tertiary alkyl fluorides using their own dimeric 

Mg(I)–Mg(I) complex, which is prepared by using stoichiometric amounts of alkaline 

metals.6 There have been no reports of general methods for the magnesiation of these 

alkyl fluorides with a readily available and easy-to-handle Mg agent.  
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Scheme 5-1. Conventional methods for preparation of alkyl Grignard reagents and 

magnesiation of alkyl fluorides. 

 

 

Recently, the author has developed the magnesiation of aryl fluorides catalyzed 

by Al–Rh bimetallic complex 1a, which activates the Ar–F bonds by the polarized Al–

Rh bond effectively in a cooperative manner (Scheme 5-2, A).7 Theoretical calculations 

and stoichiometric experiments have revealed that the cooperative Ar–F bond activation 

requires a small activation barrier of 3.7 kcal/mol. Accordingly, the author has anticipated 

that the Al–Rh bimetallic complexes could also be effective for the catalytic magnesiation 

of alkyl fluorides through C(sp3)–F bond activation in a similar cooperative manner 

(Scheme 5-2, B). 
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Scheme 5-2. Previous work and this work. 

 

 

Results and discussion 

The catalytic C(sp3)–F bond magnesiation of 2-(3-fluorobutyl)naphthalene (2a, 

0.10 mmol, 1.0 eq.) with Mg powder (0.50 mmol, 5.0 eq.) was conducted in the presence 

of several different bimetallic Rh catalysts 1 in THF at 80 °C for 47–48 h (Scheme 5-3, 

above). 2-Methyl-4-(naphthalen-2-yl)butanoic acid (3a) was obtained in 74% NMR yield 

with 1a (5.0 mol% of Rh) as a catalyst after quenching the reaction mixture with CO2 (1 

atm) followed by an acidic work-up with 3 M HCl aq. Al–Rh complex 1b, bearing 

isopropyl groups on the phosphorus instead of phenyl, also produced 3a in 66% NMR 

yield. The reaction was completely suppressed in the absence of the Al–Rh complexes 1. 

Combinations of [RhCl(nbd)]2 (5.0 mol% of Rh)/ligand (10 mol% of L) and Et2AlCl (20 

mol%) did not convert 3-fluoro-1-phenylbutane (2b), while Rh/PPh3 catalyst alone in the 
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absence of Et2AlCl interestingly gave 3ba in moderate yield (Scheme 5-3, below). 

Accordingly, Al–Rh complexes 1 was found to be the most effective for the catalytic 

magnesiation of alkyl fluorides to give the corresponding dialkylmagnesium species, 

possibly through the Schlenk equilibrium,8 based on NMR analyses of the reaction 

mixture before quenching with electrophiles.  

 

Scheme 5-3. Optimization and control experiments. 
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Various fluoroalkanes were examined for the magnesiation on a 0.50 mmol-

scale under the 1a-catalyzed conditions (Scheme 5-4). The reaction using primary alkyl 

fluoride, n-octyl fluoride (2c), afforded n-octane (3c) in 72% GC yield after quenching 

the reaction with H2O. Secondary alkyl fluoride 2b could be magnesiated and reacted 

with a variety of electrophiles, such as H2O, CO2, electrophilic borane reagent, 

benzaldehyde, the Weinreb amide,9 and O2 to obtain the corresponding products 3ba–3bg 

in good to moderate yield. Fluorocyclohexane (2d) was also reacted, and even tertiary 

alkyl fluoride 2e gave adamantane (3ea) and 1-adamantyl carboxylic acid (3eb) products 

through the magnesiation reaction. 
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Scheme 5-4. Substrate scope. 

  

 

A plausible catalytic cycle of the magnesiation of alkyl fluorides is shown in 

Scheme 5-5. Initially, catalyst precursor 1 is reduced by Mg powder to generate reactive 

X-type Al–Rh complex I, which cleaves the C(sp3)–F bond of alkyl fluoride 2 across the 

polarized Al–Rh bond in the cooperative activation manner TS to give bimetallic 

oxidative addition product II. Finally, Mg powder reduces II to produce the 

corresponding alkylmagnesium species III and regenerate the catalytically active species 
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Scheme 5-5. Plausible mechanism. 

 

 

Conclusion 

In conclusion, the author has developed a catalytic magnesiation of alkyl 

fluorides using Mg powder. It is worth noting that the protocol can be applicable to a 

range of alkyl fluorides including secondary and tertiary ones. 
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Experimental section 

 

Figure S5-1. A list of substrates and products in this study. 

 

General procedure for optimization and control experiments (Scheme 5-3). 
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In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (12 mg, 0.50 mmol, 5.0 eq.) and 2-(3-fluorobutyl)naphthalene (2a, 20 mg, 0.10 

mmol, 1.0 eq.). A THF (300 µL) suspension of 1 (13 μmol, 5.0 mol% of Rh) were added 

to the vial. After stirring for 43–48 h at 80 ºC, the reaction mixture was stirred under 

atmospheric pressure of CO2 at room temperature for 3–20 h. To the mixture, 3 M HCl 

aq. (1.5 mL) was added. The mixture was extracted with EtOAc (2.0 mL) x 3. All the 

volatiles were removed in vacuo. The yield of 3a was determined by 1H NMR 

spectroscopy with 1,3,5-trimethoxybenzene as an internal standard.10 

 

 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with indicated ligand 

(10 mol% of L). A THF (300 µL) solution of [RhCl(nbd)]2 (1.2 mg, 2.5 μmol, 5.0 mol% 

of Rh) were added to the vial. The mixture was stirred at room temperature for 30 min. 
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To the reaction mixture, 2-fluoro-4-phenylbutane (2b, 15 mg, 0.10 mmol, 1.0 eq.), 

magnesium powder (12 mg, 0.50 mmol, 5.0 eq.), Et2AlCl (23 µL, 20 µmol, 20 mol%; 

0.87 M hexane solution) were added in this order. After stirring for 48 h at 80 ºC, the 

reaction mixture was stirred under atmospheric pressure of CO2 at room temperature for 

2 h. To the mixture, 3 M HCl aq. (1.5 mL) was added. The mixture was extracted with 

EtOAc (2.0 mL) x 3. All the volatiles were removed in vacuo. The yield of 3ba was 

determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as an internal 

standard. 

 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with PPh3 (2.6 mg, 

10 µmol, 10 mol%). A THF (300 µL) solution of [RhCl(nbd)]2 (1.2 mg, 2.5 μmol, 5.0 

mol% of Rh) were added to the vial. The mixture was stirred at room temperature for 30 

min. To the reaction mixture, 2b (15 mg, 0.10 mmol, 1.0 eq.) and magnesium powder (12 

mg, 0.50 mmol, 5.0 eq.) were added in this order. After stirring for 48 h at 80 ºC, the 

reaction mixture was stirred under atmospheric pressure of CO2 at room temperature for 

2 h. To the mixture, 3 M HCl aq. (1.5 mL) was added. The mixture was extracted with 

EtOAc (2.0 mL) x 3. All the volatiles were removed in vacuo. The yield of 3ba was 

determined by 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as an internal 

standard.  
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Identification of organomagnesium species. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (37 mg, 1.50 mmol, 5.0 eq.) and 2b (46 mg, 0.30 mmol, 1.0 eq.). A THF (900 

µL) suspension of 1a (12 mg, 7.5 μmol, 5.0 mol% of Rh) were added to the vial. The 

mixture was stirred at 80 °C for 47 h and then, all the volatiles were removed in vacuo. 

The residue was diluted by C6D6 and filtered through a Pasteur pipette filter, which was 

filled with a glass fiber filter (GB-100R ADVANTEC®).  

 

 

 

The corresponding dialkylmagnesium compound was prepared by the following 

procedure based on the literature.11 In a glove box, a 4 mL vial with a stirring bar was 
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2-bromo-4-phenylbutane (107 mg, 0.50 mmol, 1.0 eq.) was added. The reaction mixture 

was stirred at room temperature for 1.5 h, and then, filtered through a Pasteur pipette filter, 

which was filled with a glass fiber filter (GB-100R ADVANTEC®). The obtained filtrate 

was put into another 4 mL vial with a stirring bar, 1,2-dioxane (44 mg, 0.50 mmol, 1.0 

eq.) and Et2O (1.0 mL). The reaction mixture was stirred at room temperature for 26 h. 

All the volatiles were removed in vacuo. The residue was diluted by C6D6 and filtered 

through the Pasteur pipette filter same as above. 

 

 

Figure S5-2. 13C NMR spectra of the generated alkylmagnesium and the corresponding 

independently prepared alkylmagnesium bromide and di(alkyl)magnesium.  
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General procedure for Scheme 5-4. 

 

 

In a glove box, a 4 mL vial with a stirring bar was charged with magnesium 

powder (61 mg, 2.50 mmol, 5.0 eq.) and alkyl fluoride 2 (0.50 mmol, 1.0 eq.). A THF 

(1.5 mL) suspension of 1a (20 mg, 13 μmol, 5.0 mol% of Rh) were added to the vial. The 

mixture was stirred at 80 °C for 48 h and then, reacted with an indicated electrophile. 

 

2-Methyl-4-phenylbutanoic acid (3ba): The reaction of 2-fluoro-

4-phenylbutane (2b, 76 mg, 0.50 mmol, 1.0 eq.) was followed by 

being stirred under atmospheric pressure of CO2 at room 

temperature for 2 h. To the mixture, 3 M HCl aq. (1.5 mL) was added. The mixture was 

extracted with EtOAc (2.0 mL) x 3. All the volatiles were removed in vacuo. After MPLC 

purification [n-hexane/EtOAc (70:30) containing AcOH (10 vol%)], the title compound 

(65 mg, 0.37 mmol, 73%) was obtained as a colorless oil. Rf 0.44 [n-hexane/EtOAc 

(70:30) containing AcOH (10 vol%)]. 1H NMR (400 MHz, CDCl3): δ 7.33–7.27 (m, 2H), 
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CDCl3): δ 183.0, 141.6, 128.6, 128.5, 126.1, 38.9, 35.3, 33.5, 17.1. All resonances of 1H 

and 13C NMR spectra were consistent with the reported values.12 

 

4,4,5,5-Tetramethyl-2-(1-methyl-3-phenylpropyl)-1,3,2-

dioxaborolane (3bc): The reaction of 2b (76 mg, 0.50 mmol, 1.0 

eq.) was followed by addition of 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (186 mg, 1.0 mmol, 2.0 eq.). After being stirred 

at room temperature for 17 h, purification of the mixture by MPLC [n-hexane/EtOAc 

(95:5)] gave the title compound (87 mg, 0.33 mmol, 67%) was obtained as a colorless oil. 

Rf 0.44 [n-hexane/EtOAc (95:5)]. 1H NMR (400 MHz, CDCl3): δ 7.31–7.25 (m, 2H), 

7.22–7.15 (m, 3H), 2.64 (ddd, J = 8.6, 6.5, 1.6 Hz, 2H), 1.81 (ddt, J = 14.0, 8.8, 7.1 Hz, 

1H), 1.73–1.51 (m, 1H), 1.27 (s, 12H), 1.17–1.05 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H). 

13C{1H} NMR (101 MHz, CDCl3): δ 143.2, 128.6, 128.3, 125.6, 83.0, 35.4, 24.92, 24.86, 

16.9 (br), 15.5. All resonances of 1H and 13C NMR spectra were consistent with the 

reported values.13 

 

2-Methyl-1,4-diphenyl-1-one (3bd): After the reaction of 2b 

(76 mg, 0.50 mmol, 1.0 eq.), the resulting mixture were filtered 

through a Pasteur pipette filter, which was filled with a glass fiber 

filter (GB-100R ADVANTEC®). After filtration, N-methoxy-N-

methylbenzamide (165 mg, 1.0 mmol. 2.0 eq.) was added to the filtrate. After being 

stirred at room temperature for 3 h, 3 M HCl aq. (1.5 mL) was added. The reaction mixture 

was extracted with EtOAc (2.0 mL) x 3. All the volatiles were removed in vacuo. After 

MPLC purification [n-hexane/EtOAc (95:5 to 80:20)], the title compound (46 mg, 0.19 
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mmol, 39%) was obtained as a pale yellow oil. Rf 0.22 [n-hexane/EtOAc (95:5)]. 1H NMR 

(400 MHz, CDCl3): δ 7.86 (dd, J = 8.1, 1.5 Hz, 2H), 7.55 (tt, J = 7.0, 1.4 Hz, 1H), 7.44 

(t, J = 7.6 Hz, 2H), 7.32–7.23 (m, 2H), 7.23–7.11 (m, 3H), 3.47 (h, J = 6.8 Hz, 1H), 2.65 

(td, J = 7.6, 1.9 Hz, 2H), 2.22–2.13 (m, 1H), 1.75 (ddt, J = 13.7, 8.6, 6.7 Hz, 1H), 1.24 (d, 

J = 6.9 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 204.3, 141.9, 136.7, 133.0, 128.8, 

128.6, 128.5, 128.4, 126.1, 39.9, 35.3, 33.6, 17.4. All resonances of 1H and 13C NMR 

spectra were consistent with the reported values.14 

 

4-Phenylbutane-2-ol (3be): This compound was prepared by the 

following procedure based on the literature.15 After the reaction of 2b 

(76 mg, 0.50 mmol, 1.0 eq.), the resulting mixture was filtered through 

a Pasteur pipette filter, which was filled with a glass fiber filter (GB-100R 

ADVANTEC®). The filtrate was stirred under atmospheric pressure of O2 at 10 °C for 

16 h. The reaction mixture was quenched by 3 M HCl aq. (1.5 mL) and extracted with 

Et2O (2.0 mL) x 3. All the volatiles were removed in vacuo. After MPLC purification [n-

hexane/EtOAc (70:30)], the title compound (28 mg, 0.19 mmol, 37%) was obtained as a 

colorless oil. Rf 0.30 [n-hexane/EtOAc (70:30)]. 1H NMR (400 MHz, CDCl3): δ 7.29 (dd, 

J = 8.1, 6.8 Hz, 2H), 7.24–7.15 (m, 3H), 3.84 (dq, J = 12.4, 6.2 Hz, 1H), 2.86–2.59 (m, 

2H), 1.78 (m, 2H), 1.24 (d, J = 6.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 142.2, 

128.5 (overlapped), 126.0, 67.6, 41.0, 32.3, 23.8. All resonances of 1H and 13C NMR 

spectra were consistent with the reported values.16 

 

Cyclohexanoic acid (3d): The reaction of fluorocyclohexane (2d, 51 mg, 

0.50 mmol, 1.0 eq.) was followed by being stirred under atmospheric 



Chapter 5 

 192 

pressure of CO2 at room temperature for 2 h. To the mixture, 3 M HCl aq. (1.5 mL) was 

added. The mixture was extracted with EtOAc (2.0 mL) x 3. All the volatiles were 

removed in vacuo, and the reside was extracted with sat. NaHCO3 aq. (8.0 mL) x 5. The 

combined aqueous layers were acidified by 3 M HCl aq. The acidified aqueous layer was 

extracted with EtOAc (80 mL) x 3 and dried over anhydrous Na2SO4. After filtration, all 

the volatiles were removed in vacuo. The title compound (35 mg, 0.27 mmol, 54%) was 

obtained as a yellow oil. Rf 0.38 [n-hexane/EtOAc (70:30) containing AcOH (10 vol%)]. 

1H NMR (400 MHz, CDCl3): δ 2.33 (tt, J = 11.3, 3.6 Hz, 1H), 1.93 (dt, J = 14.7, 3.7 Hz, 

2H), 1.85–1.71 (m, 2H), 1.64 (dq, J = 11.0, 3.8 Hz, 1H), 1.45 (qd, J = 11.7, 3.4 Hz, 2H), 

1.34–1.20 (m, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 182.6, 43.0, 28.9, 25.8, 25.5. All 

resonances of 1H and 13C NMR spectra were consistent with the reported values.17 

 

1-Adamantylcarboxylic acid (3eb): The reaction of 1-fluoroadamantane 

(2e, 77 mg, 0.50 mmol, 1.0 eq.) was followed by being stirred under 

atmospheric pressure of CO2 at room temperature for 2 h. To the mixture, 3 

M HCl aq. (1.5 mL) was added. The mixture was extracted with EtOAc (2.0 mL) x 3. All 

the volatiles were removed in vacuo, and the residue was extracted with sat. NaHCO3 aq. 

(8.0 mL) x 5. The combined aqueous layers were separated and acidified by 3 M HCl aq. 

The acidified aqueous layer was extracted with EtOAc (80 mL) x 3 and dried over 

anhydrous Na2SO4. After filtration, all the volatiles were removed in vacuo. The title 

compound (42 mg, 0.23 mmol, 46%) was obtained as a yellow oil. Rf 0.47 [n-

hexane/EtOAc (70:30) containing AcOH (10 vol%)]. 1H NMR (400 MHz, CDCl3): δ 2.03 

(m, 3H), 1.91 (d, J = 2.9 Hz, 6H), 1.79–1.66 (m, 6H). 13C{1H} NMR (101 MHz, CDCl3): 
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δ 183.7, 40.6, 38.7, 36.5, 27.9. All resonances of 1H and 13C NMR spectra were consistent 

with the reported values.18 

 

n-Octane (3c): After the reaction of n-octyl fluoride (2c, 66 mg, 0.50 mmol, 

1.0 eq.), the reaction mixture was quenched by H2O. The yield of 3c was 

estimated in 72% yield by GC with n-C13H28 as an internal standard (Table S5-1). 

 

Table S5-1. Data for the GC calibration curve obtained using an authentic sample of n-

octane (3c). 

mass (mg) x = mass of 

3c/mass of 

n-C13H28 

GC area y = GC area of 3c/GC 

area of n-C13H28  3c n-C13H28 3c n-C13H28  

12.0 23.8  0.504202 370098 711968  0.51982 

34.7 24.2  1.43388 771606 505839  1.52540 

55.9 24.2  2.30992 1411943 571833  2.46915 

81.0 24.2  3.34711 1752334 505233  3.46837 

103.1 23.5  4.38723 2157202 448826  4.80632 
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n-Butylbenzene (3bb): After the reaction of 2-fluoro-4-phenylbutane 

(76 mg, 0.50 mmol, 1.0 eq.), the reaction mixture was quenched by 

H2O. The yield of 3bb was estimated in 77% yield by GC with n-

C13H28 as an internal standard (Table S5-2). 

 

Table S5-2. Data for the GC calibration curve obtained using an authentic sample of n-

butylbenzene (3bb). 

mass (mg) x = mass of 

3bb/mass of 

n-C13H28 

GC area y = GC area of 3bb/GC 

area of n-C13H28  3bb n-C13H28 3bb n-C13H28  

14.7 24.0  0.61250 296209 434821  0.68122 

21.7 24.3  0.89300 385633 390788  0.98681 

66.7 23.9  2.79080 1081056 350337  3.08576 

97.0 23.8  4.07563 1811189 403057  4.49363 

123.2 23.8  5.17647 2272092 396861  5.72516 
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Adamantane (3ea): After the reaction of 1-fluoroadamantane (2d, 77 mg, 0.50 

mmol, 1.0 eq.), the reaction mixture was quenched by H2O. The yield of 3ea 

was estimated in 49% yield by GC with n-C13H28 as an internal standard (Table 

S5-3). 

 

Table S5-3. Data for the GC calibration curve obtained using an authentic sample of 

adamantane (3ea). 

mass (mg) x 

= 

mass of 3ea/mass 

of n-C13H28 

GC area y = GC area of 3ea/GC 

area of n-C13H28  3ea n-C13H28 3ea n-C13H28  

15.3 23.8  0.64286 213410 349824  0.61005 

40.2 24.1  1.66805 458312 224238  2.04386 

68.4 23.9  2.86192 812481 234719  3.46151 

97.4 23.4  4.16239 1575602 313119  5.03196 

117.9 23.3  5.06009 1770227 291052  6.08217 
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General procedure for preparation of alkyl fluorides. 

 

 

Alkyl fluorides were prepared by the following procedure based on the 

literature.19 A round-bottom flask with a stirring bar was charged with corresponding 

alcohol (1.0 eq.), PyFluor (1.1 eq.), and solvent. DBU (2.0 eq.) was added to the reaction 

mixture. After stirring at room temperature for 48–65 h under ambient atmosphere, the 

crude material was purified by MPLC. 

 

2-(3-Fluorobutyl)naphthalene (2a): To a solution of 4-

(naphthalen-2-yl)butan-2-ol (541 mg, 2.7 mmol, 1.0 eq.) and 

PyFluor (483 mg, 3.0 mmol, 1.1 eq.) in toluene (3.0 mL), DBU (822 mg, 5.4 mmol, 2.0 

eq.) were slowly added at 0 °C. The reaction mixture was stirred for 48 h at room 

temperature. After adding water (100 mL), the reaction mixture was extracted with 

EtOAc (60 mL) x 3. The combined organic layers were dried over anhydrous Na2SO4 and 

filtered. After removal of solvent, the crude material was purified by MPLC [silica gel, 

n-hexane/EtOAc (100:0 to 90:10)] to give the title compound (322 mg, 1.6 mmol, 59%) 

as white powder. Rf 0.16 [n-hexane]. 1H NMR (400 MHz, CDCl3): δ 7.81 (d, J = 7.4 Hz, 

1H), 7.78 (d, J = 8.5 Hz, 2H), 7.64 (br s, 1H), 7.44 (pd, J = 6.7, 1.5 Hz, 2H), 7.34 (dd, J 

= 8.3, 1.8 Hz, 1H), 4.82–4.58 (m, 1H), 2.97 (ddd, J = 14.7, 9.6, 5.4 Hz, 1H), 2.86 (ddd, J 

= 13.9, 9.2, 6.9 Hz, 1H), 2.17–2.00 (m, 1H), 2.00–1.81 (m, 1H), 1.37 (dd, J = 23.8, 6.0 

Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 139.1, 133.8, 132.2, 128.2, 127.8, 127.6, 

1.0 eq.

DBU (2.0 eq.)

THF or toluene

F

2a or 2b

Ar

OH

Ar
+

NFO2S

PyFluor
1.1 eq.

F



Chapter 5 

 198 

127.4, 126.7, 126.1, 125.4, 90.2 (d, J = 164.8 Hz), 38.7 (d, J = 21.1 Hz), 31.7 (d, J = 4.7 

Hz), 21.2 (d, J = 22.3 Hz). 19F NMR (376 MHz, CDCl3): δ –174.06 (dq, J = 43.3, 22.9 

Hz). All resonances of 1H, 13C and 19F NMR spectra were consistent with the reported 

values.20 

 

2-Fluoro-4-phenylbutane (2b): To a solution of 4-phenylbutane-2-ol 

(5.1 g, 34 mmol, 1.0 eq.) and PyFluor (6.0 g, 37 mmol, 1.1 eq.) in THF 

(40 mL), DBU (10 g, 67 mmol) were slowly added at room temperature. 

The reaction mixture was stirred for 65 h at room temperature. After adding water (50 

mL), the reaction mixture was extracted with n-hexane (100 mL) x 2. The combined 

organic layers were dried over anhydrous Na2SO4 and filtered with filter paper. After 

removal of the solvents, the crude material was purified by MPLC [silica gel, n-hexane] 

followed by distillation to give the title compound (1.7 g, 11 mmol, 33%) as a colorless 

oil. Rf 0.35 [n-hexane]. 1H NMR (400 MHz, CDCl3): δ 7.32–7.27 (m, 2H), 7.22–7.19 (m, 

3H), 4.73 (dqd, J = 8.3, 6.1, 3.9 Hz, 1H), 2.81 (ddd, J = 13.7, 9.9, 5.3 Hz, 1H), 2.69 (ddd, 

J = 13.8, 9.5, 6.9 Hz, 1H), 2.08–1.91 (m, 1H), 1.91–1.74 (m, 1H), 1.35 (dd, J = 23.9, 6.3 

Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 141.6, 128.6 (overlapped), 126.1, 90.2 (d, 

J = 165.0 Hz), 38.8 (d, J = 20.6 Hz), 31.5 (d, J = 4.3 Hz), 21.2 (d, J = 23.0 Hz). 19F NMR 

(376 MHz, CDCl3): δ –174.77 (tq, J = 43.8, 20.7 Hz). All resonances of 1H, 13C and 19F 

NMR spectra were consistent with the reported values.19 
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