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Abbreviations 
 
 
SSR  site-specific recombinase 
MORF  mononucleotide repeat frameshift 
MARCM mosaic analysis with repressive cell markers 
MADM  mosaic analysis with dual markers 
SPARC  sparse predictive activity through recombinase competition 
STARS  stochastic gene activation with genetically regulated sparseness 
AFD  amphid finger cell D 
mRNA  messenger RNA 
tRNA  transfer RNA 
BONCAT bioorthogonal non-normal amino acid tagging 
Azf   p-azide-L-phenylalanine 
MuPheRS mutated phenylalanyl-tRNA synthetase 
PheRS  phenylalanyl-tRNA synthetase 
ATR  all-trans-retinal 
NGM  nematode growth medium 
Ex array  Extrachromosomal array 
HSN  hermaphrodite-specific 
VC  Ventral C 
PCR  polymerase chain reaction 
SD medium synthetic defined medium 
qPCR  quantitative PCR 
RBE  recombinase binding element 
DMEM  Dulbecco's Modified Eagle Medium 
FBS  Fetal Bovine Serum 
GPR  Gaussian process regression 
LC   Liquid chromatography 
MS/MS  Tandem mass spectrometry 
GPCR  G protein-coupled receptors 
SPE  solid-phase extraction 
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Introduction 

 
In multicellular organisms, complex biological phenomena emerge when many cells 

form a network. In the brain, for example, as many as 86 billion neurons in humans and 100 
million neurons in mice form a complex network structure that generates complex brain functions 
such as learning and memory [1, 2]. The cell types that make up the network are also diverse, 
with various cells in the brain differentiated to have unique functions, including sensory neurons, 
interneurons, motor neurons. However, the mechanism by which neuronal networks create higher-
order life phenomena remains a mystery and is one of the greatest mysteries of the 21st century. 

The data-driven methodology is a powerful weapon for understanding complex 
biological phenomena such as brain function. In recent years, high-throughput sequencer and 
mass spectrometer technologies have developed remarkably [3, 4]. We are now in a situation 
where the dynamics of a vast number of molecules can be studied at once (Figure 1). As a result, 
data-driven analysis of the genome, transcriptome, proteome, and metabolome levels has become 
relatively easy, and the characterization and modeling of complex biological systems are 
progressing. However, it is not easy to directly adapt these omics analyses targeting biomolecules 
to life phenomena at the individual level. This is because it is not apparent which cells in an 
individual perform essential functions and should be analyzed. Therefore, to understand 
individual-level life phenomena that emerge when many cells form a network, a cell-level omics 
method that enables comprehensive annotation of the effects of each cell on life phenomena is 
considered necessary. 

 
Figure 1. Multi-omics approaches. The figure is made using Biorender (https://biorender.com/). 
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Caenorhabditis elegans as a model organism in the field of neurology 
 

One of the primary goals of neuroscience is to understand how computation is 
performed on neural networks. C. elegans is a beneficial model organism for neuroscience 
research (Figure 2). C. elegans hermaphrodites have a simple neural network of 302 neurons, and 
a comprehensive map of their neural connections, the connectome, has already been revealed [5, 
6]. In addition, C. elegans exhibit various behaviors, such as thermotaxis and chemotaxis, and 
various behavior assays have been established [7, 8]. However, more than 30 years after the C. 
elegans connectome was elucidated in 1986, the relationship between nematode behavior and 
neural networks has yet to be comprehensively clarified. 
 

 

Figure 2. Caenorhabditis elegans. (a) The picture of C. elegans (the picture is from 
Nematode.org). (b) Connectome of C. elegans (the picture is from mathinsight.org). 
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Research methods for the identification of neural function and problems with existing 
research methods 
 

Data-driven science, which accumulates vast amounts of data with no hypotheses, has 
deepened our understanding of complex biological processes. For example, the application of 
state-of-the-art mass spectrometers and next-generation sequencers streamlines our understanding 
of diverse biological processes [3, 4]. However, even with such omics analysis, it is challenging 
to gain a deeper understanding of the individual-level biological processes produced by complex 
neural networks. 

In recent years, a data-driven approach, which can be called structural cell omics, is 
bringing about a transformation. For example, serial electron microscopy combining a microtome 
or a focused ion beam with electron microscopy enables high-throughput acquisition of 3D 
structures of cellular networks with sub-nanometer resolution [9]. In addition, combining tissue 
clearing and various staining methods makes it possible to rapidly evaluate the cellular network 
structure of organs and even individuals (Figure 3) [10]. In neuroscience, attempts are underway 
to use these structural cell omics to elucidate the connectome in various animal species, from 
Drosophila to humans. Such comprehensive structural information will provide valuable insights 
into the function of cellular networks. In addition, new approaches, such as Brainbow and 
Optobow, have been developed, attempting to reveal brain structures by optical microscopy [11, 
12]. 

Structural information is vital for understanding how the brain works, but more is 
needed. It is necessary to accumulate comprehensive neurophysiological and behavioral data on 
which parts of the brain are functioning and to construct a behavioral model based on 
neuroanatomical evidence. Various neurophysiological data collection methodologies are used in 
C. elegans research, including calcium imaging, optical and electrophysiological recordings, and 
laser ablation [13–15]. However, no methodology achieves a high-throughput, systematic, and 
comprehensive accumulation of neurophysiological and behavioral data on the function of 
specific parts of the neural network. 
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Figure 3. Technologies for descriptive cellomics approaches. (a) Serial electron microscopy. The 
figure is modified from [16]. (b) Tissue clearing. The figure is from [17]. 
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Sparse labeling 
 

Sparse labeling is a genetic technique used to label only a small number of cells in an 
entire population. Sparse labeling affects many research fields but is especially important in 
neuroscience. This is because the nervous system contains a vast number of neurons with unique 
morphologies, and the brain contains a huge number of neuron cells [18, 19]. In addition, the 
brain is densely populated with neurons and a mixture of dendrites and axonal projections, making 
it challenging to visualize clear morphology. In particular, paradigms that examine the properties 
of probabilistically selected subsets of cells of the same type are very useful because the single-
cell analysis can elucidate the functional logic of neural circuits. Against this background, there 
is a strong need for probabilistic analysis of gene expression in small populations of cells. 

Various methodologies have been developed to achieve sparse labeling. One method is 
to screen transgenic lines with diverse gene expressions and then use animal lines with the desired 
expression pattern [20–23]. Other methods are to use site-specific recombinase (SSR). SSR-based 
methods can control sparseness levels in several ways. First, sparse levels can be controlled by 
appropriate tamoxifen doses in a CreER-lox-mediated recombination system [24–30]. Second, 
low-titer viral injections into Cre driver lines can be performed [31, 32]. However, these methods 
require very sophisticated experimental techniques and time-consuming titration of chemical and 
genetic guidance conditions to limit the spatial and temporal expression of recombinase. This 
creates a significant problem in that it is difficult to determine the sparseness level a priori with 
reproducibility. 

Methodologies that can control sparseness at a predictive level with high reproducibility 
would be beneficial. Under these circumstances, several methods have been developed in recent 
years. First, the MORF (mononucleotide repeat frameshift) method is a Cre expression-dependent 
sparse cell labeling method based on mononucleotide repeat frameshift as a stochastic translation 
switch. MORF can control sparseness levels with high reproducibility [33, 34]. The labeling rate 
is approximately 1 %–5 %, depending on the cell type of interest and the Cre line used. Second, 
mosaic analysis with repressive cell markers (MARCM) and mosaic analysis with dual markers 
(MADM) transgenic approaches have been established to sparsely label cells based on Cre-
induced interchromosomal recombination that occurs during mitosis [35–37]. The labeling rate is 
approximate ~1 %–5 %, depending on the type of cells targeted and the Cre line used. These 
methods can label effectors with high reproducibility but cannot tune sparseness to desired levels 
because labeling rates depend on cell type and Cre line. In addition, MADM and MARCM can 
only be used in cells undergoing mitosis. Third, SPARC (sparse predictive activity through 
recombinase competition) is a method that utilizes two attP and attB target sequences that compete 
with PhiC31 recombinase [38]. SPARC regulates sparseness levels using three types of 
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progressively truncated attP sequences. SPARC-D (Dense) labeled 48 %-51 % of cells, SPARC-
I (Intermediate) 17 %–22 %, and SPARC-S (Sparse) 3 %–7 %. Finally, there is stochastic gene 
activation with genetically regulated sparseness (STARS) derived from Brainbow [39–41]. The 
Brainbow system is a method for probabilistically labeling cells using two mutually exclusive lox 
sequences. STARS regulates the sparseness level of effectors by lengthening the spacer DNA 
sequences between lox2272 sequences, thereby controlling the efficiency of removal by Cre. 
STARS transgenes with spacers of various lengths can regulate sparseness levels from 5 % to 
50 % of the cell population. These methods have resulted in highly reproducible sparse labeling. 
However, controlling the sparsity rate to the desired level takes work. For example, SPARC can 
only adjust the sparseness level in three steps. STARS requires very long spacer DNA (e.g., 10 kb 
or more) to achieve low stochastic labeling rates, hindering the construction of transformants. 
 
Identification of neural function at molecular level 

 
Neurons are classified into several subclasses, each with different morphology, 

expression patterns, connectivity, and function [42]. For instance, two neurons called feeding 
neurons control sugar-induced feeding behavior in Drosophila feeding, and AFD (amphid finger 
cell D) neurons are known to control body temperature in C. elegans (Figure 4) [43–46]. 
Understanding the molecular mechanisms of these neuronal controls requires analysis of the 
molecular details of each neuronal subclass [47, 48]. 

The evaluation of expression patterns in neurons from mice, Drosophila, and C. elegans 
using single-cell RNA-seq analysis has led to the identification of new neuronal subclasses [49–
52]. However, the amount of mRNA transcription does not correlate with the amount of protein 
[53, 54]. Post-translational modifications such as phosphorylation and ubiquitination are also 
crucial in regulating cellular functions [55, 56]. Therefore, it is necessary to analyze the 
abundance and expression patterns of proteins in neurons of the target subclass to elucidate the 
molecular mechanisms of neuronal function. Fluorescent reporters are commonly used to evaluate 
protein expression, but it is challenging to observe highly multiplexed individual protein 
expression patterns with this method [57]. 

Figure 4. Schematic of AFD neurons in C. elegans. AFD neurons play an important role in the 
thermoregulation of C. elegans [44–47] (the picture is from wormatlas.org).  

AFDL AFDR



 9 

Target specific proteome 
 

Comprehensive protein expression analysis can identify unique proteins and molecular 
mechanisms of neural function in target subclasses [47, 48]. Mass spectrometry-based proteome 
analysis generated protein expression patterns for several subclasses [43, 46, 58]. In these studies, 
specific neuronal subclasses or all neurons were isolated via in vitro differentiation, laser 
dissection, flow cytometric sorting, and antibody-binding microbeads [59–62]. However, these 
methods have several limitations. For example, neurons differentiated in vitro do not form 
neuronal networks as in the brain. Laser dissection is difficult to use to separate branched or 
interconnected cells. Extended sample preparation durations are needed to separate cells for 
procedures like flow cytometric sorting and antibody-bound microbeads. In addition, artifacts 
during cell isolation cannot be ignored in flow cytometry sorting. 
 
In vivo proteome analysis with cell-selective metabolic labeling 
 

In vivo labeling of cell-specific proteins has been developed to recover proteins from 
specific cells without the need for cell isolation. In vivo cell-selective metabolic labeling of the 
proteome allows comprehensive proteome analysis of targeted cells [63–66]. These methods can 
be divided into two groups. One is protein biotinylation, in which target cells express artificial 
ascorbate peroxidase or artificial E. coli biotin ligase [63, 67]. The first method developed was 
BioID, which uses the E. coli biotin ligase BirA with a one-residue mutation [67]. This mutation 
reduces substrate specificity, and proteins near BirA are labeled with biotin. The protein in the 
target cells can be labeled with biotin by expressing the mutant BirA only in the target cells with 
a cell type-specific promoter. Biotin-labeled proteins can be recovered with avidin. However, the 
reaction efficiency of the single residue mutant BirA was low, and a long reaction time was 
required for labeling. Recently, a highly active BirA enzyme (TurboID) was obtained by 
introducing 15 mutations into BirA through directed evolution [66]. This enzyme enables highly 
efficient labeling of proteins in cells in a reaction of about 3 h. The other is protein azidation, in 
which mutant aminoacyl-tRNA synthetases are expressed in target cells. This method is called 
cell-selective bioorthogonal non-normal amino acid tagging (BONCAT) (Figure 5) [64, 68, 69]. 
BONCAT uses a mutated phenylalanyl-tRNA synthetase (MuPheRS) with a single residue 
mutation in aminoacyl-tRNA synthetase, which mediates the binding of amino acids to tRNA. 
This mutation allows the addition of azide-containing unnatural amino acids to tRNA, and the 
protein translated in the cell is labeled with azide. Biotinylation, as the name implies, involves 
labeling proteins in target cells with biotin and using biotin-streptavidin interactions to recover 
biotinylated proteins. However, biotinylated proteins are toxic to target cells [66]. In protein 
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azidation, newly synthesized proteins are labeled with azide-containing amino acids, and copper-
catalyzed azide-alkyne cycloaddition reactions recover these proteins. Azide-labeled proteins are 
known to have low toxicity to living cells [69]. 
 

 
 

Figure 5. Schematic of cell-selective biorthogonal non-normal amino acid tagging (BONCAT). 
The figure is made using Biorender (https://biorender.com/). 
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Chapter I 
 

High-throughput functional annotation of Caenorhabditis elegans 
neural network using a cellomics method 
 

In Chapter I, I established a new methodology called "functional" cellomics, which 
comprehensively explores the function of single neurons or subsets within a complex neural 
network in a given behavior. Functional cellomics requires a high-throughput, hypothesis-free, 
single-cell-resolved, and simple methodology to manipulate neurons and subsets and quantify 
their effects on behavior. I combined optogenetics, Brainbow technology, and behavioral analysis 
to achieve this approach. Optogenetics is a technology that allows on-demand optical control of 
neural activity through the expression of opsin genes [1]. To express opsin in a specific neuron, a 
specific promoter must be chosen in advance in traditional optogenetics [2]. Therefore, this 
method is hypothesis-driven, and while it is effective for accurately testing existing hypotheses, 
it is not suited for establishing entirely new hypotheses (Figure 1a). 

To solve this problem, a novel optogenetic experimental scheme was devised to achieve 
hypothesis-free annotation of neural networks (Figure 1b). Specifically, I developed a system to 
determine whether effectors are produced in each neuron probabilistically and to obtain a C. 
elegans library in which effectors are labeled in diverse patterns. To achieve this probabilistic 
labeling, Brainbow's technology, based on the Cre-lox system, was adopted [3]. If Brainbow 
technology can yield a library of C. elegans worms with random labeling patterns of effectors, 
behavioral experiments under light irradiation using that library could reveal previously unknown 
relationships between neural networks and behavior in a high-throughput manner. This method is 
hypothesis-free because it first detects individuals exhibiting abnormal behavior and then 
identifies the neurons responsible for it. It is expected that the information on structural cell omics 
and the physiological and behavioral data of individual neurons obtained from functional 
cellomics can be comprehensively accumulated to construct a behavioral model of neural 
networks at the whole-brain level. 
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Figure 1. Comparison of two approaches to annotating neural networks: hypothesis-driven and 
hypothesis-free (functional cellomics) approach. (a) A hypothesis-driven approach involves 

formulating a hypothesis regarding the specific neurons or subset of neurons responsible for a 
particular behavior. Transgenic C. elegans are then engineered to express an effector molecule, 

such as opsin, in these neurons, and behavioral experiments are conducted to determine the 
accuracy of the initial hypothesis. (b) A hypothesis-free approach (functional cellomics) 
involves randomly labeling individual neurons with an effector molecule. By performing 

behavioral experiments on a library of C. elegans with various patterns of neuron labeling and 
identifying individuals that exhibit different behaviors from wild-type, it may be possible to 

discover new relationships between neural networks and behavior by isolating and examining 
the neurons that produced the effector.

(a) Hypothesis-driven approach
Single neuron
Single neuron labeled with opsin

C. elegans Promoter-driven 
labeling of opsin

Hypothesis testing

(b) Hypothesis-free (functional cellomics) approach

C. elegans Stochastic labeling of opsin Hypothesis generation

Blue LED light

Blue LED light
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Materials and methods 
 

Construction of plasmids 

 
For the construction of pCre, SV40NLS-Cre was amplified from pPGK-Cre-bpA from 

Klaus Rajewsky (Addgene plasmid #11543). The amplified fragment was then inserted into 
pPD49_78, which was deposited by Andrew Fire (Addgene plasmid #1447). 

For the construction of pSTAR, a backbone plasmid containing the lox and QF2w 
sequences were synthesized (Thermo Fisher Scientific, MA, USA) [4]. In addition, a pan-
neuronal promoter, F25B3.3p, was cloned from the C. elegans genome [5], and mCherry was 
subcloned from pGH8 deposited by Erik Jorgensen (Addgene plasmid #19359). Into the backbone 
plasmid, these two fragments were inserted. 

For the construction of pQUAS_ChR2_GFP, ChR2(H134R) and GFP(S65C) were 
amplified from pAAV-Ef1a-vCreDIO hChR2(H134R)-EYFP from Karl Deisseroth (Addgene 
plasmid #55643) and L2680 from Andrew Fire (Addgene plasmid #1516). Furthermore, the 
QF2w responsive promoter sequence QUAS::Δpes-10 was constructed (Thermo Fisher 
Scientific). These three fragments were integrated into pPD49_78 [6]. 

For the construction of pF25B3.3p_mCherry, F25B3.3p and mCherry were subcloned 
from pSTAR. In pPD49_78, these fragments were inserted. 
 
Culture Environment 

 
The worms were grown on nematode growth medium (NGM) plates supplemented with 

Escherichia coli OP50. Specifically, OP50 plates were prepared by seeding 6 cm NGM plates 
with 250 µL of OP50. The worms were maintained at 20°C, with care taken to minimize 
temperature shifts. To perform optogenetic experiments, 300 µL of 500 µM ATR (Sigma-Aldrich, 
MO, USA) was added to solid NGM plates containing E. coli. The samples were allowed to dry 
while protected from light by aluminum foil. 
 
Construction of transgenic strains 

 
The nematodes were injected using a stereomicroscope (SZX10; Olympus, Tokyo, 

Japan) equipped with a Femtojet 4i (5252 000.021; Eppendorf, Hamburg, Germany) and 
Femtotips II (1-01040; Eppendorf). By co-injecting the four plasmids constructed in this study 
(50 ng µL-1 each in water) into the C. elegans N2 background, the strain AYK338 (aykEx338 
[hsp-16.2p::Cre,F25B3.3p::lox2272::mCherry::loxP::lox2272::QF2w::loxP, 
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QUAS::ChR2::GFP, F25B3.3p:: mCherry]) was generated. Three mCherry expressing lines were 
obtained from 20 nematodes with an N2 background. Previous research showed that illuminating 
the N2 background with blue light did not affect egg-laying behavior [7]. For negative control 
experiments, I generated the strain AYK339 (aykEx339 
[F25B3.3p::lox2272::mCherry::loxP::lox2272::QF2w::loxP, QUAS::ChR2::GFP, F25B3.3p:: 
mCherry], 50 ng µL−1 each in water) and AYK340 (aykEx340 [hsp-16.2p::Cre, 
QUAS::ChR2::GFP, F25B3.3p:: mCherry], 50 ng µL−1 each in water) by microinjection into 
the N2 background. 
 
Inducing Cre recombinase to label ChR2 stochastically 

 
On NGM plates with or without ATR, transgenic worms were plated. Worms were 

incubated at 37°C for 30 min to induce Cre recombinase by heat shock and then transferred to an 
incubator at 20°C. Worms were examined by egg-laying assay and fluorescence microscopy 12 
h after heat shock. 

 
Confocal laser scanning microscopy 

 
A 5 % agarose pad (041149-05; Nacalai Tesque, Kyoto, Japan) was prepared and coated 

with 5 µL of 50 mM sodium azide (830011; Nacalai Tesque). C. elegans worms were collected 
and placed on sodium azide-coated agarose pads with a cover glass gently placed over them. 
Fluorescence was observed using confocal laser scanning microscopy (LSM 700; Carl Zeiss, 
Oberkochen, Germany). The 488 nm and 561 nm lasers were used to observe the fluorescence of 
GFP and mCherry, respectively. Zen Lite, Imaris, or ImageJ software was used to process the 
acquired images [8]. 
 
Egg-laying assay 

 
Stereomicroscopes (SZX10; Olympus) were used to observe the worms. The 

stereomicroscope was equipped with a camera (HAS-L1; DITECT, Tokyo, Japan). To prevent 
ChR2-GFP from being activated in the worms during observation, the halogen lamp (410849; 
PHILIPS, Amsterdam, the Netherlands) of the SZX10 was equipped with an optical filter (Asahi 
Spectra, Tokyo, Japan) that blocks wavelengths below 600 nm. For ChR2-GFP activation, the 
worms were illuminated with blue light (LDL2-98X30BL2; CCS, Kyoto, Japan). The blue light 
was supplied by PD3-5024-4-PI (CCS). To prevent the blue light from the LED from being 
detected by the camera, the object lens was equipped with an optical filter (Asahi Spectra). This 
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filter blocks wavelengths below 570 nm. Each worm was transferred to a 6 cm agar NGM plate 
without E. coli and filmed for 30 sec for an egg-laying assay to examine light-dependent 
behavioral modulation. During this recording, the blue light was turned on and off at 5 sec 
intervals. Individuals that showed egg-laying behavior within 30 sec were defined as egg-laying 
individuals. Regardless of the presence or absence of E. coli, activation of HSNs induces egg-
laying behavior [9]. 
 

Results 
 

Strategy design of functional cellomics 
 

Using stochastic labeling with an effector gene that causes cell-autonomous activity 
allows for a high-throughput and hypothesis-free method of functional cellomics at single-cell 
resolution. Brainbow technologies refer to systems that can randomly determine the expression 
of a specific gene in a particular cell using the Cre-lox recombination system. In Brainbow 
technologies, multiple lox variants (such as loxP and lox2272 sequences) are alternately placed 
downstream of one promoter, with two genes interspersed between these lox sequences (Figure 
2a). If Cre recombinase is applied to this sequence, excision occurs only between loxP sequences 
or lox2272 sequences. As a result, it is possible to determine which of these two genes is expressed 
in a Cre-dependent manner. 

I designed four plasmids to carry out functional cellomics (Figure 2a). The plasmid 
pCre expresses Cre recombinase in reaction to heat stress. The plasmid pSTAR contains two lox 
sequences, mCherry, and a transcription factor (QF2w) downstream of a pan-neuronal promoter 
(F25B3.3p). The plasmid pQUAS_ChR2_GFP expresses ChR2_GFP in a QF2w-dependent way. 
This study used channelrhodopsin-2 fused with GFP (ChR2::GFP) as the effector gene. Since the 
constructs for producing a transcription factor or an effector are modularized, it is easy to utilize 
a variety of effectors as well as opsin. I also constructed pF25B3.3p_mCherry, which continues 
to produce mCherry after Cre recombination. 

When all of these plasmids are introduced into C. elegans, all neurons initially produce 
only mCherry. Upon applying a heat shock to induce Cre recombinase, QF2w is produced if 
excision occurs between lox2272 sequences, and mCherry production continues from 
pF25B3.3p_mCherry even after Cre recombination. In QF2w-producing neurons, ChR2-GFP is 
produced as an effector and can be activated on demand through light illumination. The fusion of 
GFP to ChR2 makes it easy to identify which neurons are producing opsin after performing a 
behavioral experiment.  
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Figure 2. The application of Brainbow technologies for stochastic labeling of neurons. (a) The 
Brainbow technology utilizes two constructs, one encoding Cre recombinase under the control of 
a heat-shock-dependent promoter (pCre) and another encoding the transcription factor QF2w, two 
lox sequences (lox2272 and loxP sequences), and the fluorescent protein mCherry downstream of 
a pan-neuronal promoter (pSTAR). In the absence of Cre recombinase, mCherry is produced in 
all neurons by pSTAR and pF25B3.3p_mCherry. Upon Cre-mediated excision between the 

(a) 1. pCre : Heat-shock-dependent conditional expression of Cre

2. pSTAR : Brainbow-based construct for stochastic expression of a transcription factor, QF2w

3. pQUAS_ChR2_GFP : QF2w-dependent conditional expression of an effector, ChR2::GFP

4. pF25B3.3p_mCherry : Constitutive pan-neuronal expression of mCherry

(b)

(c)
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lox2272 sequences, QF2w is produced from pQUAS_ChR2_GFP, and mCherry continues to be 
expressed from the pan-neuronal promoter, even after Cre-mediated recombination. (b) 
Stochastic labeling of neurons with ChR2-GFP is achieved by applying a brief heat shock to 
transgenic C. elegans carrying the four constructs as extrachromosomal arrays and examining the 
worms by confocal laser scanning microscopy 12 h later. Negative control experiments include 
transgenic C. elegans without heat shock, transgenic lines without the pSTAR plasmid, and 
transgenic lines without the pCre plasmid with heat shock. The whole body and mid-body section 
(framed in white in the whole body image) are examined at magnifications of 10x and 40x, 
respectively. The fluorescence of ChR2-GFP is shown in green, and the fluorescence of mCherry 
is shown in magenta, with cells producing both fluorescence in white and indicated by an arrow. 
The differences in white-dyed cells between individuals demonstrate stochastic labeling. (c) The 
percentage of GFP-positive cells out of all cells. Three transgenic lines harboring all plasmids 
shown in Figure 2a were established, and at least nine individuals from each line were used to 
quantify the ratio of GFP-positive cells. In each individual, I counted 12–26 fluorescent cells. In 
this experiment, GFP-positive cells in the mid-body and tail were counted. The data show a mean 
± standard deviation, and the significance of differences between all pairs of results was examined 
using Tukey's test. 
 
Randomized labeling of neurons at single-cell level 
 

I introduced the four plasmids mentioned above into C. elegans and established three 
lines (Lines 1–3) [hsp-16.2p::Cre, F25B3.3p::lox2272::mCherry::loxP::lox2272::QF2w::loxP, 
QUAS::ChR2::GFP, F25B3.3p:: mCherry]. After this C. elegans strain had propagated, I applied 
a brief heat shock to determine whether ChR2–GFP was labeled stochastically in each C. elegans 
individual. After isolating at least nine individuals, I observed their mid-body sections with low 
neuron density at a magnification of 40x. The results showed that ChR2-GFP was generated in 
all heat shock-treated individuals and that the labeling pattern of ChR2-GFP differed from 
individual to individual (Figure. 2b). In Figure 2b, three representative micrographs of Line 1 
are shown. The average percentage of cells labeled with ChR2-GFP was quantified. Although the 
production of ChR2-GFP was random in all strains, there were slight differences in labeling rates 
due to differences in the structure of the extrachromosomal (Ex) array (Figure 2c). I compared 
the probability of ChR2-GFP labeled neurons at the mid-body region and the tail region. I 
discovered that transgenic C. elegans exhibited a GFP labeling probability of 32 ± 12 % (mean ± 
standard deviation) in the caudal region and 31 ± 16 % (mean ± standard deviation) in the mid-
body region. In addition, three negative control experiments were performed: without heat shock, 
without pSTAR plasmid (substrate for Cre), and with pCre plasmid plus heat shock. I established 
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three lines in each negative control experiment and observed ten animals from each line. As a 
result, no green fluorescence was observed in the neurons (Figure 2b). These findings suggested 
that the induction of Cre by heat shock was necessary for the induction of ChR2-GFP. 
 
Identifying the neurons which play an essential role in egg-laying behavior 
 

In functional cellomics, the use of stochastic labeling of an effector gene allows for the 
exploration of the relationships between neural networks and behaviors in a hypothesis-free and 
comprehensive manner. I chose the egg-laying behavior of  C. elegans as a model to show the 
feasibility of functional cellomics. The egg-laying behavior of C. elegans is known to be 
controlled by a relatively simple neural network. Two hermaphrodite-specific neurons (HSNs: 
HSNR and HSNL) play a central role in egg-laying behavior by directly exciting vulval and 
ventral C neurons (VC) [10–12]. Additionally, it is known that the activation of the HSNs by 
ChR2 elicits egg-laying behavior. If the HSNs can be identified by functional cellomics in a high-
throughput manner, it shows that this strategy is effective. 

I constructed a C. elegans library stochastically labeled with ChR2-GFP. The transgenic 
C. elegans individuals were photographed for 30 sec while irradiated with blue light (Figure 3a). 
Among the individuals photographed, 65 % exhibited light-dependent egg-laying behavior, while 
35 % did not (Figure 3b, c). When a similar experiment was conducted without adding all-trans-
retinal (ATR), a cofactor for ChR2, no egg-laying behavior was observed. These results suggest 
that the egg-laying behavior shown in this experiment is ChR2-dependent and that generating 
individual nematodes with the desired phenotype is possible via stochastic labeling of an effector. 

Using confocal laser scanning microscopy, I examined whether ChR2–GFP was present 
in HSNs. By isolating egg-laying and non-egg-laying individuals and analyzing the area 
surrounding the vulva, I found that ChR2–GFP was present in the HSNs of all egg-laying 
individuals (Figure 4a) but not in the non-egg-laying individuals (Figure 4b). ChR2–GFP was 
observed in HSNR but not in HSNL in the representative individual shown in Figure 4a. The 
probability of GFP labeling was 31 ± 11% (mean ± standard deviation, N = 10) and 29 ± 14 % 
(mean ± standard deviation, N = 10) in egg-laying and non-egg-laying animals, respectively, 
similar to the data in Figure 2, and there was no significant difference between the two groups as 
determined by t-test. Quantitative analysis of fluorescence intensity revealed that ChR2–GFP was 
detected in HSNR but not in other neurons adjacent to HSNs in the egg-laying individual (Figure 
4c). A previous study found that destroying one HSN through laser ablation had no noticeable 
effect on egg-laying behavior in nematodes while destroying both HSNs resulted in a marked 
inhibition of egg-laying behavior [11]. Our result is consistent with this previous study in that 
egg-laying behavior can be sufficiently induced by activating one HSN. However, the present 
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results could not rule out the possibility that egg-laying behavior is activated through the ChR2-
dependent activation of other neurons. In this study, the high probability of ChR2-GFP labeling 
made it challenging to accurately identify neurons other than HSNs that may potentially play a 
role in egg-laying behavior. In the future, functional cellomics should be improved by using 
nuclear localization signals and/or reducing the probability of ChR2-GFP labeling. 

 

 

Figure 3. Obtaining individuals who exhibit light-dependent egg-laying behavior. (a) A raster 
graph displaying the results of the behavioral experiment, with black lines indicating egg-laying 
events. During a 30 sec firming period, blue light was turned on and off at 5 sec intervals. (b) 
Representative images from the behavioral experiment show an individual who exhibits light-
dependent egg-laying behavior (left), with eggs indicated by arrows, and an individual without 
this behavior (right). (c) The percentage of individuals displaying light-dependent egg-laying 
behavior. 65 % exhibited this behavior in the presence of all-trans-retinal (ATR) (N=20), and 
none exhibited it in the absence of ATR (N=20). Fisher's exact test was used to determine the 
significance of differences, with error bars representing 95 % confidence intervals. In these tests, 
at least six individuals from each line were used.  
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Figure 4. Detection of HSNs. The whole body and mid-body were observed using a 10x and 40x 
objective, respectively. Two-dimensional (2D) images generated from the maximum-intensity 
projection of z-stack images acquired using confocal microscopy. (a) Fluorescence images of an 
individual displaying light-dependent egg-laying behavior, with ChR2-GFP fluorescence in green 
and mCherry fluorescence in magenta. Cells producing both fluorescence are shown in white, and 
expression of ChR2-GFP in HSNR neurons is observed. (b) Fluorescence image of an individual 
not exhibiting light-dependent egg-laying behavior, with no production of ChR2-GFP observed 
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in neurons around the vulva. (c) Fluorescence intensity profiles. Dotted fluorescence profiles were 
quantified in ImageJ. 
 

Discussion 
 

Although numerous methodologies have been developed to study the properties of 
neural networks, they still need to fully meet the requirements of the conceptual framework of 
functional cellomics. [13–16]. Functional cellomics described in this study is the first approach 
that combines all necessary qualities for achieving individual-level cellomics: high-throughput, 
hypothesis-free, single-cell resolution, and simplicity. By employing functional cellomics on the 
egg-laying behavior of C. elegans, I successfully demonstrated the feasibility of this approach. 

Functional cellomics exhibits several advantages over existing methodologies regarding 
throughput, resolution, and expandability. Firstly, it does not require special equipment and can 
be easily implemented in any laboratory. Secondly, as it has no limitations on feasible labeling 
patterns, it is entirely hypothesis-free, enabling easy labeling at single-cell resolution, even for 
bilaterally symmetrical neuron pairs with highly similar gene expression patterns. Thirdly, as one 
transgenic C. elegans individual can propagate many others with different labeling patterns, it is 
both simple and high-throughput. Fourthly, it can manipulate neural networks in various ways. In 
addition to opsin, which was used in this study, any effector can be utilized as long as it causes 
either loss or gain of function in neurons, allowing for various interventions, such as cell killing, 
suppression, activation, and gene expression control [17–22]. A recent study suggested that 
contradictory results may be obtained depending on the mode of intervention, highlighting the 
need to compare results from various intervention modalities (activation, inhibition, killing, etc.). 
This approach would be even more helpful if it could identify the neurons required for specific 
behavior. Fifthly, numerous experimental designs are possible using the C. elegans promoter and 
bipartite gene expression systems like QF2w and Gal4 [23]. For example, instead of a pan-
neuronal promoter, a more "focused" functional cellomics can be performed using a promoter 
specific to a subset of neurons. Additionally, by simultaneously employing QF2w and Gal4, one 
can stochastically label multiple effectors. 

Although functional cellomics holds promise, there are three points of concern to 
address. One is the reliability of the heat-shock promoter used in this study. While previous studies 
have shown that the promoter effectively induces protein production in the nervous system, it has 
yet to be confirmed that it works equally well in all neuronal cells. To solve this problem, it will 
be crucial to determine the probability of ChR2::GFP labeling in each cell type and to use a wide 
range of cell-type-specific pSTAR plasmids. The second point is the high probability of effector 
labeling, making it challenging to calculate the labeling rate accurately. In order to conduct a well-
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designed experiment, it is critical to exert strict control over the probability of effector labeling, 
similar to the predetermined mutation rate in forward genetics. Figure 3b shows that a large 
percentage (65 %) of C. elegans displayed egg-laying behavior, which may be due to the high 
copy number of the pSTAR plasmid, increasing the likelihood of excision of the lox2272 sequence 
by Cre and, therefore, a large proportion of neurons labeled by opsin. Suppose effectors label an 
excessive number of neurons. In that case, this results in a high level of neuronal activation, and 
it is challenging to identify the neurons that are responsible for the target behavior. One potential 
solution is concurrently using single-copy integration and lox variants to control the probability 
of labeling only a desired number of the 302 neurons in a C. elegans hermaphrodite. The third 
point is how to ensure the reproducibility of the results obtained. Even if functional cellomics 
suggests that a specific labeling pattern may play a role in the target behavior, it still needs to be 
confirmed using other methods. To reproduce the same labeling pattern, methodologies that can 
evoke gene expression in desired cells, such as using a pulsed infrared laser or multi-step 
optogenetics, may be applied to relatively quickly verify the results [15, 16]. The intersectional 
Cre-lox strategy and multiple-feature Boolean logic may also help reproduce the labeling pattern 
[24, 25]. 

In conclusion, by employing Brainbow technologies to randomize the labeling patterns 
of effector genes, I have demonstrated, for the first time, the feasibility of identifying neurons 
involved in the target behavior. While further improvements and additional data are needed to 
establish the utility of our approach for various behaviors, the results support the basic concept of 
functional cellomics, which allows for the functional annotation of the neural networks of C. 
elegans in a high-throughput, hypothesis-free, single-cell-resolution, and simple manner. C. 
elegans is particularly well-suited for functional cellomics due to its already-mapped connectome 
information. By superimposing the connectome information with the results of extensive 
intervention experiments using functional cellomics, I can construct neuroanatomically grounded 
models of behavior that can explain how complex neuronal networks perform computation. 
  



 28 

References 
 

1. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, 
genetically targeted optical control of neural activity. Nat Neurosci 8, 1263–1268 (2005). 

2. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain 
disease in animal models. Nature Reviews Neuroscience vol. 13 251–266 Preprint at 
https://doi.org/10.1038/nrn3171 (2012). 

3. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in 
the nervous system. Nature 450, 56–62 (2007). 

4. Riabinina, O. et al. Improved and expanded Q-system reagents for genetic manipulations. 
Nat Methods 12, 219–222 (2015). 

5. Frøkjær-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat 
Genet 40, 1375–1383 (2008). 

6. Wei, X., Potter, C. J., Luo, L. & Shen, K. Controlling gene expression with the Q repressible 
binary expression system in Caenorhabditis elegans. Nat Methods 9, 391–395 (2012). 

7. Emtage, L. et al. IRK-1 potassium channels mediate peptidergic inhibition of Caenorhabditis 
elegans serotonin neurons via a Go signaling pathway. Journal of Neuroscience 32, 16285–
16295 (2012). 

8. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image 
analysis. Nature Methods vol. 9 671–675 Preprint at https://doi.org/10.1038/nmeth.2089 
(2012). 

9. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A. D. T. Optogenetic 
manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8, 
147–152 (2011). 

10. Schafer, W. F. Genetics of egg-laying in worms. Annual Review of Genetics vol. 40 487–509 
Preprint at https://doi.org/10.1146/annurev.genet.40.110405.090527 (2006). 

11. Zhang, M. et al. A Self-Regulating Feed-Forward Circuit Controlling C. elegans Egg-Laying 
Behavior. Current Biology 18, 1445–1455 (2008). 

12. Collins, K. M. et al. Activity of the C. elegans egg-laying behavior circuit is controlled by 
competing activation and feedback 
inhibition. eLife 5, https://doi.org/10.7554/eLife.21126 (2016). 

13. Fang-Yen, C., Gabel, C. v., Samuel, A. D. T., Bargmann, C. I. & Avery, L. Laser Microsurgery 
in Caenorhabditis elegans. in Methods in Cell Biology vol. 107 177–206 (Academic Press 
Inc., 2012). 

14. Churgin, M. A., He, L., Murray, J. I. & Fang-Yen, C. Efficient single-cell transgene induction 
in Caenorhabditis elegans using a pulsed infrared laser. G3: Genes, Genomes, Genetics 3, 



 29 

1827–1832 (2013). 
15. Itoh, M., Yamamoto, T., Nakajima, Y. & Hatta, K. Multistepped optogenetics connects 

neurons and behavior. doi:10.1016/j. 
16. Shipley, F. B., Clark, C. M., Alkema, M. J. & Leifer, A. M. Simultaneous optogenetic 

manipulation and calcium imaging in freely moving C. elegans. Front Neural Circuits 8, 
(2014). 

17. Qi, Y. B., Garren, E. J., Shu, X., Tsien, R. Y. & Jin, Y. Photo-inducible cell ablation in 
Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein 
miniSOG. Proc Natl Acad Sci U S A 109, 7499–7504 (2012). 

18. Xu, S. & Chisholm, A. D. Highly efficient optogenetic cell ablation in C. Elegans using 
membrane-targeted miniSOG. Sci Rep 6, (2016). 

19. Pokala, N., Liu, Q., Gordus, A. & Bargmann, C. I. Inducible and titratable silencing of 
Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl 
Acad Sci U S A 111, 2770–2775 (2014). 

20. Schild, L. C. & Glauser, D. A. Dual color neural activation and behavior control with 
chrimson and CoChR in Caenorhabditis elegans. Genetics 200, 1029–1034 (2015). 

21. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-
Cas9 complex. Nature 517, 583–588 (2015). 

22. Qi, L. S. et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific 
control of gene expression. Cell 152, 1173–1183 (2013). 

23. Wang, H. et al. CGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. 
Nat Methods 14, 145–148 (2017). 

24. MacOsko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social 
behaviour in C. elegans. Nature 458, 1171–1175 (2009). 

25. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. 
Nat Methods 11, 763–772 (2014). 

  



 30 

Chapter II 
 

Cre-lox engineering with machine learning to achieve sparse labeling at 
a desired sparseness level 
 

In Chapter II, we aimed to develop a new methodology that utilizes the widely used 
Cre-lox recombination system to achieve high reproducibility and the ability to achieve sparseness 
level at the desired level [1–5]. In particular, we paid attention to the Brainbow system. I 
hypothesized that the expression rate of a gene could be regulated by mutating one of the lox 
sequences (lox2272 or loxP) and reducing the rate of Cre recognition [6–17]. Therefore, to 
investigate the effect of introducing mutations in the lox sequence on recognition of the lox 
sequence by Cre, we performed random mutagenesis on the lox sequence and obtained mutants 
with a reduced recognition rate by Cre. We further hypothesized that a machine learning model 
using the dataset of lox mutants we evaluated would allow us to design mutant lox2272 sequences 
that exhibit various labeling rates at a desired level. The lox mutants obtained in this study have 
the potential to label effector genes in a simple and reproducible manner and regulate gene 
expression in cell populations with the desired sparseness level. The method is advantageous 
because Cre can apply to a wide range of organisms, including mice, flies, and worms, and can 
be employed in post-mitotic cells [18–22]. 
 

Materials & Methods 
 
Construction of a library of mutant lox sequences 

 
PCR was used to generate a library of mutant lox sequences. Randomized primers were 

used for mutagenizing the lox sequences (forward primer: 5’-GTGAGCGCGCGTAATAC-3’, 
reverse peimer: 5’-
AACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACATAACTTCGTATAATGT
ATGCTATACGAAGTTATGGCATATGGAATGACTTGGCGTTGTTC-3’. The mutated 
region is shown in the underbar in the reverse primer.). Primers were commercially prepared by 
solid phase synthesis (Eurofin, Tokyo, Japan). Mutated bases were generated using biased 
randomization with an 84.7 % chance of retaining the original sequence (e.g., A means A: 84.7 %, 
T: 5.1 %, G: 5.1 %, C: 5.1 %). This is because this study was designed to evaluate lox mutants 
with one or two nucleotide substitutions and, to some extent, mutants with three or more 
nucleotide substitutions. The two nucleotide substitutions are most efficiently obtained when x = 
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84.7. Using the following formula, I calculated the distribution of the number of base 
substitutions: 

 

In this formula, x represents the retention rate [%], and y represents the number of base 
substitutions. Competent E. coli DH5α (F−, Φ80dlacZΔM15, Δ(lacZYA-
argF)U169, deoR, recA1, endA1, hsdR17(rK-, mK+), phoA, supE44, λ−, thi-1, gyrA96, relA1) 
was used to transform the library. Transformed E. coli were grown in Luria-Bertani (LB) medium 
1 % [w/v] tryptone, 0.5 % [w/v] yeast extract, and 1 % [w/v] sodium chloride) containing 100 
μg/mL ampicillin. Subsequently, plasmid extraction was performed using the FastGene Minikit 
(NIPPON Genetics, Tokyo, Japan, FG-90502). I generated yeast that can express Cre when 
exposed to β-estradiol (pRS403-CreEBD). I used the S. cerevisiae strain BY4741 
(MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0) as host. The pRS403-CreEBD plasmid was 
genomically integrated into the yeast his3Δ1 site. Yeast cells were transformed with the 
constructed plasmid using a Frozen EZ Yeast Transformation II Kit (Zymo Research, Irvine, CA, 
USA, T2001). Synthetically defined (SD) solid medium without L-histidine was used to screen 
the transformants. The components of the SD solid medium were 0.67 % [w/v] yeast nitrogen 
base without amino acids, 2 % [w/v] glucose, and 2 % [w/v] agar supplemented with appropriate 
amino acids and a nucleobase (0.012 % [w/v] L-leucine, 0.002 % [w/v] L-methionine, and 0.002% 
[w/v] uracil). The mutagenized lox library has been transformed into a yeast strain that carries the 
CreEBD transgene. The transformants were screened on a solid SD medium in the absence of L-
histidine and uracil. 
 
Inducing Cre in yeast 
 

I generated yeast that can express Cre when exposed to β-estradiol (pRS403-CreEBD). 
I used the S. cerevisiae strain BY4741 (MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0) as host. The 
pRS403-CreEBD plasmid was genomically integrated into the yeast his3Δ1 site. Yeast cells were 
transformed with the constructed plasmid using a Frozen EZ Yeast Transformation II Kit (Zymo 
Research, Irvine, CA, USA, T2001). Synthetically defined (SD) solid medium without L-histidine 
was used to screen the transformants. The components of the SD solid medium were 0.67 % [w/v] 
yeast nitrogen base without amino acids, 2 % [w/v] glucose, and 2 % [w/v] agar supplemented 
with appropriate amino acids and a nucleobase (0.012 % [w/v] L-leucine, 0.002 % [w/v] L-
methionine, and 0.002 % [w/v] uracil). The mutagenized lox library has been transformed into a 
yeast strain that carries the CreEBD transgene. The transformants were screened on a solid SD 
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medium in the absence of L-histidine and uracil. In total, more than 10,000 colonies were collected 
to prevent the loss of diversity in the lox library. Colonies were pre-incubated for 24 h at 30°C, 
250 rpm on liquid SD medium. The pre-incubated yeast was inoculated into 10 mL of liquid SD 
medium containing D-galactose as a carbon source with an OD600 of 1. Yeast cells were grown 
at 30°C for 24 h at 250 rpm. 
 
Preparing DNA samples for analysis by the Illumina sequencing 
 

The ZymoprepTM Yeast Plasmid Miniprep II Kit (ZYMO RESEARCH, D2004) was 
used to extract the lox library after Cre induction. PCR amplification was performed on the 
extracted samples. The following cycling parameters were used; followed by five cycles at 98°C 
for 10 s/55°C for 5 s/68°C for 30 s, 68°C for 7 min, and final hold at 4°C. To minimize PCR bias, 
the number of PCR cycles was set to five. The prepared samples were sequenced on the paired 
end using the Novaseq6000 (Illumina, San Diego, CA, USA). The services of MacroGen Japan 
(Tokyo, Japan) were used for sample quality control, the addition of adaptor sequences, the 
addition of index sequences, and Illumina sequencing runs. 
 
Construction of Gaussian process regression model 
 

Gaussian process regression modeling method applied in this study is based on previous 
research [23–25]. The 13 bp of recombinase binding element (RBE) of the lox sequence was one-
hot encoded. The regression model was trained to predict the cleavage rate by Cre. The mean and 
standard deviation of all training data were normalized to be 0 and 1, respectively. Gaussian 
process regression model requires kernel functions that measure the similarity between DNA 
sequences, and optimizing learning requires improving the form of the kernel and its 
hyperparameters. The Matérn kernel was used in this study based on previous research. The 
mutant lox2272 sequence evaluated by Illumina sequencing was initially used to train the 
regression model, and the sequence information evaluated by qPCR was added to train the model 
after optimization. An open-source module in the SciPy ecosystem was used to perform regression 
[26–28]. 
 
qPCR (quantitative polymerase chain reaction) 
 

I performed a validation experiment using quantitative polymerase chain reaction 
(qPCR) to confirm the accuracy of the prediction accuracy of Gaussian process regression model. 
I used PCR to construct plasmids that carried the desired mutation. Next, three sets of primers 
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were prepared for qPCR: (1) primers for quantification of cleavage rates 
between lox2272 sequences (forward primer: 5’-GTCAATCGTATGTGAATGCTGGTCGC-3’, 
reverse primer: 5’-CGCTGCTGTCTCCCCGACATTC-3’), (2) primers for quantification of 
cleavage rates between loxP sequences (forward primer: 5’ -
GCCACTGAGGTTCTTCTTTCATATACTTCCTT-3’, reverse primer: 5’ -
CTGCAGCCGCTGCTGTCTC-3’), and (3) primers for quantification of non-cleavage rates 
(forward primer: 5’-TGCCCAGATGCGAAGTTAAGTGCG-3’, reverse primer: 5’ -
AGTTTTAAAACACCAAGAACTTAGTTTCGACGG-3’). In addition, I prepared ΔloxP 
plasmid and Δlox2272 plasmid to generate a calibration curve. The calibration curve was 
generated using a 7-point dilution series in 10-fold increments from 1.0 × 107 copies/μL to 1 
copy/μL. Using these calibration curves, the non-cleavage rate, the cleavage rate between loxP, 
and the cleavage rate between lox2272 of individual mutant lox sequences were calculated. The 
PCR mix included: 17 μL distilled water, 25 μL FastStart SYBR Green Master (without ROX) 
(Roche, Basel, Switzerland, 04673484001), 1.5 μL forward primer at 10 pmol/μL, 1.5 μL reverse 
primer at 10 pmol/μL, and 5 μL template plasmid. PCR was performed using the following 
cycling conditions for all primer sets: 95°C for 10 min; followed by 40 cycles of 95°C for 15 s, 
60°C for 30 s, and 1 cycle of 95°C for 15 s, 60°C for 1 min and 95°C for 10 s on a StepOnePlusTM 
instrument (Thermo Fisher Scientific, USA). 
 
Generation of stable HEK293 cell lines with single-copy lox variants integration 
 

Stable HEK293 cell lines with a single copy of lox variant constructs were generated 
using the Flp-In™ system (Invitrogen, Massachusetts, USA). In brief, the cells were grown in a 
temperature- and humidity-controlled incubator at 37°C in DMEM with 10 % FBS and 1 % 
penicillin/streptomycin. Sub-confluent cells were co-transfected with pOG44, which express 
FLP: pcDNA/FRT/lox, which has mutant lox sequences at a 9:1 ratio using Xfect™ Transfection 
Reagent (TAKARA, Tokyo, Japan). After 48 h, the cells were split into 10 cm tissue culture dishes 
and selected with 100 μg/ml hygromycin until colonies were visible. Individual colonies were 
screened for fluorescence expression and selected to expand until they reached subconfluence for 
transfection. As the Flp-In system inserts the transgene into a single Frt site in the genome of Flp-
In™HEK293 cells using Flp recombinase, the generated clones are expected to be isogenic and 
have a single copy integration. 
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Results 
 
Procedure to achieve recombination efficiency at the desired rate 
 

In the Brainbow system, Cre-mediated recombination is mutually exclusive between 
one of two identical lox site pairs (a pair of loxP sequences and a pair of lox2272 sequences) [29]. 
Furthermore, excision by one recombination event removes the lox sites necessary for the 
occurrence of the other recombination event. In a genetic circuit in which two pairs of lox 
sequences are alternately inserted, with gene A located between loxP sequences and gene B 
situated between lox2272 sequences, the expression of gene A and gene B becomes a stochastic 
and mutually exclusive process (Figure 1). The recognition efficiency of the two pairs of lox 
sequences is comparable [29], resulting in similar expression rates for gene A and gene B. I 
initially examined the reaction kinetics of Cre-lox-mediated intrachromosomal recombination to 
devise a methodology for stochastically activating gene expression with a desired sparseness level. 
I hypothesized that the affinity of Cre for the mutagenized lox sequence could be reduced 
compared to its affinity for another lox sequence, thus enabling the regulation of the expression 
rates of gene A and gene B through manipulation of the mutagenized lox sequences. 
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Figure 1. Schematic overview of experimental strategy. (A) The stochastic removal of lox 
sequences by Cre. Gene A is removed when Cre cleaves lox2272 sequences, and gene B is 
removed when Cre cleaves loxP sequences. Cre cleaves one of two pairs of lox sequences (either 
a pair of lox2272 sequences or a pair of loxP sequences) in a mutually exclusive manner. Cre-
mediated excision of lox sequences leading to the exclusive expression of either gene A or gene 
B. (B) The regulation of the sparseness level using mutant lox sequences. Modulating the 
sparseness level through mutant lox sequences, which may alter the affinity of the lox sequence 
for Cre, potentially renders lox sequences less likely to be cleaved by Cre. 
  

Library of 
lox variants
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Procedures for creating and evaluating a library of mutant lox sequences 
 

I developed a strategy for high-throughput analysis of the impact of mutations on the 
excision rate by Cre (Figure 2). First, one of the recombinase binding elements (RBE) of the lox 
sequence was mutated by PCR to construct a library of mutant lox sequences (Figure 2A, B). 
This library was then cloned into a centromere-type plasmid and introduced into Saccharomyces 
cerevisiae in conjunction with a CreEBD system, a β-estradiol-inducible Cre expression construct 
[30]. Cre was then induced in yeast carrying the mutant loxP library (Figure 2C). The library of 
mutant lox sequences was extracted from the yeast following Cre induction (Figure 2D). The 
library of mutant lox sequences was then subjected to Illumina sequencing to quantify the 
cleavage rate (Figure 2E). Finally, I used machine learning to build a model that can predict the 
cleavage rate of any mutant lox2272 sequence based on data acquired by Illumina sequencing 
(Figure 2F). 
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Figure 2. Schematic overview of the experimental procedure. The experimental procedure 
comprised six steps: (A, B) Introducing mutation into lox sequence. I mutated one of the RBEs 
of the lox sequence to create a library of mutant lox sequences. (C) Cre induction. The library of 
mutant lox sequences was introduced into Saccharomyces cerevisiae, and Cre was induced using 
the CreEBD system. (D) Extracting the library from S. cerevisiae. I extracted the library from S. 
cerevisiae after Cre induction. (E) Analysis. I employed Novaseq to analyze the excision rate of 
the mutant lox sequences. (F) Constructing a machine learning model. Utilizing data on 
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mutated lox sequences and their cleavage rates obtained using Novaseq, I developed a machine-
learning model capable of predicting the Cre-mediated cleavage rate of any lox sequence. 
 
Detailed design of a library of mutant lox sequences 
 

In the Cre-lox recombination process, Cre binds to the lox sequences by recognizing 
inverted repeat sequences comprising 13 base pairs on either side of the lox sequences, referred 
to as recombinase binding elements (RBEs) [5]. In this study, a mutation was introduced at 13 bp 
(5′- ATAACTTCGTATA-3′) of the left RBE of the lox2272 sequence and the right RBE of the 
loxP sequence (Figure 3). An increase in the number of substitutions was expected to decrease 
the affinity of the loxP mutant for Cre. It was difficult to obtain sufficient coverage for 
substitutions of three or more bases because the number of combinations increased exponentially. 
Therefore, this research aimed to evaluate the majority of mutants with one or two nucleotide 
substitutions, as well as a fraction of mutants with substitutions of three or more nucleotides. The 
RBE sequence was designed to preserve the original base with 84.7 % probability of obtaining as 
many 2-base substitutions as possible. For instance, if the original base was A, it was planned so 
that 84.7 % of it would remain A, 5.1 % would become T, 5.1 % would become G, and 5.1 % 
would become C. 
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Figure 3. Design of primers to establish a library of lox variants. (A) I designed primers for 
mutagenizing the lox sequence, introducing a mutation into the left arm (13bp) of the lox2272 
sequence (shown in blue) and the right arm of the loxP sequence (shown in red). The mutation 
rate of both primers for lox2272 and loxP was set at 15.3 % to obtain as many 2-base substitutions 
as possible. (B) I validated the distribution of the number of base substitutions using Sanger 
sequencing, with gray representing the theoretical value (mutation rate = 15.3 %) and green 
representing the results of Sanger sequencing. 
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Illumina sequencing analysis of the library of mutant lox sequences 
 

Following a cleavage reaction performed by inducing Cre in yeast using the CreEBD 
system, the library of mutagenized lox sequences was subjected to Illumina sequencing. The 
workflow of this analysis is depicted in Figure 4. Initially, Illumina sequencing reads were 
categorized based on the type of mutation present in the lox sequences (Figure 4(1), (2)). 
Subsequently, I analyzed the cleavage rate of individual lox mutant sequences by combining the 
Illumina sequencing reads acquired using a 5′ primer and 3′ primer (Figure 4(3)). Analysis 
showed that the average non-cleavage rate was 3.5 %, confirming that Cre was induced. 

Prior to conducting a comprehensive analysis of individual mutant lox sequences, I 
verified the quality of the library of mutagenized lox sequences. First, the distribution pattern of 
the number of base substitutions revealed by Illumina sequencing was almost identical to the 
theoretical one (Figure 5A). The coverage of each base substitution was also examined. The 
results showed that 100 % (39/39 variants) of single-base substitutions and 92.6 % (650/702 
variants) of the 2-base substitutions in the library of mutant lox2272 sequences and that 100 % 
(39/39 variants) of the single-base substitutions and 60.5 % (425/702 variants) of the 2-base 
substitutions in the library of mutant loxP sequences  (Figure 5B). Third, I evaluated the 
nucleotide bias at each of the 13 positions within the left RBE of the lox2272 sequence and the 
right RBE of the loxP sequence. The results indicated no bias in the type of bases introduced at 
each of the positions within the RBE (Figure 5C). 

Subsequently, the cleavage rates of individual lox2272 and loxP sequences were 
analyzed. As shown in Figure 6, mutant lox2272 and loxP sequences with reduced recognition 
efficiency by Cre were obtained at various rates. This result supports the hypothesis that 
sparseness can be controlled by mutating the RBE of the lox2272 and loxP sequences. 
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Figure 4. Schematic diagram of the Illumina sequencing analysis. Illumina sequencing data were 
analyzed in three steps. Firstly, DNA sequences with the sequence of the lox variant were 
extracted. Secondly, all paired-end Illumina sequence reads were classified according to the type 
of lox variants. Lastly, utilizing the paired-end Illumina sequencing reads generated using primers 
at the 5' and 3' sides, I determined the patterns of recombination of Illumina sequencing reads for 
each variant. If the Illumina sequence read had sequence A, the plasmid was determined to have 
been cleaved between loxP sequences by Cre. If the Illumina sequence read had sequence B, the 
plasmid was determined to have been cleaved between lox2272 sequences by Cre. If the read had 
both sequences A and B, the plasmid was determined that no cleavage had occurred. 
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Figure 5. Evaluation of characteristics of mutant lox sequence library by Novaseq. (A) The 
distribution of the number of substituted bases between experimental and theoretical values is 
compared. The theoretical values were represented by a light-gray color (substitution rate = 
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15.3 %). The experimental values were represented by green color. (B) Analysis of the coverage 
rate (%) of substitution. (C) Percentage of base substitutions at each position in the sequence. 
 

 
Figure 6. Analysis of cleavage rate of mutant lox2272 and loxP variants. The distribution of all 
lox2272 and loxP variants was evaluated. The vertical axis denotes the cleavage rate. Variants 
with decreased recognition rate by Cre were arranged in ascending-order of the cleavage rate 
between loxP sequences. Some overlap between plots was observed. 
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Construction of a Gaussian process regression model capable of predicting the cleavage rate 
of lox2272 sequence at a desired sparseness level 
 

Subsequently, I engineered a machine learning model that can predict the cleavage rate 
by Cre of any mutant lox2272 sequence to manipulate the labeling rate freely. The model I 
selected was a Gaussian process regression (GPR) model. The GPR model was chosen because 
(1) it can be used even when linear regression cannot be used for fitting, and (2) it can represent 
the uncertainty in estimation because the function can be obtained as a distribution. Initially, the 
library of mutant lox2272 sequences obtained from Illumina sequencing analysis was randomly 
divided into 9:1 ratio for model training and model test data, respectively (Figure 7A). Next, we 
performed one-hot encoding of the 13 bp DNA sequence for the training and test data, respectively, 
using 5-digit binary notation. I tested whether a model could accurately predict the cleavage rate 
of the test data by training on the dataset based on the position of mutation and the effect of that 
mutation on the cleavage rate. Then, I tested whether the GPR could accurately predict the 
cleavage rate by Cre of an evaluated lox2272 sequence. First, I evaluated the prediction 
performance of the constructed model from two perspectives, 20-fold cross-validation, and test 
data. Then, I examined the correlation between the values predicted by the model and the 
measured values. The correlation coefficient R = 0.82 for 20-fold cross-validation and R = 0.89 
for test data (Figure 7B). Next, I predicted the unevaluated mutant lox2272 sequence using the 
constructed Gaussian process regression model. I examined the correlation with the predicted 
values and measured values by qPCR and found the correlation coefficient R=0.92, indicating 
that the cleavage rate was predicted with very high accuracy (Figure 7C). On the other hand, 
there was a discrepancy between the predicted and measured values when I focused on only the 
mutants with a low cleavage rate. Therefore, I added new mutants evaluated by qPCR as training 
data to optimize the Gaussian process model and re-trained the model. The 20-fold cross-
validation correlation coefficient for the model after optimization was R=0.88, and the correlation 
coefficient for the test data was R=0.92, indicating an improvement in prediction accuracy over 
pre-optimization (Figure 7D). I also evaluated the cleavage rate of new mutant lox2272 sequences 
that have never been evaluated and assessed the prediction accuracy of the Gaussian process 
regression models before and after optimization. The results showed that the pre-optimized model 
was less accurate in predicting the cleavage rate of lox sequences with the low cleavage rate. In 
contrast, the optimized model was relatively accurate in predicting the low cleavage rate. The 
overall correlation was also higher in the post-optimized model (Figure 7E). Based on these 
findings, I succeeded in constructing a Gaussian process regression model that can predict the 
cleavage rate of any lox2272 sequence by Cre.  
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Figure 7. Gaussian process regression modeling. (A) Schematic of the workflow of constructing 
a Gaussian process regression model. (B) Evaluating the predictive accuracy of gaussian process 
regression models (1) 20-fold cross-validation (2) test data. (C) Validation of model accuracy by 
qPCR using unevaluated lox2272 sequences. (D) Reassessing the predictive accuracy of Gaussian 
process regression models after optimization. (E) Comparison of model performance before and 
after optimization by qPCR. 
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Evaluation of the scalability of the Gaussian process regression model using cultured cells 

 
The Gaussian process regression model has been constructed up to this point using data 

evaluated in yeast to facilitate high-throughput evaluation. However, in the future, it is desirable 
that the mutant lox2272 sequence predicted by the constructed gaussian process regression model 
can be applied to other eukaryotic organisms, such as Caenorhabditis elegans used in the 
functional cellomics. To confirm the applicability of the constructed Gaussian process model to 
other eukaryotic organisms, validation was performed using human cultured cells. Seven 
randomly selected sequences from the mutant lox2272 sequences evaluated in yeast were 
integrated into the genome of human cultured cells, and the genome was extracted following Cre 
induction via the transient expression of the Cre-expressing gene. The extracted genome was then 
used as a template, and the cleavage rate of each mutant lox2272 sequence was quantified by 
qPCR. As a result, the correlation coefficient between the lox2272 cleavage rate by qPCR in yeast 
and that by qPCR in cultured cells was R = 0.93 (Figure 8). This result suggests that the Gaussian 
process regression model constructed in yeast could be widely used in other eukaryotes, such as 
cultured cells. 
 

 
Figure 8. Comparison of cleavage rates of lox2272 variants in cultured human cells and yeast. 
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Discussion 
 

One of the problems with sparseness labeling identified in previous studies was that the 
sparseness level of the effector was less regulatable and reproducible. In this research, I devised 
a novel technique of sparse labeling that overcame the deficiencies of previous studies. I aimed 
to obtain mutant lox sequences by incorporating random mutation in the RBE sequence based on 
the hypothesis that lox variants with diminished recognition efficiency by Cre can regulate the 
sparseness level in a desirable manner. I examined 2321 of lox2272 variants and 1111 of loxP 
variants, and succeeded in identifying mutants with recognition efficiencies ranging from 0.05 % 
to 100 %. These results confirm the hypothesis that the recognition efficiency of lox sequences 
by Cre can be controlled by introducing precise mutations in the arms of the lox sequence. 

Additionally, experiments verified that as the number of substitutions introduced into 
the RBE of the lox sequence increased, the efficiency of lox recognition by Cre decreased. I also 
discovered that some mutants with fewer base substitutions than other mutants with more base 
substitutions have lower cleavage rates. This result implies that the evaluation of individual 
mutant lox sequences is crucial to achieving sparse labeling at the desired rates. Furthermore, 
using the data obtained from Illumina sequencing, I have successfully constructed a Gaussian 
process regression model that can predict the mutant lox2272 sequence, allowing sparse labeling 
at any desired labeling rate. The mutant lox2272 sequence obtained in this study, which exhibits 
a labeling rate of 5.7×10-4 %, is the sparsest among the previous studies [6–17]. Furthermore, the 
mutant lox2272 sequence showed a high correlation in the cleavage rate by Cre between yeast 
and human cultured cells, suggesting that the established Gaussian process regression model may 
be adaptable in various eukaryotes. 

As stated in the introduction, several previous studies have assessed the impact of the 
mutation on the cleavage rate of lox sequences by Cre. Hartung, M. & Kisters-Woike, B. 
examined the impact of the mutation on Cre recombinase [15]. However, it is difficult to precisely 
control the sparseness level by introducing mutations in Cre recombinase. In contrast, our 
methodology allows precise control of the sparseness level by selecting an appropriate mutant lox 
sequence while utilizing existing Cre lines. Then, Missirlis, P. I., et al. incorporated mutations in 
the spacer region of lox sequences [8]. Given that the spacer sequence determines specificity, 
many mutants are expected to completely lose recognition by Cre, machining it an inappropriate 
approach for regulating the sparseness level. Sheren J et al. examined the effects of introducing 
mutations in the spacer region and RBE of the loxP sequence, respectively [9]. In experiments, 
the mutant lox2272 sequences compete with the loxP sequence (and mutant loxP sequences 
compete with the lox2272 sequence). On the other hand, Sheren J et al. evaluated the mutant loxP 
sequence alone. Furthermore, Cre cannot cleave the other lox sequence if it cleaves one lox 
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sequence, whereas if the mutant lox sequence is present alone, Cre can always cleave it. Therefore, 
the cleavage rate of mutant lox sequences in the presence of other competitive lox sequences 
remains unclear. In addition, the cleavage rates evaluated in this study for more than 2000 mutant 
lox2272 sequences and more than 1000 mutant loxP sequences allow us to adjust the sparseness 
level very strictly. Furthermore, the cleavage rate by Cre of the exhaustive mutant lox2272 
sequence can be predicted by the Gaussian process regression model constructed in this study. In 
conclusion, this study provides the first comprehensive dataset for calculating the cleavage rate 
of mutant lox sequences in the presence of other lox sequences. 

The capacity to adjust the sparseness level at the desired rate with high reproducibility 
is a significant advantage of this method. One potential application of this method is in 
combination with the cellomics approach established in chapter I, which employs the Cre-lox 
system to stochastically label opsin in a small population of neural networks of Caenorhabditis 
elegans. By utilizing mutant lox sequences in the cellomics approach, it may be possible to 
intervene in the activity of a smaller number of neurons. Other examples are the generation of 
genetic mosaics to analyze population doses of genes involved in sporadic genetic diseases or the 
application of this method to promote cancer development. The method may be applied to mimic 
the cell-competitive environment when a minority of cancer cells are present in a healthy cell 
population by progressively transforming healthy cells into cells expressing cancer-inducing 
genes at desired levels [31–36]. Overall, as a purely genetic method, it has the potential to be 
adapted to a wide range of research fields.  
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Chapter III 
 

Neuronal cell subclass-specific proteomic analysis of the Caenorhabditis 
elegans 
 

The cellomics approach developed in Chapter I has enabled the high-throughput 
identification of the cell or cells from the cellular networks that generate biological functions. The 
next step is to develop a methodology to investigate which molecular mechanisms in the identified 
cells contribute to the biological functions at the network level. Thus, I attempted to obtain 
expression information related to cell function by using cell-selective BONCAT to analyze the 
proteome of a single-cell subtype in Caenorhabditis elegans. So far, proteome analysis of neural 
cells by in vivo cell-selective labeling has only been reported in mice and Drosophila [1, 2]. 
BONCAT has rarely been applied in C. elegans. Only the pharyngeal muscle of C. elegans has 
undergone in vivo cell-selective labeling for proteome analysis [3]. Another example is the 
proteome analysis of newly produced proteins utilizing protein azidation techniques [4]. 
Therefore, in this study, I attempted cell-selective BONCAT using monolith nano LC-MS/MS for 
the first time to analyze the proteome of selected subclasses of neural cells in C. elegans. 
 

Materials and methods 
 
Maintenance of nematode 
 

The Caenorhabditis Genetics Center (CGC) provided the Caenorhabditis elegans N2 
(Bristol) strain and the Escherichia coli OP50-1 strain (ura−, strR). The worms were grown and 
maintained on nematode growth medium (NGM) plates containing Escherichia coli OP50-1 in 3 
cm or 6cm dishes [5]. 
 
Plasmids prepared in this research 
 

pGH8 was provided by Erik Jorgensen (Addgene plasmid # 
19359; https://n2t.net/addgene:19359; RRID: Addgene_19359) [6]. pKPY197 was provided by 
David Tirrell (Addgene plasmid # 62599; https://n2t.net/addgene:62599; RRID: 
Addgene_62599) [3]. pCFJ104 (Pmyo-3::mCherry::unc-54 3′UTR) was provided by Erik 
Jorgensen (Addgene plasmid # 19328; https://n2t.net/addgene:19328; RRID: Addgene_19328) 
[6]. pKPY514 was provided by David Tirrell (Addgene plasmid # 
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62598; https://n2t.net/addgene:62598; RRID: Addgene_62598) [3]. pHW394 
(15xUAS::GFP::let-858 3′UTR) was provided by Paul Sternberg (Addgene plasmid # 
85584 ; https://n2t.net/addgene:85584; RRID:Addgene_85584) [7]. pF25B3.3p::mcherry was 
previously constructed [8]. 

For the construction of pKPY197-Prab3 and pKPY197-Pgcy-8, pKPY197 was digested 
with SalI. The rab-3 and gcy-8 promoters were cloned from pGH8 and C. elegans genomes, 
respectively [3]. Each fragment was integrated into the digested pKPY197 plasmid. Primers 
prepared in this study are shown in Table 1. For the construction of pF23B2.10p::GFP, the 5′ 
regulatory region of F23B2.10 was cloned from the C. elegans genome and inserted into pCFJ90. 
pCFJ90 with the 5′ regulatory region of F23B2.10 was linearized by PCR amplification and the 
mCherry region was omitted. GFP (S65C) was amplified from pHW394. These fragments were 
joined together. 
 
Table 1 

 
Primers used in this study are listed. 
 
Constructing transgenic nematode strains 
 

Using a stereomicroscope (SZX10; Olympus, Tokyo, Japan) equipped with a Femtojet 
4i (5,252,000.021; Eppendorf, Hamburg, Germany) and Femtotips II (1,501,040; Eppendorf), 
injections were performed on an N2 background. By co-injection of two plasmids [10 ng/µL of 
pKPY197-Prab3 and 90 ng/µL of pUC19 in water] into C. elegans, the strain TG1 (TGIs1[Prab-
3::frs-1(Thr412Gly)::fib-1/rps-16::gfp(S65C, synIVS)::unc-54 3′UTR]) was generated. By UV 
irradiation, Ex arrays of three GFP-expressing strains were incorporated into the C. elegans 
genome [9]. By co-injection of two plasmids [45 ng/µL of pKPY197-Pgcy-8 and 5 ng/µL of 
pCFJ104 in water] into C. elegans, the strain TG2 (TGIs2[Pgcy-8::frs-1(Thr412Gly)::fib-1/rps-
16::gfp(S65C, synIVS)::unc-54 3′UTR, Pmyo-3::mcherry]) was generated. By UV irradiation, Ex 
arrays of three GFP-expressing strains were incorporated into the C. elegans genome. By co-
injection of two plasmids [35 ng/µL of pF23B2.10p::GFP, 50 ng/µL of pF25B3.3p::mcherry and 

Sequence (5' - 3') Description

ttgcatgcctgcaggatcttcagatgggagcagt Cloning from pGH8

atcctctcatgtcgatgcttttttgtacaaacttgtc Cloning from pGH8

ttgcatgcctgcaggagccaatttttaacgggg Cloning from C. elegans genome

atcctctcatgtcgatttgatgtggaaaaggtagaatc Cloning from C. elegans genome

tgtatagaaaagttgCGCCCAGTTACAACAGAGAGTG Cloning from C. elegans genome

gtacaaacttgtcatTGTGCCGAAATTTTAAATTTTAAATGA Cloning from C. elegans genome

tacccagctttcttgtacaaagtgggtg Cloning from pCFJ90 with F23B2.10

tttgtacaaacttgtcatTGTGCCG Cloning from pCFJ90 with F23B2.10

acaagtttgtacaaaaaagcaggcttaATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTG Cloning from pHW394

caagaaagctgggtaCTATTTGTATAGTTCATCCATGCCATGTGTAATCCC Cloning from pHW394
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15 ng/µL of pUC19 in water]  into C. elegans, the strain TG3 (TGEx3[Pf23b2.10::GFP::unc-
54 3′UTR, Pf25b3.3::mcherry]) was generated. 
 
Labeling of C. elegans with azido phenylalanine (Azf) 
 

Escherichia coli KY33 [pKPY514], donated by David Tirrell, is a strain that is 
auxotrophic for arginine, lysine, and phenylalanine [3]. Escherichia coli KY33 was labeled with 
azido-phenylalanine according to the methods of a previous report [3]. Worms were pre-cultured 
with 5 mL S medium supplemented with 15 mg/mL E. coli KY33 grown on phenylalanine at 
20°C, 250 rpm [5]. Pre-cultured worms were centrifuged at 300 g for 5 min at room temperature 
to form pellets. The pellets were washed with 1 mL of S medium. This process was repeated three 
times. The C. elegans pellet was incubated for 24 h at 20°C and 250 rpm in 5 mL S medium 
supplemented with 15 mg/mL azido-phenylalanine-cultured E. coli KY33. Labeled nematodes 
were collected using a 20 µm nylon filter (pluriStrainer 20 µm; pluriSelect, Leipzig, Germany). 
The nematodes were washed with 5 mL M9 buffer (0.6 % w/v Na2HPO4 (Nacalai Tesque, Kyoto, 
Japan), 0.3 % KH2PO4 (Nacalai Tesque), 0.5 % NaCl (Nacalai Tesque)). Nematodes were 
collected by centrifuging at 300 g for 5 min and processed according to the following procedures. 
 
Nematode fixation and TAMRA staining 
 

As described in a previous report, nematodes were fixed and labeled with 
dibenzocyclooctyne-PEG4-Fluor 545 (TAMRA-DBCO; Sigma-Aldrich, St. Louis, MO, USA) 
[3]. 
 
Fluorescence Microscopy and Imaging 
 

A 2 % agarose pad was prepared and coated with 5 μL 1mM levamisole (Tokyo 
Chemical Industry Co., Ltd., Tokyo, Japan) in M9 buffer. Worms were picked up and placed on 
the agarose pad with levamisole. Then, a coverslip was gently placed over the worms. Using 
confocal laser scanning microscopy (LSM 700; Carl Zeiss, Oberkochen, Germany), fluorescence 
was observed. The 488 nm, 555 nm, and 561 nm lasers were used to observe the fluorescence of 
GFP, TAMRA, and mCherry, respectively. Image processing was performed with Zen Lite and 
ImageJ [10]. 
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Preparing a sample for neuronal subclass-selective proteomics 
 

The labeled worms were given lysis buffer (8 M Urea (Nacalai Tesque), 4 % CHAPS 
(Dojindo, Kumamoto, Japan) and 1 M NaCl, in 200 mM Tris-HCl pH 8.0 (Nacalai Tesque)), and 
a probe sonicator with a 1/8″ probe was used to sonicate the mixture on ice (10 s on, 10 s off, 
1,000 J). Sonicated samples were centrifuged at 10,000 g for 5 min. I selectively enriched azide-
phenylalanine (Azf)-labeled proteins using a Click-iT™ Protein Enrichment Kit for click 
chemistry capture of azide-modified proteins (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer's protocol. On an alkyne-agarose column, the enriched samples 
were trypsinized. Samples were desalted with MonoSpinC18 (GL sciences, Osaka, Japan) and 
vacuum centrifuged. The desiccated peptides were dissolved in 25 µL 0.1 % formic acid (Wako, 
Osaka, Japan). 
 
Nano LC–MS/MS analysis 
 

Proteomic analysis was conducted as described in a previous report [11]. Briefly, 5 µl 
samples were injected, and peptides were separated using a liquid chromatography (LC, Ultimate 
3,000; Thermo Fisher Scientific) –tandem mass spectrometry (MS/MS, LTQ Orbitrap Velos Mass 
Spectrometer; Thermo Fisher Scientific) system equipped with a long monolithic silica capillary 
column (490 cm, 75 μm internal diameter) at a flow rate of 280 nL/min. A gradient was achieved 
by changing the ratio of two eluents: eluent A, 0.1 % (v/v) formic acid and eluent B, 80 % 
acetonitrile containing 0.1 % (v/v) formic acid. The gradient began with 5 % B, increased to 45 % 
B for 750 min, further increased to 95 % B to wash the column for 140 min, then returned to the 
initial condition and held for re-equilibration. The separated analytes were detected using a mass 
spectrometer with a full scan range of 350–1,500 m/z (resolution, 60,000), followed by ten data-
dependent collision-induced dissociation MS/MS scans. The temperature of the ion transfer tube 
was set to 280 °C, and dynamic exclusion was 180 s. The electrospray ionisation voltage was set 
at 2.3 kV. 
 
Data analysis 
 

Proteome Discoverer 2.1 (Thermo Fisher Scientific) was used for data analysis. Protein 
identification was performed with a precursor mass tolerance of 20 ppm and a fragment ion mass 
tolerance of 0.8 Da using MASCOT (Matrix Science, London, UK) against the C. 
elegans UniProt protein database (27/08/17). Carbamidomethylation of cysteine was designated 
as a fixed modification, and Oxidation of methionine and acetylation of protein N-terminals were 
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designated as dynamic modifications. The data were filtered using a cut-off criterion of ≤ 0.01 (q 
value), corresponding to a false discovery rate of 1 % at the spectral level. WormBase.org was 
used for tissue enrichment analysis (TEA) [12,13]. 
 
 

Results 
 
Experimental strategy 
 

The experimental strategy for the neuronal subclass-specific proteome analysis is 
depicted in Figure 1. Transgenic C. elegans strains producing MuPheRS and GFP in a specific 
neuronal subclass were generated. MuPheRS involves the substitution of Thr412 in PheRS with 
Gly, enabling more efficient incorporation of Azf. This substitution allows for the labeling of 
MuPheRS-expressing cells with Azf [4]. To label the proteins with Azf in the desired neuronal 
subclass, the transgenic C. elegans strains were grown with the Azf-labeled E. coli. Monolithic 
nano LC-MS/MS can be used for proteome analysis to disclose the proteomic composition of 
interest cells following the enrichment of azide-labeled proteins using alkyne-agarose. 

 

 
Figure 1. Experimental procedure of this research. E. coli was cultured with azide-phenylalanine 
(Azf) to label proteins within the bacteria with Azf. Subsequently, C. elegans was cultured with 
the Azf-labeled E. coli to label proteins in a targeted subset of neurons with Azf. Azide-modified 
proteins within the targeted subset of neurons were enriched using alkyne agarose after protein 
extraction. These enriched proteins were digested with trypsin and subjected to proteomic 
analysis using monolithic nano LC–MS/MS. 
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Figure 1.  Experimental scheme of cell-selective BONCAT. Escherichia coli was cultured with azide-
phenylalanine (Azf) to label proteins in E. coli with Azf. Next, C. elegans was cultured with the Azf-labelled 
E. coli to label proteins at target subclass neurons with Azf. A!er the extraction of total protein, azide-
modi"ed proteins in target subclass neurons were enriched using alkyne agarose. $e enriched proteins were 
digested with trypsin and proteomic analysis was conducted with monolithic nano LC–MS/MS.

Figure 2.  Con"rmation of MuPheRS production and activity in the SA1 strain. (A) Con"rmation of 
MuPheRS production in targeted cells in the SA1 strain (SAIs1[Prab-3::frs1(!r412Gly)::"b-1/rps-16::gfp(S65C, 
synIVS)::unc-54 3′-UTR]). Green %uorescent protein was produced under the rab-3 promoter (All neurons). 
A dotted white line indicates body shape. Scale bar indicates 20 μm. (B) Con"rmation of azide-phenylalanine 
incorporation in targeted cells. Azide-proteins were stained with dibenzocyclooctyne-PEG4-Fluor 545 
(TAMRA-DBCO). Scale bar indicates 20 μm. $e SA1 strain was cultured with Azf-labelled E. coli KY33 and 
stained with TAMRA-DBCO.
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Confirmation of Azf incorporation by MuPheRS in target cells 
 

Transgenic C. elegans strains producing MuPheRS and GFP under the rab-3 promoter 
[Prab-3::frs1(Thr412Gly)::fib-1/rps-16::gfp(S65C, synIVS)::unc-54] or gcy-8 promoter [Pgcy-
8::frs1(Thr412Gly)::fib-1/rps-16::gfp(S65C, synIVS)::unc-54, Pmyo-3::mcherry] were generated 
[14–16]. The rab-3 promoter is known to drive expression in all neurons and the gcy-8 promoter 
was known to be expressed in AFD neurons [15, 16]. AFD neurons, essential for thermotaxis, 
were chosen as a model for MuPheRS production in a single neuronal subclass [17]. Fluorescence 
microscopy was used to observe the transgenic strain, and GFP fluorescence was confirmed in 
targeted cells (Figure 2). To confirm Azf incorporation, the transgenic strain was then fixed with 
TAMRA-DBCO. As a result, only when the transgenic strain was co-cultured with Azf-labeled E. 
coli KY33 and stained with TAMRA-DBCO, TAMRA fluorescence successfully was identified 
in neurons. No strong TAMRA fluorescence signal was observed in the transgenic strain cultured 
with Azf-labeled E. coli KY33 and not stained with TAMRA-DBCO. Both the wild-type N2 strain 
cultivated with Azf- or Phe-labeled E. coli KY33 and stained with TAMRA-DBCO showed strong 
background fluorescence signals across the entire body. TAMRA fluorescence was also 
successfully detected in a transgenic line expressing MuPheRS downstream of the gcy-8 promoter. 
TAMRA fluorescence was seen surrounding the anatomical site of AFD neurons, with no strong 
TMARA fluorescence signals in other cells. These findings support that transgenic strains 
produced MuPheRS and integrated Azf into the targeted cells.  
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Figure 2. Verification of MuPheRS synthesis and activity in the TG1 strain. (A) illustrates the 
presence of MuPheRS production in targeted cells of the TG1 strain (TGIs1 [Prab-
3::frs1(Thr412Gly)::fib-1/rps-16::gfp(S65C, synIVS)::unc-54 3′-UTR]), with green fluorescent 
protein expression controlled by the rab-3 promoter in all neurons. The body shape of C. elegans 
is indicated by a white dotted line, with a scale bar representing 20 μm. (B) Azf incorporation in 
targeted cells, with azide-proteins stained using dibenzocyclooctyne-PEG4-Fluor 545 (TAMRA-
DBCO). The TG1 strain was cultured with Azf-labeled E. coli KY33 and subsequently stained 
with TAMRA-DBCO, with the size of the body indicated by a scale bar representing 20 
micrometers. (C) shows negative control experiments. (i) Wild type N2 strain cultured with Azf-
labeled E. coli KY33 and stained with TAMRA-DBCO, (ii) TG1 strain cultured with Phe-labeled 

(A) (B)

(C)

(D)
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E. coli KY33 and stained with TAMRA-DBCO, and (iii) TG1 strain cultured with Azf-labeled E. 
coli KY33 strain but not stained with TAMRA-DBCO. The size is indicated by scale bars 
representing 20 μm. (D) presents the confirmation of Azf incorporation in AFD neuronal cells of 
the TG2 strain cultured with Azf-labeled E. coli KY33, with azide-labeled protein stained using 
dibenzocyclooctyne-PEG4-Fluor 545 (TAMRA-DBCO). The size of the cells is indicated by a 
scale bar representing 20 μm, with the arrow indicating the AFD neuronal cell. 
 
Neuron-specific proteome analysis by all neuron selective Azf incorporation 
 

Proteomic analysis of a C. elegans strain expressing MuPheRS in all neurons was used 
to determine the molecular composition of neurons. Proteomic analysis of the N2 strain cultured 
with Azf- or Phe-labeled E. coli KY33, followed by enrichment of azide-labeled proteins with 
alkyne-agarose was used to assess non-specific incorporation of Azf into cells and non-specific 
adsorption to agarose as control experiments. Proteome analysis was performed with monolithic 
nano LC-MS/MS [18]. I identified 3,461 proteins in the Azf-labeled transgenic strain (average of 
three biological replicates). I identified 687 proteins in the N2 strain co-cultured with Phe-labeled 
E. coli KY33 and 968 proteins in the N2 strain co-cultured with Azf-labeled KY33 (Figure 3A). 
It is estimated that the number of proteins identified through non-specific adsorption to agarose 
was approximately 687, and the number of proteins identified through Azf incorporation into non-
specific cells was approximately 281 proteins. In cell-selective BONCAT, little Azf-incorporation 
into non-specific cells was observed. This result further supports that the TAMRA fluorescence 
observed in the control experiment is caused by non-specific absorption of TMSR-DBCO rather 
than non-specific incorporation of Azf. 

Next, proteomic samples of N2 and the transgenic strain expressing MuPheRS cultured 
with Azf-labeled E. coli KY33 without azide-labeled protein enrichment and proteomic analysis 
were performed. The protein compositions of the transgenic strain co-cultured with Azf-labeled 
KY33 with azide-protein enrichment were compared with that of N2 and transgenic strain without 
processing of azide-protein enrichment (Figure 3B). As a result of proteomic analysis, 1,397 
proteins were identified only in the transgenic strain. G protein-coupled receptors (GPCRs; for 
example, 12 neurotransmitter receptors including SRX-29 and SRU-6) and representative 
neuronal proteins such as RAB-3 (Ras-related protein, Rab-3) were included in identified proteins 
[14]. Then, tissue enrichment analysis was performed to evaluate the quality of neuronal protein 
identification [12]. The localization of identified proteins was assessed with proteins identified 
only in the Azf-labeled transgenic strain (Figure 3B, the black-filled section). Then, the amount 
of detected protein was compared based on two parameters derived from protein sequence 
information: molecular weight and isoelectric point to check the presence of nonspecific 
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incorporation during the enrichment process. The results showed no bias between the enriched 
and non-enriched proteome analysis (Figure 4). These results strongly imply that our proteomic 
analysis enriched neuronal proteomes and successfully identified neuron-specific proteins. 
 

 
 
Figure 3. A comparison of the number of identified proteins. (A) displays the average number of 
identified proteins in Phe-cultured N2, Azf-cultured N2, and Azf-cultured TG1, following azide-
protein enrichment, with data resented as mean ± standard error of the mean (N=3). (B) presents 
a Venn diagram comparing the constitution of proteins identified in nematodes fed on KY33 strain 
cultured with Azf. The numbers of the Venn diagram represent the number of proteins found in 
each sample at least once (N2 or TG1). Tissue enrichment analysis was conducted on the proteins 
identified only in the TG1 strain cultured in the Azf-labeled KY33 strain with azide-labeled 
protein enrichment (the black filled area), as listed in Table 2. 
 
 
 
 
 
 
 
 
 

TG1

TG1
TG1
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Table 2. 

 

Tissue enrichment analysis was conducted on proteins detected only in the TG1 strain cultured in the 

Azf-labeled KY33 strain with the azide-protein enrichment procedure using WormWeb.org. 

 

Figure 4. Distribution of identified proteins in terms of isoelectric point (A) and molecular weight 
(B). The lines represent the isoelectric point and molecular weight distribution of the detected 
proteins. The data from the N2 strain cultivated with E. coli KY33 that has been azide-labeled but 
not with further azide-protein enrichment are represented by the black line. Data from the TG1 
strain cultivated with the azide-labeled KY33, either without or with azide-protein enrichment, 
are represented by the light grey dashed line and the dark grey line. 
  

Term Enrichment Fold Change FDR-adjusted P value

PVD 1.4 3.00E-10

outer labial sensillum 1.4 8.40E-10

IL2 neuron 1.7 2.60E-03

lateral ganglion 1.3 2.60E-03

intestine 1.1 2.60E-03

SDQL 3.2 2.60E-03

AWB 2.4 2.60E-03

AIY 2.3 2.60E-03

pharyngeal interneuron 1.4 2.60E-03

CEM 1.6 3.20E-03

ASE 1.3 3.60E-03

hook sensillum 1.6 3.60E-03

ventral nerve cord 1.3 5.30E-03

SDQR 2.7 9.80E-03

inner labial sensillum 1.5 1.10E-02
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Confirmation of expression localization of newly identified neuron-specific proteins 
 

In order to confirm the accuracy of our analysis, I looked for neuron-specific proteins 
found in our proteomic analysis that did not have an expression pattern description in Wormbase 
[13]. Several such proteins fall into this category (Table 3). To confirm that these proteins are 
expressed in neurons, I selected F23B2.10 and cloned the 5′ regulatory region of this gene from 
the C. elegans genome, and constructed the transgenic strain [Pf23b2.10::GFP, 
Pf25b3.3::mcherry]. In this strain, I confirmed that Pf23b2.10 drives the production of GFP in 
neurons (Figure 5). 
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Table 3 

 
Proteins detected only in the neuron-enriched fraction without localization information in tissue 
enrichment analysis were further analyzed. The 5' regulatory regions of the target gene (indicated 
in the bold letter) were cloned from the C. elegans genome and used to construct promoter::GFP 
fusion plasmids. 
 

Gene name Accession Description

abt-6 O01842 ABC Transporter family
B0432.14 Q3HKB5 Uncharacterized protein
B0546.3 U4PBQ7 Uncharacterized protein

C06C3.12 B7WN68 Uncharacterized protein
C12D5.5 Q17924 Uncharacterized protein
C15C7.4 Q18010 Uncharacterized protein
C18G1.7 O61918 Uncharacterized protein
C35E7.6 O61770 Uncharacterized protein
C36B1.9 Q93343 Uncharacterized protein

CELE_F23B2.10 O45400 Uncharacterized protein
CELE_F35E8.6 O45452 Uncharacterized protein

CELE_F38H12.5 O16345 Uncharacterized protein
CELE_F39C12.1 O61201 Uncharacterized protein
CELE_F41C6.6 Q20271 Uncharacterized protein

CELE_F48C1.11 G4RU19 Uncharacterized protein
CELE_F57G4.11 D9N150 Uncharacterized protein
CELE_K08D9.10 A0A0S4XR86 Uncharacterized protein
CELE_R03G8.4 Q21673 Aminopeptidase

CELE_T08E11.1 O76644 Uncharacterized protein
CELE_T26C5.5 Q7YWS4 Uncharacterized protein

CELE_W02F12.4 H1ZUX4 Uncharacterized protein
CELE_W04G5.9 O18173 Uncharacterized protein
CELE_Y26E6A.2 O62419 Uncharacterized protein

CELE_Y54G2A.42 Q4R167 Uncharacterized protein
CELE_ZC8.6 Q23083 Uncharacterized protein

clec-82 H2L0R0 C-type LECtin
fbxb-99 Q9TYK5 F-box B protein
flp-28 Q7YWT6 FMRF-Like Peptide

gcp-2.3 Q58A98 Glutamate CarboxyPeptidase 2 homolog
glct-3 Q9XU73 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase
gpb5 A7DT38 Putative glycoprotein hormone-beta5
irld-2 Q19110 Insulin/EGF-Receptor L Domain protein

marc-6 Q400N4 MARCH (Membrane-Associated Ring finger (C3HC4)) homolog
nduo-4 P24892 NADH-ubiquinone oxidoreductase chain 4
npax-1 Q19677 N-terminal PAX (PAI domain only) protein
pals-29 O45859 Protein containing ALS2cr12 (ALS2CR12) domain
pcp-4 Q9GRV9 Prolyl Carboxy Peptidase like

pho-11 Q09451 Putative acid phosphatase 11
R07B7.12 Q21802 Glycosyltransferase family 92 protein R07B7.12

srw-66 O76620 Serpentine Receptor, class W
srx-29 O45662 Serpentine Receptor, class X
str-180 H2L036 Seven TM Receptor

Y18D10A.3 Q9XW15 NAD(P)H-hydrate epimerase



 64 

 
Figure 5. GFP expression is controlled by the 5' regulatory region of F23B2.10. Confocal 
imaging of the head ganglia was conducted in the TG3 strain (TGEx3[Pf23b2.10::GFP, 
Pf25b3.3::mcherry]) and N2 strain. GFP fluorescence was observed in only the subset of neurons 
in the TG3 strain. The scale bar indicates a length of 20 μm. 
  

TG3



 65 

Gcy-8 promoter based AFD subclass neuron-selective proteomic analysis 
 

Using the gcy-8 promoter, I specifically generated MuPheRS in AFD subclass neurons 
to conduct a single neuronal subclass-selective proteomic analysis. The molecular mechanism 
underlying thermosensation has yet to be fully understood [16, 17, 19, 20]. In previous research, 
Kobayashi and colleagues have performed a phosphoproteomic analysis of in vitro differentiated 
AFD subclass neuron. However, the protein composition of these cells has yet to be established. 
The protein composition in AFD neuronal cells may provide insights into the molecular 
mechanisms underlying thermotaxis in C. elegans [17]. Azf-labeled KY33 was used to cultivate 
the transgenic strain, and a proteome analysis was performed on the Azf-labeled protein. 

AFD subclass neuron selective proteomic analysis revealed 1,834 proteins and 
identified TAX-6, which is known to be produced in AFD [22]. The proteome analysis of the 
transgenic strain expressing MuPheRS only in AFD was compared with that of the transgenic 
strain expressing MuPheRS in all neurons cultured with Azf-labeled E. coli KY33 (Figure 6). 
183 proteins that were unique to the AFD neuron-enriched proteomic analysis were identified 
through this comparison. Additionally, 1,143 proteins were identified in the single-cell 
transcriptome analysis of AFD neurons among the 1,834 proteins identified in our proteomic 
analysis [23]. The match between single-cell transcriptome analysis and our proteome analysis 
suggested that I successfully enriched proteins produced in AFD subclass neurons, given that 687 
proteins were identified as non-specific adsorption of proteins to alkyne-agarose (Figure 3). 
 

Figure 6. Venn diagram showing the comparison of the protein constitutions between azide-
enriched TG1 and TG2 strains fed on the Azf-labeled KY33. The numbers in the Venn diagram 
represent the number of proteins that were detected in each fraction at least once. 
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Discussion 
 

For the first time, I present proteomic analyses of all neurons and AFD subclass neurons 
using cell-selective BONCAT, identifying 4,412 and 1,834 proteins, respectively (Figures 3 and 
6). Proteome analysis for the whole body identified 4,257 proteins, comparable to the number 
identified in all neurons (Figure 3B). The proteome coverage from all neuronal cell-selective 
BONCAT is as comprehensive as that of the whole-body proteome, making it sufficient for 
discovering new marker proteins and elucidating molecular dynamics. Among the identified 
proteins from all neurons or AFD subclass neurons, neuron marker proteins such as RAB-339 or 
TAX-643, as well as GPCRs and neuropeptides, were identified. The results of tissue enrichment 
analysis confirmed the accuracy of neuronal protein identification. 

In addition, the localization of a novel protein encoded by F23B2.10 in neurons was 
also confirmed (Figure 5). These results indicate that protein enrichment by cell-selective 
BONCAT works well. Further analysis of the identified proteins, including GPCRs, is expected 
to provide greater insight into neuronal function. In this research, I did not employ quantitative 
proteomic approaches. In future studies, quantitative proteomic data will be necessary to identify 
proteomic variations in the target neurons. In addition, multiple promoters must be used to identify 
proteins specifically expressed in neurons. 

In this study, the proteomic analysis could not identify all neuronal and AFD neuronal 
marker proteins present in trace amounts. These markers include proteins encoding GCY-8, GCY-
18, GCY-27, FLP-6, NLP-7, NLP-21, and UNC-1, which are localized by a fluorescent reporter 
[16]. It is known that neuronal and AFD marker proteins contain some membrane proteins with 
high molecular weights and complex structures. Some studies have indicated that membrane 
proteins are not easily digested, and optimization of extract conditions and digestion may be 
necessary to identify membrane proteins [24]. Using more worms in the proteomic analysis may 
improve the identification rate. 

Additionally, miniaturizing the sample preparation volume may help reduce protein loss. 
Sample preparation methods based on solid-phase extraction (SPE), such as miniaturized filter-
aided sample preparation and in-StageTip methods, may be potentially suitable approaches as 
they allow for all sample processing, including cell lysis, reductive alkylation, digestion with 
trypsin, and elution of purified peptides, to be performed in a single enclosed reaction chamber 
[25, 26]. By combining solid-phase extraction with alkyne groups for sample processing, it may 
be possible to recover azide-labeled proteins in a single reaction chamber with minimal surface 
losses. A single-pot solid-phase-enhanced sample preparation may be a preferable method with 
high recovery efficiency [27]. 

In conclusion, I successfully carried out a proteomic analysis on all neurons and a 
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subclass of AFD neurons using cell-selective BONCAT, identifying 4,412 proteins and 1,834 
proteins, respectively (Figure 3, 6). These results demonstrate the feasibility of performing 
subclass-selective proteomic analysis and have the potential to elucidate proteomic differences 
among neurons using subclass-selective BONCAT. 
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