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Abstract

Rational functions are meromorphic in the Riemann sphere. Many results on dynamics of
rational functions are known. In particular, for rational functions, the Fatou-Shishikura inequality
holds and is best possible in some sense. In addition, irrationally indifferent periodic points are
Cremer points if their multipliers satisfy some condition, and all bounded type Siegel disks are
bounded by quasicircles containing critical points. Transcendental meromorphic functions are not
rational and have an essential singularity at ∞. Transcendental functions and rational functions
have quite different properties. However, transcendental functions with finitely many singular
values share important dynamical properties with rational functions. Therefore, we can expect the
generalization of the results for rational functions to such transcendental functions.

Quasiconformal surgery is an important technique. Roughly speaking, it modifies given mero-
morphic functions to new meromorphic functions with given dynamical properties. In this thesis,
we apply quasiconformal surgery technique to some transcendental meromorphic functions with
finitely many singular values in order to obtain various kinds of results:

(1) Eremenko and Lyubich showed the Fatou-Shishikura inequality for transcendental entire func-
tions in the Speiser class in [EL]. We show that the inequality is best possible on the analogy
of the Fatou-Shishikura inequality for rational functions in [Shi].

(2) Let S be the set of all transcendental entire functions of the form

P (z) exp (Q(z)),

where P and Q are polynomials. By using the theory of polynomial-like mappings, we tell
that irrationally indifferent fixed points of some functions in S are Cremer points by their
multipliers. We also use the theory and obtain some transcendental entire function in S with
bounded type Siegel disks centered at points other than the origin bounded by quasicircles
containing critical points, with a Siegel disk bounded by a Jordan curve containing critical
points, which is not a quasicircle, and with a Siegel disk bounded by a quasicircle without
critical points. Moreover, we construct some functions in S with the Julia sets of Lebesgue
measure zero and with the Julia sets of positive Lebesgue measure. Those are some extensions
of Geyer’s result in [Gey], Cremer’s result in [Cr1], Zakeri’s result in [Za2], and Keen and
Zhang’s result in [KeZ].

(3) We discuss a one parameter family of some transcendental meromorphic functions with one
pole, two critical points, and a bounded type Siegel disk centered at the origin. We show that
if two critical values coincide, then the boundary of the Siegel disk is a quasicircle containing
exactly one critical point, and the set of parameters for which two critical values coincide
is countably infinite. We also show that for any parameter in some uncountable set, the
boundary of the Siegel disk is a quasicircle containing exactly one critical point. In addition,
we can choose a parameter so that the boundary of the Siegel disk is a quasicircle containing
exactly two critical points. This is an extension of the result in [Za2] or [KeZ].
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Chapter 1

Introduction and the results

Iteration of a meromorphic function f : C → Ĉ := C ∪ {∞} for an initial point z0 ∈ C yields the
following sequence:

z0, z1 = f(z0), z2 = f(z1) = f(f(z0)) = f 2(z0), · · · , zn = fn(z0),

where fn =

n︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f , whenever z0 is not a preimage of ∞ by f, f 2, · · · , fn−1. The main

purpose of studying complex dynamics is to understand the behavior of such sequence {z0, z1, · · · }
as n → ∞. The Riemann sphere Ĉ is divided into the Fatou set F (f) and the Julia set J(f).
(Their names come from two pioneers Fatou and Julia of complex dynamics.) The set F (f) is
open, and hence the set J(f) is closed. Roughly speaking, if z0 ∈ F (f), then σ(fn(z′0), f

n(z0)) is
small enough for any z′0 in small enough neighborhood of z0 and any n ∈ N, where σ denotes the
spherical metric (see Proposition 2.3). We call this property the stability of dynamics on F (f).
On the other hand, if z0 ∈ J(f), then there can exist a point z′0 in any small neighborhood of z0
such that σ(fN(z′0), f

N(z0)) is large for some N ∈ N (see Proposition 2.5). This property is often
called the sensitive dependence on initial conditions of the dynamics on J(f). Those two sets are
fundamental objects to study in complex dynamics.

A polynomial P : C → C of degree d ≥ 2 has the form

P (z) = adz
d + ad−1z

d−1 + · · ·+ a0,

where aj ∈ C (j = 0, · · · , d) and ad 6= 0. A rational function (or map) R : Ĉ → Ĉ of degree d ≥ 2
has the form

R(z) =
P (z)

Q(z)
,

where P and Q are mutually prime polynomials with max {degP, degQ} = d. By definition,
rational functions include polynomials. There are many results on dynamics of rational functions
or polynomials. A meromorphic function on C which is not rational is called transcendental. Since
transcendental meromorphic functions have an essential singularity at ∞, we cannot define the
value at ∞ naturally in contrast to rational functions. For a rational function R of degree d and

any w ∈ Ĉ, the equation R(z) = w of z has d solutions counted with multiplicity. On the other
hand, for transcendental functions, such equation can have infinitely many solutions. These are
big differences between rational case and transcendental case. Therefore, we cannot extend results
for rational functions to transcendental meromorphic functions in general. For a transcendental

meromorphic or rational function f defined on C or Ĉ, a singular value v ∈ Ĉ is a point such
that a branch of f−1 cannot be defined naturally in any neighborhood of it. It is known that
transcendental functions with finitely many singular values share important dynamical properties
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with rational functions (see Section 2.2). Hence it is natural to expect some extensions of results
for rational functions to such transcendental functions. In particular, we give such extensions of
the results for rational functions on the Fatou-Shishikura inequality, Cremer points, and Siegel
disks bounded by quasicircles, which are special Jordan curves and defined in Definition 2.9 (see
Theorem 1.1, Proposition 2.24, Theorem 1.3, and Theorem 1.4). Quasiconformal surgery is an
important technique which makes a given meromorphic function into a new meromorphic function
with given dynamical properties (see Section 2.5). We use this technique and obtain the following
results of some transcendental meromorphic functions with finitely many singular values:

(1) For rational functions, Shishikura constructed a theory of quasiconformal surgery and showed
the Fatou-Shishikura inequality in [Shi]. His surgery technique also showed that the inequality
is best possible in some sense (see Theorem 1.1). The Speiser class S is the set of all entire
functions with finitely many singular values. As an extension of the result, Eremenko and
Lyubich showed the Fatou-Shishikura inequality for transcendental entire functions in the
Speiser class in [EL] (see Theorem 1.2). However, it has not been proved that the inequality
is best possible. On the analogy of the rational case, we show the inequality is best possible.
(See Section 1.1.)

(2) Denote by S the set of all transcendental entire functions of the form

P (z) exp (Q(z)),

where P and Q are polynomials. They belong to the Speiser class S and are structurally
finite (see Definition 2.3). Thus it is natural to expect results for f ∈ S similar to those for
polynomials. By using the theory of polynomial-like mappings (see Section 2.5), we construct
some functions in S with Cremer points, with Siegel disks bounded by quasicircles or Jordan
curves, with the Julia sets of Lebesgue measure zero, and with the Julia sets of positive
Lebesgue measure. These are some extensions of Geyer’s result in [Gey], Cremer’s result in
[Cr1], Zakeri’s result in [Za2], and Keen and Zhang’s result in [KeZ]. (See Section 1.2.)

(3) We consider a one parameter family of some transcendental meromorphic functions with one
pole, at most four singular values, and a bounded type Siegel disk centered at the origin. We
show that the Siegel disks are bounded by quasicircles containing critical points for uncount-
ably many parameters. This is an extension of Zakeri’s result in [Za2] or Keen and Zhang’s
result in [KeZ]. (See Section 1.3.)

1.1 Best possibility of the Fatou-Shishikura inequality for transcen-
dental entire functions in the Speiser class (Theorem A)

For a transcendental meromorphic or rational function f defined on C or Ĉ, a point z is called
periodic if f p(z) = z for some minimum p ∈ N. This p is called the period of z. In particular,
it is called fixed if p = 1. Periodic points are important initial points, which often become a key
to understand dynamics. The set {z, f(z), · · · , f p−1(z)} is called the cycle containing z. Periodic
points (resp. cycles containing them) are classified into repelling, attracting (or super-attracting),
rationally indifferent, or irrationally indifferent periodic points (resp. cycles). (See Section 2.1.)
Furthermore, we call an irrationally indifferent periodic point z a Siegel point if z ∈ F (f), or a
Cremer point if z ∈ J(f). The cycle containing a Siegel point is called a Siegel cycle. Similarly,
we define Cremer cycles.

A connected component of F (f) is called a Fatou component. Let U be a Fatou component.
Then fn(U) is contained in some Fatou component Un for n = 1, 2, · · · . The domain U is called a
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wandering domain if Um 6= Un for any distinctm,n ∈ N (see [Bak, p.567, Example 5.1]). Otherwise,
U is called an eventually periodic component. The domain U is called a periodic component if
there exists the minimum number n ∈ N such that Un = U . This n is called the period of U . In
addition, {U,U1, · · · , Un−1} is called the cycle (of period n) containing U . Periodic components are
classified into attractive basins, parabolic basins, Siegel disks, Herman rings, and Baker domains
(see Proposition 2.11). Cycles containing attractive basins are called AB-cycles. Similarly, we
define PB-cycles, SD-cycles, HR-cycles, and BD-cycles. AB-cycles, PB-cycles, and SD-cycles have
close relations with attracting cycles, rationally indifferent cycles, and Siegel cycles respectively
(see Proposition 2.9, Proposition 2.10, and Proposition 2.11). Note that entire functions have no
HR-cycles and rational functions have no BD-cycles (see Section 2.1).

Points c and f(c) are called a critical point and a critical value respectively if f fails to be uni-

valent in any neighborhood of c. A point a ∈ Ĉ is called an asymptotic value if f is transcendental
and there exists a continuous curve γ(t) (0 ≤ t < 1) with limt→1 γ(t) = ∞ and limt→1 f(γ(t)) = a.
Singular values are classified into critical values, asymptotic values, and their accumulation points,
which have important relations with periodic components and Cremer cycles (see Proposition 2.12
and Proposition 2.14). Let Sq ⊂ S be the set of all transcendental entire functions which have
exactly q distinct finite singular values. Let Pold be the set of all polynomials of degree d ≥ 2.
Any f ∈ Pold has d− 1 critical points in C counted with multiplicity and at most d− 1 singular
values in C, which are critical values.

Now we introduce the Fatou-Shishikura inequality for f ∈ Pold and that for f ∈ Sq. When
f ∈ Pold ∪ Sq, we define nrat(f) as the number of rationally indifferent cycles of f . Similarly we
define

nSi(f), nCr(f), nPB(f), nSD(f)

as the number of Siegel cycles, Cremer cycles, PB-cycles, and SD-cycles respectively. In addition,

nrat(f) ≤ nPB(f), nSi(f) = nSD(f)

hold among these notations (see Proposition 2.10 and Proposition 2.11). It is known that nPB(f) is
a multiple of nrat(f) (see Proposition 2.10). We define natt(f) as the number of attracting cycles of
f in C. Let nAB(f) be the number of attractive basins of f if f ∈ Sq and the number of bounded
attractive basins if f ∈ Pold. It follows that

natt(f) = nAB(f).

(See Proposition 2.9.) Note that we adopt the definitions of natt(f) and nAB(f) for the inequality
in Theorem 1.1.1) The following is the Fatou-Shishikura inequality for f ∈ Pold, which is some
modification of [Shi, p.5, Corollary 2, p.6, Theorem 4]):

Theorem 1.1 ([Shi, p.5, Corollary 2, p.6, Theorem 4]). Let f ∈ Pold. Then

nAB(f) + nPB(f) + nSD(f) + nCr(f) ≤ d− 1.

Moreover, the inequality is best possible in the following sense: If non-negative integers mAB,mPB,
mSD, and mCr satisfy

mAB +mPB +mSD +mCr ≤ d− 1,

then there exists a polynomial P ∈ Pold with

(nAB(P ), nPB(P ), nSD(P ), nCr(P )) = (mAB,mPB,mSD,mCr).
1)When we regard f ∈ Pold as a rational function defined on the Riemann sphere Ĉ, f always has a super-attracting fixed point ∞

and an attractive basin containing ∞. ∞ is a critical point with multiplicity d − 1. By the Fatou-Shishikura inequality for rational
functions of degree d (see [Shi, p.5, Corollary 2]), the sum of the numbers of AB-cycles, PB-cycles, SD-cycles, and Cremer cycles is less

than or equal to the number 2d− 2 of critical points in Ĉ counted with multiplicity. We adopt the definition of natt(f)(= nAB(f)) so
that the right-hand side of the modified inequality in Theorem 1.1 becomes the number d− 1 of critical points in C.
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The Fatou-Shishikura inequality for f ∈ Sq is as follows:

Theorem 1.2 ([EL, p.1005, Theorem 5]). Let f ∈ Sq. Then

nAB(f) + nPB(f) + nSD(f) + nCr(f) ≤ q.

Both functions in Pold and those in Sq share some important dynamical properties as follows:

(1) They have finitely many singular values;

(2) They have no Herman rings, no Baker domains, and no wandering domains (see Section 2.1,
Proposition 2.15, and Proposition 2.16);

(3) They satisfy the Fatou-Shishikura inequalities (Theorem 1.1 and Theorem 1.2).

According to Theorem 1.1, the Fatou-Shishikura inequality for f ∈ Pold is best possible. From
these dynamical properties of f ∈ Sq similar to those of f ∈ Pold, we can expect best possibility
of the Fatou-Shishikura inequality for f ∈ Sq analogous to that for f ∈ Pold. We show that this
is actually true by constructing structurally finite transcendental entire functions, which belong
to S and have the explicit representation (see Definition 2.3 and [T]). Let SF be the set of all
structurally finite transcendental entire functions.

Theorem A ([KiN1, p.168, Main Theorem]). The Fatou-Shishikura inequality for f ∈ Sq is best
possible in the following sense: If non-negative integers mAB,mPB,mSD, and mCr satisfy

mAB +mPB +mSD +mCr ≤ q,

then there exists a T ∈ Sq with

(nAB(T ), nPB(T ), nSD(T ), nCr(T )) = (mAB,mPB,mSD,mCr).

More precisely, T satisfies nPB(T ) = nrat(T ) and T ∈ SF . In addition, every non-repelling periodic
point of T has the same period relatively prime with q.

The proof of Theorem A is based on an analogy of [Shi]. Cremer’s result only for rational
functions in [Cr1] can tell that irrationally indifferent cycles are Cremer cycles if they satisfy some
condition which we will name [Cremer (d)] (see Theorem 1.3). Shishikura used the result to prove
best possibility of the Fatou-Shishikura inequality for rational functions (see [Shi]). On the other
hand, we cannot use the result for transcendental case in general. (Note that such condition can
be applicable in some transcendental cases. See Theorem C.) For the proof of Theorem A, we
construct Cremer cycles without using his result. This is the main difference between our proof and
[Shi]. Moreover, our construction can be also used for the rational case, which leads to a slightly
different proof of [Shi, p.6, Theorem 4]. We also give another way how to construct Cremer cycles,
where we use another Cremer’s result in [Cr2] (see Remark 3.4).

1.2 Some transcendental entire functions with irrationally indifferent
fixed points (Theorems B–H)

Let f : C → Ĉ be a transcendental meromorphic function or a polynomial of degree d ≥ 2. A
periodic point z0 ∈ C of period p is called irrationally indifferent if λ := (f p)′(z0) = e2πiθ(θ ∈ R\Q).
We call λ the multiplier of z0. If z0 is a Siegel point, then there exists a maximal f p-invariant
simply connected domain D ⊂ F (f) containing z0 on which f p is conformally conjugate to the
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rotation z 7→ λz (see Proposition 2.11 (SD)). In fact, the domain D is a Siegel disk (centered at
z0). In addition, we call D fixed if p = 1. We say that θ ∈ R \Q is a Brjuno number if∑

n

log qn+1

qn
< ∞,

where pn/qn is the nth convergent [a0; a1, a2, . . . , an−1] to θ coming from the continued fraction
expansion

θ = [a0; a1, a2, . . . , an−1, . . . ] := a0 +
1

a1 +
1

a2 + · · ·
1

an−1 + · · ·

.

The condition is called the Brjuno condition. Denote by B the set of all Brjuno numbers. The set
B is uncountable and dense in R. According to Brjuno and Rüssmann, if θ ∈ B, then z0 is a Siegel
point (see [Brj] and [Ru] or [Mil, p.132, Theorem 11.10]). In general, we cannot tell whether z0 is
a Siegel point or a Cremer point if θ /∈ B. This causes a difficulty in constructing Cremer points
of transcendental functions. Some solutions are in the proof of Theorem A. For the quadratic
polynomial of the form e2πiθz+z2 (θ ∈ R\Q), Yoccoz showed that the Brjuno condition is optimal
for the origin to be a Siegel point (see [Y]). This result is generalized by Okuyama and Geyer (see
[Ok1] and [Gey]). In particular, Geyer extended the Yoccoz’s result to the transcendental function
of the form e2πiθzez ∈ S (θ ∈ R \Q) (see [Gey]). We extend Geyer’s result as follows:

Theorem B ([KiN2, p.372, Theorem 3]). Let

Fθ,c(z) := e2πiθz(1 + cz)d−1ez ∈ S ,

where θ ∈ R \Q, an integer d ≥ 2, and c ∈ C. Then for c with |c| large enough, Fθ,c has a Siegel
point at the origin if and only if θ ∈ B.

Remark 1.1. If |c| > 6
d−1
√
4e3/2 + 2 =: M(d), then the statement of Theorem B holds (see Lemma

4.1 for M(d)).

The following is a sufficient condition on multipliers for irrationally indifferent periodic points
of rational functions to be Cremer points:

Theorem 1.3 ([Cr1]). Let f be a rational function of degree d ≥ 2. If f has an irrationally
indifferent fixed point z0 whose multiplier λ satisfies the following condition:

[Cremer (d)]
{

dn
√

1/|λn − 1|
}∞

n=1
is unbounded,

then z0 is a Cremer fixed point. In addition, the set of all λ satisfying [Cremer (d)] is uncountable
and dense in {λ | |λ| = 1}.

(See Chapter 2 for the definition of the multiplier when z0 = ∞.) For transcendental entire
functions, another Cremer’s result says that irrationally indifferent periodic points are Cremer
points if their multipliers satisfy some condition different from [Cremer (d)] (see Proposition 2.23).
On the other hand, we cannot tell that irrationally indifferent periodic points of transcendental
entire functions are Cremer points even if their multipliers satisfy [Cremer (d)] in general. We
obtain functions in S with several Cremer points with multipliers satisfying [Cremer (d)] for some
integer d as follows:

Theorem C ([KiN2, p.371, Theorem 2]). Let q be an arbitrary positive integer. Then there exist
a g ∈ S and a d ∈ N such that g has q Cremer fixed points whose multipliers satisfy [Cremer (d)].
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We say that θ ∈ R is of bounded type if {an}∞n=0 is bounded, where θ = [a0; a1, a2, . . . , an, . . . ] is
the continued fraction expansion. (Such numbers are also called Diophantine numbers of order 2.)
Denote by D(2) the set of all irrational numbers of bounded type. The set D(2) is uncountable
and dense in R. Note that D(2) ⊂ B. Thus if θ ∈ D(2), then a periodic point z0 with multiplier
λ = e2πiθ is a Siegel point. In this case, we call z0 or the Siegel disk D centered at z0 bounded type.
The following is from Shishikura’s unpublished work on the boundaries of bounded type Siegel
disks of polynomials:

Theorem 1.4. All bounded type Siegel disks of polynomials of degree d ≥ 2 are bounded by quasi-
circles containing at least one critical point.2)

Zakeri gave an extension of Theorem 1.4 to functions in S as follows:

Theorem 1.5 ([Za2]). Let f ∈ S . Suppose that f has a bounded type fixed Siegel disk centered
at the origin. Then the fixed Siegel disk is bounded by a quasicircle containing at least one critical
point.3)

As he mentioned in his paper, the space S is not invariant under linear conjugations which move
the origin (see Section 2.5 for conjugation). Thus his result does not say anything about bounded
type fixed Siegel disks of f ∈ S centered at points other than the origin. As an extension of
Theorem 1.5, we construct functions in S with such Siegel disks bounded by quasicircles containing
critical points as follows:

Theorem D ([KiN2, p.371, Theorem 1]). Let q be an arbitrary positive integer. Then there exists
a g ∈ S such that g has q bounded type fixed Siegel disks each of which is bounded by a quasicircle
containing at least one critical point. In addition, those fixed Siegel disks are centered at points
other than the origin. We can also construct g so that each boundary of such Siegel disks contains
exactly one critical point.

Let S2,1 ⊂ S be the set of all functions in S of the form

(λz + αz2)ez,

where λ ∈ C and α ∈ C \ {0}. Functions in S2,1 have two critical points and two asymptotic
values 0 and ∞. Keen and Zhang proved a special case of Theorem D for f ∈ S2,1 by a different
approach from Zakeri’s proof. More precisely, they showed the following result:

Theorem 1.6 ([KeZ, p.138, Main Theorem]). Let θ ∈ D(2). Then for the function

gα(z) := (e2πiθz + αz2)ez ∈ S2,1,

the boundary of the bounded type fixed Siegel disk centered at the origin is a quasicircle containing
at least one critical point.

Let E be the set of all irrational numbers θ satisfying the arithmetic condition:

log an = O(
√
n) as n → ∞,

where θ = [a0; a1, a2, . . . , an, . . . ] is the continued fraction expansion (see [PeZ] for the set E). By
definition, one can check that D(2) ⊂ E ⊂ B. Moreover, it is known that E ∩ [0, 1] has full measure
(see [PeZ, p.9, Corollary 2.2]). On the other hand, the set D(2)∩ [0, 1] has Lebesgue measure zero.
Therefore, the set of all θ ∈ (E \ D(2)) ∩ [0, 1] has full measure. As an extension of Theorem 1.6,
we obtain the following result for gα with θ ∈ E :

2)Zhang extended this result to all bounded type Siegel disks of rational functions in [Zh].
3)Zakeri’s analysis also gives another proof of Theorem 1.4. His original statement includes that of Theorem 1.4.
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Theorem E ([KiN2, p.373, Theorem 5]). Let θ ∈ E , let

gα(z) := (e2πiθz + αz2)ez,

where α ∈ C\{0}, and let 4α be the fixed Siegel disk of gα centered at the origin. Then there exists
a constant M > 0 independent of θ such that if |α| > M , then ∂4α is a Jordan curve containing
exactly one critical point. Moreover, if θ ∈ E \D(2) and |α| > M , then ∂4α is a Jordan curve but
is not a quasicircle.

Remark 1.2. Let M(d) be as in Remark 1.1. Note that we can take M := M(2) = 24e3/2 + 2 (see
the proof of Theorem E). Our proof of Theorem E for θ ∈ D(2) may be similar to the proof noted
in [KeZ, p.146, Remark 2.4] without giving the details, which shows a special case of Theorem 1.6.
However, our main target is gα for θ ∈ E \ D(2). Moreover, we provides the detailed argument.

In contrast to Theorem E, we also have:

Theorem F. There exists an f ∈ S2,1 such that it has a Siegel disk centered at the origin whose
boundary is a quasicircle without critical points.

The Lebesgue measure of the Julia set is an important information. Keen and Zhang also
constructed an f ∈ S2,1 with J(f) of Lebesgue measure zero and an attracting fixed point of
multiplier λ at the origin (see [KeZ, p.147, Lemma 3.4]). However, they did not say anything on
the Lebesgue measure of J(gα). We have:

Theorem G ([KiN2, p.373, Theorem 6]). For every θ ∈ E , there exists a domain A ⊂ {α | |α| >
M} such that if α ∈ A, then J(gα) has Lebesgue measure zero, where M is as in Theorem E.

In contrast to Theorem G, we obtain the following result:

Theorem H ([KiN2, p.372, Theorem 4]). There exist functions f1 and f2 in S2,1 such that
J(fj) (j = 1, 2) have positive Lebesgue measure and f1 (resp. f2) has a Cremer fixed point (resp.
a Siegel fixed point) at the origin.

The proofs of the results from Theorem B to Theorem H are based on the theory of polynomial-
like mappings, which allows us to use the results for polynomials even in some transcendental cases.
(For polynomial-like mappings, see Section 2.5.)

1.3 The boundaries of bounded type fixed Siegel disks of some tran-
scendental meromorphic functions (Theorem I)

Let S̃ be the set of all transcendental meromorphic functions of the form

R(z) exp (Q(z)),

where R(z) and Q(z) are a rational function which has at least one pole and a polynomial respec-

tively. Functions in S̃ and functions in S share many important properties. For example, they
have finitely many critical points, two asymptotic values 0 and ∞, and finitely many zeros. Thus
we can expect the result for functions in S̃ similar to Theorem 1.5 for functions in S .

Question 1. Let f ∈ S̃ . Suppose that f has a bounded type fixed Siegel disk centered at the
origin. Is the fixed Siegel disk bounded by a quasicircle containing at least one critical point?
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We consider the easiest case as follows: Henceforth fix any irrational number θ of bounded type.
Suppose that f ∈ S̃, the degrees of R and Q are 1, and f has a bounded type Siegel fixed point at
the origin with multiplier λ = e2πiθ. The function f is conformally conjugate to

hα(z) := e2πiθ
z

1− α+1
α

z
eαz

for some α ∈ C \ {0,−1} (see Proposition 5.1). The one parameter family {hα}α∈C\{0,−1} has the
following properties:

(1) hα has two critical points 1 and

cα :=
−1

α + 1
,

two asymptotic values 0 and ∞, and one pole

tα :=
α

α + 1

(see Proposition 5.1).

(2) hα′ 6= hα is conformally conjugate to hα if and only if α′ = 1/(α+1)− 1 (see Proposition 5.2).

We show the following theorem:

Theorem I ([Nab]). Let 4α be the bounded type fixed Siegel disk of hα centered at the origin.
Then we have the following assertions:

(i) If two critical values hα(1) and hα(cα) coincide, then 4α is bounded by a quasicircle containing
exactly one critical point. Moreover, the set Ω1 := {α | hα(1) = hα(cα)} is countably infinite.

(ii) There exists an uncountable set Ω2 such that if α ∈ Ω2, then 4α is bounded by a quasicircle
containing exactly one critical point. Moreover, the quasicircle constant can be taken so that it is
independent of α ∈ Ω2.

(iii) There exists an α such that 4α is bounded by a quasicircle containing exactly two critical
points.

Recall that Keen and Zhang studied the one parameter family

{gα(z) := (e2πiθz + αz2)ez}α∈C\{0},

where θ is of bounded type. Like hα, gα has two critical points, two asymptotic values 0 and ∞,
and a bounded type fixed Siegel disk centered at the origin. By Theorem 1.6, the bounded type
Siegel disk of gα centered at the origin is bounded by a quasicircle containing critical points. They
also showed that for some α, the boundary of the Siegel disk contains exactly two critical points
(see [KeZ]). Therefore, it is natural to expect that Keen and Zhang’s method also shows Theorem
I. Unfortunately, since hα has one pole tα, we cannot use their method as in [KeZ] (and cannot use
the method as in [Za2]). Hence in order to show Theorem I, we have to modify Keen and Zhang’s
argument. We use the result of [CheE] in order to prove Theorem I (i). The proofs of Theorem I
(ii) and (iii) are inspired by quasiconformal surgery methods of [Za1], [KeZ], and [CheE].

The thesis is organized as follows: We devote Chapter 2 to preliminaries. In Chapter 3, 4, and
5, we show Theorem A, Theorems B–H, and Theorem I respectively. We make some concluding
remarks in Chapter 6. Note that the contents on Theorem A are based on [KiN1], that the contents
of the results in Section 1.2 other than Theorem F are based on [KiN2], and that the contents on
Theorem I are based on [Nab].
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Chapter 2

Preliminaries

In this chapter, we review basic definitions and facts and introduce quasiconformal surgery tech-
nique. Let f be a transcendental meromorphic function defined on C or a rational function of

degree d ≥ 2 defined on Ĉ. Recall that if f is transcendental and has a pole, then fn(z) is defined
for all points in C except for the preimages of ∞ by f, f 2, · · · , fn−1.

2.1 Properties of F (f) and J(f)

We say that a family F of meromorphic functions in a domain D ⊂ Ĉ is normal if for any
sequence {fn}∞n=1 ⊂ F , there exists a subsequence {fnk

}∞k=1 ⊂ {fn}∞n=1 which converges to some

limit function f∞ locally uniformly on D with respect to the spherical metric in Ĉ. Note that
the limit function f∞ is meromorphic in D. The following is a useful tool to tell that a family is
normal (see [Bea, p.57, Theorem 3.3.4]):

Montel’s theorem. Let F be a set of meromorphic functions in a domain D ⊂ Ĉ. If any function

in F does not take three distinct fixed values in Ĉ, then F is normal.

We define the Fatou set and the Julia set as follows:

Definition 2.1.

F (f) := {z ∈ Ĉ | {fn}∞n=1 is defined and normal in some neighborhood of z},

J(f) := Ĉ \ F (f).

By definition, F (f) is open, and hence J(f) is closed. For example, we have J(P ) = S1 := {z |
|z| = 1} for P (z) = z2. Indeed, since P : D → D and P : Ĉ \D → Ĉ \D, where D := {z | |z| < 1},
Montel’s theorem shows that J(P ) ⊆ S1. In addition, since P n(z) → 0 or P n(z) → ∞ as n → ∞
if z /∈ S1 and P (S1) = S1, J(P ) is exactly S1. Note that if f is transcendental, then ∞ is always
in J(f). The two sets have the following important properties:

Proposition 2.1 ([Ber, p.155, Lemma 2]). Both F (f) and J(f) are completely invariant sets in
the following sense:

f(F (f)) ⊆ F (f), f−1(F (f)) ⊆ F (f), f(J(f)) ⊆ J(f), f−1(J(f)) ⊆ J(f).

Hence we can divide the dynamics of f into f |F (f) : F (f) → F (f) and f |J(f) : J(f) → J(f). If
f is transcendental and has poles, then fn is not meromorphic in C for n ≥ 2. However, we can
define F (fn) and J(fn) naturally even in this case (see [Ber, p.155]). Then:
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Proposition 2.2 ([Ber, p.155, Lemma 1]). For every n ≥ 2,

F (fn) = F (f), J(fn) = J(f).

The following comes from the Ascoli-Arzelà theorem (see [Bea, p.56, Theorem 3.3.2]):

Proposition 2.3. Let z0 ∈ F (f). Then for any ε > 0, there exists a δ > 0 such that

σ(fn(z), fn(z0)) < ε

for any n ∈ N and any z with σ(z, z0) < δ, where σ denotes the spherical metric.

This property is called the stability of the dynamics on F (f). If f is rational and U is a Fatou
component of f , then f(U) is also a Fatou component. However, for some transcendental f , the
set f(U) is not a Fatou component (see examples in [Herr]). The following is known:

Proposition 2.4 ([Herr, p.264, Theorem 1 and Theorem 2]). Let U and V be a Fatou component
of f and the Fatou component containing f(U) respectively. Then the set V \ f(U) contains at
most two points. Moreover, any point in V \ f(U) is an asymptotic value.

Let
O+(z) :=

⋃
n≥0

{fn(z)},

where this union is for all n ≥ 0 such that fn(z) is defined. For any set X ⊂ Ĉ, let

O+(X) :=
⋃
z∈X

O+(z).

It follows from Montel’s theorem that:

Proposition 2.5 ([Ber, p.156]). Let z0 ∈ J(f) and let U be a neighborhood of z0. Then Ĉ\O+(U)
contains at most two points.

This yields the complicated behavior of the dynamics on J(f).
Let κ(z) := 1/z. For a periodic point z0 of period p, we define the multiplier λ by

λ :=

{
(f p)′(z0) (if z0 ∈ C)
(κ ◦ f p ◦ κ)′(0) (if f is rational and z0 = ∞).

We say that z0 (or the cycle containing z0) is repelling, attracting, rationally indifferent, or irra-
tionally indifferent if |λ| > 1, |λ| < 1, λ = e2πiθ (θ ∈ Q), or λ = e2πiθ (θ ∈ R \ Q), respectively.
The last three cases are called non-repelling. In particular, attracting cycles or periodic points are
called super-attracting if λ = 0. Note that the points zj = f j(z0) (j = 0, · · · , p − 1) in the cycle
containing z0 have the same multiplier λ, where f 0 is the identity.

The following proposition characterizes J(f):

Proposition 2.6 ([Ber, p.160, Theorem 4]). J(f) is the closure of the set of all repelling periodic
points of f .

Note that f has infinitely many repelling periodic points (see [Ber, p.161, Theorem 5]), and hence
J(f) is not empty. Proposition 2.5 shows that repelling periodic points are not isolated points in
J(f). Therefore, J(f) has no isolated points.

Proposition 2.7 ([Ber, p.159, Theorem 3]). J(f) is perfect in the following sense: J(f) is closed
and is not empty, and has no isolated points.
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Proposition 2.8 ([Ber, p.155, Lemma 3, p.156], [Bea, p.271, Section 11.9], [Mis]). J(f) has

empty interior or J(f) = Ĉ. There exist a rational function and a transcendental meromorphic

function such that the Julia sets are Ĉ. Let f1(z) := (z − 2)2/z2, let f2(z) := ez, and let f3,λ(z) :=

λ tan z (λ ∈ C \ {0}). Then J(f1) = J(f2) = J(f3,λ) = Ĉ for suitable values λ.

Attracting or rationally indifferent periodic points have important relations with periodic com-
ponents as follows:

Proposition 2.9 ([Bea, p.104, Theorem 6.3.1]). If z0 is an attracting periodic point of period p,
then z0 ∈ F (f). Moreover, there exists a periodic component A containing z0 of period p such that
fnp(z) → z0 as n → ∞ for any z ∈ A.

We call the periodic component A in Proposition 2.9 an attractive basin.

Proposition 2.10 ([Bea, p.110, Theorem 6.5.1, p.131, Theorem 6.5.10]). Let z0 be a rationally
indifferent periodic point of period p with multiplier λ = exp (2πir/q), where q and r are mutually
prime integers. Then z0 ∈ J(f). Moreover, the following Taylor expansion holds:

τ ◦ f pq ◦ τ−1(z) = z + azkq+1 +O(zkq+2) as z → 0,

where τ(z) := z − z0 if z0 ∈ C, τ(z) := 1/z if f is rational and z0 = ∞, k ∈ N, and a 6= 0, and
there exist pkq periodic components B1, · · ·Bpkq such that for any point in Bj (j = 1, · · · , pkq),
fnpq(z) → z0 ∈ ∂Bj as n → ∞ and B1, · · · , Bpkq form k cycles containing pq periodic components.

We call the periodic components Bj (j = 1, · · · , pkq) in Proposition 2.10 parabolic basins.

Remark 2.1. Although [Bea, p.104, Theorem 6.3.1] and [Bea, p.110, Theorem 6.5.1, p.131, Theo-
rem 6.5.10] are for rational functions, their proofs are applicable to transcendental meromorphic
functions in C.

We can classify periodic components as follows:

Proposition 2.11 ([Ber, p.163, Theorem 6]). Let D ⊂ F (f) be a periodic component of period p.
Then there are the following five possibilities:

(AB) D is an attractive basin.

(PB) D is a parabolic basin.

(SD) There exists a Siegel point z0 ∈ D of period p with multiplier λ and f p|D is conformally
conjugate to an irrational rotation z 7→ λz of the unit disk D := {z | |z| < 1}. To be more precise,
there exists a conformal map φ : D → D such that

φ(z0) = 0, φ ◦ f p ◦ φ−1(z) = λz

hold for z ∈ D.

(HR) f p|D is conformally conjugate to an irrational rotation z 7→ λz of the annulus Ar := {z |
r < |z| < 1} (0 < r < 1). To be more precise, there exists a conformal map φ : D → Ar such that

φ ◦ f p ◦ φ−1(z) = λz

holds for z ∈ Ar.

(BD) There exists a point z0 ∈ ∂U such that f p(z0) is not defined and every point z ∈ U satisfies
f pk(z) → z0 as k → ∞.
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In the case (SD), (HR), or (BD) as in Proposition 2.11, we call D a Siegel disk (centered at z0), a
Herman ring, or a Baker domain respectively. Recall that a cycle containing an attractive basin
is called an AB-cycle. Similarly, we defined PB-cycles, SD-cycles, HR-cycles, and BD-cycles. Note
that entire functions cannot have Herman rings (see [Ber, p.164]).

Let sing(f−1) be the set of all singular values of f in C (resp. in Ĉ) when f is transcendental
(resp. when f is rational). Singular values and periodic components (or Cremer cycles) have the
following important relations:

Proposition 2.12 ([Ber, p.164, Theorem 7, p.172, Theorem 16]). Let C be a cycle containing a
periodic component f . Then the following assertions hold:

(i) If C is an AB-cycle or a PB-cycle, then some periodic component in C contains a singular
value of f .

(ii) If C is a SD-cycle or a HR-cycle, then the union of all boundaries of periodic components in

C is contained in O+(sing(f−1)).

(iii) If C is a BD-cycle of period p, then ∞ is an accumulation point of the set

p−1⋃
j=0

f j(sing(f−1)).

Proposition 2.13 ([Bar, p.294, Theorem 4]). If f is transcendental entire and has a cycle of
period 1 containing a Baker domain, then there exist constants K > 1 and r0 > 0 such that for
any r ≥ r0, f has a singular value in

{z | r/K < |z| < Kr}.

Proposition 2.14 ([MoNTU, p.76, Theorem 2.4.7]). If f is rational or transcendental entire and

a ∈ Ĉ is a Cremer point of f , then a is an accumulation point of the set O+(sing(f−1)).

2.2 Meromorphic functions with finitely many singular values

In this section, we review properties of some families of meromorphic functions with finitely many
singular values. For a critical point c of f , we define the multiplicity m(c) of c as follows:

m(c) :=

 k1 − 1 (c ∈ C, f(c) ∈ C, and limz→c(f(z)− f(c))/(z − c)k1 = K)
k2 − 1 (c ∈ C, f(c) = ∞, and limz→c((κ ◦ f)(z)− (κ ◦ f)(c))/(z − c)k2 = K)
k3 − 1 (c = ∞, f(c) = ∞, and limz→0((κ ◦ f ◦ κ)(z)− (κ ◦ f ◦ κ)(0))/zk3 = K),

where K is non-zero and finite, κ(z) := 1/z, and f is rational in the last case. Note that rational
functions of degree d ≥ 2 have 2d− 2 critical points counted with multiplicity and no asymptotic
values, and hence they have at most 2d − 2 singular values, which are critical values (see [Bea,
p.43, Theorem 2.7.1]).

Sullivan showed that:

Proposition 2.15 ([Su, p.404, Theorem 1]). Rational functions have no wandering domains.

Therefore, all Fatou components of rational functions are eventually periodic components. By
Proposition 2.11, we can understand the dynamics on the Fatou sets of rational functions. In ad-
dition, by definition, rational functions have no Baker domains. Let S ′ be the set of all transcen-
dental meromorphic functions with finitely many critical points and asymptotic values. Note
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that there exists a function f in the Speiser class S such that f /∈ S ′. For example, f(z) = sin z
has infinitely many critical points, two critical values ±1, and no asymptotic values, and hence
f ∈ S but f /∈ S ′ in this case. As in the case of rational functions, the following is known:

Proposition 2.16 ([EL, p.990, Theorem 1, p.1004, Theorem 3], [BakKL2, p.652, Theorem], [Ber,
p.172, Corollary 4]). Let f ∈ S ∪ S ′. Then f has no wandering domains and Baker domains.

Remark 2.2. Proposition 2.12 (iii) shows that f ∈ S ∪ S ′ has no Baker domains. Eremenko and
Lyubich showed that if sing(f−1) is bounded for a transcendental entire function f , then f has no
Baker domains (see [EL, p.990, Theorem 1]). This is also shown by Proposition 2.13.

We call a periodic component U of f completely invariant if f(U) ⊆ U and f−1(U) ⊆ U .

Proposition 2.17 ([BakKL1, p.609, Theorem 4.5]). Let f ∈ S ′. Then F (f) contains at most two
completely invariant components.

In contrast to rational functions, transcendental functions can have asymptotic values.

Definition 2.2. Let f : C → Ĉ be transcendental, let a ∈ C, and let A(r) ⊂ C be a connected
component of f−1({z | |z − a| < r}) for any r > 0 such that A(r1) ⊂ A(r2) if r1 < r2. {A(r)}r>0

is called a transcendental singularity of f−1 if⋂
r>0

A(r) ∪ {∞} = {∞}.

Remark 2.3. By definition, the number of finite asymptotic values of f is less than or equal to
that of transcendental singularities of f−1. Therefore, if f has only finitely many critical points
and transcendental singularities, then f ∈ S ′.

We define structurally finite transcendental entire functions as follows:

Definition 2.3. Let

SFk,l :=

{
f(z) =

∫ z

0

(ckt
k + · · ·+ c0)e

alt
l+···+a1tdt+ b

| b, ci, aj ∈ C (i = 0, · · · , k, j = 1, · · · , l), ckal 6= 0

}
for k ≥ 0 and l ≥ 1, and let

SF :=
⋃

k≥0, l≥1

SFk,l.

A transcendental entire function is called structurally finite if f ∈ SF .

Remark 2.4. This definition of structurally finite transcendental entire functions is based on [T,
p.68, Theorem 1].

Structurally finite transcendental entire functions have the following good properties:

Proposition 2.18 ([Ok2, p.347, Theorem 1.1], [T2], [T, p.68, Theorem 1]). If f ∈ SFk,l, then
f has exactly k critical points counted with multiplicity and l transcendental singularities of f−1.
Conversely, every transcendental entire function f with exactly k critical points and l transcenden-
tal singularities of f−1 satisfies f ∈ SFk,l.

By Proposition 2.18 and Remark 2.3, it follows that SF ⊂ S ∩ S ′.
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Definition 2.4. Entire functions f and g are called topologically equivalent if there exist homeo-
morphisms φ,Ψ : C → C such that

Ψ ◦ f = g ◦ φ.

Denote by Mf the set of all entire functions topologically equivalent to f ∈ Sq. By definition,
we have Mf ⊂ Sq. We can take Mf as a (q + 2)-dimensional complex analytic manifold whose
topology is locally equivalent to the topology of uniform convergence on compact subsets of C.
Also, we can take a local coordinate on any small enough open set U ⊂ Mf

Φ : U → Cq+2, Φ(g) = (Φ1(g), · · · ,Φq+2(g))

such that
{Φ1(g), · · · ,Φq(g)} = sing(g−1);

the mapping
Φ(U)× C → C, (Φ(g), z) 7→ g(z)

is analytic. (See [EL, Section 3].)

Proposition 2.19 ([T, p.69, Proposition 2]). Let f ∈ SFk,l. Then every g ∈ Mf satisfies g ∈ SFk,l.

We introduce the definition of analytic sets as follows:

Definition 2.5 (Analytic sets). Let D ⊂ Cn (n ∈ N) be a domain. A ⊂ D is an analytic set in
D if for any a ∈ D, there exist a neighborhood U of a and holomorphic functions f1, · · · , fp in U
such that

A ∩ U = {z ∈ U | f1(z) = · · · = fp(z) = 0}.

Remark 2.5. Let A and D be as in Definition 2.5. By definition, A is closed in D. (See [Chi] and
[Nar] for the properties of analytic sets.) Note that we can define analytic sets naturally on the
topologically equivalent space.

The following is from [Nar, p.54, Proposition 10 (Maximum Principle)]:

Proposition 2.20. Let A be an analytic set in a domain D ⊂ Cn, let f : D → C be a holomorphic
function, and let a ∈ A. If f is not constant in A∩U for any neighborhood U of a, then f(A∩ V )
is a neighborhood of f(a) for any small enough neighborhood V of a.

2.3 Siegel points and Cremer points

In this section, we review basic facts on Siegel or Cremer points. Siegel showed the existence of
Siegel points as follows:

Proposition 2.21 ([Si]). Let z be an irrationally indifferent periodic point with multiplier λ. If
there exist positive constants M and k such that λ satisfies the following condition:

dSiegelc 1

|λn − 1|
≤ Mnk (n = 1, 2, · · · ),

then z is a Siegel point. In addition, dSiegelc is satisfied by almost every λ in the unit circle S1.

Note that if λ = e2πiθ (θ ∈ R \ Q) satisfies dSiegelc, then θ ∈ B and θ is called a Diophantine
number. The set D of all Diophantine numbers satisfies D(2) ⊂ E ⊂ D (see [PeZ, p.8, p.9]).
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Remark 2.6. Let g be a holomorphic function in a domain D ⊂ C and let λ ∈ S1 satisfy dSiegelc.
Suppose that the following Taylor expansion holds:

g(z) = z0 + λ(z − z0) + Σ∞
n=2an(z − z0)

n (z → z0),

where z0 ∈ D, an ∈ C, and |an| < An−1 for any n ≥ 2 and some A > 0. The argument in [Si] and
Koebe’s theorem in [CaG, p.3, Theorem 1.4] show that there exists an r > 0 depending only on λ
such that the function equation

φ−1 ◦ g ◦ φ(ζ) = λζ

has the conformal solution φ(ζ) = z0 + ζ + Σ∞
n=2cnζ

n (cn ∈ C) from {ζ | |ζ| < r} onto some
neighborhood U of z0, which contains D ∩ {z = φ(ζ) | |z − z0| < r/(4A)}.

There are the following facts which tell that irrationally indifferent periodic points of transcen-
dental functions are Cremer points:

Proposition 2.22. Let z be an irrationally indifferent periodic point. If there exist periodic points
in any punctured neighborhood of z, then z is a Cremer point.

Proposition 2.23 ([Cr2, p.299]). Let g be a non-linear entire function such that:

(1) The origin is an irrationally indifferent fixed point with multiplier λ;

(2) It satisfies
max
|z|≤r

|g(z)| ≤ F (r)

for all large enough r > 0 and a positive function F defined for all positive real numbers.

If λ satisfies the following condition for every large enough r > 0:

dCremer(F )c lim inf
n→∞

logFn(r)
√
λn − 1 = 0,

then the origin is a Cremer fixed point. Moreover, the set Λ(F ) of all λ satisfying dCremer(F )c is
uncountable and dense in the unit circle S1.

Yoccoz’s result on the Brjuno condition for quadratic polynomials is generalized as follows:

Proposition 2.24 ([Y], [Gey, p.3665, Theorem 3.2], and [Ok1, p.849, Theorem 1, p.872, Example
2]). Let

Pθ,d(z) := e2πiθz(1 + z)d−1,

where θ ∈ R \ Q and an integer d ≥ 2. Then Pθ,d has a Siegel point at the origin if and only if
θ ∈ B.

2.4 Quasiconformal mappings

In this section, we introduce definitions and basic properties of quasiconformal mappings.

Definition 2.6. Let f : [a, b] → R be continuous. The function f is called absolutely continuous
if for any ε > 0, there exists a δ > 0 such that Σk|f(yk) − f(xk)| < ε holds for any finitely many
mutually disjoint closed intervals Ik := [xk, yk] ⊂ [a, b] satisfying Σk(yk − xk) < δ.

Proposition 2.25. Let f : [a, b] → R be absolutely continuous. Then f is differentiable almost
everywhere in [a, b].
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Definition 2.7. Let D ⊂ C be a domain and let ϕ : D → C be expressed as ϕ(z) = u(x, y)+iv(x, y),
where z = x+iy(x, y ∈ R), u(x, y) ∈ R, and v(x, y) ∈ R. We call ϕ absolutely continuous on lines if
u(x, y) and v(x, y) are absolutely continuous on almost all lines parallel to the real-axis and almost
all lines parallel to the imaginary-axis in any closed rectangle {x+ iy | a ≤ x ≤ b, c ≤ y ≤ d} ⊂ D.

Let ϕ be as above. By Proposition 2.25, we can define ϕz and ϕz almost everywhere by

ϕz :=
1

2
(ϕx − iϕy), ϕz :=

1

2
(ϕx + iϕy),

where ϕx = ux + ivx and ϕy = uy + ivy. Note that if ϕ(z) is differentiable at a point z0 ∈ D, then
it follows from the Cauchy-Riemann equations ϕz = 0 that ϕz(z0) = ϕ′(z0) and ϕz(z0) = 0.

Definition 2.8. Let 1 ≤ K < ∞ and let D be a domain of C. A homeomorphism ϕ : D → ϕ(D)
is a K-quasiconformal mapping if ϕ satisfies the following conditions:

(1) ϕ is absolutely continuous on lines;

(2) |ϕz| ≤ k|ϕz| holds almost everywhere, where k := (K − 1)/(K + 1).

In addition, the K and ϕz/ϕz are called a quasiconformal constant and the complex dilatation of
ϕ respectively.

This is one of the equivalent definitions of quasiconformal mappings (see [Ah2] for the other defini-
tions). Quasiconformal mappings between Riemann surfaces are defined by their local coordinates.
Note that if K = 1 in the definition above, then ϕz = 0 almost everywhere.

Weyl’s lemma ([BraF, p.32, Theorem 1.14]). Quasiconformal mappings are conformal if and
only if they are 1-quasiconformal.

Definition 2.9 (Quasicircles). A Jordan curve γ ⊂ Ĉ is called a K-quasicircle if there exists a

K-quasiconformal mapping ϕ : Ĉ → Ĉ such that γ = ϕ(S1), where S1 := {z | |z| = 1}. This K is
called a quasicircle constant of γ.

By definition, the unit circle S1 is a 1-quasicircle.

Lemma 2.1 ([Za2, p.488, Lemma 2.2]). Let γ ⊂ Ĉ be a K-quasicircle, let U be a component of

Ĉ\γ, and let g : D → U be a conformal mapping. Then g extends to a K2-quasiconformal mapping

of Ĉ.

We can tell whether a Jordan curve is a quasicircle or not by the following lemma:

Lemma 2.2 ([Ah1], [GehH, p.23, Theorem 2.2.5]). Let γ ⊂ Ĉ be a Jordan curve and let Diam(X)
be the Euclidean diameter of a set X ⊂ C. Then γ is a K-quasicircle for some K ≥ 1 if and only
if there exists a constant A ≥ 1 such that for every pair of two distinct points z1, z2 ∈ γ \ {∞},

min
j=1,2

Diam(γj) ≤ A|z1 − z2|,

where γ1 and γ2 are the components of γ \{z1, z2}. Moreover, K and A depend only on each other.

The following is useful to extend domains of quasiconformal mappings:

Rickman’s lemma ([Ri, p.6, Theorem 1], [CheE, p.2145, Theorem 3.4], [BraF, p.34, Lemma

1.20]). Let U be a domain in Ĉ, let C ⊂ U be closed in U , and let ϕ and Φ be homeomorphisms
on U . Assume that ϕ is quasiconformal, that Φ is quasiconformal on U \ C, and that ϕ = Φ on
C. Then Φ is quasiconformal and ϕz = Φz almost everywhere on C.
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Quasiconformal mappings share the following properties:

Proposition 2.26 ([BraF, p.31–p.33, Section 1.3.6], [As, p.37, Theorem 1.1]). Let ϕ : D →
ϕ(D) =: D′ be a K-quasiconformal mapping for a domain D ⊂ C. Then the following assertions
hold:

(i) ϕ−1 is also K-quasiconformal.

(ii) If φ1 : D′′ → D and φ2 : D′ → φ2(D
′) are K ′-quasiconformal, then ϕ ◦ φ1 and φ2 ◦ ϕ are

KK ′-quasiconformal.

(iii) For any compact set E in D, there exists an M > 0 such that

|ϕ(z1)− ϕ(z2)| ≤ M |z1 − z2|1/K

for any z1 and z2 in E.

(iv) If D = D′ = D and ϕ(0) = 0, then for any Borel measurable set U ⊂ D, there exists a constant
C > 0 depending only on K such that

Area(ϕ(U)) ≤ C(Area(U))1/K ,

where Area(X) denotes the Lebesgue measure for any measurable set X ⊂ C.

(v) ϕ maps a set of Lebesgue measure zero (resp. a set of positive Lebesgue measure) to a set of
Lebesgue measure zero (resp. a set of positive Lebesgue measure).

We defined a normal family of meromorphic functions in a domain. Similarly, we define a
normal family of K-quasiconformal mappings in a domain.

Proposition 2.27 ([LV, p.73, Theorem 5.1]). Let F be a family of K-quasiconformal mappings

in a domain D ⊂ Ĉ. Then the following assertions hold:

(i) Suppose that there exists a C > 0 such that every ϕ ∈ F does not take two values whose
spherical distance is greater than C. Then F is normal.

(ii) Suppose that there exist a C > 0 and three fixed points z1, z2, and z3 in D such that for every
ϕ ∈ F ,

σ(ϕ(zk), ϕ(zl)) > C,

where σ denotes the spherical metric, and 1 ≤ k ≤ 3, 1 ≤ l ≤ 3, and k 6= l. Then F is
normal.

The following is from Proposition 2.27 and [LV, p.74, Theorem 5.3]:

Proposition 2.28. Let F be a family of K-quasiconformal mappings in a domain D ⊂ Ĉ such
that every ϕ ∈ F satisfies ϕ(a) = a and ϕ(b) = b for some two fixed a and b in D. Then
F ′ := {ϕ|D\{a,b}}ϕ∈F is normal. Moreover, if the set of the all limit functions of F ′ does not
contain the constants a and b, then F is normal, and any limit function of F is a K-quasiconformal
mapping in D.

Proposition 2.29 ([LV, p.70, Theorem 4.3]). Let F be a normal family of K-quasiconformal

mappings in a domain D ⊂ Ĉ. Then for every compact set E ⊂ D, there exists a constant C > 0
such that for every ϕ ∈ F , every z ∈ D, and every z0 ∈ E,

σ(ϕ(z), ϕ(z0)) ≤ C(σ(z, z0))
1/K ,

where σ denotes the spherical metric.
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Since conformal mappings have the complex dilatation 0, the limit functions of normal families
of them also have the complex dilatation 0. However, the uniform convergence of quasiconformal
mappings does not mean the convergence of the complex dilatations in general (see [LV, p.186]).
In contrast to this, it is known that:

Lemma 2.3 ([L, p.29, Theorem 4.6]). Let ϕn (n = 1, 2 · · · ) and ϕ be quasiconformal mappings

of Ĉ fixing 0, 1, and ∞, and let µn and µ be the complex dilatations of ϕn and ϕ respectively. If
||µn||∞ ≤ k < 1 and µn → µ almost everywhere as n → ∞, where

||µn||∞ := inf{M | |µn| ≤ M almost everywhere},

then ϕn → ϕ locally uniformly as n → ∞.

We define quasiregular mappings as follows:

Definition 2.10 (Quasiregular mappings). Let D be an open set of C. A continuous mapping
F : D → C is a K-quasiregular mapping if F is locally K-quasiconformal except at a discrete set
of points in D for some K ≥ 1. The constant K is called a quasiregular constant.

Note that Weyl’s lemma shows that K-quasiregular mappings are holomorphic if and only if K = 1.
A mapping g : D → C is quasiregular for a domain D ⊂ C if F can be expressed as

F = f ◦ ϕ,

where ϕ : D → ϕ(D) is a quasiconformal mapping and f : ϕ(D) → F (D) is a holomorphic
function. (In fact, this is one of the equivalent definitions of quasiregular mappings in a domain.
See [BraF, p.55, Definition 1.33, p.56, Definition 1.34].) As in the case of quasiconformal mappings,
quasiregular mappings between Riemann surfaces are defined by their local coordinates.

Finally, we introduce the definition of quasisymmetric mappings on S1 and the way of con-
structing quasiconformal mappings on D by extending them.

Definition 2.11 (Quasisymmetric mappings). Let s : S1 → S1 be an orientation preserving home-
omorphism and let s̃ : R → R be the continuous mapping satisfying

s ◦ Γ = Γ ◦ s̃,

where
Γ : R → S1, x 7→ e2πix.

s is called k-quasisymmetric if it satisfies

1

k
≤ s̃(x+ t)− s̃(x)

s̃(x)− s̃(x− t)
≤ k

for some k ≥ 1 and any x ∈ R and any t > 0.

The Beurling-Ahlfors extension ([BeuA], [BraF, p.83–p.84]). Let s and s̃ be as in Definition
2.11, and let H ⊂ C be the upper half plane. Define ŝ1 on H ∪ R by

ŝ1(x+ iy) :=
1

2

∫ 1

0

{s̃(x+ ty) + s̃(x− ty)}dt+ i

∫ 1

0

{s̃(x+ ty)− s̃(x− ty)}dt,

where x ∈ R and y ≥ 0. (Note that ŝ1|H : H → H and ŝ1|R = s̃.) Then there exists a constant
K ≥ 1 depending only on k such that ŝ1|H : H → H is K-quasiconformal. In addition, there exists
an orientation preserving homeomorphism ŝ2 : D → D such that:
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(a) ŝ2|S1 = s and ŝ2|D is a K-quasiconformal mapping fixing the origin;

(b) It satisfies

ŝ2 ◦ Γ̂ = Γ̂ ◦ ŝ1,
where

Γ̂ : H ∪ R → D, z 7→ e2πiz.

Definition 2.12 (Rotation numbers). Let f : S1 → S1 be an orientation preserving homeomor-
phism and let Γ be as in Definition 2.11. Define the rotation number rot(f) of f by the fractional
part of

lim
n→∞

F n(x)− x

n
,

where x ∈ R and F : R → R satisfies
Γ ◦ F = f ◦ Γ.

Remark 2.7. Let rot(f) and F be as in Definition 2.12. According to [Po], the rotation number
rot(f) is independent of x ∈ R and F .

Next, we introduce the following version of the Herman-Świa̧tek theorem: We call f : S1 → S1 a
critical circle map if f is an orientation preserving homeomorphism which has at least one critical
point.

Lemma 2.4 ([CheE, p.2147, Theorem 3.8], [Herm2], [Herm3], and [Św]). Let F be a family of
holomorphic maps defined in a neighborhood of S1 with the following properties:

(a) There exists an open annulus A containing S1 such that every f ∈ F is defined in A;

(b) f(S1) = S1 and f |S1 is a critical circle map;

(c) There exists an R > 0 such that for every f ∈ F and every n ≥ 1, the rotation number rot(f |S1)
satisfies an ≤ R, where rot(f |S1) = [a0; a1, . . . , an, . . . ] is the continued fraction expansion;

(d) F is precompact on A for the Euclidean metric.

Then there exists a k > 1 such that for every f ∈ F , f |S1 is k-quasisymmetrically conjugate to a
rotation. To be more precise, there exists a k-quasisymmetric map s : S1 → S1 such that for any
z ∈ S1,

s ◦ f |S1 ◦ s−1(z) = e2πiθz =: Rθ(z),

where θ = rot(f |S1).

Let f and s be as in Lemma 2.4, and let ŝ : D → D be a homeomorphism obtained by the Beurling-
Ahlfors extension of s, which is K-quasiconformal in D, where K depends only on k. Then we can
extend f |S1 to

f̂ : D → D, f̂ := ŝ−1 ◦Rθ ◦ ŝ,
which is K2-quasiconformal in D (see Proposition 2.26 (i) and (ii)).

2.5 Quasiconformal surgery

For a given meromorphic function f : C → Ĉ, quasiconformal surgery consists of the following
steps:

(1) We construct a quasiregular mapping F : C → Ĉ from f with some appropriate properties.
(For example, we choose an appropriate quasiconfomal mapping ϕ : C → C so that F = f ◦ϕ.)
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(2) We show the existence of a quasiconformal mapping φ : Ĉ → Ĉ such that φ(∞) = ∞ and

G := φ ◦ F ◦ φ−1 : C → Ĉ

is meromorphic.

C F−−−→ Ĉyφ

yφ

C G−−−→ Ĉ
The maps F and G are called (quasiconformally) conjugate by φ. Since φ is a homeomorphism,
the two sequences {z, F (z), F 2(z), · · · , F n(z)} and {φ(z), G(φ(z)), G2(φ(z)), · · · , Gn(φ(z))} have
one-to-one correspondence whenever F n(z) is defined. Therefore, G preserves important dynamical
properties of F . For example, if z is a periodic point of period p, a critical point, or a singular
value of F , then φ(z) is a periodic point of period p, a critical point, or a singular value of G
respectively. Suppose that z is a periodic point of F and its multiplier is defined as in the case
of meromorphic functions. If φ is conformal in a neighborhood of z, an easy calculation shows
that the periodic points z of F and φ(z) of G have the same multiplier. Hence the construction
of F is important for the new meromorphic function G obtained to have appropriate dynamical
properties.

Let V ⊂ C be open. A Lebesgue measurable function µ : V → D is called a Beltrami coefficient
in V .

Lemma 2.5. Let µ be as above and let f : U → V = f(U) be a quasiregular mapping for an open
set U ⊂ C. Then

f ∗µ(u) :=
fz(u) + µ(f(u))fz(u)

fz(u) + µ(f(u))fz(u)

is well-defined for almost all u ∈ U . In addition, for an open set D ⊂ C and a quasiregular
mapping g : D → U = g(D),

(f ◦ g)∗µ(a) = g∗(f ∗µ)(a)

holds for almost all a ∈ D.

Remark 2.8. Note that if f as in Lemma 2.5 is holomorphic, then

||f ∗µ||∞ = ||µ||∞,

since fz = 0 yields

f ∗µ(u) =
µ(f(u))fz(u)

fz(u)

for almost all u.

f ∗µ is called a pullback of µ by f . Pullbacks of quasiregular mappings have the following property:

Lemma 2.6. Let ϕ : D → ϕ(D) be a quasiregular mapping in a domain D ⊂ C. Let µ0 := 0 be
a Beltrami coefficient in the domain ϕ(D). Then ϕ∗µ0 = ϕz/ϕz holds almost everywhere in D. In
addition, (ϕ−1)∗µϕ = µ0 holds almost everywhere in ϕ(D), where µϕ is a Beltrami coefficient in D
which equals the complex dilatation ϕz/ϕz almost everywhere.

Definition 2.13. Let F : C → Ĉ be a quasiregular mapping and let µ : C → D be a Beltrami
coefficient in C. We call µ F -invariant (or invariant by F ) if F ∗µ = µ holds almost everywhere
in C.
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The most important gear for quasiconformal surgery is the following lemma, which is some
modification of [BraF, p.60, Lemma 1.39]:

Lemma 2.7. Let F : C → Ĉ be a quasiregular mapping and let µ be a Beltrami coefficient in C.
If ||µ||∞ ≤ k < 1 and µ is F -invariant, then there exists an exactly one quasiconformal mapping

φ : Ĉ → Ĉ with the following properties:

(i) φz/φz = µ holds almost everywhere in C;

(ii) φ fixes 0, 1, and ∞;

(iii) φ ◦ F ◦ φ−1 : C → Ĉ is meromorphic.

Proof. The existence of φ with properties (i) and (ii) follows directly from the Integrability Theorem
(see [BraF, p.40, Theorem 1.27 and Theorem 1.28]). The property (iii) follows from properties (i)
and (ii) as follows: By Proposition 2.26 (ii), φ ◦ F ◦ φ−1 is quasiregular. By Lemma 2.5, Lemma
2.6, and the construction,

(φ ◦ F ◦ φ−1)∗µ0 = (φ−1)∗(F ∗(φ∗µ0)) = (φ−1)∗(F ∗µ) = (φ−1)∗µ = µ0

holds almost everywhere in C. Thus µ0 is (φ◦F ◦φ−1)-invariant, and hence (φ◦F ◦φ−1)z = 0 holds
almost everywhere in C. Since φ ◦ F ◦ φ−1 is 1-quasiregular, Weyl’s lemma shows the property
(iii).

The following is some modification of [Shi, p.7, Lemma 1]:

Lemma 2.8 ([Shi, p.7, Lemma 1]). Let F : C → Ĉ be a K-quasiregular mapping with the following
properties:

(a) F (U) ⊂ U for some domain U ⊂ C;

(b) F |U = ϕ−1 ◦ f ◦ ϕ, where ϕ : U → U is K ′-quasiconformal and f : U → U is holomorphic;

(c) Fz = 0 almost everywhere in C \ F−1(U).

Then there exists an M-quasiconformal mapping φ : Ĉ → Ĉ such that:

(i) The quasiconformal constant M depends only on K;

(ii) φ fixes 0, 1, and ∞, and

G := φ ◦ F ◦ φ−1 : C → Ĉ
is meromorphic;

(iii) φ ◦ ϕ−1 is conformal in U and φ is conformal on the interior of O := C \
⋃∞

n=1 F
−n(U).

Proof. Let µϕ be a Beltrami coefficient in U which corresponds to ϕz/ϕz almost everywhere. We
construct an F -invariant Beltrami coefficient µF in C as follows: We define µF (u) := (F n)∗µϕ(u)
for almost all u ∈

⋃∞
n=0 F

−n(U), where F 0 = Id. Otherwise, set µF := µ0 = 0. The property (c)
and Lemma 2.5 show that F ∗µF = µF almost everywhere in O, where µF = µ0. By Lemma 2.5,
Lemma 2.6, and the property (b), we have

(F |U)∗µϕ = (ϕ−1 ◦ f ◦ ϕ)∗µϕ = ϕ∗(f ∗((ϕ−1)∗µϕ)) = ϕ∗(f ∗µ0) = ϕ∗µ0 = µϕ,

since f is holomorphic, and hence f ∗µ0 = µ0 in U . From this and the definition of µF for almost all
points in

⋃∞
n=0 F

−n(U), we have F ∗µF = µF there. Moreover, since the property (c) implies that
F is holomorphic C \ F−1(U), it follows from Remark 2.8 that there exists a constant 0 < k < 1,
depending only on K, such that ||µF ||∞ ≤ k. Therefore, µF is an F -invariant Beltrami coefficient
with ||µF ||∞ ≤ k < 1, µF = µϕ in U , and µF = µ0 in O, and hence Lemma 2.7 shows the existence
of φ.
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Remark 2.9. Let F be as in Lemma 2.8. From the construction, there exists a periodic component
of G which contains φ(U). In particular, when U = D and f is the rotation Rθ, G has a Siegel
disk containing φ(D). In addition, if S1 contains a critical point of F , then ∂φ(D) also contains a
critical point of G. Therefore, φ(D) is exactly a Siegel disk of G. Ghys generalized this surgery
technique (see [Gh] and [BraF, p.226, Theorem 7.10]).

Douady and Hubbard are pioneers of quasiconformal surgery. They introduced polynomial-like
mappings as follows:

Definition 2.14 (Polynomial-like mappings ([DH, p.294])). Let U and V be bounded simply con-
nected subdomains of C with U ⊂ V . The triple (f ;U, V ) is called a polynomial-like mapping of
degree d if f : U → V is a proper and holomorphic mapping of degree d.

Let P and (f ;U, V ) be a polynomial of degree d ≥ 2 and a polynomial-like mapping of degree d
respectively. Define the filled Julia set KP of P by

KP := {z ∈ C | {P n(z)} is bounded}.

Note that ∂KP = J(P ). On the other hand, the filled Julia set Kf of (f ;U, V ) is defined by

Kf := {z ∈ U | fn(z) ∈ U for every integer n ≥ 1}.

Moreover, we define the Julia set J̃f of (f ;U, V ) in the sense of [DH] by

J̃f := ∂Kf .

Note that if f = F |U , where F is a transcendental meromorphic function, then J̃f is a proper subset
of J(F ). We say that (f ;U, V ) and P are hybrid equivalent (by ϕ) if there is a quasiconformal
mapping ϕ from a neighborhood of Kf onto a neighborhood of KP such that:

ϕ ◦ f(z) = P ◦ ϕ(z) (near Kf );

ϕz(z) = 0 (almost everywhere on Kf ).

The straightening theorem ([DH, p.296, Theorem 1]). Let (f ;U, V ) be a polynomial-like map-
ping of degree d ≥ 2. Then there exists a polynomial P of degree d such that (f ;U, V ) and P are

hybrid equivalent by some ϕ. Furthermore, ϕ can be extended as a quasiconformal mapping of Ĉ
fixing ∞.

Sketch of the proof. We can choose simply connected domains U ′ ⊂ U and V ′ ⊂ V such that ∂U ′

and ∂V ′ are analytic Jordan curves and (f ;U ′, V ′) is a polynomial-like mapping of degree d (see
[BraF, p.220, Remark 7.2]). From the smoothness of boundaries ∂U ′ and ∂V ′, one can extend f
to a quasiregular mapping F : C → C which is of degree d and conformally conjugate to z 7→ zd

in a neighborhood of ∞, and can construct an F -invariant Beltrami coefficient µF on C which
equals 0 in Kf and satisfies ||µF ||∞ ≤ k < 1. Therefore, Lemma 2.7 shows that the straightening
theorem.

Transcendental meromorphic functions defined on C and polynomials have many different proper-

ties. However, if a transcendental meromorphic function f : C → Ĉ restricted to some bounded
simply-connected domain U is a polynomial-like mapping, then the straightening theorem shows
that (f |U ;U, V ) and some polynomial P are hybrid equivalent by some ϕ.

Kf |U
f−−−→ Kf |Uyϕ

yϕ

KP
P−−−→ KP
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In this case, we can understand the dynamics of f |U by using results which is applicable only to
polynomials.

We introduce the Riemann-Hurwitz formula for domains, which is useful to find the structure
of polynomial-like mappings.

The Riemann-Hurwitz formula for domains ([MoNTU, p.10, Lemma 1.1.5]). Let U and V

be domains in Ĉ bounded by finitely many mutually disjoint Jordan curves and let f : U → V be a
proper, onto, and holomorphic mapping of degree d with N critical points counted with multiplicity.
Then the following formula holds:

(2− n) +N = d(2−m),

where n and m are the number of boundary components of the boundary ∂U and the number of ∂V
respectively.
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Chapter 3

Best possibility of the Fatou-Shishikura
inequality for transcendental entire
functions in the Speiser class —Proof of
Theorem A—

Shishikura showed best possibility of the Fatou-Shishikura inequality for rational functions by his
quasiconformal surgery which converts one Siegel cycle into one repelling, attracting, rationally
indifferent, or Cremer cycle (see [Shi]). To be more precise, he constructed a rational function
with several Siegel cycles. From this function, he obtained a new rational function with one
more repelling, attracting, rationally indifferent, or Cremer cycle and one less Siegel cycle by
his quasiconformal surgery. This process is repeated until the numbers of cycles are as desired.
Basically, we follow his method for the rational case. However, there are differences between
rational functions and transcendental entire functions as we noted in Chapter 1. Thus we have
to modify his proof at each step. The differences are as follows: We modify his quasiconformal
surgery technique, since the value at ∞ cannot be defined naturally in contrast to the rational
case. Shishikura obtained functions in some analytic sets in the topological space defined by
the coefficients of rational functions. On the other hand, we use the theory of the topologically
equivalent space in Section 2.2 and construct functions in some analytic sets defined on the space.
The critical difference is in our construction of Cremer cycles. Shishikura constructed Cremer
cycles one by one. More precisely, he made one Siege cycle into one Cremer cycle with multiplier
satisfying [Cremer (d)] in Theorem 1.3, which is specific to rational functions. We cannot use this
for our case. Thus we have to make Cremer cycles of T in a different way. We do not construct
Cremer cycles one by one because our construction does not guarantee that one Cremer cycle
constructed is kept unchanged while we construct another Cremer cycle. Instead, we construct all
Cremer cycles of T in the final step.

Here we give the sketch of the proof. If (mAB,mPB,mSD,mCr) 6= (0, 0, 0, 0), we construct T
by the following procedure: First of all, we construct a T0 ∈ Sq ∩ SF0,q which has q Siegel cycles
(Lemma 3.1). Next, we take T0 as T if (mAB,mPB,mSD,mCr) = (0, 0, q, 0). Let (mAB,mPB,mSD,
mCr) 6= (0, 0, q, 0). If mCr = 0, we convert T0 into T ∈ MT0 by making one Siegel cycle repelling,
attracting, or rationally indifferent repeatedly. This step by step procedure is done by quasiconfor-
mal surgery (Lemma 3.4) or some argument on analytic sets (Lemma 3.5). If mCr 6= 0, we convert
T0 into a T̃ with

(nAB(T̃ ), nPB(T̃ ), nSD(T̃ ), nCr(T̃ )) = (mAB,mPB,mSD +mCr, 0)

in the manner above. Then we convert T̃ into T by making mCr Siegel cycles of T̃ into mCr Cremer
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cycles of T at a time (Lemma 3.6).
Let p be any positive integer relatively prime with q. Put λ = exp (2πi/p). Set

fα(z) := (1 + α)λ

∫ z

0

et
q

dt ∈ SF0,q for α ∈ C \ {−1}.

Since fα has q distinct finite asymptotic values and no critical values (see [Ne, p.168, 2.3]), we
have fα ∈ Sq.

Lemma 3.1. There is an uncountable set A ⊂ C \ {−1} such that fα (α ∈ A) has q Siegel cycles
of period p whose multipliers satisfy the condition dSiegelc of Proposition 2.21.

Proof. An easy calculation shows that

fα(z) = (1 + α)λz

(
1 +

zq

q + 1
+

z2q

2(2q + 1)
+ · · ·

)
.

From this and Proposition 2.10, we get

f p
0 (z) = z{1 + c0z

pkq +O(|z|(pk+1)q)} as z → 0,

where c0 6= 0, k ≥ 1. In addition, there are kq PB-cycles of period p. By Theorem 1.2, we have
kq ≤ q. Thus we obtain k = 1. It follows that

f p
α(z) = z{(1 + α)p + c(α)zpq +O(|z|(p+1)q)} as α, z → 0,

where c(α) is a holomorphic function of α, with c(0) = c0. Set X = zq. Let f p
α(z) = zF (X,α).

Thus we have

F (X,α) = (1 + α)p
(
1 +

c(α)

(1 + α)p
Xp +O(|X|p+1)

)
as α,X → 0.

By the construction and Rouché’s theorem, if α 6= 0 is small enough, F (X,α) = 1 has p different
solutions X = ζ1(α), · · · , ζp(α) with ζj(α) 6= 0 and ζj(α) → 0 (α → 0) for j = 1, · · · , p. Therefore,
fα has q cycles C1(α), · · · , Cq(α) of period p for small enough α 6= 0. They consist of pq q-th roots
of ζj(α) (j = 1, · · · , p). Moreover, it follows that

∂F

∂X
|(ζj(α0),α0) 6= 0 (j = 1, · · · , p)

for every small enough α0 6= 0. By the implicit function theorem, ζj(α) (j = 1, · · · , p) are holo-
morphic functions of α on some neighborhood of α0. It follows that

Σ(α) := Σp
j=1ζj(α)

is a holomorphic function of α on some punctured neighborhood of 0. By the construction,
Cj(α) (j = 1, · · · , q) have the same multiplier σ(α). An easy calculation shows that

σ(α) = (1 + α)peΣ(α).

Thus we have σ(α) → 1 as α → 0 and σ(α) is holomorphic on some punctured neighborhood of
0. Set σ(0) = 1. By the Riemann removable singularity theorem, σ(α) is holomorphic on some
neighborhood U of 0. It follows that σ(U) is a neighborhood of 1. Hence there is an uncountable
set A ⊂ U such that σ(α) (α ∈ A) satisfies the condition dSiegelc of Proposition 2.21. Thus
fα (α ∈ A) has q Siegel cycles of period p with multiplier σ(α).
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Lemma 3.1 shows the existence of T0 ∈ Sq ∩ SF0,q with q Siegel cycles of period p. We convert T0

into T with non-repelling cycles of period p. Henceforth, we construct T with p = 1 for simplicity.
The case p ≥ 2 is shown exactly in the same way.

We call a ∈ sing(f−1) eventually repelling if fn(a) is a repelling periodic point for some n ≥ 0.
Let nER(f) be the number of eventually repelling singular values of f ∈ Sq. We define C(f) for
f ∈ Sq by

C(f) := (nAB(f), nPB(f), nSD(f), nCr(f), nER(f)).

The combination C(f) always satisfies

nrat(f) ≤ nPB(f), nAB(f) + nPB(f) + nSD(f) + nCr(f) + nER(f) ≤ q.

(See Proposition 2.10 for the former. The latter follows from Shishikura’s idea used in the proof
of Theorem 1.2. See [Shi, p.25] for details.) They yield the following lemma:

Lemma 3.2. Suppose that non-negative integers nAB, nrat, nSD, nCr, and nER, and f ∈ Sq satisfy

nAB + nrat + nSD + nCr + nER = q,

nAB(f) ≥ nAB, · · · , nER(f) ≥ nER.

Then nPB(f) = nrat(f) and
C(f) = (nAB, nrat, nSD, nCr, nER).

The following is the fundamental lemma for our quasiconformal surgery, which is some modifi-
cation of Lemma 2.8 and [Shi, p.7, Lemma 1, p.9, Lemma 3]):

Lemma 3.3 ([Shi, p.7, Lemma 1, p.9, Lemma 3]). For ε ∈ C in a neighborhood of 0, set a
quasiregular mapping

gε = f ◦Ψε,

where f is an entire function and Ψε : C → C is a quasiconformal mapping. Suppose that gε
satisfies the following conditions:

(1) ||(Ψε)z/(Ψε)z||∞ → 0 (ε → 0) and Ψε → IdC (ε → 0) locally uniformly on C;

(2) There exists an open set Eε such that gε(Eε) ⊂ Eε and (gε)z = 0 almost everywhere on
Eε ∪ (C \ (gε)−1(Eε)).

Then there exists a quasiconformal mapping φε with the following properties:

(a) g̃ε = φε ◦ gε ◦ φ−1
ε is an entire function;

(b) φε → IdC and g̃ε → f locally uniformly on C as ε → 0;

(c) φε is conformal on the interior of Eε ∪ (C \
⋃∞

n=1(gε)
−n(Eε)).

By quasiconformal surgery, we will reduce the number of SD-cycles by one and increase that of
AB-cycles (or PB-cycles, eventually repelling singular values) by one. We use the following lemma
which is applicable to general structurally finite transcendental entire functions:

Lemma 3.4. Let f ∈ Sq ∩ SFk,l. We assume the following conditions:

(1) Every non-repelling periodic point of f is a fixed point;

(2) Every Siegel point of f has the multiplier satisfying the condition dSiegelc of Proposition 2.21;
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(3) f satisfies nSD(f) ≥ 2, nPB(f) = nrat(f), nCr(f) = 0, and

nAB(f) + nPB(f) + nSD(f) + nER(f) = q.

Then for every neighborhood N ⊂ Mf of f , there exist gj ∈ N(j = 1, 2, 3) with the following
properties:

(a) Every non-repelling periodic point of gj is a fixed point whose multiplier is not 1;

(b) Every Siegel point of gj has the multiplier satisfying the condition dSiegelc of Proposition 2.21;

(c) gj has a Siegel point with a preimage other than itself;

(d)
gj ∈ SFk,l, nPB(gj) = nrat(gj),

and
C(g1) = (nAB(f) + 1, nPB(f), nSD(f)− 1, 0, nER(f)),

C(g2) = (nAB(f), nPB(f) + 1, nSD(f)− 1, 0, nER(f)),

C(g3) = (nAB(f), nPB(f), nSD(f)− 1, 0, nER(f) + 1).

Proof. First of all, we show the existence of g1 and g2. There are at least two Siegel points of f ,
say z0 and z1. Hence we can assume that z0 is not a Picard exceptional value and has a preimage
z∗ 6= z0. By using the Lagrange interpolating polynomial, one can construct a polynomial P such
that

P

(
1

z1 − z∗

)
= 0, P ′

(
1

z1 − z∗

)
= −(z1 − z∗)2;

P

(
1

a− z∗

)
= 0, P ′

(
1

a− z∗

)
= 0

if a 6= z1 is a non-repelling fixed point or a = fn(b), where n ≥ 0 and b is an eventually repelling
singular value. Let ρ be an increasing C∞ function on [0,∞) satisfying ρ = 0 on [0, 1] and ρ =
1 on [2,∞). Let d be the degree of P . We define Hε : C → C for ε ∈ C \ {0} by

Hε(z) :=

{
z + ερ

(
|ε|−1/(3d)|z − z∗|

)
P (1/(z − z∗)) (z 6= z∗)

z∗ (z = z∗).

Let H0 : C → C be the identity. An easy calculation shows that Hε : C → C is a quasiconformal
mapping for ε small enough. Set a quasiregular mapping

Fε := f ◦Hε

for ε small enough. The mappings Hε and Fε have the following properties:

(i) ||(Hε)z/(Hε)z||∞ → 0 (ε → 0) and Hε → H0 (ε → 0) locally uniformly on C;

(ii) Hε is conformal on
Vε := {z ∈ C | |z − z∗| > 2|ε|1/(3d)},

and hence Fε is holomorphic there and we can define the multipliers of periodic points of Fε

there as in the case of entire functions;

(iii) There is a neighborhood Uε of z0 such that Fε(Uε) = Uε and C \ Vε ⊂ F−1
ε (Uε);

(iv) z1 is a fixed point of Fε with multiplier (1 + ε)f ′(z1);
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(v) If z 6= z1 is a non-repelling fixed point of f , then z is a fixed point of Fε with multiplier f ′(z);

(vi) If z is an eventually repelling singular value of f , then

F n
ε (z) = fn(z) (n = 1, 2, · · · )

and
F ′
ε(z̃) = f ′(z̃) for any z̃ ∈ {fn(z) | n = 0, 1, · · · }.

By the construction, F ′
ε(z0) = f ′(z0) satisfies the condition dSiegelc of Proposition 2.21. This

yields the property (iii) (see Remark 2.6 or [Si] and [Shi, p.26, STEP 2]). The other properties
follow directly from the construction. From (i), (ii), and (iii), we can apply Lemma 3.3 to gε = Fε

and Eε = Uε for ε small enough. It follows from this, (iv), (v), and (vi) that there exists a
quasiconformal mapping ϕε : C → C with the following properties:

(i)’
Gε := ϕε ◦ Fε ◦ ϕ−1

ε

is an entire function;

(ii)’ ϕε → IdC and Gε → f locally uniformly on C as ε → 0;

(iii)’ ϕε(z1) is a fixed point of Gε with multiplier (1 + ε)f ′(z1);

(iv)’ If z 6= z1 is a non-repelling fixed point of f , then ϕε(z) is a fixed point of Gε with multiplier
f ′(z);

(v)’ If z is an eventually repelling singular value of f , then ϕε(z) is an eventually repelling singular
value of Gε.

From (i)’, we have Gε = ϕε◦f ◦(Hε◦ϕ−1
ε ), where ϕε and Hε◦ϕ−1

ε are quasiconformal mappings (see
Proposition 2.26 (i) and (ii)). Therefore, Gε and f are topologically equivalent. By Proposition
2.19, we have Gε ∈ SFk,l. In addition, we obtain Gε ∈ N from (ii)’. By the construction,
Gε has a Siegel point ϕε(z0) with a preimage ϕε(z

∗) 6= ϕε(z0). It follows from (iii)’ that some
Gε1(resp. Gε2) ∈ N has an attracting fixed point ϕε1(z1) (resp. a rationally indifferent fixed point
ϕε2(z1) whose multiplier is not 1). From (iv)’ and (v)’, we see that

nSD(Gε) ≥ nSD(f)− 1, nAB(Gε) ≥ nAB(f),

nrat(Gε) ≥ nrat(f), nER(Gε) ≥ nER(f).

It follows from the construction and Lemma 3.2 that Gε1(resp. Gε2) satisfies the properties (a)∼(d)
of g1 (resp. g2).

Finally, we show the existence of g3. Suppose that nER(Gε) = nER(f) for any ε small enough.

Let J̃(Fε) ⊂ Ĉ be the closure of the set of all repelling periodic points of Fε. (Note that all periodic
points of Fε are in Vε for ε small enough.) By following Shishikura’s idea in [Shi, p.27, STEP 3],
one can show that there exist a neighborhood N0 of 0 and a continuous mapping

Γ : N0 × J(f) → J̃(Fε),

where ε ∈ N0. Hence we have z1 /∈ J̃(Fε) for ε ∈ C small enough. (Recall that z1 is a Siegel point
of f .) However, from (iv), we can vary the multiplier of z1 and make z1 into a repelling fixed point
of Fε. This is a contradiction. Therefore, we have nER(Gε3) ≥ nER(f) + 1 for some ε3. It follows
from the construction and Lemma 3.2 that Gε3 satisfies the properties of g3.
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Remark 3.1. In the proof of Lemma 3.4, we constructed an attracting fixed point ϕε1(z1) of Gε1 near
z1 with multiplier (1 + ε1)f

′(z1) (ε1 ∈ C). On the other hand, there exists a similar way to make
attracting cycles. More precisely, suppose that f has an irrationally (or a rationally) indifferent
fixed point z′1 with a preimage other than itself. As in [Shi, Section 4], some modification of our
surgery enables us to perturb f so that the fixed point near z′1 has multiplier (1− ε)f ′(z′1) (ε > 0).
(If z′1 is rationally indifferent, there is no problem without the condition that z′1 has a preimage
other than itself.)

The assumption of Lemma 3.4 requires nSD(f) ≥ 2. On the other hand, when nSD(f) ≥ 1, we can
reduce the number of SD-cycles by one and increase that of AB-cycles (or PB-cycles) by one as
follows:

Lemma 3.5. Let f ∈ Sq ∩ SFk,l. We assume the following conditions:

(1) Every non-repelling periodic point of f is a fixed point whose multiplier is not 1;

(2) Every Siegel point of f has the multiplier satisfying the condition dSiegelc of Proposition 2.21;

(3) f has a Siegel point with a preimage other than itself;

(4) f satisfies nPB(f) = nrat(f), nCr(f) = 0, and

nAB(f) + nPB(f) + nSD(f) + nER(f) = q.

Then for every neighborhood N ⊂ Mf of f , there exist gj ∈ N (j = 1, 2) with the following
properties:

(a) Every non-repelling periodic point of gj is a fixed point whose multiplier is not 1;

(b) Every Siegel point of gj has the multiplier satisfying the condition dSiegelc of Proposition 2.21;

(c)
gj ∈ SFk,l, nPB(gj) = nrat(gj),

and
C(g1) = (nAB(f) + 1, nPB(f), nSD(f)− 1, 0, nER(f)),

C(g2) = (nAB(f), nPB(f) + 1, nSD(f)− 1, 0, nER(f)).

Proof. Let z0 be a Siegel point of f with a preimage other than itself. Let {ζ1, · · · , ζn} be the set
of all non-repelling fixed points of f other than z0, if any. By the assumption, we have f ′(ζj) 6= 1
for j = 1, · · · , n. By the implicit function theorem, there exist a neighborhood W ⊂ N of f and
neighborhoods Uζj of ζj (j = 1, · · · , n) such that every g ∈ W has a unique fixed point αj(g) in
Uζj and αj(g) is a holomorphic function on W . Thus

Aζj := {g ∈ W | g′(αj(g)) = f ′(ζj)}

is an analytic set in W when it is expressed by a local coordinate on W . Let {η1, · · · , ηnER(f)}
be the set of all eventually repelling singular values, when nER(f) ≥ 1. Then there exist some
integers nt ≥ 0 andmt ≥ 1 such that fnt(ηt) is a repelling periodic point of f with period mt for t =
1, · · · , nER(f). If we take small enough W , there exist neighborhoods Uηt of ηt (t = 1, · · · , nER(f))
such that every g ∈ W has a unique singular value βt(g) in Uηt . Moreover, there exists some
1 ≤ t′ ≤ q such that βt(g) = Φt′(g), where Φ(g) = (Φ1(g), · · · ,Φq+2(g)) is a local coordinate on
W . (See Section 2.2 for local coordinates on Mf .) Hence βt(g) is holomorphic on W . Thus

Aηt := {g ∈ W | gmt+nt(βt(g)) = gnt(βt(g))}
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is an analytic set in W . If we take small enough W , every g ∈ Aηt has an eventually repelling
singular value βt(g). We define Z by

Z :=


(
⋂n

j=1 Aζj) ∩ (
⋂nER(f)

t=1 Aηt) (n ≥ 1, nER(f) ≥ 1)⋂n
j=1 Aζj (n ≥ 1, nER(f) = 0)⋂nER(f)
t=1 Aηt (n = 0, nER(f) ≥ 1)

W (n = 0, nER(f) = 0).

By definition, Z is an analytic set in W and every g ∈ Z satisfies

nSD(g) ≥ nSD(f)− 1, nAB(g) ≥ nAB(f),

nrat(g) ≥ nrat(f), nER(g) ≥ nER(f).

In addition, by Proposition 2.19, every g ∈ Z satisfies g ∈ SFk,l.
If we take small enough W , the implicit function theorem shows that there exists a holomorphic

function x(g) on W such that

g(x(g)) = x(g), x(f) = z0.

(Recall that z0 is a Siegel point of f with a preimage other than itself.) Consider a holomorphic
function

λ(g) := g′(x(g))

on W . As in Remark 3.1, some modification of the proof of Lemma 3.4 enables us to convert f
into some g0 ∈ Z with |λ(g0)| < 1. Thus λ is not constant on Z. Since we can choose small enough
W , Proposition 2.20 shows that λ(Z) is a neighborhood of f ′(z0). Hence x(g̃1) and x(g̃2) are an
attracting fixed point of g̃1 and a rationally indifferent fixed point of g̃2 whose multiplier is not 1
respectively, for some g̃1, g̃2 ∈ Z. It follows from the construction and Lemma 3.2 that g̃1 and g̃2
satisfy the properties of g1 and those of g2 respectively.

Remark 3.2. From the proof of Lemma 3.5, we can convert f into some g ∈ Z so that the multiplier
of the fixed point x(g) near z0 becomes any value in some open set containing f ′(z0). From Remark
3.1, if f satisfies the assumption of Lemma 3.5 other than (3) and has one rationally indifferent
fixed point z′0, similar argument goes well. More precisely, we can perturb f so that the multiplier
of the fixed point near z′0 becomes any value in some open set containing f ′(z′0).

Lemma 3.5 does not require nSD(f) ≥ 2. Therefore, one may think that Lemma 3.4 is not needed.
However, by Lemma 3.4, we can convert a Siegel cycle without preimages other than itself or
increase the number of eventually repelling singular values. This is an advantage of Lemma 3.4.

When nSD(f) ≥ 1, we can convert some Siegel cycles into Cremer cycles at a time as follows:

Lemma 3.6. Suppose that f ∈ Sq ∩ SFk,l satisfies the assumption of Lemma 3.5. Then for every
neighborhood N ⊂ Mf of f and every m with 1 ≤ m ≤ nSD(f), there exists a g∗ ∈ N with the
following properties:

(a) Every non-repelling periodic point of g∗ is a fixed point;

(b)
g∗ ∈ SFk,l, nPB(g∗) = nrat(g∗),

and
C(g∗) = (nAB(f), nPB(f), nSD(f)−m,m, nER(f)).
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Proof. Let z1, · · · , zm be m Siegel points containing a point with a preimage other than itself.
By the implicit function theorem, there exist a neighborhood W ′ ⊂ Mf of f and holomorphic
functions xj(g) (j = 1, · · · ,m) on W ′ satisfying

g(xj(g)) = xj(g), xj(f) = zj.

As in the proof of Lemma 3.5, we can construct an analytic set Z ′ in W ′ such that every g ∈ Z ′

satisfies g ∈ SFk,l and

nSD(g) ≥ nSD(f)−m, nAB(g) ≥ nAB(f),

nrat(g) ≥ nrat(f), nER(g) ≥ nER(f).

Now we define R ⊂ Z ′ by

R := {g ∈ Z ′ | xj(g) (j = 1, · · · ,m) are rationally indifferent fixed points of g}.

We construct g∗ as a limit of some sequence of functions in R.
First of all, we convert f into some g1 ∈ R by applying Lemma 3.4 or Lemma 3.5 repeatedly.

Set
Aa,b(x) := {z ∈ C | a < |z − x| < b},

where 0 < a < b and x ∈ C. In addition, we define 0 ≤ θj(g) < 1 for g ∈ W ′ and every
j (1 ≤ j ≤ m) by

g′(xj(g)) = |g′(xj(g))|e2πiθj(g).
Recall that rationally indifferent periodic points are in the Julia set, which is the closure of the
set of all repelling periodic points. Hence g1 has periodic points in any punctured neighborhood
of each of xj(g1) (j = 1, · · · ,m). Thus there exist r1 > 0 and 0 < r2 < r1/2 such that g1 has some
pj-periodic point in each of annuli Ar2,r1(xj(g1)) (j = 1, · · · ,m). By applying Rouché’s theorem to
g
pj
1 (z) − z and gpj(z) − g

pj
1 (z), there exists a closed neighborhood U1 ⊂ W ′ of g1 such that every

g ∈ U1 has some (pj-)periodic point in each of annuli Ar2,r1(xj(g)) (j = 1, · · · ,m). In addition, if
we take U1 small enough, it follows from the continuity of θj(g) at g1 that every g ∈ U1 satisfies

|θj(g1)− θj(g)| =
∣∣∣∣p1,jq1,j

− θj(g)

∣∣∣∣ < 1

2(q1,j)
2 (j = 1, · · · ,m),

where p1,j/q1,j = θj(g1) and p1,j, q1,j ∈ N are mutually prime. From Remark 3.2, we can convert
g1 into some g ∈ Z ′ so that the multiplier of each of xj(g) (j = 1, · · · ,m) becomes any value in
some neighborhood of g′1(xj(g1)). Thus we can get some g2 ∈ (U1 \ {g1}) ∩R such that

g′1(xj(g1)) 6= g′2(xj(g2)) (j = 1, · · · ,m).

From the construction similar to that of U1, there exist a closed neighborhood U2 ⊂ U1 of g2 and
0 < r3 < r2/2 such that:

(1) Every g ∈ U2 has some periodic point in each of annuli Ar3,r2(xj(g)) (j = 1, · · · ,m);

(2) Every g ∈ U2 satisfies

|θj(g2)− θj(g)| =
∣∣∣∣p2,jq2,j

− θj(g)

∣∣∣∣ < 1

2(q2,j)
2 (j = 1, · · · ,m),

where p2,j/q2,j = θj(g2) and p2,j, q2,j ∈ N are mutually prime.
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By repeating this procedure, we get functions gn ∈ R, closed neighborhoods Un ⊂ W ′ of gn, and
rn > 0, for n = 1, 2, · · · , such that:

(i) g′n1
(xj(gn1)) 6= g′n2

(xj(gn2)) (j = 1, · · · ,m) if n1 6= n2;

(ii) Un ⊃ Un+1;

(iii) rn+1 < r1/2
n;

(iv) Every g ∈ Un has some periodic point in each of annuli Arn+1,rn(xj(g)) (j = 1, · · · ,m);

(v) Every g ∈ Un satisfies

|θj(gn)− θj(g)| =
∣∣∣∣pn,jqn,j

− θj(g)

∣∣∣∣ < 1

2(qn,j)
2 (j = 1, · · · ,m),

where pn,j/qn,j = θj(gn) and pn,j, qn,j ∈ N are mutually prime.

Set
K := {g ∈ Z ′ | |g′(xj(g))| = 1 (j = 1, · · · ,m)}.

From (ii) and a standard argument, we get some g∞ ∈ (
⋂∞

n=1 Un) ∩K. It follows from this, (iii),
and (iv) that g∞ has some periodic points in any punctured neighborhood of each of xj(g∞) (j =
1, · · · ,m). Next, we show that xj(g∞) (j = 1, · · · ,m) are irrationally indifferent fixed points of
g∞. It follows from g∞ ∈ (

⋂∞
n=1 Un) ∩K and (v) that

|θj(gn)− θj(g∞)| =
∣∣∣∣pn,jqn,j

− θj(g∞)

∣∣∣∣ < 1

2(qn,j)
2

for every n ≥ 1 and every j (1 ≤ j ≤ m). Then an easy calculation shows that rational numbers
θj(gn)(n = 1, 2, · · · ) are best approximations (of the second kind) of θj(g∞) in the sense of Khinchin
(see [Kh, Section 6] and [Sho, p.130]). In addition, it follows from (i) that θj(gn) (n = 1, 2, · · · ) are
different from each other. Thus θj(g∞) is an irrational number, since any rational number has at
most a finite number of such approximations (see [Kh] and [Ol] for basic facts of continued frac-
tions). Therefore, xj(g∞) (j = 1, · · · ,m) are irrationally indifferent fixed points. By Proposition
2.22, they are m Cremer fixed points. It follows from the construction and Lemma 3.2 that g∞
satisfies the properties of g∗.

Remark 3.3. Let fα be as in Lemma 3.1. Any function f ∈ Mfα with a Siegel fixed point always
satisfies the assumption (3) of Lemma 3.5 and Lemma 3.6 that the point has a preimage other than
itself. (Hence in Lemma 3.4, if f ∈ Mfα , then the property (c) of gj is obvious.) This is due to the
following reason: The function fα does not have any exceptional point with only one preimage.
Indeed, if fα has such a point b, then it needs to have the form (z − β)eh(z) + b, where β is the
preimage and h(z) is an entire function. Since fα is of finite order, h(z) must be a polynomial. This
is a contradiction. In addition, any function f ∈ Mfα also satisfies the property, since covering
properties are preserved in Mfα .

Here, we are ready to prove Theorem A.

Proof of Theorem A. By Lemma 3.1, there exists a T0 := fα ∈ Sq ∩ SF0,q with q Siegel points of
period 1. Hence we have already shown the Theorem A when (mAB,mPB,mSD,mCr) = (0, 0, q, 0).
Thus we show Theorem A when (mAB,mPB,mSD,mCr) 6= (0, 0, q, 0). We construct T whose non-
repelling cycles have the same period 1.

First of all, suppose that q = 1 and (mAB,mPB,mSD,mCr) 6= (0, 0, 0, 0). From Remark 3.3,
T0 = fα satisfies the assumptions of Lemma 3.5 and Lemma 3.6. We get T by applying Lemma
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3.5 or Lemma 3.6 to T0. More precisely, we convert one Siegel cycle of T0 into one attracting (or
rationally indifferent, Cremer) cycle of T .

Next, suppose that q ≥ 2 and (mAB,mPB,mSD,mCr) 6= (0, 0, 0, 0).

(i) When mCr = 0, we convert T0 into T by decreasing the number of Siegel cycles and increasing
that of attracting cycles (or rationally indifferent cycles, eventually repelling singular values).
To be more precise, we apply Lemma 3.4 repeatedly until we get a function with only one
SD-cycle. Since Lemma 3.4 ensures that the function satisfies the assumption of Lemma 3.5,
we can apply Lemma 3.5 to it for the last step.

(ii) When mCr 6= 0, we construct T by the following steps:

(STEP 1) As in the case (i), we construct a T̃ ∈ SF0,q with nPB(T̃ ) = nrat(T̃ ) and

C(T̃ ) = (mAB,mPB,mSD +mCr, 0, q − Σ),

where Σ = mAB + mPB + mSD + mCr. Note that T̃ has a Siegel point with a preimage
other than itself.

(STEP 2) By the construction, T̃ satisfies the assumption of Lemma 3.6. We get T by applying
Lemma 3.6 to T̃ so that mCr Siegel cycles of T̃ become mCr Cremer cycles of T .

Finally, suppose that (mAB,mPB,mSD,mCr) = (0, 0, 0, 0). If q ≥ 2, set

hε(z) := εzez
q−1 ∈ Sq ∩ SFq−1,q−1 for ε ∈ C \ {0}.

An easy calculation shows that hε has an asymptotic value 0 and q − 1 critical values zj(ε) (j =
1, · · · , q − 1) expressed as

zj(ε) = ε q−1

√
1

(q − 1)e
eiθj ,

where

θj =
(2j − 1)π

q − 1
.

Consider the equation on ε
hε(z1(ε)) = z1(ε).

This yields
F (ε) := hε(z1(ε))/z1(ε) = εez1(ε)

q−1

= 1.

Obviously, F (ε) is a holomorphic function of ε. It is easy to see that some ε0 satisfies F (ε0) = 1.
Thus z1(ε0) is a fixed point of hε0 . In addition, the other critical values zj(ε0) (j = 2, · · · , q − 1)
are fixed points because

hε0(zj(ε0)) = ei(θj−θ1)hε0(z1(ε0)) = ei(θj−θ1)z1(ε0) = zj(ε0).

Thus all singular values of hε0 are fixed. If a transcendental entire function f has a non-repelling
cycle, f has a singular value a such that {fn(a)}n∈N is an infinite set (see Proposition 2.12 and
Proposition 2.14). It follows from this fact that we can take hε0 as T . Also, if q = 1,

w(z) := 2πiez ∈ S1 ∩ SF0,1

can be taken as T . Indeed, w has an asymptotic value 0 with

w(0) = 2πi, w(2πi) = 2πi.
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Remark 3.4. Here we note the proof of Theorem A by constructing Cremer cycles one by one as
in [Shi]. Let Λ(F ) be as in Proposition 2.23. By definition, Λ(F ) depends only on F . For entire
functions of finite order, we may take E(r) := ee

r
as F (r). Thus for such functions (containing

structurally finite transcendental entire functions), Proposition 2.23 implies that irrationally indif-
ferent fixed points with multipliers in Λ(E) are Cremer fixed points. It follows from this and the
proofs of Lemma 3.4 and Lemma 3.5 that we can convert one Siegel cycle into one Cremer cycle
with multiplier in Λ(E). Moreover, our construction can keep the multiplier unchanged. Hence
we can also construct Cremer cycles of T one by one as in [Shi]. Even when p ≥ 2, we can also
construct Cremer cycles of T with period p by a similar argument. In this case, we can construct
Cremer cycles with multipliers in Λ(Ep).
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Chapter 4

Some transcendental entire functions
with irrationally indifferent fixed points

Our proofs of the results are based on the following Main Lemma:

Main Lemma. Let f : C → C be a transcendental entire function. Suppose that there exist
bounded simply connected domains U and V with the following properties:

(a) (f |U ;U, V ) is a polynomial-like mapping of degree d ≥ 2;

(b) f has an irrationally indifferent fixed point β in U with multiplier λ = e2πiθ (θ ∈ R \Q).

Then there exists a polynomial P of degree d ≥ 2 such that (f |U ;U, V ) and P are hybrid equivalent
by some quasiconformal mapping ϕ, and the following assertions hold:

(1) Suppose that β = 0, ϕ(0) = 0, and

P (z) = Pθ,d(z) := e2πiθz (1 + z)d−1 .

If f has a Siegel point at the origin, then θ ∈ B.

(2) If λ = e2πiθ satisfies [Cremer (d)], then β is a Cremer fixed point.

(3) If θ ∈ D(2), then the bounded type fixed Siegel disk centered at β is bounded by a quasicircle
containing at least one critical point.

(4) Let
I(f) := {z | fn(z) → ∞ as n → ∞}.

Suppose that f ∈ S, sing(f−1)∩J(f) ⊂ J̃f |U , and I(f) and J(P ) have Lebesgue measure zero.
Then J(f) has Lebesgue measure zero.

(5) If J(P ) has positive Lebesgue measure, then J(f) has positive Lebesgue measure.

Proof of the Main Lemma. By the straightening theorem, there exists a polynomial P of degree d
such that (f |U ;U, V ) and P are hybrid equivalent by some ϕ. Moreover, ϕ can be extended as a

quasiconformal mapping of Ĉ which fixes ∞.

(1) By Proposition 2.24, Pθ,d has a Siegel point at the origin if and only if θ ∈ B. Then the
assertion (1) follows from this and the assumption.
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(2) Suppose that β is a Siegel fixed point of f . By the assumption, ϕ(β) is a Siegel fixed point
of P . On the other hand, since β is in the interior of Kf |U and ϕ is conformal there, we have
P ′(ϕ(β)) = f ′(β) = λ. Then by Theorem 1.3, ϕ(β) is a Cremer fixed point of P . This is a
contradiction. Hence β is a Cremer fixed point of f .

(3) By the assumption, β is in the interior of Kf |U . Since ϕ is conformal there, we obtain
P ′(ϕ(β)) = f ′(β) = λ. By Theorem 1.4, P has the bounded type fixed Siegel disk D centered
at ϕ(β) bounded by a quasicircle containing at least one critical point. Thus there exists a

quasiconformal mapping φ : Ĉ → Ĉ with φ(S1) = ∂D. Therefore, ϕ−1(∂D) = ϕ−1 ◦φ(S1) is a

quasicircle, since ϕ−1 ◦φ is quasiconformal in Ĉ (see Proposition 2.26 (i) and (ii)). Evidently
we see that D ⊂ KP . Hence f has the bounded type fixed Siegel disk ϕ−1(D) centered at
β bounded by the quasicircle ϕ−1(∂D). In addition, since ∂D contains a critical point of P ,
ϕ−1(∂D) also contains a critical point of f .

(4) From the assumption, we have only to consider the Lebesgue measure of J(f) \ I(f). We can
see that J(f) \ I(f) = A ∪ B, where

A := {z ∈ J(f) | for some sequence {mk}∞k=1 and some b ∈ J(f) \ J̃f |U ,
fmk(z) → b as k → ∞ or fmk(z) = b};

B :=
⋃
n≥0

f−n(J̃f |U ).

(By definition, we have A∩B = ∅.) We can show that A has Lebesgue measure zero as follows:
Fix any point a ∈ A. From the assumption, for some fixed δ > 0 and all large enough k, there
is a neighborhood Dk of a which fmk maps univalently onto

Bδ(b) := {z | |z − b| < δ}.

Let m(X) be the Lebesgue measure of a measurable set X ⊂ C. Since J(f) is nowhere dense,
by applying the generalized distortion theorem [Con, p.68, Theorem 7.16] to the inverse branch
of fmk which maps Bδ(b) onto Dk, we see that there exists a constant L1 > 0 independent of
k such that

m(Dk \ J(f))
m(Dk)

≥ L1
m(Bδ(b) \ J(f))

m(Bδ(b))
=: C > 0,

where 0 < C < 1 is a constant independent of k. Since fmk(a) → b as k → ∞ or fmk(a) = b,
the distortion theorem again shows that

sup{|z − a| | z ∈ ∂Dk}
inf{|z − a| | z ∈ ∂Dk}

is less than some constant independent of k. Therefore, there exist rk > 0 and 0 < L2 < 1
independent of k such that

Brk(a) ⊃ Dk,
m(Dk)

m(Brk(a))
> L2.

By [MoNTU, p.75, Proposition 2.4.5], we obtain diam(Dk) → 0, and hence rk → 0 as k → ∞.
Since

m(J(f) ∩Brk(a))

m(Brk(a))
< 1− L2C
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for all large k, Lebesgue’s density theorem shows that A has Lebesgue measure zero. Since
J(P ) has Lebesgue measure zero, J̃f |U has Lebesgue measure zero. In addition, since f ∈ S,
for every z ∈ C except for finitely many singular values, there exists a neighborhood of z on
which all branches of f−1 are univalent. Thus f−1(J̃f |U ) has Lebesgue measure zero. Similar

argument inductively shows that f−2(J̃f |U ), f
−3(J̃f |U ), · · · have Lebesgue measure zero, and

hence B also has Lebesgue measure zero. Therefore, we have the desired result.

(5) By Proposition 2.26 (v), quasiconformal mappings map sets of positive Lebesgue measure
to sets of positive Lebesgue measure. Since J(P ) has positive Lebesgue measure, J̃f |U =

ϕ−1(J(P )) has positive Lebesgue measure. It follows from J̃f |U ⊂ J(f) that J(f) also has
positive Lebesgue measure.

Thus we have completed the proof of the Main Lemma.

Remark 4.1. In the Main Lemma, the assumption (b) is not necessary for the assertion (4) and
(5).

4.1 Proof of Theorem B

Lemma 4.1. For any integer d ≥ 2 and

M(d) := 6
d−1
√
4e3/2 + 2,

set
Fθ,c(z) := e2πiθz(1 + cz)d−1ez,

where θ ∈ R and c ∈ {c | |c| > M(d)}. Let

Vc := {z | |z| < R} ,

where

R :=
1

4

(
|c|
2

− 1

)d−1

e−1/2,

and let Uc be a component of F−1
θ,c (Vc) containing 0. (Note that Fθ,c(0) = 0.) Then (Fθ,c|Uc ;Uc, Vc)

is a polynomial-like mapping of degree d which is hybrid equivalent to

Pθ,d(z) := e2πiθz(1 + z)d−1

by some quasiconformal mapping ϕ satisfying ϕ(0) = 0.

Proof. Since |c| > M(d), we have

D := {z | |z| < 1/2} ⊂ Vc.

It follows that for z ∈ ∂D,

|Fθ,c(z)| ≥
1

2

(
|c|
2

− 1

)d−1

e−1/2 > R,

and hence Uc ⊂ D ⊂ Vc. Let
Dc := {z | |z| < 2/|c|}.
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We see that for z ∈ ∂Dc,

|Fθ,c(z)| < (1 + 2)d−1e2/|c| < 3d−1e < R,

and hence Dc ⊂ Uc. From this and the definition of Fθ,c, Fθ,c has all d zeros 0 and −1/c (with
multiplicity d−1) in Uc. It follows from this and the construction that Fθ,c|Uc : Uc → Vc is a proper
and holomorphic mapping of degree d with Uc ⊂ Vc. We can show that Uc is simply connected as
follows: We have

F ′
θ,c(z) = e2πiθ(1 + cz)d−2(cz2 + (cd+ 1)z + 1)ez.

Hence Fθ,c has critical points −1/c (with multiplicity d− 2) and

β± :=
−(cd+ 1)±

√
(cd+ 1)2 − 4c

2c
,

where double sign corresponds and the real part of
√

(cd+ 1)2 − 4c/(cd+ 1) is positive. An easy
calculation shows that

|β−| =
|cd+ 1| · |1 +

√
1− 4c/(cd+ 1)2|

2|c|

=
1

2
·
∣∣∣∣d+ 1

c

∣∣∣∣ · |1 +√1− 4c/(cd+ 1)2|

>
1

2
· (d− 1) · (1 + 1/

√
2)

>
1

2
.

It follows from this and Uc ⊂ D that β− /∈ Uc. In addition, we also have

|β+||c| =
2|c|

|cd+ 1| · |1 +
√

1− 4c/(cd+ 1)2|

=
2

|d+ 1/c| · |1 +
√
1− 4c/(cd+ 1)2|

<
2

(d− 1) · (1 + 1/
√
2)

< 2,

and hence β+ ∈ Dc. From the construction and Dc ⊂ Uc, Fθ,c has d− 1 critical points −1/c (with
multiplicity d − 2) and β+ in Uc. By the construction, ∂Uc consists of finitely many mutually
disjoint Jordan curves. The Riemann-Hurwitz formula for the map Fθ,c|Uc : Uc → Vc shows that

(2− n) + (d− 1) = d · (2− 1),

where n is the number of components of ∂Uc. Thus n = 1 and Uc is simply connected. Therefore,
(Fθ,c|Uc ;Uc, Vc) is a polynomial-like mapping of degree d.

Henceforth we fix c and d with |c| > M(d) so that (Fθ,c|Uc ;Uc, Vc) is a polynomial-like mapping
of degree d for any θ ∈ R. For these fixed c and d, denote Fθ,c, Uc, and Vc by Fθ, U , and V
respectively. Consider the family {(Fθ|U ;U, V )}θ∈R. By the straightening theorem, there exists a
polynomial pθ of degree d such that (Fθ|U ;U, V ) and pθ are hybrid equivalent by some ϕθ. From the
proof of the straightening theorem (see [DH] or [BraF, p.221, p.222]), we can normalize ϕθ so that
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ϕθ(0) = 0 and ϕθ(−1/c) = −1. By the construction, pθ has zeros ϕθ(0) = 0 and ϕθ(−1/c) = −1
(with multiplicity d− 1). In addition, pθ is of degree d. Hence we have

pθ(z) = Pλ(θ)(z) := λ(θ)z(1 + z)d−1 for some λ(θ) ∈ C \ {0}.

We must show that λ(θ) = e2πiθ for any θ ∈ R. Recall that we fixed c and d. Since V is an open
disk independent of θ, the preimage U by Fθ is independent of θ. By the construction, ∂U and ∂V
are analytic Jordan curves. In addition, Fθ depends continuously on θ. From those properties of
(Fθ|U ;U, V ) and some modification of the proof of the straightening theorem, one can show that
the map

λ : R → C \ {0}, θ 7→ λ(θ)

is continuous (see Zakeri’s argument [Za1, p.218–p.221, 11] and the proof of the straightening
theorem [BraF, p.221, p.222]). If θ ∈ B, then Fθ has a Siegel fixed point at the origin in the
interior of KFθ|U . Since ϕθ is conformal there, we have P ′

λ(θ)(0) = F ′
θ(0), and hence λ(θ) = e2πiθ for

any θ ∈ B. Since B is dense in R and λ is continuous in R, we obtain λ(θ) = e2πiθ for any θ ∈ R,
as required. Our argument above goes well for any fixed c and d with |c| > M(d). Therefore, we
have the desired result.

Remark 4.2. Let β± be as in the proof of Lemma 4.1. Note that |β+||c| → 1/d and β− → −d as
c → ∞.

We prove Theorem B by the Main Lemma (1) and Lemma 4.1 as follows:

Proof of Theorem B. Let (Fθ,c|Uc ;Uc, Vc) and M(d) > 0 be as in Lemma 4.1. By Lemma 4.1, we
can apply the Main Lemma (1) to (f |U ;U, V ) = (Fθ,c|Uc ;Uc, Vc). Then for |c| > M(d), Fθ,c has a
Siegel fixed point at the origin if and only if θ ∈ B.

4.2 Proofs of Theorem C and Theorem D

In order to prove Theorem C and Theorem D, we construct the following function in S :

Lemma 4.2. Fix any integers q ≥ 1 and m ≥ 5. Let

fε(z) := (1 + ε)z(1 + zmq)ez
q

,

where ε is a complex number with |ε| < 1/2, let

V := {z | |z| < R} ,

where

R :=
1

2
(45 − 1)e−4,

and let Uε be a component of f−1
ε (V ) containing 0. (Note that fε(0) = 0.) Then (fε|Uε ;Uε, V ) is a

polynomial-like mapping of degree mq + 1. Moreover, there exist uncountable sets Λj ⊂ {ε | |ε| <
1/2} (j = 1, 2) such that:

(1) If ε ∈ Λ1, then fε has q irrationally indifferent fixed points in Uε \ {0} with multipliers
satisfying [Cremer (mq + 1)];

(2) If ε ∈ Λ2, then fε has q bounded type Siegel fixed points in Uε \ {0}.
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Proof. Define Dq by

Dq := {z | |z| < q
√
4}.

Then since q
√
4 ≤ 4 < 3e < R, we have Dq ⊂ V . For z ∈ ∂Dq, we have

|fε(z)| ≥ (1− |ε|) · q
√
4 · (45 − 1) e−4 >

(
1− 1

2

)
· 2R = R,

and hence
Uε ⊂ Dq ⊂ V.

It follows that for z ∈ S1,

|fε(z)| <
(
1 +

1

2

)
· 2e = 3e < R,

and hence D ⊂ Uε. Moreover, fε has all mq + 1 zeros 0 and mqth roots of −1 in D ⊂ Uε. We
deduce from this and the construction that fε|Uε : Uε → V is a proper and holomorphic mapping of
degree mq+1 with Uε ⊂ V . We prove that Uε is simply connected as follows: An easy calculation
shows that

f ′
ε(z) = (1 + ε)ez

q · (F (z) +G(z)),

where
F (z) := (mq + 1)zmq, G(z) := 1 + qzq + qz(m+1)q.

For z ∈ S1, we also have
|G(z)| ≤ 1 + 2q < |F (z)| = mq + 1,

since m ≥ 5. By applying Rouché′s theorem to F (z) and F (z) + G(z), fε has mq critical points
counted with multiplicity in D. (Henceforth we count the number of critical points with multiplic-
ity.) For z ∈ ∂Dq, it follows that

|G(z)| ≤ 1 + (4 + 4m+1)q < |F (z)| = 4m + 4m ·mq,

since from m ≥ 5 we obtain

4m ·mq ≥ 4m · 5q = (4m+1 + 4m)q.

Rouché′s theorem again shows that fε has mq critical points in Dq. Thus from D ⊂ Uε ⊂ Dq, fε
has no critical points in Uε\D, and hence it has mq critical points in Uε. By the construction, there
are no critical points in ∂Uε. In addition, we have ∂V = {z | |z| = R} = fε(∂Uε). It follows that
∂Uε consists of finitely many mutually disjoint Jordan curves. By applying the Riemann-Hurwitz
formula to the map fε|Uε : Uε → V , we have

(2− n) +mq = (mq + 1) · (2− 1),

where n is the number of components of ∂Uε. It follows that n = 1, and hence Uε is simply
connected. Therefore, (fε|Uε ;Uε, V ) is a polynomial-like mapping of degree mq + 1.

Suppose that fε(z) = z and z 6= 0. Then

H(X, ε) := (1 +Xm)eX − 1

1 + ε
= 0,

where X = zq. We have

H(0, 0) = 0,
∂H

∂X
|(0,0)= 1 6= 0.
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By the implicit function theorem, there exists a holomorphic function X(ε) on some neighborhood
D ⊂ {ε | |ε| < 1/2} of ε = 0 such that

H(X(ε), ε) = 0, X(0) = 0.

We take D small enough so that for ε ∈ D \ {0}, fε has q different non-zero fixed points

z1(ε), · · · , zq(ε) ∈ D ⊂ Uε,

where (zj(ε))
q = X(ε) (j = 1, · · · , q). In addition, z1(ε), · · · , zq(ε) have the same multiplier

λ(ε) := (1 + ε)eX(ε)(1 + qX(ε) + q(X(ε))m+1 + (mq + 1)(X(ε))m).

It follows that λ(ε) is an open map with λ(0) = 1. Thus λ(D) is a neighborhood of 1. This fact
implies that λ(D) contains some arc segment I in S1 containing 1. It follows that there exists an
ε ∈ D such that λ(ε) = t for any t ∈ I. From this and Theorem 1.3, there exist uncountable sets
Λj (j = 1, 2) in D \ {0} such that:

(1) If ε ∈ Λ1, then λ(ε) satisfies [Cremer (mq + 1)] in Theorem 1.3;

(2) If ε ∈ Λ2, then λ(ε) = e2πiθ, where θ is of bounded type.

Instead of Lemma 4.2, we can also use the following lemma:

Lemma 4.3. Fix any integer q ≥ 1 and any constant c ∈ C satisfying |c| > max {6e2 + 1, q + 1}.
Let

fε(z) := (1 + ε)z(1 + czq)ez
q

,

where ε is a complex number with |ε| < 1/2, let

V := {z | |z| < R} ,

where

R :=
1

2
(|c| − 1)e−1,

and let Uε be a component of f−1
ε (V ) containing 0. (Note that fε(0) = 0.) Then (fε|Uε ;Uε, V ) is

a polynomial-like mapping of degree q+ 1 with q critical points. Moreover, there exist uncountable
sets Λj ⊂ {ε | |ε| < 1/2} (j = 1, 2) such that:

(1) If ε ∈ Λ1, then fε has q irrationally indifferent fixed points in Uε \ {0} with multipliers
satisfying [Cremer (q + 1)];

(2) If ε ∈ Λ2, then fε has q bounded type Siegel fixed points in Uε \ {0}.

Proof. Since |c| > 6e2 + 1, we have D ⊂ V . It follows that for z ∈ S1,

|fε(z)| ≥ (1− |ε|) · (|c| − 1)e−1 >

(
1− 1

2

)
· 2R = R,

and hence
Uε ⊂ D ⊂ V.

Henceforth we define
Dq := {z | |z| < q

√
1/|c|}.
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It follows that for z ∈ ∂Dq,

|fε(z)| <
(
1 +

1

2

)
· q
√
1/|c| ·

(
1 + |c| 1

|c|

)
e1/|c| < 3e < R,

and hence
Dq ⊂ Uε.

By definition, fε has all q+1 zeros 0 and qth roots of −1/c in Dq ⊂ Uε. Thus from the construction,
fε|Uε : Uε → V is a proper and holomorphic mapping of degree q + 1 with Uε ⊂ V . Next, we show
that Uε is simply connected as follows: It follows that

f ′
ε(z) = (1 + ε)ez

q · (F (z) +G(z)),

where
F (z) := (c+ cq + q)zq, G(z) := 1 + cqz2q.

For z ∈ ∂Dq, we also have

|F (z)| = |c+ cq + q|
|c|

≥ (1 + q)|c| − q

|c|
=

|c|+ (|c| − 1)q

|c|
,

|G(z)| ≤ 1 + |c|q
(

1

|c|

)2

=
|c|+ q

|c|
<

|c|+ (|c| − 1)q

|c|
,

and hence |F (z)| > |G(z)| for z ∈ ∂Dq. We can apply Rouché′s theorem to F (z) and F (z)+G(z).
Then fε has q critical points counted with multiplicity in Dq. For z ∈ S1, it follows from |c| > q+1
that

|F (z)| = |c+ cq + q| ≥ (1 + q)|c| − q = |c| − q + |c|q > 1 + |c|q ≥ |G(z)|.
By Rouché′s theorem again, fε has q critical points in D. Since Dq ⊂ Uε ⊂ D, fε has no critical
points in Uε\Dq, and hence it has q critical points in Uε. As in the proof of Lemma 4.2, we see that
∂Uε consists of finitely many mutually disjoint Jordan curves. We can apply the Riemann-Hurwitz
formula to the map fε|Uε : Uε → V . Then we obtain

(2− n) + q = (q + 1) · (2− 1),

where n is the number of components of ∂Uε. We have n = 1, and hence Uε is simply connected.
This shows that (fε|Uε ;Uε, V ) is a polynomial-like mapping of degree q + 1.

From the argument similar to that of Lemma 4.2, we can find Λ1 and Λ2. We omit the details.

We give here the proofs of Theorem C and Theorem D:

Proof of Theorem C. Let (fε|Uε ;Uε, V ) and Λ1 be as in Lemma 4.2 or Lemma 4.3. By Lemma
4.2 or Lemma 4.3, if ε ∈ Λ1, then fε has q irrationally indifferent fixed points z1(ε), · · · , zq(ε) in
Uε \ {0}, whose multipliers satisfy [Cremer (mq + 1)] or [Cremer (q + 1)]. When ε ∈ Λ1, we can
apply the Main Lemma (2) to (f |U ;U, V ) = (fε|Uε ;Uε, V ) and β = zj(ε) (j = 1, · · · , q). Then we
can take g := fε (ε ∈ Λ1).

Proof of Theorem D. Let (fε|Uε ;Uε, V ) and Λ2 be as in Lemma 4.2 (or Lemma 4.3). From the
argument similar to the proof of Theorem C, by the Main Lemma (3), we can take g := fε (ε ∈ Λ2).
In addition, since fε in Lemma 4.3 has only q critical points in Uε, we can choose g so that each
boundary of such q Siegel disks contains exactly one critical point.
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4.3 Proofs of Theorem E and Theorem F

In order to show Theorem E, we prepare the following lemmas:

Lemma 4.4 ([PeZ, p.2, Theorem A]). Let

Pθ(z) := e2πiθz + z2,

where θ ∈ R \Q. If θ ∈ E , then the Siegel disk of Pθ centered at the origin is bounded by a Jordan
curve containing exactly one critical point. Furthermore, J(Pθ) has Lebesgue measure zero.

The following is from unpublished Herman’s work in 1989 quoted in [Pe, p.1739, Theorem 1.2]:

Lemma 4.5. Let f be an entire function with a bounded fixed Siegel disk 4. If ∂4 is a quasicircle
containing a critical point of f , then 4 is bounded type.

Proof of Theorem E. Let Fθ,c be as in Lemma 4.1. It follows that gα = Fθ,c for d = 2, θ ∈ E , and
c = α/e2πiθ. Note that Pθ and Pθ,d are conjugate by a linear transformation. Then by Lemma 4.1,
for α with |α| > M(2), there exist simply connected domains Uα and Vα containing 0 such that
(gα|Uα ;Uα, Vα) and Pθ are hybrid equivalent by φ satisfying φ(0) = 0. From Lemma 4.4 and the
argument similar to that in the proof of the Main Lemma (3), ∂4α ⊂ Uα is a Jordan curve which
contains exactly one critical point. Therefore, we can take M := M(2). In addition, suppose that
θ ∈ E \ D(2). Then by Lemma 4.5, ∂4α is not a quasicircle.

Unpublished Herman’s work [Herm1] and [Gh] show that:

Lemma 4.6 ([BraF, p.228, Theorem 7.13]). There exists a θ ∈ R \ Q such that the quadratic
polynomial Pθ(z) = e2πiθz + z2 has a Siegel disk centered at the origin, whose boundary is a
quasicircle without critical points.

Proof of Theorem F. Theorem F follows from Lemma 4.6 and the argument similar to that in the
proof of Theorem E. We omit the details.

4.4 Proofs of Theorem G and Theorem H

Let I(f) be as in the Main Lemma. The Eremenko-Lyubich class B is the set of all entire functions
such that the sets sing(f−1) ∩ C are bounded. By definition, we have S ⊂ S ⊂ B. For the proof
of Theorem G, we introduce the following lemmas:

Lemma 4.7 ([Cu, p.91, Theorem 1.3]). Let f ∈ B be a transcendental entire function of finite
order and satisfy

sing(f−1) ⊂ {z | |z| < r0}
for some r0 > 0. Set

θ̃(r) := meas{t ∈ [0, 2π] | |f(reit)| < r0},
where r > 0 and meas denotes the one-dimensional Lebesgue measure. Let

E(x) := ex.

Suppose that θ̃(r) ≥ θ0(r) for large r > 0, where θ0(r) is continuous and non-increasing and
satisfies

∞∑
k=1

θ0(E
k(0)) = ∞.

Then I(f) has Lebesgue measure zero.
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Lemma 4.8. Let f ∈ S . Then I(f) has Lebesgue measure zero.

Proof. Let
f(z) = P (z) exp (Q(z)),

where P and Q are polynomials, and Q(z) = adz
d+ad−1z

d−1+ · · ·+a1z for d ∈ N and aj ∈ C (j =
1, · · · , d) with ad 6= 0. For any z ∈ C \ {0}, we define 0 ≤ arg(z) < 2π by

z = |z| exp (i · arg(z)).

Set
R :=

{
z ∈ C \ {0} | |arg(adzd)− π| < π

5

}
.

Note that Q(z)/(adz
d) → 1 as z → ∞. Let r0 and θ̃(r) be as in Lemma 4.7. If z ∈ R and |z| is

large enough, then |f(z)| < r0, and hence there exists a constant T > 0 such that for large r > 0,

θ̃(r) ≥ T =: θ0(r).

By Lemma 4.7, I(f) has Lebesgue measure zero.

Let β+ and β− be critical points of gα as in the proof of Lemma 4.1, where gα = Fθ,c for d = 2,
θ ∈ E , and c = α/e2πiθ.

Lemma 4.9. Fix any θ ∈ E and any 0 < ε < π/2. Suppose that 0 ≤ |arg(α)− π| < π/2− ε and
|α| is large enough. Then g2α(β−) ∈ 4α.

Proof. Since β− → −2 as |α| → ∞ (see Remark 4.2), it follows from the assumption that there
exists a constant K > 0 independent of α such that |g2α(β−)| < e−K|α| for all large enough |α|. We
can write

gα(z) = e2πiθz +
∞∑
k=2

akz
k,

where ak = α/(k − 2)! + e2πiθ/(k − 1)!. Then we obtain |ak| ≤ (2|α|)k−1 for every k ≥ 2. Recall
that θ is a Diophantine number (see Section 2.3 or [PeZ, p.8, p.9]). It follows from [Si] that there
exists a constant L > 0 independent of α such that {z | |z| < L/|α|} ⊂ 4α (see Remark 2.6).
Since |g2α(β−)| < e−K|α| < L/|α| holds for all large enough |α|, we deduce that g2α(β−) ∈ 4α.

We are ready to prove Theorem G.

Proof of Theorem G. By Lemma 4.9, there exists a domain A ⊂ {α | |α| > M} such that if α ∈ A,
then g2α(β−) ∈ 4α. Fix any α ∈ A and let g := gα. Since β+ ∈ ∂4α and β−, 0 ∈ F (g), we
have sing(g−1) ∩ J(g) = {g(β+)} ⊂ J̃g|U . Since g ∈ S , Lemma 4.8 shows that I(g) has Lebesgue
measure zero. In addition, by Lemma 4.4, J(Pθ) has Lebesgue measure zero. By the Main Lemma
(4), J(g) has Lebesgue measure zero.

We introduce the following result for quadratic polynomials:

Lemma 4.10 ([BuC, p.674, Theorem 1, Theorem 2]). Let

Pθ(z) := e2πiθz + z2,

where θ ∈ R\Q. Then there exist irrational numbers θ1 /∈ B and θ2 ∈ B such that J(Pθj) (j = 1, 2)
have positive Lebesgue measure and the origin is a Cremer fixed point of Pθ1 and a Siegel fixed
point of Pθ2.

We show Theorem H by the Main Lemma (5), Lemma 4.1, and Lemma 4.10 as follows:
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Proof of Theorem H. Let Fθ,c be as in Lemma 4.1 for d = 2 and let θ1 /∈ B and θ2 ∈ B be as in
Lemma 4.10. Set

f1 := Fθ1,c, f2 := Fθ2,c.

As in the proof of Theorem E, for any c with |c| > M(2), there exist simply connected domains Uc

and Vc containing 0 such that (fj|Uc ;Uc, Vc) (j = 1, 2) and Pθj are hybrid equivalent by φ satisfying
φ(0) = 0. By Lemma 4.10, J(Pθj) (j = 1, 2) have positive Lebesgue measure. Hence by applying
the Main Lemma (5) to (fj|Uc ;Uc, Vc) and P = Pθj , we deduce that J(fj) (j = 1, 2) have positive
Lebesgue measure. By the construction, f1 (resp. f2) has a Cremer fixed point (resp. a Siegel
fixed point) at the origin.
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Chapter 5

The boundaries of bounded type fixed
Siegel disks of some transcendental
meromorphic functions

5.1 Characterization of the family {hα}α∈C\{0,−1}

In this section, we characterize the one parameter family {hα}α∈C\{0,−1} defined in Section 1.3 by
the following propositions:

Proposition 5.1. Let f ∈ S̃ have the following properties:

(a) f can be written by

f(z) =
az + b

cz + d
etz,

where ad− bc, c, and t are non-zero;

(b) f has a bounded type Siegel fixed point at the origin with multiplier λ = e2πiθ.

Then f is conformally conjugate to

hα(z) = e2πiθ
z

1− α+1
α

z
eαz

for some α ∈ C \ {0,−1}. Moreover, hα has two critical points 1 and cα = −1/(α + 1), two
asymptotic values 0 and ∞, and one pole tα = α/(α + 1).

Proof. Since f has a fixed point at the origin, we have b = 0, and hence ad 6= 0. In addition, it
follows from the assumption (b) that f ′(0) = a/d = e2πiθ. Set

s := −c/d 6= 0.

Then we can write
f(z) = e2πiθ

z

1− sz
etz.

An easy calculation shows that

f ′(z) = e2πiθ+tz−stz2 + tz + 1

(1− sz)2
.

Hence f has two non-zero critical points u and v which are roots of −stz2 + tz + 1 = 0. Let

L(z) := uz.
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It follows that L−1 ◦ f ◦ L has two critical points 1 and v/u. Moreover, we obtain

f̃(z) := L−1 ◦ f ◦ L(z) = e2πiθ
z

1− s̃z
et̃z,

where s̃ = su 6= 0 and t̃ = tu 6= 0. Since f̃ ′(1) = 0, we have

−s̃t̃ · 12 + t̃ · 1 + 1 = 0,

and hence s̃ = (t̃ + 1)/t̃. It follows from this, s̃ 6= 0 and t̃ 6= 0 that t̃ ∈ C \ {0,−1}, and hence

f̃(z) = hα(z), where α = t̃. By the construction, hα has two critical points 1 and cα, and one pole
tα. Since the map z 7→ eαz has two asymptotic values 0 and ∞, and

e2πiθ
z

1− α+1
α

z
→ −e2πiθ

α

α + 1
(z → ∞),

hα has two asymptotic values 0 and ∞.

Proposition 5.2. Let α and α′ be two distinct points in C \ {0,−1}. Then hα and hα′ are
conformally conjugate if and only if α′ = 1/(α + 1)− 1.

Proof. Suppose that α′ = 1/(α + 1)− 1 and

l(z) := −(α + 1)z.

An easy calculation shows that l−1 ◦ hα′ ◦ l = hα.

Suppose that there exists a conformal map l̃ : Ĉ → Ĉ such that l̃−1 ◦ hα′ ◦ l̃ = hα. Since both
hα′ and hα have an essential singularity at ∞ and only two asymptotic values 0 and ∞, l̃ fixes 0
and ∞. It follows that l̃(z) = kz for some k 6= 0. Moreover, since l̃(1) = k is a critical point of
hα′ , we have k = 1 or k = −1/(α′ +1). Since hα′ 6= hα, we have k 6= 1, and hence k = −1/(α′ +1)

and α′ 6= −2. Since hα′ has another critical point l̃(−1/(α + 1)) = 1/{(α′ + 1)(α + 1)} = 1, we
obtain α′ = 1/(α + 1)− 1.

5.2 Proof of Theorem I (i)

We use the following result of [CheE] to prove Theorem I (i):

Lemma 5.1 ([CheE, p.2140, Theorem 1.5.]). Let U ⊂ Ĉ be an open set and let a meromorphic

function f : U → Ĉ have the following properties:

(a) The set of all singular values of f is contained in {a, b, c} for some a, b, c ∈ Ĉ;
(b) a ∈ U and a is a bounded type Siegel fixed point;

(c) c ∈ Ĉ \ U or f(c) = c.

Moreover, let γ′ be an injective path which goes from a to b while avoiding {a, b, c} in between and
let γ be a preimage of γ′ by f which has an endpoint a. Then one and only one of the following
three cases occurs:

(1) γ ends on a non-critical point in U . In addition, U = Ĉ and f is a Möbius transformation.

(2) γ ends on a critical point. (We call the critical point the main critical point.) In addition, the
Siegel disk 4 centered at a is bounded by a quasicircle which contains the main critical point and
does not contain other critical points.

(3) γ leaves every compact subset of U . In addition, 4 does not compactly contained in U .
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Proof of Theorem I (i). By the assumption, hα has exactly one critical value hα(1) = hα(cα) and
two asymptotic value 0 and ∞. Hence we can apply Lemma 5.1 to hα by putting U = C, f = hα,
a = 0, b = hα(1), and c = ∞. Since hα is transcendental, either of the cases (2) and (3) holds.
Since b = hα(1) is not an asymptotic value, the case (3) does not occur. Therefore, the case (2)
occurs.

Next, we show the existence of Ω1. Put hα(1) = hα(cα). Then it follows that

F (α) :=
1

(α + 1)2
e−α/(α+1) − eα = 0.

F (α) has an essential singularity at α = −1 and does not have an asymptotic value 0 at α = −1.
By Picard’s theorem and Iversen’s theorem, the set Ω1 := {α | hα(1) = hα(cα)} is countably
infinite (see [I] or [ColL, p.8, Theorem 1.6] for Iversen’s theorem).

Remark 5.1. Two critical points 1 and cα = −1/(α + 1) of hα coincides only when α = −2. By
Theorem I (i), 4−2 is bounded by a quasicircle containing the critical point 1 of h−2.

5.3 Proof of Theorem I (ii)

For β ∈ C \ {0}, we define

fβ(z) :=

{
z

1−(β+1)z/β
eβz (β ∈ C \ {0,−1})

ze−z (β = −1).

Note that if β → −1, then fβ → f−1 locally uniformly. By the argument in Section 5.1, when
β ∈ C \ {0,−1}, fβ has two critical points 1 and cβ = −1/(β + 1), two asymptotic values 0 and
∞, and one pole tβ = β/(β + 1). We have cβ, tβ → ∞ as β → −1. For any r > 0, we define

Br := (−1,−1 + r].

Henceforth we restrict β to Br (or Br = Br ∪ {−1}). We prove Theorem I (ii) by going through
the following three steps:

Step 1. By choosing a small enough r > 0 and using fβ, we construct an M -quasiregular mapping

Fβ : C → Ĉ for every β ∈ Br with the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;

(2) Fβ and
Rθ(z) := e2πiθz

are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;

(4) The constant M is independent of β ∈ Br.

Step 2. We show that there exists an M1-quasiconformal mapping φβ : Ĉ → Ĉ which fixes 0, 1,
and ∞, and has the following properties:

(1) For some α ∈ C \ {0,−1},

Gβ(z) := φβ ◦ Fβ ◦ φ−1
β (z) = e2πiθ

z

1− α+1
α

z
eαz = hα,

where hα is as in Section 1.3.
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(2) hα(= Gβ) has the Siegel disk 4α centered at the origin whose boundary ∂4α is an M1-
quasicircle containing exactly one critical point 1;

(3) The constant M1 is independent of β ∈ Br.

Step 3. From Step 2, we define the surgery map

S : Br → C \ {0,−1}, β 7→ α,

where Gβ = hα. We show that the surgery map S is continuous and S(β) → −1 as β → −1. Since
the set S(Br) is uncountable and ∂4α is an M1-quasicircle containing exactly one critical point 1
for any α ∈ S(Br), we obtain Theorem I (ii) by taking

Ω2 := S(Br).

We prepare the following lemmas for the steps above:

Lemma 5.2. Let β ∈ Br, let
Dβ := {z | |z| < |fβ(1)|},

and let Uβ be the connected component of f−1
β (Dβ) which contains the origin. (Note that fβ(0) = 0.)

If r > 0 is small enough, then fβ|Uβ
: Uβ → Dβ is univalent and Uβ is simply connected. Moreover,

Uβ has the following properties:

(1) ∂Uβ is a piecewise smooth Jordan curve containing exactly one critical point 1:

(2) Uβ ⊂ D.

Proof. Suppose that β ∈ Br. fβ has two critical values fβ(1) and fβ(cβ). We have

fβ(1) = −βeβ, fβ(cβ) = − β

(1 + β)2
e−β/(1+β).

Since fβ(1) → e−1 and fβ(cβ) → ∞ as β → −1, we have fβ(cβ) /∈ Dβ for r > 0 small enough. By
[CheE, p.2155, Lemma 5.3], fβ|Uβ

: Uβ → Dβ is univalent and Uβ is simply connected. Obviously,
∂Dβ does not contain the asymptotic values 0 and ∞ of fβ. It follows from this that ∂Uβ is a
Jordan curve (see [CheE, p.2155, Lemma 5.4]). Since ∂Uβ is a preimage of ∂Dβ by fβ, ∂Uβ is
piecewise smooth. By the construction, we have fβ([0, 1)) ∈ R, f ′

β(z) 6= 0 for any z ∈ [0, 1),
fβ(1) > 0, and fβ(0) = 0. It follows that f ′

β(z) > 0 for any z ∈ [0, 1), and hence [0, 1) ⊂ Uβ. This
implies that ∂Uβ contains the critical point 1. An easy calculation shows that |fβ(z)| > fβ(1) for

any z ∈ S1 \ {1}, and hence Uβ ⊂ D. By the construction, another critical point cβ is not in ∂Uβ

for r > 0 small enough.
Similarly, we can show the case β = −1. We omit the details.

Lemma 5.3. If r > 0 is small enough, then there exists a constant K ≥ 1 such that ∂Uβ is a
K-quasicircle for all β ∈ Br.

Proof. The proof is similar to that of [KeZ, p.142, Lemma 2.4]. We have to pay attention to the
existence of the pole tβ of fβ for β ∈ Br and modify the argument.

Suppose that r > 0 is small enough so that the statement of Lemma 5.2 holds. We take
two distinct points x and y in ∂Uβ so that they divide ∂Uβ into two Jordan arcs I and I ′. For
any piecewise smooth arc segment J , let |J | be the Euclidean length of J . We can assume that
|fβ(I)| ≤ |fβ(I ′)| without loss of generality. Let Diam(X) be as in Lemma 2.2. By Lemma 2.2, we
have only to show that there exists a constant A > 0 independent of β ∈ Br, x, and y such that

Q(β, x, y) :=
Diam(I)

|x− y|
< A. (5.1)
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Since fβ(I) ⊂ ∂Dβ and ∂Dβ = {z | |z| = fβ(1)} is a circle, we have

|fβ(I)| ≤ (π/2)|fβ(x)− fβ(y)|. (5.2)

Henceforth let L be the straight line segment joining x and y. It follows from (5.2) and |fβ(x) −
fβ(y)| ≤ |fβ(L)| that

|fβ(I)| ≤ (π/2)|fβ(L)|. (5.3)

By Lemma 5.2, we have L ⊂ D. In addition, recall that fβ has the pole tβ with tβ → ∞ as β → −1.

Thus if r > 0 is small enough, then tβ /∈ D, and hence tβ /∈ L. Therefore, there exists a q ∈ L such
that |f ′

β(q)| = maxz∈L |f ′
β(z)| > 0. It follows that

|fβ(L)| ≤ |f ′
β(q)||L|. (5.4)

By the definition of diameter, there exist b1, b2 ∈ I such that |b1 − b2| = Diam(I). Moreover, there
also exists j = 1 or 2 such that:

1 /∈ {z | |z − bj| ≤ Diam(I)/5}.

Define
Ĩ := {z | |z − bj| ≤ Diam(I)/10} ∩ I.

By definition, it follows that:
|Ĩ| ≥ Diam(I)/10; (5.5)

|z − 1| ≥ Diam(I)/10 for any z ∈ Ĩ . (5.6)

Since Ĩ does not contain critical points 1 and cβ of fβ, there exists a p ∈ Ĩ such that |f ′
β(p)| =

minz∈Ĩ |f ′
β(z)| > 0. It follows that

|fβ(Ĩ)| ≥ |f ′
β(p)||Ĩ|. (5.7)

From (5.4), (5.5), (5.7), the definition of Q(β, x, y), and Ĩ ⊂ I, we see that

|f ′
β(q)|

|f ′
β(p)|

≥ |fβ(L)|
|L|

· |Ĩ|
|fβ(Ĩ)|

=
|fβ(L)|
|fβ(Ĩ)|

· |Ĩ|
Diam(I)

· Diam(I)

|L|

≥ 1

10

|fβ(L)|
|fβ(I)|

·Q(β, x, y). (5.8)

It follows from (5.3) that
|fβ(I)|
|fβ(L)|

≤ π

2
. (5.9)

The inequalities (5.8) and (5.9) yield

Q(β, x, y) ≤ 5π
|f ′

β(q)|
|f ′

β(p)|
. (5.10)

An easy calculation shows that

f ′
β(z) = −β2 (z − 1)(z + 1/(β + 1))

(β + 1)(z − β/(β + 1))2
eβz.
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Thus we have

|f ′
β(q)|

|f ′
β(p)|

=
|p− β/(β + 1)|2

|q − β/(β + 1)|2
· |q − 1|
|p− 1|

· |q + 1/(β + 1)|
|p+ 1/(β + 1)|

· |eβ(q−p)|. (5.11)

Since L ⊂ D and Ĩ ⊂ I ⊂ D, we have |p| ≤ 1 and |q| ≤ 1. Thus we obtain for every β ∈ Br,

|eβ(q−p)| < e2(1+r). (5.12)

Moreover, when r > 0 is small enough, it follows that for every β ∈ Br,

|p− β/(β + 1)|2

|q − β/(β + 1)|2
< 2; (5.13)

|q + 1/(β + 1)|
|p+ 1/(β + 1)|

< 2. (5.14)

(This is because the left-hand sides of (5.13) and (5.14) converge to 1 as β → −1.) From the
triangle inequality, q ∈ L, and the definition of diameter, we see that

|q − 1| ≤ |q − p|+ |p− 1|
≤ |q − x|+ |x− p|+ |p− 1|
≤ |x− y|+ |x− p|+ |p− 1|
≤ 2Diam(I) + |p− 1|. (5.15)

The inequalities (5.6) and (5.15) show that

|q − 1|
|p− 1|

≤ 2Diam(I) + |p− 1|
|p− 1|

=
2Diam(I)

|p− 1|
+ 1

≤ 2Diam(I)

Diam(I)/10
+ 1

= 21. (5.16)

It follows from (5.10)–(5.16) that if r > 0 is small enough, then for any β ∈ Br and any pair of x
and y in Uβ,

Q(β, x, y) < 420πe4 =: A,

as required.

Henceforth we suppose that r > 0 is small enough so that the statements of Lemma 5.2 and
Lemma 5.3 hold.

Lemma 5.4. Let {βn}n∈N ⊂ Br be a sequence with βn → β∞ ∈ Br as n → ∞. Then ∂Uβn → ∂Uβ∞

as n → ∞ with respect to the Hausdorff metric.

Proof. Suppose that there exists a subsequence {β′
n}n∈N ⊂ {βn}n∈N and a δ > 0 such that the

Hausdorff metric between ∂Uβ′
n
and ∂Uβ∞ is greater than δ for any n ≥ 1. By the Riemann

mapping theorem and Carathéodory’s theorem, we can take a homeomorphism ω̃βn : D → Uβn

which is conformal in D, and fixes 0 and 1. By Lemma 2.1, we can extend ω̃βn into a K2-

quasiconformal mapping ωβn of Ĉ fixing 0 and 1, where K is as in Lemma 5.3. By Proposition
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2.28, there exists a subsequence {β′′
n}n∈N ⊂ {β′

n}n∈N such that ωβ′′
n
→ ω locally uniformly on C,

where ω is a K2-quasiconformal mapping of Ĉ fixing 0 and 1. Let

γ := ω(S1) ⊂ C.

By the construction, γ is aK2-quasicircle with ∂Uβ′′
n
→ γ (as n → ∞) with respect to the Hausdorff

metric. By Lemma 5.2, we have Uβ′′
n
⊂ D for any n ≥ 1, and hence γ ⊂ D. In addition, from the

fact that fβ′′
n
→ fβ∞ uniformly on D and the definition of Dβ, it follows that

fβ′′
n
(∂Uβ′′

n
) → fβ∞(γ), ∂Dβ′′

n
→ ∂Dβ∞

with respect to the Hausdorff metric. Since ∂Dβ′′
n
= fβ′′

n
(∂Uβ′′

n
), we obtain fβ∞(γ) = ∂Dβ∞ . By

Hurwitz’s theorem, fβ∞ is univalent on the bounded component of C \ γ, and hence γ = ∂Uβ∞ .
It follows that ∂Uβ′′

n
→ ∂Uβ∞ with respect to the Hausdorff metric. This contradicts the fact that

{β′′
n}n∈N ⊂ {β′

n}n∈N.

Proof of Theorem I (ii). Our proof is divided into the three steps which we mentioned at the
beginning of this section. Recall that we restricted β to Br (or Br) and r > 0 is small enough for
the statements of Lemma 5.2 and Lemma 5.3 to hold.

Step 1: By the Riemann mapping theorem and Carathéodory’s theorem, for β ∈ Br, we can take

a homeomorphism ρβ : Ĉ \D → Ĉ \Uβ which is conformal in Ĉ \D, and satisfies ρβ(∞) = ∞ and

ρβ(1) = 1. By Lemma 2.1, we can extend ρβ into a K2-quasiconformal mapping ρ̂β of Ĉ fixing 1
and ∞, where K is as in Lemma 5.3. By Proposition 2.28, for any sequence {βn}n∈N ⊂ Br with
βn → β∞ ∈ Br as n → ∞, there exists a subsequence {β′

n}n∈N ⊂ {βn}n∈N such that ρ̂β′
n
→ σ

locally uniformly on C, where σ is a K2-quasiconformal mapping of Ĉ fixing 1 and ∞. It follows
from Lemma 5.4 that σ|Ĉ\D = ρβ∞ , and hence ρ̂β′

n
|Ĉ\D = ρβ′

n
→ ρβ∞ locally uniformly on C \ D.

This implies that the set of the all limit functions of {ρβn}n∈N contains only ρβ∞ , and hence
ρβn → ρβ∞ locally uniformly on C \ D. Therefore, ρβ depends continuously on β ∈ Br. The map
fβ ◦ ρβ|S1 : S1 → ∂Dβ is a homeomorphism, where Dβ is as in Lemma 5.2. From the standard
theory about the rotation number, there exists a unique θβ ∈ [0, 1) such that for

Lβ(z) :=
e2πiθβz

fβ(1)
,

the rotation number of Lβ ◦ fβ ◦ ρβ|S1 : S1 → S1 is the θ which was fixed at the beginning (see
[BraF, p.103, Theorem 3.20]). By the construction, Lβ depends continuously on β ∈ Br. For
β ∈ Br, we define

F̃β(z) := Lβ ◦ fβ ◦ ρβ(z) (z ∈ C \ D).
The Schwarz reflection principle shows that if r > 0 is small enough, then there exists an l > 1
such that for any β, F̃β is extended to a holomorphic map F̂β in {z | |z| > 1/l}. Henceforward, we
fix a small enough r > 0 so that such extension goes well and the statements of Lemma 5.2 and
Lemma 5.3 hold. Set

Al := {z | 1/l < |z| < l}.

By the construction, F̂β|Al
depends continuously on β ∈ Br, and hence the family {F̂β|Al

}β∈Br

satisfies the assumption of Lemma 2.4. By Lemma 2.4, there exists a k-quasisymmetric mapping
sβ : S1 → S1 for β ∈ Br such that

sβ ◦ F̂β|S1 ◦ s−1
β = Rθ, sβ(1) = 1,
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where k > 1 is independent of β and Rθ(z) = e2πiθz. By the Beurling-Ahlfors extension, we can
extend sβ as a homeomorphism ŝβ : D → D which is an M -quasiconformal mapping in D with
sβ(0) = 0, where M depends only on k, and hence M is independent of β (see Section 2.4). Since

F̂β|S1 = F̃β|S1 depends continuously on β, one can show that sβ depends continuously on β ∈ Br.
Then it follows from the way of its extension that ŝβ also depends continuously on β. For β ∈ Br,
we define Fβ as follows:

Fβ(z) :=

{
F̃β(z) (z ∈ C \ D)
ŝ−1
β ◦Rθ ◦ ŝβ(z) (z ∈ D).

Since F̃β|S1 = F̂β|S1 = s−1
β ◦Rθ ◦sβ, Fβ is continuous. By definition, Fβ is locally M -quasiconformal

in C \ (S1 ∪ {ρ−1
β (cβ)}). Let V be a neighborhood of any z ∈ S1 \ {ρ−1

β (1)(= 1)}, where F̂β and
Fβ are homeomorphisms. By applying Rickman’s lemma (see Section 2.4) to U = V , C = V \ D,
ϕ = F̂β, and Φ = Fβ, Fβ is M -quasiconformal on V . Thus Fβ is an M -quasiregular mapping on
C. By the construction, Fβ satisfies the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;

(2) Fβ and Rθ are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;

(4) The constant M is independent of β ∈ Br.

Thus, we achieve the goal of Step 1.

Step 2: From the construction, we can apply Lemma 2.8 to F = Fβ, U = D, ϕ = ŝβ, and f = Rθ.
Let µβ be the Fβ-invariant Beltrami coefficient which is constructed exactly in the same way as
the construction of µF in the proof of Lemma 2.8. To be more precise, the definition of µβ is as
follows: Let µŝβ be a Beltrami coefficient in D which corresponds to (ŝβ)z/(ŝβ)z almost everywhere.

We define µβ(u) by (F n
β )

∗µŝβ(u) for almost all u ∈
⋃∞

n=0 F
−n
β (D). Otherwise, set µβ := µ0 = 0.

Since M is independent of β, Lemma 2.8 shows that for a constant M1 ≥ 1 independent of β, there

exists an M1-quasiconformal mapping φβ : Ĉ → Ĉ fixing 0, 1, and ∞ such that

Gβ := φβ ◦ Fβ ◦ φ−1
β : C → Ĉ

is meromorphic. By the construction, Gβ has the only one zero 0 and the only one pole. Thus
there exist an entire function h(z) and non-zero constants b and p such that

Gβ(z) = b
z

z − p
eh(z).

We can show that h(z) is a polynomial of degree 1 as follows: When |z| is large enough, we
have

ϕ1 ◦Gβ(z) = fβ ◦ ϕ2(z), (∗)
where

ϕ1 := L−1
β ◦ φ−1

β , ϕ2 := ρβ ◦ φ−1
β .

By Proposition 2.26 (i) and (ii), ϕ1 and ϕ2 are quasiconformal mappings. It follows from Proposi-
tion 2.26 (iii) that there exist positive constants K ′ > 1, C1, and C2 such that

|ϕ1(z)| ≥ C1|z|1/K
′
, |ϕ2(z)| ≤ C2|z|K

′
for |z| large enough.

From this and |fβ(z)| ≤ e|z|
2
(|z| → ∞), there exist positive constants A and N such that

max
|z|=R

eh(z) ≤ eARN

for R > 0 large enough.
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Thus h(z) is a polynomial. In addition, the relation (∗) implies that both of fβ and Gβ have only
one positive (or negative) sector in a punctured neighborhood of ∞ in the sense of [Za2, p.495].
Therefore, we deduce that h(z) is a polynomial of degree 1.

By the construction, we have G′
β(0) = e2πiθ and G′

β(1) = 0. Hence as in the proof of Proposition
5.1, we obtain for some α ∈ C \ {0,−1},

Gβ(z) = hα(z) = e2πiθ
z

1− α+1
α

z
eαz.

It follows from the construction that hα(= Gβ) has the Siegel disk 4α = φβ(D) centered at the
origin (see Remark 2.9). Since φβ is M1-quasiconformal, the boundary ∂4α = φβ(S1) is an M1-
quasicircle containing exactly one critical point 1 of hα. Therefore, the argument above completes
Step 2.

Step 3: From Step 2, we can define the surgery map

S : Br → C \ {0,−1}, β 7→ α,

where Gβ = hα. In order to show that S is continuous, we claim the following assertion, whose
proof is similar to the argument in [KeZ, p.157, Section 5] or [Za1, p.218, Section 11]:

Assertion. Let {βn}n∈N ⊂ Br be any sequence with βn → β∞ ∈ Br as n → ∞. Then there exists
a subsequence {β′

n}n∈N ⊂ {βn}n∈N such that S(β′
n) → S(β∞) as n → ∞.

Proof of the assertion. By Step 2 and Proposition 2.28, there exists a subsequence {β′
n}n∈N ⊂

{βn}n∈N and an M1-quasiconformal mapping φ : Ĉ → Ĉ such that φβ′
n
→ φ locally uniformly on

C (as n → ∞). We define

ς := φ ◦ Fβ∞ ◦ φ−1, ςn := φβ′
n
◦ Fβ′

n
◦ φ−1

β′
n
, ς∞ := φβ∞ ◦ Fβ∞ ◦ φ−1

β∞

If ς = ς∞, then S(β′
n) → S(β∞). The proof is completed in the case. Henceforth we suppose that

ς 6= ς∞.
We can show that if ς 6= ς∞, then µβ′

n
→ µβ∞ with respect to the spherical measure as follows:

For a measurable set E ⊂ Ĉ, let Area(E) be the Lebesgue area of E in the spherical metric. In
addition, we define

Qε
n := {z ∈ C | |µβ′

n
(z)− µβ∞(z)| > ε},

for ε > 0 and n ≥ 1. It suffices to show that for any ε > 0 and any C > 0, if n is large enough,
then Area(Qε

n) < C. By the definitions of µβ′
n
and µβ∞ , we obtain

Qε
n ⊂

⋃
k≥0

F−k
β′
n
(D) ∪

⋃
k≥0

F−k
β∞

(D). (5.17)

Obviously, ς and ς∞ are quasiconformally conjugate. It follows from ς 6= ς∞ and the argument simi-
lar to that in [Za1, p.201] or [KeZ, p.157, p.158] that for n large enough, there exist quasiconformal

mappings ξn : Ĉ → Ĉ such that:

(i) ξn fixes 0, 1, and ∞;

(ii) ξn satisfies
ξn ◦ ς = ςn ◦ ξn;

(iii) The complex dilatations of ξn are uniformly bounded.
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Hence we have
τn ◦ Fβ∞ = Fβ′

n
◦ τn,

where τn := φ−1
β′
n
◦ ξn ◦ φ. It follows from the construction that for every n ≥ 1,

τn(D) = D, τn(Ĉ \ D) = Ĉ \ D, τn(0) = 0, τn(∞) = ∞,

and the complex dilatations of quasiconformal mappings τn are uniformly bounded. Thus from
this, the fact that the area of the Riemann sphere is finite, and Proposition 2.26 (iv), we deduce
that for any δ > 0, there exists an integer N ≥ 1 such that:

Area

(⋃
k≥0

F−k
β∞

(D) \
⋃

0≤k≤N

F−k
β∞

(D)

)
< δ, (5.18)

and for n large enough,

Area

(⋃
k≥0

F−k
β′
n
(D) \

⋃
0≤k≤N

F−k
β′
n
(D)

)
< δ. (5.19)

Since Fβ′
n
→ Fβ∞ locally uniformly, we have for n large enough,

Area

( ⋃
0≤k≤N

F−k
β′
n
(D) \

⋃
0≤k≤N

F−k
β∞

(D)

)
< δ. (5.20)

From the construction, ŝβ′
n
◦ FN

β′
n
→ ŝβ∞ ◦ FN

β∞
locally uniformly on

⋃
0≤k≤N F−k

β∞
(D) as n → ∞. In

addition, for almost all z ∈
⋃

0≤k≤N F−k
β∞

(D) and large enough n, the complex dilatation of ŝβ′
n
◦FN

β′
n

at z and that of ŝβ∞ ◦ FN
β∞

at z are µβ′
n
(z) and µβ∞(z) respectively. It follows from this and the

construction that for n large enough,

Area

(
Qε

n ∩
⋃

0≤k≤N

F−k
β∞

(D)

)
< δ. (5.21)

From (5.17)–(5.21), we obtain

Area(Qε
n) < 4δ.

Since δ > 0 is arbitrary, we can take 4δ = C. This implies that µβ′
n
→ µβ∞ with respect to the

spherical measure.
From the argument above and Lemma 2.3, we have φβ′

n
→ φβ∞ locally uniformly. It fol-

lows that ς = ς∞. On the other hand, we assumed that ς 6= ς∞. This is a contradiction, and
hence we obtain ς = ς∞ and S(β′

n) → S(β∞) as n → ∞. This completes the proof of the
assertion. ■

The assertion implies that if βn → β∞ ∈ Br, then the set {S(βn)}n∈N is bounded and has
only one accumulation point S(β∞). It follows that S(βn) → S(β∞) as n → ∞, and hence S is
continuous.

Finally, we show that S(β) → −1 as β → −1. Recall that φβ : Ĉ → Ĉ is an M1-quasiconformal
mapping fixing 0, 1, and ∞, where M1 is independent of β, and ρβ can be extended to a K2-

quasiconformal mapping of Ĉ fixing 1 and ∞, where K is as in Lemma 5.3. Thus {φβ ◦ρ−1
β }β∈Br is

a family of M1K
2-quasiconformal mappings fixing 1 and ∞. In addition, since hS(β) has a critical
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point cS(β) = −1/(S(β) + 1) = φβ ◦ ρ−1
β (−1/(β +1)), it follows from Proposition 2.28, Proposition

2.29, and −1/(β + 1) → ∞ as β → −1 that

−1

S(β) + 1
= φβ ◦ ρ−1

β

(
−1

β + 1

)
→ ∞

as β → −1. This shows that S(β) → −1 as β → −1, and hence S(Br) is uncountable. Moreover,
by the construction, 4α is an M1-quasicircle containing exactly one critical point when α ∈ S(Br)
(see Step 2). Thus we can take

Ω2 := S(Br).

Therefore, we have the desired result of Theorem I (ii).

5.4 Proof of Theorem I (iii)

In this section, we show Theorem I (iii) by the quasiconformal surgery in Section 5.3. Let fβ be
as in Section 5.3.

Lemma 5.5. Let
f := f−1+i, D := {z | |z| < |f(1)|},

and let U be the component of f−1(D) which contains the origin. (Note that f(0) = 0.) Then
f |U : U → D is univalent. Moreover, ∂U is a piecewise smooth Jordan curve which contains
exactly two critical points of f .

Proof. From the argument in the proof of Lemma 5.2, it follows that f |U : U → D is univalent
and ∂U is a piecewise smooth Jordan curve. What is left is to show that ∂U contains two critical
points 1 and c−1+i = i of f . Let 0 < x < 1. An easy calculation shows that

f(x) = xe−x+ix −1 + i

−1 + (1− x)i
, f(ix) = xe−x−ix −1− i

(−1 + x) + i
,

and hence

|f(x)| = |f(ix)| = xe−x

√
2

1 + (1− x)2
.

Let

M(x) := |f(x)|2(= |f(ix)|2) = 2x2e−2x

1 + (1− x)2
.

Then it follows that

M ′(x) =
4x(1− x)(1 + x+ (1− x)2)

(1 + (1− x)2)2
e−2x.

Thus we have M ′(x) > 0 for 0 < x < 1. Hence we obtain |f(x)| = |f(ix)| < |f(1)| = |f(i)| for
0 < x < 1. It follows from this that U contains (0, 1) and {ix | 0 < x < 1}. This implies that ∂U
contains 1 and i.

Proof of Theorem I (iii). By Lemma 5.5 and the quasiconformal surgery technique in Step 1 and
Step 2 in Section 5.3, we can show Theorem I (iii). We omit the details.
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Chapter 6

Concluding remarks

In this chapter, we introduce the remaining questions.

6.1 Remarks on Theorem A

The set S \SF is not empty. For example, f(z) = sin z ∈ S \SF. We constructed a T ∈ Sq∩SF to
prove best possibility of the Fatou-Shishikura inequality for f ∈ Sq (see Theorem A). Thus there
is the following question:

Question 2. Suppose that non-negative integers mAB,mPB,mSD, and mCr, and a positive integer
q satisfy

mAB +mPB +mSD +mCr ≤ q.

Is there a T ∈ Sq \ SF such that

(nAB(T ), nPB(T ), nSD(T ), nCr(T )) = (mAB,mPB,mSD,mCr)?

6.2 Remarks on Theorems B–H

Can we extend Theorem B?

Question 3. Let
Fθ,c(z) := e2πiθz(1 + cz)d−1ez ∈ S ,

where θ ∈ R \Q, an integer d ≥ 2, and c ∈ C \ {0}. Does Fθ,c have a Siegel point at the origin if
and only if θ ∈ B?

On the analogy of Theorem 1.4, Theorem 1.5, and Theorem D, it is natural to expect that
all bounded type Siegel disks for functions in S are bounded by quasicircles containing critical
points. However, as a counterexample, Zakeri gave the map

G : z 7→ λez−λ

in S , where λ = e2πiθ for θ ∈ D(2) (see [Za2]). More precisely, the boundary of the Siegel disk
of G centered at λ is unbounded and fails to be a Jordan curve. This is because G has no critical
points (see [GrS]). On the other hand, many functions in S have critical points. Hence G may
be an extreme case in S . Therefore, we ask here the following question:

Question 4. Is there a g ∈ S with a critical point and a bounded type Siegel disk centered at a
point other than the origin, whose boundary fails to be a quasicircle containing critical points?
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Furthermore, on the analogy of Theorem E, Theorem G, and Theorem H, we also ask the
following questions:

Question 5. Let θ ∈ E \ D(2), let

gα(z) := (e2πiθz + αz2)ez,

where α ∈ C \ {0}, and let 4α be the Siegel disk of gα centered at the origin. Is the boundary ∂4α

a Jordan curve which is not a quasicircle and contains a critical point for all α ∈ C\{0}? Is there
an α such that J(gα) has positive Lebesgue measure?

Question 6. Let gθ(z) := e2πiθzez for any θ ∈ E \ D(2). Is the Siegel disk of gθ centered at the
origin bounded by a Jordan curve which is not a quasicircle and contains the critical point −1?

Question 7. Is there an f ∈ S2,1 such that J(f) has Lebesgue measure zero and f has a Cremer
fixed point at the origin?

6.3 Remarks on Theorem I

Let
hα(z) := e2πiθ

z

1− α+1
α

z
eαz

for any irrational number θ and any α ∈ C \ {0,−1}, and let 4α be the Sigel disk centered at the
origin whenever hα has it. In Theorem I, we deal with the one parameter family {hα}α∈C\{0,−1},
where θ ∈ D(2). By Theorem I, hα has the bounded type Siegel disk 4α bounded by a quasicircle
containing critical points for uncountably many α. However, there are many parameters α left.
We ask the following questions for any θ ∈ D(2):

Question 8. Are 4α bounded by quasicircles containing at least one critical point of hα for all
α ∈ C \ {0,−1}?

Question 9. Is there an uncountable set Ω3 such that for α ∈ Ω3, 4α is bounded by a quasicircle
containing exactly two critical points?

On the analogy of Theorem F, we ask the following question:

Question 10. Are there an irrational number θ and an α ∈ C \ {0,−1} such that ∂4α is a
quasicircle without critical points?
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[Herm3] M. Herman, Uniformité de la distortion de Swiatek pour les familles compactes de produits
de Blaschke, https://www.math.kyoto-u.ac.jp/~mitsu/Herman/index.html, 1987.

[Herr] M. E. Herring, Mapping properties of Fatou components, Ann. Acad. Sci. Fenn. Math. 23
(1998), no. 2, 263–274.

[I] F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thesis, Helsinki,
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