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Abstract

Visual Localization is fundamental problem to autonomous navigation which re-
quires reconstruction and maintenance of a map of an unknown environment
while at the same time localizing the observer’s position and orientation with
respect to the map. Localization and Mapping in human-populated environ-
ments, in particular, has a wide range of practical applications including auto-
mated guidance at the airport and delivery systems in the city. Localization in
a crowded scenario has long been a challenge as most conventional studies are
built on top of a static world assumption, i.e., we can constantly observe static
reference points and solve a geometric reconstruction problem using them. In a
highly dynamic environment such as crowded streets, such static backgrounds
are often occluded or hard to track due to severe occlusions by pedestrians in the
foreground. This brings us to a key research question — Can we achieve visual
localization by using only dynamic objects?

To answer this question, we introduce view birdification, the problem of recov-
ering ground-plane movements of people in a crowd from an ego-centric video
captured by an observer (e.g., a person or a vehicle) also moving in the crowd.
Contrary to conventional approaches built on the top of the static world assump-
tion, view birdification depends only on the perceived movements of dynamic
objects. In this dissertation, we first formulate view birdification as a geomet-
ric trajectory reconstruction problem and derive a cascaded optimization method
from a Bayesian perspective. The key difficulty underlying this problem is that
the two kinds of trajectories, the camera ego-motion and pedestrian trajectories
on the ground plane, are deeply intertwined in the observed movements in an
ego-centric view. This Bayesian formulation alternately updates the estimated
camera ego-motion and pedestrian locations relative to it. We empirically analyze
the properties of the solution with regard to the number of pedestrians. Second,
we derive a data-driven solver for view birdification with simultaneously learn-
ing of an underlying motion model. We refer this method as ViewBirdiformer.
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ViewBirdiformer is based on a Transformer, which models view birdification as a
set-to-set translation problem between the ego-centric and the on-ground views
while simultaneously learning the interaction model between pedestrians. Ex-
tensive evaluations demonstrate the accuracy of our method and set the ground
for further studies of view birdification as an important but challenging visual
understanding problem.

Lastly, we extend view birdification as an object-oriented world model. View
birdification is the problem of geometric reconstruction of the on-ground pedes-
trian trajectories while estimating the camera ego-motion. We extend this as a
transition model that predicts the future state of the crowd from in-crowd views.
Unlike conventional world models that predict the future state of the whole im-
age in an ego view, we aim at constructing an object-oriented world model that
can estimate the future states of each pedestrian while learning the interactions
between them. We refer to this object-oriented world model as the Pedestrian
World Model, a computational transition model of pedestrians that can contin-
uously localize and predict the movements of all people visible to the observer
on the same ground plane. To represent this Pedestrian World Model, we derive
InCrowdFormer, a Transformer-based architecture that uses attention for pedes-
trian interaction modeling and egocentric to top-down view transformation and
autoregressively predicts on-ground positions of a variable number of people.
InCrowdFormer is formulated as a generative model and can encode the uncer-
tainties arising from unknown pedestrian heights with latent codes to predict the
posterior distributions of pedestrian positions.

In this dissertation, we introduce problem, theory and methodology of view
birdification for on-ground localization and prediction. To tackle this challenging
problem in a highly dynamic environment, we construct an evaluation platform
consisting of a simulator and real trajectories datasets and validate the effective-
ness of our proposed method with a diverse set of crowds. We believe view
birdification becomes essential for mobile robot navigation and localization in
real-world crowds. Recovered ground-plane movements would provide a sound
basis for situational understanding and benefit downstream applications in com-
puter vision and robotics.
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Chapter 1

Introduction

We as human beings are capable of mentally visualizing our surroundings in
a top-down view through observation with our eyes. When walking down a
crowded street while avoiding potential collision with nearby pedestrians, our
mental model lets us localize ourselves on the map, constantly update relative
locations to nearby pedestrians, and even predict how they will move. Take an-
other example from playing sports in a team. Professional soccer players are able
to make a killer pass as if they perfectly knew the future locations of teammates,
while they are also running on the ground. The ability of reconstructing, updat-
ing, and predicting object locations in a mental map can be helpful for various ap-
plications in our real world full of dynamic objects. Let us refer to this capability
of geometric reasoning and prediction working in our subconscious mind as spa-
tial perception. We assume that spatial perception is built on top of the intersection
of geometric reasoning and prior learnt from our past experiences, i.e., walking
in a crowd or playing sports in a team. Throughout this dissertation, we explore
this spatial perception as a computer vision task and derive the foundation for
modeling a crowded environment from an ego-centric view in the crowd itself.

1.1 Spatial Perception in a Crowd

The spatial perception consists of geometric reasoning abilities to understand the
surrounding environment through perception with our eyes. Such a geometric
perception of the surroundings allows us to successfully traverse in unknown en-
vironments while implicitly constructing the map representation centered around
us. This dissertation does not intend to fully emulate the spatial perception of us,
which is impossible due to the infinite number of situations in the real world.

13
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(a) static keypoints based approach (b) dynamic keypoints-only approach

static points
dynamic points
observer

outlier

reference points
reference points

(d) localization from dynamic keypoints(c) localization from static keypoints

τ τ+1

Figure 1.1: The concept of dynamic keypoints-based reconstruction. (a) Con-
ventional static keypoints-based approach usually filters out dynamic
keypoints as an outlier and (c) localizes an observation camera rel-
ative to the static reference points. (b) Our dynamic keypoints-based
localization fundamentally differs from (a) as it requires only dynamic
reference points and (d) recovers trajectories of both the dynamic ref-
erence points and an observer.

Specifically, we focus on establishing a foundation for spatial perception in a
crowd, where we assume that an observer is immersed in a crowd consisting of
people heading towards their destinations while implicitly interacting with each
other. Especially in densely crowded environments, we no longer construct a ge-
ometrical map of the static background, but instead grasp the relative layout of
the surrounding pedestrians as an abstracted map representation. For simplicity,
we assume that an observer, i.e., a pedestrian or a wheeled robot, traverses on
the planar ground and the observation camera is equipped in parallel with the
ground plane. A typical scenario for the spatial perception in a crowd is when
a person with a body-worn camera is immersed in a crowd consisting of people
heading towards their destinations while implicitly interacting with each other.
Our goal is to deduce the mapping from an ego-centric view observation into
the geometric perception of the surrounding pedestrians on the 2D ground-plane
coodinates while we also walk along the crowd flow.
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1.2 View Birdification

Spatial perception involves two major components — Localization and Mapping.
While Mapping is to construct a globally consistent map representation of the en-
vironment from a local perspective, Localization is to estimate the location and
orientation of an observer with respect to the map. These problems have long
been extensively studied in the fields of computer vision and robotics, and are
the foundations for various downstream applications such as mobile robots. A
classical and well-established approach is first to detect and track keypoints in the
scene and then reconstruct 3D locations of the keypoints and the observation cam-
era by solving geometric constraints between them1. This approach, however,
cannot directly be applied to crowded environments full of dynamic objects due
to the “static world assumption” [34]. They assume that detected keypoints are
static across the frames and can be observed in multiple viewpoints without oc-
clusion. Such an assuption is easily violated in a crowded scene where static back-
grounds are often occluded by pedestrians in the foreground. Typical approaches
for handling such dynamic scenarios are to eliminate as outliers dynamic points
which do not satisfy the assumed geometric constraints [65, 21], or explicitly de-
tect and filter objects by using off-the-shelf object trackers [97, 86]. These ap-
proaches are simple yet effective extensions of static keypoints-based approaches
for handling a small number of dynamic obstacles. Another line of work clusters
static and dynamic objects and associates the dynamic objects with respect to the
static map [74], or constructs a factor graph that incorporates both [37, 95]. All
of these approaches, however, require a sufficient number of static keypoints that
satisfies geometric constraints and do not work for a crowded world where dy-
namic keypoints are dominant. How can we formulate localization and mapping
in such crowded scenes where we can’t observe any static keypoints? In other
words, can we formulate localization and mapping for highly crowded environ-
ments only from the observation of dynamic objects?

To address this question, we formulate View Birdification, the task of simul-
taneously recovering the location of a camera and its surrounding pedestrians
only from perceived movements in the video. As Fig. 1.1 depicts, unlike conven-
tional approaches that heavily depend on the static world assumption [34], view
birdification aims at modeling a dynamic world by using only dynamic objects as

1In computer vision, geometric constraints refer to properties which observed keypoints satisfy
by simple geometry, such as linear projection and planar or orthogonal constraints for a group of
points.
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Figure 1.2: Our target environment of interest. Unlike conventional approaches
that mainly or partly rely on the static world assumption, view birdi-
fication depends only on the dynamic reference objects. This allows
us to reconstruct highly crowded environments independent of ob-
servation of static background, which is usually hard due to frequent
occlusions.

visual cues. The key idea is objects as dynamic keypoints. The dynamic world mod-
eled by view birdification is purely object-centric, where mapping reconstructs
the global layout of dynamic objects from locally perceived movements. While
localization using only dynamic objects is an ill-posed problem in principle, we
explore making this well-posed problem with several practical assumptions. One
key assumption is that pedestrians follow a common motion model i.e., domi-
nant crowd flow in highly crowded environments, which provides a powerful
constraints to resolve the complex localization problem. Fig. 1.2 illustrates our
target environment of interest. Our work is the first to explore localization in a
crowd without the static world assumption just from in-crowd perception.

1.3 Pedestrian World Model

What we perceive is governed by the prediction of the future based on our mental
model [59, 27] — besides localization and mapping, prediction is also a central
part of our spatial perception. Our mental model learns an abstract spatiotem-
poral representation of the world and efficiently predicts the future state based
on the representation. This is often called World Models. The concept of a World
Model was first discussed in the field of psychology [18] and neuroscience [24].
The idea was later introduced to the field of machine learning as a distilled rep-
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Figure 1.3: Concept of Pedestrian World Model. (a) Ego-centric World Model con-
sisting of a vison module (V) that encodes the whole image into the
latent representation and memory module (M) that predict the next
states in it. (b) Object-oriented World Model that performs object-
wise encoding. (c) Pedestrian World Model that is characterized by an
object-wise encoding and geometric memory module (GM) that pre-
dicts on-ground future states from ego-centric inputs.

resentation of the world [27]. To avoid directly model spatiotemporal changes of
the environment in its high-dimensional space, the authors first embed the whole
state observation into learned low-dimensional space and then predict the future
state in it. By learning a transition model for an environment in low-dimensional
spaces, world models allow us to explore the environment efficiently without ex-
tensive sampling of the real-world [28, 30].

By seeing view birdification as a mental model of the observer in a crowd, an
object-oriented representation can be seen as an abstraction of the world. Con-
trary to conventional world models that predict the future state of the whole im-
age in an ego view [27], we explore to construct a world model that can estimate
the future states of each pedestrian in an object-oriented fashion, while learning
interactions between them. We define such an object-oriented world model as
the Pedestrian World Model, a transition model of the crowded environment that
can continuously localize and predict the movements of all people visible to the
observer. There exist a few works that consider object-wise encoding, which are
referred to as object-oriented World Model [54] or Structured World Model [44].
These works, however, assume a static observer and learn the transition model
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of each object from a distant and static viewpoint. As illustrated in Fig. 1.3,
we are the first to model how pedestrians move conditioned on the observer’s
movements, i.e., action. In contrast to the view birdification which geometrically
reconstructs on-ground pedestrian trajectories while estimating the camera ego-
motion, pedestrian world model encapsulates a transition model that predicts the
future states of pedestrians conditioned by the observer’s movements.

1.4 Transformers for Geometric Translation and Ob-

ject Interaction Modeling

Technically, localization and prediction from in-crowd views entail three com-
mon challenges. First, estimating the motion model of pedestrians is critical as it
provides the fundamental constraints by the dynamic reference points. Second,
although the motion model to be estimated is described on the ground plane,
the observed movements are in the 2D image. We thus need to resolve geomet-
ric 2D-to-2D reconstruction between ego-centric and on-ground views while esti-
mating the underlying crowd motion model on the ground. Lastly, most impor-
tant, the observation camera is also moving in the crowd. We need to decouple
the observer’s ego-motion and on-ground pedestrian movements from in-crowd
views. These three problems are deeply intertwined with each other and im-
possible to solve independently. While many well-established techniques solve
simultaneous recovery of geometric translation and the motion of dynamic ob-
jects, i.e., Bird’s-Eye-View (BEV) Transformation in dynamic environments [35],
to our knowledge, none of past works resolve these triplets of fundamental chal-
lenges simultaneously. In this dissertation, we establish a computational model
to disentangle these effectively and efficiently.

We develop a novel Transformer-based architecture based on several key in-
sights. The model needs to learn the geometric translation between the ego-
centric and the on-ground viewpoint while also learning interactions between
pedestrians and an observer. The model needs to be fundamentally object-centric,
which must model each pedestrian as an independent object including an ob-
server. Finally, the model must handle a varying number of pedestrians entering
in and leaving out across the frames. To satisfy all these requirements, we base
our model on a Transformer [85], which is best suited for simultaneous learning
of the geometric transformation and pedestrian interactions in an object-oriented
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Figure 1.4: Summary of Contributions. We lay the foundation of on-ground
pedestrian movement estimation and prediction from ego-centric in-
crowd views. Our work can be used for various downstream applica-
tions such as navigating mobile robots in a crowd. The learned ego-
motion estimator and world models offer a versatile state representa-
tion for in-crowd observations.

fashion. A primal component of the Transformer is attention mechanism [85],
which adaptively applies learnable attention weights with respect to input se-
quences, i.e., tokens. This simple yet powerful framework has achieved remark-
able success across a wide range of tasks in deep learning such as language mod-
eling [85, 43, 75], image recognition [32, 19], and set-to-set translations [48, 25],
where they calculate attention over tokens,i.e., embeddings of words or image
patches with auxiliary positional information [92, 19]. In contrast to prior appli-
cations of Transformers which just use positional information as auxiliary cues
for individual tokens, in our problem, tokens themselves have a position and ve-
locity. In this dissertation, we pioneer the application of Transformers as a foun-
dation architecture for both view birdification and pedestrian world model.

1.5 Contributions

As summarized in Fig. 1.4, the primary aim of this dissertation is to propose a new
framework for localization and prediction in highly dynamic environments such
as crowded streets. The key research question in this dissertation asks how we
can achieve localization and prediction just from dynamic keypoints. Specifically,
we explore the following three topics on view birdification.
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Chapter 4: View Birdification from a Bayesian Perspective We first introduce
view birdification, the task of recovering ground-plane movements of people in
a crowd from an ego-centric video captured from an observer (e.g., a person or a
vehicle) also moving in the crowd. Recovered ground-plane movements would
provide a sound basis for situational understanding and benefit downstream ap-
plications in computer vision and robotics. We formulate view birdification as a
geometric trajectory reconstruction problem and derive a cascaded optimization
method from a Bayesian perspective. The method first estimates the observer’s
movement and then localizes surrounding pedestrians for each frame while tak-
ing into account the local interactions between them. We introduce three datasets
by leveraging synthetic and real trajectories of people in crowds and evaluate the
effectiveness of our method. The results demonstrate the accuracy of our method
and set the ground for further studies of view birdification as an important but
challenging visual understanding problem.

Chapter 5: Learning to recover ground-plane crowd trajectories and ego-motion
This chapter introduces a novel learning-based method for view birdification.
The view birdification is challenging mainly for two reasons; i) absolute trajecto-
ries of pedestrians are entangled with the movement of the observer which needs
to be decoupled from their observed relative movements in the ego-centric video,
and ii) a crowd motion model describing the pedestrian movement interactions is
specific to the scene yet unknown a priori. For this, we introduce a Transformer-
based network referred to as ViewBirdiformer which implicitly models the crowd
motion through self-attention and decomposes relative 2D movement observa-
tions onto the ground-plane trajectories of the crowd and the camera through
cross-attention between views. Most important, ViewBirdiformer achieves view
birdification in a single forward pass which opens the door to accurate real-time,
always-on situational awareness.

Chapter 6: Pedestrian World Model In this chapter, we explore the view birdi-
fication from an aspect of the ego-centric world model. We reformulate the birdi-
fication as a prediction model conditioned on the observer’s movement. We also
show that a Transformer-based architecture is best suited for simultaneous learn-
ing of the interaction between pedestrians and geometric 2D-to-2D transforma-
tion. To our knowledge, our work is the first to construct an object-oriented world
model considering the observer’s action, i.e., movements.



1.6. Dissertation Overview 21

1.6 Dissertation Overview

The rest of this dissertation is organized as follows.

Chapter 2 reviews previous work relevant to localization and prediction in dy-
namic environments.

Chapter 3 formulates view birdification as a novel computer vision task and
preliminary notations commonly referred to in the following three chapters
(Chapters 4–6).

Chapter 4 proposes a Bayesian formulation of view birdification in a cascaded
optimization approach. The content covered in this chapter is published in the
M.Nishimura et al. “View Birdification: Ground-Plane Localization from Per-
ceived Movements”, in Proceedings of the British Machine Vision Conference
(BMVC), 2021.

Chapter 5 presents a data-driven approach to view birdification based on a
Transformer architecture. The content covered in this chapter is published in the
M.Nishimura et al. “ViewBirdiformer: Learning to recover ground-plane crowd
trajectories and ego-motion from a single ego-centric view” in the IEEE/RAS
Robotics and Automation Letters (RA-L), 2022.

Chapter 6 extends view birdification as a World Model. This chapter contains
unpublished work entitled M.Nishimura et al., “InCrowdFormer: On-Ground
Pedestrian World Model From Egocentric Views”.

Chapter 7 summarizes the dissertation and discusses possible future directions.
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Chapter 2

Related Work

View birdification and Pedestrian World Model are related to a number of com-
puter vision and robotics problems, which we review in this chapter. Table 2.1
summarizes the differences between view birdification and its relevant works.
Table 2.2 also compares Pedestrian World Model with prior work.

2.1 Bird’s Eye View Transformation

As summarized in Table 2.1, View Birdification [66] is not the same as bird’s-eye
view (BEV) transformation [96, 35, 100, 77]. BEV transformation refers to the task
of rendering a 2D top-down view image from an on-ground ego-centric view and
concerns the appearance of the surroundings as seen from the top and does not
resolve the ego-motion, i.e., all recovered BEVs are still relative to the observer.
View birdification, in contrast, reconstructs both the observer’s and surrounding
pedestrians’ locations on the ground so that the relative movements captured in
the ego-centric view can be analyzed in a single world coordinate frame on the
ground (i.e., “birdified”). View birdification thus fundamentally differs from BEV
transform as it is inherently a 3D transform that accounts for the ego-motion,
i.e., the 2D projections of surrounding people in the 2D ego-view need to be im-
plicitly or explicitly lifted into 3D and translated to cancel out the jointly esti-
mated ego-motion of the observer before being projected down onto the ground-
plane. Nishimura et al. introduced a geometric method for view birdification [66],
which explicitly transforms the 2D projected pedestrian movements into 3D but
on the ground plane with a graph energy minimization by leveraging analytically
expressible crowd motion models [33]. Our method fundamentally differs from
this in that the transformation from 2D in-image movement to on-ground motion

23
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Task Target Input Output Object Density
static dynamic ego-motion object location sparse dense

BEV Transformation [49] image, objects " " " "
3D Object Detection [52, 53] objects " " " "
3D Multi-Object Tracking [36] objects " " " "
Dynamic SLAM [37] keypoints " " " " "

View Birdification [70] (Ours) objects " " " " "

Table 2.1: View Birdification is the problem of recovering ground-plane move-
ments of people in a crowd from an ego-centric video captured from an
observer. While none of the other tasks recover the absolute layout of
dynamic objects from their observations, view birdification achieves si-
multaneous recovery of the absolute trajectories including the observer
ego-motion even in a dense crowd only from their perceived move-
ments relative to an observer.

as well as the on-ground coordination of pedestrian motion is jointly learned from
data.

Transforming first-person-view (FPV) images into top-down maps (BEV) im-
ages has become important for autonomous driving [77, 100, 96]. Most works
directly learn the frame-by-frame mapping in a data-driven fashion without tak-
ing into account ego-motion [8, 99]. In other words, they are only relative to the
observer. Nishimura et al. recently proposed view birdification which is the task
of reconstructing on-ground positions and trajectories of pedestrians and the ob-
server, i.e., , simultaneous decoupling of ego-motion from observed 2D motions
in the FPV and anchoring of all motions in absolute coordinates [66]. Our work
differs from BEV transform and view birdification in two critical points. First, we
aim at constructing a Pedestrian World Model not from the appearance, but from
the movements, which results in a compact and efficient representation that can
easily generalize. Second, unlike previous approaches which only perform de-
terministic mappings [77], we derive a probabilistic formulation that can handle
uncertainty underlying object distances in the FPV.

2.2 Dynamic SLAM

Dynamic SLAM and its variants inherently rely on the assumption that the world
is static [65, 21]. Dynamic objects cause feature points to drift and contaminate the
ego-motion estimate and consequently the 3D reconstruction. Past methods have
made SLAM applicable to dynamic scenes, “despite” these dynamic objects, by
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treating them as outliers [31] or explicitly tracking and filtering them [9, 97, 86, 6].
A notable exception is Dynamic Object SLAM which explicitly incorporates such
objects into its geometric optimization [37, 95, 34]. The method detects and tracks
dynamic objects together with static keypoints, but assumes that the dynamic
objects in view are rigid and obey a simple motion model that results in smoothly
changing poses. None of the above methods consider the complex pedestrian
interactions in the crowd [33, 84, 26, 98]. Our method fundamentally differs from
dynamic SLAM in that it reconstructs both the observer’s ego-motion and the on-
ground trajectories of surrounding dynamic objects without relying on any static
key-point, while also recovering the interaction between surrounding dynamic
objects. In other words, the movements themselves are the features.

2.3 Crowd Modeling

Modeling human behavior in crowds is essential for a wide range of applications
including crowd simulation [50], trajectory forecasting [2, 39, 26], and robotic nav-
igation [69, 83, 3]. Popular approaches include multi-agent interactions based on
social force models [33, 60, 3], reciprocal force models [84], and imitation learn-
ing [83]. Recently, data-driven approaches have achieved significant performance
gains on public crowd datasets [2, 26, 39]. All these approaches, however, are only
applicable to near top-down views. Forecasting the future location of people from
first-person viewpoints has also been explored [94, 57], but they are limited to lo-
calization in the image plane. View birdification may provide a useful foundation
for these crowd modeling tasks.

2.4 Non-rigid Structure from Motion

Reconstruction of point trajectories is also studied in the literature on non-rigid
structure from motion (NRSfM) [40, 78], in particular as multi-body [47] and
trajectory-based [1, 72] approaches. NRSfM exploits the inherent global dynamic
structure embodied by the target surface and the camera motion. In contrast, our
focus is pedestrian trajectories that interact locally in an on-the-fly manner and
do not exhibit coherent global structures that we can leverage.
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Method state ego2top action V M

RSSM [27] image – ✓ CNN GRU
TSSM [14, 20] image – ✓ CNN Transformer

C-SWM [44] object – – CNN GNN
G-SWM [54] object – – CNN RNN

Ours object ✓ ✓ Transformer

Table 2.2: We introduce, to our knowledge, the first egocentric crowd world
model that models pedestrian movements solely from their in-crowd
egocentric observations with a unified Transformer architecture that
embodies ego2top transform and dependency of pedestrian move-
ments on the observer’s actions.

2.5 3D Multi-Object Tracking (MOT)

3D MOT concerns the detection and tracking of target objects in a video sequence
while estimating their 3D locations on the ground [81, 55]. Most recent works
aim to improve tracklet association across frames [55]. These approaches, how-
ever, assume a simple motion model independent of the camera ego-motion [91],
which hardly applies to a dynamic observer in a crowd with complex interactions
with other pedestrians. 3D MOT in a video with a dynamic observer [36] has
been studied, but the observer motion is known from an external GPS which is
often inaccurate [38]. Our work focuses on reconstructing both the observer ego-
motion and surrounding pedestrians in a crowd, while simultaneously learning
their complex interactions, which complements these works for visual situational
awareness and surveillance.

2.6 World Models

A world model is an abstract representation of our environment and its transi-
tions [41]. Ha and Schmidhuber recently introduced the idea of building a world
model with a perception model (V) and a transition model (M), so that a simple
agent controller (C) [27] can be learned in the world model with generated roll-
outs of simulated experiences [29, 28, 30, 20]. Most such world models encode
the whole image into a latent code as the environment representation. Structured
World Models [44] and Object-centric World Models [54] learn object-oriented
representations about the world (i.e., , individual objects constitute the environ-
ment representation). Even in these models, however, the observer never inter-
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acts with the environment and object transitions are simply observed from static
viewpoints. In sharp contrast, we are interested in modeling a human-populated
environment with an object-centric world model that also contains the dynamic
observer itself.

2.7 Crowd Navigation

Earlier works used analytical crowd motion models [33, 84] to predict future
pedestrian locations for navigating a robot in a crowd. Deep reinforcement learn-
ing (DRL) approaches often incorporate learning-based crowd models such as
social pooling [13, 2] and graph neural networks [12, 16, 39]. Most works, how-
ever, assume that they can perfectly observe ground-truth positions and veloci-
ties of pedestrians directly in a top-down view, at every timestep, which is hardly
plausible in the real world. Few works tackle ego-centric view navigation, i.e., ,
path planning directly from an observer’s ego-centric view in the crowd. Dugas
et al. [20] constructed synthetically generated human-populated environments
with a game-engine for vision-based navigation. The domain gap between real
and synthetic environments is, however, not negligible both in appearances and
pedestrian movements. In contrast, our egocentric pedestrian world model is in-
dependent of pedestrian appearance and our dataset can be easily augmented
with arbitrary combinations of observer actions and real crowd trajectories. We
show that this enables direct application of our model to unseen real video se-
quences.
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Chapter 3

View Birdification

This chapter provides preliminary knowledge and concepts that are commonly
used in subsequent chapters.

3.1 Background

We as human beings are capable of mentally visualizing our surroundings from
a third-person view. Imagine walking down a street alongside other pedestrians.
Your mental model of the surrounding movements of people is not a purely two-
dimensional one, but rather in 3D, albeit imperfect, in which you can virtually
fly around. It lets you anticipate potential collisions so that you can avoid them
or guess the goal of another person so that you can follow. Some people have
exceptionally high capabilities in forming such a virtual view (e.g., a professional
soccer player), but nonetheless, we all rely on this 3D spatial sense to complement
our ego-centric view in our daily lives. Endowing such global 3D spatial percep-
tion with computers, however, remains elusive. Despite the significant progress
in computational 3D and motion perception, including stereo, structure from mo-
tion, and optical flow estimation, a bottom-up approach of first reconstructing
the 3D geometry and motion and then changing the viewpoint would be brittle.
Its success would inherently hinge on the accuracy of each step which is prone to
fundamental ambiguities between them. Can we bypass these and directly obtain
a virtual perspective of the surroundings? More specifically, can we recover the
dynamically changing global layout of people moving around ourselves solely
from images captured from our vantage point while we also move around?

In this chapter, we introduce view birdification in a crowd [70], the problem
of computing a bird-eye’s view of the movements of surrounding people from
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Figure 3.1: We introduce view birdification of a crowd, the task of estimating the
movements of surrounding people on the ground plane (right) from a
single dynamic ego-centric image sequence (left), and derive a strati-
fied optimization method based on the geometric relations of pedes-
trians’ projections and interactions.

a single ego-centric view of a moving person (see Fig. 3.1) and derive a geomet-
ric solution to it. View birdification differs from recent works on bird-eye view
rendering where the goal is to render a bird’s eye view image from a given ego-
centric image, i.e., view transformation such that the scene appearance is imaged
fronto-parallel to the ground. We are, in contrast, interested in deciphering and
laying out the movements of people on the ground plane from a temporal se-
quence of a dynamic ego-centric view. In other words, from a personal perspec-
tive of a crowd, we would like to see how everybody is moving (not how they
look) as seen from the top (i.e., a bird hovering over the crowd).

View birdification of a crowd would have a wide range of applications. It will
let us analyze the global and local interactions of people from a holistic perspec-
tive both in space and time, which would benefit areas such as navigation [69, 3],
movement prediction [39, 26, 2], and surveillance [45]. It can also offer a crucial
visual perception for self-driving cars to gauge surrounding activities.

Unlike bird-eye view rendering which can be formulated as an image-to-
image transformation (e.g., with a deep neural network), view birdification does
not concern the appearance of the scene captured in the ego-centric view. From
observations of dynamically moving objects, our method localizes the moving
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camera and simultaneously maps the dynamic objects on the ground plane. This
is reminiscent of SLAM but with the fundamental difference that everything
is dynamic. The dynamic objects (i.e., people) also do not embody any low-
dimensional structure as often assumed in non-rigid structure from motion.

View birdificaction is based on two key insights. First, the movements of dy-
namic keypoints (e.g., head-points of pedestrians) are not arbitrary, but exhibit
coordinated motion that can be expressed with crowd flow models [33, 73]. That
is, the interaction of pedestrians’ movements in a crowd can be locally described
with analytic or data-driven models. Second, the scale and difference of human
heights are proportional to estimated geometric depth [56]. In other words, the
positions of pedestrians on the ground plane can be constrained along the lines
that pass through a center of projection. These insights lend us a natural formu-
lation of view birdification as a geometric reconstruction problem.

3.2 Geometric View Birdification

A typical scenario for view birdification is when a person with a body-worn cam-
era is immersed in a crowd consisting of people heading toward their destinations
while implicitly interacting with each other. Our goal is to deduce the global
movements of people from the local observations in the ego-centric video cap-
tured by a single person.

3.2.1 Problem Setting

As a general setup, we assume that K people are walking on a ground plane and
an observation camera is mounted on one of them. We set the z-axis of the world
coordinate system to the normal of the ground plane (x-y plane) and denote the
on-ground location of the kth pedestrian as xk = [xk, yk]

⊤. Let us denote the loca-
tion of 0th person in the crowd x0 as the observer capturing the ego-centric video
of pedestrians k ∈ {1, 2, . . . , K} who are visible to the observer. The observation
camera is located at [x0, y0, h0]

⊤, where the mounted height h0 is constant across
the frames. We assume that the viewing direction is parallel to the ground plane,
e.g., the person has a camera mounted on the shoulder. The same assumption
applies when the observer is a vehicle or a mobile robot. At each timestep τ, the
pedestrians are observed by a camera with the pose [Rτ|tτ] consisting of rotation
matrix R and translation vector t. Assuming that the viewing direction of the
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camera is stabilized and parallel to the ground plane, we can approximate the ro-
tation angles about the x- and y-axis to be 0 across the frames. That is, the camera
pose to be estimated is represented by its 2D rotation about z-axis R(∆θz) ∈ SO(2)
and 2D translation t = −R(∆θz)∆x0 ∈ R2 on the x-y plane.

We assume that the bounding boxes of the people captured in the ego-
video are already extracted. For this, we can use an off-the-shelf multi-object
tracker [93, 90] which provides the state of each pedestrian on the image plane
sτ

k =
[
uτ

k , vτ
k , lτ

k
]⊤ which consists of the projections of center location and height,

pτ
k =

[
uτ

k , vτ
k
]⊤ and lτ

k , respectively. Note that our method is agnostic to the ac-
tual tracking algorithm. Pedestrian IDs k ∈ {1, 2, . . . , K} can also be assigned
by the tracker. Given a sequence of pedestrian states Sk from the first visible
frame τ1 to the last visible frame τ2, i.e., , Sτ1:τ2

k = {sτ1
k , sτ1+1

k , . . . , sτ2
k }, our goal

is to simultaneously reconstruct the K trajectories of the surrounding pedestri-
ans X τ1:τ2

k = {xτ1
k , xτ1+1

k , . . . , xτ2
k } and that of the observation camera X τ1:τ2

0 =

{xτ1
0 , xτ1+1

0 , . . . , xτ2
0 } with its viewing direction Rτ1:τ2 = {Rτ1 , Rτ1+1, . . . , Rτ2} on

the ground plane.

3.2.2 Geometric Observation Model

We assume a regular perspective ego-centric view or a 360◦ cylindrical projec-
tion view. The following derivation also applies to other linear projection models
including generic quasi-central cameras for fish-eye lens [10].

Perspective Projection Model In the case of perspective projection with focal
length f and intrinsic matrix A ∈ R3×3, the distance of the pedestrian from the
observer is proportional to the ratio of the pedestrian height hk and its projection
lk, i.e., hk/lk. Given the center projection of the pedestrian in the image plane
sk = [uk, vk, lk], the on-ground location estimate of the pedestrian relative to the
camera zk = [x̃k, ỹk, 0]⊤ can be computed by inverse projection of the observed
image coordinates,

[
x̃k

hk
2 ỹk

]⊤
=

f hk
lk

A−1
[
uk vk 1

]⊤
, (3.1)

where the intrinsic A and focal length f are known since the observation cam-
era can be calibrated a priori. The relative coordinates zk are thus scaled by the
unknown pedestrian height parameter hk.



3.2. Geometric View Birdification 33

Cylindrical Projection Model Mobile platforms often use a 360◦ panorama
view for a full view of the surroundings, which are composed of synchronized
RGB sensor images. Given a stitched 360◦ cylindrical image with image width W
and the observed pedestrian state sk = [uk, vk, lk]⊤ in the image, the location angle
ϕ [rad] for the pedestiran position pk = [uk, vk]

⊤ on the cylinder circle becomes

ϕ = 2π
uk
W

− π. (3.2)

The inverse projection depth from the center of the circle r̃k is proportional to the
ratio of the pedestrian height hk and its projection lk,

r̃k = ỹk sec(ϕ) = f
hk
lk

. (3.3)

The on-ground location estimates of the pedestrian can be recovered as zk =

[r̃k sin(ϕ), r̃k cos(ϕ), 0]⊤.
The absolute position of the pedestrian xk = [xk, yk]

⊤ can be computed by the
relative coordinates zk = [x̃k, ỹk]

⊤, the camera position x0 = [x0, y0]
⊤, and the

viewing direction θz about z-axis,[
xk

yk

]
= Rz(θz)

⊤
[

x̃k

ỹk

]
+

[
x0

y0

]
. (3.4)

In what follows, we assume the most general case, i.e., perspective projection. The
optimization pipeline, however, can be applied to any type of linear projection
model without major changes.
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Chapter 4

View Birdification from a Bayesian
Perspective

In this chapter, we derive a solution for geometric view birdification based on cas-
caded optimization. Our stratified optimization consists of the observer’s camera
ego-motion estimation with pedestrian movement interactions as pairwise con-
straints and pedestrian localization given the ego-motion estimate and height
priors on the pedestrians. We first solve this camera ego-motion estimation by
gradient descent and then localize each pedestrian given the observer’s camera
position as a combinational optimization problem with pairwise interaction con-
straints.

We experimentally validate our method on both synthetic and real trajecto-
ries extracted from publicly available crowd datasets. We create a photorealis-
tic crowd dataset that simulates real camera projection with a limited field of
view and occluded pedestrian observations while moving in the crowd. These
datasets allow us to quantitatively evaluate our method systematically. Exper-
imental results demonstrate the effectiveness of our approach for view birdifi-
cation in crowds of various densities. The results on the photorealistic crowd
dataset show the end-to-end effectiveness of our method, from person detection
to localization on the ground plane, demonstrating its performance in real-world
use. We also test our method on real-robot dataset captured in crowds. The re-
sults show that our method can work both for body-worn cameras and mobile
robot platforms. We believe these results have strong implications in computer
vision and robotics as they establish view birdification as a foundation for down-
stream visual understanding applications including crowd behavior analysis and
robot navigation.
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4.1 A Cascaded Optimization for View Birdification

In this section, we introduce a cascaded optimization approach to the geometric
view birdification problem based on a Bayesian perspective. We first describe the
overall energy minimization framework and then derive energy functions to be
optimized for the two typical models.

4.1.1 A Bayesian Formulation

When a frame is pre-processed to a set of states Sτ
1:K = {sτ

1 , sτ
2 , . . . , sτ

K} ∈ R3×K

at time τ, we obtain a set of on-ground position estimates relative to a camera
Zτ

1:K = {zτ
1 , zτ

2 , . . . , zτ
K} ∈ R2×K corresponding to the states Sτ

1:K. Assuming that
we have sequentially estimated on-ground positions up to time τ − 1, X τ0:τ−1

0:K =

{X τ0:τ−1
0 ,X τ0:τ−1

1 , . . . ,X τ0:τ−1
K } ∈ R2×(K+1)×∆τ with a temporal window of ∆τ

and its initial timestamp τ0 = τ − ∆τ, the posterior probability of the on-ground
positions X τ

0:K = {xτ
0 , xτ

1 , . . . , xτ
K} ∈ R2×(K+1) at time τ can be factorized as

p(X τ
0:K|Zτ

1:K,X τ0:τ−1
0:K )

∝ p(X τ
0:K|X

τ0:τ−1
0:K )p(Zτ

1:K|X τ
0:K,X τ0:τ−1

0:K ) .
(4.1)

Let ∆xτ
0 = [∆xτ

0 , ∆yτ
0 , ∆θτ

z ] ∈ R3 be the camera ego-motion from timestep τ − 1
to τ consisting of a 2D translation [∆x0, ∆y0]

⊤ and a change in viewing direc-
tion ∆θz on the ground plane (x-y plane). The optimal motion of the camera ∆x̂τ

0

and those of the pedestrians X̂ τ
1:K = {xτ

1 , xτ
2 , . . . , xτ

K} ∈ R2×K can be estimated as
those that maximize the posterior distribution (Eq. (4.1)). The motion of observed
pedestrians X τ−1:τ

1:K are strictly constrained by the observing camera position xτ
0

and its viewing direction θτ
z . With recovered pedestrian parameters X̂ τ

1:K, the op-
timal estimate of the camera ego-motion ∆x̂τ

0 becomes

∆x̂τ
0 = argmax

∆xτ
0∈R3

p(xτ
0 |X

τ0:τ−1
0 )

∏
k

p(xτ
k |X̂

τ0:τ−1
k , ∆xτ

0)p(zτ
k |x

τ
k , ∆xτ

0) ,
(4.2)

where p(xτ
0 |X

τ0:τ−1
0 ) and p(xτ

k |X
τ0:τ−1
k , ∆xτ

0) are motion priors of the camera and
pedestrians conditioned on the camera motion, respectively. If the observer cam-
era is mounted on a pedestrian following the crowd flow, p(xτ

0 |X
τ0:τ−1
0 ) obeys the

same motion model as p(xτ
k |X

τ0:τ−1
k ).
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As in previous work for pedestrian detection [56], we assume that the heights
of pedestrians hk follow a Gaussian distribution. This lets us define the likelihood
of observed pedestrian positions zτ

k relative to the camera xτ
0 as

zτ
k ∼ p(zτ

k |x
τ
k ; hk) = N (µh, σ2

h) , (4.3)

where N (µh, σ2
h) is a Gaussian distribution with mean µh and variance σ2

h . Once
the ego-motion of the observing camera is estimated as ∆x̂τ

0 , the pedestrian posi-
tions X̂ τ

1:K that maximize the posterior p(X τ
1:K|Zτ

1:K, ∆xτ
0) can be obtained as

X̂ τ
1:K = argmax

xτ
k∈X

τ
1:K

∏
k

p(xτ
k |X

τ0:τ−1
k , ∆x̂τ

0)p(zτ
k |x

τ
k , ∆x̂τ

0) . (4.4)

That is, we can estimate the ego-motion of the observer constrained by the per-
ceived pedestrian movements which conform to the crowd motion prior and the
observation model.

When the camera observes a large number of pedestrians that conforms to a
known crowd motion model, regardless of whether the camera motion is consis-
tent with dominant crowd flow, the camera ego-motion estimates depend heavily
on the observed crowd movements and are less sensitive to the assumed ego-
motion model. In such cases, Eq. (4.2) can be re-written as

∆x̂τ
0 = argmax

∆xτ
0∈R3

K

∏
k=1

p(xτ
k |X̂

τ0:τ−1
k , ∆xτ

0)p(zτ
k |x

τ
k , ∆xτ

0) . (4.5)

As long as the camera observes a sufficient number of pedestrians walking in
diverse directions, our method can successfully birdify its view.

4.1.2 Energy Minimization

Once the camera ego-motion is estimated, we can update the individual locations
of pedestrians given the ego-motion in an iterative refinement process. View
birdification can thus be solved with a cascaded optimization which first esti-
mates the camera ego-motion and then recovers the relative locations between
the camera and the pedestrians given the ego-motion estimate while taking into
account the local interactions between pedestrians. Minimization of the negative
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log probabilities, Eqs. (4.2) and (4.4), can be expressed as

minimize
∆xτ

0∈R3
Ec(∆xτ

0 ; X̂ τ
1:K,Zτ

1:K,X τ0:τ−1
0:K ) , (4.6)

subject to

X̂ τ
1:K = argmin

X τ
1:K

Ep(X τ
1:K; ∆x̂τ

0 ,Zτ
1:K,X τ0:τ−1

0:K ) , (4.7)

where we define the energy functions for positions of camera Ec and pedestrians
Ec as

Ec(∆xτ
0 ; X̂ τ

1:K,Zτ
1:K,X τ0:τ−1

1:K ) = −ln p(xτ
0 |X

τ0:τ−1
0 ) + Ep , (4.8)

Ep(X τ
1:K; ∆x̂τ

0 ,Zτ
1:K,X τ0:τ−1

0:K )

=
K

∑
k=1
−ln p(xτ

k |X
τ0:τ−1
k , ∆xτ

0) +
K

∑
k=1
−ln p(zτ

k |x
τ
k , ∆xτ

0) .
(4.9)

We minimize the energy in Eq. (4.6) by first computing an optimal camera po-
sition x̂τ

0 from Eq. (4.6) with gradient descent and initial state xτ
0 = xτ−1

0 . Given
the estimate of the observer location x̂τ

0 , we then estimate the pedestrian locations
by solving the combinatorial optimization problem in Eq. (4.7) for X τ

k while con-
sidering all possible combinations of {xτ

1 , . . . , xτ
K} under the projection constraint

in Eq. (3.1) and the assumed pedestrian interaction model.

This can be interpreted as a fully connected graph consisting of K pedestrian
nodes with unary potential and interaction edges with pairwise potential. Similar
to prior works on low-level vision problems [5, 51], Eq. (4.9) can be optimized by
iterative message passing [22] on the graph. The possible states xi are uniformly
sampled on the projection line around µh with interval [µh − δS/2, µh + δS/2],
where S is a number of samples and δ = 0.01. Considering only pairwise inter-
actions and Gaussian potential, the complexity of the optimization is O(KS2T),
where T is the number of iterations required for convergence. We use two types
of analytical interaction models, ConstVel [79] and Social Force [33]. In what fol-
lows, we provide a detailed derivation of energy functions.
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4.1.3 Pedestrian Interaction Models

We formulated view birdification as an iterative energy minimization problem
that consists of a pedestrian interaction model p(xτ

k |X
τ0:τ−1
k ) and a likelihood

p(zτ
k |x

τ
k , ∆xτ

0) defined by the geometric observation model with ambiguities aris-
ing from human height estimates (Eq. (4.3)). Our framework is not limited to a
specific pedestrian interaction model, and any type of model that explains pedes-
trian interactions in a crowd can be incorporated. In the following, we consider
two example models with a temporal window of ∆τ = 2.

Constant Velocity ConstVel [79] is a simple yet effective model of pedestrian
interactions in a crowd which simply linearly extrapolates future trajectories from
the last two frames

p(xτ
k |X

τ−2:τ−1
k ) ∼ exp

[
−∥xτ

k − 2xτ−1
k + xτ−2

k ∥2
]

. (4.10)

The model is independent of other pedestrians and the overall pedestrian inter-
action model can be factorized as p(X τ

1:K|X
τ−2:τ−1
1:K ) = ∏K

k=1 p(xτ
k |X

τ−2:τ−1
k ). The

energy model Ep is rewritten as

Ep =
K

∑
k=1

−ln p(xτ
k |X

τ−2:τ−1
k ) +

K

∑
k=1

−ln p(zτ
k |x

τ
k , ∆xτ

0) . (4.11)

Social Force The Social Force Model [33] is a well-known physics-based model
that simulates multi-agent interactions with reciprocal forces, which is widely
used in crowd analysis and prediction studies [60, 84]. Each pedestrian k with a
mass mk follows the velocity dx/dt2

mk
d2xk
dt2 = Fk = Fp(xk) + Fr(XC) , (4.12)

where Fk is the force on xk consisting of the personal desired force Fp and the
reciprocal force Fr. The personal desired force is proportional to the discrepancy
between the current velocity and that desired

Fp(xk) =
1
η

(
wk −

dxk
dt

)
, (4.13)
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where wk denotes the desired velocity which can be empirically approximated as
the average velocity of neighboring pedestrians i ∈ N (xk) [60].

The form of reciprocal force Fr can be determined by the set of interactions
between pedestrian nodes xi ∈ XC . To reduce the complexity of optimization,
we approximate multi-human interaction Fr(XC) with a collection of pairwise in-
teractions Fr(xi, xk). We assume a standard Gaussian potential to simulate the
reciprocal force between two pedestrians

Fr(xi, xk)= −∇
(

1√
2πσ2

exp
[
−∥xi − xk∥2

2σ2

])
. (4.14)

Without loss of generality, we omit mk as mk = 1, assuming that the mass of
pedestrians in a crowd is almost consistent. Taking the last two frames as inputs,
the complete pedestrian interaction model becomes

p(X τ
1:K|X τ−2:τ−1

1:K )

∼ ∏
k

exp

[
−

∥∥∥∥∥Fp(xτ
k )−

d2xτ
k

dt2

∥∥∥∥∥
]

∏
(i,k)∈XC

exp [−∥Fr(xτ
i , xτ

k )∥] .
(4.15)

Taking negative log probabilities, the overall energy model in Eq. (4.15) be-
comes

Ep = ∑
k

Dk(xτ
k ;X τ−2:τ−1

k ) + ∑
(i,k)∈XC

Vik(xτ
i , xτ

k ) , (4.16)

where the unary term and pairwise terms are

Dk(xτ
k ) =

∥∥∥∥∥Fp(xτ
k )−

d2xτ
k

dt

∥∥∥∥∥− ln p(zτ
k |x

τ
k , ∆xτ

0) , (4.17)

Vik(xτ
i , xτ

k ) = Fr(xτ
i , xτ

k ) , (4.18)

respectively.

4.1.4 Optimization over a Large Number of Pedestrians

In highly congested environments (e.g., K > 100), the computational cost for opti-
mizing Eq. (4.7) increases linearly in the number of pedestrians K. To handle real-
istic scenarios in which most of the pedestrians in the crowd are occluded by oth-
ers, we use K̃ selected pedestrians whose size is above a predetermined threshold
ϵ. We define a set of neighboring pedestrians at time τ N (xτ

0) = {xτ
k : ∥vk∥ ≥ ϵ}.
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Sim Hotel ETH Students Shibuya01 Shibuya02

Figure 4.1: Typical example trajectories. Typical example trajectories from the
datasets Sim, Hotel, ETH, Students, and Shibuya. In the Sim Example,
the red triangle is the virtual camera that observes projected pedestri-
ans on the image plane, where dashed gray lines denote the projection.

The energy minimization for the neighboring pedestrians becomes

ˆN (xτ
0) = argmin

k∈{k: fn(uτ
k ,vτ

k )≥ϵ}
Ep(xτ

k ; ∆x̂τ0:τ
0 , zτ

k , xτ0:τ−1
k ) . (4.19)

Note that optimizing positions of only foreground pedestrians may result in in-
accurate localization due to the incomplete interaction model that considers only
a small part of the whole crowd. Nevertheless, in Sec. 4.2.3, we show that our
proposed framework achieves sufficient localization accuracy even with a small
number of selected pedestrians in a super-dense crowd.

4.1.5 Implementation Details

We use the validation split of each crowd dataset [39] to find the optimal hyper-
parameters of the pedestrian interaction models. We set the weight parameter
of the desired force Fp to η = 0.5, and the variance of the Gaussian potential to
σ2 = 1.0 for the social force model. For each dataset of simulated and real trajec-
tories, the size of the ground field, where pedestrians are walking from starting
points to their destinations, is scaled to [−8.0, 8.0] m. We also assume that the ini-
tial positions of pedestrians xτ1

k and xτ1+1
k for time τ1, τ1 + 1 are given a priori, and

the positions at the next timesteps X τ1+2:τ2
k = {xτ1+2

k , . . . , xτ2
k } are sequentially

estimated based on our approach.

4.2 Experiments

We validate the effectiveness of the proposed geometric view birdification
method through an extensive set of experiments. We constructed several datasets
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Table 4.1: Overview of birdification dataset. For real trajectories, we selected
scenes of Hotel, ETH, and Students by taking into account the number
of people in the crowd. “Seq." corresponds to all the frames captured
by a moving observer. “Len." denotes the number of frames included
in one sequence.

Dataset Seq. Len. People in Crowd Int. observer input height occluded
Total Avg Min Avg Max model view bboxes variances pedestrians

Sim 500 20.0 10 — 50 synthetic synthetic given "

Hotel 340 15.0 3 6.31 15 real synthetic given "
ETH 346 14.4 3 9.29 26 real synthetic given "

Students 849 45.8 13 44.2 75 real synthetic given "
Shibuya01 806 317 1 523 770 real synthetic given "
Shibuya02 568 299 25 281 492 real synthetic given "

GTAV — 400 3 6 12 synthetic photorealistic MOT [90] "

consisting of synthetic pedestrian trajectories (Sim), real pedestrian trajecto-
ries (Hotel, ETH, Students, and Shibuya), and photorealistic crowd simulation
(GTAV). These datasets differ in several aspects (i.e., density of crowd, synthetic
view or not, synthetic or real interaction models). Table 4.1 summarizes the statis-
tics and taxonomy of these datasets. We also validate our method on a real mobile
robot-view dataset [58] consisting of a pair of real 360◦ cylindrical images and 2D-
3D bounding box annotations of surrounding pedestrians.

4.2.1 View Birdification Datasets

To the best of our knowledge, no public dataset is available for evaluating view
birdification (i.e., ego-video in crowds). We construct the following three datasets,
which we will publicly disseminate, for evaluating our method and also to serve
as a platform for further studies on view birdification.

Synthetic Pedestrian Trajectories The first dataset consists of synthetic trajecto-
ries paired with their synthetic projections to an observation camera. This data al-
lows us to evaluate the effectiveness of view birdification when the crowd interac-
tion model is known. The trajectories are generated by the social force model [33]
with a varying number of pedestrians (3 ≤ K ≤ 15), and a perspective obser-
vation camera mounted on one of them. We set the relaxation parameter η in
Eq. (4.13) to be 0.5. To evaluate the validity of our geometric formulation and
optimization solution with this dataset, we assume ideal observation of pedestri-
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Figure 4.2: Example Trajectories from the GTAV dataset. (Left) Pedestrians are
spawned at one of the four corners of the field. (Center) Pedestrians
walking towards their destinations while avoiding collisions. (Right)
Trajectories of each pedestrian in one sequence.

ans, i.e., pedestrians do not occlude each other and their projected heights can be
accurately deduced from the observed images. We also assume that the pedes-
trians are extracted from the ego-centric video perfectly but their heights hk are
sampled from a Gaussian distribution hk ∼ N (µh, σ2

h) with mean µh = 1.70 [m]
and a standard deviation σh ∈ [0.00, 0.07] [m] based on the statistics of European
adults [87].

Real Pedestrian Trajectories The second dataset consists of real pedestrian
trajectories paired with their synthetic projections on an observation camera’s
image-plane. The trajectories are extracted from publicly available crowd
datasets: three sets of sequences referred to as Hotel, ETH, and Students are
from ETH [73] and UCY [50]. The two referred to as Shibuya01 and Shibuya02
are from CroHD dataset [82]. As in the synthetic pedestrian trajectories dataset,
we render corresponding ego-centric videos from a randomly selected pedes-
trian’s vantage point. Hotel, ETH, Students, and Shibuya datasets correspond
to sparsely, moderately, densely, and super-densely crowded scenarios, respec-
tively. This dataset allows us to evaluate the effectiveness of our method on real
data movements.

Photorealistic Crowd Simulation The third dataset consists of synthetic trajec-
tories paired with their photo-realistic projection captured with the limited field
of views and frequent occlusions between pedestrians. Evaluation on this dataset
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lets us examine the end-to-end effectiveness of our method including robustness
to tracking errors. Inspired by previous works on crowd analysis and trajectory
prediction [88, 11], we use the video game engine of Grand Theft Auto V (GTAV)
developed by Rockstar North [76] with crowd flows automatically generated from
programmed destinations with collision avoidance. We collected pairs of ego-
centric videos with 90◦ field-of-view and corresponding ground truth trajectories
on the ground plane using Script Hook V API [80]. We randomly picked 50 dif-
ferent person models with different skin colors, body shapes, and clothes. We
prepare two versions of this data, one with manually annotated centerline and
heights of the pedestrians in the observed video frames and the other with those
automatically extracted with a pedestrian detector [90] pretrained on MOT-16 [62]
which includes data captured from a moving platform.

4.2.2 Example Trajectories

Fig. 4.1 visualizes typical example sequences from the synthetic dataset referred
to as Sim and from the real trajectory dataset referred to as Hotel, ETH, Students,
and Shibuya. In all of these datasets, a virtual observation camera is assigned to
one of the trajectories and the observer captures the rest of the pedestrians in
the sequence. Fig. 4.2 shows example trajectories of the GTAV dataset. The size
of the ground field, where pedestrians are walking from starting points to their
destinations, is configured to be 20m × 40m. We spawned 50 pedestrians starting
from one of the four corners of the field, [−10,−10], [10, 10], [10,−20], [10, 20], and
set the opposite side of the field as their destinations. Both the starting points and
destinations were randomized with a uniform distribution. In the GTAV dataset,
an observation camera is mounted on one of the pedestrians walking in the crowd
flow and we can obtain pairs of ground-truth trajectories and ego-centric videos
with 90◦ field -of-view via Script Hook V APIs [80].

4.2.3 View Birdification Results

Evaluation Metric. We quantify the accuracy of our method by measuring the
differences between the estimated positions of the pedestrians xτ

k and the ob-
server Rτ, xτ

0 on the ground plane from their ground truth values ẋτ
k , Rτ, and

ẋτ
0 , respectively. The translation error for the observer is ∆t = 1

T ∑τ ∥x0
τ − ẋτ

0∥,
where τ is a timestep duration of the sequence. The rotation error of the observer
is ∆r = 1

T ∑t arccos(1
2 trace(Rτ(Rτ

)⊤ − 1). We also evaluate the absolute and
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Table 4.2: Birdification results on real trajectories. Relative and absolute local-
ization errors of pedestrians, ∆x̃, ∆x (top), and camera ego-motion er-
rors, ∆r and ∆t (bottom), were computed for each frame for three dif-
ferent video sequences. Baseline methods only extrapolate movements
on the ground plane resulting in missing entries (–). The results demon-
strate the effectiveness of our view birdification.

Dataset Hotel / sparse ETH / mid Students / dense
σh ∆x̃ [m] ∆x [m] ∆x̃ [m] ∆x [m] ∆x̃ [m] ∆x [m]

CV [79] – – 0.294 ± 0.186 – 0.275 ± 0.195 – 0.223 ± 0.169
SF [33] – – 0.289 ± 0.207 – 0.261 ± 0.174 – 0.222 ± 0.163

VB-CV 0.00 0.051 ± 0.029 0.070 ± 0.030 0.089 ± 0.045 0.115 ± 0.049 0.022 ± 0.008 0.023 ± 0.008
0.07 0.051 ± 0.029 0.070 ± 0.030 0.090 ± 0.045 0.116 ± 0.050 0.021 ± 0.007 0.022 ± 0.008

VB-SF 0.00 0.048 ± 0.027 0.052 ± 0.033 0.070 ± 0.040 0.079 ± 0.047 0.009 ± 0.003 0.010 ± 0.006
0.07 0.049 ± 0.027 0.052 ± 0.032 0.071 ± 0.040 0.080 ± 0.047 0.009 ± 0.004 0.010 ± 0.006

σh ∆r [rad] ∆t [m] ∆r [rad] ∆t [m] ∆r [rad] ∆t[m]

VB-CV 0.00 0.015 ± 0.030 0.066 ± 0.089 0.016 ± 0.027 0.095 ± 0.125 0.001 ± 0.001 0.010 ± 0.007
0.07 0.017 ± 0.039 0.069 ± 0.100 0.019 ± 0.034 0.110 ± 0.148 0.001 ± 0.001 0.010 ± 0.007

VB-SF 0.00 0.015 ± 0.036 0.062 ± 0.104 0.015 ± 0.031 0.089 ± 0.135 0.001 ± 0.001 0.009 ± 0.006
0.07 0.016 ± 0.042 0.062 ± 0.103 0.016 ± 0.035 0.091 ± 0.153 0.001 ± 0.001 0.009 ± 0.006

relative reconstruction errors of surrounding pedestrians which are defined by
∆x = 1

K
1
T ∑k ∑t ∥xτ

k − ẋτ
k∥ and ∆x̃ = 1

K
1
T ∑k ∑t ∥(xτ

k − xτ
0)− (ẋτ

k − ẋτ
0)∥ , respec-

tively.

Results on Known Interaction Model. Fig. 4.3 shows the view birdification re-
sults on the synthetic trajectories dataset. Although both rotation and translation
errors slightly increase as the height standard deviation σh becomes larger, the
error rate becomes lower as the number of people K increases. This suggests that
the more crowded, the more certain the camera position and thus the more accu-
rate the birdification of surrounding pedestrians.

Results on Unknown Real Interaction Models. The real trajectories data al-
low us to evaluate the accuracy of our method when the interactions between
pedestrians are not known. We employ two pedestrian interaction models, Social
Force (SF) [33] and ConstVel (CV) [79]. We first evaluate the accuracy of our view
birdification (VB) using these models, referred to as VB-SF and VB-CV, and com-
pare them with baseline prediction models. In these baseline models, referred to
as ConstVel (CV) and Social Force (SF), we extrapolate a pedestrian position X τ

k
from its past locations X τ−2:τ−1

k based on the corresponding interaction model
without using the observer’s ego-centric view. That is, the baseline model is not
view birdification but extrapolation according to pre-defined motion models on
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Figure 4.3: Results on synthetic pedestrian trajectories. Circle, star, and squared
markers denote errors of estimated camera rotations ∆r, translations
∆t, relative ∆x̃ and absolute localization errors ∆x, respectively, with
standard deviations of pedestrian heights, σ = 0.01, 0.05, 0.07 [m], re-
spectively.

the ground plane.

Table 4.2 shows the errors of our method and baseline models. These results
clearly show that our method, both VB-CV and VB-SF, can estimate the cam-
era ego-motion and localize surrounding people more accurately, which demon-
strates the effectiveness of birdifying the view and exploiting the geometric con-
straints on the pedestrians through it. VB-SF performs better than VB-CV es-
pecially in scenes with rich interactions such as ETH and Students, while they
show similar performance on the Hotel dataset that includes fewer interactions.
Both VB-SF and VB-CV show accurate camera ego-motion results in the Students
dataset, which demonstrates the robustness of ego-centric view localization re-
gardless of the assumed pedestrian interaction models. Our method achieves
high accuracy on all three datasets across different standard deviations of heights
σh ∈ [0.00, 0.07]. This also shows that the method is robust to variation in human
heights.



4.2. Experiments 47

Table 4.3: Birdification results in the super-dense crowd. Relative and absolute
localization errors of pedestrians, ∆x̃, ∆x (top), and camera ego-motion
errors, ∆r and ∆t (bottom), were computed for each frame for three
different video sequences. Baseline methods only extrapolate move-
ments on the ground plane resulting in missing entries (–). The results
demonstrate the effectiveness of our view birdification even in super-
dense crowds.

Dataset
Shibuya01 Shibura02

σh ∆x̃ [m] ∆x [m] ∆x̃ [m] ∆x [m]

CV [79] – – 0.221 – 0.245
SF [33] – – 0.220 – 0.249

VB-CV 0.07 0.023 0.024 0.025 0.026
VB-SF 0.07 0.022 0.023 0.024 0.025

σh ∆r [rad] ∆t [m] ∆r [rad] ∆t [m]

VB-CV 0.07 0.001 0.011 0.001 0.012
VB-SF 0.07 0.001 0.011 0.001 0.011

Selecting pedestrians in Super Dense Crowds. Table 4.3 shows the localiza-
tion errors of the view birdification and the baseline models on the super-dense
crowd datasets (Shibuya01, Shibuya02). In a highly congested scenario K > 100,
we can no longer consider all the pedestrians due to computational cost. Follow-
ing Sec.4.1.4, for each frame, we select a set of pedestrians in the neighborhood
of the camera N (x0) with a threshold ∥vk∥ ≥ ϵ and ϵ = 5.0. Even if we do not
consider all the pedestrians in the crowd for optimizing with the assumed inter-
action model, our model VB-CV and VB-SF still demonstrate comparable local-
ization accuracy with those for the Students dataset. This is because our assumed
interaction model considers up to first-order interactions with other pedestrians
in close proximity, and the interaction models with selected neighboring pedes-
trians can approximate the whole interaction models in super dense crowd with
sufficient accuracy. These results clearly demonstrate our model can be applied
to highly dynamic crowded environments, where static keypoints-based SLAM
fails.

Photorealistic Crowds. Fig. 4.4 shows qualitative results on the photorealistic
crowd dataset. Considering more practical use cases, we evaluate the accuracy of
our method in the existence of detection noises. We prepared two versions of in-
puts, one manually annotated with centerlines of the people and their heights and
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Table 4.4: Quantitative Results on GTAV dataset for different inputs. The rel-
ative and absolute localization errors of pedestrians, ∆x̃ and ∆x, re-
spectively, and the errors of camera ego-motion estimation, ∆r, and ∆t,
computed for each frame whose mean values are shown. cline denotes
ideal, manually annotated inputs and MOT denotes inputs with detec-
tion noise by multi-object tracker [90].

Input ∆r [rad] ∆t [m] ∆x̃ [m] ∆x [m]

cline(manual) 0.015 0.097 0.441 0.491
MOT [90] 0.016 0.101 0.491 0.530

the other with those automatically extracted from the off-the-shelf multi-object
tracker [90]. We prepared two versions of inputs, one manually annotated with
centerlines of the people and their heights and the other with those automati-
cally extracted from a multi-object tracker (MOT). We compared view birdifica-
tion results using these two different inputs, which are referred to as VB-cLine and
VB-MOT. As shown in the top two rows, VB-MOT accurately estimates camera
ego-motion and on-ground positions of automatically detected pedestrians with
an off-the-shelf tracker. People tracked in more than three frames are birdified.
Even with occlusions in the image and noisy height estimates computed from de-
tected bounding boxes, our approach robustly estimates the camera ego-motion
and surrounding pedestrian positions. Due to perspective projection, localiza-
tion error caused by erroneous detection in the image plane is proportional to
the ground-plane distance between the camera and the detected pedestrian. We
further compared these results with VB-cline as shown in the bottom two rows
Fig. 4.4 to highlight the effect of automatically detecting the pedestrians for view
birdification (i.e., to see how the results change if the pedestrian heights were
accurate). The resulting accuracies are comparable, which demonstrates the end-
to-end effectiveness. To further ameliorate the errors caused by detection noises,
our method can also be extended, for instance, by replacing the noise model in
Eq. (4.3) with a 2D Gaussian distribution.

4.2.4 Unknown Ego-Motion Recovery with the Real Mobile Plat-

form Dataset

JackRabbot Dataset. We also test on the JackRabbot Dataset and Benchmarks
(JRDB) [58], which includes panorama (360◦) RGB images with 2D-3D bounding
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box annotations of pedestrians captured by a mobile robot platform of human-
compatible size. The robot captures the social interactions of a crowd in out-
door/indoor environments, where all the pedestrian IDs are assigned and their
3D locations are annotated in the relative coordinate system of the mounted cam-
era. The camera ego-motion is constrained to the 2D motion on the ground,
i.e., R ∈ SO(2), t ∈ R2. The notable difference from our view birdification
datasets is, the motion model of the ego-motion does not conform with the crowd
motion model of surrounding pedestrians. This dataset allows us to evaluate
the applicability of our method on mobile robot platforms with unknown mo-
tion model. In this dataset, we use the cylindrical projection model described
in Eq. (3.3) for 360◦ cylindrical RGB image inputs, and reconstruct both the ego-
motion and pedestrian trajectories in absolute coordinates only from observed 2D
movements in the image.

Comparison with the robot localization results from sensor values. We com-
pare the localization results with that estimated from IMU sensor values and the
wheel odometry recorded in the rosbag of the dataset. As no ground-truth ego-
motion is available for this dataset, we create pseudo localization results by fusing
these sensor values with an extended Kalman Filter [64]. Fig. 4.5 demonstrates
our view birdification results with an unknown ego-motion model. Our method
can successfully recover the on-ground absolute trajectories of both the camera
and its surrounding pedestrians. Even in these scenarios in which the camera
ego-motion model is not consistent with the assumed crowd motion model (e.g., a
mobile robot platform), our method can recover the camera ego-motion as long
as the camera observes the pedestrians with an assumed motion model. Both
sensor-based and our vision-based localization have uncertainties arising from
the observation errors, which often results in a significant ego-motion drift in
long-term navigation. Even if the mobile platform is equipped with an IMU and
other odometry sensors, the birdification results are still essential for obtaining
reliable ego-motion estimates and can provide a reliable source for sensor fusion.
The quantitative gap between our estimated ego-motion and IMU values pro-
cessed with Kalman Filter was ∆r = 0.001 [rad] and ∆t = 0.023 [m] on average in
a tested sequence.

Comparison with learning-based monocular depth estimation. We compared
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the accuracy of pedestrian localization by our method with those estimated by
the state-of-the-art monocular depth estimator [8] which uses inverse projection
constraints similar to our method. The monocular depth estimator is pretrained
on KITTI dataset and takes pedestrian keypoints as inputs calculated by an ex-
ternal keypoint detector [46]. For fair comparison, we apply our method to
pedestrians detected by the same keypoint-based detector. In the JRDB sequence
used in the previous paragraph, the accuracy of pedestrian localization by the
learning-based estimator [8] is ∆x = 1.789 ± 1.540 [m], while that by our method
is ∆x = 0.482 ± 0.350 [m] on average. The learning-based estimator shows poor
accuracy compared to our method, and the variance of the localization accuracy
is an order of magnitude larger than that of our method. While our proposed
method sequentially estimates the location of each pedestrian taking their motion
model into account, the monocular depth estimator does not consider temporal
consistency, which results in higher variance of localization accuracy.

4.3 Discussion

In this chapter, we propose a novel method for on-ground trajectory reconstruc-
tion of both the camera and pedestrians only from perceived movements of dy-
namic objects, i.e., pedestrians. This allows us to recover the camera ego-motion
even in a dense crowd, where static keypoints are occluded by surrounding
pedestrians. One may think “even if the static keypoints near the camera are
occluded and unable to track, we can still track backgrounds far from the crowd,
i.e., buildings”. Fig. 4.7 shows typical example cases in the GTAV dataset. The
static backgrounds (i.e., buildings and trees) are detected and tracked, but are lo-
cated far away (≥ 30 [m]) from the observation camera.

We simulate the robustness of a geometric relative pose solver [71] against
noise according to the distances between the keypoints and the observation cam-
era, and compare the accuracy with our approach based on dynamic keypoints.
We generate 100 static keypoints with uniform distribution in a voxel grid Vw,h,d,
where width w = 20 [m], height h = 10 [m], and depth d = 5 [m]. The keypoints
are captured by two cameras located at [2 : 40] [m], where these two camera poses
are randomly generated with conditions ∆r ≤ 0.20 [rad] and ∆t ≤ 1.0 [m]. To test
the robustness against detection noises in the image, we add uniform random
noise ranging between [-1:1] [px] at each pixel and apply the five-point relative
pose solver [71] with RANSAC [23]. At every distance from the camera, we test
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100 trials of relative pose solver for static keypoints randomly generated at each
trial.

Fig. 4.6 shows the errors of relative pose estimation for rotation ∆r and trans-
lation ∆t. These results clearly show that the further the keypoints, the worse
the accuracy of pose estimation. Although the relative pose solver performs well
when static keypoints are observed at nearly ≤ 2 [m], the translation errors are as
worse as 0.50 [m] on average when at ≥ 6 [m]. We also compare these results with
our view birdification results including detection noises by the external multi-
object tracker [90]. The red dotted line indicates the accuracy of our view birdi-
fication with multi-object tracking noises on the GTAV dataset (Table 4.4). Even
with the detection noises, the errors of rotation and translation are 0.016 [rad] and
0.097 [m], respectively, which are significantly lower than those obtained with a
relative pose solver with static keypoints observed from far away (≥ 6 [m]).

These results clearly indicate that nearby dynamic keypoints are better than dis-
tant static keypoints for camera pose estimation in densely crowded environments.
More specifically, if observed static keypoints are at as far as ≥ 6 [m], our pro-
posed view birdification based on the movements of nearby pedestrians performs
better.

4.4 Failure Cases

We also analyze failure cases of our view birdification to understand the limita-
tions of the method. For this, we picked sequences from ETH data that showed a
high error rate in terms of camera localization. Fig. 4.8 visualizes posterior distri-
butions of the observer location p(xτ

0 |Zτ
1:K,X τ−1

0:K ) and surrounding pedestrians∫
xτ

0∈Xs
p(X τ

1:K|Zτ
1:K, xτ

0)p(xτ
0)dxτ

0 by sampling xτ
0 ∈ Xs in Eq. (4.3) and Eq. (4.4),

respectively. The first and third rows depict the ground truth trajectories of the
camera and pedestrians from τ to τ + 9. The number of pedestrians changes from
K = 3 to K = 5. The second and fourth rows visualize the posterior distributions
for each of those two rows. As can be observed in the posteriors shown in the
second row, the estimated observer location becomes a heavy-tailed distribution
when the number of pedestrians in the crowd is small (K = 3). In contrast, as
shown in the fourth row, the posterior distribution becomes sharper when the
crowd is denser (K = 5). The ambiguity of localization increases when pedes-
trians walk almost parallel to the observer (e.g., timesteps τ = τ + 2 and τ + 3).
In contrast, the posterior distribution becomes sharp again when the camera ob-
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serves more pedestrians walking in diverse directions.
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Figure 4.4: Results on photorealistic crowd dataset. The top row shows detected
pedestrians with a multi-object tracker in bounding boxes and the
third row shows manually annotated human heights (center lines).
The figures in the second and fourth rows depict view birdification
results for them. Colors correspond to Pedestrian IDs. Red triangles
denote camera position estimates xτ

0 and dashed circles denote esti-
mated pedestrian positions xτ

k at time τ. Grey triangles and circles
denote ground-truth camera and pedestrian positions, respectively.
View birdificaiton results for both automatic and manually detected
people show consistently high accuracy. These results demonstrate
the end-to-end accuracy of view birdification.
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Figure 4.5: Results on real robot dataset. The top four rows show 2D bound-
ing box annotations for pedestrians in the cylindrical RGB image at
τ ∈ (τ, τ + 10, τ + 20, τ + 30, τ + 40). The fourth row depicts ground-
truth global layout of pedestrians relative to the camera x0 = [0, 0]⊤

at every timestep. The fifth row shows the view birdification results
given the sequence of 2D bounding box movements in the cylindrical
RGB images. Colors correspond to pedestrian IDs. Red triangles de-
note camera position estimates.
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Figure 4.6: Robustness of relative pose solver [71] against noise according to
the distances from keypoints. These two figures show errors in pose
estimation consisting of rotation ∆r [rad] and translation ∆t [m]. The
boxes indicate the range between 25th and 75th percentiles from the
lowest values, where the orange and green dashed lines medians and
means of the errors, respectively. The black whiskers extends from
the lowest to highest values. The red dotted line indicates the error
of our method with MOT input noise (Table 4.4). While the geometric
solver works well with keypoints captured at ≤ 2 [m], the accuracy of
relative pose estimation significantly drops when captured at ≥ 6 [m].

Figure 4.7: Static keypoints trackable in crowded scenes. In these typical two
cases, static backgrounds far from the crowd are detected and tracked,
while keypoints near the camera are untrackable due to severe occlu-
sions. These static keypoints are at 30[m] from the observation camera.
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Figure 4.8: Visualization of posterior distributions of the ETH dataset. (First
and third rows) Ground truth trajectories of the camera and its sur-
rounding pedestrians. (Second and fourth rows) Visualization of pos-
terior distributions of the location of the observer xτ

0 and surrounding
pedestrians xτ

k . The heatmaps correspond to low (blue) to high (red)
probabilities.



Chapter 5

Learning to recover ground-plane
crowd trajectories and ego-motion

5.1 Background

We as human beings have a fairly accurate idea of the absolute movements of
our surroundings in the world coordinate frame, even when we can only ob-
serve their movements relative to our own in our sight such as when walking in a
crowd. Enabling a mobile agent to maintain a dynamically updated map of sur-
rounding absolute movements on the ground, solely from observations collected
from its own vantage point, would be of significant use for various applications
including robot navigation [69], autonomous driving [49], sports analysis [17],
and crowd monitoring [26, 39, 60]. The key challenge lies in the fact that when
the observer (e.g., person or robot) is surrounded by other dynamic agents, static
“background” can hardly be found in the agent’s field of view. In such scenes,
conventional visual localization methods including SLAM would fail since static
landmarks become untrackable or unreliable due to frequent occlusions and ob-
servation noises sensitive to distances [67]. External odometry signals such as
IMU and GPS are also often unreliable. Even when they are available, visual feed-
back becomes essential for robust pose estimation (imagine walking in a crowd
with closed eyes).

In Chapter 4, we introduced this exact task as view birdification whose goal is
to recover on-ground trajectories of a camera and a crowd just from perceived
movements (not appearance) in an ego-centric video [66] 1. They proposed to

1Note that Bird’s Eye View transform is a completely different problem as it concerns a single
frame view of the appearance (not the movements) and cannot reconstruct the camera ego-motion.

57
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Figure 5.1: Given bounding boxes of moving pedestrians in an ego-centric view
captured in the crowd, ViewBirdiformer reconstructs on-ground tra-
jectories of both the observer and the surrounding pedestrians. 2023
©IEEE [68]

decompose these two types of trajectories, one of the pedestrians in the crowd
and another of a person or mobile robot with an ego-view camera, with a cas-
caded optimization which alternates between estimating the displacements of the
camera and estimating those of surrounding pedestrians while constraining the
crowd trajectories with a pre-determined crowd motion model [33, 79]. This itera-
tive approach suffers from two critical problems which hinder their practical use.
First, its iterative optimization incurs a large computational cost which precludes
real-time use. Second, the analytical crowd model as a prior is restricting and not
applicable to diverse scenes where the crowd motion model is unknown.

In this chapter, we propose ViewBirdiformer, a Transformer-based view birdifi-
cation method. Instead of relying on restrictive assumptions on the motion of sur-
rounding people and costly alternating optimization, we define a Transformer-
based network that learns to reconstruct on-ground trajectories of the surround-
ing pedestrians and the camera from a single ego-centric video while simultane-
ously learning their motion models. As fig. 5.1 depicts, ViewBirdiformer takes
in-image 2D pedestrian movements as inputs, and outputs 2D pedestrian tra-
jectories and the observer’s ego-motion on the ground plane. The multi-head
self-attention on the motion feature embeddings of each pedestrian of ViewBirdi-
former captures the local and global interactions of pedestrians. At the same time,
it learns to reconstruct on-ground trajectories from observed 2D motion in the im-
age with cross-attention on features coming from different viewpoints.

A key challenge of this data-driven view birdification lies in the inconsistency
of coordinate frames between input and output movements—the input is 2D in-
image movements of pedestrians relative to ego-motion, but the expected out-
puts are on-ground trajectories in absolute coordinates (i.e., independent of the
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observer’s motion). ViewBirdiformer resolves this by introducing the two types
of queries, i.e., the camera ego-motion and pedestrian trajectories, in a multi-task
learning formulation, and by transforming coordinates of pedestrian queries rel-
ative to the previous ego-motion estimates.

We thoroughly evaluate the effectiveness of our method using the view
birdification dataset [66] and also by conducting ablation studies which validate
its key components. The proposed Transformer-based architecture learns to
reconstruct trajectories of the camera and the crowd while learning their motion
models by adaptively attending to movement features of them in the image
plane and on the ground. It enables real-time view birdification of arbitrary
ego-view crowd sequences in a single inference pass, which leads to three
orders of magnitude speedup from the iterative optimization approach [66].
We show that the results of ViewBirdiformer can be opportunistically refined
with geometric post-processing, which results in similar or better accuracy than
state-of-the-art [66] but still in orders of magnitude faster execution time.

5.2 Preliminary

Let us recall the definition of view birdification. We have a crowd of people and
one observer in the crowd with an ego-centric camera observing the surroundings
while moving around. The observer can either be one of the pedestrians of the
crowd or a mobile robot, or even an autonomous vehicle, in the crowd. As the
observer is immersed in the crowd with a limited but dynamic field-of-view, the
static background cannot be reliably found in the ego-centric view.

Let us assume that the crowd consists of N people. We set the z-axis of the
world coordinate system to the normal of the ground plane (xy-plane). As in pre-
vious work [66], we assume the ground plane to be planar and the observer’s
camera direction is parallel to it. We can assume this without loss of generality
as the camera pitch and roll can be corrected either by measurements of the mo-
ment (e.g., with an IMU) [7]. View birdification thus is the problem of recovering
2D trajectories of the observer and surrounding people (visible in the ego-centric
view) on the ground plane (xy-plane) from their 2D in-image movements in the
ego-centric view.

Let xi = [xi, yi]
⊤ denote the on-ground location of the ith pedestrian and

π =
[
cx, cy, θz

]
the pose of the observer’s camera. The ego-centric camera pose

π consists of a rotation matrix R(θz) ∈ R2×2 parameterized by the rotation angle
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Figure 5.2: The overall architecture of ViewBirdiformer. The decoder takes
two types of queries: camera queries and pedestrian queries. These
queries are fed autoregressively from the previous frame output em-
beddings of the last decoding layer. 2023 ©IEEE [68]

around the z-axis θz and 2D translation t = −R(θz)
[
cx, cy

]⊤, i.e., the viewing di-
rection and camera location on the ground, respectively. The observer’s camera
location is

[
cx, cy, cz

]⊤, where the mounted height cz is constant across frames,
and the intrinsic matrix A ∈ R3×3 is assumed to be constant.

At every timestep τ, we extract the state of each pedestrian sτ
i for all those

visible in the observed image, n ∈ {1, 2, . . . , N}. The pedestrian state encodes
the two-dimensional center of the pedestrian’s bounding box and the velocity
calculated by its displacement from the bounding box center of the previous
(τ − 1) frame. These states of visible pedestrians in the ego-centric view Sτ1:τ2

i
can be extracted with an off-the-shelf multi-object tracker with consistent IDs.
Given a sequence of in-image pedestrian states Sτ1:τ2

i = {sτ1
i , sτ1+1

i , . . . , sτ2
i } from

timestep τ1 to τ2, our goal is to simultaneously reconstruct the on-ground trajecto-
ries of pedestrians X τ1:τ2

i = {xτ1
i , xτ1+1

i , . . . , xτ2
i } and the observer’s camera poses

Πτ1:τ2 = {πτ1 , πτ1+1, . . . , πτ2}.

5.3 ViewBirdiformer

Our goal is to devise a method that jointly transforms the 2D in-image movements
into 2D on-ground trajectories and models the on-ground interactions between
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pedestrians in a single framework. For this, we formulate view birdification as a
set-to-set translation task, and derive a novel Transformer-based network referred
to as ViewBirdiformer.

5.3.1 Geometric 2D-to-2D Transformer

Given a sequence of in-image pedestrian states for N people in a crowd at time τ,
we first embed them into a set of d-dimensional state feature vectors Fs ∈ RN×d

with a multilayer perceptron (MLP). We similarly embed past (τ − 1) on-ground
trajectories of the pedestrians and the observer’s camera, too. ViewBirdiformer
consists of an encoder that encodes input in-image state features Fs into a se-
quence of hidden state features Hs ∈ RN×d, and a decoder that takes in the hid-
den features and on-ground queries Qo ∈ R(N+1)×d

Hs = Eψ(Fs), Fo = Dϕ(Qo,Hs) , (5.1)

where Eψ and Dϕ are the encoder and decoder models with learnable model pa-
rameters ψ and ϕ, respectively. Figure 5.2 depicts the overall architecture of our
ViewBirdiformer.

Attention layers A standard attention mechanism [85] accepts three types of
inputs: a set of queries Q ∈ RM×d, a set of key vectors K ∈ RN×d, and a set of
value embeddings V ∈ RN×d. The output is computed by values weighted by an
attention matrix A ∈ RM×N composed of dot-products of queries and keys, and
we use softmax to normalize the attention weights,

Attn(Q,K,V) =
N

∑
j=1

Aijvj , Aij =
exp(q⊤

i kj)

∑N
j′=1 exp(q⊤

i kj′)
. (5.2)

The query q, key k, and value v vectors are linear embeddings of the source fs

and target ft input state features

q = Wq( ft) , k = Wk( fs) , v = Wv( fs) , (5.3)

where Wq, Wk, and Wv are linear embedding matrices specific to the vector types.
We refer to the case of fs = ft as self-attention, and the other case fs ̸= ft as
cross-attention.
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Attention Mask To handle the varying number of pedestrians entering and
leaving the observer’s view, we apply a mask Mτ ∈ RM×N to the attention matrix
Aτ as Mτ ⊙ Aτ, where ⊙ denotes Hadamard product. The element of the mask
Mτ

ij is set to 0 if either of the pedestrians i or j are missing at time τ, otherwise 1.
This allows us to handle temporarily occluded pedestrians.

In-Image Motion Encoder The encoder architecture consists of a single multi-
head self-attention layer [85] and a feed-forward network (FFN) layer. We define
the input pedestrian states as sτ

i = [px, py, ∆px, ∆py]⊤, consisting of the 2D center
of the detected bounding box p = [px, py]⊤ and is its velocity ∆p = [∆px, ∆py]⊤.
The encoder Eψ computes self-attention over all queries generated by input state
feature embeddings Fs, which encodes the interactions between observed pedes-
trians in image space.

On-ground Trajectory Decoder The Transformer decoder Dϕ integrates the
self-attention based on-ground motion model and the cross-attention between
on-ground and ego-views. First, the On-Ground Past Trajectory Encoder ap-
plies self-attention over queries Q consisting of an ego-motion query qτ−1

π and
on-ground pedestrian trajectory queries {qτ−1

1 , . . . , qτ−1
N } extracted from previ-

ous estimates at τ − 1. We calculate these with on-ground queries qτ−1
π =

Wq(MLP(∆πτ−1)) and qτ−1
n = Wq(MLP(xτ−1

i ⊕ ∆xτ−1
i )), respectively. The at-

tention learns to capture the implicit local and global interactions of all pedestri-
ans to better predict the future location from past trajectories. Second, the cross-
attention layer accepts hidden state features Hs processed by the encoder and
on-ground trajectory queries Qo processed by the self-attention layer. This layer
outputs feature embeddings Fo ∈ R(N+1)×d by incorporating features from the
ego-centric view. The output Fo is decoded to the camera ego-motion Πτ and
N pedestrian trajectories {X τ

1 , . . . ,X τ
N} by task-specific heads. The trajectory de-

coder is autoregressive, which outputs trajectory estimates one step at a time and
feeds the current estimates back into the model as queries to produce the trajec-
tories of the next timestep.

5.3.2 Relative Position Transformation

A key challenge of view birdification lies in the inconsistency of coordinate sys-
tems between input and output trajectories. Unlike conventional frame-by-frame
2D-to-3D lifting [8] or image-based bird’s eye-view transformation [96], once
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the viewpoint of the observer’s camera is changed, the observed movements of
pedestrians in the image change dramatically. To encourage the network to gen-
eralize over diverse combinations of trajectories and observer positions, we trans-
form all the on-ground pedestrian queries relative to the previous τ− 1 observer’s
camera estimates at every timestep,

x̃τ
i = R(θτ−1

z )xτ
i + tτ−1 , (5.4)

∆x̃τ
i = R(θτ−1

z )(xτ
i − xτ−1

i ) , (5.5)

where tτ−1 = −R(θτ−1
z )[cτ−1

x , cτ−1
y ]⊤ is the camera translation. We force all on-

ground trajectory coordinates to be centered on the observer’s camera by defining
positions and velocities relative to the observer’s camera x̃ ⊕ ∆x̃ as pedestrian
features, and the camera displacements ∆π = [∆cx, ∆cy, ∆θz]⊤ as the observer’s
feature.

5.3.3 Ego-motion Estimation by Task-specific Heads

To achieve simultaneous recovery of pedestrian trajectories and ego-motion of the
observer’s camera, we formulate birdification as a multi-task learning problem.
Given a set of past queries {qτ−1

c , qτ−1
1 , . . . , qτ

N} consisting of trajectories of the
observer and surrounding pedestrians, the decoder transforms the joint set of
camera and pedestrian queries into output embeddings Fo ∈ R(N+1)×d. The
output embeddings Fo consist of two types of features: (i) ego-motion embedding
Fego ∈ R1×d from which the motion of the observer’s camera on the ground is
recovered, and (ii) pedestrian trajectory embeddings Ftraj ∈ RN×d represented in
a relative coordinate system, where the origin is the position of the camera. These
two queries calculated from the previous t− 1 frame are decoded simultaneously.
We define individual loss functions for these two tasks.

Ego-Motion Loss The ego-motion output embedding Fego is decoded into
∆π = [∆cx, ∆cy, ∆θz]⊤ by a single feed-forward network. For a batch
{∆πτ, . . . , ∆πT} ∈ R3×T of duration T, we compute the mean squared error

Lego =
T

∑
τ=1

∥∆π̇τ − ∆πτ∥ , (5.6)

where π̇ is the ground-truth camera pose of an observer.
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Pedestrian Trajectory Loss Pedestrian trajectory embeddings Ftraj are decoded
into 2D positions and velocities x̃ ⊕ ∆x̃ ∈ R4 relative to the observer’s camera.
Given a batch of N observed pedestrians for duration T, we define the trajectory
loss function as

Ltraj =
T

∑
τ=1

N

∑
i=1

∥ẋτ
i − (R(θτ−1

z )⊤(x̃τ
i − tτ−1)∥

+∥∆ẋτ
i − R(θτ−1

z )⊤∆x̃τ
i ∥ ,

(5.7)

where the output estimate xτ
i is transformed into the world coordinate system by

the camera pose estimates consisting of the rotation angle θτ
z = θτ−1

z + ∆θτ
z and

2D translation tτ = R(∆θτ
z )tτ−1 + ∆tτ.

Observer Reprojection Loss What makes view birdification unique from other
on-ground trajectory modeling problems is its ego-centric view input. Although
the 2D ego-centric view degenerates depth information of the observed pedes-
trian movements, it also provides a powerful inductive bias for on-ground trajec-
tory estimates. Using the observer’s camera intrinsic matrix A, we compute the
reprojection loss in the image plane

Lproj =
T

∑
τ=1

N

∑
i=1

∥pτ
i − sAxτ

i ∥ , (5.8)

where p =
[
px, py, 1

]⊤ is the homogeneous coordinate of the observed 2D bound-
ing box center, and x = [x, y, h/2]⊤ is the half point of the pedestrian height
standing on the position xi = R(∆θz)x̃i + ∆t, respectively. The scaling factor s is
determined by normalizing the z−value of the projected point in the image.

Total Loss The complete multi-task loss becomes

L = Ltraj + λ1Lego + λ2Lproj . (5.9)

To facilitate stable training, we apply curriculum learning to the reprojection loss
weight λ2. We set λ2 = 0 for the first 200 epochs, and switch to λ2 > 0 for the rest
of the epochs.

Test-time refinement The reprojection loss can be used to refine the ego-motion
towards the pedestrian trajectory estimates at inference time. That is, we incor-
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porate the reprojection errors into our network as a soft geometric constraint
i.e., weighted reprojection loss, in the training phase, and as a hard geometric
constraint at inference time.

5.4 Experiments

5.4.1 View Birdification Datasets

We evaluate our method on view birdification dataset consisting of paired real
pedestrian trajectories and synthetic ego-views of them. The dataset is generated
from public pedestrian trajectory datasets ETH [73] and UCY [50] by following
the instructions of the original view birdification paper [66]. To generate a suf-
ficient amount of ego-views including diverse patterns of projected movements,
we virtually mount two virtual, perspective cameras in front and rear on each of
the pedestrians (i.e., an observer) in turn. Negative heights of bounding boxes
indicate the observation from a rear camera. As a result, we obtain paired tra-
jectories and their ego-views for as many as the number of pedestrians in each
scene. Following previous work [66], we assume ideal observation, i.e., pedestri-
ans are not occluded by each other and projected heights can be deduced from the
observed images. There are three datasets named after the scenes they capture,
Hotel, ETH, and Students, which correspond to sparse, moderate, and dense
crowds, respectively. We prepare two types of splits of the view birdification
dataset. The first one is (i) intra-scene validation split. For each scene, train, val,
and test splits are generated. This allows evaluation of how ViewBirdiformer gen-
eralizes to unseen trajectories. The second one is (ii) cross-scene validation split.
We pick one scene for testing and choose the rest of the remaining scenes for
validation and training. These splits allow evaluation of how ViewBirdiformer
generalizes to unknown scenes.

Evaluation Metric Our proposed framework first reconstructs the ego-motion
of the observer and the trajectories of her surrounding pedestrians in the ob-
server’s camera coordinate system. The absolute positions and trajectories of the
pedestrians in the world coordinate system are computed by coupling these two
outputs, i.e., xτ

π = R(θτ−1
z + ∆θτ

z )x̃τ
i + R(∆θτ

z )tτ−1 + ∆tτ. We evaluate the accu-
racy of our method by measuring the differences of the estimated positions of
pedestrians x and the ego-motion of the observer ∆Π = (∆t, ∆θz) from their cor-
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responding ground truths ẋ, ∆ṫ, and ∆θ̇z. The translation error of the observer is
∆t = 1

T ∑ ∥xτ
π − ẋτ

π∥, where T denotes the duration of a sequence. The rotation er-

ror of the observer is ∆r = 1
T ∑τ arccos(

tr(R(∆θ̇τ
z )R(∆θτ

z )
⊤)−1

2 ), where tr is the matrix
trace. We also evaluate the absolute and relative reconstruction errors of pedes-
trians by ∆x = 1

N
1
T ∑i ∑τ ∥xτ

i − ẋτ
i ∥ and ∆x̃ = 1

N
1
T ∑i ∑τ ∥x̃τ

i − R(θτ−1
z )ẋi − tτ−1∥

.

Baseline Methods We compare our method with a purely geometric view birdi-
fication approach [66], the only other view birdification method. We use the
parameter values from the original paper, which we refer to as GeoVB-CV and
GeoVB-SF based on the assumed motion model: Constant Velocity (CV) [79] and
Social Force (SF) [33], respectively. We also evaluate the effectiveness of the ego-
view encoder and the cross-attention by comparing with the direct use of an on-
ground motion model which takes τ − 1 on-ground trajectories as inputs and
simply predicts positions and velocities xτ ⊕∆xτ for τ. For this, we train a simple
Transformer-based motion model with one multi-head self-attention layer which
we refer to as TransMotion. Note that, although ViewBirdiformer and GeoVB both
take as inputs the ego-centric view at time τ and the past on-ground trajectory es-
timates at time τ − 1, TransMotion only takes past on-ground trajectory estimates.

We consider two variants of ViewBirdiformer. The first, ViewBirdiformer-I, is
trained on the intra-scene validation split, and the second, ViewBirdiformer-C, on
the cross-scene validation split. Similarly, simple motion models composed of
single-layer self-attention Transformers each trained with these validation splits
are referred to as TransMotion-I and TransMotion-C, respectively.

Figures 5.4 to 5.6 visualize qualitative results of ViewBirdiformer-I without
post-processing from the Hotel, ETH, and Students datasets, respectively. Our
ViewBirdiformer outputs sufficient localization accuracy, i.e., < 5 [cm] errors in
20 × 20 [m] fields, for both the ego-motion and surrounding pedestrians for di-
verse densities of crowds.

Implementation Details All networks were implemented in PyTorch. The cam-
era intrinsic matrix A was set to that of a generic camera with FOV=120◦ and
f = 2.46. Both the embedded dimension of the on-ground trajectories and in-
image movements, d is set to 32. We use an MLP with 16 hidden units for embed-
ding input features. The number of heads for the multi-head attention layer is all
set to 8. Loss coefficient λ1 is set to 1.0 and λ2 is set to 0.3 after 200 epochs. We use
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Figure 5.3: Qualitative Results of ViewBirdiformer-I without post-processing
applied to ETH datasets. The top row shows the input bounding
boxes, where the same color box corresponds to the same pedestrian
ID and the boxes with low alpha values correspond to the past τ − 1
frame positions. The second row shows the reconstructed camera pose
and pedestrian locations at time τ in the τ − 1 camera-centric coordi-
nates. “+" depicts the origin of the camera coordinate system. These
relative observations are converted to the world coordinates by the es-
timated camera pose at every frame (the third row). Grey triangles
and circles denote ground-truth camera and pedestrian positions, re-
spectively. 2023 ©IEEE [68]

Adam optimizer and set the constant learning rate to 0.001 for all epochs. All the
models are trained with a single NVIDIA Tesla V100 GPU and Intel Xeon Gold
6252 CPU. The training time is approximately 3 hours for the train split exclud-
ing Students and 14 hours for that including Students. For all the datasets, we
transformed trajectories into scene-centered coordinates so that the origin of the
mean position of all the pedestrians is 0. The outputs of our proposed network
are post-processed by the test-time refinement described in Sec. 5.3.3.
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Figure 5.4: Qualitative Results from the Hotel dataset. The top row shows de-
tected pedestrian bounding boxes, where the same color corresponds
to the same pedestrian ID and boxes with low alpha values correspond
to past frame positions. The second row shows the reconstructed cam-
era pose and the pedestrian location in the camera-centric coordinates.
These relative observations are converted to world coordinates by the
estimated camera pose at every frame (the third row).

5.4.2 Comparison with Geometric Baseline

Localization Accuracy Table 5.2 shows quantitative results. GeoVB [66]
achieves high accuracy by iteratively optimizing the camera ego-motion and
pedestrian positions by densely sampling possible positions for every frame. Al-
though the accuracy of our ViewBirdiformer is slightly lower, it achieves suffi-
ciently high absolute accuracy (e.g., 5cm errors in 20 × 20 m field) with a single
inference pass. Figure 5.3 visualizes qualitative results of our method on a typical
crowd sequence, which clearly shows that our method reconstructs accurate on-
ground trajectories. Even with the cross-scene validation split, ViewBirdiformer-C
achieves comparable results. By incorporating the geometric refinement at in-
ference time, ViewBirdiformer achieves comparable or superior accuracy to the
state-of-the-art [66] but still in three orders of magnitude shorter time.
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Figure 5.5: Qualitative Results from the ETH datasets. Our method can recon-
struct global layouts of the camera and its surrounding pedestrians
considering interactions between them in moderately crowded sce-
nario. Considering human-to-human and human-to-camera interac-
tions by attention layers, ViewBirdiformer-I recovers on-ground tra-
jectories of surrounding pedestrians while reconstructing the obser-
vation camera pose accurately.

Dataset Hotel / sparse ETH / mid Students / dense
∆x̃ [m] ∆r [rad] ∆t [m] ∆x̃ [m] ∆r [rad] ∆t [m] ∆x̃ [m] ∆r [rad] ∆t [m]

w/o RelTransform 2.115 0.055 0.277 2.105 0.053 0.279 1.713 0.090 0.269
w/o ReprojectionLoss 0.148 0.148 0.197 0.180 0.038 0.179 0.081 0.065 0.111

Ours 0.123 0.125 0.085 0.170 0.032 0.093 0.071 0.061 0.068

Table 5.1: Ablation Studies. w/o denotes our proposed architecture without the
specified component. The results demonstrate that relative transforma-
tion of the decoder inputs (Section 5.3.2) is essential for accurate local-
ization of surrounding pedestrians, and the additional reprojection loss
is key to accurate ego-motion estimation.
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Figure 5.6: Qualitative Results from the Students datasets. Our method can ac-
curately reconstruct on-ground trajectories of a large number of pedes-
trians with a single inference pass, which results in significant infer-
ence speedup in densely crowded scenario.
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Figure 5.7: Execution time. We measure the execution times of our method on a
CPU and a GPU. The post-processing is executed on the CPU. These
results are averaged over the samples.

Execution Time Figure 5.7 shows the execution time of our method and
GeoVB [66] on a single Intel Core i5-7500 CPU and a NVIDIA GeForce 1080Ti
GPU. These results clearly demonstrate the efficiency of our method compared to
GeoVB. The unified transformer architecture of our method enables estimation of
both ego-motion and pedestrian trajectories with a single inference pass without
the costly iteration process in GeoVB [66], which results in three orders of mag-
nitude improvement in execution time. For N pedestrians, S samples, and T iter-
ations, the computational complexity of GeoVB is O(NS2T) and it is hardly par-
allelizable as it requires sequential update over all possible samples S (S ≫ N).
In contrast, the computational complexity of ViewBirdiformer is O(N2d) [85] and
its implementation can naturally be parallelized within GPU, which collectively
realize this significant reduction in execution time. Most important, even with
the geometric refinement at inference time, ViewBirdiformer achieves accuracy
on par with the state-of-the-art [66] while maintaining this orders of magnitude
faster execution.

5.4.3 Ablation Studies

Cross-Attention Between Views Table 5.2 compares the accuracy of ViewBirdi-
former and simple extrapolation of on-ground movements using dedicated sim-
ple transformers. While ViewBirdiformer takes the current ego-centric view and
the past on-ground trajectory estimates as inputs, TransMotion only takes the
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past trajectory estimates as inputs. ViewBirdiformer shows superior performance
over TransMotion in pedestrian localization. These results clearly show that the
cross-attention mechanism between on-ground motions and movements in the
ego-centric views is essential for accurate trajectory estimation of the surround-
ing pedestrians.

Relative Position Transformation Table 5.1 shows the results of ablating the
relative position transforms (Section 5.3.2). All models are trained with the intra-
scene split of the birdification dataset to avoid generalization errors of the learnt
motion model. w/o RelTransform takes on-ground trajectories in world coordi-
nates as decoder inputs. Without the relative position transformations described
in Sec. 5.3.1, the proposed framework shows significant accuracy drops, espe-
cially in pedestrian localization. This is likely caused by the inconsistency of the
coordinate system between on-ground past trajectory inputs and egocentric view
inputs and demonstrates the importance of the relative transformation for gener-
alization of the model.

Reprojection Loss w/o ReprojectionLoss in Tab. 5.1 considers only the ego-motion
loss and the pedestrian trajectory loss, i.e., λ2 = 0 in eq. (5.9). The results show
that the reprojection loss slightly improves the accuracy of ego-motion estimates.
This is because the reprojection loss works similarly to geometric constraints as
in GeoVB.

5.4.4 Limitations and Degenerate Scenario

If the observed relative movements are static (i.e., an observer is following the
pedestrian at the same speed), our model cannot break the fundamental ambigu-
ity. Such degenerate scenarios, however, rarely happen in crowds as there will be
other pedestrians. Our method also assumes that the heights of pedestrians are
more or less the same and that the detected bounding boxes are correct. We plan
to relax these requirements by developing an end-to-end framework that handles
both tracking and birdification while estimating uncertainty in depth arising from
variances of pedestrians.
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5.5 Implementation Details

Weights of the Multi-Task Loss One critical choice of our multi-task formu-
lation in Sec.4.3 is the weight λ1 for the ego-motion loss relative to the trajec-
tory loss, which balances the accuracy trade-offs in localization for the observer
and surrounding pedestrians. For this, we investigate the localization accuracy
for different values of λ1 ∈ {0.2, 0.5, 1.0, 2.0, 3.0} using the validation data split.
Figure 5.8 shows the results of ViewBirdiformer-I trained on the ETH dataset
with different ego-motion loss weights λ1. These results demonstrate that as
the weight of the ego-motion loss λ1 increases, ego-motion accuracies (∆r, ∆t)
improve, while the accuracy in the relative pedestrian localization ∆x̃ degrades.
In ViewBirdiformer, these two are affected by each other in test-time refinement
(Sec.4.3), which requires accurate estimation of both the ego-motion and pedes-
trian trajectories. We thus selected the value of lambda λ1 = 1.0 that optimally
trades-off between the ego-motion estimation (∆r, ∆t) and pedestrian localization
(∆x̃).
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Figure 5.8: Localization accuracy for several different choices of λ1. The left col-
umn shows the errors in pedestrian localization ∆x̃ [m]. The right
two columns show the errors in camera localization (rotation ∆r [rad]
and translation ∆t [m]). Typically, as the weights of ego-motion λ1
increases, the errors of the pedestrian localization increase, while the
errors of rotation and translation decrease. 2023 ©IEEE [68]
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Table 5.3: Localization errors of ViewBirdiformer-I tested with view birdifica-
tion dataset w/o occlusion and w/ occlusion (visible pedestrian only).
ViewBirdiformer-I w/ occlusion shows comparable accuracy even con-
sidering occlusions.

Dataset Hotel (sparse) ETH (mid) Students (dense)
∆x̃ [m] ∆r [rad] ∆t [m] ∆x̃ [m] ∆r [rad] ∆t [m] ∆x̃ [m] ∆r [rad] ∆t [m]

Ours w/o occlusion 0.123 0.125 0.085 0.170 0.032 0.093 0.071 0.061 0.068
Ours w/ occlusion 0.129 0.143 0.087 0.174 0.035 0.101 0.071 0.064 0.066

5.6 Handling Occluded Pedestrians

Our transformer model handles varying numbers of pedestrians coming in and
out of frames, some of whom may be occluded in practice. In order to learn the
crowd motion model from all the pedestrians on the ground, we train our model
using the view birdification dataset without occlusions [66]. To validate the ap-
plicability of our model in realistic scenarios, we extend the view birdification
dataset [66] by simulating occlusions between pedestrians. As in Sec.4.1 “Atten-
tion Mask” of the main text, our model can handle occluded pedestrians by simply
masking the attention matrix for those pedestrians without any changes to the al-
gorithm. Table 5.3 compares the localization accuracy of ViewBirdiformer-I tested
with the dataset with occlusions (w/ occlusion) against that on the non-occluded
dataset (w/o occlusion). For w/ occlusion dataset, we birdify only non-occluded
pedestrians and evaluate localization errors of them, by masking attention to the
occluded pedestrian ids. These results clearly show that our model pretrained
on the synthetic, non-occluded dataset can handle realistic occlusions with only a
mild performance drop.

5.7 Comparison of Crowd Motion Models

We compare the localization accuracy of the learned crowd motion model in
the self-attention (i.e., TransMotion) with prescribed motion models (i.e., Con-
stVel [79] and SocialForce [33] used in GeoVB [66]). As shown in Tab. 5.4, the
results clearly show that our TransMotion can estimate future location of pedes-
trians more accurately than the predetermined models. While ConstVel and So-
cialForce perform poorly with Hotel and ETH since the models are not capable
of approximating these sparse interactions, our ViewBirdiformer can explain di-
verse interactions in the scene regardless of the densities of crowds. Our model
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Hotel ETH Students
(sparse) (mid) (dense)
∆x [m] ∆x [m] ∆x [m]

ConstVel [79] 0.294 0.275 0.223
SocialForce [33] 0.289 0.261 0.222
TransMotion-I 0.183 0.201 0.216
TransMotion-C 0.106 0.223 0.211

Table 5.4: The localization errors of pedestrian trajectories ∆x for each motion
model. Compared to the ConstVel and SocialForce models which per-
form poorly in sparsely crowded environments, our learned motion
model shows superior performance over diverse crowd densities.

trained with leave-one-out validation (i.e., TransMotion-C) also demonstrates that
the learned motion model can be generalized to diverse densities of crowds with-
out training data for the target scene. This implies our method can be applied to
real-world crowds with complex pedestrian interactions.

5.8 Attention Visualization

Figure 5.9 visualizes the learned attention in the multi-head attention layers of
ViewBirdiformer for typical example sequences. The left column visualizes it for
camera ego-motion estimation. The right column visualizes it for the trajectory
estimation of one of the pedestrians. In cross-attention between the ego-centric
view and the on-ground trajectories, we can see that our model adaptively attends
both to the ego-centric view and the on-ground past trajectories to better predict
the next-step trajectories conditioned on the ego-centric movements. ViewBirdi-
former attends to all pedestrians when estimating the camera ego-motion, while
it attends to pedestrians nearby the target, likely to avoid collisions, when esti-
mating the position of the pedestrian.
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Figure 5.9: Attention Visualization. The left column visualizes attention weights
on the ego-centric view inputs (top) and those on the on-ground past
trajectories (bottom) when estimating the ego-motion. The right col-
umn visualizes the attention weights when estimating the position of
the target pedestrian. The more opaque, the stronger the attention.
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Chapter 6

Pedestrian World Model

6.1 Background

Everyday, we successfully maneuver in a highly dynamic world with just our
egocentric, limited view of the surroundings. When we walk down the street, we
constantly map the positions of surrounding pedestrians on the ground plane. We
not only keep track of their current positions, but also predict their next positions.
When we play football, for instance, we are able to tell where other players will
end up, which is exactly why we can make that killer pass.

This predictive mental model of our dynamic surroundings is an illustrative
example of “World Models” [27], transition models of the environment. In this
chapter, we are particularly interested in deriving a world model of pedestrians
that can continuously localize all visible surrounding people and predict their
movements in the next few time steps. An accurate world model of people from
our egocentric views will enable efficient and accurate modeling of our people-
filled dynamic world and benefit various tasks including navigation, tracking,
and synthesis of crowds.

A world model of pedestrians that can be useful for such downstream tasks,
however, requires significant departures from past models [27, 44, 14]. First, it
must model the pedestrians on the ground plane but from inputs in egocentric
perspectives. This requires a nontrivial view transformation, often referred to
as Bird’s-Eye-View (BEV) transform. The world model, however, needs to pre-
dict the next on-ground movements from the observed current movements in
the 2D egocentric view, unlike BEV transform that focuses on an image to image
transform (i.e., appearance mapping) of only the current frame. We refer to this
inherently predictive purely geometric transform as ego2top transform.

79
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Second, the model needs to be fundamentally object-centric. It must model
each pedestrian as an independent object that interacts with other objects includ-
ing the ego-viewer, too. The interaction between pedestrians lies at the heart of
the coordination of the pedestrians as a whole, and the transitions of individual
pedestrians are largely governed by these object interactions especially in denser
crowds. Third, the model needs to model and predict the pedestrian movements
and their interactions conditioned on the observer. The observer itself is part of
the crowd, and its/his/her actions influence and are affected by the surrounding
people. Finally, the viewer would be moving and looking around while walking
in the very crowd that needs to be modeled. As a result, surrounding people will
come in and out of sight. The crowd itself will also consist of different numbers
of people from time to time. The model thus needs to naturally handle a varying
number of people.

We derive a world model of pedestrians that satisfy these requirements,
namely ego2top transform, object-centric interaction encoding, observer action
conditioned modeling, and variable number of constituents. We refer to our
model as InCrowdFormer. The key idea is to model pedestrians as individual
tokens and fully leverage attention for modeling their interactions and ego2top
transform in a Transformer architecture which also naturally models varying
numbers of pedestrians. Unlike previous approaches [20, 14] which model spatial
encoding and temporal prediction separately, our unified Transformer architec-
ture simultaneously encodes the social, temporal, and geometric relationships of
the viewer and surrounding pedestrians.

Two key challenges underlie learning an accurate Pedestrian World Model.
The model needs to decouple the ego-motion and pedestrian trajectories from
degenerated 2D movements in the image. In addition, the unknown absolute
scale of each object, i.e., pedestrian heights, introduces uncertainty in the ego2top
transform. For this, we introduce a latent code for each pedestrian and construct
a generative model that outputs the on-ground future location distribution con-
ditioned on the observed movements in an ego-centric view and the observer’s
action. We efficiently model this conditional probability with a Transformer con-
sisting of self-attention that encodes the social and temporal relationship between
the observer’s action and each pedestrian, and cross-attention that models the ge-
ometric relationship between the ego-centric and on-ground views. We generate
plausible observer trajectories [84] for training, which naturally lets the model
learn transitions of the world when navigating in a crowd while avoiding in-



6.2. Pedestrian World Model 81

tractable numbers of combinations of actions and crowd motions.
InCrowdFormer only requires pedestrian bounding boxes in the egocentric

view, which allows us to train it without access to actual images and overcome
the domain gap between synthetic and real views and also across scenes. We
validate the effectiveness of our InCrowdFormer with prediction and navigation
data of real-world pedestrian movements by synthetically generating ego-centric
views of crowd pedestrians but of ground-truth trajectories extracted from pub-
licly available crowd datasets [50, 73]. Extensive experimental evaluation show
that our unified Transformer World Model can accurately predict the future co-
ordination of pedestrians given the observer’s action while taking into account
uncertainty arising from imperfect cues of depths. We also demonstrate the ap-
plication of our pretrained model to real video sequences.

In summary, our contributions are threefold. (1) We introduce, to our knowl-
edge, the first egocentric Pedestrian World Model that models pedestrian and in-
crowd observer transitions on the ground plane from egocentric observations, (2)
derive it as a novel Transformer that leverages attention for pedestrian interaction
modeling and view transform for a variable number of people, and (3) demon-
strate its accuracy on real-world crowd motions. We believe our InCrowdFormer
will serve as a sound foundation of pedestrian movement modeling for a wide
range of applications. We will release our code and data upon acceptance.

6.2 Pedestrian World Model

Our goal is to derive an on-ground Pedestrian World Model (PWM), an object-
oriented abstraction of a crowd on the ground, from egocentric views captured
in the crowd. PWM consists of one observer as an actor and pedestrians visible
to that observer as objects. We derive an action-conditioned transition model
of the environment consisting of these objects that can directly learn from in-
environment 2D egocentric perception.

Consider a mobile robot equipped with a vision sensor immersed in a crowd
consisting of people walking towards their own destinations while interacting
with each other. A key characteristic of the PWM we aim to derive is that, un-
like past object-oriented world models [54], the observer is the actor and is also
part of the environment who interacts with other objects (pedestrians). In our
running example, the mobile robot with a vision sensor is the observer and its
ego-motion can be obtained by an IMU or other sensors including vision-based
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methods (e.g., SLAM [9] and View Birdification [66]). The observer location at
τ is given by the relative rotation R(θτ) ∈ SO(2) and translation tτ ∈ R2 on the
ground plane from the previous timestep τ − 1. The rotation R(θτ) and tτ directly
constitute the observer action aτ = [θτ|tτ]

⊤ ∈ R3.

At every timestep τ ∈ {1, . . . , T}, the robot captures an image Iτ through
which it observes the in-image states Xτ = {x1, . . . , xNτ} of Nτ people visible
from the robot. Each state xn = [un, vn, δun, δvn]⊤ (n = 1, . . . , Nτ) consists of
the 2D center position [un, vn]⊤ and its velocity [δun, δvn]⊤ in Iτ calculated from
the previous and subsequent frames. These states can be computed from the im-
ages with an off-the-shelf multi-object tracker [90], and the robot can keep track
of {1, . . . , Nτ} pedestrians appearing across frames within a time window cen-
tered at τ. Our objective is to predict future on-ground states of pedestrians
Yτ+1 = {y1, . . . , yNτ}, where yn = [xn, yn, δxn, δyn]⊤. The on-ground pedestrian
states y are described in the observer’s camera coordinates, i.e., we predict 2D
on-ground locations and their velocities relative to the observer’s view which is
then converted to absolute coordinates with the known observer state.

Given a set of in-image pedestrian states Xτ at the current time step τ and the
action aτ of the observer, our aim is to construct a transition model T (Xτ|aτ) 7→
Yτ+1 that predicts the on-ground pedestrian states Yτ+1 ∈ RNτ×4 in the future
conditioned on the observer’s action aτ. We can formulate this as learning a tran-
sition model

Hτ = V(Xτ) , Yτ+1 = G(Hτ, Yτ, aτ) , (6.1)

where V(·) is the Vision Module that encodes the ego-centric view observation
Xτ ∈ RNτ×4 into a d-dimensional embedding Hτ ∈ RNτ×d which represents a set
of pedestrian state embeddings in an ego-centric view, and G(·) is the Geomet-
ric Memory Module which makes predictions of the future on-ground pedestrian
states Yτ+1 based on the past on-ground state estimates Yτ and the current ob-
servation Xτ with an implicit transform between the ego-centric view and the
top-down ground view.

The mapping V from the in-image pedestrian states Xτ to the on-ground
pedestrian states Hτ should take into account the relationship between the pedes-
trians. Similarly, the mapping G should model the interaction between the pedes-
trians and the observer. We leverage the learnable set-to-set mapping of the at-
tention mechanism [85] which is also inherently agnostic to varying numbers of
inputs, i.e., the number of pedestrians Nτ observed by the robot.
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Figure 6.1: InCrowdFormer consists of two modules referred to as the Vision
Module and the Geometric Memory Module. The Vision Module en-
codes in-image interactions with self-attention to produce the current
state embeddings Hτ in an ego-centric view. The Geometric Memory
Module predicts on-ground future states of pedestrians with cross-
attention between the ego-centric view and on-ground past trajecto-
ries.

6.3 InCrowdFormer

We introduce InCrowdFormer, a Transformer-based World Model, that realizes a
PWM with object-centric interaction, ego2top transform, action conditioning, for
a variable number of pedestrians. As fig. 6.1 depicts, InCrowdFormer has two
modules, the Vision Module V and the Geometric Memory Module G.

6.3.1 Vision Module

The attention mechanism naturally provides a means to learn a mapping between
two sets with variable numbers of constituents. We fully leverage this to learn
the key ingredients, namely pedestrian interaction and ego2top transform both
naturally conditioned on the observer actions, of an on-ground Pedestrian World
Model from egocentric views.

The standard attention mechanism consists of a set of query vectors Q, key
vectors K, and value vectors V . These vectors are generated from the input tokens
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fs and ft as
Q = Wq ft , K = Wk fs , V = Wv fs , (6.2)

where WQ, WK, and WV are linear embedding matrices. The attention mechanism
is

Attn(Qi,Kj,Vj)
= ∑

j
AijVj , Aij =

exp(Q⊤
i Kj)

∑N
j′=1 exp(Q⊤

i Kj′)
, (6.3)

where we apply a softmax as a nonlinearity layer. In self-attention fs = ft and
for cross-attention we have fs ̸= ft. Unless otherwise noted, we use multi-head
attention [85] for both self-attention and cross-attention layers.

To model the interactions between pedestrians in the current frame, we use
self-attention to learn the object-wise interactions observed in the ego-centric
view during the state encoding process. As fig. 6.1 left depicts, the Vision Module
V first tokenizes input first-person-view (FPV) state vectors into ds-dimensional
tokens with multi-layer perceptron (MLP) layers, Xτ 7→ fs ∈ RNτ×ds . It then
computes self-attention over queries Q of tokens fs, where we encode their inter-
actions in the image space into intermediate embeddings Hτ.

6.3.2 Geometric Memory Module

Learning a Pedestrian World Model is fundamentally different from standard tra-
jectory forecasting problems [98] in that the on-ground movements of a crowd
that needs to be predicted is deeply intertwined with the observer’s ego-motion
(i.e., action). That is, how the pedestrians move relative to the observer is largely
affected by the observer’s action. For this, we model a mapping G(a, Hτ, Yτ) 7→
Yτ+1 by G = Fc(Fs(aτ, Yτ), Hτ), where we use self-attention Fs to capture social
interactions and cross-attention Fc to model the ego2top transform. This Geo-
metric Memory Module first tokenizes the on-ground action and past pedestrian
states as {aτ, Yτ} 7→ ft ∈ R(Nτ+1)×ds with MLPs and computes self-attention
over queries Q from tokens ft to encode the interactions between the action
and on-ground pedestrian trajectories. The cross-attention block takes queries
Q ∈ R(Nτ+1)×ds from the output of the self-attention layer and key, values
K, V ∈ RNτ×ds from the output of the vision module (Figure 6.1 left).

The geometric memory module is autoregressive, which means the module
predicts future on-ground states one step at a time and uses the current predic-
tion as input to make future predictions on a subsequent timestep. As the FPV
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view state embeddings Hτ are updated by the vision module V at every timestep,
their on-ground future predictions Yτ+1 are generated by the geometric memory
module G from the past predictions Yτ, the current observer’s action aτ, and the
FPV state embeddings Hτ.

We use two linear projections; φp : R4 7→ Rds for encoding in-image and on-
ground pedestrian states, X and Y , and φa : R3 7→ Rds for the observer’s action
a. We hard-concatenate positional information into states as x = [u, v]⊕ [δu, δv].
To encourage our model to generalize over diverse combinations of pedestrian
tokens and observer actions, we transform on-ground pedestrian tokens relative
to the observer’s action token at every timestep.

InCrowdFormer can handle a varying number of pedestrians, i.e., tokens, in
two ways. First, the attention matrix can be constructed with arbitrary sizes of
input keys K and queries Q. Second, an attention mask M ∈ R(Nτ+1)×Nτ , where
Mij = 0 can be applied, if the pedestrian id i is missing (e.g., occluded) at frame
τ, otherwise 1. The masked attention Â becomes

Âτ = Mτ ⊙ Aτ , (6.4)

where ⊙ denotes the Hadamard product.

6.4 Probabilistic InCrowdFormer

We encode uncertainties arising from unknown pedestrian heights by making In-
CrowdFormer reason probabilistically on the pedestrian positions and their tran-
sitions. Figure 6.2 depicts an overview of the training and testing process of our
Probabilistic InCrowdFormer.

To model the distribution of the future on-ground states of pedestrians
p(Yτ+1|Xτ, aτ) conditioned on the ego-centric view observation Xτ and the ob-
server’s action aτ, we formulate it as a conditional variational autoencoder
(CVAE). We introduce dz-dimensional latent codes for each pedestrian Z =

{z1, . . . , zNτ} ∈ RNτ×dz and re-formulate the future distribution of the pedestrian
states

p(Yτ+1|Xτ, aτ) =
∫

p(Yτ+1|Z, Xτ, aτ)︸ ︷︷ ︸
likelihood

p(Z|Xτ)︸ ︷︷ ︸
prior

dZ , (6.5)

where p(Yτ+1|Z, Xτ, aτ) is the conditional likelihood and p(Z|Xτ) = ∏n p(zn|Xτ)
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Figure 6.2: Overview of Probabilistic InCrowdFormer. The output MLP layer of
the Vision Module models the prior distribution. Each of the two
geometric memory modules models the approximated posterior dis-
tribution and likelihood distribution, respectively. The latent codes
are sampled from the approximated posterior module during train-
ing, and from the prior module at inference time.

is the conditional Gaussian prior factorized over pedestrians. The observer’s ac-
tion is deterministic in our Pedestrian World Model, so that latent codes are only
necessary for pedestrians and not the observer.

Due to the intractable integral computation in eq. (6.5), we minimize the neg-
ative evidence lower bound (ELBO) in our loss function L

LELBO(Xτ,Yτ+1, aτ; η, ϕ, ψ) =

Eqϕ(Z|Y ,X)

log pη(Yτ+1|Z, Xτ, aτ)︸ ︷︷ ︸
likelihood


− KL

qϕ(Z|Yτ+1, Xτ, aτ)︸ ︷︷ ︸
approximated posterior

∥ pψ(Z|Xτ)︸ ︷︷ ︸
prior

 ,

(6.6)

where the first term maximizes the expectation of the log-likelihood of the tar-
get future state in the predicted distribution, and the second term minimizes the
Kullback-Leibler (KL) divergence between the approximated posterior distribu-
tion and the prior distribution.

Given the current observed pedestrian states in the ego-centric view Xτ, the
observer’s action aτ, and future pedestrian state relative to the observer Yτ+1, our
goal is to learn a generative model p(Yτ+1|Xτ, aτ) by learning network parame-
ters η. In what follows, we describe how we implement each distribution in our
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Probabilistic InCrowdFormer.

Prior Module The Vision Module can be seen as as a prior network that pro-
duces latent codes Z = {z1, . . . , zNτ} each of which follows a Gaussian distri-
bution p(zn|Xτ) ∼ N (µn, (σn)2). We process the output of the Vision Module
Hτ = {h1, . . . , hNτ} with a single MLP layer to map them into parameters of each
Gaussian distribution (µn

p, σn
p ).

Approximated Posterior Module To approximate the posterior distribution
qϕ(zn|Yτ+1, Xτ, aτ), we use a Transformer decoder with the same self-attention
and cross-attention layers as the Geometric Memory Module. The cross-attention
layers in the Transformer decoder can efficiently model conditional relationships
by taking the embeddings of FPV states Hτ as keys and values, and the action
and the ground-truth future state on the ground {aτ, Yτ+1} as queries. We also
assume the approximated posterior distribution follows a Gaussian distribution
qϕ(zn|Yτ+1, Xτ, aτ) ∼ N (µn, (σn)2). MLP layers process the output of the Trans-
former Decoder to obtain the Gaussian parameters (µn

q , σn
q ) as in the Prior Mod-

ule. Note that this approximated posterior module is used only during training.

Likelihood Module We can view the Geometric Memory Module as a likelihood
module to model pη(Yτ+1|Z, Xτ, aτ). The latent codes Z for pedestrians are com-
puted from the approximated posterior module during training, and from the
vision module for inference. As we obtain predictions of future pedestrian states
autoregressively from the geometric memory module, we feed Y concatenated
with corresponding latent codes Z alongside the observer’s action aτ. We con-
catenate yn ⊕ zn for each pedestrian and tokenize these as input queries. The
cross-attention layers in the geometric memory module effectively models the
conditional relationship between Z and aτ and outputs a likelihood distribution.
We consider two variants of the proposed method based on the definition of the
outputs, InCrowdFormer-D and InCrowdFormer-G.

InCrowdFormer-D directly estimates the future pedestrian states and, for the
first term of eq. (6.6), uses the mean squared error (MSE), LD = ∥Ŷ − Y∥2, where
Ŷ is the ground-truth future state of pedestrians on the ground.

InCrowdFormer-G takes into account uncertainties arising from ego2top
transformation of unknown object scales as aleatoric uncertainty [42] computed
as a probability distribution over the InCrowdFormer outputs. We model the
uncertainty with a 2D Gaussian distribution on the ground p(Yτ+1|Z, Xτ, aτ) ∼
N (µn, Σn), and make InCrowdFormer output these Gaussian parameters for each
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pedestrian by defining the first term of eq. (6.6) as a negative log-likelihood loss of

a 2D Gaussian function LG = ∥Ŷx−Yx∥2

(2σx)2 +
∥Ŷy−Yy∥2

(2σy)2 . Such a parametric representa-
tion of uncertainty of the future pedestrian state would be useful for downstream
applications.

6.5 Experiments

We evaluate the effectiveness of Probabilistic InCrowdFormer (hereafter simply
InCrowdFormer) trained on real-world crowd trajectories with augmented ob-
server’s actions in terms of its T-step prediction accuracy and also demonstrate
its application to real video sequences.
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Ego-centric View Crowd Dataset We construct a crowd dataset consisting of
on-ground real pedestrian trajectories paired with their state features in an ego-
centric view. We first extract trajectories referred to as Hotel, ETH, and Students
from the ETH [73] and the UCY [50] datasets. These three sets of trajectories cor-
respond to sparse, moderate, and dense crowds. To compute the egocentric views
of those pedestrians, we first sample pedestrian heights from a Gaussian distri-
bution N (µ, σ) with µ = 1.70 m and σ = 0.07 m according to the statistics of Eu-
ropean adults [87]. The virtual head points with the height h ∼ N (µ, σ) are then
projected to the 2D positions [u, v] by perspective projection with a known intrin-
sic matrix A. For each pedestrian, we compute the state feature [u, v, δu, δv] in
the ego-centric view and pair it with its corresponding on-ground position. Since
our proposed Pedestrian World Model is an abstraction of the on-ground crowd
movements, we do not need photo-realistic renderings in the datasets. This al-
lows us to augment datasets with diverse combinations of ego-motion and crowd
pedestrian trajectories easily and efficiently, which is otherwise challenging, if not
impossible, to collect in the real world.

Observer Action Generation To model the transition of the world in the ob-
server’s view when navigating in a crowd while avoiding potential collisions, we
generate plausible observer’s trajectories with an Optimal Reciprocal Collision
Avoidance (ORCA) planner [84] in the ego-centric view crowd dataset. We ran-
domly sample starting positions on a circle with a fixed radius r = 8.0 m and the
observer walks to its destination set at the opposite side of the circle by the plan-
ner. We mount two virtual, perspective cameras in front and rear on the observer,
each of which captures states of the pedestrians in the crowd.

Baselines We compare two variants of world models consisting of a stan-
dard MLP object encoder and state-of-the-art memory modules referred to as
Recurrent State Space Model (RSSM) [27] and Transformer State Space Model
(TSSM) [14]. We refer to these baselines as MLP-RSSM and MLP-TSSM. In
their original implementations, these world models encode in-image transitions,
unlike our model which encodes on-ground transitions conditioned on the ego-
views. To apply these models to our crowd dataset, we change the object de-
coder output from the in-image state features to the on-ground state features. We
consider two variants of InCrowdFormer, InCrowdFormer-D (deterministic) and
InCrowdFormer-G (Gaussian) as introduced in Sec. 6.4.
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Figure 6.3: Qualitative results of InCrowdFormer-G applied to the Hotel (top
row), ETH (middle), and Students (bottom) datasets. Left most: First
frames in the ego-centric views. Rest: On-ground future prediction
results in subsequent frames. Negative heights of bounding boxes
depict observations from the rear camera. The probabilities are ren-
dered with red (high) to blue (low) heatmaps. Stars depict the ground-
truth positions. Our model successfully predicts on-ground pedes-
trian states for crowds of diverse densities. Even in a dense crowd,
our method can successfully handle the varying number of pedestri-
ans and predict accurate future locations of nearby pedestrians.
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Figure 6.4: Inference results of InCrowdFormer-G applied to real video sequences
from the JRDB dataset. Top row shows input ego-centric view video
and pedestrian bounding boxes. Bottom row shows on-ground τ + 1
future pedestrian trajectories predicted by our model. Our method
can easily be adapted to real video sequences as it only requires the
positions and scales of the bounding boxes of pedestrians.
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Metric Given a sequence of observer’s actions and corresponding ego-centric
view observations, we predict the on-ground state of pedestrians in the future
by autoregressively feeding an action aτ and ego-centric view states Xτ into our
InCrowdFormer model. For a set of action sequences {a1, . . . , aT} and corre-
sponding ego-centric view states {X1, . . . , XT} during T-steps in the testing set,
we evaluate the prediction accuracy with Average Displacement Error (ADE)
and Final Displacement Error (FDE). We define ADET = 1

TNT ∑NT

n=1 ∑T
τ=1 ∥ŷn

τ −
yn

τ∥ and FDET = 1
NT ∑NT

n=1 ∥ŷn
T − yn

T∥, respectively. For InCrowdFormer-D and
InCrowdFormer-G, we compute the best-of-10 results, i.e., the minimum ADE
and FDE from 10 randomly-sampled latent codes as in [26].

6.5.1 Quantitative evaluation of prediction accuracy

We prepare two validation splits for the ego-centric view crowd dataset. One is
the intra-scene validation split, and the other is the cross-scene validation split,
i.e., leave-one-out cross-validation. Table 6.1 shows the prediction accuracy eval-
uated in ADET and FDET with T ∈ {5, 10}. The RSSM baseline makes a pre-
diction without taking object interactions into account, which results in the low-
est accuracy in all the metrics. The TSSM can be considered as a subset of our
model without a cross-attention mechanism between ego-centric and top-down
views. Both the InCrowdFormer-D and InCrowdFormer-C outperform TSSM
in terms of short-term (T = 5) and long-term (T = 10) prediction accuracy.
These results clearly demonstrate the effectiveness of our cross-attention mech-
anism to reconstruct and predict on-ground future pedestrian states. Finally, our
method achieves high accuracy on the dataset with the cross-scene validation
split. This demonstrates that our method can be generalized to unknown scenes
by training the model with a diverse density of crowds. Overall, InCrowdFormer-
D achieves slightly higher accuracy than InCrowdFormer-G, which can be at-
tributed to the fact that InCrowdFormer-D directly regresses future positions
while InCrowdFormer-G predicts uncertainty distributions. Most important, our
method still achieves high (< 1.0 [m]) accuracy for long-term (T = 10) predic-
tion sequences as well as short-term (T = 5) sequences by attending to observed
ego-centric view features at every timestep.

Qualitative Results Figure 6.3 visualizes the prediction results of
InCrowdFormer-G from time τ to τ + 5 frames on the Hotel, ETH, and Students
datasets. InCrowdFormer-G outputs the future location of a pedestrian with a
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2D Gaussian distribution which captures uncertainty arising from imperfect cues
of depths and pedestrian interactions. Our method also predicts future locations
of nearby pedestrians in a dense crowd by masking the attention matrix for
occluded pedestrians. These outputs are beneficial to downstream applications
such as robot crowd navigation, where we should path-plan to avoid potential
collisions with nearby pedestrians from an ego-centric view and limited depth
information.

6.5.2 Inference on Real Data

Figure 6.4 shows the inference results of InCrowdFormer-G applied to real video
sequences from the JRDB dataset [58]. We first train our model with the same
camera parameter of JRDB. We train on the ETH dataset, which is similar in crowd
density to the JRDB sequences. We then apply our pre-trained model to the tar-
get sequences. Our method can easily be adapted to real video sequences as it
requires only the position and scale of pedestrian bounding boxes and abstracts
away their appearance.
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Chapter 7

Conclusion

In this dissertation, we introduced view birdification, a task of simultaneously re-
covering the location of a camera in the crowd and its surrounding pedestrians
only from perceived movements in an ego-centric video. The key research ques-
tion lies in the task is how we can achieve localization and prediction just from dy-
namic objects. To answer this question, we first formulated view birdification as
a geometric reconstruction problem and extended it as an object-oriented world
model. Technically, we derived a foundation based on the Transformer architec-
ture simultaneously to learn geometric transformation and the motion model of
dynamic objects, which are the key common challenges in both localization and
prediction from in-crowd views. We believe view birdification will become es-
sential for mobile robot navigation and localization in real-world crowds.

7.1 Summary of Contributions

Chapter 3: View Birdification We first formulated view birdification as a ge-
ometric reconstruction problem, where we reconstruct 2D on-ground displace-
ments of the observation camera and its surrounding pedestrians from the per-
ceived 2D movements in an ego-centric view. Assuming that trajectories are all
on the ground plane, we simplify the complicated localization in dynamic envi-
ronments as a 2D-to-2D transformation problem. The definition is not restricted
to the specific camera model and can be applied to any type of camera models
whose projection model is known a priori.

Chapter 4: View Birdification from a Bayesian Perspective In Chapter3, we
formulated view birdification as a geometric trajectory reconstruction problem.

95
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The key difficulty underlying this task is that the two kinds of trajectories, the
camera ego-motion and pedestrian trajectories on the ground plane, are deeply
intertwined in the observed movements in an ego-centric view. To address this,
we derived a cascaded optimization from a Bayesian perspective that alternately
updates the estimated camera ego-motion and pedestrian locations relative to it.
We empirically analyzed the properties of the solution with respect to the num-
ber of pedestrians in the crowd, which brings us key insights to further extend
this research topic. Our extensive evaluation demonstrates the effectiveness of
our proposed view birdification method for crowds of varying densities. We be-
lieve view birdification has implications for both computer vision and robotics,
including crowd behavior analysis, self-localization, and situational awareness,
and opens new avenues of application including dynamic surveillance.

Chapter 5: Learning to recover ground-plane crowd trajectories and ego-motion
In Chapter 4, we derived a cascaded optimization approach for view birdification
from a Bayesian perspective and empirically analyzed the property of its solution.
However, we also found two critical problems with this approach. First, the for-
mulation assumes a known motion model, which heavily restricts applications to
the real-world crowd. Second, the computational cost of this iterative approach is
too large to achieve localization in real-time. To address these problems, we pro-
posed a data-driven framework to efficiently obtain the solution by learning from
a pair of trajectories of pedestrians and an observation camera. We refer to this
as a ViewBirdiformer. The proposed architecture enables efficient and accurate
view birdification by adaptively attending to movement features of the observer
and pedestrians in the image plane and on the ground. Extensive evaluations
demonstrate the effectiveness of ViewBirdiformer for crowds with diverse pedes-
trian interactions. We believe ViewBirdiformer finds use in various applications
of crowd modeling and synthesis across a wide range of disciplines.

Chapter 6: Pedestrian World Model Lastly, we extended view birdification as
an object-oriented world model. Unlike conventional world models that predict
the future state of the whole image from an egocentric viewpoint, our aim is to
construct an object-oriented world model that predicts the future state of each
pedestrian while learning the interaction between them. We refer to this object-
oriented world model as the Pedestrian World Model, a computational transition
model of pedestrians that can continuously localize and predict the movements
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of all people visible to the observer. To represent the Pedestrian World Model, we
extend view birdification as a transition model that predicts the future state of the
crowd from in-crowd views. We derived InCrowdFormer, a Transformer-based
Pedestrian World Model that predicts on-ground pedestrian trajectories from an
ego-centric view observation. Our extensive evaluation demonstrates the effec-
tiveness of our approach in diverse density of crowds, and also shows promising
results in zero-shot adaptation to real video sequences. We believe our InCrowd-
Former will serve as a sound foundation for crowd and pedestrian movement
modeling and enable a wide range of downstream applications including but not
limited to navigation.

7.2 Towards Autonomous Navigation in the Real

World

In this dissertation, we focused on establishing a foundation of view birdification
under the assumptions that people in a crowd follow a common motion model.
We also assume that the observer also moves smoothly in the crowd and the
mounted camera does not change its orientation against the observer’s moving
direction. These assumptions are not realistic and we still have several missing
pieces to apply our work to the real-word. Ideally, we would train on real videos
of pedestrians. This, however, proves difficult, especially in the current COVID
19 pandemic, as we are not allowed to gather many people in one place. Preser-
vation of privacy also makes filming people on the street difficult. We plan to
overcome this dilemma by developing a framework that can synthesize walking
motions for real trajectories in a photorealistic simulator, which we believe will
benefit the community at large.

Realistic Observer’s Movements We assume that the observer also follows the
crowd flow in the scene and never changes its orientation of the mounted camera
drastically across the frames. Especialyl in data-driven approaches (Sections 5–
6), we cannot augment infinite number of combinations of the observer’s ego-
motion and on-ground trajectories of surrounding pedestrians. Collecting real-
world crowd dataset from an ego-centric view (i.e., mobile robot or pedestrians)
at scale will be beneficial to analyze the effect of observation noises arising from
such realistic movements.
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Applications to Diverse Scenarios Our overall evaluations highly depend on
publicly available crowd datasets [73, 50]. While these datasets include diverse
densities of crowds, the crowd behavior is limited to the simple scenario where
people in the crowd just walk towards a fixed destination. In our real world,
pedestrians in a crowd have multiple destinations such as shops and buildings
and their walking paths are affected not only by interactions between nearby
pedestrians but also by semantic scene contexts. We plan to extend our work to
introduce the semantic context by encoding the semantic map before calcurating
attention between pedestrian tokens.

Integration to Mobile Robot Navigation Platform We do not intend to fully re-
place the existing static keypoints-based approaches by view birdification. These
two approaches are complementary to each other. As discussed in Section 4.3,
if the static keypoints are available near the observation camera, we can use
static keypoints-based localization rather than view birdification. We suppose
that the navigation system seamlessly switch static keypoints-based approaches
and dynamic keypoints-based view birdification according to the observed sit-
uation. Another promising approach is to fuse multiple localization resources
including view birdification according to its reliability in the scene. We hope our
dynamic keypoints-only approach expands traversable areas of robots in the dy-
namic world, where prior approaches easily get lost.

7.3 Future Directions

Fig. 7.1 depicts an overview of our contribution and its relevant applications.
View Birdification is a newly defined task and thus there is a lot of room for fur-
ther research in terms of real-world applications. In what follows, we will discuss
possible future research directions.

End-to-end Learnable Framework for Raw Image Inputs In this dissertation,
we assumed that pedestrian bounding boxes are detected by external trackers and
they are perfectly identified across frames. Also, occlusion handling is carried
out by an external multi-object tracker. We envision a feedback loop from our
birdificaiton framework that can inform the multi-object tracker to reason better
about the occluded targets, which will likely enhance the accuracy as a whole
even in heavily occluded scenes. View Birdification can work complementary to
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Figure 7.1: Future Directions. We build a foundation of on-ground pedes-
trian movement estimation and prediction from ego-centric in-crowd
views. Our work can be used for various downstream applications
such as navigating mobile robots in a crowd. The learned ego-motion
estimator and world models will be used as a versatile state represen-
tation for in-crowd observations.

3D Multi-Object Tracking [90, 36]. The on-ground ego-motion and the pedestrian
motion model which are both estimated by view birdification are indeed helpful
to detect and track pedestrians across frames efficiently in the 3D space.

Pedestrian World Model for Uncertainty-aware Navigation One critical limi-
tation of monocular visual perception is uncertainty in depth, which cannot be
resolved in principle. Pedestrian World Model and its uncertainty-aware outputs
are designed for downstream applications such as crowd-aware mobile robot
navigation [69, 13], e.g., the controller plan the observer’s next action to avoid
potential collision, assuming the tail of the future state distribution as an inflated
radius of pedestrians. As illustrated in Fig. 7.1 Right, predicted on-ground future
states of pedestrians can be used as inputs for arbitrary controllers to determine
the next action of the observer. Specifically, the learnt pedestrian world model
can be used as a simulator of the world in Model-Based Reinforcement Learning
(MBRL) [89, 63, 4]. Once the model of a crowd conditioned on the observer’s
movement is learned, we can train the observer’s controller only inside of the
learnt Pedestrian World Model.

Another interesting direction is simultaneously to estimate localization uncer-
tainty while also estimating the relative location of the pedestrians. In Section 6,
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we assumed perfect odometry observation for the observer’s action, i.e., known
observer ego-motion, and did not consider observation noise in the ego-centric
views. We believe that this can be modeled similarly as uncertainty in depth aris-
ing from pedestrian’s height variances, which we plan to explore in future work.

Transformer as a Policy Network Conventional reinforcement learning-based
navigation approaches design the transition model and the policy network with
a modular, separated network [27, 20]. On the contrary, Transformers recently
achieved remarkable success in reinforcement learning by formulating Markov
Decision Process (MDP) as a sequence modeling problem [15, 61]. Specifically,
Transformers learn to predict the next best action by taking attention over the
previous states, actions, and rewards. Given a sequence of demonstrations, e.g., a
pair of states and corresponding actions, Transformer-based architecture can take
long-term dependencies into account effectively and efficiently. Inspired by this,
one possible research direction is to extend our Transformer-based Pedestrian
World Model as a policy as it can naturally predict the ego-motion conditioned on
the surrounding pdestrian’s movements. We believe Transformers will become a
powerful foundation to model and translate an object-oriented world while learn-
ing the interactions between them.
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