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Abstract

Recent years have witnessed a significant advancement in data-driven approaches

utilizing machine learning techniques, as a result of the increasing diversity of data.

These sophisticated approaches have been extensively utilized in a variety of ap-

plications such as computer vision, natural language processing, healthcare, eco-

nomic policy, and education. Despite the remarkable success and significant impact

achieved by advanced machine learning methods in the real world, their effective

deployment in decision-making remains a challenge in some scenarios. In this re-

gard, the estimation of treatment effects, which seeks to quantify the impact of a

particular intervention, holds paramount significance in a wide range of domains for

effective decision making.

In this thesis, we discuss treatment effect estimation problems specifically in

terms of three key challenges: data scarcity, observational bias, and hidden con-

founding variables. The first challenge relates to the scarcity of available data, as

collecting extensive observational data is often impeded by the associated costs of

time, monetary investment, and human effort. The second challenge pertains to the

presence of observational bias, which arises due to the decision-maker’s policy in

assigning treatments based on confounding variables. Besides, we can only observe

one realization of possible treatments, namely, the counterfactual nature in treat-

ment effect estimation. These factors result in biased observational data and make

naive estimands unreliable. The third challenge is the presence of hidden confound-

ing variables. It is necessary to have all the confounding variables for the accurate

treatment effect estimation; however, it may not be feasible to obtain all of them in

observational data due to considerations of confidentiality or the expenses incurred

in data collection.

To overcome these challenges, we designed several approaches based on advanced

machine learning techniques. The first approach involved the utilization of unlabeled

data, which are comparatively more attainable, by integrating two innovative con-
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cepts from causal inference and semi-supervised learning: matching and label prop-

agation, to leverage the abundance of unlabeled data that is readily accessible. The

second strategy involves leveraging a wealth of auxiliary information in the form of

graph-structured data associated with treatments. While conventional studies tend

to focus on binary or multiple-choice treatments, our approach capitalizes on this

auxiliary information in tackling the complex issue of treatment effect estimation,

particularly when the number of treatments is substantial. In our third approach,

we address the challenge of treatment effect estimation in the presence of hidden

confounding variables. Modern advanced generative models such as the Variational

Autencoders (VAE) have enabled us to effectively deal with treatment effect esti-

mation problem with hidden confounding variabels. However, a naive application of

VAEs may lead to suboptimal performances due to the nature of their loss function.

Our analysis demonstrates that this phenomenon also manifests in the context of

treatment effect estimation and can give unsatisfactory results. To mitigate this,

we drew upon recent theoretical insights on VAEs and introduced an innovative

matching approach that incorporates hidden confounding variables. Furthermore,

through extensive experiments on synthetic, semi-synthetic, and real-world datasets,

we validated the effectiveness of these three approaches.
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Chapter 1

Introduction

With the exponential advancement of technology and systems, various types of data

and information have been stored in numerous fields. Data-driven decision making

has emerged as a predominant method for tackling complex problems in real-world

scenarios, thereby leading to flourishing of machine learning techniques. In recent

years, predictive models incorporating sophisticated machine learning algorithms

have seen a considerable increase in development and application across numerous

fields, including computer vision [1, 2], natural language processing [3, 4], chemoin-

formatics, [5, 6, 7] recommendation [8, 9] amongst others. The main goal of con-

structing such predictive models is to support people in making complex decisions.

However, a simple supervised learning framework that merely predicts a target

outcome for an input may not be appropriate for all scenarios. For instance, in the

field of healthcare efficacy evaluation, the objective is to assess the impact of drugs

on patients. Predicting outcomes when drugs are prescribed to patients is not an

effective solution, as recovered patients may have recovered without the drugs, hence

administering drugs in such a case is not an efficient decision. Similarly, in the field

of advertising, the aim is to predict the increase in consumer purchasing propensity

resulting from an advertisement. Similar to the field of healthcare, advertisements

are given to those consumers who would have bought the products regardless of
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Figure 1.1: An illustrative pipeline for treatment effect estimation from observa-
tional data. Treatment is assigned by a decision maker using the target individual’s
covariates such as age, blood type, and chronic diseases. Then we only observe only
one realization (the upper path of data collection procedure). These mechanisms
make observational data skewed.

the advertisements, which may not a be feasible action as advertising for such con-

sumers is not effective. Therefore, to make effective decisions in such situations, it is

crucial to comprehend the difference in outcomes resulting from changes in the con-

trollable variable, i.e., the treatment effect. Treatment effect estimation has drawn

a substantial number of researches for a long time across a wide range of fields.

Following the potential outcome framework, known as the Neyman-Rubin potential

outcomes framework proposed by Neyman and Rubin [10, 11], a large number of so-

phisticated methods, including classic matching-based methods [12, 13], tree-based

methods [14, 15, 16], have been proposed, and more recently, neural networks [17,

18, 19, 20] have also been applied to treatment effect estimation. Besides the po-

tential outcome framework, a large number of studies also formulated treatment

effect based on the Structural Causal Models (SCMs) in the framework proposed

by Pearl [21, 22], which also provide tools for modeling treatment effects through

potential outcomes, and are quite useful in expressing complex causal relationships

between random variables. The SCMs have been successfully employed in causal

analyses involving unobserved variables [23, 24, 25, 26]. While sophisticated meth-

ods have been developed, several frequently appearing challenges still exist and are

difficult to mitigate in practice.

We describe an illustrative pipeline of treatment effect estimation from obser-



15

vational data in Figure 1.1. In addition, we briefly summarize the difficulties in

estimating treatment effect from observational data in the real world.

Data scarcity: In practical situations, it is frequently necessary to address treat-

ment effect estimation problems with limited data resources. For instance, the

evaluation of the efficacy of medical treatments in the healthcare domain often ne-

cessitates the procurement of extensive data through costly experimentation. This

not only incurs a significant cost in terms of money and time, but also requires us to

work on treatment effect estimation with data scarcity. Furthermore, this scarcity

not only poses a critical issue in and of itself, but exacerbates other underlying dif-

ficulties as well.

Observational bias: Observational bias is a bias caused by a decision maker or

some mechanisms that assign treatment to individuals. This bias is often referred to

as selection bias. Owing to the counterfactual nature of treatment effects, where we

have access to only the outcomes of one treatment and cannot observe the outcomes

of other treatments, observational bias results in data that is susceptible to being

skewed. For instance, in the healthcare domain, elderly individuals are more likely

to receive medication than younger individuals, thereby leading to an age-based bias

in treatment assignment that is non-random. Therefore, naively learning predictive

models from skewed observational data cannot produce accurate treatment effects,

and consequently necessitating the use of techniques that mitigate observational

bias. Additionally, the space of treatments can be larger than binary and consists of

multiple or continuous treatments, further complicating the task of bias mitigation.

Hidden confounding variables: Confounding variables are variables that affect

both on treatment assignment and outcomes. Most studies often assume the pres-

ence of these variables in observational data; however, this assumption is not always

met. Some covariates, such as daily diet or income, may be unobtainable due to
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factors such as cost and privacy considerations. These confounding variables are

referred to as "hidden confounding variables", as they are not visible and included

in observational data. However, it is not possible to accurately estimate the treat-

ment effect without taking these variables into account. Therefore, inferring hidden

confounding variables is essential for accurate treatment effect estimation.

Next, we outline several current and prevalent approaches to address the afore-

mentioned challenges. A wide range of machine learning methods have been devised

to tackle the issue of data scarcity. A promising solution in overcoming this challenge

is the utilization of unlabeled data, which is often formulated as semi-supervised

learning. This approach is particularly useful in situations where obtaining labeled

data is cost-prohibitive, while unlabeled data can still be obtained with relative

ease. In addition, by taking treatment effect estimation problem as semi-supervised

learning problem, it is expected that a robust predictive model can be learned even

with limited labeled data.

Secondly, a great deal of effort has also been devoted to mitigate observational

bias. The classical matching approach is a widely utilized solution, which compares

pairs of individuals with similar covariates who received different treatments and

impute counterfactual outcomes [12, 27]. Besides the matching-oriented strategies,

recent studies have also demonstrated the efficacy of deep learning-based methods

in mitigating bias [18, 17]. The key idea of these deep learning methods is to balance

representations between treatment and control group by minimizing the discrepancy

of these two groups representations.

Thirdly, the estimation of treatment effects in the presence of hidden confound-

ing variables has garnered substantial attention among researchers [25, 24, 28, 26].

Recently, Variational Autoencoder (VAE) [29] was introduced to the field of treat-

ment effect estimation [24, 28]. The VAE framework enables the inference of hidden

confounding variables as latent variables and the estimation of outcomes based on

these latent variables.

Based on the outlines regarding several possible solutions to these difficulties,
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Figure 1.2: Dependence structure of the chapters in this thesis. We also briefly state
how the three key difficulties are addressed in the each chapter.

we present brief summaries of the remaining chapters below. Dependence structure

of chapters in this thesis is described in Figure 1.2. We colorized three challenges

tackled in this thesis and outlined the solutions to these challenges.

In Chapter 2, mathematical definitions based on the potential outcome frame-

work [11, 30] and the SCMs framework [21, 22] for treatment effect estimation are

detailed. As our approaches are formulated based on either one of them depending

on the convenience in formulation, we provide an introduction of several terminolo-

gies used in this context.

In Chapter 3, we discuss a method that uses not only labeled data but also

unlabeled data. Label scarcity has been one of the vital problems in numerous

industries and extensively studied in the field of machine learning [31, 32]. One of
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the most promising strategies to incorporate unlabeled data is label propagation [33].

Label propagation defines a nearest-neighbor graph that includes unlabeled data

based on individual similarity and propagates labels through the graph. Therefore,

labels on unlabeled data can be efficiently predicted by their individual neighbours.

In addition, the matching method in treatment effect estimation also seeks to find

similar individuals to propagate counterfactual outcomes. We combine two ideas

from causal inference and semi-supervised learning, namely, matching and label

propagation, respectively, to propose counterfactual propagation, which is the first

semi-supervised treatment effect estimation method. Using a motivating example,

we also demonstrate how useful the proposed method is.

In Chapter 4, we examine a method that addresses graph-structured treatments.

As previously noted, outcome estimation of treatments for individual targets is a

critical aspect of decision-making that is based on causal relationships. While prior

studies have primarily considered binary or multiple-choice treatments, some appli-

cations feature an extensive array of treatments that are rich in information. In

this chapter, we focus on an important class of such cases, namely, the outcome

estimation problem of graph-structured treatments such as pharmaceuticals. Given

the extensive number of possible treatments and the counterfactual nature of the

problem, determining treatment effects from observational data presents a consider-

able challenge. Our proposed method GraphITE extracts the representations of the

graph-structured treatments using graph neural networks, and also mitigates the

observation biases by using HSIC regularization. By HSIC regularization, we aim to

increase the independence of the representations of the targets and the treatments.

Owing to its capability of incorporating graph structured treatments, the proposed

method also enables us to handle "zero-shot" treatments that are not included in

observational data.

In Chapter 5, we address a strategy for estimating treatment effects in the pres-

ence of hidden, confounding variables. Despite the assumption that observational

data encompasses all confounding variables, it is impracticable to ensure their ex-
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haustive inclusion. Furthermore, due to their associated costs, certain confounding

variables may pose challenges in terms of their obtainment. Recently, VAE-based

methods have been successfully applied to treatment effect estimation problems.

However, a major limitation of VAE-based methods is the lack of theoretical guar-

antees, as a recent analysis has shown that an optimal solution of VAE may not

yield a correct generative function for a particular dataset class [34]. Hence, we

opine that this phenomenon may lead to undesirable results if employed naively in

this problem. Therefore, we propose an efficient VAE-based method that employs

information theory in estimating treatment effect while combining it with a match-

ing technique. To the best of our knowledge, this is the first work that gives the

correct treatment effect given an optimal solution using VAE-based methods.

Finally, in Chapter 6, we conclude this thesis and discuss current limitations of

the proposed methods. We also suggest promising future directions with regard to

treatment effect estimation from small observational data.
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Chapter 2

Preliminaries

In this chapter, we present preliminaries with regard to treatment effect. There exist

primarily two frameworks for treatment effect estimation: (i) the potential outcome

framework [11, 35, 36, 37] and the Structural Causal Models (SCMs) framework [38,

21, 22]. Further, we provide several mathematical definition employed in this context

for the both frameworks. Throughout this chapter, let x denote the covariates

including individual features, t ∈ {0, 1} indicate the treatment.

2.1 The potential outcome framework

The potential outcome framework, also known as the Neyman-Rubin causal model,

is a framework in which the causal relationship between treatment and an outcome

variables is evaluated based on the comparison of potential outcomes under treat-

ment and control conditions. Let y1, y0 denote the potential outcomes, which are

outcomes under each treatment, of an individual under each treatment. In this

framework, Individual Treatment Effect (ITE) is defined as:

ITE := y1 − y0. (2.1)
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Based on several assumptions, we can identify the treatment effect of a group,

namely, Average Treatment Effect (ATE) defined as:

ATE := E[y1 − y0]. (2.2)

In some applications, particularly in the field of healthcare, the heterogeneity of

treatment effects across various subgroups conditioned on covariates such as age,

gender, blood type, and health condition x is a crucial concern and main interest.

The heterogeneous treatment effect, often called as Conditional ATE (CATE), is

defined as:

CATE(x) := E[y1 − y0 | x]. (2.3)

The estimation of CATE plays an indispensable role in determining and providing

the best actions for each individual, and thus making personalized decision making

feasible.

2.2 The Structural Causal Models (SCMs) frame-

work

In this chapter, we particularly refer to the SCMs introduced by Pearl [38, 21]. The

SCMs refer to framework used to represent and evaluate complex causal relationships

among both observed and unobserved variables. For example, structural equation

for variable A as a cause of B is expressed as:

B := f(A), (2.4)

where f is a deterministic function. The SCMs are also employed in modeling

potential outcomes. Let y denote the outcomes of an individual. In the SCMs
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framework proposed by Pearl, the intervention is denoted using do−operator. A

do−operator is utilized to distinguish the conditional distribution, for example, P (y |

t = 1) and P (y | do(t = 1)). The former, the probability distribution P (y | t = 1)

represents the population distribution of y among individuals whose t values are

1. However, the latter P (y | do(t = 1)) represents the population distribution of y

when all the individuals have their t values are fixed at 1. Using do−operator, ATE

is defined as:

ATE := E[y | do(t = 1)]− E[y | do(t = 0)]. (2.5)

Similar to the potential outcome framework, by letting P (y | x, do(t = 1)) denote

the conditional probability given x in the distribution by intervention do(t = 1),

CATE is defined as:

CATE(x) := E[y | x, do(t = 1)]− E[y | x, do(t = 0)]. (2.6)

If unobserved confounding variables, namely, hidden confounding variables, ex-

ist, we need to infer them from observational data. We describe two examples of

graphical causal models in Figure 2.1. In Figure 2.1(a), we can naively give potential

outcomes given x and t as:

p(y | x, do(t)) = p(y | x, t). (2.7)

However, in Figure 2.1(b),

p(y | x, do(t)) ̸= p(y | x, t) (2.8)

because x does not have a direct effect on y, and z is not used for prediction even

though it has a direct effect on y. To mitigate this problem, we need conditioning
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(a) (b)

Figure 2.1: Graphical models. While (a) represents a graphical model in which
variable x includes all the confounding variables, (b) represents a graphical model
in which variable x does not include confounding variables and unobserved variable
z includes all the confounding variables.

on hidden confounding variables z as:

p(y | z, do(t)) = p(y | z, t). (∵ The definition of Pearl’s do-calculus.) (2.9)

Consequently, if z is recovered from x, y can be predicted as:

p(y | x, do(t)) =
∫
z

p(y | z, do(t))p(z | x)dz (2.10)

=

∫
z

p(y | z, t)p(z | x)dz. (2.11)

In Chapter 3 and 4, we formulate problems following the potential outcome

framework. In contrast, the SCMs facilitate the expression of complex causal rela-

tionships between variables, and are useful particularly in the formulation of treat-

ment effect estimates in the presence of unobserved confounding variables. Hence,

we formulate a problem following the SCMs framework in Chapter 5.
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Chapter 3

Counterfactual Propagation for

Semi-Supervised Individual

Treatment Effect Estimation

3.1 Introduction

One of the important roles of predictive modeling is to support decision making

related to taking particular actions in responses to situations. The recent advances

of in the machine learning technologies have significantly improved their predictive

performance. However, most predictive models are based on passive observations

and do not aim to predict the causal effects of actions that actively intervene in

environments. For example, advertisement companies are interested not only in their

customers’ behavior when an advertisement is presented, but also in the causal effect

of the advertisement, in other words, the change it causes on their behavior. There

has been a growing interest in moving from this passive predictive modeling to more

active causal modeling in various domains, such as education [15], advertisement [39,

13], economic policy [40], and health care [41].

Taking an action toward a situation generally depends on the expected improve-
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ment in the outcome due to the action.

This is often called the individual treatment effect (ITE) [11] and is defined as

the difference between the outcome of taking the action and that of not taking the

action. An intrinsic difficulty in ITE estimation is that ITE is defined as the differ-

ence between the factual and counterfactual outcomes [42, 21, 11]; in other words,

the outcome that we can actually observe is either of the one when we take an

action or the one when we do not, and it is physically impossible to observe both.

To address the counterfactual predictive modeling from observational data, various

techniques including matching [12], inverse-propensity weighting [43], instrumen-

tal variable methods [44], and more modern deep learning-based approaches have

been developed [18, 17]. For example, in the matching method, matching pairs of

instances with similar covariate values and different treatment assignments are de-

termined. The key idea is to consider the two instances in a matching pair as the

counterfactual instance of each other so that we can estimate the ITE by comparing

the pair.

Another difficulty in ITE estimation is data scarcity. For ITE estimation, we

need some labeled instances whose treatments (i.e., whether or not an action was

taken on the instance) and their outcomes (depending on the treatments) as well as

their covariates are given. However, collecting such labeled instances can be quite

costly in terms of time and money, or owing to other reasons, such as physical and

ethical constraints [45, 46]. Consequently, ITE estimation from scarcely labeled data

is an essential requirement in many situations.

In the ordinary predictive modeling problem, a promising option to the scarcity

of labeled data is semi-supervised learning that exploits unlabeled instances only

with covariates because it is relatively easy to obtain such unlabeled data. A typical

solution is the graph-based label propagation method [33, 47, 48], which makes

predictions for unlabeled instances based on the assumption that instances with

similar covariate values are likely to have a same label.

In this study, we consider a semi-supervised ITE estimation problem. The pro-
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posed solution called counterfactual propagation is based on the resemblance between

the matching method in causal inference and the graph-based semi-supervised learn-

ing method called label propagation. We consider a weighted graph over both labeled

instances with treatment outcomes and unlabeled instances with no outcomes, and

estimate ITEs using the smoothness assumption of the outcomes and the ITEs.

The proposed idea is illustrated in Fig. 3.1. Fig. 3.1(a) describes the two-moon

shaped data distribution. We consider a binary treatment and binary outcomes. The

blue points indicate the instances with a positive ITE (= 1), where the outcome

is 1 if the treatment is 1 and 0 if the treatment is 0. The red points indicate

the instances with zero ITE (= 0); their outcomes are always 1 irrespective of

the treatments. We have only four labeled data instances shown as yellow points,

whose observed (treatment, outcome) pairs are (0, 1), (1, 1), (1, 1), (0, 0) from left to

right. Since the amount of labeled data is considerably limited, supervised methods

relying only on labeled data fail to estimate the ITEs. Figures 3.1(b), (c), (d) show

the ITE estimation errors by the standard two-model approach using different base

learners, which show poor performance. In contrast, the proposed approach exploits

unlabeled data to find connections between the red points and those between the

blue points to estimate the correct ITEs (Fig. 3.1(e)).

We propose an efficient learning algorithm assuming the use of a neural network

as the base model, and conduct experiments using semi-synthetic real-world datasets

to demonstrate that the proposed method estimates the ITEs more accurately than

baselines when the labeled instances are limited.
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Figure 3.1: Illustrative example using (a) two-moon dataset. Each moons has a
constant ITE either of 0 and 1. Only two labeled instances are available for each
moon, denoted by yellow points, whose observed (treatment, outcome) pairs are
(0, 1), (1, 1), (1, 1), (0, 0) from left to right. Figures (b), (c), and (d) show the ITE
estimation error (PEHE) by the standard two-model approach using different base
models suffered from the lack of labeled data. The deeper-depth color indicates
larger errors. The proposed semi-supervised method (e) successfully exploits the
unlabeled data to estimate the correct ITEs.

3.2 Semi-supervised ITE estimation problem

We start with the problem setting of the semi-supervised treatment effect estimation

problem. Suppose we have N labeled instances and M unlabeled instances. (We

usually assume N ≪M .) The set of labeled instances is denoted by {(xi, ti, ytii )}Ni=1,

where xi ∈ RD is the covariates of the i-th instance, ti ∈ {0, 1} is the treatment

applied to instance i, and ytii is its outcome. Note that for each instance i, either

ti = 0 or ti = 1 is realized; accordingly, either y0i or y1i is available. The unob-
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served outcome is called a counterfactual outcome. The set of unlabeled instances

is denoted by {(xi)}N+M
i=N+1, where only the covariates are available.

Our goal is to estimate the ITE for each instance. Following the Rubin-Neyman

potential outcomes framework [11, 10], the ITE for instance i is defined as τi = y1i−y0i
exploiting both the labeled and unlabeled sets. Note that τi is not known even for

the labeled instances, and we want to estimate the ITEs for both the labeled and

unlabeled instances.

We make typical assumptions in ITE estimation in this study. i.e., (i) stable

unit treatment value: the outcome of each instance is not affected by the treatment

assigned to other instances; (ii) unconfoundedness: the treatment assignment to

an instance is independent of the outcome given covariates (confounder variables);

(iii) overlap: each instance has a positive probability of treatment assignment.

3.3 Proposed method

We propose a novel ITE estimation method that utilizes both the labeled and un-

labeled instances. The proposed solution called counterfactual propagation is based

on the resemblance between the matching method in causal inference and the graph-

based semi-supervised learning method.

3.3.1 Matching

Matching is a popular solution to address the counterfactual outcome problem.

Its key idea is to consider two similar instances as the counterfactual instance of

each other so that we can estimate the causal effect by comparing the pair. More

concretely, we define the similarity wij between two instances i and j, as that defined

between their covariates; for example, we can use the Gaussian kernel.

wij = exp

(
−∥xi − xj∥2

σ2

)
. (3.1)
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The set of (i, j) pairs with wij being larger than a threshold and satisfying ti ̸= tj

are found and compared as counterfactual pairs. Note that owing to definition of

the matching pair, the matching method only uses labeled data.

3.3.2 Graph-based semi-supervised learning

Graph-based semi-supervised learning methods assume that the nearby instances in

a graph are likely to have similar outputs. For a labeled dataset {(xi, yi)}Ni=1 and an

unlabeled dataset {xi}N+M
i=N+1, their loss functions for standard predictive modeling

typically look like

L(f) =
N∑
i=1

l(yi, f(xi)) + λ
N+M∑
i,j=1

wij (f(xi)− f(xj))
2 , (3.2)

where f is a prediction model, l is a loss function for the labeled instances, and λ

is a hyper-parameter. The second term imposes “smoothness" of the model output

over the input space characterized by wij that can be considered as the weighted

adjacency matrix of a weighted graph; it can be seen the same as that used for

matching (3.1).

The early examples of graph-based methods include label propagation [33] and

manifold regularization [47]. More recently, deep neural networks have been used as

the base model f [48].

3.3.3 Treatment effect estimation using neural networks

We build our ITE estimation model based on the recent advances of deep-learning

approaches for ITE estimation, specifically, the treatment-agnostic representation

network (TARNet) [18] that is a simple but quite effective model. TARNet shares

common parameters for both treatment instances and control instances to construct

representations but employs different parameters in its prediction layer, which is
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given as:

f(xi, ti) =

 Θ⊤
1 g
(
Θ⊤xi

)
(ti = 1)

Θ⊤
0 g
(
Θ⊤xi

)
(ti = 0)

, (3.3)

where Θ is the parameters in the representation learning layer and Θ1,Θ0 are those

in the prediction layers for treatment and controlled instances, respectively. The g

is a non-linear function such as ReLU. One of the advantages of TARNet is that

joint representations learning and separate prediction functions for both treatments

enable more flexible modeling.

3.3.4 Counterfactual propagation

It is evident that the matching method relies only on labeled data, while the graph-

based semi-supervised learning method does not address ITE estimation; however,

they are quite similar because they both use instance similarity to interpolate the

factual/counterfactual outcomes or model predictions as mentioned in Section 3.3.2.

Our idea is to combine the two methods to propagate the outcomes and ITEs over

the matching graph assuming that similar instances would have similar outcomes.

Our objective function consists of three terms, Ls, Lo, Le, given as

L(f) = Ls(f) + λoLo(f) + λeLe(f), (3.4)

where λo and λe are the regularization hyper-parameters. We employ TARNet [18]

as the outcome prediction model f(x, t). The first term in the objective function

(3.4) is a standard loss function for supervised outcome estimation; we specifically

employ the squared loss function as

Ls(f) =
N∑
i=1

(ytii − f(xi, ti))
2. (3.5)

Note that it relies only on the observed outcomes of the treatments that are observed
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in the data denoted by ti.

The second term Lo is the outcome propagation term:

Lo(f) =
∑
t

N+M∑
i,j=1

wij((f(xi, t)− f(xj, t))
2. (3.6)

Similar to the regularization term (3.2) in the graph-based semi-supervised learning,

this term encourages the model to output similar outcomes for similar instances by

penalizing the difference between their outcomes. This regularization term allows

the model to propagate outcomes over a matching graph. If two nearby instances

have different treatments, they interpolate the counterfactual outcome of each other,

which compares the factual and (interpolated) counterfactual outcomes to estimate

the ITE. The key assumption behind this term is the smoothness of outcomes for

each treatment over the covariate space. While wij indicates the adjacency be-

tween nodes i and j in the graph-based regularization, it can be considered as a

matching between the instances i and j in the treatment effect estimation problem.

Even though traditional matching methods have only rely on labeled instances, we

combine matching with graph-based regularization which also utilizes unlabeled in-

stances. This regularization enables us to propagate the outcomes for each treatment

over the matching graph and mitigate the counterfactual problem.

The third term Le is the ITE propagation term defined as

Le(f) =
N+M∑
i,j=1

wij(τ̂i − τ̂j)
2, (3.7)

where τ̂i is the ITE estimate for instance i:

τ̂i = f(xi, 1)− f(xi, 0).

Le(f) imposes the smoothness of the ITE values in addition to that of the outcomes

imposed by outcome propagation (3.6). In comparison to the standard supervised
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learning problems, where the goal is to predict the outcomes, as stated in Section 3.2,

our objective is to predict the ITEs. This term encourages the model to output

similar ITEs for similar instances. We expect that the outcome propagation and

ITE propagation terms are beneficial especially when the available labeled instances

are limited while there is an abundance of unlabeled instances, similar to semi-

supervised learning.

3.3.5 Estimation algorithm

As mentioned earlier, we assume the use of neural networks as the specific choice

of the outcome prediction model f based on the recent successes of deep neural

networks in causal inference. For computational efficiency, we apply a sampling

approach to optimizing Eq. (3.4). Following the existing method [48], we employ

the Adam optimizer [49], which is based on stochastic gradient descent to train the

model in a mini-batch manner.

Algorithm 1 describes the procedure of model training, which iterates two steps

until convergence. In the first step, we sample a mini-batch consisting of b1 labeled

instances to approximate the supervised loss (3.5). In the second step, we compute

the outcome propagation term and the ITE propagation terms using a mini-batch

consisting of b2 instance pairs. Note that in order to make the model more flexible,

we can employ different regularization parameters for the treatment outcomes and

the control outcomes. The b1 and b2 are considered as hyper-parameters; the details

are described in Section 3.4. In practice, we optimize only the supervised loss for the

first several epochs, and decrease the strength of regularization as training proceeds,

in order to guide efficient training [48].
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Algorithm 1: Counterfactual propagation
Input: labeled instances {(xi, ti, ytii )}Ni=1, unlabeled instances {(xi)}N+M

i=N+1, a
similarity matrix w = (wij), and mini-batch sizes b1, b2.
Output: estimated outcome(s) for each treatment ŷ1i and/or ŷ0i using
Eq.( 3.3 ).
while not converged do

# Approximating the supervised loss
Sample b1 instances {(xi, ti, yi)} from the labeled instances
Compute the supervised loss (3.5) for the b1 instances
# Approximating propagation terms
Sample b2 pairs of instances {(xi,xj)}
Compute the outcome propagation terms λoLo for b2 pairs of instances
Sample b2 pairs of instances {(xi,xj)}
Compute the ITE propagation terms λeLe of b2 pairs of instances
Update the parameters to minimize Ls + λoLo + λeLe for the sampled
instances

end

3.4 Experiments

We test the effectiveness of the proposed semi-supervised ITE estimation method in

comparison with various supervised methods, especially when the available labeled

data are strictly limited. We first conduct experiments using two semi-synthetic

datasets based on public real datasets. We also design some experiments varying

the magnitude of noise on outcomes to explore how the noisy outcomes affect the

proposed method. Our implementation is available on Github.1

3.4.1 Datasets

Owing to the counterfactual nature of ITE estimation, we rarely access real-world

datasets including ground truth ITEs, and therefore cannot directly evaluate ITE

estimation methods like the standard supervised learning methods using cross-

validation. Therefore, following the existing work [17], we employ two semi-synthetics

datasets whose counterfactual outcomes are generated through simulations. Refer

1https://github.com/SH1108/CounterfactualPropagation
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to the original papers for the details on outcome generations [15, 17].

News dataset

is a dataset including opinions of media consumers for news articles [17]. It contains

5,000 news articles and outcomes generated from the NY Times corpus2. Each

article is consumed on desktop (t = 0) or mobile (t = 1) and it is assumed that

media consumers prefer to read some articles on mobile than desktop. Each article

is generated by a topic model and represented in the bag-of-words representation.

The size of the vocabulary is 3,477.

IHDP dataset

is a dataset created by randomized experiments called the Infant Health and Devel-

opment Program (IHDP) [15] to examine the effect of special child care on future

test scores. It contains the results of 747 subjects (139 treated subjects and 608

control subjects) with 25 covariates related to infants and their mothers. Following

the existing studies [17, 18], the ground-truth counterfactual outcomes are simulated

using the NPCI package [50].

3.4.2 Experimental settings

Since we are particularly interested in the situation when the available labeled data

are strictly limited, we split the data into a training dataset, validation dataset, and

a test dataset by limiting the size of the training data. We change the ratio of the

training to investigate the performance; we use 10%, 5%, and 1% of the whole data

from the News dataset, and use 40%, 20%, and 10% of those from the IHDP dataset

for the training datasets. The rest 80% and 10% of the whole News data are used

for test and validation, respectively. Similarly, 50% and 10% of the whole IHDP

2https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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dataset are used for test and validation, respectively. We report the average results

of 10 trials on the News dataset and 50 trials on the IHDP dataset.

In addition to the evaluation under labeled data scarcity, we also test the robust-

ness against label noises. As pointed out in previous studies, noisy labels in training

data can severely deteriorate predictive performance, especially in semi-supervised

learning. Following the previous work [15, 17], we add the noise ϵ ∼ N (0, c2) to the

observed outcomes in the training data, where c ∈ {1, 3, 5, 7, 9}. In this evaluation,

we use 1% of the whole data as the training data for the News dataset and 10%

for the IHDP dataset, respectively, since we are mainly interested in label-scarce

situations.

The hyper-parameters are tuned based on the prediction loss using the observed

outcomes on the validation data. We calculate the similarities between the instances

by using the Gaussian kernel; we select σ2 from {5× 10−3, 1× 10−3, . . . , 1× 102, 5×

102}, and select λo and λe from {1× 10−3, 1× 10−2, . . . , 1× 102}. Because the scales

of treatment outcomes and control outcomes are not always the same, we found

scaling the regularization terms according to them is beneficial; specifically, we scale

the regularization terms with respect to the treatment outcomes, the control out-

comes, and the treatment effects by α = 1/σ2
y1 , β = 1/σ2

y0 , and γ = 1/(σ2
y1 + σ2

y0),

respectively. We apply principal component analysis to reduce the input dimen-

sions before applying the Gaussian kernel; we select the number of dimensions from

{2, 4, 6, 8, 16, 32, 64}. The learning rate is set to 1 × 10−3 and the mini-batch sizes

b1, b2 are chosen from {4, 8, 16, 32}.

As the evaluation metrics, we report the Precision in Estimation of Heteroge-

neous Effect (PEHE) used in the previous research [15]. PEHE is the estimation

error of individual treatment effects, and is defined as

ϵPEHE =
1

N +M

N+M∑
i=1

(τi − τ̂i)
2.

Following the previous studies [18, 51], we evaluate the predictive performance for
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Table 3.1: The performance comparison of different methods on News dataset. The
† indicates that our proposed method (CP) performs statistically significantly better
than the baselines by the paired t-test (p < 0.05). The bold results indicate the best
results in terms of the average.

√
ϵPEHE News 1% News 5% News 10%

Method labeled unlabeled labeled unlabeled labeled unlabeled

Ridge-1 †4.494±1.116
†4.304±0.988

†4.666±1.0578
†3.951±0.954

†4.464±1.082
†3.607±0.943

Ridge-2 2.914±0.797
†2.969±0.814

†2.519±0.586
†2.664±0.614

†2.560±0.558
†2.862±0.621

Lasso-1 †4.464±1.082
†3.607±0.943

†4.466±1.058
†3.367±0.985

†4.464±1.0822
†3.330±0.984

Lasso-2 †3.344±1.022
†3.476±1.038

†2.568±0.714
†2.848±0.751

†2.269±0.628
†2.616±0.663

kNN †3.678±1.250
†3.677±1.246

†3.351±1.004
†3.434±1.018

†3.130±0.752
†3.294±0.766

PSM †3.713±1.149
†3.662±1.127

†3.363±0.901
†3.500±0.961

†3.260±0.734
†3.526±0.832

RF †4.494±1.116
†3.691±0.878

†4.466±1.058
†2.975±0.874

†4.464±1.082
†2.657±0.682

CF †3.691±1.082
†3.607±0.943

†3.196±0.901
†3.215±0.910

†3.101±0.806
†3.129±0.818

TARNET †3.166±0.742
‡3.160±0.722

†2.670±0.796
†2.666±0.773

†2.589±0.894
†2.598±0.869

CFR 2.908±0.752 2.925±0.746
†2.590±0.772

†2.546±0.796
†2.570±0.519

†2.451±0.547

CP (proposed) 2.844±0.683 2.823±0.656 2.310±0.430 2.446±0.471 2.003±0.393 2.153±0.436

labeled instances and unlabeled instances separately. Note that, although we observe

the factual outcomes of the labeled data, their true ITEs are still unknown because

we cannot observe their counterfactual outcomes.

3.4.3 Baselines

We compare the proposed method with several existing supervised ITE estimation

approaches. (i) Linear regression (Ridge, Lasso) is the ordinary linear regression

models with ridge regularization or lasso regularization. We consider two variants:

one that includes the treatment as a feature (denoted by ‘Ridge-1’ and ‘Lasso-

1’), and the other with two separated models for treatment and control (denoted

by ‘Ridge-2’ and ‘Lasso-2’). (ii) k-nearest neighbors (kNN) is a matching-based

method that predicts the outcomes using nearby instances. (iii) Propensity score

matching with logistic regression (PSM) [43] is a matching-based method using
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Table 3.2: The performance comparison of different methods on IHDP dataset. The
† indicates that our proposed method (CP) performs statistically significantly better
than the baselines by the paired t-test (p < 0.05). The bold results indicate the best
results in terms of average.

√
ϵPEHE IHDP 10% IHDP 20% IHDP 40%

Method labeled unlabeled labeled unlabeled labeled unlabeled

Ridge-1 †5.484±8.825
†5.696±7.328

†5.067±8.337
†4.692±6.943

†4.80±8.022
†4.448±6.874

Ridge-2 †3.426±5.692
†3.357±5.177

†2.918±4.874
†2.918±4.730

†2.605±4.314
†2.639±4.496

Lasso-1 †6.685±10.655
†6.408±9.900

†6.435±10.147
†6.2446±9.639

†6.338±9.704
†6.223±9.596

Lasso-2 †3.118±5.204
‡3.292±5.725

†2.684±4.428
†2.789±4.731

†2.512±4.075
†2.571±4.379

kNN †4.457±6.957
†4.603±6.629

†4.023±6.193
†4.370±6.244

†3.623±5.316
†4.109±5.936

PSM †6.506±10.077
†6.982±10.672

†6.277±9.708
†7.209±11.077

†6.065±9.362
†7.181±9.362

RF †6.924±10.620
†5.356±8.790

†6.854±10.471
†4.845±8.241

†6.928±10.396
†4.549±7.822

CF †5.389±8.736
†5.255±8.070

†4.939±7.762
†4.955±7.503

†4.611±7.149
†4.764±7.448

TARNET †3.827±5.315
†3.664±4.888

†2.770±3.617
†2.770±3.542

†2.005±2.447
†2.267±2.825

CFR †3.461±5.1444
†3.292±4.619

†2.381±3.126
†2.403±3.080 1.572±1.937 1.815±2.204

CP (proposed) 2.427±3.189 2.652±3.469 1.686±1.838 1.961±2.343 1.299±1.001 1.485±1.433
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the propensity score estimated by a logistic regression model. We also compared

the proposed method with tree models such as (iv) random forest (RF) [14] and its

causal extension called (v) causal forest (CF) [16]. In CF, trees are trained to predict

propensity score and leaves are used to predict treatment effects. (vi) TARNet [18]

is a deep neural network model that has shared layers for representation learning

and different layers for outcome prediction for treatment and control instances. (vii)

Counterfactual regression (CFR) [18] is a state-of-the-art deep neural network model

based on balanced representations between treatment and control instances. We use

the Wasserstein distance.

3.4.4 Results and discussions

We discuss the performance of the proposed method compared with the baselines

by changing the size of labeled datasets, and then investigate the robustness against

the label noises.

We first see the experimental results for different sizes of labeled datasets and

sensitivity to the choice of the hyper-parameters that control the strength of label

propagation. Tables 3.1 and 3.2 show the PEHE values by different methods for the

News dataset and the IHDP dataset, respectively. Overall, our proposed method

exhibits the best ITE estimation performance for both labeled and unlabeled data

in both of the datasets; the advantage is more significant in the News dataset. The

News dataset is a relatively high-dimensional dataset represented using a bag of

words. The two-model methods such as Ridge-2 and Lasso-2 perform well in spite

of their simplicity, and in terms of regularization types, the Lasso-based methods

perform relatively better due to the high-dimensional nature of the dataset.

The proposed method also performs the best in the IHDP dataset; however,

the performance gain is rather moderate, as shown by the no statistical significance

against CFR [18] with the largest 40%-labeled data, which is the most powerful

baseline method. The reason for the moderate improvements is probably because of
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Table 3.3: Investigation of the contributions by the outcome propagation and the
ITE propagation in the proposed method. The upper table shows the results for
the News dataset, and the lower for the IHDP dataset. The λo = 0 and λe = 0
indicate the proposed method (CP) with only the ITE propagation and the outcome
propagation, respectively, The † indicates that our proposed method (CP) performs
statistically significantly better than the baselines by the paired t-test (p < 0.05).
The bold numbers indicate the best results in terms of the average.

√
ϵPEHE News 1% News 5% News 10%

Method labeled unlabeled labeled unlabeled labeled unlabeled

CP (λo = 0) 2.812±651 2.806±0.598
†2.527±0.474 †2.531±0.523

†2.400±0.347
†2.410±0.450

CP (λe = 0) 2.879±0667 2.885±0.609 2.351±0.450 2.483±0.481 1.996±0.338 2.221±0.455

CP 2.844±0.683 2.823±0.656 2.310±0.430 2.446±0.471 2.003±0.393 2.153±0.436

√
ϵPEHE IHDP 10% IHDP 20% IHDP 40%

Method labeled unlabeled labeled unlabeled labeled unlabeled

CP (λo = 0) †2.883±3.708
†3.004±4.071

†1.972±1.930
†2.144±2.465 1.574±1.392 1.674±1.874

CP (λe = 0) 2.494±3.201 2.698±3.461 1.728±2.194 1.977±2.450 1.344±1.383 1.585±1.923

CP 2.427±3.189 2.652±3.469 1.686±1.838 1.961±2.343 1.299±1.001 1.485±1.433

the difficulty in defining appropriate similarities among instances, because the IHDP

dataset has various types of features including continuous variables and discrete

variables. The traditional baselines such as Ridge-1, Lasso-1, k-NN matching, and

the tree-based models show limited performance; in contrast, the deep learning

based methods such as TARNet and CFR demonstrate remarkable performance.

Generally, the performance gain by the proposed method is larger on labeled data

than on unlabeled data.

Our proposed method has two different propagation terms, the outcome propa-

gation term and the ITE propagation term, as regularizers for semi-supervised learn-

ing. Table 3.3 investigates the contributions by the different propagation terms. The

proposed method using the both propagation terms (denoted by CP) shows better

results than the one only with the ITE propagation denoted by CP (λo = 0); on

the other hand, the improvement over the one only with the outcome regularization
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is marginal. This observation implies the outcome propagation contributes more to

the predictive performance than the ITE propagation.

We also examine the sensitivity of the performance to the regularization hyper-

parameters. Fig. 3.2 reports the results using 40% and 10% of the whole data as the

training data of the News and IHDP datasets, respectively. The proposed method

seems rather sensitive to the strength of the regularization terms, particularly on the

IHDP dataset, which suggests that the regularization parameters should be care-

fully tuned using validation datasets in the proposed method. In our experimental

observations, slight changes in the hyper-parameters sometimes caused significant

changes of predictive performance. We admit the hyper-parameter sensitivity is

one of the current limitations in the proposed method and efficient tuning of the

hyper-parameters should be addressed in future.

Finally, we compare the proposed method with the state-of-the-art methods

by varying the magnitude of noises added to the outcomes. Fig 3.3 shows the

performance comparison in terms of
√
ϵPEHE. Note that the results when c = 1

correspond to the previous results in Tables 3.1 and 3.2 . The proposed method stays

tolerant of relatively small magnitude of noises; however, with larger label noises, it

suffers more from wrongly propagated outcome information than the baselines. This

is consistent with the previous studies reporting the vulnerability of semi-supervised

learning methods against label noises [52, 53, 54, 55].

3.5 Related work

3.5.1 Treatment effect estimation

Treatment effect estimation has been one of the major interests in causal inference

and widely studied in various domains. Matching [12, 56] is one of the most ba-

sic and commonly used treatment effect estimation techniques. It estimates the

counterfactual outcomes using its nearby instances, whose idea is similar to that of
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Figure 3.2: Sensitivity of the results to the hyper-parameters. The colored bars
indicate

√
ϵPEHE for (a)(b) the News dataset and (c)(d) the IHDP dataset when

using the largest size of labeled data. The deeper-depth color indicates larger errors.
It is observed that the proposed method is somewhat sensitive to the choice of hyper-
parameters, especially, the strength of outcome regularizations (λo).

graph-based semi-supervised learning. Both methods assume that similar instances

in terms of covariates have similar outcomes. To mitigate the curse of dimensional-

ity and selection bias in matching, the propensity matching method relying on the

one-dimensional propensity score was proposed [43, 57]. The propensity score is the

probability of an instance to get a treatment, which is modeled using probabilistic

models like logistic regression, and has been successfully applied in various domains

to estimate treatment effects unbiasedly [58]. Tree-based methods such as regression

trees and random forests have also been well studied for this problem [59, 16]. One



42

1 3 5 7 9
c

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4
PE

H
E

CP (Proposed)
CFR
TARNet

(a): News

1 3 5 7 9
c

2.5

3.0

3.5

4.0

4.5

5.0

5.5

PE
H

E

CP (Proposed)
CFR
TARNet

(b): IHDP

Figure 3.3: Performance comparisons for different levels of noise c added to the
labels on (a) News dataset and (b) IHDP dataset. Note that the results when c = 1
correspond to the previous resuls (Tables 3.1 and 3.2).

of the advantages of such models is that they can build quite expressive and flex-

ible models to estimate treatment effects. Recently, deep learning-based methods

have been successfully applied to treatment effect estimation [18, 17]. Balancing

neural networks (BNNs) [17] aim to obtain balanced representations of a treatment

groups and a control group by minimizing the discrepancy between them, such as

the Wasserstein distance [18]. Most recently, some studies have addressed causal

inference problems on network-structured data [60, 61, 62]. Alvari et al. applied the

idea of manifold regularization using users activities as causality-based features to

detect harmful users in social media [61]. Guo et al. considered treatment effect esti-

mation on social networks using graph convolutional balancing neural networks [60].

In contrast with their work assuming the network structures are readily available,

we do not assume them and considers matching network defined using covariates.

3.5.2 Semi-supervised learning

Semi-supervised learning, which exploits both labeled and unlabeled data, is one of

the most popular approaches, especially in scenarios when only limited labeled data

can be accessed [63, 64]. Semi-supervised learning has many variants, and because

it is almost impossible to refer to all of them, we mainly review the graph-based
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regularization methods, known as label propagation or manifold regularization [33,

47, 48]. Utilizing a given graph or a graph constructed based on instance proximity,

graph-based regularization encourages the neighbor instances to have similar labels

or outcomes [33, 47]. Such idea is also applied to representation learning in deep

neural networks [48, 65, 66, 67, 53]; they encourage nearby instances not only to have

similar outcomes, but also have similar intermediate representations, which results

in remarkable improvements from ordinary methods. One of the major drawbacks of

semi-supervised approaches is that label noises in training data can be quite harmful;

therefore, a number of studies managed to mitigate the performance degradation [52,

68, 54, 55].

One of the most related work to our present study is graph-based semi-supervised

prediction under sampling biases of labeled data [69]. The important difference

between this work and ours is that they do not consider intervention and we do not

consider the sampling biases of labeled data.

3.6 Conclusion

We addressed the semi-supervised ITE estimation problem. In comparison to the

existing ITE estimation methods that only rely on labeled instances including treat-

ment and outcome information, we proposed a novel semi-supervised ITE estimation

method that also utilizes unlabeled instances. The proposed method called counter-

factual propagation is built on two ideas from causal inference and semi-supervised

learning, namely, matching and label propagation, respectively; accordingly, we de-

vised an efficient learning algorithm. Experimental results using the semi-simulated

real-world datasets revealed that our methods performed better in comparison to

several strong baselines when the available labeled instances are limited. However,

this method had issues related to reasonable similarity design and hyper-parameter

tuning.

One of the possible future directions is to make use of balancing techniques such
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as the one used in CFR [18], which can be also naturally integrated into our model.

Our future work also includes addressing the biased distribution of labeled instances.

As mentioned in Related work, we did not consider such sampling biases for labeled

data. Some debiasing techniques [69] might also be successfully integrated into our

framework. In addition, robustness against noisy outcomes under semi-supervised

learning framework is still the open problem and will be addressed in the future.
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Chapter 4

GraphITE: Estimating Individual

Effects of Graph-structured

Treatments

4.1 Introduction

Estimating causal effects of treatments for individual targets, which is often referred

to as individual treatment effect (ITE), is an important foundation for efficient de-

cision making based on observational data. The scope of applications of causal

inference ranges across a wide range of fields, including medicine, education, and

economic policy. The main difficulties in estimating ITE are (i) the counterfactual

nature of observational data, that is, only the outcome of an actual treatment is ob-

served and (ii) biases in observational data due to biases in past treatment decisions.

To address these difficulties, various statistical techniques have been developed, in-

cluding matching [12], inverse propensity score weighting [43], instrumental variable

methods [44], as well as more modern representation learning approaches [18, 17].

Most previous studies dealt with a binary or relatively small number of treat-

ments. However, in some scenarios, the number of treatments can be considerably
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Figure 4.1: Individual effect estimation problem of graph-structured treatments. The
possible treatments, i.e., drugs, are associated with graphs representing their molecular
structures. In observational data, only one treatment is applied to the target individual;
consequently, only the factual outcome is observed, while the counterfactual outcomes for
the other treatments are not. Our goal is to predict the outcomes of all treatments for
future targets.

larger. For example, when modeling drug effects on target cells, the number of

candidate drugs (i.e., treatments) can be huge, while the number of observations

per drug can be quite small due to the high cost of clinical trials [70, 71]. Each

drug is composed of a bunch of atoms, such as carbon, oxygen, and nitrogen, and

the number of drugs composed by the combination of atoms are substantially huge.

A similar situation can also occur in online advertisements [72]. This scarcity of

data exacerbates the aforementioned problems. More seriously, some treatments

that never appeared in the observational data, such as new drugs or new ads, may

appear for the first time during the test phase. Despite the significant importance

of estimating unobserved treatment effects in various applications, existing methods

are not capable of dealing with such “zero-shot" treatment effect estimation.

In this study, we consider the individual treatment effect estimation problem

with a large number of treatments, for which there is no definitive existing solution

due to extremely sparse observations. To solve the problem, we focus on auxiliary

information that accompanies the treatments. Such auxiliary information is some-
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times available in applications. In the drug effect example, each drug is a chemical

compound with its own molecular structure, which can be represented as a graph

(Figure 4.1), and it is expected to take advantage of structural patterns contained in

the graph structure. The rich structural information of graphs allows us to transfer

useful information for predicting outcomes from treatments with many observations

to those with less observations, even to “zero-shot" treatments that have not been

seen before. Therefore, our challenge in this paper is to incorporate the rich graph

structure information of treatments into our treatment effect estimation model, and

provide an effective learning method to mitigate biases in sparse observational data.

We propose GraphITE (pronounced “graphite”), which is an outcome prediction

model for graph-structured treatments based on biased observational data. It is

built upon the recent significant advances in learning representations using graph

neural networks (GNNs) [66, 5]. Bias mitigation with a large (possibly infinite)

number of treatments is another issue because most existing frameworks [18, 73, 72]

are not designed for such cases. To reduce the treatment selection bias depending on

the individual target, GraphITE finds representations of the target and treatment

that are as independent of each other as possible. This is achieved by Hilbert-

Schmidt Independence Criterion (HSIC) regularization, which was recently proposed

by Lopez et al. [74]; we extend their framework to exploit the treatment features

extracted by GNNs and give theoretical justification on how reducing biases over

the representation space extracted from graph space leads to unbiased results. Our

formulation makes it possible to reduce the selection bias caused by complex graph

structure information, even for the zero-shot treatments that cannot be handled by

existing frameworks.

We conduct experiments on two real datasets: one with a relatively small number

of treatments and one with over 100 treatments. The results show that the graph

structures contribute to improving the predictive performance and that the HSIC

regularization is robust to the presence of selection bias.

The contributions of this study can be summarized as follows:
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• We propose GraphITE, an outcome prediction model for graph-structured

treatments, that can exploit auxiliary information of treatments to deal with

a large number of treatments and “zero-shot" treatments.

• In order to train GraphITE from biased observational data, we extend HSIC

regularization to cases where treatments have features, and give theoretical jus-

tification on how HSIC regularization making use of representations extracted

from graph space contributes to mitigating biases.

• Experiments on two real-world datasets empirically demonstrate the benefits

of GraphITE for biased observational data and zero-shot treatments.

4.2 Related work

Treatment effect estimation.

Treatment effect estimation is a practically important task and has been widely

studied in various fields ranging from healthcare [75] and economy [40] to educa-

tion [76].

One of the typical solutions is the matching method [12, 56], which compares the

outcomes for pairs with similar covariates but different treatments. The propensity

score, which is the probability of a target individual receiving a treatment, is in-

troduced to mitigate the curse of dimensionality and selection bias [43]. Tree-based

methods, such as Causal Forest [16] and BART [59, 15], have also been proposed

and shown promising performances.

Recently, representation learning based on deep neural networks has been suc-

cessfully applied to treatment effect estimation and outperformed traditional meth-

ods [18, 17, 51]. They encourage the representations of treatment and control groups

to get closer to each other to reduce selection bias. In addition, confounding vari-

ables are extracted by an additional neural network that predicts treatment assign-

ments [19]. Generative adversarial neural networks (GAN) [77] were also successfully
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applied to ITE estimation [78, 20]; their key idea is to train a predictive model (i.e.,

a generator) whose outcomes are difficult to distinguish between factual outcomes

and counterfactual outcomes.

Most previous studies have focused on binary treatments, and extensions to mul-

tiple types of treatments, especially high numbers, are key research directions. There

have been several approaches designed for multiple treatments [73, 16, 59]; however,

most of them are limited to a relatively small number of treatments, making it diffi-

cult to consider more than a few dozen treatments. Saini et al. [72] whose motivation

was somewhat similar to ours, considered combinatorial treatments; however, their

focus was on a large number of combinations made from a small number of treat-

ments, whereas we focus on many single treatments with the help of information on

the treatments.

Extensions to real-valued treatments are also important for real-world applica-

tions, such as estimation of appropriate drug dosages [79, 37]. Wang et al. [80]

proposed an interesting approach to learn input representations that cannot dis-

tinguish real-valued domains. Lopez et al. [74] considered total-ordered treatment

spaces. They proposed HSIC regularization for dealing with biased observational

data; the theory of our proposed GraphITE is based on their theoretical frame-

work, but we extend the implications of their framework to representation learning

of treatments with rich features.

Graph neural networks.

Graph-structured data is one of the most popular data structures and has been

widely employed in various domains such as social network analysis, citation anal-

ysis, and chemical informatics. The GNN is one of the most successful deep neu-

ral network architectures owing to the practical importance of graph-structured

data, and it has significantly improved the performance on various graph-structured

data analysis tasks, such as node classification [66], graph classification [6, 5], and

link prediction [81], beyond conventional methods [82, 83]. In the field of chemo-
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informatics, GNNs have particularly flourished and played an important role in

predicting molecule properties [6, 84, 5], finding interactions between chemical ob-

jects [7], and generating desirable and unique molecules [85, 86]. GraphITE also

relies on their powerful ability to extract features from graph-structured treatments.

Theoretical analysis of the expressive power of GNNs has been of great interest

to researchers, for example, in their invertibility [87, 88, 86, 89]. GraphITE theo-

retically requires this property although it does not hold for most practical GNNs;

however, a non-invertible GNN shows satisfactory performance in practice, as shown

in the experimental section.

Recently, several studies have considered causal inference in graph-structured

input domains [60, 61, 62, 90, 91], where the input space has a graph structure

representing proximal relations among target individuals. However, to the best

of our knowledge, no study has explored treatment effect estimation with graph-

structured treatments, which is at the intersection of the above two topics of practical

importance.

4.3 Problem definition

We consider the problem of estimating the outcomes of treatments with graph struc-

tures from biased observational data. Let D = {(xi, ti, ytii )}Ni=1 ∈ X × T × Y be a

biased observational dataset, where xi ∈ X is the covariate vector of the i-th tar-

get individual, ti ∈ T is the treatment performed on the target individual, and

ytii is the outcome.1 We assume the covariate space X = RD, treatment space

T = {1, 2, . . . , |T |}, and outcome space Y = R. In addition to D, we assume each

treatment j ∈ T is associated with a graph Gj = (Vj, Ej), where Vj denotes a set

of nodes and Ej ⊆ Vj × Vj denotes a set of edges. We denote the set of the treat-

ment graphs by G = {Gj}|T |
j=1. Our goal is to, given D and G, estimate an outcome

1Owing to the counterfactual nature of the problem, we are unable to observe the outcomes of
the other treatments as they are not performed.
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prediction function f : X × T → Y .

Figure 4.1 illustrates our problem setting in the context of medical treatments.

In the observational data, there are multiple drugs that could be applied to the

target individual, where each drug corresponds to a treatment and is associated

with a graph representing its molecular structure. Only the outcome ytii for the

actual prescribed drug ti (i.e., the factual outcome) is observed, and those for the

other drugs (i.e., counterfactual outcomes) are not observed. Because a doctor

prescribes a drug based on the condition of the target patient xi, there is a bias in

the choice of ti in the observational data.

A potential difficulty in our problem is that the number of treatments can be

large, say |T | > 100; it is clear that this can cause a data scarcity issue. In our

scenario, graphs are available as auxiliary information for the treatments, which

potentially help in dealing with such a large number of treatments.

Following the existing work, we make the typical assumptions in the Rubin-

Neyman framework [35]: (i) Stable unit treatment value; the outcome of each in-

stance is not affected by the treatments assigned to other instances. (ii) Uncon-

foundedness; the treatment assignment to an instance is independent of the outcome

given the covariates (i.e., the confounder variables). (iii) Overlap; each instance has

a positive probability of treatment assignment, i.e., ∀x, t, p(x, t) > 0.

4.4 GraphITE

Previous studies on individual treatment effect estimation have not considered rich

information associated with treatments, which in our case is given as graphs. We

expect that the use of such auxiliary information will be effective, especially when

the number of treatments is relatively high and the training dataset is biased. We

propose GraphITE, which utilizes graph-structured treatments while reducing selec-

tion bias effectively. We first introduce the network architecture of GraphITE, and

then apply HSIC regularization to estimate outcomes appropriately from a biased
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Figure 4.2: The model architecture of GraphITE. A target individual x and graph-
structured treatment Gt are the inputs. The ϕ and ψ map them to the low-dimensional
representations, where ϕ is a standard feed-forward neural network and ψ is a graph neural
network. The two representation vectors ϕ(x) and ψ(Gt) are concatenated to be an input
to another feed-forward network g, which predicts the outcome.

dataset.

4.4.1 Model

The model of GraphITE consists of three components: two mapping functions ϕ :

X → Φ and ψ : T → Ψ for extracting representations of the input and treatment

graph, respectively, and a prediction function g : Φ × Ψ → Y for predicting the

outcome, where Φ and Ψ are the latent representation spaces of the inputs and

treatments induced by ϕ and ψ, respectively. Figure 4.2 illustrates the overview of

the neural network architecture of GraphITE.

As mentioned earlier, the mapping function ψ extracts representations that cap-

ture the features of graph-structured treatments. If we simply take ψ as a one-hot

encoding of discrete treatments, it coincides with the standard setting with multiple

treatments; however, this approach cannot take advantage of the rich structural in-

formation that the graph treatments have, and therefore suffers from a large number

of treatments.

As the mapping function ψ of the treatment graphs, we employ a GNN. GNNs

have been successfully applied in various domains [6, 66, 5] and are capable of ex-
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tracting features of graphs owing to the flexible expressive power of neural networks

optimized in an end-to-end manner.

The representation vector of graph-structured treatment G = (V , E) is otained as

follows. First, for each node vk ∈ V , the representation of vk is initialized to a low-

dimensional vector v
(0)
k ∈ RDΨ determined by randomized initialization depending

on the node label, such as the atom type. At the c-th layer of the GNN, the node

representations are updated using

v
(c)
k = σV

(
Wv

(c−1)
k +

∑
vm∈Nk

Mv(c−1)
m

)
, (4.1)

where σV is an activation function, such as the ReLU function, Nk is the set of

nodes adjacent to vk, and W and M are transformation matrices. After the updates

through C layers, the representations of all the nodes are aggregated into a graph-

level representation ψ(G) as

ψ(G) =
∑
vk∈V

σG

(
C∑
c=0

v
(c)
k

)
, (4.2)

where σG is an activation function, such as the softmax function.

Note that, as we will see later, we require the treatment mapping function to be

invertible, i.e., one-to-one, which most GNNs are not; however, some recent studies

have proposed GNNs with the one-to-one property [88, 86, 89]. In our experiments,

we use a non-invertible GNN which exhibits satisfactory performance.

4.4.2 Bias mitigation using HSIC regularization

With an unbiased dataset collected through randomized controlled trials (RCT), it

suffices to minimize the objective function

N∑
i=1

ℓ(ytii , g(ϕ(xi), ψ(Gti)) (4.3)
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Figure 4.3: Training of GraphITE using the HSIC regularization. In addition to the
prediction loss function ℓ between the prediction g(ϕ(x), ψ(Gt)) and the true outcome
y, the HSIC regularization term encourages the two representations ϕ(x) and ψ(Gt) to
be independent of each other in order to mitigate selection biases. Theorem 1 gives a
theoretical guarantee on how the HSIC regularization contributes to the bias mitigation.

to estimate the components of GraphITE, ϕ, ψ, and g, where ℓ is a loss function,

such as mean squared error (MSE). However, the objective function is biased when

the training dataset is biased, and we must adjust it to mitigate the negative effect.

We first propose our approach from an intuitive viewpoint. The main source

of the bias is that, in contrast with RCT, the treatments in the observational data

are selected depending on the target individuals (i.e., the covariates). Our idea

for mitigating the bias is to reduce the dependency, i.e., to find representations of

the target and treatment that are as independent of each other as possible. To

implement this idea, we employ HSIC [92] to measure the independence; the HSIC

is defined as

HSIC(ϕ, ψ) = (N − 1)−2tr(KΦHKΨH), (4.4)

where KΦ and KΨ are the kernel matrices of the representations of the targets

and treatments, respectively, and H is the centering matrix H = I − 1
N
1. If the

kernel function is characteristic, HSIC becomes 0 in expectation if and only if the

two representations are independent; we use the Gaussian kernel as the kernel func-
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tion. HSIC is somewhat computationally expensive, which requires O(N2) time and

space complexity, and does not scale to the sample size. Therefore, for the sake of

computational convenience, we compute the HSIC loss in a mini-batch manner.

With the HSIC as a regularization term, our objective function is modified to

N∑
i=1

ℓ(ytii , g(ϕ(xi), ψ(Gti)) + λ · HSIC(ϕ, ψ), (4.5)

where λ is the regularization hyper-parameter. The ϕ is implemented as a standard

feed-forward neural network, while ψ is a GNN; the ϕ and ψ are concatenated as an

input to g that is another feed-forward network. Figure 4.3 illustrates the training

of GraphITE using the HSIC regularization.

The objective function (4.5) is optimized in a mini-batch manner using Adam [49];

more specifically, each epoch divides the entire training dataset D into mini batches

without overlapping, and approximates the loss function and HSIC term with them.

Recent theoretical analysis reveals that minimizing the HSIC loss in a mini-batch

manner is equivalent to bagging block HSIC method [93, 94], which ensures that it

converges to the same value. The training procedure for GraphITE is outlined in

Algorithm 2.

Finally, we give some historical remarks explaining why we specifically chose the

HSIC as the regularization term. Previous studies have considered a broad class

of regularization terms, integral probability metrics (IPM) [17, 18]; however, they

basically assume a binary treatment or a relatively small number of treatments, and

they cannot be directly applied to a large number of treatments. For example, typical

IPM such as the maximum mean discrepancy (MMD) and Wasserstein distance,

require many regularization terms for all pairs of treatments; otherwise, an expedient

“pivot" control treatment must be set, which is not effective, as demonstrated in our

experiments. The use of the HSIC is proposed by Lopez et al. [74] as it naturally

allows multiple treatments. However, they did not consider learning representations

of treatments.
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Algorithm 2: GraphITE training procedure
Input: Observational data: D = {(xi, ti, ytii )}Ni=1 ∼ ptrain,
a set of graph-structured treatments G = {Gj}|T |

j=1,
and a hyperparameter λ ≥ 0.
Output: An outcome prediction model f = (g, ϕ, ψ).
while not converged do

Sample a mini batch B = {(xio , tio , y
tio
io
)}Bo=1 ⊂ D

# Mini-batch approximation of the supervised loss (Eq. (4.3))
Compute LB(g, ϕ, ψ) =

∑B
o=1 ℓ(yio , g(ϕ(xio), ψ(Gtio

)))
# Mini-batch approximation of the HSIC loss (Eq. (4.4))
Compute HSICB(ϕ, ψ) = HSIC(ϕx∈B, ψt∈B)
# Update the parameters of f
Minimize LB(g, ϕ, ψ) + λ · HSICB(ϕ, ψ) using SGD

end

4.4.3 Theoretical justification of HSIC regularization

Now we consider the theoretical justification for using the HSIC regularization in

GraphITE. Our discussion is based on generalizations of the theories [74, 95] to

treatments with features. We also discuss the benefits of our formulation and how

it makes the prediction model more flexibly deal with complex situations than the

existing approaches.

Denote by ptrain the probability distribution on X × T the training dataset D

follows, and by ptest the one for the test dataset. We assume that the test distribution

has the form of ptest(x, t) = pX (x)pT (t) because we want our model to perform well

on the distribution where treatments do not depend on the covariates.

For some (unknown target) function f ∗ : X×T → Y and probability distribution

p over X × T , let the expected risk of our prediction model f : X × T → Y with

the mapping functions ϕ, ψ and a predictive function g be

ϵp(fg,ϕ,ψ) = E(x,t)∼p[ℓ(f(x, t), f
∗(x, t))], (4.6)

where f(x, t) := g(ϕ(x), ψ(Gt)).

Then we have the following theoretical upper bound of the expected risk on
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the test distribution in terms of that for the training distribution and the HSIC

regularization term.

Theorem 1. Let ϵptrain(fg) and ϵptest(fg) be the expected risk for the training distri-

bution and the test distribution, respectively. Let the IPM between two distributions

p and q with respect to a function family H be

IPMH(p, q) = sup
h∈H

|Ep[h]− Eq[h]|. (4.7)

Let J−1
ϕ (ξ), J−1

ψ (τ) be the Jacobian matrices of ϕ−1 and ψ−1 at ξ and τ , respectively.

Assume that there exist positive constants A and B that satisfy |Jϕ−1(ξ)||Jψ−1(τ)| ≤ A

and
ℓfg,ϕ,ψ
B

∈ H ⊆ {g : Φ×Ψ → Y}. Then the expected risk for the test distribution

is upper-bounded by

ϵptest(fg,ϕ,ψ) ≤ ϵptrain(fg,ϕ,ψ) + λ · HSIC(ϕ, ψ). (4.8)
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Proof.

ϵptest(fϕ,ψ)− ϵptrain(fg,ϕ,ψ)

=

∫
X×T

ℓfg,ϕ,ψ(x, t)(p(x)p(t))dxdt−
∫
X×T

ℓfg,ϕ,ψ(x, t)p(x, t))dxdt

=

∫
X×T

ℓfg,ϕ,ψ(x, t)(p(x)p(t)− p(x, t))dxdt

=

∫
Φ×Ψ

ℓfg,ϕ,ψ(ϕ
−1(ξ), ψ−1(τ))(p(ξ)p(τ)− p(ξ, τ))

· |Jϕ−1(ξ)||Jψ−1(τ)|dξdτ

≤A
∫
Φ×Ψ

ℓfg,ϕ,ψ(ϕ
−1(ξ), ψ−1(τ))(p(ξ)p(τ)− p(ξ, τ))dξdτ

≤A ·B sup
g∈H

∣∣∣∣∫
Φ×Ψ

g(ϕ−1(ξ), ψ−1(τ))(p(ξ)p(τ)− p(ξ, τ))dξdτ

∣∣∣∣
≤A ·B · IPMH(p(ξ)p(τ), p(ξ, τ))

≤ · A ·B · C · HSIC(p(ξ), p(τ)),

where ℓfg,ϕ,ψ = Ey[ℓ(yt, g(ϕ(x), ψ(Gt)) | x, t]. C is a constant that denotes the radius

of the function space. By setting λ = A ·B · C, we obtain the inequality (4.8).

The theorem states that minimizing the HSIC between the representations of

the targets and graph-structured treatments leads to minimizing the expected risk

for the test distribution, making the predictive model to handle even unseen graph-

structured treatments unbiasedly. For the inequality (4.8) to hold, we require several

conditions: ϕ and ψ must be twice-differentiable one-to-one mapping functions, and

the HSIC must be defined using continuous, bounded, positive semi-definite kernels

kΦ : Φ×Φ → R and kΨ : Ψ×Ψ → R. The λ must also be theoretically determined

based on the radius of the function space in which f lies, but empirically, we simply

treat it as a hyper-parameter. Our choices of the kernels and the hyper-parameters

are detailed in Section 4.5.

Note that MMD and Wasserstein distance are special cases of IPM when the

function family includes the set of 1-Lipschitz functions and the set of unit norm
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Table 4.1: Summary statistics of the datasets.

Dataset #Units #Treatments #Interactions
CCLE 491 24 11,054
GDSC 925 117 105,694

functions in a universal reproducing norm Hilbert space [18], respectively. Hence,

they are obviously bounded by the inequality (4.8).

4.5 Experiments

We experimentally investigate the performance of the proposed GraphITE and its

merits of using the GNN and the HSIC regularization compared with various baseline

methods on two real-world datasets.

4.5.1 Datasets

We use two real-world datasets on drug responses: the Cancer Cell-Line Encyclo-

pedia (CCLE) dataset [96] and Genomics of Drug Sensitivity in Cancer (GDSC)

dataset [97]. Table 4.1 lists their basic statistics. #Units, #Treatments, and #In-

teractions represent the number of units, the number of treatments, and the number

of labeled data in a dataset. CCLE is a relatively small dataset with a moderate

number of treatments, while GDSC has more than 100 treatments. Both of the

datasets include IC50 values for drug–cell pairs, which are known to be closely re-

lated to drug sensitivity. Namely, we define the drug sensitivity as y = − log IC50

following previous studies [98, 99], which is the regression target in our experiments.

We use the similarity matrices of each cell line as the input features. Both datasets

are publicly available2 [99].

Because the two original datasets are fairly close to complete observations (specif-

ically, their observation rates are about 94% and 98%, respectively), we simply as-

2https://github.com/CSB5/CaDRReS
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Table 4.2: Performance comparison of different methods on the CCLE and GDSC dataset
in terms of RMSE and CI. † and ‡ indicate statistically significantly better performance of
the proposed GraphITE than the baseline by the paired t-test with p < 0.05 and p < 0.01,
respectively. The bold results indicate the statistically significant best results. The shaded
rows indicate the GNN-based methods. Lower RMSEs are better, and higher CIs are
better.

CCLE GDSC

Method RMSE CI RMSE CI

Mean ‡3.777±0.101 − ‡4.030±0.102 −
OLS ‡4.861±0.755

‡0.642±0.021
‡6.463±0.493

‡0.602±0.018

BART ‡2.993±0.203
‡0.711±0.016

‡3.965±0.102
‡0.632±0.015

Treatment Embedding ‡2.662±0.161
‡0.724±0.013

‡3.642±0.131
‡0.670±0.015

TARNet ‡2.831±0.123
‡0.711±0.013

‡3.813±0.135
‡0.663±0.009

CFR ‡2.822±0.121
‡0.712±0.013

‡3.792±0.134
‡0.664±0.009

GANITE ‡3.652±0.211
‡0.651±0.023

‡7.739±1.394
‡0.613±0.018

GNN ‡2.652±0.123
‡0.720±0.010

‡3.553±0.126
‡0.681±0.010

GNN+MMD †2.596±0.162
†0.726±0.014

‡3.531±0.136
‡0.683±0.013

GraphITE (Proposed) 2.561±0.112 0.732±0.009 3.421±0.135 0.695±0.015

sume that they are complete, and introduce synthetic observation biases to extract

biased training datasets, and then test the predictors obtained from them on the

remainder. We introduce synthetic treatment bias that assigns treatment t using

t ∼ Categorical(softmax(ρy)) following previous studies [79, 73, 78]. The ρ = η
100σ

is a bias coefficient, where η is the magnitude of selection bias and σ is the stan-

dard deviation of target values. A larger η indicates a higher selection probability;

intuitively, this indicates that scientists are more likely to conduct experiments for

drug–cell pairs with higher sensitivity values. Note that although this bias genera-

tion procedure does not necessarily satisfy the typical unconfoundedness assumption,

it is more practical and reasonable in the sense that the scientists likely to select

promising experimental targets based on their knowledge and experience. In other

words, we assume scientists are not incompetent.
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Figure 4.4: Sensitivity of the results to the regularization strength λ. Although the
optimal choices significantly improve the performance, at worst the other choices do not
harm the performance.

4.5.2 Baseline methods

We compare GraphITE with the following six baselines. (i) Ordinary least squares

linear regression (OLS) concatenates two vectors, the covariate vector and treat-

ment vector coded as a one-hot vector, which is used as the input. (ii) Bayesian

additive regression trees (BART) [59, 15] predicts the outcomes by an ensemble of

multiple regression trees; we used a Python implementation of BART3. (iii) Treat-

ment embedding method exploits low-dimensional representations of treatments to

deal with a large number of treatments. Each treatment is associated with a low-

dimensional vector, which is input to a neural network, as well as a covariate vector.

Note that this method does not use the graph structures of the treatments at all.
3https://github.com/JakeColtman/bartpy
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Figure 4.5: Predictive performance depending on the bias coefficient η. A large η indicates
a larger selection bias. GraphITE shows its strong and stable tolerance to the biases and
consistently performs the best in the whole range.

(iv) TARNet [18] is a deep neural network model with shared layers for representa-

tion learning and different layers for outcome prediction for treatment and control

instances. (v) Counterfactual regression (CFR) [18] is one of the state-of-the-art

deep neural network models based on balanced representations between treatment

and control instances; we used the MMD as its IPM. Following previous studies [20,

72], we extend the CFR [18] to the multiple-treatment setting; we regard the most

frequent treatment as the control treatment. (vi) GANITE [20] is another state-of-

the-art deep neural network model based on GAN. It trains a TARNet-like generator

that generates counterfactual outcomes, and a discriminator tells whether outcomes

come from the generator or the real distribution. In the original GANITE, the dis-

criminator just tries to solve a binary classification; on the other hand in our setting,
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Figure 4.6: Predictive performance depending on the the number of treatments. Whereas
the baseline methods get degraded as the number of treatments increase, graphite shows
relatively robust to its increase and achieves the best performances, especially in the larger
dataset (GDSC).

GANITE has to solve multi-class classification to tell which outcome is the genuine

one.

In addition to the use of graph structured treatments, one of the key features

of GraphITE is the bias mitigation using HSIC regularization; therefore, we use

the versions without it our baseline methods for the ablation study. We also tested

several variants of GraphITE: (vii) a variant with no bias mitigation that does not

have the HSIC regularization term and only uses a GNN, which we refer to as

“GNN” hereafter and (viii) another variant using MMD regularization instead of

HSIC regularization. We used the same approach as CFR to deal with multiple

treatments. We denote it by “GNN+MMD".
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Figure 4.7: Predictive performance depending on treatment popularity. From the RMSE
results, the methods that do not rely on treatment graph information (CFR, TARNet,
BART) suffer from a lack of data especially for unpopular treatments. From the CI re-
sults, the methods that have no bias mitigation mechanism put too much attentions on
popular treatments (i.e., difficult in terms of ranking) treatments, and perform subopti-
mally. GraphITE shows the most stable and best performance on every group.

4.5.3 Experimental setting

As the evaluation metrics, we employ the root mean square error (RMSE) of all

target–treatment pairs in the test set defined as:

RMSE =

√√√√ 1

N test

1

| T |

Ntest∑
i=1

|T |∑
t=1

(yti − f(xi, t))2, (4.9)

where N test is the number of target individuals included in the test dataset. We

also employ the concordance index (CI) [100] to evaluate predictive performance
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Table 4.3: Performance comparison of different methods on the CCLE and GDSC dataset
in terms of RMSE and CI. † and ‡ indicate statistically significantly better performance of
the proposed GraphITE than the baseline by the paired t-test with p < 0.05 and p < 0.01,
respectively. The bold results indicate the statistically significant best results. The shaded
rows indicate the GNN-based methods. Lower RMSEs are better, and higher CIs are
better.

CCLE GDSC

Method RMSE CI RMSE CI

Mean 3.458±1.301 − †4.705±0.702 −
GNN 3.920±0.932 0.551±0.130

‡4.646±0.631 0.570±0.061

GNN+MMD 3.903±0.923 0.549±0.132
‡4.640±0.674 0.574±0.061

GraphITE 3.637±0.905 0.545±0.114 4.482±0.595 0.569±0.054

in terms of ranking accuracy, which has been widely used in previous studies [101,

102]. The CI is defined as

CI =
1

N test

Ntest∑
i=1

∑
t,u|yti>yui

θ(f(xi, t)− f(xi, u))

|{t, u | yti > yui }|
, (4.10)

where γ is the Heaviside step function defined as

θ(x) =


1, x > 0

0.5, x = 0

0 x < 0

. (4.11)

Note that the CI is identical to ROC-AUC when all outcomes are binary.

We split the whole individuals into 80%, 10%, and 10% for training, validation,

and testing sets, respectively. We report the average results of 50 different trials.

Note that while we sample the factual treatments in the training and validation sets

following the biased sampling scenario explained in the Dataset section, all of the

treatments are included in the test set because we want our prediction model to

perform uniformly well on all treatments.
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In GraphITE, to promote effective feature extraction from small data, we pre-

train the GNN ψ on regression tasks using three popular molecular datasets: ESOL,

FreeSolv, and Lipophilicity, provided by MoleculeNet [103]4. To the best of our ob-

servation, GraphITE performs slightly better with pre-training than the one without

pre-training. We believe that this phenomenon may be caused by the small size of

the training data, and is the one of limitations of this study to be addressed in

future work. For the HSIC regularization, we use the normalized version of the

HSIC (nHSIC), defined as

nHSIC(ϕ, ψ) =
tr(KΦHKΨH)

∥KΦH∥∥KΨH∥
, (4.12)

where ∥·∥ denotes the Frobenius norm. The regularization parameter λ is optimized

in {10−3, 10−2, . . . , 103} based on the RMSE for the validation set. We set the num-

ber of representation dimensions for target individuals and graph-structured treat-

ments to 64 because we did not observe the significant differences in {16, 32, 64, 128}

in the both datasets. Similarly, we set the numbers of layers of ϕ, ψ, and g to 3.

4.5.4 Results

Table 4.2 summarizes the predictive performances of the different methods for η = 40

(i.e., the strongest bias). In the remainder, we report the experimental results when

we set η = 40 unless otherwise stated.

The deep learning-based methods (Treatment Embedding, TARNet, CFR) out-

perform the naïve methods, such as Mean and OLS. BART also gives the comparable

performance. However, we observe GANITE performs poorly in comparison with

the other deep learning-based methods. We believe this is because of the difficulty

in learning the GAN models, that is, GANITE has to solve many-class classification

with a limited amount of training data. The existing bias mitigation methods that

are simply extended to multiple treatments (CFR and GNN+MMD) do not not show

4http://moleculenet.ai/
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significant improvements over the corresponding original ones (TARNet and GNN).

By contrast, GraphITE achieves the best performance, which is statistically signif-

icant against all the baselines, and it demonstrates its effectiveness, especially on

the larger dataset (GDSC). The merit of exploiting the graph structures associated

with treatments can also be seen in Table 4.2. The GNN-based methods (shaded

rows) perform better than the methods that neglect graph-structured information.

Figure 4.4 shows the sensitivity of the results to the strength of HSIC regulariza-

tion; although the optimal choices significantly improves the performance, none of

the other choices harm the performance. The results also highlight the effectiveness

of the HSIC as the choice for the regularization term; MMD shows no remarkable im-

provement over the plain GNN because it cannot handle many treatments efficiently,

whereas GraphITE using HSIC regularization shows distinct improvements.

Now, we investigate the robustness of GraphITE against selection bias. Fig-

ure 4.5 shows the performances for different bias strengths, where a larger η repre-

sents a larger selection bias. GraphITE shows its strong and stable tolerance to the

biases and consistently performs best under all bias strength settings.

The impacts of the number of treatments are shown in Figure 4.6. For small

numbers of treatments, both GraphITE and the other baseline methods perform

similarly well; however, the baseline methods, especially BART, degrade the per-

formances as the number increase. GNN+MMD does not show improvements from

the plain GNN, particularly on the larger dataset (GDSC). GraphITE shows the

remarkable robustness to the selection bias, even with large numbers of treatments.

Next, we investigate the predictive performance based on treatment popularity,

as shown in Figure 4.7. We focus on the treatment groups that are grouped by their

popularity, namely, the top 20%, 20–40%, 40–60%, 60–80% most popular treatment

groups. As can be seen from the RMSE results, the methods that do not rely

on treatment graph information (CFR, TARNet, and BART) suffer from a lack of

training data especially for unpopular treatments; On the other hand, the methods

exploiting the auxiliary information mitigate this problem.
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Now we turn to the CI results. From its definition (4.10), CI measures ranking

performance. It is more difficult to estimate accurate ranking for popular treatments

rather than less popular treatments, because in our bias setting, more popular treat-

ments have larger outcomes, and they are more heterogeneous sets than less popular

ones. On the other hand, it is rather easy to obtain small RMSEs for popular treat-

ments because their outcomes have small variances. The methods that have no bias

mitigation mechanism put too much attentions on such difficult treatments (in terms

of ranking), and eventually perform suboptimally, while GraphITE shows the most

stable and best performance on every group.

Finally, we investigate the predictive performance on the unobserved “zero-shot"

treatments that are not included in training data. We keep 30% of the entire treat-

ments aside in advance as the validation and target unobserved treatments. Table 4.3

shows the prediction accuracy for the unobserved treatments when we set η = 40.

Note that the existing methods such as CFR are incapable of dealing with this set-

ting. In the smaller dataset, CCLE, the selection bias prevents the models from

working appropriately, and all of the variants perform worse than the simply base-

line taking the mean of training data in terms of RMSE. On the other hand in the

larger dataset, GDSC, GraphITE achieves the best RMSE, while the other methods

still suffer from the bias. However, we do not observe significant improvements in

terms of CI in the both datasets.

4.6 Conclusion

In this study, we proposed GraphITE, which can handle graph-structured treat-

ments in order to achieve better treatment effect estimation even when the number

of treatments is large. GraphITE is based on the recent developments of deep

neural networks and representation learning, namely, GNNs and HSIC regulariza-

tion, which contribute to improving estimation accuracy of complex -structured

treatments from biased observational data. In addition, GraphITE is applicable
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to previously unobserved “zero-shot" treatments, which the existing ITE estima-

tion methods are intrinsically not capable of dealing with. In the experiments on

two real-world drug response datasets, GraphITE achieved the best performances in

terms of RMSE and CI when compared to the various baselines. In particular, we

observed a significant improvement when the effect of selection bias and the number

of treatments were large. A potential future direction is to consider other types of

complex structured data, such as texts, images, and videos. We also plan to apply

GraphITE to much larger datasets, in which we expect further improvements.
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Chapter 5

InfoCEVAE: Treatment Effect

Estimation with Hidden

Confounding Variables Matching

5.1 Introduction

Treatment effect estimation plays an essential role in decision making in various

domains, such as healthcare, economic policy, and education. The goal of treatment

effect estimation is to estimate the effect of an action by a decision maker. The

main difficulty of treatment effect estimation based on observational data is that a

treatment assignment is not randomized, which is often referred to as observational

or selection bias. For example, elderly people might be more likely to receive drug

treatment than younger people. In this example, age is a variable that impacts

treatment assignment and outcome. This variable is called a confounding variable.

We need to find such confounding variables to mitigate bias and give appropriate

treatment effect.

In the context of treatment effect estimation, many studies usually assume that

observational data include all the confounding variables. However, this assump-
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tion seems too strong and not realistic because we cannot always practically ob-

tain sufficient information regarding individuals to guarantee that we observe all

the confounding variables. Confounding variables that are not included in obser-

vational data are often referred to as hidden confounding variables. For example,

private and sensitive individual information like income might be difficult to ob-

tain, but this variable can have an effect on treatment assignment and outcome.

Without knowing confounding variables, it is impossible to know the true treatment

effect, and treating proxy variables as confounding variables will lead to incorrect

estimands [104, 24]. Fig. 5.1 illustrates a graphical model of the data generation

process. In this graphical model, it is indispensable to infer z correctly to know the

true treatment effect. Prior studies have used strong assumptions that they have

knowledge regarding the nature of hidden confounding variables beforehand, like

the number of categories of hidden confounding variables [105]. These assumptions

limit the application range of these approaches.

Recently, the Causal Effect Variational Autoencoder (CEVAE, the VAE-based

method has been successfully incorporated into treatment effect estimation with the

existence of hidden confounding variables [24, 28]. One of the advantages of VAE

is that it can recover a large class of hidden confounding variable models thanks to

the expressive power of neural networks [106]. Previous researches require that we

know the nature of hidden confounding variables, such as the number of categories.

Xu et al. [26] employed a deep learning-based technique but they also assumed

that they can distinguish variables that have an effect only on treatment assignment

from variables which have an effect only on outcome. This assumption requires prior

knowledge and seems unrealistic.

However, recent theoretical analysis revealed that the global optimum of VAE

evidence lower bound (ELBO) does not correctly model the data generation pro-

cess [34] because VAE focus on reconstruction loss too much, which becomes severer

when input variables have much higher dimensions than latent variables. To mit-

igate this problem, InfoVAE [34], which adds a mutual information regularizer to
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the VAE loss function, was proposed.

This phenomenon obviously arises in VAE-based methods for treatment effect

estimation and makes recovering hidden confounding variables by VAE difficult. We

first remark there are datasets that the optimal solution of VAE-based methods, such

as CEVAE, does not give the correct treatment effect. This is a strict limitation

without any guarantee when they achieve optimal solution even though they are

capable of recovering them.

To mitigate these problems, we propose hidden confounding variable matching

VAE, which combines VAE with information regularization and matching to give

appropriate treatment effect. The proposed method obtains the correct treatment

effect when it achieves the optimal solution of its loss function, even under the

existence of hidden confounding variables. We summarize the contribution of this

study as follows:

• To the best of our knowledge, this is the first work that shows the optimal

solution of naive VAE-based methods is not a correct average treatment ef-

fect (ATE) for types of datasets.

• We propose an effective method based on information regularization and match-

ing algorithm to mitigate hidden confounding variables and bias, with theo-

retical guarantee.

• In experiments using semi-synthetic and synthetic datasets, the proposed method

significantly outperformed existing methods.

5.2 Related work

5.2.1 Treatment effect estimation

Treatment effect estimation plays a essential role in decision making across vari-

ous domains, such as healthcare [75, 107], economic policy [40], and education [76].
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Figure 5.1: A graphical model for the treatment effect estimation methods with
hidden confounding variables, which is the same as a graphical model introduced in
Figure 2.1(b). Hidden confounding variable z has an effect on treatment assignment
and outcome. Treating proxy variables x as normal confounding variables gives
incorrect treatment effect estimation.

We outline important studies, ranging from established methods to modern deep

learning-based methods. The goal of treatment effect estimation is to understand

the effect of a specific action, i.e., treatment. One of the classic methods for treat-

ment effect estimation is matching [12, 56, 108]. Matching methods estimate the

counterfactual outcomes by the nearest neighbor of each individual in terms of co-

variates. Because the curse of dimensionality makes finding appropriate nearest

neighbors of each individual more difficult, propensity score matching, which defines

nearest neighbors in terms of propensity score, was developed [43, 57]. Tree-based

methods, such as Random forest and Bayesian additive regression trees (BART),

have also been applied [59, 15].

Recently, deep learning-based methods have been successfully applied to the

treatment effect estimation problem [18, 17, 51, 20, 24, 28, 60, 90, 109]. Counterfac-

tual regression (CFR) encourages individual representation of each treatment group

extracted by neural networks to get closer to each other. Perfect matching combines

neural networks and propensity score matching [73], and Counterfactual propaga-

tion, which also integrates matching and graph-based semi-supervised learning, aims
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to estimate treatment effect using a large number of unlabeled individual data [90].

In particular, VAE-based methods [24, 28] have been developed to mitigate the hid-

den confounding variable problem. They aim to recover hidden confounding vari-

ables by the strong expressive power of neural networks. Network structured-data

also have been utilized to infer hidden confounding variables effectively [60].

5.2.2 VAE

VAE is one of the most famous deep generative models [29] and has been widely

employed in various domains, such as computer vision [110], natural language pro-

cessing [111], and chemoinformatics [112]. One of the advantages of VAE-based

generative models is their strong expressive power based on neural networks. VAE

has also been successfully applied in treatment effect estimation [24, 28]. The idea

is to recover a joint distribution including hidden confounding variables expressed

as latent variables to estimate treatment effect. However, recent theoretical analysis

revealed that VAE will ignore the latent variables in the global optimum of the VAE

loss function [34]. Hence, due to the nature of the VAE loss function, VAE-based

treatment effect estimation methods face the unavoidable issue that they do not pro-

vide the correct treatment effect estimation even when their loss function achieves

the optimal solution, which we will discuss in this paper.

Our goal is to fill the gap between VAE theoretical analysis and VAE-based treat-

ment effect estimation methods, proposing an efficient method that provides theoret-

ical guarantee of treatment effect even when there are hidden confounding variables.

5.3 Problem statement

In this section, we state the problem setting of treatment effect estimation. Suppose

xi ∈ X ⊂ Rdx is the dx dimensional proxy variables of the i-th individual, ti ∈ T =

{0, 1} is the binary treatment applied to the i-th individual, and ytii ∈ Y ⊂ R is
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its outcome of the i-th individual. We omit the notation i of a variable when the

variable can represent any individual. Given a dataset D := (xi, ti, y
ti
i )

N
i=1, which

includes N individuals, our goal is to estimate the Average Treatment Effect (ATE)

and conditional ATE (CATE) defined as:

ATE := E[y1 | do(t = 1)]− E[y0 | do(t = 0)], (5.1)

CATE(x) := E[y1 | x, do(t = 1)]− E[y0 | x, do(t = 0)]. (5.2)

We make some basic assumptions in this study: (i) stable unit treatment value:

the outcome of each instance is not affected by the treatment assigned to other

instances; (ii) unconfoundedness: the treatment assignment to an individual is in-

dependent of the outcome given hidden confounding variables; (iii) overlap: each

individual has a positive probability of treatment assignment; (iv) smoothness:

individuals who have similar hidden confounding variables have similar outcomes;

(v) noisy proxy variables: hidden confounding variables can be recovered by noisy

proxy variables.

5.4 Preliminaries

We briefly introduce some notable deep generative models based on VAE as prelim-

inaries for clarity.

VAE [29] is a widely used deep generative model that sets a prior distribution as

the normal distribution. it maximizes the ELBO, consisting of reconstruction loss

and the Kullback-Leibler (KL) divergence loss. It usually parameterizes pθx and qϕ

by neural networks.

p(zi) =
dz∏
j=1

N (zij | 0, 1), pθx(xi | zi) =
dx∏
j=1

pθx(xij | zi), (5.3)
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LELBO =
N∑
i=1

Eqϕ(zi|xi)[log pθx(xi | zi) + log p(zi)− log qϕ(zi | xi)] (5.4)

=
N∑
i=1

Eqϕ(zi|xi)[log pθx(xi | zi)− KL(qϕ(zi | xi), p(z))]. (5.5)

InfoVAE [34] is a VAE with a mutual information regularization term. The mu-

tual information term boils down to the distribution divergence between the prior

distribution and marginal distribution of posterior distribution, and the function to

be optimized is written as:

LInfoVAE =
N∑
i=1

Eqϕ(zi|xi)[log pθx(xi | zi)− KL(qϕ(zi | xi), p(z))]−D(qϕ(z), p(z)),

(5.6)

where D(qϕ(z), p(z)) is a divergence between the two distributions p(z) and qϕ(z),

and any divergence can be used given that D(qϕ(z), p(z)) = 0 if and only if qϕ(z) =

p(z) [34].

CEVAE [24] is a recently proposed VAE-based methods for CATE and ATE estima-

tion, which aims to identify treatment effect under the presence of hidden confound-

ing variables. To correctly specify treatment effect, we need to deal with hidden

confounding variables. CEVAE assumes that such hidden confounding variables

can be recovered from proxy variables as many previous studies. It takes inputs

xi, ti, y
ti
i to infer hidden confounding variables, zi.
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pθt(ti | zi) = Bern(h(g(zi))), (5.7)

pθy(y
ti
i | zi, ti) = N (µ = µ̂i, σ

2 = 1), µ̂i = tif1(zi) + (1− ti)f0(zi), (5.8)

qϕ(zi | xi, ti, ytii ) =
dz∏
j=1

N (µij = µ̄ij, σ
2
j = σ̄2

ij), (5.9)

µ̄i = tiµ̄t=0,i + (1− ti)µ̄t=1,i, σ̄
2
i = tiσ

2
t=0,i + (1− ti)σ

2
t=1,i, (5.10)

µ̄t=0,i,σ
2
t=0,i = f3 ◦ f2(xi, yi), µ̄t=1,i,σ

2
t=1,i = f4 ◦ f2(xi, yi), (5.11)

where h(x) is a sigmoid function defined as h(x) := 1
1+exp−x

, Bern(p) denotes the

Bernoulli distribution which returns 1 or 0 with a probability p or 1−p, respectively,

and g, f0, f1, f2, f3 and f4 are neural networks. The variational lower bound is given

as:

LELBO(CEVAE) =
N∑
i=i

Eqϕ(zi|xi,ti,yi)[log pθx,t(xi, ti | zi) + log pθy(y
ti
i | ti, zi) (5.12)

− KL(qϕ(zi | xi, ti, yi), p(z))],

where log pθx,t(xi, ti | zi) = log pθx(xi | zi) + log pθt(ti | zi). To give outcomes for

new individuals, CEAVE is required to have the treatment assignment and outcome

beforehand. Therefore, it employs two auxiliary loss functions to deal with new

individuals. Finally, the objective function of CEVAE is given as:

LCEVAE = LELBO(CEVAE) +
N∑
i=i

log q(ti | xi) + log q(ytii | xi, ti). (5.13)

5.5 CEVAE fails to estimate CATE

Treatment effect estimation with hidden confounding variables is an essential prob-

lem. CEVAE [24] enabled us to estimate treatment effect with hidden confounding

variables without any strong assumption because VAE can recover a larger function

class. Prior studies have made strong assumptions, such as on the properties of
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proxy variables and hidden confounding variables. CEVAE can identify CATE and

ATE when it recovers the joint distribution p(z,x, t, y).

Theorem 2. We can recover CATE and ATE when we recover the joint distribution

p(z,x, t, y) in Fig (5.1) [24].

Proof. The proof is completed by applying the rules of do-calculus to Fig. (5.1). See

CEVAE paper for the details [24].

However, one of the major drawbacks of previous VAE-based methods, including

CEVAE, is that they do not guarantee that they can recover the hidden confounding

variables, even when when they achieve the optimal solution even though they have

a capability to recover them. As a motivating example, we first note that there is a

dataset for which the optimal solution of CEVAE does not give the correct CATE

and ATE for new individuals. Note that we consider the case that we use only

the proxy variables x because assuming that we have correct outcomes y for new

individuals is not realistic.

Theorem 3. Suppose we have a dataset D = {xi, ti, ytii }Ni=1, where zi ∼ N (0, 1),

xi ∼ N (zi, 1), ti ∼ Bern(ρt), yi ∼ N (I(Czi > 0)t, 1), where ρt is a probability of of

receiving treatment and C is a constant value. Suppose we only observe xi = 1 or

xi = −1 and yi = 1 or yi = −1. The optimal solution of CEVAE for this dataset

does not give correct CATE and ATE.

Proof. Appendix.

This result demonstrates the insufficiency of naive VAE-based methods to re-

cover hidden confounding variables and estimate treatment effect. Because there

are numerous situations where observational data are limited and over-fitting to

observational data may occur, we need to treat this problem carefully. Here we

demonstrate a specific dataset, but we leave the proof of a more general form for

future work.
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5.6 InfoCEVAE with hidden confounding variables

matching

The phenomenon described above arises because of the nature that VAE pushes

masses away from each other and focuses on reconstruction loss too much. This

becomes more crucial when we have higher dimensional proxy variables and a lower

number of hidden confounding variables compared to proxy variables (i.e, dx ≫ dz),

especially when we have limited data. Some readers might think a larger number of

proxy variables makes an unconfoundedness assumption, i.e., non-hidden confound-

ing assumption, more reasonable; however, we usually can not guarantee that there

are no hidden confounding variables in practice, and moreover, sometimes we never

have access to the hidden confounding variables (e.g., variables including sensitive

privacy information) even when we can easily obtain some proxy variables.

The straightforward solution to obtain the correct ATE using VAE-based meth-

ods is to employ the theoretical analysis of InfoVAE [34], which adds the mutual

information regularization term to the original ELBO of VAE.

The ELBO of InfoCEVAE will be adding the information regularization term to

CEVAE given as:

L =
N∑
i=i

Eqϕ(zi|xi,ti,yi)[log pθx,t(xi, ti | zi) + log p(ytii | ti, zi)

−KL(qϕ(zi | xi, ti, ytii ), p(z))]−D(qϕ(z), p(z)). (5.14)

We can employ the several measures of divergence D between two probability dis-

tributions, such as 2-Wasserstein distance given that D(q(z), p(z)) = 0 if and only

if q(z) = p(z). We use the 2-Wasserstein distance as D, and the 2-Wasserstein

distance for two Gaussian distributions is written as:

D(N (µ1, σ1),N (µ2, σ2)) = ∥µ1 − µ2∥2 + ∥σ1 − σ2∥2. (5.15)
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We can also get correct CATE and ATE when the model achieves the optimal

solution of the objective function qϕ(z) = p(z).

Theorem 4. The optimal solution of InfoCEVAE gives the correct CATE and ATE.

Proof. According to the Proposition of InfoVAE, we obtain the optimal solution

when we achieve qϕ(y | t, z) = p(y | t, z) and qϕ(z | x, t, y) = p(z | x, t, y). Therefore,

ĈATE(x) = pθ(y | t = 1,x)− pθ(y | t = 0,x) (5.16)

=

∫
Z
pθ(y = 1 | t = 1, z)qϕ(z | x, t = 0, y) (5.17)

− pθ(y = 1 | t = 0, z)qϕ(z | x, t = 1, y)dz (5.18)

=

∫
Z
p(y | t = 1, z)p(z | x, t = 0, y)− p(y | t = 0, z)p(z | x, t = 1, y)dz

(5.19)

=

∫
Z
p(y | do(t = 1), z)p(z | x, do(t = 0), y) (5.20)

− p(y | do(t = 0), z)p(z | x, do(t = 1), y)dz (5.21)

= p(y | x, do(t = 1))− p(y | x, do(t = 0)) (5.22)

= CATE(x). (5.23)

However, this naive approach requires that we obtain the correct outcome func-

tion, i.e., p(y | z, t) = pθ(y | z, t) as well as the propensity score function p(t | z).

Obtaining the correct outcome function is a challenging, especially when we need

to consider observational bias. Say we obtain qϕ(z) = p(z) once, and then our goal

is to recover the joint distribution
∫
z
qϕ(z,x, t, y)dz = p(x, t, y). Therefore we need

to ensure that we have q(x, t, y | z) = p(x, t, y | z). Hence, to achieve the optimal

solution of InfoCEVAE, we need to learn θ such that pθ(x, t, y | z) = p(x, t, y | z),

which means we need to learn the correct outcome function only by skewed observa-

tional data. This is almost impossible without modification. The estimator θy given

observational data is given as:
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θobsy = argminθy∈Θ − 1

N

N∑
i=1

Eqϕ(zi|xi,ti,yi)[log pθy(yi | ti, zi)] (5.24)

≃ argminθy∈Θ − EpDtrain (t,y)
[Eqϕ(zi|x,ti,yi)[log pθy(yi | ti, zi)]]. (5.25)

However, this estimator is not consistent because of observational bias caused

by hidden confounding variables.

lim
N→∞

θobsy = argminθy∈Θ − EpDtrain (t,y)
[Eqϕ(z|x,t,y)[log pθy(yi | ti, zi)]] (5.26)

̸= argminθy∈Θ − Ep(t)p(y)[Eqϕ(z|x,t,y)[log pθy(yi | ti, zi)]]. (5.27)

(5.28)

∵ pDtrain(t, y) =

∫
Z
p(y | t, z)p(t | z)p(z)dz ̸=

∫
Z
p(y | t, z)p(t)p(z)dz (5.29)

= p(t)p(y). (5.30)

Note that we assume the treatment assignment is randomized when evaluating the

model. To resolve this problem, we propose an effective algorithm based on latent

variables and a matching algorithm. Note that InfoCEVAE guarantees the correct

treatment effect when it achieves the optimal solution, although it is challenging to

obtain. However, CEVAE cannot provide the optimal treatment effect, even when

it achieves the optimal solution.

5.6.1 Hidden confounding variables matching

To mitigate the above issue, we aim to recover hidden confounding variables by

only proxy variables, not using outcomes like CEVAE. This approach sounds rea-

sonable because the assumption that we can recover hidden confounding variables

only by proxy variables when we have such high dimensional proxy variables is quite
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valid [28]. Moreover, the advantage of using only proxy variables is that we do not

need to predict outcomes for new individuals. Hence, hidden confounding variables

are inferred as:

qϕ(zi | xi) =
dz∏
j=1

N (µ = µij, σ = σij); p(zi) = N (0, 1). (5.31)

The ELBO is given as:

LInfoCEVAE =
N∑
i=i

Eqϕ(zi|xi)[log pθx,t(xi, ti | zi) + log pθy(yi | ti, zi) (5.32)

− KL(log qϕ(zi | xi), p(z))]− λD(qϕ(z), p(z)),

where λ is a hyper-parameter that controls the strength of regularization.

For bias mitigation, we propose latent variable matching, which makes use of

latent variables to match individuals. Thanks to the theoretical advantage of Info-

CEVAE, we can find the matching based on the some metric using latent variables.

By nearest neighbor matching, we construct the counterfactual outcome for each

individual i as:

ŷt̄ii =
1

k

∑
j∈NN(zi,k)

y
tj
j , (5.33)

where NN(zi, k) = {i1, . . . , ik} is a set of indices ordered by a similarity that defines

nearest neighbors of zi, and t̄i ∈ T represents the other treatment of ti. Here, we

consider two variants of nearest neighbor selection: (i) Euclidean distance of means

of the two latent variables: (ii) propensity score matching. The advantage of (i) is

that we can use all the information of latent variables and does not need to infer

propensity score, while (i) might fail to find good matching in higher dimensions

of latent variables. The pros and cons of (ii) are the opposite of those of (i). Note
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that under the smoothness assumption and when we achieve the optimal solution of

InfoCEVAE, both hidden confounding variable matching methods yield consistency

estimators. We compute the log-likelihood of counterfactual outcome as:

Lcf =
N∑
i=i

Eqϕ(zi|xi)[log p(ŷ
t̄i
i | t̄i, zi)]. (5.34)

Finally, the objective function to be optimized is given as:

L = Lcf + LInfoCEVAE. (5.35)

Theorem 5. The optimal solution of InfoCEVAE with hidden variables matching

gives the consistent treatment effect estimator under the smoothness assumption.

Proof. According to the theorem of InfoVAE, we can obtain the correct posterior

function when we obtain the optimal solution. Using correct hidden confounding

variables, we can obtain correct counterfactual outcomes under the smoothness as-

sumption. Using the correct counterfactual outcomes as well as factual outcomes,

we can obtain a consistent estimator, which yields the correct ATE.

5.7 Experiments

We validated the performance of the proposed method, especially when there are

hidden confounding variables. First, we introduce the datasets used in the experi-

ments, and detail the experimental settings.

5.7.1 Datasets

We rarely have real-world datasets due to the counterfactual nature of treatment

effect estimation problem. We employed a widely-used semi-synthetic dataset and
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a synthetic dataset for this experiment.

News dataset [17].

This is a dataset including opinions of media consumers for news articles [17]1. It

contains 5,000 news articles and outcomes generated from the NY Times corpus2.

Each article is consumed on desktop (t = 0) or mobile (t = 1), and it is assumed that

media consumers prefer to read some articles on mobile than desktop. We use the

News dataset by setting the scale parameter for outcome in previous research [17] as

200. Each article is generated by a topic model and represented in the bag-of-words

representation. The size of the vocabulary is 3,477. As preprocessing, we apply

principal component analysis (PCA) with dz = 30. To simulate hidden confounding

variables situation, we generate proxy variables using these variables after PCA.

More concretely, we treat these variables as hidden confounding variables zij and

generate proxy variables as

xi,j×1,...,j×dproxy ∼ N (zij, σ
2
z), (5.36)

xi = [xi,1, . . . , xi,30×dproxy ], (5.37)

where σz is a standard deviation of the entire variables after PCA , dproxy stands out

for the number of proxy variables per hidden confounding variables and [] represents

the concatenation. We set dproxy as 30 for the News dataset.

Synthetic dataset.

The synthetic dataset is a benchmark generated in this study. This dataset includes

5, 000 individuals, binary treatment, and continuous outcomes. We generated the

dataset according to the following procedure:

1https://www.fredjo.com/
2https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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zij ∼ N (0, 1) (j = 1, . . . , 5), (5.38)

xi,j×1,...,j×dproxy ∼ N (10zij, 1), (5.39)

xi = [xi,1, . . . , xi,5×dproxy ], (5.40)

ti ∼ Bern(αh(
5∑
j=1

zij)), yi ∼ N (3I(
5∑
j=1

zij ≥ 0)× ti + 5ti, 1), (5.41)

where α ≥ 0 is a variable that controls the strength of observational bias, and I(x)

is an indicator function that is 1 if x is True and 0 otherwise. Note again that h is a

sigmoid function. Larger α means we have severer observational bias, and setting α

as 0 represents a randomized controlled trial. We clamped the treatment assignment

probability at 0.01 and 0.99. We change dproxy as ranging from 10 to 500 for the

Synthetic dataset. Unless otherwise stated, we report the results when dproxy = 500.

In the experiments, we investigated the robustness against the bias strength by

changing the value of α.

5.7.2 Experimental settings

We split the all individuals into 20%, 40%, and 40% train, validation, and test data,

respectively. Note that we especially focus on the case when train data are limited

because over-estimation becomes severer. As base neural network models including

VAE-based methods, we use two-layer neural networks. We also set the number of

neurons (i.e, the number of representations) as 50 for TARNet and CFR. We use

the elu function [113] as the activation function for all neural networks.

As evaluation metrics, we employ ATE error defined as

ϵATE =
1

N

N∑
i=1

|(y1i − y0i − (ŷ1i − ŷ0i ))|,

and precision in estimation of heterogeneous effect (PEHE) used in previous
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researches [15, 17]. ϵPEHE is the estimation error of individual treatment effects and

is defined as

√
ϵPEHE =

√√√√ 1

N

N∑
i=1

(y1i − y0i − (ŷ1i − ŷ0i ))
2.

The hyper-parameters are tuned based on the prediction loss using the observed

outcomes on the validation data. We log-uniform randomly choose the hyper-

paramters λ ranging from 1e − 3 to 1e3 ten times, and the final hyper-parameter

is selected based on the prediction loss using the outcomes on the validation data.

For CEVAE, we compute the ELBO using validation data and use the model at the

epoch when the ELBO for validation data achieves the maximum value. We report

the average results of 10 trials on the Synthetic dataset and 20 trials on the News

dataset.

5.7.3 Baseline methods

We compare the proposed method with the following baseline methods including

VAE-based methods. Unless otherwise stated, we use the concatenation of proxy

variables and treatment assignment coded as a one-hot vector as the input of pre-

dictive models of (i) and (ii). (i) Ridge is the ordinary linear regression methods

with L2 regularization. (ii) Random forest (RF) [14] and BART [59, 15] are the

predictive models based on the decision tree. (iii) TARNet [18] is a deep neural net-

work model that has shared layers for representation learning and different layers

for outcome prediction for treatment and control instances. Counterfactual regres-

sion (CFR) [18] is a state-of-the-art deep neural network model based on balanced

representations between treatment and control instances. We use the Wasserstein

distance. (vi) CEVAE [24] is a VAE-based treatment effect estimation method.
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5.7.4 Results

We first assess the full results in comparison with the baseline methods, and then

we investigate how the performance changes as we change the size of proxy vari-

ables or the strength of observational bias. Table 5.1 gives a performance com-

parison of the proposed method with the baseline methods. Overall, the proposed

method outperforms baseline methods significantly. On the News dataset, the both

approaches of proposed method show significant improvement from the baseline

methods. On the Synthetic dataset, the proposed method with propensity score

matching works better. This result makes sense because the propensity score and

outcome have strong correlation in this dataset. However, the proposed method

with the Euclidean matching does not work because nearby individuals in terms of

the Euclidean distance of hidden confounding variables do not necessarily become

the good matching unless we have a large amount of individuals. Meanwhile the

predictive performance deteriorates as selection bias becomes stronger, the proposed

method shows robustness to selection bias and consistently outperforms the baseline

methods. Fig 5.2 and 5.3 demonstrate the change of predictive performances as we

change the strength of bias α and the number of proxy variables dproxy. Whereas the

baseline methods suffer observational bias, the proposed method show robustness

to it. Although, the baseline methods result in limited improvement, the proposed

method also can deal with and make use of high dimensional proxy variables and

improve its predictive performance.

5.8 Conclusion

In this study, we considered treatment effect estimation problem with hidden con-

founding variables using VAE. VAE has been used to recover hidden confounding

variables by making use of its large capability. We first pointed out that the opti-

mal solution of CEVAE is not the correct ATE. We propose an efficient algorithm
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Table 5.1: Performance comparison on the News dataset and the Synthetic dataset in
terms of PEHE and ATE. Lower is better. † indicates that the proposed method show
statistically significantly better result by the paired t-test with p < 0.05. Bold results
show the best results in term of average. We also show standard errors for 20 and 10 times
repeated experiments for the News dataset and the Synthetic dataset, respectively.

News Synthetic

Method
√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

Mean †14.325±0.128
†3.921±0.551

†1.980±0.010
†1.292±0.015

Ridge †13.764±0.959 0.911±0.190
†1.570±0.019

†0.438±0.061

RF †10.246±0.959
†2.211±0.385

†1.465±0.021
†0.854±0.024

BART †13.618±0.921
†1.310±0.221

†2.758±0.332
†1.829±0.332

TARNet †8.988±0.488
†1.135±0.200

†1.729±0.093
†0.415±0.043

CFR †9.125±0.488
†1.643±0.268

†1.619±0.057
†0.366±0.049

CEVAE †9.389±0.600
†2.319±0.381

†1.795±0.053
†1.048±0.085

CEVAE w/ Euclidean †8.659±0.524
†1.196±0.250

†2.000±0.053
†1.229±0.017

CEVAE w/ propensity †8.642±0.523
†1.136±0.254

†1.630±0.046
†0.683±0.013

InfoCEVAE †8.453±0.510
†1.742±0.242

†1.373±0.062
†0.415±0.073

InfoCEVAE w/ Euclidean 7.934±0.478 0.928±0.172
†1.334±0.032

†0.815±0.042

InfoCEVAE w/ propensity 7.930±0.476 0.835±0.147 0.626±0.023 0.184±0.022

to recover hidden confounding variables and estimate treatment effect making use

of mutual information and matching techniques. Experiments on semi-synthetic

and synthetic datasets demonstrate the effectiveness of the proposed method, espe-

cially when we have higher dimensional proxy variables but still hidden confounding

variables.
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Figure 5.2: Performance comparison as the change of observational bias α. Lower is better.
Whereas baseline methods suffered a observational bias and get degrade its performance,
the proposed method demonstrates its robustness to the observational bias and almost
entirely surpass the baseline methods in the both metrics. Especially, the proposed method
consistently shows the affordable performance in ATE.
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Figure 5.3: Performance comparison as the change of the number of proxy variables.
Lower is better. While the baseline methods do not improve their predictive performances
as the number of proxy variables increase, the proposed method with propensity score
matching achieves almost entirely the best results, especially significant in

√
ϵPEHE.
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Appendix

Proof of Theorem 3.

Theorem 3. Suppose we have a dataset D = {xi, ti, ytii }Ni=1, where zi ∼ N (0, 1),

xi ∼ N (zi, 1), ti ∼ Bern(ρt), yi ∼ N (I(Czi > 0)t, 1), where ρt is a probability of of

receiving treatment and C is a constant value. Suppose we only observe xi = 1 or

xi = −1 and yi = 1 or yi = −1. The optimal solution of CEVAE for this dataset

does not give correct CATE and ATE.

Proof. Note that x and z represent vectors in the main paper but they are also

scalar values in this proof. The ATE of this dataset is

E[y1]− E[y0] = p(zi ≥ 0)C− 0 (5.42)

= p(zi ≥ 0)C. (5.43)

We first show naive CEVAE loss has unbounded reward if the proxy variables come

from gaussian distribution family. This step mainly follows the same procedure as

InfoVAE [34]. We consider the following restricted a Gaussian models and if we

achieve the infinite ELBO in this model, we can achieve the infinite ELBO in any

model with more expresiveness than this model.

p(x | z) =

N (1, σ2) (z ≥ 0)

N (−1, σ2) (z < 0)

,
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q(z | x) =

N (a, σ2
q ) (x ≥ 0)

N (−a, σ2
q ) (x < 0)

,

p(t | z) =

p1 (z ≥ 0)

p0 (z < 0)

, p(y | z) =


N (C, 1) (z ≥ 0, t = 1)

N (0, 1) (z < 0, t = 1)

N (0, 1) (t = 0).

The ELBO for x = 1 is

LAE(x = 1) ≡Eq(z|x=1)[log p(x = 1 | z)] + Eq(z|x=1)[log p(x = 1 | z)] (5.44)

+ Eq(z|x=1)[log p(t | z)] + Eq(z|x=1)[log p(y | z, t)]. (5.45)

Taking the gradient of LAE(x = 1),

∂LAE(x = 1)

σ
= − 1

σ
+

4

σ3
q(z ≤ 0 | x = 1) = 0, (5.46)

and the optimal solution for LAE(x = 1) is achieved when σ = 2
√
q(z ≤ 0 | x = 1).

Therefore,

L∗
AE(x = 1) = −1

2
log q(z ≤ 0 | x = 1) + Constant. (5.47)

q(z ≤ 0 | x = 1) is the sum of Gaussian tail probabilities. Hence in the limit σq → 0,

a→ ∞,

L∗
AE(x = 1) = Θ(

a2

σ2
q

), (5.48)

LREG = −KL(qϕ(z | x = 1)||p(z)) (5.49)

= log σq −
σ2
q

2
− a2

2
+

1

2
. (5.50)

Therefore, we can achieve unbounded ELBO.
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lim
σq→0,a→∞

LELBO(x = 1) = lim
σq→0,a→∞

L∗
AE(x = 1) + LREG(x = 1) (5.51)

→ ∞. (5.52)

Next, we show that treating them as normal confounding variables will not give the

correct treatment effect.

E[y1 | t = 1] =

∫
X
p(y | t = 1,x)p(x)dx (5.53)

=

∫
X

p(t = 1,x | y)p(y)
p(t = 1,x)

p(x)dx (5.54)

=

∫
X

∫
Z p(y, t = 1,x | z)p(z)dz∫
Z p(t = 1,x | z)p(z)dz

p(x)dx (5.55)

=

∫
X

∫
Z p(y, t = 1,x | z ≥ 0)p(z ≥ 0)dz+

∫
Z p(y, t = 1,x | z < 0)p(z < 0)dz∫

Z p(t = 1,x | z ≥ 0)p(z ≥ 0)dz+
∫
Z p(t = 1,x | z < 0)p(z < 0)dz

p(x)dx

(5.56)

=

∫
X

∫
Z p(y, t = 1,x | z ≥ 0)p(z ≥ 0)dz∫

Z p(t = 1,x | z ≥ 0)p(z ≥ 0)dz+
∫
Z p(t = 1,x | z < 0)p(z < 0)dz

p(x)dx

(5.57)

=

∫
Z

ρtCp(x | z ≥ 0) + ρ′tp(x | z < 0)0

ρtp(x | z ≥ 0) + ρ′tp(x | z < 0)
p(x)dx (5.58)

=

∫
X

ρtCp(x | z ≥ 0)

ρtp(x | z ≥ 0) + ρ′tp(x | z < 0)
p(x)dx. (5.59)

One case where this procedure gives the correct estimand is the case when the

treatment assignment is randomized, i.e., ρt = ρ′.
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E[ŷ1 | t = 1] =

∫
X

ρtCp(x | z ≥ 0)

ρtp(x | z ≥ 0) + ρ′tp(x | z < 0)
p(x)dx (5.60)

=

∫
X

Cp(x | z ≥ 0)

p(x | z ≥ 0) + p(x | z < 0)
p(x)dx (5.61)

= Cp(x | z ≥ 0). (5.62)

Next, we try to estimate treatment effect using CEVAE and prove the estimand is

wrong even if we obtain the correct outcome function.

E[ŷ1 | t = 1] =

∫
X

∫
Z
p(y | t = 1, z)p(z | x)p(x)dzdx (5.63)

=
1

2

∫
Z
p(y | t = 1, z)p(z | x = 1)dz (5.64)

+
1

2

∫
Z
p(y | t = 1, z)p(z | x = −1)dz (5.65)

=
1

2
Cp(zi ≥ 0 | x = 1) +

1

2
Cp(zi ≥ 0 | x = −1) (5.66)

≃ 1

2
C. (5.67)

E[ŷ0 | t = 0] =

∫
X

∫
Z
p(y | t = 0, z)p(z | x)p(x)dzdx (5.68)

=
1

2

∫
Z
p(y | t = 0, z)p(z | x = 1)dz (5.69)

+
1

2

∫
Z
p(y | t = 0, z)p(z | x = −1)dz (5.70)

=
1

2
Cp(zi ≥ 0 | x = 1) +

1

2
Cp(zi ≥ 0 | x = −1) (5.71)

≃ 1

2
C ̸= 0. (5.72)
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ÂTE = E[ŷ | t = 1]− E[ŷ | t = 0] = 0 (5.73)

̸= Cp(zi ≥ 0) = ATE. (5.74)
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we addressed treatment effect estimation problems from small obser-

vational data. In Chapter 1, we introduced treatment effect estimation and its social

impact and applications in the real world. In this thesis, we primarily focused on

the following challenges:

• Data scarcity

• Observational bias

• Hidden confounding variables

We provided preliminaries in Chapter 2 including the two main frameworks: (i) the

potential outcome framework [11, 35, 30] and (ii) the SCMs framework [21, 22]. In

the remaining chapters, we discussed several approaches to overcome these difficul-

ties. In Chapter 3, we introduced CP leverages both labeled and unlabeled data.

This is particularly relevant in scenarios where obtaining labeled data is prohibitively

expensive, whereas unlabeled data are relatively more accessible. Our method com-

bines classical matching techniques for treatment effect estimation with the popular

machine learning technique of label propagation. We presented a salient example
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to illustrate the benefits of incorporating unlabeled data in estimation. Whilst the

existing methods failed to predict treatment effects crucially for some individuals,

the proposed method successfully predicted treatment effects for almost the entire

individuals. In addition, experiments using synthetic and semi-synthetic datasets

demonstrated the effectiveness of the proposed method, in particular, when labeled

data are limited. One of the drawbacks of CP is that it might fail when there are

noisy unlabeled individuals. As some previous studies regarding semi-supervised

learning demonstrated, semi-supervised learning methods can be vulnerable to noisy

unlabeled data. In Chapter 4, we presented Graphite, a framework for addressing

graph-structured treatments and mitigating bias through HSIC regularization. In

certain contexts, such as the evaluation of drug efficacy, the number of treatments

under consideration may be substantial. Thus, mitigating bias between covariates

and graph-structured treatments is a technical challenge. Hence, by leveraging HSIC

regularization, we provided theoretical guarantees for mitigating bias through the

utilization of individual targets and treatment representations. Furthermore, based

on the experiments on the two real-world datasets, Graphite demonstrated superior

performance when compared with strong baseline methods. In Chapter 5, we dis-

cussed treatment effect estimation in the presence of latent confounding variables.

Unlike the typical assumption in most studies that the confounding variables influ-

encing both treatment assignment and the outcome are available in observational

data, it is nearly impracticable to ensure the complete observation of such neces-

sary variables. Furthermore, obtaining covariates containing sensitive or confidential

information is challenging, due to privacy concern, for example. Owing to the re-

markable expressive power of VAE, VAE-based methods have proven to be effective

in treatment effect estimation problems in the presence of hidden confounding vari-

ables. However, the recent theoretical analysis revealed that a naive application of

VAE may not yield accurate models even upon reaching its optimal solution. Our

analysis further revealed that a specific class of dataset that current VAE-based

methods failed to give accurate treatment effect even when they achieve an optimal
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solution. Hence, we proposed a classic matching method using hidden confounding

variables that guarantees correct treatment effects when it achieves the optimal so-

lution. Furthermore, based on the experiments using synthetic and semi-synthetic

datasets, we demonstrated the effectiveness of InfoCEVAE.

In conclusion, this thesis analyzed three practical challenges in the estimation of

treatment effects from observational data. Subsequently, three innovative methods,

leveraging machine learning techniques, were proposed to address these difficulties.

Despite the progress made, there is still substantial room for further improvement

in treatment effect estimation, with the potential of having a decisive impact on a

range of fields where treatment effects play a critical role.

6.2 Future directions

Finally, we discuss future directions. In Chapter 3 and 4, we utilized auxiliary infor-

mation such as unlabeled individuals or graph-structured information. However, the

acquisition of such data may incur significant costs. Additionally, as we discussed in

Chapter 3, while some individuals may contribute to improving predictive accuracy,

others may prove useless or even significantly hurt performance. Consequently, in

the process of data acquisition, the implementation of methods that select individ-

uals possessing informative features, such as active learning-based methods [114,

115], may be a promising solution in terms of data accumulation cost and predictive

accuracy. In Chapter 5, it is assumed that hidden confounding variables are contin-

uous variables drawn from a Gaussian distribution. However, this assumption may

not always be true and there exist scenarios in which hidden confounding variables

are discrete variables such as binary or categorical. Currently, there is no affirma-

tion that the same results would be obtained in such cases. Further exploring the

theoretical analysis with regard to discrete variables appears to be an interesting

direction. Furthermore, we can also consider complex models such as Normalizing

Flow [116, 117] which can handle more extensive generative models.
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