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Abstract 

As a major interdisciplinary area between informatics and life science, bioinformatics has 

achieved remarkable results in various fields. In this dissertation, we consider applying 

graph theory-based methods to solve two kinds of bioinformatics problems. One is the 

prediction of cancer genes by using weighted minimum feedback vertex sets (WMFVS), 

and another is the prediction of hot spot residues in protein complexes using densest 

subgraph-based (DS-based) methods. 

In Chapter 3, we introduce our research in predicting cancer genes by WMFVS 

methods. Recently, many computational methods have been proposed to predict cancer 

genes. One typical kind of method is to find the differentially expressed genes between 

tumour and normal samples. However, there are also some genes, for example, ‘dark’ 

genes, that play important roles at the network level but are difficult to find by traditional 

differential gene expression analysis. In addition, network controllability methods, such 

as the MFVS method, have been used frequently in cancer gene prediction. However, the 

weights of vertices (or genes) are ignored in the traditional MFVS methods, leading to 

difficulty in finding the optimal solution because of the existence of many possible 

MFVSs. In this research, we developed a novel method, called WMFVS, which integrates 

the gene differential expression value with MFVS to select the maximum-weighted 

MFVS from all possible MFVSs in a protein interaction network. Our experimental 

results show that WMFVS achieves better performance than using traditional bio-data or 

network-data analyses alone. This method balances the advantage of differential gene 

expression analyses and network analyses, improves the low accuracy of differential gene 

expression analyses, and decreases the instability of pure network analyses. Furthermore, 

WMFVS can be easily applied to various kinds of networks, providing a useful 

framework for data analysis and prediction. 

In Chapter 4, we introduce our research in predicting hot spot residues in protein 
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complexes by DS-based methods. Hot spots play an important role in protein binding 

analysis. The residue interaction network is a key point in hot spot prediction, and several 

graph theory-based methods have been proposed to detect hot spots. Although the existing 

methods can find some interesting residues by network analysis, the low recall has limited 

their abilities in finding more potential hot spots. In this study, we developed three graph 

theory-based methods to predict hot spots from only a single residue interaction network. 

We detect the important residues by finding subgraphs with high densities, i.e., high 

average degrees. Generally, a residue with a high degree in the residue interaction network 

implies a high binding possibility between protein chains. Thus, a subgraph with high 

density usually relates to binding sites that have a high rate of hot spots. By evaluating 

the results on 67 complexes from the SKEMPI database, our methods clearly outperform 

existing graph theory-based methods on recall and F-score, they provide useful 

approaches for analyzing bionetworks. In addition, the densest subgraph-based methods 

predict hot spots with only one residue interaction network, which is constructed from 

spatial atomic coordinate data to mitigate the shortage of data from wet-lab experiments. 
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1.  Introduction 

1.1. Background 

As one of the branches of natural science, the research of biology has never been stopped 

along with human history. Biology helps us understand the living world, and it is essential 

for many fields such as agriculture, animal husbandry, medicine, and pharmacy. 

Traditional biology is based on macroscopic experiments and statistics according to 

fundamental units of life. Although traditional experimental methods have gotten 

remarkable achievements in various aspects of people’s lives, in many cases it is hard to 

obtain the actual principle and obstructs the further development of biology. Fortunately, 

nowadays we can use microscopic experiments to research the essence of living beings. 

The study of genetics helps us orientation-breeding from bacteria to crops; the study of 

molecular biology helps us design drugs, and diagnose and treat disease; the study of 

immunology reveals our immune system, and also contributes to the research of cancer. 

There is no doubt that microbiology greatly increased the quality of our daily life. 

With the development of modern biology, vast amounts of data emerge from 

laboratories over the world. Now there arises a demand for efficiently analyzing the 

existing big data, which gives birth to a new research field – bioinformatics. 

Bioinformatics aims at finding the relationship among various bio-data to explain the 

experimental results or predict unknown information. Many biology experiments tend to 

be notoriously expensive and time-consuming, while bioinformatics can predict the 

possible results of the experiments in advance, which accelerates the experimental cycle 

and saves precious resources. Recently, bioinformatics has been widely applied to assist 

wet experiments, especially in studying genomes and DNA sequencing. Another popular 

research field in bioinformatics is the analysis and prediction of protein-protein 

interaction (PPI). The study of PPI helps researchers understand the fundamental 

processes in living cells, and can also contribute to drug development and disease 
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treatment. Bioinformatics is now playing an important role in life sciences. 

There are many different techniques applied in bioinformatics, such as pattern 

recognition, sequence analysis, image analysis, and data storing and management. With 

the prevalence of artificial intelligence, many machine learning (ML) methods, such as 

random forest, SVM, and deep learning, have been applied in bio-data analysis and 

prediction. The advantage of ML methods is that they can maximize the utilization of big 

data, and automatically find the potential association among bio-features. Various ML 

methods have achieved outstanding results in many bioinformatics issues. However, 

traditional ML-based methods also have some disadvantages in bioinformatics research, 

such as the difficulty in explaining the prediction results, the requirement of a large scale 

of training data, and the long periods and excessive computation resources expended in 

training models. Furthermore, in many fields, the data compose network structures, while 

it is hard to apply the topological information of the networks to general ML methods.  

To fully make use of the network structures in bioinformatics, the graph theory-based 

methods are undoubtedly good choices. Compared to ML methods, the results of well-

designed graph theory methods have high interpretability. Besides, graph theory methods 

do not require training data, which is an advantage in solving problems with insufficient 

experiment data. Also, unlike the huge models of ML methods, graph theory-based 

methods are usually light and fast, and they are useful tools for quick data checks or filters. 

As a popular field in computer science, there exist a plenty of mature graph theory 

algorithms for network analysis. These methods could help researchers flexibly deal with 

bioinformatics problems. 

1.2. Related works 

There exist many graph theory-based methods for solving various bioinformatics 

problems. Wei et al. [1] study the biological features of biological networks in terms of 

eccentric topological indices computation. The conclusions in this paper illustrate that 

bioengineering has promising application prospects. Jack et al. [2] use tools from graph 
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theory to define an Atlas classification scheme for automatically categorizing certain 

protein substructures. Applying a graph theory-based Atlas classification scheme gives 

the Atlas of Coiled Coils, a fully automated, updated overview of extant coiled coils. 

Xingqi et al. [3] construct novel mathematical descriptors based on graph theory to 

determine the DNA sequence similarity. This new approach measures similarity based on 

both ordering and frequency of nucleotides so that much more information is involved 

compared to traditional methods. Néli et al. [4] apply the complex networks theory to 

map groups of functionally related residues in residue co-evolutionary networks, and 

successfully detected several specificity determinant sets and functional motifs. Ertan et 

al. [5] introduce a graph theory-based classification model for diagnostic purposes that 

can be easily adapted for different neurological diseases, the results show that the graph-

based measures computed on brain connectivity networks might help to improve the 

diagnostic capability of in-silico methods. Matej et al. [6] discuss an approach developed 

for exploiting the local elementary movements of evolution to study complex networks 

in terms of shared common embedding and, consequently, shared fractal properties. This 

approach can be useful for the analysis of lung cancer DNA sequences and their properties 

by using the concepts of graph theory and fractal geometry. Jacob et al. [7] present a 

methodology for graph-based enumeration of surfaces and unique chemical adsorption 

structures bonded to those surfaces. These techniques are useful for generating a wide 

variety of structures used in computational surface science and heterogeneous catalysis, 

and are also key to facilitating an informatics approach to the high-throughput search for 

more effective catalysts. Spyridon et al. [8] present a novel graph-based methodology for 

the development of structural and functional brain graphs. Graph theory-based analysis 

has been applied with great success in studying the brain's connectivity, organization, and 

dynamics. Roy et al. [9] propose a methodological parallel between Quality Threshold 

(QT) clustering and Maximum Clique algorithm, which significantly contributes to 

reaching a very affordable algorithm compared to the few implementations of QT for 

molecular dynamics available in the literature. Mahnaz et al [10] use the contact map of 
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a protein to construct a graph, and then analyze a protein’s structure without e three-

dimensional (3D) coordinates data. 

1.3. Contribution 

In this dissertation, we introduce two novel bioinformatics researches based on graph 

theory algorithms.  

The first research, named WMFVS, combines the gene differential expression data 

with minimum feedback vertex set (MFVS) from a human protein interaction network to 

predict cancer genes. The proposed method improved the low accuracy of traditional 

differential expression-based prediction methods, and was much more stable than pure 

MFVS methods. The results show that our WMFVS methods can successfully predict 

cancer genes, and these methods can be easily applied to other bioinformatics network 

analysis problems. 

In the second research, we apply the densest subgraph-based method to predict hot 

spot residues in protein complexes. We propose three different methods, each of them has 

different advantage in precision or recall, and all these three methods have the ability to 

detect possible hot spot residues just from the 3-dimensional data of complexes. Our 

methods provide new models in bioinformatics network analysis. 

1.4. Organization 

In Chapter 2, we briefly introduce several basic background knowledge about graph 

theory and linear programming (LP), together with the definitions of some bioinformatics 

problems. 

In Chapter 3, we introduce our research in the cancer gene prediction problem. In this 

research, we combined the traditional gene differential expression-based methods with a 

graph-based method, and two major methods are proposed and applied to the human 

protein interaction network. The results are evaluated by several independent cancer gene 

data sets. 
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In Chapter 4, we introduce our research in the hot spot residue prediction problem. 

Three different densest subgraph-based methods are developed and applied to 341 + 27 

protein complexes, and 67 prediction results are evaluated by existing hot spot data sets. 

Furthermore, the results are compared with some other graph theory-based methods. 

In Chapter 5, we give a conclusion to these two studies, together with discussions of 

future works. 
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2. Preliminaries 

2.1. Graph structure 

Graph is a data structure composed by vertices and edges (or arcs) between the vertices. 

Each vertex usually refers a sample in real world, such as a gene or a residue, and thus a 

vertex has its own features like ID or weight. An edge between two vertices indicates 

there exists a relationship between the vertices, for example protein interaction or residue 

interaction. Graph can be directed or undirected. In a general directed graph, all the edges 

have directions, i.e. the relationships between vertices have directions, while in 

undirected graph, the relationships have no direction. 

Figure 2.1 shows a simple example of a directed graph. 

 

Figure 2.1 An example of a directed graph. 

Here we use 𝐺1 = (𝑉1, 𝐸1) to denote this graph, where 𝑉1 = {𝑎, 𝑏, 𝑐, 𝑑} is the set of 

vertices, and 𝐸1 = {(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑏), (𝑐, 𝑑), (𝑑, 𝑑)}  is the set of edges. Note 

that:  

• each edge in 𝐸1 has a fixed direction; 

• two reverse edges may exist simultaneously between two vertices; 

• an edge can start and end at the same vertex (self-loop). 

Besides, we can also use an adjacency matrix 𝑀1 to represent 𝐺1 as Figure 2.2. 
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Figure 2.2 The adjacency matrix 𝑴𝟏 of 𝑮𝟏. 

In the adjacency matrix, 𝑀1[𝑖, 𝑗] = 1 represents there exists an edge (𝑖, 𝑗) ∈ 𝐸1, and 

vice versa. The number of 1’s in 𝑀1 represents the number of edges in 𝐺1, the number 

of 1’s in a row represents the out-degree (number of edges starting from the vertex) of a 

vertex, and the number of 1’s in a column represents the in-degree (number of edges end 

at the vertex) of a vertex. 

Figure 2.3 shows an undirected graph. 

 

Figure 2.3 An example of an undirected graph. 

We use 𝐺2 = (𝑉2, 𝐸2) to denote the graph above, where 𝑉2 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐸2 =

{(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑑)}. Note that:  

• edges in 𝐸2 have no direction; 

• in this dissertation, unless otherwise specified, we only discuss the simple graph 

(or strict graph) for the undirected graph, i.e. at most one edge exists between two 

vertices, and there is no self-loop in the undirected graph. 

We can also use an adjacency matrix 𝑀2 to represent 𝐺2 as Figure 2.4. 
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Figure 2.4 The adjacency matrix 𝑴𝟐 of 𝑮𝟐. 

Generally, the adjacency matrix of an undirected graph is a symmetric Matrices, and 

the value in each cell is Boolean and refers to the existence of the related edge (in some 

cases, we can modify the value in a cell to some real number to represent the weight of 

an edge). The number of 1’s in a row equal to the number of edges connected to the 

corresponding vertex, we use “degree” to denote this value, i.e. the number of neighbors 

that a vertex connects to. 

The graphs discussed in Chapter 3 are directed graphs (protein interaction network), 

while the graphs discussed in Chapter 4 are undirected graphs (residue interaction 

network). 

2.2. Feedback vertex set 

Given a directed graph 𝐺 = (𝑉, 𝐸), a feedback vertex set (FVS) 𝑆 ⊆ 𝑉 is a set of vertices, 

whose removal leaves the remaining network acyclic, i.e. 𝐺′ = (𝑉′, 𝐸′) has no circle, 

where 𝑉′ = 𝑉 − 𝑆 and 𝐸′ = {(𝑖, 𝑗) ∈ 𝐸|𝑖 ∈ 𝑉′, 𝑗 ∈ 𝑉′} . If an FVS 𝑆 has the minimum 

size among all possible FVS’s, 𝑆 is called a minimum FVS, or MFVS for short. Figure 

2.5 shows four simple examples of FVS and MFVS. 
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Figure 2.5 Some examples of FVS and MFVS. In the right-bottom graph, only the set {𝒄} is an MFVS. 

A given graph may have multiple MFVSs. Finding an arbitrary MFVS from a given 

MFVS is proved to be NP-hard. An integer linear programming-based method is 

introduced in Chapter 3 to solve the MFVS problem. 

The MFVS based-methods are widely used in operating systems, database systems, 

and also bioinformatics. In Chapter 3, we will introduce a variant MFVS based-method 

to find cancer genes from a human protein interaction network, which integrates the 

weights of vertices from the gene differential expression data. 

2.3. Strongly connected component 

Given a directed labeled graph 𝐺 = (𝑉, 𝐸) , a subgraph 𝑆 = (𝑉′, 𝐸′)  is a strongly 

connected subgraph (scs), if for any pair of vertices (𝑎, 𝑏) in 𝑉′, there always exists a 

path from 𝑎  to 𝑏 . If a scs 𝑆  is not included by any other scs, then 𝑆  is a strongly 

connected component (scc) of 𝐺. Using Gabow’s algorithm [11] can find all the scc’s of 

a given graph 𝐺 = (𝑉, 𝐸) in 𝑂(|𝑉| + |𝐸|) time. 

For any two scs’s 𝑆1 = (𝑉1, 𝐸1)  and 𝑆2 = (𝑉2, 𝐸2) , if there exist two edges 

(𝑣1, 𝑢1) ∈ 𝐸 and (𝑢2, 𝑣2) ∈ 𝐸 that 𝑣𝑖 ∈ 𝑉1 and 𝑢𝑖 ∈ 𝑉2, then obviously 𝑆3 = 𝑆1 ∪ 𝑆2 

is still an scs. Thus if 𝑆1 and 𝑆2 are two scc’s and an edge from 𝑆1 to 𝑆2 exists, then 

no edge from 𝑆2 to 𝑆1 exists. Furthermore, we have the following proposition. 

Proposition 1. Any edge between two different scc’s is not included in any circle.  

Proof. Assume there exists an edge (𝑎, 𝑏) between two different scc’s 𝑎 ∈ 𝑆1 and 𝑏 ∈
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𝑆2, and (𝑎, 𝑏) is included in a circle 𝑐. Obviously, path 𝑐 composes an scs 𝐶. Then 

𝑆3 = 𝑆1 ∪ 𝐶 is still an scs and contains at least one vertex 𝑏 ∉ 𝑆1, i.e. 𝑆3 ⊃ 𝑆1, which 

contradicts the assumption that 𝑆1 is an scc. Thus, such a circle 𝑐 does not exist. 

 ∎ 

We will use Proposition 1 to compress graphs in Chapter 3.  

2.4. Densest subgraph 

Given an undirected graph 𝐺 = (𝑉, 𝐸), let 𝑉′ ⊆ 𝑉 and 𝑆 = (𝑉′, 𝐸′) be the subgraph 

of 𝐺 induced by 𝑉′. Then the density of 𝑆 is defined by 𝜌(𝑆) =
|𝐸′|

|𝑉′|
. For simple graphs, 

𝜌(𝑆)  is also proportional to the average degree of vertices, i.e. proportional to the 

connectivity of a graph. If a subgraph 𝑆 has the maximum density among all possible 

subgraphs of 𝐺, then 𝑆 is a densest subgraph of 𝐺, and the density of 𝐺, denoted by 

𝐷(𝐺), equals to the density of 𝑆, i.e. 𝐷(𝐺) = 𝜌(𝑆). 

A given graph may have multiple densest subgraphs. The intersection (if not empty set) 

or union of several densest subgraphs is still a densest subgraph. See Figure 2.6.  

 

Figure 2.6 An example of densest subgraphs. In this example, 𝑮 has multiple densest subgraphs. The 

density of 𝑮 is 2. 

Based on the definition of densest subgraph, we can further define the minimal and 

maximal densest subgraphs. Let 𝑆 be a densest subgraph of 𝐺, if there exists no densest 
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subgraph 𝑆′  that 𝑆′ ⊂ 𝑆 , then 𝑆  is a minimal densest subgraph; if there exists no 

densest subgraph 𝑆′ that 𝑆 ⊂ 𝑆′, then 𝑆 is a maximal densest subgraph. In the example 

in Figure 2.6, 𝐻1 is a minimal densest subgraph, and the whole graph itself is a maximal 

densest subgraph. 

A given graph may have multiple minimal densest subgraphs, but only exactly one 

maximal densest subgraph exists. 

2.5. Linear Programming 

Linear programming (LP) is widely used technique in optimization field, i.e. finding a 

feasible assignment (if exists) of input variables to maximize or minimize the objective 

function. When all the variables in a linear program are real values, all polynomial-size 

linear programs can be solved in polynomial time. However, when at least one variable 

are forcibly constrained to be integers, this linear program is said to be an integer linear 

program (ILP) and this problem is generally NP-hard. A typical LP (or ILP) can be 

expressed in canonical form like: 

Find a vector 𝒙 that 

maximize 𝒄𝑇𝒙   (objective function) 

subject to 𝑨𝒙 ≤ 𝒃  (constraints) 

and   𝒙 ≥ 𝟎  (constraints) 

Here 𝒙  is the set of variables to be determined, 𝑨  (matrix), 𝒃  (vector), and 𝒄 

(vector) are fixed parameters to constraint the value of feasible 𝒙. 

In this dissertation, LP and ILP-based techniques are the core of our WMFVS and 

densest subgraph-related methods. All LP or ILP-based models are implemented by the 

Gurobi solver [12]. 

2.6. Cancer genes 

The cancer gene is a kind of gene whose abnormal expression may lead to cancer diseases. 

There are two subclasses of cancer genes, one is the oncogene (positive growth 
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regulators), whose overexpression may lead to cancer, and the other one is the tumour 

suppressor gene (TSG) (negative growth regulators), whose insufficient expression may 

lead to cancer. Figure 2.7 shows the relationship between cancer genes and cancer 

diseases. 

 

Figure 2.7 Oncogene and TSG. 

The traditional way to detect cancer genes is based on the differential gene expression 

value between normal cells and cancer (tumor) cells. Generally, higher differential 

expression value represents high possibility of cancer gene. See Figure 2.8. 

 

Figure 2.8 An example of cancer gene and normal gene. Compared to Gene2, Gene1 is more like a 

cancer gene. 
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2.7. Hot spot residues 

In protein complexes, two or more proteins interact with others by binding surfaces. 

However, not all residues in the binding surfaces are related to protein-protein interaction, 

only a small portion of interface residues, called hot spots, contribute the majority of the 

binding energy. Figure 2.9 shows an example of a protein complex and hot spot residues. 

 

Figure 2.9 An example of the hot spot residues.  

In the example in Figure 2.9, a protein complex is composed of two proteins, these 

two proteins are composed of functional domains {𝐷1, 𝐷2, 𝐷3}  and {𝐷4, 𝐷5} , 

respectively. There exists one binding surface between 𝐷2 and 𝐷4, while only the red 

circled residues (hot spots) contribute to the binding energy of these two proteins. 

The traditional way to detect hot spots is based on residue mutation methods. If a 

mutation of a residue (usually mutated to alanine, which hardly interacts with other 

residues but mimics the wild-type secondary structure) in a protein-protein interface 

changes the binding energy of the protein to its binding partner substantially (change of 

binding energy 𝛥𝛥𝐺 ≥ 2.0 kcal/mol), then this residue is defined as a hotspot residue. 

Based on the alanine scanning experiments data, the Alanine Scanning Energetics 

Database (ASEdb) [13] is built for searching hot spot residues. However, since the related 
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mutation experiments are time-consuming and laborious, the experimental approved hot 

spots are sparse, thus there arises a need for computational methods for hot spot prediction. 

2.8. Protein Data Bank 

Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, or 

usually PDB for short) [14] is one of the most famous experimentally-determined protein 

3D structures data sets. It contains atom 3D spatial coordinate data from around 200 

thousand protein structures and has a stable and convenient searching system. In Chapter 

4, we will use the spatial data from PDB to construct the residues interaction networks. 
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3. Weighted minimum feedback vertex sets and 

implementation in human cancer genes detection 

3.1. Background 

Cancer is a genetic disease, but not all genes are related to cancer. By almost universal 

consensus, cancer is now viewed as resulting from changes in some key regulatory genes 

[15]. At present, researchers have defined several kinds of cancer-related gene sets. One 

widely used kind of gene set is that of cancer driver genes, which are defined as genes 

whose mutations increase net cell growth under the specific micro-environmental 

conditions that exist in the cell in vivo. This kind of gene can be predicted by finding 

‘significantly mutated genes’, whose mutation rates are significantly higher than the 

presumed background somatic mutation rate [16-18]. However, since it is difficult to 

construct a reliable background mutation model [19], selecting gold-standard driver genes 

by frequency-based methods is difficult. Another kind of cancer-related genes are so-

called ‘cancer genes’, including oncogenes, which function as positive growth regulators, 

and TSGs, which function as negative growth regulators. These genes are directly related 

to the phenotypes of tumour and normal genes and can be predicted by differential gene 

expression analyses. However, some ‘dark’ genes play important roles at the network 

level but are generally ignored by traditional differential gene expression analyses [20, 

21]. 

By using graph theory algorithms, we can find critical vertices to control a network. 

For example, [22] developed a feedback-based framework that provides realizable node 

overrides that steer a system towards one of its natural long-term dynamic behaviours; 

[23] provided a rational criterion for selecting key molecules to control a system with a 

FVS; [24] proposed a network control strategy to find driver mutations that drive a 

regulation network from the normal state to a disease state; [25] considered applying 
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MFVS to real biologically directed complex networks and found essential proteins in both 

Drosophila melanogaster and Homo sapiens organisms; and [26] proposed an MFVS-

based framework for controlling multilayer networked structures. 

Given a directed network, an FVS is a set of vertices whose removal leaves the 

remaining network acyclic. The MFVS is a kind of FVS that has the minimum size among 

all possible FVSs. The MFVS problem has been proven to be NP-complete [27]. There 

already exist many algorithms for solving the MFVS problem, including approximation 

algorithms [28], randomized algorithms [29], parameterized algorithms [30] and exact 

algorithms [31, 32]. 

Generally, a network can have multiple MFVSs. Traditional MFVS algorithms ignore 

the differences among possible MFVSs, and the output is usually uncertain. In the worst 

case, 𝑂(2|𝑣|/2) MFVSs may exist in a graph [33]. This uncertainty leads to the instability 

of network analysis methods in practice. However, in reality, vertices should have 

different weights, for example, the importance of different genes should be distinguished. 

Based on this consideration, to find the best output from multiple MFVSs, in this paper, 

we consider a variation of the MFVS problem, i.e., each vertex is assigned a weight, and 

the output is the maximum total weighted MFVS. The assigned weight should reflect the 

significance of the corresponding vertex, which may involve some biological data from 

other studies (for example, in our experiments, we utilize the differential expression value 

to compute the weights). We define this problem as a WMFVS problem. 

To solve the WMFVS problem, we modified an exact algorithm from [32], which first 

compresses the original graph [34, 35] to reduce the number of vertices and arcs and then 

utilizes an integer linear programming (ILP) method for the compressed graph. Our 

WMFVS method can be roughly separated into three parts, i.e., graph compression, 

MFVS size determination and output optimization. The first two parts use the same idea 

as [32], and the third part uses the modified ILP method to select the maximum weighted 

MFVS. 

Furthermore, we consider a variation of the WMFVS method that pays more attention 
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to the total weight of an FVS than to its size; i.e., it finds the maximum-weighted FVS. 

We call this method WFVS. In the next sections, we can see that WMFVS has a higher 

precision than WFVS, while WFVS has an advantage in recall. 

3.2. Methods 

3.2.1. Graph compression 

In biological networks, a network usually contains tens of thousands of vertices and 

hundreds of thousands of arcs. In many cases, processing a large network is not practical 

because of the NP-hardness of the MFVS problem [27]. Generally, we can compress the 

original graph to a simpler graph that maintains (or can restore) the size of the MFVS of 

the original graph. 

In the following sections, we define 𝑣. 𝑠𝑢𝑐 and 𝑣. 𝑝𝑟𝑒 as the sets of successors and 

predecessors of vertex 𝑣, respectively. Let 𝑣𝑖  be a vertex in a network 𝑆. Consider the 

following three cases [34]: 

C1. 𝑣𝑖 ∈ 𝑣𝑖 . 𝑠𝑢𝑐, i.e., 𝑣𝑖 has a self-loop; then, 𝑣𝑖 should be in all FVSs, otherwise the 

self-loop cannot be removed. 

C2. 𝑣𝑖 . 𝑠𝑢𝑐 = ∅ (or 𝑣𝑖 . 𝑝𝑟𝑒 = ∅); then, 𝑣𝑖 is not in any MFVS, since it is not in any 

cycle. 

C3. |𝑣𝑖. 𝑠𝑢𝑐| = 1  (or |𝑣𝑖 . 𝑝𝑟𝑒| = 1 ); let 𝑣𝑗   be the only successor (or predecessor, 

respectively) of 𝑣𝑖; then, any cycle containing 𝑣𝑖 also contains 𝑣𝑗 .  

For C1, we use a temporary list ∆𝑀 to record 𝑣𝑖; we add 𝑣𝑖 to ∆𝑀 and remove 𝑣𝑖 

and all its incoming and outgoing arcs from the graph. We use 𝑟𝑒𝑚𝑜𝑣𝑒(𝑣𝑖) to denote 

this removing process. See Figure 3.1. 
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Figure 3.1 Example of C1. Since 𝒅 has a self-loop, it is added to 𝚫𝑴 and removed from the graph. 

For C2, since 𝑣𝑖 is not in any MFVS, we can safely use 𝑟𝑒𝑚𝑜𝑣𝑒(𝑣𝑖) without any 

change to the possible MFVSs. See Figure 3.2. 

 

Figure 3.2 Example of C2. Since 𝒂 has no successor, 𝒂 is not in any MFVS, and thus it can be safely 

removed from the graph. 

For C3, assume 𝑣𝑖 is in some cycle 𝑐. If we attempt to break 𝑐 by removing 𝑣𝑖, 

then it is equally good (sometimes better) to remove 𝑣𝑗  rather than 𝑣𝑖. Here, we connect 

all predecessors of 𝑣𝑖 to all its successors and then use 𝑟𝑒𝑚𝑜𝑣𝑒(𝑣𝑖). We denote this 

connecting and removing operation by 𝑖𝑔𝑛𝑜𝑟𝑒(𝑣𝑖, 𝑆), where 𝑆 is the current graph to 

which 𝑣𝑖  belongs. The procedure is as follows: 
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Procedure ignore(v, S) 

for 𝑣𝑖 ∈ 𝑣. 𝑝𝑟𝑒: 

for 𝑣𝑗 ∈ 𝑣. 𝑠𝑢𝑐: 

if (𝑣𝑖, 𝑣𝑗) ∉ 𝑆. 𝐸: 

𝑆. 𝐸 ≔ 𝑆. 𝐸 ∪ {(𝑣𝑖, 𝑣𝑗)}  

𝑟𝑒𝑚𝑜𝑣𝑒(𝑣)  

 

Figure 3.3 shows an example of C3. 

 

Figure 3.3 An example of C3.  

In the example in Figure 3.3, 𝑐 has only one successor 𝑎, then any circle including 

𝑐 must contain 𝑎 (since it must contain arc (𝑎, 𝑐)), thus removing 𝑎 will break all the 

circles that include 𝑐, while 𝑎 may be included in some other circles. In this case, we 

apply the ignore operation, which removes 𝑐  but keeps all the circles that originally 

contain 𝑐 for further analysis. 

In the above procedure, 𝑣 is a vertex in graph 𝑆, and 𝑆. 𝐸 is the arc set of graphs 𝑆. 

Then we have the following procedure to compress a graph 𝑆: 
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Procedure compress_vertex(S): 

Δ𝑀 ≔ ∅  

for 𝑣𝑖 in 𝑆. 𝑉: 

if 𝑣𝑖 ∈ 𝑣𝑖 . 𝑠𝑢𝑐: 

Δ𝑀 ≔ Δ𝑀 ∪ {𝑣𝑖}; 

remove(𝑣𝑖)  

else if |𝑣𝑖. 𝑠𝑢𝑐| == 0 or |𝑣𝑖. 𝑝𝑟𝑒| == 0: 

remove(𝑣𝑖) 

else if |𝑣𝑖. 𝑠𝑢𝑐| == 1 or |𝑣𝑖. 𝑝𝑟𝑒| == 1: 

ignore(𝑣𝑖 , 𝑆) 

return Δ𝑀 

 

We repeat this procedure until 𝑆  cannot be modified. Furthermore, we use the 

strongly connected components (scc’s) [32, 35] to reduce the arcs. Since an arc between 

two scc’s is not in any cycle (by Proposition 1), the deletion of these arcs will not change 

any MFVSs. See Figure 3.4. 

 

Figure 3.4 The arcs between scc’s are not in any circles. 

We use compress_𝑠𝑐𝑐(𝑆) to denote the operation that removes all arcs between two 

different scc’s in 𝑆. The whole graph compressing procedure is as follows: 
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Procedure compress_graph(𝑆): 

Δ𝑀 ≔ ∅  

do { 

compress_scc(𝑆) 

Δ𝑀 ≔ Δ𝑀 ∪ compress_vertex(𝑆) 

} while 𝑆 is modified and 𝑆. 𝑉 ≠ ∅ 

return Δ𝑀 

 

The returned ∆𝑀 contains the vertices that are always in any MFVS, and the union 

of ∆𝑀 and any MFVS of the compressed graph will be an MFVS of the original graph. 

Note that not all MFVSs of the original graph can be obtained from the above method. 

Some MFVSs are lost in the ignore operation, while in a weighted MFVS problem, the 

lost MFVSs may have the maximum weight. For the weighted case, we modify the ignore 

operation to consider the weights of vertices (only for positive-weighted cases). The 

following method ensures that the maximum-weight MFVS (the WMFVS) will not be 

lost: 

 

Procedure ignore_w(𝑣, 𝑆): 

if |𝑣. 𝑠𝑢𝑐| == 1: 

let 𝑣′ be the only successor of 𝑣 

if 𝑣.𝑤 < 𝑣′. 𝑤: 

ignore(𝑣, 𝑆) 

else if |𝑣. 𝑝𝑟𝑒| == 1: 

let 𝑣′ be the only predecessor of 𝑣 

if 𝑣.𝑤 < 𝑣′. 𝑤: 

ignore(𝑣, 𝑆) 

 

where 𝑣.𝑤 denotes the weight of vertex 𝑣.  

Proposition 2. When the weights of vertices are positive, the ignored vertices in 

procedure ignore_w are not in any WMFVS. 
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Proof: Assume 𝑣. 𝑝𝑟𝑒 = {𝑣′} and 𝑣.𝑤 < 𝑣′. 𝑤, and 𝑣 belongs to a WMFVS 𝑀. Then 

𝑣′ ∉ 𝑀, otherwise 𝑀′ ≔ 𝑀− {𝑣} is still an FVS, which has less vertices than an MFVS. 

Now consider 𝑀′′ ≔ (𝑀 − {𝑣}) ∪ {𝑣′} . It is obvious that 𝑀′′  is an MFVS. Since 

𝑣′. 𝑤 > 𝑣. 𝑤, we have 𝛴𝑣𝑖∈𝑀𝑣𝑖. 𝑤 < 𝛴𝑣𝑗∈𝑀′′𝑣𝑗 . 𝑤. Thus 𝑀 cannot be a WMFVS, i.e. if 

𝑣 has only one processor and the weight of 𝑣 is less than the processor, then 𝑣 dose 

not belong to any WMFVS. The proof is similar when 𝑣 has only one successor and the 

weight of 𝑣 is less than the successor.  

∎ 

3.2.2. ILP formulation for MFVS and WMFVS 

After the compressing procedure, if the compressed graph is not empty, we can use an 

ILP method [32] to solve the remaining MFVS problem. For each remaining vertex 𝑣𝑖, 

we add two parameters 𝑥𝑖 (Boolean) and 𝑘𝑖 (integer), where 𝑥𝑖 denotes whether 𝑣𝑖 is 

included in the output MFVS result and 𝑘𝑖 is a temporary parameter used in the ILP. The 

ILP formulation is as follows: 

ILP1: 

Minimize ∑𝑥𝑖  

Subject to 𝑘𝑖 − 𝑘𝑗 + 𝑛𝑥𝑖 ≥ 1 ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 

 0 ≤ 𝑘𝑖 ≤ 𝑛 − 1  

where 𝐸 is the arc set of the remaining graph. These constraints ensure that the selected 

vertices compose an FVS of 𝑆, while the objective function means that the selected FVS 

has a minimum size, i.e., it is an MFVS.  

Now we consider the weighted case of the MFVS problem. Given a graph 𝑆, where 

each vertex 𝑣𝑖 ∈ 𝑆. 𝑉 has a weight 𝑣𝑖 . 𝑤 (in what follows, we use 𝑤𝑖 to denote 𝑣𝑖  . 𝑤 

if there is no ambiguity), the WMFVS problem is to find an MFVS of 𝑆 that has the 

maximum total weight. Assuming we already know the size s of the MFVS (by ILP1 or 
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some estimation method such as that of [36] or [37]), the following formulation optimizes 

the selected MFVS as a WMFVS: 

ILP2: 

Maximize ∑𝑤𝑖𝑥𝑖  

Subject to ∑𝑥𝑖 = 𝑠  

 𝑘𝑖 − 𝑘𝑗 + 𝑛𝑥𝑖 ≥ 1 ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 

 0 ≤ 𝑘𝑖 ≤ 𝑛 − 1  

The constraint ∑𝑥𝑖 = 𝑠 ensures that the selected FVS is an MFVS, while the objective 

function selects the maximum-weight MFVS among all possible MFVSs. 

3.2.3. Maximum-weight FVS 

In the WMFVS problem, we first restrict the size of the FVS to be minimal and then select 

the maximum-weight MFVS as the objective. However, sometimes the weight may be 

more important than the size of an FVS. As an example, in Figure 3.5, the WMFVS is 

{𝑏}, which has a total weight of −20. If we do not restrict the minimum size of the set, 

the FVS {𝑎, 𝑐}, which has weight −4, seems better.  

Figure 3.5 A simple example of FVS. In this case, the total weight may be more important than the size of 

an FVS. 

Here we define a variant of the WMFVS problem, which ignores the exact size of the 

output vertex set, as follows: Given a graph S, where each vertex 𝑣𝑖 ∈ 𝑆. 𝑉 has a weight 

𝑣𝑖 . 𝑤 (or 𝑤𝑖), the weighted FVS (WFVS) problem is to find an FVS of 𝑆 that has the 

maximum total weight. We can simply use a similar ILP as ILP2 to solve the WFVS 

problem. 
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ILP3: 

Maximize ∑𝑤𝑖𝑥𝑖  

Subject to 𝑘𝑖 − 𝑘𝑗 + 𝑛𝑥𝑖 ≥ 1 ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 

 0 ≤ 𝑘𝑖 ≤ 𝑛 − 1  

However, simply removing the constraint ∑𝑥𝑖 = 𝑠 may lead to a trivial solution when 

the weights of the vertices are positive, since the set of all vertices will always be a WFVS. 

Here we consider two methods to avoid the trivial solution:  

1. Modify all weights to be negative. Assume the maximum weight of the vertices is 

𝑤𝑚; then, for each weight 𝑤𝑖 , modify it to 𝑤𝑖 ≔ 𝑤𝑖 − 𝑤𝑚 − 𝛿. Here, 𝛿 is a small 

positive constant to ensure that all weights are negative. The ILP is the same as ILP3.  

2. Reverse the weights to penalty values. We can simply do this by taking the inverse 

of each 𝑤𝑖, i.e., 

𝑝𝑖 = {

1

𝑤𝑖
, if 𝑤𝑖 ≠ 0

∞, if 𝑤𝑖 = 0

 

Then, modify the ILP3 formula as follows: 

ILP3’: 

Minimize ∑𝑝𝑖𝑥𝑖  

Subject to 𝑘𝑖 − 𝑘𝑗 + 𝑛𝑥𝑖 ≥ 1 ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 

 0 ≤ 𝑘𝑖 ≤ 𝑛 − 1  

In our research, we examined both ways of calculating the weights in the WFVS 

method. We found that the first modification is more unstable when running the ILP 

process, i.e., more obviously wrong ILP results appeared. Thus, we chose to use the 

second method to compute the weights in the WFVS method; i.e., we reversed the weights 

to be penalty values, which are always positive values. 

In the second method, we need to avoid the ‘division by zero’ error. To this end, we 

used the simple heuristic formula below. 
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Let 𝑙  be a large number (in our program, we used 65536 ); then, the penalty is 

calculated by: 

𝑝𝑖 =

{
 

 
1

𝑤𝑖
, if 𝑤𝑖 ≥

1

𝑙

𝑙  , if 𝑤𝑖 <
1

𝑙

 

3.3. Results 

3.3.1. Data sets 

In this study, we used the directed human protein interaction network [38] for the analyses; 

it contains 6338 genes (vertices) and 34814 directed interactions (arcs). To evaluate the 

relative prediction accuracies for cancer genes between our methods and existing methods, 

we collected cancer-related gene sets from five public databases: ONGene [39], TSGene 

[40], CGC [41], NCG [42] and MSigDB C6 [43]. Since not all genes from the data sets 

are contained in the directed human protein interaction network, we filtered the common 

genes in both a certain data set and the network. The sizes of these data sets are shown in 

Table 3.1. 

Table 3.1 Size of each data set and the number of genes contained in the network (common genes). 

 ONGene  TSGene CGC NCG MSigDB 

Number of genes  803 1217 723 2372 10962 

Common genes  490 641 525 1210 4184 

 

In the rest parts, when we calculate the recall of various methods, we consider only the 

size of the common gene sets. 

3.3.2. Weight definition 

To define the weights of genes, we first downloaded the RNA-seq data from TCGA [44], 

which contains gene expression data from 1102 breast tumour samples and 113 normal 
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samples. Next, the counts of level 3 RNASeqV2 data were processed and transformed 

before being used for further analysis [45]. Specifically, we used the fold change (FC) 

value (with the binary logarithm and absolute value) between tumour and normal samples 

as the weight of each vertex (gene). For a specific gene 𝑣, its weight is calculated by the 

following formula: 

𝑣.𝑤 = |
∑ 𝑙𝑜𝑔2(𝑇𝑖)
𝑛
𝑖=1

𝑛
−
∑ 𝑙𝑜𝑔2(𝑁𝑗)
𝑚
𝑗=1

𝑚
| 

where 𝑇𝑖 is the expression value of tumour sample 𝑖, 𝑁𝑗 is the expression value of a 

normal sample 𝑗 , and 𝑛  and 𝑚  are the numbers of tumour and normal samples, 

respectively. Intuitively, a high FC value corresponds to a high possibility of a cancer 

gene. Thus, it is reasonable to use the FC values as the weights of genes. 

For the genes that appear in the network but have no expression values in the TCGA 

data (only 143 genes, 2.3% of the network size; these are called weight-loss genes), we 

gave them default weights of 0 rather than ignoring them; thus, if such a gene is essential 

at the topological level, it has the potential to be selected as a cancer gene, which may 

counteract the disadvantage of the traditional differential expression-based methods in 

dark gene-revealing and missing-data situations. Finally, all 6338 genes in the graph were 

weighted. The topological structure of the graph remained the same as in the original 

protein interaction network. 

3.3.3. Experiments and evaluation 

The whole experiment process is shown in Figure 3.6.  

First, we analyzed the directed human protein interaction network with traditional 

MFVSs and obtained a set of 463 vertices. Then, we used our WMFVS method on the 

same network (the weights were derived from the FC values). We also used the inverses 

of the weights as the penalty values and applied them to our WFVS method. 
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Figure 3.6 The experiment flowchart. The red, blue and green lines correspond to the WMFVS, WFVS 

and random MFVS pipelines, respectively. 

Because of the non-uniqueness of the MFVS method, it is not a general evaluation if 

we consider only one MFVS result. Therefore, we calculated a set of random MFVSs by 

applying the WMFVS method with randomly shuffled gene weights. First, we planned to 

compute 1000 random MFVSs for analysis. However, since the Gurobi optimizer (version 

8.1.0) does not always output a real optimal solution (e.g., even when we restrict the size 

of the output to be exactly 463, which is the size of the MFVS, sometimes the sizes of the 

output are smaller than 463), we filtered the obviously incorrect results and verified all 

the other outputs as MFVSs. Finally, we obtained 875 approved random MFVSs (since 

some MFVSs may be lost in the ignore_w operation and the MFVSs are not distributed 

uniformly, not all possible MFVSs have the same possibility of selection). 

The WMFVS and WFVS result data can be found in the supplementary data. The 

random MFVS data are placed in https://github.com/lrming1993/WMFVS_codes. 

To evaluate the results of these three methods, we first checked the graph-level results 

(see Table 3.2). 

https://github.com/lrming1993/WMFVS_codes
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Table 3.2 The graph-level results of each method. 

 
Output Size 

Run Time 

(second) 
Sum Weight 

Average Weight 

of each vertex 

MFVS  463 4.0 319.5 0.69 

WMFVS 463 35.9 379.3 0.82 

WFVS 528 23.6 496.4 0.94 

 

The run time of MFVS is due to the use of the traditional non-weighted MFVS method. 

The sum weight of MFVS uses the average value from 875 randomly weighted WMFVSs. 

As we expected, the WMFVS method obtained a better total weight than the traditional 

MFVS. However, the result of WMFVS is not always better than that of MFVS. The total 

weight of the output of the traditional MFVS method is arbitrary (the output is related to 

the graph structure but has no relevance to the vertex weights), so it is possible for MFVS 

to output a highly weighted vertex set, even higher than the weight of the calculated 

WMFVS (Gurobi may not always give a real optimal result because of its numerical 

instability). However, our WMFVS method clearly has better stability 

The WFVS method returned an FVS with 528 vertices, which is approximately 14% 

larger than the size of the MFVS. The selected WFVS has a better average weight than 

both the MFVS and WMFVS. This result is consistent with our purpose for WFVSs, 

which focuses on the total weight rather than the size of the FVS. 

Then, we used the five prepared cancer-related gene data sets to evaluate the results of 

these three methods. We verified the recall of the three FVS methods in the five data sets. 

The results are shown in Figure 3.7 and Table 3.3. 

We can see that WMFVS and WFVS have better recall than traditional MFVS in all 

five sets, which is a benefit of the well-defined gene weights (especially for WFVS). 

Furthermore, we calculated the p-values of WMFVS and WFVS for 875 random MFVSs. 

See Table 3.4. 
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Figure 3.7 Distributions of the recalls for all the methods on different cancer gene data sets. The 

random MFVSs (boxplot), the WMFVS method (orange circle), and the WFVS method (cyan circle). 

Table 3.3 The recall of each method in different gene sets. 

 ONGene  TSGene CGC NCG MSigDB 

MFVS (average)  20.6% 14.4% 13.3% 13.2% 7.9% 

WMFVS 21.8% 15.4% 18.8% 13.6% 8.1% 

WFVS 22.2% 16.5% 19.0% 14.1% 9.6% 

Table 3.4 The p-values of WMFVS and WFVS for random MFVSs. 

For a certain data set, denote the recall of WMFVS by 𝑅0. The recalls of all random 

MFVSs compose a set ℝ. Then the p-value of WMFVS is calculated by the following 

formula: 

 ONGene TSGene CGC NCG MSigDB 

WMFVS 0.0491 0.0434 0.2537 0.2011 0.0069 

WFVS 0.0069 0.0 0.1771 0.0091 0.0 



33 

 

𝑝𝑊𝑀𝐹𝑉𝑆 =
|{𝑅| 𝑅 ≥ 𝑅0, 𝑅 ∈ ℝ}|

|ℝ|
 

The calculation of the p-value of WFVS is the same as above. 

Next, as control methods, we considered several other kinds of methods of cancer gene 

prediction.  

(1) Randomly select 463 genes (select 100 times and take the average performance).  

(2) Select the 463 highest-weighted genes, which is a traditional differential 

expression-based method.  

(3) Select the set of genes that appear in at least 49.5% MFVSs (we used 49.5% since 

the number of genes was exactly 463). 

Table 3.5 The recalls (and precisions) of all the methods. 

 

Figure 3.8 The recalls and precisions of all the methods. 

 
463 random 

genes  

Top 463 

weighted 

genes 

Genes 

appearing in 

49.5% MFVSs 

WMFVS 

(size: 463) 

WFVS 

(size: 528) 

ONGene 36(7.8%) 53(11.4%) 101(21.8%) 107(23.1%) 109(20.6%) 

TSGene 46(9.9%) 66(14.3%) 93(20.1%) 99(21.4) 106(20.1%) 

CGC 38(8.2%) 34(7.3) 99(21.4%) 99(21.4%) 100(18.9%) 

NCG 88(19.0%) 102(22.0%) 162(35.0%) 165(35.6%) 171(32.4%) 

MSigDB 308(66.5) 405(87.5%) 328(70.8%) 340(73.4%) 403(76.3%) 
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Method (2) uses only weights for classification (i.e., a pure differential expression 

analysis method), while method (3) uses only graph theoretic results (i.e., a pure network 

analysis method). Method (3) selects the most common genes that appear in the MFVS. 

Intuitively, these genes should have great significance in the graph topology. The recalls 

and precisions of all these methods are listed in Table 3.5. Additionally, see Figure 3.8. 

3.4. Discussion 

3.4.1. Performance and enrichment score 

In ONGene, TSGene and MSigDB, both WMFVS and WFVS have good p-values, but 

for CGC and NCG, the p-value is relatively high. One major reason is that there exists 

some correlation between the classification metric of the data set and the defined gene 

weight. To analyze this correlation, we utilized the enrichment score (ES) from GSEA 

[43], which reflects the degree to which a set 𝑆 is overrepresented at the extremes (top 

or bottom) of an entire ranked list. 

First, we sorted all the genes from the network by weight from high to low. Then, for 

a certain cancer gene set 𝑆, we traversed the sorted gene list, increasing a running-sum 

statistic when we encountered a gene in 𝑆 and decreasing it when we encountered a gene 

not in 𝑆. We modified the increment and decrement value to ensure that the running sum 

was 0 at the end of the gene list. The enrichment scores of the five data sets are shown in 

Figure 3.9. 

It is easy to see that the ONGene, TSGene and MSigDB data sets are significantly 

enriched at the tops of the lists. Although NCG seems enriched at the top, its ES is 

relatively low; the ES of CGC is even worse than that of NCG. The best enriched data set 

is MSigDB. Since this data set was constructed directly from microarray gene expression 

data from cancer gene perturbations, it is closely related to differential expression values. 

The ES value explains the different performances of WMFVS and WFVS in different 

data sets. 
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Figure 3.9 The enrichment score of each data set. 

Table 3.5 and Figure 3.8 show that, except in MSigDB, WMFVS has the best precision 

and WFVS has the best recall. In MSigDB, cancer genes are closely related to the 

differential expression values of genes in breast cancer, leading to a precision of 87.5% 

for the simple weight-based method (i.e., method (2)). In this case, integration of the 

network structure may decrease the precision. However, in most cases, it is hard to find 

such a closely related metric for classification. We can observe that in other data sets, 

method (2) performs worse than the other methods. The results support the effectiveness 

of our WMFVS and WFVS methods. 

3.4.2. Dark genes 

As mentioned previously, traditional differential expression-based methods are not able 

to find graph-level important genes that have low differential expression values, i.e., dark 

genes. In our research, we defined a dark gene as a gene that has a relatively low weight 

(i.e., a low differential expression value) but is recorded as a cancer gene in the cancer 

gene data base(s). Specifically, we first derived the differentially expressed genes (DEGs) 
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by using the criteria of |log2𝐹𝐶| ≥ 1 and adjusted p-value≤ 0.05 from the TCGA breast 

cancer RNA-seq data, where 𝐹𝐶 is the fold change value of a certain gene. Based on 

these criteria, we found 4,245 DEGs (called the DEG set). Next, we curated the dark gene 

set from each cancer gene data set by excluding these DEGs. 

In our experiments, we further selected the top 463 of the highest-weighted genes (i.e., 

the most differentially expressed genes; called the top-463 DEG set) to avoid an 

unbalanced gene number in comparison to the WMFVSs and WFVSs identified by the 

WMFVS and WFVS methods, respectively. For each of the cancer gene data sets, the 

precisions of the all-DEG set, top-463 DEG set, WMFVS and WFVS are shown in Figure 

3.10. 

 

Figure 3.10 Comparison of the precision of the all-DEG set, top-463 DEG set, WMFVS set and WFVS 

set in five different cancer gene data sets. ‘DG’ and ‘NDG’ represent the ratios of dark genes and non-

dark genes, respectively. Note that the all-DEG and the top-463 DEG sets contain no dark genes. 
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Figure 3.10 shows that our WMFVS and WFVS methods display better precision than 

the traditional DEG-based method (i.e., the all-DEG set and the top-463 DEG set) in four 

of five cancer gene data sets. Moreover, approximately 60%-70% of the genes are dark 

genes, which were detected by using our WMFVS and WFVS methods but ignored by 

the traditional DEG method. Even for the MSigDB C6 data set, which was generated 

directly from microarray data or from internal unpublished profiling experiments 

involving the perturbation of known cancer genes, the WMFVS and WFVS methods also 

have a good ability to detect dark genes. In summary, our WMFVS and WFVS methods 

have an advantage in identifying dark genes that are hard to find by using traditional DEG 

methods. 

3.4.3. Missing-data cases 

In this study, to retain the topological structure of the network, the weight-loss genes are 

assigned default weights of 0 rather than being removed. By further analysis, we found 3 

weight-loss genes (i.e., CDC2, ZBTB8 and TADA3L) included in the WMFVS result, 7 

weight-loss genes (i.e., CDC2, ZBTB8, RhoGDI, TADA3L, RNF12, NP and 

MAP3K7IP1) contained in at least one of the 875 random MFVS results, and no weight-

loss genes in the WFVS result. In particular, CDC2 and ZBTB8 were included in all the 

random MFVS results as well as in the WMFVS result. The CDC2 gene is related to the 

highly conserved protein CDK1, which functions as a serine/threonine kinase and is a key 

player in cell cycle regulation [46]. The CDC2 gene is also considered a cancer-related 

gene whose overexpression may play an important role in human breast carcinogenesis 

[47]. While little is known about the ZBTB8 gene, the same ZBTB family protein, 

ZBTB7A, has been implicated in high expression in cancer tissue and the breast cancer 

cell lines MDA-MB-231 and MCF-7 [48], suggesting that ZBTB8 may act as a 

transcriptional repressor or be involved in tumorigenesis. The uncovering of CDC2 and 

ZBTB8 genes illustrates that the WMFVS method may address the disadvantage of 

traditional DEG methods in missing-data cases. 
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3.5. Summary 

We present several new methods for cancer gene prediction. Our WMFVS method uses 

differential gene expression to select MFVSs, improving the stability of the general 

MFVS algorithm and obtaining a much better result than the differential gene expression-

based method when the weights of the genes are well defined. Our WFVS method is a 

variant of WMFVS, which aims at finding an FVS in the network that contains the 

maximum total weight. This method obtains better recall than WMFVS by sacrificing 

precision. Thus, generally, if the researcher wants to reveal as many potential cancer genes 

as possible, WFVS is better; if the researcher prefers better precision, then WMFVS is 

better. Furthermore, since WFVS ignores the restriction of the output size, it focuses more 

on the vertex weight than WMFVS. Therefore, if the researcher has good confidence in 

the weight definition, i.e., the weights are closely related to the classification, WFVS will 

have a better result than WMFVS. We can see this from the data analyses on the MsigDB 

data set, which has the highest enrichment score on our defined weights. However, in 

many cases, since we are not sure whether the defined weights are closely related to the 

classification, using WMFVS will maintain better precision for the prediction. 
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Chapter 4 

 Densest subgraph-based methods for protein-
protein interaction hot spot prediction 
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4. Densest subgraph-based methods for protein-

protein interaction hot spot prediction 

4.1. Background 

Proteins realize their functions by interacting with other proteins and/or chemical 

compounds [49]. Protein-protein interactions play crucial roles in most biological 

processes. In a protein-protein binding interface, the binding free energy is not uniformly 

distributed among the residues. Instead, there are hot spots, which contribute most to the 

binding energy in protein interfaces [50]. Detecting hot spots in protein-protein 

interactions is meaningful in regulating protein-protein binding and may also contribute 

to disease control and drug design. Experimentally, a hot spot residue is defined as having 

a change in binding energy ∆∆𝐺 ≥ 2.0  kcal/mol upon its mutation to alanine [51]. 

Several databases have been constructed to collect experimental hot spots from alanine 

scanning mutagenesis experiments, and two famous databases are the Alanine Scanning 

Energetics Database (ASEdb) [13] and the Binding Interface Database (BID) [52]. 

Another widely used database is the SKEMPI database [53], which is new and continually 

updated (public access to ASEdb and BID is no longer supported). However, finding hot 

spots by experimental methods is time-consuming and costly; thus, a need for 

computational methods arises [54].  

Several kinds of methods have been designed to predict hot spots. The first type is 

based on molecular dynamics simulations [55, 56]. Although these methods provide 

detailed analyses of protein interfaces and have good prediction results, they have 

difficulty dealing deal with large-scale data because of the high computational cost. 

Another kind of method is based on energy estimation [57, 58], which estimates the 

energetic contribution to binding for every interface residue to predict hot spots. 

Compared to molecular dynamics simulation, energy estimation methods are more 
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efficient in predicting hot spots from large protein complexes.  

In recent years, machine learning methods have been frequently used in hot spot 

prediction, such as extreme gradient boosting [59], random forests [60], and support 

vector machines (SVMs) [61]. The advantage of machine learning based methods is that 

they can filter and utilize various possible features to classify residues, together with a 

well-designed model, and usually have high performance in hot spot prediction. However, 

since experimentally approved hot spot data are scarce, a large percentage of real hot spot 

residues are not recognized in hot spot datasets. In machine learning methods, the low 

rate of positive instances makes it difficult to train models. Additionally, in some methods 

such as [51, 62-64], to balance the ratio of positive instances to negative ones, only 

residues with less than 0.4 kcal/mol binding free energy are defined as non-hot spots, 

which further reduces the size of the training set.  

On the other hand, there are some methods based on graph theory and network analysis. 

Tuncbag et al. transformed residue interaction networks into minimum-cut trees and then 

identified the high-degree nodes as hot spots [65]. Li et al. searched for bicliques from 

the input network to find highly connected patterns, which have a high possibility of 

forming a group of hot spots [66]. The graph theory-based methods do not need existing 

hot spot data to train the models, avoiding the need for many experimental resources, and 

the prediction results can be a good guide for further biological experiments. 

Unfortunately, the existing graph theory-based methods have very low recall. Although 

some hot spots can be precisely detected by these methods, many possible hot spots are 

ignored.  

Here, we consider using other graph theory methods, which are based on the densities 

of subgraphs, to analyze residue interaction networks. Generally, high density refers to a 

high connectivity between vertices, and it often relates to binding sites in complexes. By 

further evaluation, we find that our methods have an obvious advantage in finding 

potential hot spots, as well as having similar precision to that of the existing methods. 

The results of these densest subgraph-based methods (DS-based methods) can be a good 
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reference for future bio-experiments.  

Generally, a certain input network may contain multiple densest subgraphs. We can 

simply select one arbitrary densest subgraph as an output. In this research, we use DS to 

represent this method. However, because of this uncertainty, it is difficult to ensure the 

performance of the DS. To obtain better performance in practice, we propose three variant 

methods based on the DS method (DS-based methods). The first method yields all the 

minimal densest subgraphs [67] as the result, and we use Min-DS to denote this method. 

Compared to DS, Min-DS has no uncertainty and has better precision and recall than DS. 

The second method, Max-DS, is based on another concept, namely, the maximal densest 

subgraph [68]. The results of Max-DS include those of Min-DS, and it has higher recall 

but lower precision than Min-DS. To maximize the ability to find potential hot spots, we 

develop a third method, Min-SDS, which is also the main method in our research. This 

method is similar to Min-DS but has a weakened restriction in detecting the minimal 

densest subgraph. By further evaluation, we find that Min-SDS has the best recall and F2-

score among all the graph theory-based methods and performs well in detecting unknown 

hot spots. 

4.2. Methods 

4.2.1. Problem transformation 

For a given protein complex, we first convert the residue spatial coordinate information 

to an undirected graph, where the vertices correspond to the residues and the edges 

correspond to the contacts between residues. See Figure 4.1. The PDB id of the example 

in Figure 4.1 is 1JTG [69]. 

Then, the hot spot prediction problem is transformed into the problem of searching for 

critical vertices in an input graph, and the selected vertices correspond to the predicted 

hot spot residues. 
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Figure 4.1 Transform the protein complex coordinate data to a residue interaction network. Only the 

residues that are close to some other residues in the other protein chain are kept in the network. An edge is 

added between two close residues from different chains. 

4.2.2. Densest subgraph 

Given an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {1, 2, . . . , 𝑛} is the set of vertices and 

𝐸 is the set of edges of 𝐺. Let 𝑆 = (𝑉′, 𝐸′) be a subgraph of 𝐺, where 𝑉′ ⊆ 𝑉 and 𝐸′ 

is the set of edges induced by 𝑉′, then the density of 𝑆 is defined by 𝜌(𝑆) =
|𝐸′|

|𝑉′|
. If 𝑆 

has the maximum density among all possible subgraphs of 𝐺,  then 𝑆  is a densest 

subgraph of 𝐺 , and this maximum density is defined as the density of the graph 𝐺 , 

denoted by 𝐷(𝐺). A certain graph 𝐺 may have multiple densest subgraphs. See more 

descriptions and examples of densest subgraph in Section 2.3. 

In [70], a linear programming (LP)-based method was proposed to search for a densest 

subgraph of 𝐺. For each edge (𝑖, 𝑗)  ∈  𝐸, a real-valued variable 0 ≤ 𝑥𝑖,𝑗 ≤ 1 is set, and 

for each vertex 𝑖 ∈  𝑉 , a real-valued variable 0 ≤ 𝑦𝑖 ≤ 1 is set. Then, the following LP 

method BasicLP returns a solution that contains the information of an arbitrary densest 

subgraph of 𝐺. 

For an optimal solution of BasicLP, the set of vertices 𝑆 =  {𝑖 ∈  𝑉 |𝑦𝑖  >  0} induces 

a densest subgraph of 𝐺. We also use DS to denote this LP-based method.  
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BasicLP(𝑉, 𝐸) 

Maximize 
∑ 𝑥𝑖,𝑗
(𝑖,𝑗)∈𝐸

  
 

Subject to 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 

 𝑥𝑖,𝑗 ≤ 𝑦𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 

 
∑𝑦𝑖
𝑖∈𝑉

≤ 1 
 

 𝑥𝑖,𝑗 ≥ 0, 𝑦𝑖 ≥ 0 ∀𝑖, 𝑗 

Furthermore, we have the following proposition: 

Proposition 3. For any optimal solution of BasicLP, the set of vertices 𝑆 =

{𝑖 ∈ 𝑉|𝑦𝑖 ≥
1

|𝑉|
 } induces a densest subgraph of G. 

Proof. For any optimal solution, obviously, we have ∑ 𝑦𝑖𝑖∈𝑉 = 1, thus if there exists some 

𝑦𝑖 <
1

|𝑉|
, there must exist some 𝑦𝑗 >

1

|𝑉|
. 

According to the proof of Lemma 4.1 of [67], when an optimal solution has different 

non-zero values of 𝑦𝑖’s, if we remove the 𝑦𝑖’s with the lowest non-zero value (set them 

to 0), the remaining 𝑦𝑖’s with non-zero value(s) still correspond to a densest subgraph. 

We can repeat the process until the lowest non-zero value is larger than 
1

|𝑉|
 , and the 

remaining 𝑦𝑖’s with non-zero values correspond to a densest subgraph.  

∎ 

Accordingly, in practice, we select the vertices with 𝑦𝑖  ≥
1

|𝑉|
 rather than 𝑦𝑖 > 0 as the 

output because of the numerical error of the Gurobi solver [12]. 

4.2.3. Minimal densest subgraph 

Given an undirected graph 𝐺 =  (𝑉, 𝐸) , let 𝑆  be a densest subgraph of 𝐺 . If for any 

subgraph 𝑆′ of 𝑆, 𝜌(𝑆′)  <  𝜌(𝑆), then 𝑆 is a minimal densest subgraph. One graph may 

include multiple minimal densest subgraphs.  
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In [67], Balalau et al. presented an LP-based method to find all minimal densest 

subgraphs for an input graph. The method to find an arbitrary minimal densest subgraph 

can be divided to three parts as follows: 

 

Algorithm TryRemove(𝐺, 𝑢, 𝜌𝑚𝑎𝑥) 

Input: A graph 𝐺 = (𝑉, 𝐸), a node 𝑢 to be removed, the maximum density 𝜌max. 

Output: Returns a densest subgraph in 𝐺 not containing 𝑢, or 𝑛𝑢𝑙𝑙 if every densest 

subgraph must contain 𝑢. 

𝐻 ≔ BasicLP(𝑉 − {𝑢}, 𝐸) 

if 𝜌(𝐻) ≥ 𝜌𝑚𝑎𝑥: 

    return 𝐻 

 else: 

     return 𝑛𝑢𝑙𝑙 

 

The algorithm 𝑇𝑟𝑦𝑅𝑒𝑚𝑜𝑣𝑒(𝐺, 𝑢, 𝜌𝑚𝑎𝑥) tries to remove 𝑢 from 𝐺, and then find a 

subgraph that has at least 𝜌𝑚𝑎𝑥 density; if there does not exist such a subgraph, then 

return 𝑛𝑢𝑙𝑙. 

 

Algorithm TryEnhance(𝐺, 𝑢, 𝜌𝑚𝑎𝑥) 

Input: A graph 𝐺 = (𝑉, 𝐸), a node 𝑢 ∈ 𝑉, the maximum density 𝜌max. 

Output: Returns a densest subgraph in 𝐺 containing 𝑢 with minimum cardinality, or 

𝑛𝑢𝑙𝑙 if there is no densest subgraph containing 𝑢. 

Add constraints ∑𝑥𝑖𝑗 = 𝜌𝑚𝑎𝑥 and 𝑦𝑢 ≥
1

𝑛
 to the BasicLP, then change the objective 

function to Maximize 𝑦𝑢, call the modified LP as BasicLP’. The return of 𝐵𝑎𝑠𝑖𝑐𝐿𝑃′ 

is a feasible subgraph, or 𝑛𝑢𝑙𝑙 if no feasible result exists. 

 return 𝐵𝑎𝑠𝑖𝑐𝐿𝑃′(𝐺) 

 

The BasicLP’ is as follows: 
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BasicLP’(𝐺): 

Maximize 𝑦𝑢  

Subject to 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 

 𝑥𝑖,𝑗 ≤ 𝑦𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 

 
∑𝑦𝑖
𝑖∈𝑉

≤ 1 
 

 𝑥𝑖,𝑗 ≥ 0, 𝑦𝑖 ≥ 0 ∀𝑖, 𝑗 

 ∑𝑥𝑖𝑗 = 𝜌𝑚𝑎𝑥  

 𝑦𝑢 ≥
1

𝑛
  

The algorithm 𝑇𝑟𝑦𝐸𝑛ℎ𝑎𝑛𝑐𝑒(𝐺, 𝑢, 𝜌𝑚𝑎𝑥) tries to find a subgraph with density at least 

𝜌𝑚𝑎𝑥 and must contain 𝑢 as one of the vertices in the subgraph; if no such a subgraph 

exists, then return 𝑛𝑢𝑙𝑙. Note that, since the objective function is to maximize the value 

of 𝑦𝑢, if a feasible solution exists, the result of TryEnhance will always be a minimal 

densest subgraph. 

Based on 𝑇𝑟𝑦𝑅𝑒𝑚𝑜𝑣𝑒 and 𝑇𝑟𝑦𝐸𝑛ℎ𝑎𝑛𝑐𝑒, we finally have the following algorithm: 

Algorithm FindMinimal(𝐺) 

Input: A graph 𝐺 = (𝑉, 𝐸). 

Output: A minimal densest subgraph in 𝐺. 

𝐻(�̅�, �̅�) =  𝐵𝑎𝑠𝑖𝑐𝐿𝑃(𝐺), let 𝜌𝑚𝑎𝑥  be the density. 

while True: 

  select 𝑢 ∈ �̅� arbitrarily 

   𝐻1(𝑉1, 𝐸1) = 𝑇𝑟𝑦𝑅𝑒𝑚𝑜𝑣𝑒(𝐻, 𝑢, 𝜌𝑚𝑎𝑥) 

 𝐻2(𝑉2, 𝐸2) = 𝑇𝑟𝑦𝐸𝑛ℎ𝑎𝑛𝑐𝑒(𝐻, 𝑢, 𝜌𝑚𝑎𝑥) # Note that 𝐻2 will never be 𝑛𝑢𝑙𝑙. 

 if 𝐻1 == 𝑛𝑢𝑙𝑙 then return 𝐻2 

 if |𝑉1| < |𝑉2| then 𝐻 = 𝐻1 else 𝐻 = 𝐻2 

 return 𝐻 

 

Figure 4.2 shows an explanation of the algorithm 𝐹𝑖𝑛𝑑𝑀𝑖𝑛𝑖𝑚𝑎𝑙. 
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Figure 4.2 An explanation of the algorithm 𝑭𝒊𝒏𝒅𝑴𝒊𝒏𝒊𝒎𝒂𝒍. In the left figure, assume 𝑯𝟏 is not 𝒏𝒖𝒍𝒍, 

and its size is smaller than 𝑯𝟐, then 𝑯 is assigned to 𝑯𝟏, which decreases the problem scale to the right 

figure. Repeat the process until 𝑯𝟏 == 𝒏𝒖𝒍𝒍. 

Once we find a minimal densest subgraph from 𝐺  by algorithm FindMinimal, we 

record it and remove it from 𝐺. Then repeat the process until no densest subgraph can be 

found. The whole method is as follows: 

1. 𝑟𝑒𝑠𝑢𝑙𝑡 ∶=  ∅.  

2. Find a minimal densest subgraph 𝑅 by FindMinimal.  

3. If 𝜌(𝑅)  <  𝐷(𝐺) , then return result; otherwise, set 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑅 , 

remove 𝑅 from the graph, and then jump to step 2. 

This method can find all the minimal densest subgraphs, and we use Min-DS to denote 

this method. 

4.2.4. Maximal densest subgraph 

Given an undirected graph 𝐺 =  (𝑉, 𝐸), let 𝑆 be a densest subgraph of 𝐺. If any densest 

subgraph of 𝐺 is a subgraph of 𝑆, then 𝑆 is the maximal densest subgraph. 

Proposition 4. For any undirected graph, exactly one maximal densest subgraph exists. 

Proof. For a given graph 𝐺, the union of all possible densest subgraphs is obviously a 

maximal densest subgraph. However, there may exist another maximal densest subgraph. 

Assume more than one maximal densest subgraph exists. Let 𝑆1  and 𝑆2  be two 

different maximal densest subgraphs. According to Corollary 4.1 of [67], 𝑆3≔ 𝑆1 ∪ 𝑆2 

is also a densest subgraph. Since 𝑆1 ≠ 𝑆2, 𝑆3 is not a subgraph of 𝑆1 or 𝑆2, thus 𝑆1 and 
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𝑆2 are not maximal densest subgraphs, which contradicts to the assumption. Therefore, 

only one maximal densest subgraph exists.  

∎ 

In [68], a binary search-based method is introduced to find the maximal densest 

subgraph. Here we propose two novel linear programming methods to solve this problem.  

We can find the maximal densest subgraph of an input graph 𝐺 =  (𝑉, 𝐸)  by an 

integer linear programming (ILP)-based method. For each edge (𝑖, 𝑗)  ∈  𝐸, we set a real-

valued variable 0 ≤ 𝑥𝑖,𝑗 ≤ 1; for each vertex 𝑖 ∈  𝑉 , we set a real-valued variable 0 ≤

𝑦𝑖 ≤ 1 and a Boolean variable 𝑧𝑖. Let 𝐷 be the maximum density of 𝐺 (we can obtain 

𝐷 by BasicLP). Then, we have the following ILP: 

MaxILP 

Maximize 
∑𝑧𝑖
𝑖∈𝑉

  
  

Subject to 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 (1) 

 𝑥𝑖,𝑗 ≤ 𝑦𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 (2) 

 
∑𝑦𝑖
𝑖∈𝑉

≤ 1 
 (3) 

 𝑥𝑖,𝑗 ≥ 0, 𝑦𝑖 ≥ 0 ∀𝑖, 𝑗 (4) 

 
∑ 𝑥𝑖,𝑗
(𝑖,𝑗)∈𝐸

≥ 𝐷 
 (5) 

 𝑦𝑖 −
𝑧𝑖
|𝑉|

≥ 0 ∀𝑖 ∈ 𝑉 (6) 

This ILP method is denoted as Max-DS. Furthermore, we have Proposition 5. 

Proposition 5. For an optimal solution 𝐻 =  (𝑥𝐻 , 𝑦𝐻, 𝑧𝐻)  of MaxILP, the set of 

vertices {𝑖|𝑧𝑖 ∈ 𝑧
𝐻, 𝑧𝑖 = 1} induces the maximal densest subgraph of G. 

Proof. Let 𝑆 be the maximal densest subgraph, then the following solution (𝑥𝑆, 𝑦𝑆, 𝑧𝑆) 

is a feasible solution of MaxILP: 
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𝑥𝑖,𝑗
𝑆 = {

1

|𝑆|
if both 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑆

0 otherwise
  

𝑦𝑖
𝑆 = {

1

|𝑆|
if 𝑖 ∈ 𝑆 

0 otherwise
  

𝑧𝑖
𝑆 = {1 if 𝑖 ∈ 𝑆 

0 otherwise
  

Constraints (1)-(5) restrict the subgraph induced by {𝑖|𝑖 ∈ 𝑉, 𝑦𝑖 ≥
1

|𝑉|
} be a densest 

subgraph (by Proposition 3). By constraint (6), 𝑧𝑖 = 1 only if 𝑦𝑖 ≥
1

|𝑉|
. Thus ∑ 𝑧𝑖𝑖∈𝑉 ≤

|𝑆|, otherwise, the set {𝑖|𝑖 ∈ 𝑉, 𝑦𝑖 ≥
1

|𝑉|
} induces a densest subgraph that has a size larger 

than |𝑆|, which is impossible.  

∎ 

We can also use an LP-based method to find the maximal densest subgraph. First, we 

modify BasicLP to the following LP (the definition of the variables is the same as in 

BasicLP): 

MaxLP(𝑉, 𝐸, 𝐷, 𝑅) 

Maximize 
∑ 𝑥𝑖,𝑗
(𝑖,𝑗)∈𝐸

 
  

Subject to 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 (7) 

 𝑥𝑖,𝑗 ≤ 𝑦𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 (8) 

 
∑𝑦𝑖
𝑖∈𝑉

≤ 1 
 (9) 

 𝑥𝑖,𝑗 ≥ 0, 𝑦𝑖 ≥ 0 ∀𝑖, 𝑗 (10) 

 
∑ 𝑥𝑖,𝑗
(𝑖,𝑗)∈𝐸

≥ 𝐷 
 (11) 

 𝑦𝑖 ≥
1

|𝑉|
 ∀𝑖 ∈ 𝑅 (12) 

 
∑ 𝑦𝑖
𝑖∈𝑉−𝑅

≥
1

|𝑉|
 

 (13) 
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Here, 𝐷  is the density of the input graph, and 𝑅  is a subset of 𝑉 . Compared to 

BasicLP, we add constraints (11)-(13) to the program. Constraint (11) requires that the 

solution leads to a densest subgraph; constraint (12) requires that all the vertices in 𝑅 

should be selected to the solution; constraint (13) requires that at least one vertex that is 

not in 𝑅 should be selected. We set the objective value as the return of BasicLP and use 

{𝑖|𝑖 ∈  𝑉, 𝑧𝑖  =  1} or ∅ (if no feasible solution is found) as the return of MaxLP. 

Then, we have the algorithm FindMaximal. 

 

Algorithm FindMaximal(𝑉, 𝐸) 

𝐷 ≔ BasicLP(𝑉, 𝐸) 

𝑅 ≔ ∅  

 while True do: 

     𝑅′ = MaxLP(𝑉, 𝐸, 𝐷, 𝑅) 

if 𝑅′ == ∅ then: 

    return R 

else: 

    𝑅 = 𝑅 ∪ 𝑅′ 

 

The correctness of FindMaximal is obvious. In the worst case, we need to run MaxLP 

𝑂(𝑛) times, and thus we can solve the problem in polynomial time.  

In practice, the MaxILP and FindMaximal methods have very similar time costs, and 

thus the evaluation is based on the results of MaxILP, which is easier to implement 

(although both methods have the same results because of the uniqueness of the maximal 

densest subgraph). 

4.2.5. Minimal sub-densest subgraph 

In some protein complexes, multiple binding interfaces may exist, while in the residue 

interaction network, the interface areas may have different densities. If we always search 

the densest subgraph, some hot spots in some binding interfaces may be ignored.  
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Here, we consider weakening the restrictions of in Min-DS to find more potential hot 

spots. The skeleton of Min-DS is as follows [67]: 

1. 𝑟𝑒𝑠𝑢𝑙𝑡 ∶=  ∅.  

2. Find a minimal densest subgraph 𝑅.  

3. If 𝜌(𝑅)  <  𝐷(𝐺) , then return result; otherwise, set 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑅 , 

remove 𝑅 from the graph, and then jump to step 2. 

In step 3, if Min-DS has a smaller density than the input graph, then the process stops. 

Here, we consider adding a tolerance 𝜃 to step 3 as follows: 

1. 𝑟𝑒𝑠𝑢𝑙𝑡 ∶=  ∅.  

2. Find a minimal densest subgraph 𝑅.  

3. If  𝜌(𝑅)  <  𝜃 ∗  𝐷(𝐺) , where 0 <  𝜃 <  1 , then return result; otherwise, set 

𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑒𝑠𝑢𝑙𝑡 ∪  𝑅, remove 𝑅 from the graph, and then jump to step 2. 

We call the result the minimal sub-densest subgraphs, and this method is named Min-

SDS. 

4.2.6. Biclique 

In [66], a biclique-based method is proposed to predict hot spots. Given a bipartite graph 

𝐺 = (𝑉1, 𝑉2, 𝐸), where 𝑉1 and 𝑉2 are two distinct vertex sets, and 𝐸 is the set of edges 

in which only edges between 𝑉1  and 𝑉2  exist. A biclique 𝐵 = (𝑉1
′, 𝑉2

′, 𝐸′)  is a 

subgraph of 𝐺, that ∀𝑣𝑖 ∈ 𝑉1
′ and ∀𝑣𝑗 ∈ 𝑉1

′: (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸′. If a biclique is not included 

by any other biclique, then this biclique is called a maximal biclique. Figure 4.3 shows 

an example. 

Furthermore, we have the following observations: 

• A bipartite graph may have multiple maximal biclique subgraphs; 

• Some vertices may be contained in different biclique subgraphs; 

• The size of maximal biclique subgraphs can be different. 

Using the LCM-MBC algorithm, we can find all maximal biclique subgraphs of a 

given bipartite graph in linear time. 
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Figure 4.3 Two bicliques (right part, deep color subgraphs) of an input graph. Both of the bicliques 

are maximal. 

In [66], researchers first construct the residue interaction networks for the protein 

complexes, then they find all the bicliques with at least 3 vertices in each side. The found 

biclique patterns are then searched in all complexes, and only the patterns that appear in 

at least 5 complexes are recognized as hot spots. 

In our research, since we only use one network to predict hot spot, we skipped the 

pattern searching phase of the biclique method in practice, which should increase the 

recall but decrease the precision in evaluation. 

4.2.7. Minimum cut tree 

In [65], researchers transform the residue interaction network to minimum cut trees 

(mincut trees), then the high-degree tree nodes are recognized as hot spots. 

Given an undirected, connected graph 𝐺 = (𝑉, 𝐸), a cut of 𝐺 is a partition of the 

node set into two sets, and consists of all edges that have one endpoint in each partition. 

Let 𝑠, 𝑡 ∈ 𝑉, an 𝑠-𝑡 cut is defined as a cut, which puts 𝑠 and 𝑡 into different node sets 

of the partition. Figure 4.4 shows some examples of 𝑠-𝑡 cuts. 
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Figure 4.4 Three possible cuts of 𝒂 and 𝒉 in the input graph. 

A minimum weight 𝑠-𝑡 cut (min s-t cut, or mincut of s-t) is defined as an 𝑠-𝑡 cut that 

has the minimum total weight. Based on the max-flow min-cut theory [71], i.e. The 

weight of min 𝑠-𝑡 cut always equals to the max-flow from 𝑠 to 𝑡, we can use the Ford-

Fulkerson algorithm [71], which finds the maximum flow between two vertices, to 

efficiently find the mincut of any vertex pair. 

Gomory and Hu introduced a tree structure (Gomory-Hu tree, or mincut tree) [72] that 

shows all the mincut between any pair of vertices in a graph. This tree can be computed 

using only 𝑛 − 1 min cut computations, where 𝑛 is the number of vertices.  

 

 

Figure 4.5 Residue interaction network (left) and its mincut tree (right) of the complex 3UIH. 
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In [65], the edges in the residue interaction network are weighted by solvent-mediated 

potential data, while in our research edges are unweighted. However, we can still apply 

the mincut methods by giving all edges a weight of 1. The following graph shows a result 

of compressing a graph to a mincut tree. 

In the mincut tree in Figure 4.5, we can obviously find some nodes that have higher 

degrees than the other nodes. In [65], the tree nodes with a degree higher or equal to 3 are 

predicted as hot spots. 

4.3. Result 

4.3.1. Dataset 

We mainly use the data from the SKEMPI 2.0 dataset [53], which records 7085 pieces of 

mutation information on 341 protein complexes, to define the hot spots in protein 

complexes. Specifically, if a residue has ∆∆𝐺 =  ∆𝐺𝑚𝑢𝑡 − ∆𝐺𝑤𝑡  ≥  2.0 kcal/mol in an 

alanine-mutation experiment, then this residue is recognized as a hot spot [13]. Here, 

∆𝐺𝑤𝑡 and ∆𝐺𝑚𝑢𝑡 are the binding free energies upon complex formation of the wild-type 

and alanine-mutated proteins, respectively. ∆𝐺 can be calculated by ∆𝐺 =  𝑅𝑇 ln𝐾𝑑, 

where 𝑅 is the ideal gas constant, 𝑇 is the absolute temperature, and 𝐾𝑑 is the affinity 

of the wild-type (wt) or mutant (mut) complexes. Thus, we have [73]: 

∆𝐺𝑤𝑡  =  (
8.314

4184
) ∗ (273.15 + 25.0) ∗ ln(𝑤𝑡) 

∆𝐺𝑚𝑢𝑡 = (
8.314

4184
) ∗ (273.15 + 25.0) ∗ ln(𝑚𝑢𝑡) 

The residue interaction network data are based on PDB spatial data [74]. In a protein 

complex, any two residues in different chains are regarded as contacting each other if 

there exist two atoms 𝑎  and 𝑏  from each residue such that their distance 𝑑(𝑎, 𝑏)  ≤

 𝑟𝑎  +  𝑟𝑏  +  2.75Å, where 𝑟 is the van der Waals radius, and 2.75Å is the diameter of a 

water molecule [66]. See Figure 4.6. 
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Figure 4.6 Two residues are determined in contact if they are close enough to each other. Specifically, 

if we can find a pair of atoms 𝑎 and 𝑏 from residues 𝑖 and 𝑗, respectively, that 𝑑 < 𝑟𝑎 + 𝑟𝑏 + 2.75, 

then residue 𝑖 and 𝑗 are in contact. 

To build a residue interaction network for each protein complex, only the residues that 

contact at least one other residue are selected as vertices of the network, and an edge is 

added between any two contacting vertices. 

The atom spatial data in PDB are based on crystal artifacts, sometimes they may not 

directly reflect the natural protein quaternary structure of complexes [75]. See Figure 4.7. 

 

Figure 4.7 One crystal artifact sample may include several possible asymmetric units. 

To avoid the problem of choosing proper biological assemblies among asymmetric 
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units, we selected 223 complexes from the 341 complexes, each of which has only one 

possible biological assembly, to construct residue interaction networks. We further 

selected 67 networks with at least 3 bio-experimentally approved hot spots for evaluation. 

In addition, we used another independent hot spot dataset, AB-bind [76], for evaluation, 

which contains 1101 mutation records on 27 complexes. Using the same data selection 

strategy, 5 complexes were selected for result evaluation. 

4.3.2. Experiments and evaluation 

We implemented the DS, Min-DS, Max-DS, Min-SDS, Biclique, and Mincut methods on 

the built networks. 

The DS method finds an arbitrary densest subgraph of the input network; the Min-DS 

method finds all the minimal densest subgraphs [67]; the Max-DS method finds the 

maximal densest subgraph; and the Min-SDS method finds a set of nonintersecting 

subgraphs with high densities. 

Biclique and Mincut are existing methods. The Biclique method [66] finds all the 

bicliques of the input network. In our experiments, only the bicliques that contain at least 

3 vertices on each side are selected as the result. The Mincut method [65] first builds the 

mincut tree of the input network, and then the high-degree (at least degree 3) nodes in the 

tree are selected as the result. 

Let 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃  and 𝐹𝑁  be the numbers of true positive, true negative, false 

positive and false negative residues in the predictions, respectively. The standard metrics 

are defined as follows: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score =
2 × Precision × Recall

Precision + Recall
 

F2-Score =
5 × Precision × Recall

4 × Precision + Recall
  

The average results of all the six methods are shown in Figure 4.8 (𝜃 =  0.85 for Min-
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SDS). 

 

Figure 4.8 Clustered column chart of the performances of each method on SKEMPI (A) and AB-bind 

(B). The result distributions on the two charts are similar. In both datasets, Min-SDS has the best recall and 

F-score, and all DS-based methods outperform the existing methods in terms of F2-score. 

Compared to the existing methods, our DS-based methods have much better F-scores. 

Although Mincut has the best precision, its recall is very low compared to the other 

methods. In hot spot research, there is a lack of bio-experiments detecting whether a 

residue is a hot spot. Even if some experiments on a residue have been performed and 

indicated ∆∆𝐺 <  2.0 kcal/mol, it is difficult to determine that this residue is not a hot 

spot. Many potential hot spots may be false-negatively tagged by bio-experiments. In this 

situation, higher recall should be more beneficial than higher precision. 

Another disadvantage of Mincut is that its results tend to be in one connected 

component. However, a protein complex may have multiple binding sites, which means 

that several distinct subgraphs may contain hot spots, while in most cases, the Mincut 

method focuses on only one of them. 

As an example, complex 1AHW [77] consists of 3 molecules, and each molecule has 

2 chains (AD, BE and CF). These 6 chains compose a heterohexamer (preferred) 

biological assembly composition. By checking the residue interaction network, 5 large 

connected subgraphs are found to exist: A-B, D-E, A-F, A-B-C and D-E-F (subgraph A-
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B means that all the residues in this subgraph come from chain A or B, and the other terms 

have similar meanings). In these subgraphs, A-B-C and D-E-F are highly connected, and 

both of them have high possibilities of containing hot spots. In fact, all the experimentally 

approved hot spots are gathered in the A-B-C subgraph. However, in practice, the Mincut 

method only predicts residues in the D-E-F area and thus performs poorly in this instance. 

For details, see Figure 4.5. 

 

(a) Mincut 

 

(b) Min-SDS 

Figure 4.9 The results of Mincut and Min-SDS on the graph of complex 1AHW. TP: red outline, yellow 

fill; FP: black outline, yellow fill; TN: black outline, white-fill; FN: red outline, blue fill. These figures 

show only part of the 1AHW network. 
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Our DS-based methods, especially the Min-SDS method, are not restricted to only one 

connected area, and thus all highly connected areas can be selected. For the instance 

1AHW, the result of the Min-SDS method distributes in both A-B-C and D-E-F subgraphs, 

successfully covers the approved hot spots, and predicts the possible hot spots in the D-

E-F area. 

Since the Min-SDS method removes the restriction of ‘densest’, it has the best 

advantage in finding possible hot spots. In our experiments, the tolerance 𝜃 of Min-SDS 

was set to 0.85; i.e., all minimal subgraphs with a density higher than 0.85 ∗ 𝐷 were 

selected, where 𝐷 is the maximum density of the input graph. 

We tested the performance of Min-SDS on different 𝜃 values from 0.5 to 1.0, and the 

results are shown in Figure 4.10. With the decrease in θ, the precision decreases while the 

recall increases. The F2-score peaks when 𝜃 = 0.85; this score is the best among those 

of all DS-based methods, and is obviously better than those of the existing methods. 

 

Figure 4.10 The average performances of Min-SDS on different 𝜽 values (x-axis). The F2-score peaks 

at 𝜃 = 0.85. 
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By further analyzing the 3D view of the protein complexes, we can see that the Min-

SDS method does have the advantage of predicting unknown hot spots. In the same 

instance, 1AHW [77], the Min-SDS method predicts 36 residues in the D-E-F area. Of 

these residues, 18 form hydrogen bonds with residues from another chain (Figure 4.11). 

To estimate whether a residue is a hot spot, the change in the binding energy from residue 

mutation is the only metric used. The energy of a hydrogen bond varies from ≈ 5 ∼ 6 

kcal/mol for the isolated bond to ≈ 0.5 ∼ 1.5 kcal/mol for proteins in solution [78], close 

to the threshold 2.0 kcal/mol. When a residue forms a hydrogen bond to another chain, 

the mutation of this residue will obviously influence the generation of the wild-type 

hydrogen bond, which should significantly change the binding energy between the chains. 

Thus, many of the predicted residues in the D-E-F area have the potential to be hot spots. 

 

Figure 4.11 A 3D view of the D-E-F area of 1AHW. A: A 3D view of the quaternary structure of 1AHW 

in the D-E-F area; B: Hydrogen bonds between chains D and F. 

4.4. Summary and discussion 

In this study, we developed three densest subgraph-based methods for protein-protein 

interaction hot spot prediction. Compared to the existing graph theory-based methods, 

our methods perform much better in terms of recall and F-score. In particular, our Min-

SDS method has an obvious advantage in terms of recall and has the best F2-score among 
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all the graph theory-based methods. In addition, our Min-DS and Max-DS methods 

outperform the existing methods in terms of F-score, providing useful network analysis 

methods for researchers. 

Our proposed methods do not consider the weight of edges in the residue interaction 

network. However, we can use the distance data or solvent-mediated potential data as the 

weight of edges for further analysis. This requires some new methods which can find 

densest subgraphs from edge-weighted undirected graphs. Here we propose an LP-based 

method to find an edge-weighted densest subgraph. 

Given an undirected, edge-weighted graph 𝐺 = (𝑉, 𝐸), where the weight of an edge 

(𝑖, 𝑗) ∈ 𝐸 is a constant 𝑤𝑖,𝑗. Let 𝑆 = (𝑉′, 𝐸′) be a subgraph of 𝐺, define the density of 

𝑆  be 𝜌(𝑆) =
|∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐸′ |

|𝑉′|
 . If 𝑆  has the maximum density among all subgraphs of 𝐺 , 

then 𝑆 is a densest subgraph of 𝐺. 

When all edge weights are positive integers, we can use the following LP method to 

find an arbitrary densest subgraph. 

W-BasicLP: 

Maximize 
∑ 𝑤𝑖,𝑗𝑥𝑖,𝑗
(𝑖,𝑗)∈𝐸

  
 

Subject to 𝑥𝑖,𝑗 ≤ 𝑦𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 

 𝑥𝑖,𝑗 ≤ 𝑦𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 

 
∑𝑦𝑖
𝑖∈𝑉

≤ 1 
 

 𝑥𝑖,𝑗 ≥ 0, 𝑦𝑖 ≥ 0 ∀𝑖, 𝑗 

Proposition 6. For any subgraph 𝑆 = (𝑉′, 𝐸′)  of 𝐺 , an optimal solution of W-

BasicLP is at least 𝜌(𝑆). 

Proof: For each (𝑖, 𝑗) ∈ 𝐸′ , set 𝑥𝑖,𝑗̅̅ ̅̅ =
1

|𝑉′|
 . For each 𝑖 ∈ 𝑉′ , set 𝑦�̅� =

1

|𝑉′|
 . All the 

remaining variables are set to 0. Then we have, ∑ 𝑦�̅�𝑖∈𝑉 = |𝑉′| ∗
1

|𝑉′|
= 1. Thus, (�̅�, �̅�) 
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is a feasible solution to the LP. The value of this solution is 

∑ 𝑤𝑖,𝑗𝑥𝑖,𝑗̅̅ ̅̅
(𝑖,𝑗)∈𝐸′

= 𝜌(𝑆) 

∎ 

Proposition 7. Given a feasible solution of W-BasicLP with value 𝑣, we can construct 

a subgraph 𝑆 = (𝑉′, 𝐸′) of 𝐺 such that 𝜌(𝑆) ≥ 𝑣. 

Proof: Since 𝑤𝑖,𝑗 is integer, for each 𝑥𝑖,𝑗, we can define 𝑤𝑖,𝑗 additional variables 𝑥𝑖,𝑗,𝑘, 

𝑘 ∈ {1,2, … ,𝑤𝑖,𝑗}, whose values are equal to 𝑥𝑖,𝑗. Then the objective function equals to 

∑𝑥𝑖,𝑗,𝑘. 

Let (�̅�, �̅�) be a feasible solution to the LP. Without loss of generality, we can assume 

that for all 𝑖𝑗, 𝑥𝑖,𝑗̅̅ ̅̅ = min(�̅�𝑖, �̅�𝑗). 

We define a collection of sets 𝑆 indexed by a parameter 𝑟 ≥ 0. Let 𝑆(𝑟) = {𝑖|𝑦�̅� ≥

𝑟} and 𝐸(𝑟) = {𝑖𝑗𝑘|𝑥𝑖,𝑗,𝑘̅̅ ̅̅ ̅̅ ≥ 𝑟}. Since 𝑥𝑖,𝑗̅̅ ̅̅ ≤ �̅�𝑖 and 𝑥𝑖,𝑗̅̅ ̅̅ ≤ �̅�𝑗, we have 𝑖𝑗𝑘 ∈ 𝐸(𝑟) ⇒

𝑖 ∈ 𝑉(𝑟), 𝑗 ∈ 𝑉(𝑟). Also, since 𝑥𝑖,𝑗̅̅ ̅̅ = min(�̅�𝑖, �̅�𝑗), we have 𝑖 ∈ 𝑉(𝑟), 𝑗 ∈ 𝑉(𝑟) ⇒  𝑖𝑗𝑘 ∈

𝐸(𝑟), ∀𝑘 . Thus, if we ignore the difference of 𝑘 , 𝐸(𝑟)  is precisely the set of edges 

induced by 𝑆(𝑟), while each edge 𝑖𝑗 in 𝐸(𝑟) appears 𝑤𝑖,𝑗 times. 

Besides, ∫ |𝑆(𝑟)|
∞

0
𝑑𝑟 = ∑ 𝑦�̅�𝑖 ≤ 1 , and ∫ |𝐸(𝑟)|

∞

0
𝑑𝑟 = ∑ 𝑤𝑖,𝑗𝑥𝑖,𝑗̅̅ ̅̅𝑖,𝑗  . See the 

explanation Figure 4.12. 

 

Figure 4.12 An example to explain ∫ |𝑺(𝒓)|
∞

𝟎
𝒅𝒓 = ∑ 𝒚�̅�𝒊 . The explanation about 𝑬(𝒓) is the similar. 
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Let 𝑣 = ∑ 𝑤𝑖,𝑗𝑥𝑖,𝑗̅̅ ̅̅𝑖,𝑗 . We claim that there exists 𝑟 such that 
|𝐸(𝑟)|

|𝑆(𝑟)|
≥ 𝑣. Suppose there 

were no such 𝑟. Then 

𝑣 = ∫ |𝐸(𝑟)|
∞

0

𝑑𝑟 < 𝑣∫ |𝑆(𝑟)|
∞

0

𝑑𝑟 ≤ 𝑣 

This gives a contradiction. To find such an 𝑟 , notice that we can check all 

combinatorically distinct sets 𝑆(𝑟)  by simply checking the sets 𝑆(𝑟)  obtained by 

setting 𝑟 = 𝑦�̅� for every 𝑖 ∈ 𝑉. Once a feasible 𝑟 is obtained, we have 
|𝐸(𝑟)|

|𝑆(𝑟)|
≥ 𝑣, then 

the subgraph induced by 𝑆(𝑟) has 𝜌(𝑆(𝑟)) ≥ 𝑣. 

∎ 

The proofs of Proposition 6 and Proposition 7 are based on [70]. Combining these two 

propositions, we can obviously get the following theorem. 

Theorem 1. An optimal solution of W-BasicLP leads to an edge-weighted densest 

subgraph when all the weights are positive integers. 

Because of the linearity in LP, we can multiply a constant number to all 𝑤𝑖,𝑗’s without 

changing the ratio of variables in a feasible result of the LP. Thus, for any fractional 

number-weighted cases, we can use the same LP to solve the edge-weighted densest 

subgraph problem. In practice, because of the digital precision, any positive-weighted 

problems can be solved by this LP. The proof of the correctness of the LP under irrational 

number-weighted condition is left as future work. 
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5. Conclusion and future work 

In this dissertation, we introduced several graph theory-based methods for solving two 

bioinformatics problems. 

In the first study, we introduced the WMFVS and WFVS methods to predict cancer 

genes. WMFVS and WFVS take advantage of both bio-data and the network structure. 

They can be useful in novel cancer gene prediction and evaluation, and the same idea may 

also be applied to other bioinformatics problems.  

The main challenge of our methods is the definition of the weights. WMFVS and 

WFVS can perform very well when the weights are well-defined but may display limited 

performance when the weights are not directly related to the category. In this study, we 

used the gene differential expression data as the weights of genes. Actually, we may use 

different ideas to define the weights. As an example, since the change of the expression 

of one gene may influence the other genes, we can use the average (or weighted-average) 

differential expression data of a certain gene together with its neighbor genes (or even 

level-2 neighbors, i.e. the neighbors’ neighbors) as the weight of the gene. Different 

definitions of weights should have different results, and finding better definitions of 

weights is left as future work. 

Another issue concerns graph compression. In our experiments, the traditional MFVS 

method analyzed the compressed graph (with the ignore operation; see details in Section 

3.2), which contained 660 vertices and 5604 arcs, and it was efficient and took only 

approximately 4 seconds to obtain the result. The input graph of WMFVS and WFVS was 

compressed using the limited ignore_w operation (see details in Section 3.2), which 

contained 2348 vertices and 17283 arcs. Because of the different input scales, WMFVS 

and WFVS were not as efficient as the simple MFVS method, although the time costs 

were still acceptable. The development of new algorithms for weighted graph 

compression is left as future work. 
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We used MFVS as the basic idea in designing our methods, and these methods consider 

using the features of genes, or vertices in the network, as the weights. There exists another 

famous concept named minimum feedback arc set (MFCS), which is a set of arcs whose 

removal leaves the remaining network acyclic. This concept is based on arcs rather than 

vertices, and we can also apply the MFCS method in predicting cancer genes. In this way, 

we need to consider the weights of arcs, i.e. the relationships between genes. Constructing 

new MFCS-based methods and finding appropriate weights of arcs is left as future work. 

In the second study, we proposed three densest subgraph-based methods to predict the 

hot spot residues in protein complexes, including Min-DS, Max-DS, and Min-SDS. We 

also implemented two existing graph theory-based methods, mincut and biclique, for 

comparison. Although the Mincut method has the best precision, its predictions tend to 

be concentrated in one connected subgraph, which significantly reduces the recall in 

practice. In comparison, the results of our DS-based methods are not restricted to one 

connected component, which is important in dealing with complexes with multiple 

binding sites.  

Compared to machine learning methods, our DS-based methods do not depend on 

insufficient bio-experimental data and thus have the advantage of being able to search 

unknown hot spots without many data resources. Our DS-based methods use only spatial 

coordinate information to detect important vertices in a given interaction network. The 

high recall scores make them good choices for some other high-false-negative-rate 

network analyses, and they can be easily applied to various network analysis fields.  

In the original Biclique methods, researchers first find all the bicliques as the hot spot 

patterns and then search the frequently appeared patterns among all protein complex data. 

In the Min-DS and Min-SDS methods, usually, multiple residue groups are detected. We 

may also treat these groups as patterns and compare them to the other patterns from 

different complexes for further selection. However, since the found residue groups in the 

Min-DS and Min-SDS are significantly larger than the patterns in Biclique, we may need 

some fuzzy matching methods for pattern comparison. Based on this idea, we can 
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consider using the hot spot information from other complexes to improve the precision of 

the results, and this is left as future work. 

In Section 4.4, we proposed a basic idea about the edge-weighted densest subgraph 

method to analysis the residue interaction network. However, the design of more practical 

methods and finding an appropriate definition of the weights of edges is left as another 

future work. 
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