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Abstract

Generally speaking, the field of cryptography consists of two aspects, namely con
structions (the constructive aspect) and cryptanalysis (the destructive aspect). On the
one hand, constructions aim to establish communication schemes that are both effi
cient and secure. On the other hand, the goal of cryptanalysis is to destruct schemes
and recover information from the communication.

Nowadays, the widely deployed public key cryptographic schemes (such as RSA,
DSA, ECDSA) are based on the hardness of integer factorization problem or the dis
crete logarithm problem. However, all of these problems can be efficiently solved
on a quantum computer using Shor’s algorithm. Even though current quantum com
puters are still not powerful enough to break any real cryptographic algorithms in
practice, these schemes will be not secure anymore when large quantum computers
are available in the future. Therefore, researchers are designing new cryptographic
systems (socalled postquantum cryptography) to prepare for the potential threat of
quantum computers.

Among all the candidates in postquantum cryptography, latticebased cryptog
raphy is the most popular one, mainly because there are several advantages: from
a algorithmical point of view, latticebased schemes consist of linear operations on
vectors and matrices, which makes it simple and parallelizable. In terms of security,
latticebased cryptography has strong security guarantee that averagecase random
instances are as hard as worstcase approximate variants of NPhard problems. Be
sides, latticebased cryptography supports versatile applications, including very ad
vanced ones such as fully homomorphic encryption.

In this thesis, we study both aspects in latticebased cryptography. In an interme
diate aspect between constructive and destructive aspects (in the sense that security
analysis can help determine paramters of constructions), we first study the security
of binary error LWE. LWE is one of the central problems in lattice cryptography and
binary error LWE is the particular case of LWE in which errors are chosen in {0, 1}.



It has various cryptographic applications, and in particular, has been used to con
struct efficient encryption schemes for use in constrained devices. We examine more
generally how the hardness of binary error LWE varies with the number of available
samples, using a simpler (but asymptotically equivalent) variant of the Gröbner basis
algorithm. Besides, we generalize the uniform binary error LWE to the nonuniform
case and analyze about the hardness of the nonuniform binary error LWE with re
spect to the error rate and the number of available samples.

In the destructive aspect, we study lattice attacks on (EC)DSA. Historically, lat
tice originally emerges as a powerful cryptanalysis tool to study the security of public
key cryptography. Actually, lattice reduction has been used to attack (EC)DSA with
partially known nonces. The attack itself has seen limited development and the lat
tice construction based on the signatures and known nonce bits remain the same. We
propose a new idea to improve the attack: carry out an exhaustive search on some
bits of the secret key. This turns the problem from a single bounded distance decod
ing (BDD) instance in a certain lattice to multiple BDD instances in a fixed lattice
of larger volume but with the same bound. As a result, our analysis suggests that
our technique is competitive or outperforms the state of the art for parameter ranges
corresponding to the limit of what is achievable using lattice attacks so far. We also
show that variants of this idea can also be applied to bits of the nonces or to filtering
signature data. Besides, we use our technique to obtain an improved exploitation of
the TPM–FAIL dataset.

In the constructive aspect, we study a very important primitive: latticebased sig
natures. In particular, we introduce a novel trapdoor generation technique for Prest’s
hybrid sampler over NTRU lattices. Prest’s sampler is used in particular in the Mi
taka signature scheme (Eurocrypt 2022), a variant of the Falcon signature scheme,
one of the candidates selected by NIST for standardization. Mitaka was introduced
to address Falcon’s main drawback, namely the fact that the lattice Gaussian sam
pler used in its signature generation is highly complex, difficult to implement cor
rectly, to parallelize or protect against sidechannels, and to instantiate over rings of
dimension not a power of two to reach intermediate security levels. Prest’s sampler
is considerably simpler and solves these various issues, but the resulting scheme is
still substantially less secure by Falcon and with much slower key generation. Our
new trapdoor generation techniques solves all of those issues satisfactorily: it gives
rise to a much simpler and faster key generation algorithm than Mitaka’s (achieving
similar speeds to Falcon), and is able to comfortably generate trapdoors reaching the
same NIST security levels as Falcon as well. It can also be easily adapted to rings of
intermediate dimensions, in order to support the same versatility as Mitaka in terms
of parameter selection. All in all, this new technique combines all the advantages of
both Falcon and Mitaka (and more) with none of the drawbacks.

2



Acknowledgements

First I would like to expressmy sincere thanks tomy two supervisors, Mehdi Tibouchi
andMasayuki Abe. Before coming to Kyoto University, I almost knew nothing about
cryptography, but they led me into this field and taught me little by little. I gradually
learnt a lot of things about cryptography and got attracted to this field. Without their
help and support, it is impossible for me to finish this thesis. Even after working
several years with them, I am still constantly surprised by their amazing intelligence,
energy and friendliness.

I am grateful to my two advisors, Takayuki Kanda and Masaya Yasuda. They
gave me valuable advice on my research topic, which guided me through finding
new research ideas.

I would like to thank all the other members of AbeTibouchi Lab, who were really
kind tome and helpedme a lot whenever I had any trouble. It is really good experience
to study together with them.

Besides, I receive a lot of input from my coauthors Thi Thu Quyen Nguyen,
Thomas Espitau, AlexandreWallet. I had helpful discussions and received comments
from Ruosi Wan, Phong Nguyen. I would like to thank Thomas Espitau and Mehdi
Tibouchi for hosting me at NTT. I would like to thank Yang Cao, Pierre Alain Fouque,
Phong Nguyen and Kyosuke Yamashita for providing job information.

Last but not least, I want to thank my parents for their support and love.



Contents

1 Introduction 4
1.1 Modern Public Key Cryptography . . . . . . . . . . . . . . . . . . 4
1.2 Cryptography in Social Informatics . . . . . . . . . . . . . . . . . . 5
1.3 Latticebased Cryptography . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Constructive Aspect of Latticebased Cryptography . . . . . 6
1.3.2 Destructive Aspect of Latticebased Cryptography . . . . . 8

1.4 Contributions Overview . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Security Analysis of Binary Error LWE . . . . . . . . . . . 9
1.4.2 Improving Lattice Attacks on (EC)DSA . . . . . . . . . . . 10
1.4.3 Constructing Efficient and Secure Latticebased Signatures . 11
1.4.4 Contributions to Social Informatics . . . . . . . . . . . . . 12

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Security Analysis of Binary Error LWE 14
2.1 Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Binary Error LWE . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Cauchy Integral Formula . . . . . . . . . . . . . . . . . . . 17
2.3.2 Laplace’s method . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Standard Tail Bound . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Gussian Distribution . . . . . . . . . . . . . . . . . . . . . 21

2.4 Algorithms for Attacking LWE . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Naive Algorithm . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 AroraGe algorithm . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Function Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 SampleTime Tradeoff for Binary Error LWE . . . . . . . . . . . . 27

2.6.1 Hilbert’s Nullstellensatz for Arora–Ge . . . . . . . . . . . . 27
2.6.2 Gröbner basis . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.3 AroraGe attack with Macaulay matrix method on binary er

ror LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Hardness of LWE with Nonuniform Binary Error . . . . . . . . . . 33

1



2.7.1 Hardness of Nonuniform Binary Error LWE with Limited
Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.2 Attacks Against Nonuniform Binary Error LWE . . . . . . 39

3 Improving Lattice Attacks on (EC)DSA 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Hidden Number Problem . . . . . . . . . . . . . . . . . . . 48
3.2.3 (EC)DSA Signature Scheme . . . . . . . . . . . . . . . . . 49
3.2.4 Lattice Attacks on (EC)DSA . . . . . . . . . . . . . . . . 50
3.2.5 Recentering Technique . . . . . . . . . . . . . . . . . . . . 50
3.2.6 Projected Lattice . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Analysis: Modeling Lattice Attacks on (EC)DSA . . . . . . . . . . 52
3.3.1 Difficulty When Nonce Leakage is Small . . . . . . . . . . 52
3.3.2 Modeling Lattice Attacks . . . . . . . . . . . . . . . . . . . 53
3.3.3 One Intuitive Idea to Improve the Attacks . . . . . . . . . . 56

3.4 Guessing Bits of Secret Key . . . . . . . . . . . . . . . . . . . . . 56
3.5 Guessing Bits of Nonces . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Utilizing More Data to Improve Lattice Attacks . . . . . . . . . . . 61

3.6.1 From Bleichenbacher to Lattice . . . . . . . . . . . . . . . 61
3.6.2 A Concrete Example . . . . . . . . . . . . . . . . . . . . . 63

3.7 Batch SVP and Kannan Embedding Factor . . . . . . . . . . . . . . 63
3.7.1 Batch SVP . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.2 Kannan Embedding Factor . . . . . . . . . . . . . . . . . . 64

3.8 Gap Between the CVP and SVP Approaches . . . . . . . . . . . . . 65
3.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9.1 Guessing Bits of Secret Key . . . . . . . . . . . . . . . . . 66
3.9.2 Guessing Bits of Nonces . . . . . . . . . . . . . . . . . . . 67
3.9.3 Improving Lattice Attacks with More Data . . . . . . . . . 67
3.9.4 Experiments on the TPM–FAIL Dataset . . . . . . . . . . . 68

4 Constructing Efficient and Secure Latticebased Signatures 70
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Hashandsign latticebased signatures . . . . . . . . . . . . 70
4.1.2 The hybrid sampler and Mitaka . . . . . . . . . . . . . . . 72
4.1.3 Contributions and technical overview of this work . . . . . 73

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Cyclotomic fields . . . . . . . . . . . . . . . . . . . . . . . 78

2



4.2.2 KRvalued matrices . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 NTRU lattices . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 New trapdoor algorithms for hybrid sampling . . . . . . . . . . . . 79
4.3.1 NTRU trapdoors in Falcon and Mitaka . . . . . . . . . . . 79
4.3.2 Antrag: annular NTRU trapdoor generation . . . . . . . . . 80
4.3.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Classical attack against NTRU keys . . . . . . . . . . . . . 89
4.4.2 Towards a subfield attack . . . . . . . . . . . . . . . . . . . 90
4.4.3 Further optimizations . . . . . . . . . . . . . . . . . . . . . 93
4.4.4 Practical security assessment . . . . . . . . . . . . . . . . . 94

4.5 Implementation and comparison . . . . . . . . . . . . . . . . . . . 95

5 Conclusion 97

A Experimental data 99

B Publication List 102
B.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.2 Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3



Chapter 1

Introduction

The study of cryptography, like a doubleedged sword, has two aspects: construc
tions (constructive aspect) and cryptanalysis (destructive aspect). Constructions aim
to provide secure and efficient communication. By comparison, the goal of crypt
analysis is to recover information that is hidden in the communication. Despite the
fact that cryptography has seen applications (e.g., Caesar cipher) more than two thou
sand years ago, for most of the time in history, it remained more like black art rather
than science (even the word “cryptography” is relatively new).

1.1 Modern Public Key Cryptography
Most of the cryptography currently being used dates back to 1970s. In 1976, Diffie
and Hellman published a paper called “new directions in cryptography” [DH76]. As
the name suggests, they proposed a new idea of constructing cryptographic schemes
based on the hardness of mathematical problems. However, Diffie and Hellman
only gave the construction framework without proposing any concrete mathematical
problems. Fortunately, only after two years of their publication, Rivest, Shamir and
Adleman, proposed the famous RSA encryption scheme [RSA78], which is based
on the hardness of integer factorization problem. Even up to now, most number
theoretic cryptography, still relies on the conjectured hardness of integer factoriza
tion or the discrete logarithm problem in certain groups. However, in 1994, Shor
[Sho99] gave efficient quantum algorithms for all these problems, which would make
numbertheoretic systems insecure in the future when largescale quantum comput
ers are available. Therefore, researchers are designing the socalled postquantum
cryptography, i.e., candidates that are secure against quantum computers.
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1.2 Cryptography in Social Informatics
In recent years, with the fast development of information science, there are a lot of
applications of cryptography in social informatics. A few of them are listed below:

• Using digital signatures to authenticate. There are a lot of scenarios where we
want to confirm that the received messages really come from the trusted party
(not from somemalicious bad adversaries). For example, suppose that the Nin
tendo company has published some video games and at some time, Nintendo
might publish some patches that aim to fix some bugs in the previous versions.
However, after downloading the patches from the internet, the users want to
make sure that the downloaded patches really come from Nintendo, because
the internet might be hijacked by the malicious guys. With digital signatures,
nobody except the trusted party is able to publish a signature which matches
the public key.

• Secure communication over the internet. Suppose that Alice wants to send
some messages to Bob over the internet. Of course, Alice does not want any
one over the public channel to know her messages to Bob. Therefore, encryp
tion schemes could be used to encrypt the plaintext messages into ciphertext.
Besides, with digital signatures, Alice can also make sure that her messages
are not modified over the public channels.

• Electronic money and cryptocurrency. In recent years, considerable interest
has been found in electronic money (e.g., Paypay, Alipay, Linepay) and cryp
tocurrency (e.g., Bitcoin, ETH, USDT), which make the offline payments very
convenient. Cryptography plays a central role in making those payment meth
ods secure. When users pay their money at some stores, from the cryptographic
perspective, essentially the users are issuing a digital signature with the private
signing key that authenticates the transactions.

Still, there are many other applications of cryptography in social informatics. There
fore, it is important to study cryptogaphy in order to build a more secure informatic
society.

1.3 Latticebased Cryptography
Slightly informally, lattice is a pattern of grid that appears in the vector space Rn. A
lattice has a basis, which consists of a finite number of linearly independent vectors
b1, · · · ,bn. As shown in figure 1.1, this is a 2dimensional lattice with basis b1,b2.
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b1

b2

Figure 1.1: Lattices

1.3.1 Constructive Aspect of Latticebased Cryptography
In the constructive aspect, latticebased cryptography has developed for nearly 30
years.

Short integer solution problem: In 1996, Ajtai [Ajt96] introduced the short inte
ger solutions (SIS) problem and proved that solving averagecase SIS is at least as
hard as approximating worstcase lattice problems. It turns out that SIS is extremely
useful in constructing collisionresistant hash functions, oneway functions and dig
ital signatures.

Learning with errors: In 2005, Regev introduced the learning with errors problem
(LWE) [Reg10], which is one of the central problems in latticebased cryptography.
Averagecase LWE, for suitable parameters, is as hard as worstcase lattice prob
lems, and it is therefore very convenient to build secure latticebased cryptographic
schemes: it has been used to build various primitives, especially encryption schemes.
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NTRU: In 1998, Hoffstein, Pipher and Silverman introduced the publickey en
cryption scheme NTRU [HPS98] (known as NTRUEncrypt in order to be distin
guishable from NTRUSign). A few years later, they also proposed a digital signature
scheme called NTRUSign. Although originally presented in a purely algebraic man
ner, it can be reformulated in terms of lattices to make everything neat and elegant.
The NTRU cryptosystem is extremely efficient and has compact keys, thanks to the
algebraic structures.

FromGGH toGPV: In 1997, Goldreich, Goldwasser, andHalevi (GGH) [GGH97]
proposed a publickey encryption scheme and a digital signature scheme. The main
idea behind the GGH signature scheme is that a public key is some “bad” basis of
some lattice, while the secret key is a “good” basis of the same lattice, which consists
of relatively short and close to orthogonal vectors. In the GGH signature, a message
is mapped a point h in the vector space Rn. To sign a message, the “good” basis is
used to find a lattice point near the message point h and the close lattice point is the
signature. To verify the signature, one can just check the signature is a lattice point
by using the “bad” basis and that the message is close to the signature.

The GGH scheme, as well as several successive variants of NTRUSign, were
eventually broken by statistical attacks [GS02, NR06, DN12]: it turned out that sig
natures would reveal partial information about the secret trapdoor, that could then
be progressively recovered by an attacker. This problem was finally solved in 2008,
when Gentry, Peikert and Vaikuntanathan (GPV) [GPV08] showed how to use Gaus
sian sampling in the lattice in order to guarantee that signatures would reveal no in
formation about the trapdoor.

Advantage of latticebased cryptography: Interestingly, no efficient quantum al
gorithms are known for the problems typically used in lattice cryptography, which
makes lattice cryptography a very promising candidate for postquantum cryptogra
phy. Actually, NIST (National Institute of Standards and Technology, U.S.) has se
lected CRYSTALSKYBER, CRYSTALSDilithium, FALCON and SPHINCS+ as
the PQC standardization. Of these candidates, 75% are latticebased, mainly because
lattice cryptography has the following advantages:

Efficient and easy to implement: Latticebased cryptosystems are often simple
and easy to implement. Consisting mainly of linear operations on vectors and matri
ces, lattice cryptography has fast speed. Moreover, constructions on some specific al
gebraic lattices over certain rings are very efficient. For instance, the NTRU [HPS98]
system can be especially efficient, and in some cases even outperform the traditional
cryptosystems.

Strong security guarantee: Cryptography inherently requires averagecase in
tractability, i.e., problems for random instances are hard to solve. This is quite dif
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ferent from the worstcase notation of hardness usually considered in the theory of
algorithms and NPcompleteness, where a problem is considered hard if there merely
exist some intractable instances. Problems that appear hard in the worst case often
turn out to be easier on average. In a seminal work, Ajtai [Ajt96] gave a connection
between the worst case and the average case for lattices: he proved that certain prob
lems are hard on the average, as long as some related lattice problems are hard in the
worst case. This result is quite meaningful in the sense that one can design crypto
graphic constructions and prove that they are infeasible to break, unless all instances
of certain lattice problems are easy to solve.

Versatile applications: From lattices, it is possible to construct almost all the
cryptographic primitives, including advanced ones such as fully homomorphic en
cryption, attribute based encryption.

1.3.2 Destructive Aspect of Latticebased Cryptography
Somewhat surprisingly, due to historical reasons, lattices first appear as a cryptana
lytic (destructive aspect) tool. A lattice has a infinite number of bases, and the goal of
lattice reduction, is to find useful bases that are relatively short and close to orthog
onal. From a mathematical point of view, lattice reduction has a long history, which
dates back to the reduction theory of quadratic forms developed by Gauss, Lagrange
and Hermite, and to Minkowski’s geometry of numbers.

LLL and cryptanalysis: Although lattice reduction has a long history, however, it
was not until 1982 that Lenstra, Lenstra and Lováz invented a polynomialtime lattice
reduction algorithm [LLL+82], where they applied it to factor fractional polynomials.
Subsequently, researchers immediately noticed the relation between lattice reduction
and cryptography. It was used to break cryptosystems that are based on the knapsack
problem [BO88, Sha82]. Interestingly, in 1996, Coppersmith observed the relation
between lattices and polynomials. In an elegant work, he showed that lattice reduction
can be used to find small solutions of polynomials [Cop97]. In particular, this led to
attacks on RSA with specific parameters.

A few years later, HowgraveGraham and Smart [HGS01], and later Shparlinski
and Nguyen [NS02], found that attacking (EC)DSA if some bits of the nonces are
known, can be solved via lattice reduction. However, when nonce leakage is very
small, the attack becomes much more difficult. In 2013, with BKZ 2.0, Liu and
Nguyen [LN13] were able to attack 160bit DSA with 2bit nonce leakage using the
BKZ 2.0 algorithm introduced just a few years earlier [CN11], relying on a very
high block size of 90, with pruned enumeration as the SVP oracle. In a very recent
work [AH21b], Albrecht and Heninger utilize the stateoftheart lattice reduction
algorithm G6K [ADH+19] together with the novel idea of predicate sieving to break
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new records.

1.4 Contributions Overview
In this thesis, we study latticebased cryptography from both aspects. Firstly, we
study and analyze the security of binary error LWE. This work lies in between the
constructive and destructive aspect, because the result can help set parameters of
cryptographic schemes. Secondly, from a purely destructive aspect, we study and
improve lattice attacks on (EC)DSAwith nonce leakage. Thirdly, from a constructive
aspect, we study latticebased signatures and improve the Mitakasignature scheme to
make it more secure and efficient.

1.4.1 Security Analysis of Binary Error LWE
For efficiency reasons, constructions often rely on variants of LWE (such as its ring
version RingLWE [LPR10]) or instantiations in more aggressive ranges of parame
ters than those for which Regev’s reduction to worstcase lattice problems holds. An
important example is binary error LWE, where the error term is sampled from {0, 1}
(instead of from a wider discrete Gaussian distribution). Binary error LWE is a par
ticularly simple problem with various interesting cryptographic applications, such as
Buchmann et al.’s efficient latticebased encryption scheme for IoT and lightweight
devices [BGG+16] (based on the ring version of binary error LWE,with the additional
constraint that the secret is binary as well).

However, the problem is not hard given arbitrarily many samples: in fact, an alge
braic attack due to Arora and Ge [AG11] solves uniform BinaryError LWE in poly
nomial time given around n2/2 samples. The same approach can also be combined
by Gröbner basis techniques to reduce the number of required samples [APS15]. On
the other hand, Micciancio and Peikert [MP13] showed the Binary error LWE prob
lem reduces to standard LWE (and thus is believed to be exponentially hard) when
the number of samples is restricted to n+O(n/ logn). Thus, the hardness of Binary
error LWE crucially depends on the number of samples released to the adversary.

We show that a simple extension of the AroraGe attack (based on similar ideas as
the Gröbner basis approach, but simpler and at least as fast) provides a smooth time
sample tradeoff for binary error LWE: the attack can tackle any number of samples,
with increasing complexity as the number of samples decreases. In particular, for
binary error LWE with ε · n2 samples (ε > 0 is a constant), we obtain an attack
in polynomial time nO(1/ϵ), assuming standard heuristics on the polynomial system
arising from the AroraGe approach. Similarly, for n1+α samples (α ∈ (0, 1) con
stant), we obtain an attack in subexponential time 2Õ(n1−α). The precise complexity
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Figure 1.2: Hardness Result for Nonuniform Binary Error LWE

for any concrete number of samples is also easy to compute, which makes it possible
to precisely set parameters for cryptographic schemes based on binary error LWE.

Besides, we make a generalization of the uniform binary error LWE to the non
uniform case, in which the error is chosen from {0, 1} and the error is 1 with some
probability p (and 0 with probability 1 − p). We analyze this problem from two
perspectives. As we can see in the figure 1.2, on the one hand, we show that for any
error rate p, nonuniform binary error LWE is as hard as worstcase lattice problems
as long as the number of samples is restricted. This is a generalization of the hardness
proof given by Micciancio and Peikert to the nonuniform case. On the other hand,
we show that when the error rate is p = 1/nα(α ≥ 1), it can be solved in polynomial
time with O(n) samples, and when the error rate is p = 1/nα (0 < α < 1), it can be
solved in subexponential time with O(n) samples.

1.4.2 Improving Lattice Attacks on (EC)DSA
In 1991, NIST (National Institute of Standards and Technology, U.S.) proposed DSA
for use in their Digital Signature Standard (DSS). DSA is a variant of the Schnorr
and ElGamal signature schemes (due to patent reasons), and ECDSA is the analogue
in the context of elliptic curves. In the signing algorithm of (EC)DSA, there is a
randomness k, which we usually call the nonce. If the same nonce k is used twice,
due to the linear relation between the nonces and secret key, we can directly recover
the secret key. Moreover, partial information about the nonces can lead to recovery of
the full private key. As long as there are enough number of signatures provided, we
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can attack biased nonce (EC)DSA by lattice reduction or Fourier analysis techniques
[Ble00, AFG+14b, DHMP13, TTA18, ANT+20].

In the process of lattice attacks on (EC)DSA, we either get the full signing key
or get nothing. Inspired by this, we propose a new idea that by guessing bits of
the signing key or the nonces, we are able to construct a new lattice where lattice
reduction is significantly easier. This new approach has a lot of advantages. Firstly, it
is very easy to parallelize and simulate in the sense that we can assume that we have
guessed the correct bits, thus avoiding a huge amount of computation. Secondly,
it allows us to use batchSVP and CVP with preprocessing techniques, which can
further improve the computation cost. Finally, it is compatible with all the existing
techniques [LN13, AH21b, JSSS20].

As additional contributions, we also show that the same idea can be applied to
filtering some of the signatures to construct lattices that are easier to attack (resulting
in a datatime tradeoff reminiscent to what can be achieved in Bleichenbacher’s at
tack). Furthermore, we carry out experiments on the TPMFAIL dataset [MSEH20]
and apply our techniques to key recovery. While the original attack requires about
40000 signatures, with the method of guessing bits, we are able to recover the secret
key with only around 800 signatures, which is comparable to the results achieved in
Minerva [JSSS20].

1.4.3 Constructing Efficient and Secure Latticebased Signatures
Despite the fact that GPVframework successfully hides information of the trapdoor
basis, the resulting signature schemes is not efficient from two aspects: on the one
hand, to reach a standard level of security, the public basis matrix of the lattice has
to be set as am× n matrix, where n = 512,m ≈ 24n. For these typical parameters,
the size of public key and signature is 38 kB, 26 kB respectively [CGM19], which is
still quite large compared with traditional digital signature. On the other hand, during
the signing phase, the KleinGPV sampler (a randomized variant of Babai’s nearest
plane algorithm [Bab86]) is used, whose time complexity is quadratic in the lattice
dimension n. This makes the signing phase rather inefficient.

In order to deal with the first issue, in 2014, Ducas, Lyubashevsky and Prest (DLP)
instantiated the GPV framework over NTRU lattices. They carefully analyze the
Euclidean length of the GramSchmidt orthogonalization of NTRU lattices and are
able to generate the trapdoor basis from a distribution where the GramSchmidt norm
satisfies a certain quality condition. As a result, the DLP signature scheme has rather
compact public key size and signature size (less than 1kB).

To tackle the second issue, Ducas and Prest proposed the FFO sampling algorithm
whose asymptotic time complexity is quasilinear in the lattice dimension. Actually,
the NIST postquantum standardization candidate Falcon [PFH+22] is essentially a
combination of the DLP signature and FFO sampler. However, the FFO sampler has
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several drawbacks: it is a very complicated algorithm that is very difficult to im
plement correctly, parallelize or protect against sidechannel attacks. At Eurocrypt
2022, Espitau et al. proposed the Mitaka signature scheme, which is a paralleliz
able, simpler, maskable variant of Falcon. In Mitaka, the FFO sampler is replaced
with Prest’s hybrid sampler [Pre15]. The main contribution of Mitaka is an improved
trapdoor generation technique that improved the security level of the resulting signa
ture scheme. However, Mitaka is less secure than Falcon in equal dimension ( over 20
bits over lattices of dimension 512, and more than 50 bits over lattices of dimension
1024), with a much slower and more contrived key generation algorithm as well.

We introduce a novel trapdoor generation technique for Prest’s hybrid sampler
that solves the issues faced by Mitaka in a natural and elegant fashion. Our tech
nique gives rise to a much simpler and faster key generation algorithm than Mitaka’s
(achieving similar speeds to Falcon), and it is able to comfortably generate trapdoors
reaching the same NIST security levels as Falcon. It can also be easily adapted to
rings of intermediate dimensions, in order to support the same versatility as Mitaka
in terms of parameter selection (just with better security). All in all, this new tech
nique achieves in some sense the best of both worlds between Falcon and Mitaka.

1.4.4 Contributions to Social Informatics
Since the potential advent of largescale quantum computers, it is important to move
to postquantum cryptography. The security analysis of binary error LWE can be quite
useful to construct cryptosystems that are based on LWE, especially for lightweight
devices, where implementation of cryptosystems based on standard LWE is rather
inefficient. In particular, our work sheds light on the security of the IoTfriendly
scheme of Buchmann et al [BGG+16].

The improved lattice attacks on (EC)DSA is very important to enhance the secu
rity for applications where (EC)DSA is used. For example, in bitcoin transactions,
we should be extremely careful that the random number generated does not have any
bias, which might lead to the full private signing key recovery. Actually, in [BH19],
Breitner and Heninger analyze a lot of bitcoin transactions on the blockchain and find
that many of them are insecure which essentially leads to key recovery. Due to legal
issues, they only check that the private key can be recovered but do not steal any
money. What’s more, implementation is algorithmically correct does not necessarily
mean that it is secure for sure. In a paper at CHES 2020 [JSSS20], the authors analyze
a lot of cryptographic libraries and find that many of them are insecure, leaking side
channel information about the nonce. Therefore, in order to avoid nonce leakage,
implementation should be carefully done to protect sidechannel attacks.

Since in the future, current cryptosystems will be replaced with postquantum
cryptosystems, the work of constructing efficient and secure latticebased signatures
is also very meaningful in the sense that our signature may serve as a potential candi
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date as postquantum digital signatures. With these signatures, we could even protect
cryptosystems from being broken by quantum computers. In fact, our work provides
an attractive alternative to NIST standard Falcon that is much easier to implement
correctly and more suitable on constrained devices.

1.5 Thesis Outline
In Chapter 2, we study the security of binary error LWE. In chapter 3, we present our
improved attacks on (EC)DSA. In chapter 4, we show how to construct efficient and
secure latticebased signatures. In chapter 5, we give a summary of all the contribu
tions.
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Chapter 2

Security Analysis of Binary Error
LWE

2.1 Learning with Errors
The LWE problem asks to recover a secret s ∈ Zn

q , given a system of linear approxi
mate equations. For example, an instance of LWE [Reg10] could be:

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17)

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17)

6s1 + 10s2 + 13s3 + s4 ≈ 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17)

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17)

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17)

Each equation is satisfied up to some small error, sampled independently according
to some known distribution (typically a discrete Gaussian distribution). The goal is
to recover the secret s. If the equation held without error, finding s would simply
amount to solving a system of linear equations. We could therefore recover the secret
s in polynomial time O(nω), where 2 ≤ ω ≤ 3 is the complexity exponent of linear
algebra (ω ≈ 2.37 with the best known approach [LG14]). However, the errors
introduced in LWE typically make the problem much harder. Formally, the LWE
problem can be defined as follows.

Definition 2.1.1 (LWE). The (search) LWE problem, defined with respect to a di
mension n, a modulus q and an error distribution χ over Zq, asks to recover a secret
vector s ∈ Zn

q given polynomially many samples of the form(
a, 〈a, s〉+ e mod q

)
∈ Zn

q × Zq (2.1)
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where a is uniformly random in Zn
q , and e is sampled according to χ. One can op

tionally specify the number of available samples as an additional parameter.

Remark. One can also similarly define a decision variant of the LWE problem, which
asks to distinguish the distribution of the samples (2.1) above from the uniform distri
bution over Zn

q ×Zq. The LWE problem givenm samples has a simple expression in
matrix form: it asks to recover s from the pair (A,b) where A ∈ Zm×n

q is a uniformly
random matrix, and b = As + e mod q, where all the coefficients of e ∈ Zm

q are
sampled independently from χ.

2.2 Binary Error LWE
The binary error LWE is simply the special case of Definition 2.1.1 where χ is the
uniform distribution over {0, 1}. In other words:

Definition 2.2.1 (Binary Error LWE). The binary error LWE with parameters n, m
and q asks to recover the vector s ∈ Zn

q fromm samples of the form:(
a, 〈a, s〉+ e mod q

)
∈ Zn

q × Zq

where a is uniformly random in Zn
q , and e is uniform in {0, 1}.

The dimension n is the main security parameter, and both m and q are typically
chosen as polynomially bounded functions of n. In this thesis, we assume that q =
nΘ(1).

Nonuniform binary error LWE is simply the special case of Definition 2.1.1
where χ is the nonuniform distribution over {0, 1}. In other words:

Definition 2.2.2 (Nonuniform Binary Error LWE). Let B be a distribution over
{0, 1} that samples 1 with probability p and 0 with probability 1−p(0 < p < 1), The
nonuniform binary error LWE with parameters n,m and q asks to recover the vector
s ∈ Zn

q fromm samples of the form:(
a, 〈a, s〉+ e mod q

)
∈ Zn

q × Zq

where a is uniformly random in Zn
q , and e is sampled according to B.

The dimension n is the main security parameter, and both m and q are typically
chosen as polynomially bounded functions of n.
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Uniqueness of Solutions for LWE

Theorem 1. Suppose that the following condition is satisfied:

m ≥ n ·
(
1 +

c

log q

)
for some c > log 3. Then, the binary error LWE problem with parameters n,m, q has
a unique solution with overwhelming probability.

Proof. Indeed, suppose that two solutions s 6= s′ exist to the binary error LWE chal
lenge (A,b). This means that there exists binary error vectors e, e′ such that:

b = As+ e = As′ + e′.

As a result, the vector t = s′ − s 6= 0 satisfies At = e − e′ ∈ {−1, 0, 1}m. It thus
suffices to prove that for a random A ∈ Zm×n

q , such a vector t can only exist with
negligible probability.

We can proceed as follows: fix t ∈ Zn
q \{0}. For a uniformly randomA ∈ Zm×n

q ,
the probability that At ∈ {−1, 0, 1}m is exactly 3m/qm, since the product vector is
uniformly distributed in Zm

q . As a result, the union bound shows that:

Pr
A $←Zm×n

q

[
∃t ∈ Zm

q \ {0},At ∈ {−1, 0, 1}m
]
≤
(3
q

)m
· qn

since there are fewer than qn possible vectors t.
Therefore, assuming without loss of generality that q > 3, the probability ε that

the challenge has at least two solutions is bounded as:

ε ≤
(3
q

)m
· qn

log ε ≤ m log
(3
q

)
+ n log q

≤ n

(
1 +

c

log q

)
log
(3
q

)
+ n log q

= n

(
log 3− log q +

c log 3
log q

− c+ log q
)

= n
(
log 3− c+ o(1)

)
and since c > log 3, it follows that ε is negligible.

2.3 Mathematical Background
In this section, we introduce some mathematical background, which are extremely
useful in cryptoanalysis.
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2.3.1 Cauchy Integral Formula
Theorem 2 (Cauchy). Let C be a simple closed curve in the complex plane and f a
holomorphic function on a region containingC and its interior. AssumeC is oriented
counterclockwise. Then for any z0 inside C:

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz.

Theorem 3 (Cauchy for derivatives). Under the same hypotheses, we have for all
n ≥ 0:

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz.

2.3.2 Laplace’s method
Theorem 4. Let Φ : [a, b] → R, ψ : [a, b] → C be smooth functions. We assume
that Φ′′ > 0 over [a, b] and there exists x0 ∈ (a, b) such that Φ′(x0) = 0. Then, the
following asymptotic estimate holds for s→ +∞:∫ b

a

e−sΦ(x)φ(x) dx = e−sΦ(x0)

[
A√
s
+O

(1
s

)]
where A = ψ(x0)

√
2π/Φ′′(x0).

2.3.3 Standard Tail Bound
There are some standard results in probability theory that are often used in the field
of cryptography. In this section, we recall these useful results:

Markov’s Inequality

Lemma 5. Let X be a nonnegative random variable and v > 0, Then:

Pr[X ≥ v] ≤ Exp[X]/v.

Proof. We have

Exp[X] =
∑
x≥0

Pr[X = x] · x

≥
∑

0≤x<v

Pr[X = x] · 0 +
∑
x≥v

Pr[X = x] · v

= Pr[X ≥ v] · v
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Markov’s inequality is used when only the expectation of the random variableX
is known. In some sense, this bound is a bit loose. If the variance of X is known,
some better bounds exist.

Chebyshev’s Inequality

Lemma 6. Let X be a random variable and δ > 0. Then

Pr[|X − Exp[X]| ≥ δ] ≤ V ar[X]

δ2

Proof. Define the nonnegative random variable Y = (X − Exp[X])2, and apply
Markov’s inequality:

Pr[|X − Exp[X]| ≥ δ] = Pr
[
(X − Exp[X])2 ≥ δ2

]
≤ Exp [(X − Exp[X])2]

δ2

=
Var(X)

δ2

Chernoff Bound

Theorem 7. Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0 with
probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then

• Upper Tail: P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δµ for all δ > 0.

• Lower Tail: P(X ≤ (1− δ)µ) ≤ e−µδ
2/2 for all 0 < δ < 1.

In order to prove this theorem, we need some additional lemmas.

Lemma 8. If X =
∑n

i=1Xi where X1, X2 · · · , Xn are independent random vari
ables, then

MX(s) =
n∏

i=1

MXi
(s)

whereMX(s) = E
(
esX
)
.
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Proof. For any s > 0

MX(s) = E
(
esX
)
= E

(
es

∑n
i=1 Xi

)
= E

(
n∏

i=1

esXi

)

=
n∏

i=1

E
(
esXi

)
(by independence)

=
n∏

i=1

MXi
(s)

This lemma allows us to prove a Chernoff bound by bounding the moment generating
function of each Xi individually.

Lemma 9. Let Y be a random variable that takes value 1 with probability p and 0
with probability 1− p. Then, for all s ∈ R:

MY (s) = E
(
esY
)
≤ ep(e

s−1)

Proof.

MY (s) = E
(
esY
)

= p · es + (1− p) · 1
= 1 + p (es − 1)

≤ ep(e
s−1)

Chernoff bound can be proved with the above two lemmas.

Proof. Applying the above two lemmas, we obtain

MX(s) ≤
n∏

i=1

epi(e
s−1) = e(e

s−1)
∑n

i=1 pi ≤ e(e
s−1)µ

using that
∑n

i=1 pi = E(X) = µ. For the proof of the upper tail, for any s > 0,

P(X ≥ a) = P
(
esX ≥ esa

)
≤

E
(
esX
)

esa
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by Markov’s inequality. Setting a = (1 + δ)µ and s = ln(1 + δ), we have

P(X ≥ (1 + δ)µ) ≤ e−s(1+δ)µe (e
s−1)µ)

=

(
eδ

(1 + δ)1+δ

)µ

Using the following inequality for x > 0

ln(1 + x) ≥ x

1 + x/2

We obtain

µ(δ − (1 + δ) ln(1 + δ)) ≤ − δ2

2 + δ
µ

Hence, we have the desired bound for the upper tail:

P(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

e−
δ2

2+δ
µ

The proof of the lower tail bound is quite similar, which we omit here.

Hoeffding’s Inequality

According to [Wik22], let X1, · · · , Xn be indepedent random variables such that ∀i,
a ≤ Xi ≤ b, and let Sn = X1 + · · · +Xn. Then Hoeffding’s inequality says that ∀
t > 0,

P(Sn − E(Sn) ≥ t) ≤ exp
(
− 2t2∑n

i=1(bi − ai)2
)

P|(Sn − E(Sn)| ≥ t) ≤ 2exp
(
− 2t2∑n

i=1(bi − ai)2
)

where E(Sn) is the expectation of Sn. In particular, we are mostly interested in the
important special case of identically distributed Bernoulli random variables: Xi = 1
with probability p and Xi = 0 with probability 1 − p (i = 1, · · · , n). And again let
Sn = X1 + · · · +Xn. The probability that Sn ≤ k can be exactly quantified by the
following expression:

P(Sn ≤ k) =
k∑

i=0

(
n
i

)
pi(1− p)n−i

For this special case, Hoeffding’s inequality states that

P((p− ε)n ≤ Sn ≤ (p+ ε)n) ≥ 1− 2 exp
(
−2ε2n

)
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2.3.4 Gussian Distribution
A random variable X is said to be normally distributed with mean µ and variance δ2
if its probability density function is

fX(x) =
1√
2πσ

exp
[
−(x− µ)2

2σ2

]
, −∞ < x <∞

The Gaussian distribution is usually represented as

X ∼ N
(
µ, σ2

)
and the graph of the Gaussian distribution is a bellshaped curve that is symmetric
about the mean µ. However, this is a univariate Gaussian distribution.

DiscreteGaussianDistribution: In the field of lattice cryptography, amultidimensional
Gaussian distribution is often used. The definition follows:

Definition 2.3.1. For any positive integer n and real number s > 0, which is taken
to be s = 1 when omitted, define the Gaussian function ρs : R→ R+ of parameter s
as

ρs(x) := exp
(
−π‖x‖2/s2

)
= ρ(x/s)

Notice that ρs is invariant under rotations of Rn and that ρs(x) =
∏n

i=1 ρs (xi).
The continuous Gaussian distribution Ds of parameter s over Rn is defined to have
probability density function proportional to ρs, i.e.,

f(x) := ρs(x)/
∫
Rn

ρs(z)dz = ρs(x)/sn

For a lattice coset c+L ⊂ Rn and parameter s > 0, the discrete Gaussian probability
distribution Dc+L,s is simply the Guassian distribution restricted to the coset.

Dc+L,s(x) ∝
{
ρs(x) if x ∈ c+ L
0 otherwise

In cryptography analysis, the following tail bound of Gaussian distribution is often
used:

Theorem 10. [APS15] Let χ denote the Gaussian distribution with standard devia
tion δ and mean zero. Then, for all C>0, it holds that:

Pr [e←8 χ : |e| > C · σ] ≤ 2

C
√
2π

exp
(
−C2/2

)
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Proof.

Pr[e← σχ : |e| > C · σ]

= 2 ·
∫ ∞
C·σ

1

σ
√
2π

exp
(
− t2

2σ2

)
dt

=
2√
2π

∫ ∞
C·σ

1

σ
exp

(
− t2

2σ2

)
dt

≤ 2√
2π

∫ ∞
C·σ

t

Cσ2
exp

(
− t2

2σ2

)
dt

=
2

C
√
2π

exp
(
−C2/2

)

2.4 Algorithms for Attacking LWE
In this section, we discuss some algorithms that are used to attack LWE. Basically,
these algorithms can be divided into the following groups:

• Naive algorithm. Since the secret s is a ndimensional vector, an exhaustive
search would be trying all the possible secret s and see whether the computed
error is small.

• Combinatorial algorithm. An interesting algorithm follows from the work of
Blum, Kalai, and Wasserman [BKW03]. It is based on an idea that allows to
find a small set S of equations among the 2O(n) equations. By summing up
these equations we can recover the first coordinate of s, and similarly for other
coordinates.

• Algebraic algorithm. This follows from the work of Arora and Ge [AG11]. In
this algorithm, we need to bound an interval for the error and deduce a polyno
mial such that all the error will satisfy this equation. Then after getting enough
samples, we can get the secret key s.

• Lattice decoding attack. In this algorithm, we first transform LWE into a
BDD problem, and use lattice reduction algorithm (such as BKZ [SE94], LLL
[LLL+82] to get the original secret key s.

In this thesis, we only introduce the naive algorithm and AroraGe algorithm.
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2.4.1 Naive Algorithm
From now on, we assume that the hypothesis of Theorem 1 is satisfied. It is easy
to see that the matrix A is then of rank n with overwhelming probability (indeed,
that probability is exactly (1 − q−m)(1 − q1−m) · · · (1 − qn−1−m) ≥ 1 − qn−m, and
this can be used to deduce a “naive” algorithm for binary error LWE in time O∗(2n),
essentially by guessing n coefficients of the error vector e.

More precisely, since A is full rank, one can assume without loss of generality
that its first n rows form an invertible square submatrix A0. An algorithm for binary
error LWE is then as follows: guess the vector e0 ∈ {0, 1}n consisting of the first n
coefficients of e; then deduce the corresponding s = A−10 (b0 − e0), and check that
e = b − As is indeed in {0, 1}m. The check is performed in poly(n) time, and by
Theorem 1, there is with overwhelming probability a unique e0 ∈ {0, 1}n passing
this check, which corresponds to the unique solution s. Trying all possibilities yields
an algorithm in O∗(2n) time.

2.4.2 AroraGe algorithm
In a paper published at ICALP 2011, Arora and Ge proposed an algebraic approach to
the LWE problem, which essentially amounts to expressing LWE as a system of poly
nomial equations, and then solving that system by unique linearization techniques.
In the case of binary error LWE, the polynomial system is a system of multivariate
quadratic equations, which can be solved in polynomial time by linearization when
the numberm of samples exceeds about n2/2.

More precisely, solving an instance (A,b) of the binary error LWE problem
amounts to finding a vector s ∈ Zn

q (which we have seen is uniquely determined)
such that for i = 1, . . . ,m, we have:

bi − 〈ai, s〉 ∈ {0, 1},

where the vectors ai are the rows of A, and the scalars bi the coefficients of b. The
idea of Arora and Ge is to rewrite that condition as:(

bi − 〈ai, s〉
)
·
(
bi − 〈ai, s〉 − 1

)
= 0,

which is a quadratic equation in the coefficients s1, . . . , sn of s.
In general, solving a multivariate quadratic system is hard. However, it becomes

easy when many equations are available. Arora and Ge propose to solve this system
using a simple linearization technique: replace all the monomials appearing in the
system by a new variable.

There are
(
n+2
2

)
= (n+2)(n+1)/2monomials of degree at most 2. Therefore, if

the number of samplesm is at least (n+2)(n+1)/2, linearizing the quadratic system
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should yield a full rank linear system with high probability, and the secret s can be
recovered by solving this linear system. This takes time O

((
n+2
2

)ω)
= O(n2ω),

and therefore shows that binary error LWE can be solved in polynomial time given
m ≈ n2/2 samples.

However, many applications of LWElike problems only give out much fewer
than Θ(n2) samples. For example, publickey encryption schemes based on LWE
like problems often have a public key consisting of O(n log q) samples (or in some
cases, just O(n) samples). It is therefore interesting to analyze how the complexity
of binary error LWE varies as the number of available samples decreases.

2.5 Function Family
Informally speaking, a function family is a probability distribution F over a set of
functions F ⊂ (X → Y ) with common domain X and range Y . Let X be a proba
bility distribution over the domainX of a function familyF . We recall the following
standard security notions:

OneWayness: (F ,X ) is (t, ε)oneway if for all probabilistic algorithmsA running
in time at most t,

Pr
[
f ← F , x← X : A(f, f(x)) ∈ f−1(f(x))

]
≤ ε

Uninvertibility: (F ,X ) is (t, ε)uninvertible if for all probabilistic algorithms A
running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) = x] ≤ ε

Second Preimage Resistance: (F ,X ) is (t, ε)second preimage resistant if for all
probabilistic algorithms A running in time at most t,

Pr [f ← F , x← X , x′ ← A(f, x) : f(x) = f (x′) ∧ x 6= x′] ≤ ε

Pseudorandomness: (F ,X ) is (t, ε)pseudorandom if the distributions {f ← F , x←
X : (f, f(x))} and {f ← F , y ← U(Y ) : (f, y)} are (t, ε)indistinguishable.

Lossy Function Families: Lossy functions, introduced in [PW11], are usually de
fined in the context of trapdoor function families, where the functions are efficiently
invertible with the help of some trapdoor information, and therefore injective. Here
we have amore general definition of lossy function family that is a general framework
used to prove the onewayness of some function.
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Definition 2.5.1 (Lossy Function Families [MP13]). Let (L, F) be two probability
distributions(with possibly different supports) over the same set of (efficiently com
putable) functions F ⊂ X → Y , and let X be an efficiently sampleable distribution
over the domainX . We say that (L, F , X ) is a lossy function family if the following
properties are satisfied:

• the distributions L and F are indistinguishable.

• (L, X ) is uninvertible.

• (F , X ) is second preimage resistant.

Theorem 11 ( [MP13]). Let F be a family of functions computable in time t′. If
(F ,X ) is both (t, ε)uninvertible and (t+ t′, ε′)second preimage resistant, then it is
also (t, ε+ ε′)oneway.

Proof. LetA be an algorithm running in time at most t and attacking the onewayness
property of (F ,X . Let f ← F and x ← X be chosen at random, and compute
y ← A(f, f(x)). We want to bound the probability that f(x) = f(y).We consider
two cases:

• If x = y, then A breaks the uninvertibility property of (F ,X ).

• If x 6= y, then A′(f, x) = A(f, f(x)) breaks the second preimage property of
(F ,X ).

By assumption, the probability of these two events are at most ε and ε′ respectively.
By the union bound,A breaks the onewayness property with advantage at most ε +
ε′.

Theorem 12 ( [MP13]). Let F and F ′ be any two indistinguishable, efficiently com
putable function families, and let X be an efficiently sampleable input distribution.
Then if (F , X ) is uninvertible(respectively, secondpreimage resistant), then (F ′, X )
is also uninvertible(resp., second preimage resistant). In particular, if (L, F , X ) is a
lossy function family, then (L, X ) and (F , X ) are both oneway.

Proof. Assume that (F ,X is uninvertible and that there exists an efficient algorithm
A breaking the uninvertibility property of (F ′,X . Then F and F ′ can be efficiently
distinguished by the following algorithm D(f) : choose x ← X , compute x′ ←
A(f, f(x)), and accept if A succeeded, i.e., if x = x′.

Next, assume that (F ,X is second preimage resistant, and that there exists an
efficient algorithmA by breaking the second preimage resistance property of (F ′,X .
Then F and F ′ can be efficiently distinguished by the following algorithm D(f):
choose x← X , compute x′ ← A(f, f(x)), and accept if A succeeded, i.e., if x 6= x′

and f(x) = f(x′).
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It follows that if (L, F , X ) is a lossy function family,(L, X ) and (F , X ) are
both uninvertible and second preimage resistant. Then by theorem 11, they are also
oneway.

Now we introduce two special family of functions, which are the fundamental
blocks of lattice cryptography. Both families are parametrized by three integersm,n
and q, and a set X ⊂ Zm of short vectors. Usually n serves as a security parameter
and m,q are functions of n.

SIS Function Family The Short Integer Solution function family SIS(m,n, q,X)
is the set of all functions fA indexed by A ∈ Zn×m

q with domain X ⊆ Zm and range
Y = Zn

q defined as fA(x) = Ax mod q.

LWEFunction Family The LearningWith Error function family LWE(m,n, q,X)
is the set of all functions gA indexed by A ∈ Zn×m

q with domain Zn
q ×X and range

Y = Zm
q , defined as gA(s, x) = AT s + x mod q. The reason that we introduce SIS

function family here is that in later proof, we first prove the onewayness of SIS
function family, and then use the equivalence of SIS function and LWE function(with
respect to some parameter) to show that LWE function family is also oneway. The
following theorem says that SIS function and LWE function families are essentially
equivalent with respect to some specific parameter setting.

Equivalence of SIS and LWE

Theorem 13 ([Mic10], [MM11]). For any n,m ≥ n + ω(logn), q, and distribution
X over Zm, the LWE(m, n, q) function family is oneway (resp. pseudorandom, or
uninvertible) with respect to input distribution U(Zn

q )×X if and only if the SIS(m, m
 n, q) function family is oneway(resp. pseudorandom , or uninvertible) with respect
to the input distribution X .

Pseudorandomness of SIS Function In order to construct a lossy function family
in later proof, we also need the pseudorandomness of SIS function with respect to
some specific parameters, which can be derived by the assumption that worstcase
SIVP problem is hard.

Theorem 14 ([MP13]). For any positive m,n, δ, q such that ω(logn) ≤ m − n ≤
nO(1) and 2

√
n < δ < q < nO(1), if q has no divisors in the range ((δ/ωn)

1+n/k,
δ · ωn), then the SIS(m,m − n, q) function family is pseudorandom with respect to
input distribution Dm

Z,δ, under the assumption that no (quantum) algorithm can ef
ficiently sample(up to negligible statistical errors) D∧,√2nq/δ. In particular, assum
ing the worstcase(quantum) hardness of SIVPnωnq/δ on ndimensional lattices, the
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SIS(m,m− n, q) function family is pseudorandom with respect to input distribution
Dm

Z,δ.

2.6 SampleTime Tradeoff for Binary Error LWE
As we already show in previous chapters, binary error LWE can be attacked in poly
nomial time given Θ(n2) samples, and binary error LWE is as hard as worstcase
lattice problems with less than n + O(n/ logn) samples. A natual question would
be, how about the case when the number of samples is n1+α for 0 < α < 1. In
this chapter, we will use an approach that we call Macaulay matrix method to get a
sampletime tradeoff for the binary error LWE.

2.6.1 Hilbert’s Nullstellensatz for Arora–Ge
Slightly informally, Hilbert’s Nullstellensatz essentially states that the ideal generated
by a family of polynomials f1, . . . , fm ∈ Zq[X1, . . . , Xn] coincides with the ideal
of polynomials that vanish on the set V (f1, . . . , fm) of solutions of the polynomial
system: Now consider the application of Hilbert’s Nullstellensatz to the polynomial
system arising from Arora and Ge’s approach to binary error LWE. That system is of
the form: 

f1(s1, . . . , sn) = 0

...
fm(s1, . . . , sn) = 0

where f1, . . . , fm ∈ Zq[X1, . . . , Xn] are known quadratic polynomials. By Theo
rem 1, the set V (f1, . . . , fm) of solutions of that system is reduced to a single point:

V (f1, . . . , fm) =
{
(s1, . . . , sn)

}
=
{
~s
}
,

namely, the unique solution of the binary error LWEproblem. It follows1 that the ideal
I = (f1, . . . , fm) ⊂ Zq[X1, . . . , Xn] generated by the polynomials fi coincides with
the ideal of polynomial functions vanishing on

{
s
}
, which is just (X1−s1, . . . , Xn−

sn).
1We are sweeping two technicalities under the rug. First, the set of solutions considered in the

Nullstellensatz should really be computed over the algebraic closure of the base field; however, it is
easy to see that the argument of Theorem 1 applies similarly to show uniqueness even for solutions on
extensions of Zq . Second, the Nullstellensatz actually describes the radical of the ideal (f1, . . . , fm),
but it is clear that this ideal is already radical with overwhelming probability.
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Macaulay matrix

Definition 2.6.1. Macaulay matrix Let f1, . . . , fm ∈ Zq [x1, . . . , xn] The Macaulay
matrixMof degree d is defined as: list ”horizontally” all the degree dmonomials from
smallest to largest sorted by some fixed admissible monomial ordering. The smallest
monomial comes last. Multiply each fi by all monomials ti,j of degree d− di where
di = degfi. Finally, construct the coefficient matrix.

Theorem 15. Let f = (f1, . . . , fm) ∈ (Zq [x1, . . . , xn])
m and < be a monomial or

dering. There exists a positive integer D for which Gaussian elimination on allM =
(f1, . . . , fm)matrices for d, 1 ≤ d ≤ D computes Gröbner basis of 〈f1, . . . , fm〉 w.r.t
<. The degree D is called the degree of regularity of f1, . . . , fm.

Suppose that we have a system of polynomials equations:

f1(s1, s2 · · · sn) = 0

f2(s1, s2 · · · sn) = 0

. . .

fm(s1, s2 · · · sn) = 0

where (s1, s2 · · · sn) are the unknown variables that correspond to the components of
secret key s. Then we can multiply these equations with any monomials degree less
than a particular number D, getting more equations. For instance, if D=1, we can
multiply these equations with s1, s2 · · · sn:

s1 × f1(s1, s2 · · · sn) = 0

s1 × f2(s1, s2 · · · sn) = 0

. . .

s1 × fm(s1, s2 · · · sn) = 0

. . .

sn × f1(s1, s2 · · · sn) = 0

sn × f2(s1, s2 · · · sn) = 0

. . .

sn × fm(s1, s2 · · · sn) = 0

After getting
(
n+D
n

)
equations, in a similar way with AroraGe algorithm, we do lin

earization, make new variables for each monomial and solve the new system of linear
equations. The only question left is that how could we guarantee that after lineariza
tion, there is a unique solution. In other words, we need to determine D.
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Hilbert’s Nullstellensatz Given some polynomials f1, . . . , fm ∈ K [x1, . . . , xn],
The Consistency Question is: Does the system of these polynomial equations, say

S =


f1 = 0
f2 = 0
· · ·
fm = 0

has a solution in K? HN helps in answering this question. In its weak form, also
known as Weak Hilbert’s Nullstellensatz (WHN), it gives us a certificate when this
system has no solution.

Theorem 16. Let f1, . . . , fm ∈ K [x1, . . . , xn], then the system

S =


f1 = 0
f2 = 0
· · ·
fm = 0

will have no solution in K iff ∃g1, g2, . . . , gm∈ K [x1, . . . , xn] such that
∑m

i=1 figi =
1.

Besides, from Hilbert’s Nullstellensatz, we can know that if given large enough
D, which we mentioned previously, the new system of equations that we construct by
multiplication will have one unique solution.

Semiregularity: It turns out that if assuming semiregularity, we have a good for
mula for D. Letm > n, and f1, . . . , fm ∈ Zq [x1, . . . , xn] be homogeneous polynomi
als of degree d1, . . . , dm respectively and I the ideal generated by these polynomials.
The system is called to be a semiregular system if the Hilbert series w.r.t the grevlex

orderHI(z) =

[∏m
i=1(1−zdi)
(1−z)n

]
+

, where [S]+ denotes the series obtained by truncating

S before the index of its first nonpositive coefficient.

2.6.2 Gröbner basis
Although we don’t really use Gröbner basis in our analysis, our method is, in some
way, essentially similar with Gröbner basis. Therefore, we also give a short intro
duction to Gröbner basis here.
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Gröbner basis Gröbner basis is a very useful and fundamental tool in commutative
algebra to solve a system of nonlinear polynomial equations over a finite field. We
consider polynomials inK[x] = K[x1, x2....xn].

Definition 2.6.2. A Gröbner basis of an ideal I ⊂ K[x] for a given monomial or
dering is a finite set B ⊂ I such that any f ∈ J reduces to 0 by B. The basis is
called reduced when the f ′is all have leading coefficient 1 and when none of the f ′is
involves a monomial which reduces by B\ {fi}.

Complexity of computing a Gröbner basis The complexity of computing a Gröb
ner basis is bounded by the complexity of performing Gaussian elimination on the
Macaulay matrix in some degree D. There are several algorithms of computing a
Gröbner basis with degree of regularity, such as Buchberger algorithm, F4, F5 algo
rithm [Fau99, BCLA82]. The complexity of computing a Gröbner basis would be:

O

((
n+ d
d

)ω)
, where 2 ≤ ω < 3 is the linear algebra constant, and d is the de

gree of semiregularity of the system.
Generally speaking, it is very difficult to compute the degree of regularity of a poly
nomial system. But there is a good formula when assuming semiregularity of the
polynomial system.

2.6.3 AroraGe attack with Macaulay matrix method on binary
error LWE

Recall that solving LWE is actually equivalent to computing aGröbner basis [ACF+14]
for a system of polynomials. Besides, the complexity of computing a Gröbner basis

would be: O
((

n+ d
d

)ω)
, where 2 ≤ ω < 3 is the linear algebra constant, and

d is the degree of semiregularity of the system. Therefore, in order to estimate the
time complexity of binary error LWE attack, we only need to compute dreg for this
polynomial system.

Theorem 17. [BFSY05] For m = n + k (k > 1 fixed) quadratic equations in n
variables, the degree of regularity dreg behaves asymptotically like

dreg ∼
m

2
(2.2)

The time complexity for binary error LWE would beO
((

n+ m
2

m
2

)ω)
, which is not

in polynomial time.

30



Theorem 18. For m = εn2 ( ε is a constant) quadratic equations in n variables, the
degree of regularity dreg behaves asymptotically like

dreg ∼
1

8ε
(2.3)

The time complexity for binary error LWE would be O
((

n+ 1
8ϵ

1
8ϵ

)ω)
, which is in

polynomial time.

Theorem 19. For m = n1+α ( α is a constant between 0 and 1) quadratic equations
in n variables, the degree of regularity dreg behaves asymptotically like

dreg ∼
1

8
n1−α (2.4)

The time complexity for binary error LWE would be O
((

n+ 1
8
n1−α

1
8
n1−α

)ω)
, which

means that when α is smaller, the time complexity grows larger.

Now we are going to prove these first two theorems. The third theorem is quite
similar, which we will not give the proof here.

Proof

Case m = n + k(k is a constant)

Proof. Denote hd as the dth coefficient of Hilbert series.

Hm,n(z) =
(1− z2)m

(1− z)n
=
∞∑
d=0

hdz
d (2.5)

where the integration path enclose the origin and there are no other singularity of
Hm,n(z). Take dth derivative for equation (1) and using Cauchy Integral formula
for derivatives, we can get

In(d) =
1

2iπ

∮
Hm,n(z)

dz

zd+1
=

1

2iπ

∮
enf(z)dz (2.6)

Then write the equation in another way

In(d) =
1

2iπ

∮
(1− z)m−n︸ ︷︷ ︸

g(z)

(1 + z)mz−d−1︸ ︷︷ ︸
F (z)=enf(z)

dz (2.7)
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In(d) =
1

2iπ

∮
g(z)enf(z)dz (2.8)

Then we get

f ′(z) =
m

1 + z
− d+ 1

z
(2.9)

The saddle point is
z0 =

1
m
d+1
− 1

(2.10)

The approximation is

In(d) ∼
(1 + z0)

m+1 (1− z0)m−n√
2πz

d+1/2
0 m1/2

(2.11)

It vanishes only if z0 = 1, i.e.
dreg ∼

m

2
(2.12)

Case m = εn2 (ε is a constant)

Proof. Denote hd as the dth coefficient of Hilbert series.

Hm,n(z) =
(1− z2)m

(1− z)n
=
∞∑
d=0

hdz
d (2.13)

where the integration path enclose the origin and there are no other singularity of
Hm,n(z). Take dth derivative for equation (1) and using Cauchy Integral formula
for derivatives, we can get

In(d) =
1

2iπ

∮
Hm,n(z)

dz

zd+1
=

1

2iπ

∮
enf(z)dz (2.14)

Then determine f(z)

In(d) = enf(z)dz =
1

2iπ

∮
g(z)enf(z)dz (2.15)

Then we get

enf(z) =
(1− z)m+n(1 + z)m

zd+1
(2.16)

Then we get f(z)

nf(z) = (m− n) log(1− z) +m log(1 + z)− (d+ 1) log z (2.17)
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Compute f ′(z)

nf ′(z) =
n−m
1− z

+
m

1 + z
− d+ 1

z
(2.18)

Let f ′(z) = 0
(n− 2m+ d+ 1)z2 + nz − (d+ 1) = 0 (2.19)

If ∆ of this equation is not zero, it means that there are two distinct saddle points.
The contribution of these two saddle points to the integral are conjugate values whose
sum does not vanish. Hence the two saddle points must be identical, which means
that ∆ = 0

∆ = 4(d+ 1)2 + 4(n− 2m)(d+ 1) + n2 = 0 (2.20)

Solving this equation, we get

d+ 1 = m− n

2
−
√
m(m− n) (2.21)

Substitute m = εn2

d+ 1 = εn2 − n

2
− εn2

√
1− 1

εn
(2.22)

Using taylor expansion
d+ 1 ∼ 1

8ε
(2.23)

2.7 Hardness of LWEwithNonuniformBinary Error
In this chapter we propose a variant of binary error LWE that we call nonuniform
binary error LWE and analyze the hardness of nonuniform binary error LWE. We
generalize the uniform case to the nonuniform case, where the error rate is p, thus
having the following two results:

• Case 1: We prove that nonuniform binary error LWE is as hard as worstcase
lattice problems provided that the number of samples is restricted. This is a
generalization of Micciancio and Peikert’s hardness proof for uniform binary
error LWE.

• Case 2: When the error rate p is a function of n such that p(n) = 1/nα for any
constant α > 0, we propose a simple algorithm to give some attacks against
nonuniform binary error LWE.
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For case 1, we proceed similarly to [MP13], by constructing a lossy function
family with respect to the nonuniform input distribution χ. However, since they
are dealing with a uniform distribution, we use some computation and estimate to
overcome the difficulty of transforming from uniform case to nonuniform case. The
basic idea is as follows:

• Construct two indistinguishable function families F = SIS(m,m − n, q) and
L = SIS(l,m − n, q) ◦ I(m, l,Y), where ◦ means the composition of two
functions and I(m, l,Y) is defined in Definition 2.7.1.

• Prove (L,X ) is uninvertible with respect to input distribution X .

• Prove (F ,X ) is secondpreimage resistant with respect to input distributionX .

• Use the above three properties to show that (L,F ,X ) is a lossy function family.

• By using Theorem 11 to show that (L,X ) and (F ,X ) are both oneway, so
SIS(m,m− n, q) is oneway with respect to the input distribution X .

• By using Theorem 13 to show that LWE(m,n, q) is oneway with respect to
the input distribution X .

In this construction, they first proved the onewayness of SIS(m,m−n, q), and then
use the equivalence of LWE(m,n, q) and SIS(m,m − n, q) to prove LWE(m,n, q)
is also oneway. There is some other work(essentially the same) [DMQ13], which
directly reduces uniform error LWE to standard LWE without using the notation of
SIS. In this thesis, we stick to the SIS notation.

2.7.1 Hardness of Nonuniform Binary Error LWE with Limited
Samples

In order to prove (L,F ,  X ) is a lossy function family, we will prove:
• L is uninvertible with respect to X .

• F is second preimage resistant with respect to X .

• (L,F) are indistinguishable.

Statistical Uninvertibility

Lemma 20. LetL be a family of functions on the common domain {0, 1}m, we define
a nonuniform distributionχ over {0, 1}m such that each coefficientxi(i = 1, · · · ,m)
is 1 with probability p(0 < p < 1), and set p′ =max(p, 1−p). ThenL is εuninvertible
statistically for ε = Ef←L(p

′)m · |f(X)|, where |f(X)|means the number of elements
in the range and E means taking the expectation over the choice of f .
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Proof. Fix any f ← L and choose a input x from the distribution χ. Denote y =
f(x). The best attack that the adversary can achieve is to choose the most likely
element from the preimage, i.e., the element with the highest conditional probability.

Pr[adversary can invert]

=
∑
x

Pr[x] · Pr[adversary can invert given f(x)]

=
∑
x

Pr[x] · Pr[x is the most likely preimage in f−1(f(x))]

=
∑

y∈f(X)

maxx∈f−1(y)Pr(x)∑
x∈f−1(y) Pr[x]

·
∑

x∈f−1(y)

Pr[x]

=
∑

y∈f(X)

maxx∈f−1(y)Pr(x)

All the possbile probability for sampling x fromχ is pk ·(1−p)m−k (k = 0, 1, 2 · · ·m),
we know that themaximumprobability is (max(p, 1−p))m. Then let p′ = max(p, 1−
p), the result follows.

Remark. In the above proof, what we are supposed to do is essentially summing up the
|f(X)| highest probabilities. From the properties of binomial distribution, it is easy
to know that the highest probability is (p′)m, the second largest is (p′)m−1 · (1− p′),
etc. To be more formal, we need to compute a minimum k such that

i=k∑
i=0

(
m

i

)
≥ |f(X)|

After getting k, the success probability of the adversary is upperbounded by

i=k∑
i=0

(
m

i

)
(1− p′)i(p′)m−i

The Central Limit Theorem says that the partial sum
k=k2∑
k=k1

(
m
k

)
(1−p′)k(p′)m−k can be

well estimated by gaussian approximation for sufficiently large m. However, there
is no simple way to integrate the function e−x2/2, so no closed formula for the partial
sum exists. In order to deal with this issue, we use a rough estimate to compute the
upper bound.

Definition 2.7.1 ([MP13]). For any probability distribution Y over Zl and integer
m ≥ l, let I(m, l,Y) be the probability distribution over linear functions [I | Y ] :
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Zm → Zl where I is l × l identity matrix, and Y ∈ Zl×(m−l) is obtained choosing
each column of Y independently at random from Y .

Lemma 21. Let χ be a nonuniform distribution over {0, 1}m such that each co
efficient xi(i = 1, · · · ,m) is 1 with probability p(0 < p < 1), Y = Dl

Z,δ be
the discrete Gaussian distribution with parameter δ > 0, p′ = max(p, 1 − p). Then
I(m, l,Y) is εuninvertible with respect to the nonuniform distribution χ, for ε =
O(δm/

√
l)l · (p′)m + 2−Ω(m).

Proof. In order to use Lemma 20, we only need to bound the size of the range f(X).
Recall that f = [I | Y ] where Y ← D

l×(m−l)
Z,δ . Since the entries of Y ∈ Rl×(m−l) are

independent menazero subgaussians with parameter δ, by a standard bound from the
theory of randommatrices, the largest singular value s1(Y ) = max0̸=x∈Rm ||Y x||/||x||
of Y is at most δ · O(

√
l +
√
m− l) = δ · O(

√
m), except with probability 2−Ω(m).

We now bound the l2 norm of all vectors in the image f(X). Let u = (u1,u2) ∈ X ,
with u1 ∈ Zl and u2 ∈ Zm−l. Then

||f(u)|| ≤ ||u1 + Y u2||
≤ ||u1||+ ||Y u2||
≤ (
√
l + s1(Y )

√
m− l)

≤ (
√
l + δ ·O(

√
m)
√
m− l)

= O(δm)

The number of integer points in the ldimensional zerocentered ball of radius R =
O(δm) can be bounded by a simple volume argument, as |f(X)| ≤ (R+

√
l/2)nVl =

O(δm/
√
l)l, where Vl = πl/2/(l/2)! is the volume of the ldimensional unit ball.

From Lemma 20, and considering the event that s1(Y ) is not bounded as above, we
get that I(m, l,Y) is εuninvertible for ε = O(δm/

√
l)l · (p′)m + 2−Ω(m).

Second Preimage Resistance

Theorem 22. Let χ be a nonuniform distribution over {0, 1}m such that each coeffi
cient xi(i = 1, · · · ,m) is 1 with probability p(0 < p < 1). For any integersm, k, any
prime q, the function family SIS(m, k, q) is (statistically) εsecond preimage resistant
with respect to the nonuniform distribution χ for ε = 2m/qk.

Proof. Let x← χ and A← SIS(m, k, q) be chosen at random. We want to evaluate
the probability that there exists an x′ ∈ {0, 1}m\{x′} such that Ax = Ax′(mod q), or
equivalently, A(x− x′) = 0(mod q). Fix two distinct vectors x, x′ ∈ {0, 1}m and let
z = x − x′. Then considering taking the random choice of A, since all coordinates
of z are in the range zi ∈ {−1, 0, 1} and at least one of them is nonzero, the vectors

36



Az(mod q) is distributed uniformly at random in (Zq)
k, the probability of Az = 0

(mod q) is 1/qk. Therefore, by using union bound(over x′ ∈ X\{x}) for any x, the
probability that there is a second preimage x′ is at most (2m − 1)/qk < 2m/qk .

Indistinguishability of L and F

Lemma 23. Let F = SIS(m,m−n, q) and L = SIS(l,m−n, q) ◦ I(m, l,Y), where
I(m, l,Y) is defined in Definition 2.7.1. If SIS(l,m − n, q) is pseudorandom with
respect to the distribution Y , then L and F are indistinguishable.

Proof. Choose a random input x ∈ Zm. According to the definition of F and L

L : x→ A[I|Y ]x mod q
F : x→ [A′1, A

′
2]x mod q

With the property of block matrix multiplication, A can be divided into two blocks:
A1 is a l × l matrix, A2 is am− n− l × l matrix, so we have

L : x→ [A1, A2Y ]x mod q
F : x→ [A′1, A

′
2]x mod q

Since A1 and A′1 are uniformly random chosen, A1 and A′1 are indistinguhishable.
Recall that SIS(l,m− n, q) is pseudorandom with respect to the distribution Y , thus
A2Y is indistinguishable from A′2. Then we can conclude that L and F are indistin
guishable.

Onewayness

Theorem 24. Let q be a prime modulus and let χ be a nonuniform distribution over
{0, 1}m such that each coefficient xi(i = 1, · · · ,m) is 1 with probability p(0 < p <
1), p′ = max(p, 1−p), andY be the discrete Gaussian distributionY = Dl

Z,δ overZl,
where l = m−n+ k for some 0 < k ≤ n ≤ m. If SIS(l,m−n, q) is pseudorandom
with respect to the discrete Gaussian distribution Y = Dl

Z,δ, then SIS(m,m − n, q)
is (2ε+ 2−Ω(m))oneway with repsect to the input distribution χ if

(C ′δm/
√
l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

where C ′ is universal constant in big O notation in Lemma 21.

Proof. Wewill prove that (L,F ,X ) is a lossy function family, whereF =SIS(m,m−
n, q) and L = SIS(l,m − n, q) ◦ I(m, l,Y). We need to prove the following three
things:
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• L,F are indistinguishable.

• L is uninvertible with respect to X .

• F is second preimage resistant with respect to X .

It follows from Lemma 22 thatF is secondpreimage resistant with respect to χ. The
indistinguishability of L and F follows from Lemma 23. By lemma 21, we have the
uninvertibility of L. With the three properties of lossy function family, we conclude
that (L,F ,X ) is a lossy function family. Then from the property of lossy function
family with theorem 12, this theorem is proved.

Instantiation for the LWE parameter

Theorem 25 (LWE Parameter). Let 0 < k ≤ n ≤ m, 0 < p < 1, p′ = max(p, 1 −
p), l = m − n + k, 1/p′ ≥ (Cm)l/m for a large enough universal constant C,
and q be a prime such that max(3

√
k, 8m/(m−n)) ≤ q ≤ kO(1). Let χ be a non

uniform distribution over {0, 1}m such that each coefficient xi(i = 1, · · · ,m) is
1 with probability p, the LWE(m,n, q) function family is oneway with repsect to
the distribution UZn

q
× χ. In particular, these conditions can be satisfied by setting

k = n/(c2 log1/p′ n),m = n(1+ 1/(c1 log1/p′ n)), where c1 > 1 is any constant, and
c2 such that 1/c1 + 1/c2 < 1.

Proof. We prove the onewayness of SIS(m,m − n, q)(equivalently, LWE(m,n, q)
because of theorem 13) using theorem 24. Thus we need to satisfy the two require
ments:

(C ′δm/
√
l)l/ε ≤ 1/(p′)m and 2m ≤ ε · (q)m−n

Set δ = 3
√
k and since l ≥ k and the primality of q, the first requirement can be

simplified to (3C′m)l

(1/p′)m
< ε. Since we have 1/p′ ≥ (Cm)l/m, so (1/p′)m ≥ (Cm)l.

Let C = 4C ′, we get that (3C′m)l

(1/p)m
≤ (3/4)−l ≤ (3/4)−k is exponentially small in k,

so the first inequality is satisfied. Since q > 8m/(m−n), the second inequality is also
satisfied.

Besides, we also need to prove the pseudorandomness of SIS(l,m − n, q) with
respect to discrete Gaussian distribution Y = Dl

Z,δ, which can be based on the hard
ness of SIVP on kdimensional lattice using Theorem 14. After properly renaming
the variables, and using δ = 3

√
k, the requirement becomes ω(log k) ≤ m − n ≤

kO(1), 3
√
k < q < kO(1). The corresponding assumption is the worstcase hardness

of SIVPγ on kdimensional lattices, for γ = Õ(
√
kq). For the particular instantia

tion, let m = n(1 + 1/(c1 log 1
p′
n))(c1 > 1), k = n/(c2 log 1

p′
n)( c2 is a positive
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constant such that 1/c1 + 1/c2 < 1). The requirement 1/p′ ≥ (Cm)l/m is equivalent
tom ≥ l log1/p′ Cm. Since we can do a asymptotic analysis

l = m− n+ k

= (1/c1 + 1/c2)n/ log1/p′ n

And

log1/p′ Cm = log1/p′ Cn(1 + 1/log1/p′n)

≈ log1/p′ n+ log1/p′ C

So we have

l log1/p′ Cm ≈ (1/c1 + 1/c2)n(1 + log1/p′ C/ log1/p′ n)

When (1/c1 + 1/c2) < 1, m ≥ l log1/p′ Cm asymptotically. This concludes the
proof.

2.7.2 Attacks Against Nonuniform Binary Error LWE
In the previous section, we show that when the number of samples is strongly re
stricted, nonuniform binary error LWE is as hard as worstcase lattice problems.
However, if relaxing the number of samples, this is not the case. In this section, we
consider the case where the error rate is a function of n such that p = 1/nα(α > 0).
We show an attack against LWE with nonuniform binary error given O(n) samples.
Note that this doesn’t contradict with the previous result, because in this big O nota
tion, we have a universal constant C. For instance, if C = 3, it means that we can
get some attack with 3n samples, but have security guarantee with n + O(n/ logn)
samples. The idea behind our attack is quite simple,

• Step 1: Get n samples from the LWE oracle.

• Step 2: By assuming the n samples are all error free, solve the linear equation
system.

• Step 3: If failed, go back to step1.

For instance, when the error rate p = 1/n, the probability that all samples are error
free is:

lim
n→∞

(1− 1/n)n = 1/e
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This means that our algorithm is expected to stop after polynomial times of trials.
However, the number of total samples used is not bounded. Therefore, we slightly
modified the algorithm as follows:

• Step 1: Get 3n samples from the LWE oracle.

• Step 2: Choose 2n samples randomly from the 3n samples got in step1.

• Step 3: By assuming the 2n samples are all error free, solve the linear equation
system.

• Step 4: If failed, go back to step2.

We analyze the following two cases respectively:

• p = 1/nα for any consant α ≥ 1.

• p = 1/nα for any consant 0 < α < 1.

and have the following results:

Theorem 26. By applying the above algorithm, for any positive constant α ≥ 1, non
uniform binary error LWE with error rate p = 1/nα can be attacked in polynomial
time with O(n) samples, and for any positive constant 0 < α < 1, nonuniform
binary error LWE with error rate p = 1/nα can be attacked in subexponential time
with O(n) samples.

Proof. Suppose that there are m errors within the 3n samples. The probability that

40



2n samples are all error free is

Pr(success) =
(
3n−m
2n

)(
3n
2n

)
=

(3n−m)!

(n−m)!(2n)!
· (2n)!(n!)

(3n)!

=
(3n−m)!

(n−m)!
· (n!)
(3n)!

=
n · · · (n−m+ 1)

3n · · · (3n−m+ 1)

=
m−1∏
i=0

n− i
3n− i

= (
1

3
)m

m−1∏
i=0

3n− 3i

3n− i

= (
1

3
)m

m−1∏
i=0

(1− 2i

3n− i
)

≥ (
1

3
)m(1− 2m− 2

3n−m+ 1
)m

= (
1

3
)mexp(−m(2m− 2)

3n−m+ 1
)

With tail bound for binomial distribution,

Pr(m ≥ k) ≤ exp(−nD(
k

n
||p))

where D(a||p) is the relative entropy between an acoin and a pcoin.

D(a||p) = a log
a

p
+ (1− a) log 1− a

1− p

We analyze the result from two perspectives.

• α ≥ 1.

• 0 < α < 1.
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Case 1: α ≥ 1 For this case, we set k = logn.

D(
k

n
||p) = D(

logn
n
|| 1
nα

)

=
logn
n
· log(nα−1 logn) + (1− logn

n
) log

1− logn
n

1− 1
nα

≈ (α− 1)
(logn)2

n
+
logn
n

log logn+ (1− logn
n

)(− logn
n

+
1

nα
)

Since (α− 1) (logn)
2

n
is the dominant term,

Pr(m ≥ logn) ≤ exp(−nD(
k

n
||p))

is negligible. Thus the probability that 2n samples are all error free is

Pr(success) ≥ 1/poly(n)

This means that after repeating step2 and step3 polynomial many times, we can re
cover the secret key with overwhelming probability.

Case 2: 0 < α < 1 For this case, we set k = n1−α logn

D(
k

n
||p) = D(

n1−α logn
n

|| 1
nα

)

= D(
logn
nα
|| 1
nα

)

=
logn
nα

log logn+ (1− logn
nα

) log
1− logn

nα

1− 1
nα

≈ logn
nα

log logn+ (1− logn
nα

)(− logn
nα

+
1

nα
)

The dominant term is logn
nα log logn, so

Pr(m ≥ n1−α logn) ≤ exp(−nD(
k

n
||p))

≤ exp(−n1−α logn log logn)

This probability is negligible, thus we have

Pr(success) ≥ 1/exp(n1−α)

This means that after repeating step2 and step3 subexponential times, we can recover
the secret key with overwhelming probability.
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Chapter 3

Improving Lattice Attacks on
(EC)DSA

This chapter is based on joint work with Thomas Espitau and my supervisors.

3.1 Introduction
A lattice is a discrete group of points in space, which can be defined as the set of all
integer linear combinations of a certain set of linearly independent vectors b1, . . . , bd
known as a basis. A lattice has infinitely many bases, but socalled “reduced” bases,
that consist of short and close to orthogonal vectors, are much more interesting. Lat
tice reduction, the mathematical problem of finding such bases, has a long history
which can be traced back to the 18th century, but gained particular prominence after
Lenstra, Lenstra and Lovász [LLL+82] introduced a polynomialtime approximate
algorithm for it in 1982 that became known as LLL. Since the advent of LLL, lat
tice reduction proved to be a powerful tool for cryptanalysis: early examples include
attacks on knapsackbased cryptosystems [Sha82] and Coppersmith’s small root find
ing algorithm [Cop97] that broke many variants of RSA in particular.

This work focuses on another major cryptanalytic application of lattice reduction:
lattice attacks against (EC)DSA (and related signature schemes like Schnorr’s) when
bits of the nonce are known. DSA and ECDSA are wellestablished standards for
digital signature based on the discrete logarithm problem, and that involve the use,
for each generated signature, of some fresh random value called the nonce. It is well
known that if the same nonce is used twice, the adversary can directly compute the
private key due to a linear relation between the nonce and the private signing key.
Even worse, partial information about the nonces of multiple signatures can lead to
recovery of the full private key. The original approach to do so, due to Bleichen
bacher, actually relied on discrete Fourier analysis techniques [Ble00, DHMP13,
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AFG+14b, TTA18, ANT+20], but lattice reduction was also discovered to provide
an attack technique, in connection to Boneh and Venkatesan’s hidden number prob
lem (HNP) [BV96].

HNP is a number theoretic problem that was originally introduced to establish bit
security results for the Diffie–Hellman key exchange. Boneh and Venkatesan showed
that it could be seen as a bounded distance decoding (BDD) instance in a lattice, which
could be solved with Babai’s nearest plane algorithm [Bab86] for suitable parame
ters. Subsequently, HowgraveGraham and Smart [HGS01], and later Shparlinski
and Nguyen [NS02], observed that the problem of attacking (EC)DSA if some top
or bottom bits of the nonces are known is an instance of HNP, and could be attacked
using the same lattice techniques. However, when nonce leakage is very small, the
attack becomes much more difficult mainly because the hidden lattice vector in BDD
is not very close to the target vector. It took significant development in lattice reduc
tion algorithms to advance the state of the art. In 2013, Liu and Nguyen [LN13] were
able to attack 160bit DSA with 2bit nonce leakage using the BKZ 2.0 algorithm
introduced just a few years earlier [CN11], relying on a very high block size of 90,
with pruned enumeration as the SVP oracle. In a very recent work [AH21a], Albrecht
and Heninger utilize the stateoftheart lattice reduction algorithm G6K [ADH+19]
together with the novel idea of predicate sieving to break new records.

3.1.1 Our Contributions
Lattice attacks on (EC)DSA are in general allornothing, in the sense that the attack
reveals the entire secret key when it succeeds, and nothing at all otherwise. In con
trast, Bleichenbacher’s statistical attack, for example, only reveals some bits of the
secret key in a single execution; however, it has been observed in previous work that
the knowledge of those bits makes subsequent applications of the attack much more
efficient.

How the knowledge of some bits of the secret key affects lattice attacks on (EC)DSA,
however, does not appear to have been considered in previous work1. Perhaps inter
estingly, we observe that knowledge of some bits of the secret does in fact make the
attack easier. This results in a simple idea to improve those attacks, which forms
the main contribution of this work: guess some bits of the secret key, and solve the
resulting, easier lattice problem for each possible guess (in other words: carry out an

1How the knowledge of certain types of side information on the secret affects the hardness of lattice
problems like LWE has been considered, e.g., in [DDGR20]. The context of HNP/nonce leakage,
however, is very different: for example, the key in our setting is an element of Zq , as opposed to
a vector in LWE; the nature of the hints (bits vs. linear relations) is different; the lattice is very
structured (knapsacklike) for HNP, as opposed to random qary for LWE; the BDD parameters are
totally dissimilar; the analysis in their case depends on Gaussian noise, etc. So the two questions
appear to be mostly unrelated.
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exhaustive search on those bits).
An interesting feature of this approach is that this reduces the attack to solving

many BDD instances with varying target vectors in the same lattice, making it pos
sible to rely on various batchCVP or CVPwithpreprocessing techniques to solve
them. At the simplest level, even just carrying out an initial lattice reduction on the
original BDD lattice, and then solving all the BDD instances by reduction to SVP
using Kannan’s embedding technique turns out to be far more efficient than naively
solving the SVP instances without the initial common lattice reduction.

Additionally, this approach parallelizes very easily, and has the convenient prop
erty of being very easy to simulate (in the sense that one can certainly make the “cor
rect” guess for selfgenerated instances), which makes its cost easy to predict even
for parameters that are impractical to fully run in a short time.

As additional contributions, we also show that the same idea can be applied to
guessing additional bits of some of the signature nonces (on top of those already
known; this results in a similar, but usually slightly worse, successtime tradeoff
than guessing bits of the secret key), as well as filtering some of the signatures to
construct lattices that are easier to attack (resulting in a datatime tradeoff reminis
cent to what can be achieved in Bleichenbacher’s attack). Furthermore, we carry out
experiments on the TPM–FAIL dataset [MSEH20] and apply our techniques to key
recovery. While the original attack requires about 40000 signatures, with the method
of guessing bits, we are able to recover the secret keywith only around 800 signatures,
which is comparable to the results achieved in Minerva [JSSS20].

3.1.2 Related Work
Themain question that we consider, namely how small of a nonce leakage do we need
to recover the signing key in (EC)DSA, has been considered in previous work both
for lattice attacks and for Bleichebacher’s attack. In the case of lattice attacks, the
recordholding works are due to Liu and Nguyen [LN13] and very recently Albrecht
and Heninger [AH21a]. In the case of Bleichenbacher’s attack, the state of the art
is presented in [ANT+20]. We briefly describe below how our results compares to
theirs.

Comparison with [LN13] and [AH21a]. Table 3.1 presents typical parameters (in
terms of group size and number of known nonce bits) for (EC)DSA, and indicates
whether they can be tackled easily with lattice attacks (“Easy”), are considered hard
so far with lattices (“Hard”), or have been solved in specific papers. In [LN13] and
[AH21a], strong lattice reduction algorithms (BKZ 2.0 and G6K with predicate re
spectively) are used to attack the “borderline” cases, namely 160bit modulus with
2bit nonce leakage, 256bit modulus with 3bit nonce leakage and 384bit modulus
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Table 3.1: Tractable parameters for lattice attacks on (EC)DSA.

Nonce leakage

Modulus 4bit 3bit 2bit 1bit

160bit Easy Easy [LN13], [AH21a], Ours Hard
256bit Easy [AH21a], Ours Hard Hard
384bit [AH21a], Ours Hard Hard Hard

with 4bit nonce leakage. Our approach all makes those borderline cases tractable,
but relies on very different techniques and arguably present various advantages, par
ticularly the following:

• whereas [LN13] and [AH21a] are based on specific improvements and mod
ifications of the underlying lattice reduction algorithms, our approach works
with any lattice reduction algorithm. In our experiments, we use fplll’s im
plementation of BKZ–30, but any algorithm would work. In particular, it is
straightforward to combine our idea with the techniques of those two papers if
so desired;

• tailoring the parameters of [LN13] and [AH21a] to a specific problem instance
or to the specific computational resources of the attack can be quite challeng
ing; in contrast, due to its straightforward simulatability mentioned above, our
approach makes this easy, and makes it possible to quantify the cost of attack
ing a given problem instance in very concrete terms in advance.

Comparison with Bleichenbacher’s attack. Although we come up with an ap
proach to improve lattice attacks with more signatures and in some sense bridge the
gap between lattice attacks and Bleichenbacher’s, it still requires too many signatures
comparedwith Bleichenbacher’s attack. For instance, for 160bit (EC)DSAwith 2bit
nonce leakage, our method requires 227 signatures, while the Bleichenbacher attack
requires about 212 signatures for 2bit leakage case and 227 signatures for the one
bit leakage case [ANT+20]. Besides, with this approach, we still could not attack
harder cases, such as 160bit modulus with 1bit nonce leakage and 256bit modulus
with 2bit nonce leakage, which are already tractable using Bleichenbacher’s attack
[AFG+14b, TTA18, ANT+20]. However, the fact that there exists a way of improv
ing lattice attacks with more signatures might give some ideas for future work. It is
still possible that better ways of utilizing more signatures for lattice attacks exist, and
we hope that lattice attacks on (EC)DSA could be further improved.
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3.2 Preliminaries

3.2.1 Lattices
A lattice2 is an additive subgroup of Zn for some n ≥ 0. For any family of linearly
independent vectors b1, . . . , bm of Zn, the set:

L(b1, . . . , bn) =
{ n∑

i=1

cibi : ci ∈ Z
}

is a lattice, and conversely, any lattice L ⊂ Zn can be put in that form for some
vectors b1, . . . , bm. In that case, the family (b1, . . . , bm) is called a basis of L. We
can then represent the lattice L by them×nmatrixB whose rows are formed by the
vectors bi, and write L = L(B).

A given lattice L can have infinitely many distinct bases, but they all have the
same cardinality m, called the rank of L. In this work, we will only consider full
rank lattices, whose rankm is equal to n, the dimension of the ambient space. For a
fullrank lattice L with basis matrix B, we define the volume of L as the quantity:

vol(L) = | det(B)|,

which does not depend on the choice of B.
The Euclidean norm of the shortest nonzero vector in L is called the first mini

mum of L and denoted as λ1(L). More generally, for 1 ≤ i ≤ n, the ith minimum
λi(L) of L is defined as the minimum radius r such that a ball centered at origin with
radius r contains i linearly independent vectors.

It is proved in [Ajt06] that a random ndimensional lattice satisfies, with high
probability,

∀1 ≤ i ≤ n, λi(L) ≈
√

n

2πe
vol(L)1/n.

The approximation factor of a lattice basis b1, . . . , bn is defined as ∥b1∥λ1(L) (where ‖·‖
henceforth denotes the Euclidean norm), and the root Hermite factor is defined as
( ∥b1∥
vol(L)1/n )

1/n.
There are many computational problems related to lattices. The most famous one

is the Shortest Vector Problem (SVP for short): given a lattice L, find the shortest
vector v ∈ L such that ‖v‖= λ1(L). Another problem is the Closest Vector Problem
(CVP for short): given a lattice L and a target vector t, find the vector v ∈ L such
that ‖v− t‖ is minimal.

2This is more properly the definition of an integral lattice, but integral lattices are the only ones
we consider in this work.

47



There exist efficient lattice algorithms for solving approximate versions of SVP
and CVP. For approximate SVP, lattice reduction algorithms such as LLL [LLL+82]
and BKZ [SE94] output lattice basis b1, . . . , bn such that the approximation factor
and the root Hermite factor are relatively small. As a result, the first vector b1 of
the reduced basis is a good approximation of the shortest nonzero vector. For ap
proximate CVP, Babai’s nearest plane algorithm [Bab86] and variants of it such as
[Kle00, GPV08, EK20] can be used to find a relatively close vector when applied
after a lattice reduction algorithm.

3.2.2 Hidden Number Problem
The Hidden Number Problem can be described as follows: q, l are fixed integers
known to the public and α is a unknown integer in Zq. For many known random
t ∈ Zq, we have an oracleOα(t) that on input t, outputs (t, u) such that |α · t−u|q <
q/2l, where |z|q represents the unique integer 0 ≤ x < q such that x ≡ z mod q. The
goal is to recover the hidden secret key α. Suppose that we have queried the oracle d
times and have d pairs (ti, ui) (i = 1, 2, . . . , d), we could transform this into a lattice
problem. Construct a lattice L spanned by the following matrix B:

B =


2lq 0 · · · 0 0
0 2lq · · · 0 0

...
...

0 0 · · · 2lq 0
2lt1 2lt2 · · · 2ltd 1


Since |αti−ui|q < q/2l, there exists some integer ci such that |αti−ui+ciq| < q/2l,
so |2lαti−2lui+2lciq| < q, and h = (2lαt1+c12

lq, 2lαt2+c22
lq, . . . , 2lαtd+cd2

lq, α)
is a lattice vector (which we call the hidden lattice vector) in L, and set the target
vector v = (2lu1, 2

lu2, . . . , 2
lud, 0). Denote the difference vector h − v as e. Since

|2lαti − 2lui + 2lciq| < q (i = 1, 2, . . . , d), it is easy to know that the absolute value
of each coefficient of e is less than q. Therefore, the Euclidean norm of e is at most
q
√
d+ 1. When l is not too small, the target vector v is a close vector to the lattice L,

so this becomes a CVP instance (or more precisely, BDD instance). Generally, there
are two ways to solve the HNP, i.e., the CVP approaches and SVP approaches. In
the original paper by Boneh and Venkatesan, they use the LLL algorithm to reduce
the lattice basis and Babai’s nearest plane algorithm to find the hidden lattice vector.
The LLL reduction can be replaced with BKZ. We can also use CVP enumeration
instead of nearest plane algorithm. Besides, another technique, known as Kannan’s
embedding method [Kan87], transforms the CVP instance into a SVP instance by
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embedding the target vector into the original lattice, thus constructing a larger lattice:

C =

(
B 0
v q

)
.

Then, we can solve SVP by lattice reduction. In our context, we mainly use Kannan’s
embedding method to solve HNP.

In practice, there are two subtle technical points that we should take care of:

• We might find q − α instead of the secret key α, since q − α is also a good
candidate (this can be easily checked). Therefore, we should check both. Note
that the checking time is almost negligible compared with the time in lattice
reduction, because the only operation is one scalar multiplication (for ECDSA)
and checking consistency with public key.

• Typically in practical attacks, the vector that we want is not the first vector of
the reduced basis, so we should check every row of the reduced basis. In other
words, the attacks are considered successful if we find the vector in any row of
the reduced basis (this is typical in the literature).

3.2.3 (EC)DSA Signature Scheme
Here we only discuss DSA and skip ECDSA, since for the construction of HNP in
stances, this makes no difference. DSA is an El Gamallike signature scheme, which
is included in Digital Signature Standard (DSS) issued by NIST. DSA can be de
scribed as follows.

Parameters. The parameters are p, q, g, where p and q are primes satisfying q|(p−
1), g ∈ Z∗p has order q. Besides, we have a hash function h that maps any arbitrary
length string into Zq. The signing key α is a uniformly random number in Z∗q and the
public key is y = gα mod p.

Signing Phase. To sign a message m, the nonce k is chosen uniformly at random
from Z∗q , and we compute r = (gk mod p) mod q, and s = k−1(h(m) + αr) mod q.
The signature is the pair (r, s).

Verification Phase. Given a signature pair (r, s) of themessagem, if r = (gh(m)s−1
yrs

−1

mod p) mod q, the signature is regarded as valid, otherwise invalid.
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3.2.4 Lattice Attacks on (EC)DSA
From the signing phase of (EC)DSA, we already know that s≡ k−1(h(m)+αr)mod
q, so

αr ≡ sk − h(m) (mod q).

Now in our case, we have lbit leakage, which means that we know l LSBs of k. In
the case of timing attack, MSB is used, where the construction is very similar but
slightly subtle. The difference is that when k has some leading zeroes, k < q/2l

might not be true depending on the order q. For more discussion, see Section 4.3 of
[JSSS20]. Denote the value of l LSBs as k1, then we have k = 2lk2 + k1 for some
integer 0 ≤ k2 ≤ q/2l, so:

αr ≡ s(2lk2 + k1)− h(m) (mod q)
α(rs−1 − k1)2−l ≡ k2 − 2−ls−1h(m) (mod q).

For simplicity of formulas, we set k1 = 0 (without loss of generality, because we
know the value of k1) and have:

t ≡ 2−ls−1r (mod q)
u ≡ −2−ls−1h(m) (mod q)
k2 ≡ αt− u (mod q).

Note that both t and u can be computed from all the public available information.
Since 0 ≤ k2 < q/2l,

|αt− u|q < q/2l.

In this way, we have constructed an HNP instance for (EC)DSA. Then we solve the
HNP either by nearest plane algorithm or Kannan’s embedding method.

3.2.5 Recentering Technique
In order to further improve the lattice attack on (EC)DSA, there is a wellknown
technique in the community called recentering [NT12]. It works as follows: since

|αt− u|q < q/2l,

there exists some integer c such that

0 ≤ αt− u+ cq < q/2l,

−q/2l+1 ≤ αt− u− q/2l+1 + cq < q/2l+1.

Therefore,
|αt− u− q/2l+1|q < q/2l+1.
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Now set
v = 2l+1u+ q.

Then we have
|αt− v/2l+1|q < q/2l+1.

Suppose that now we have d signatures (ri, si) (i = 1, . . . , d) and compute the pairs
(ti, ui) as previously defined. Then construct a lattice L spanned by the following
matrix B:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 1


and everything goes the same.

3.2.6 Projected Lattice
Typically, in standard lattice attacks, we almost always locate the secret key in the
second row (which we hope to be the first) of the reduced basis. In order to deal with
this issue, [AH21a] makes a modification to the original lattice. Recall that the matrix
that we construct is:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 1


With some simple linear combinations of the rows, we could know that (0, 0, . . . , 0, q)
belongs to this lattice. The expected Euclidean norm of the difference vector e is
roughly

√
d+1
3
q. With typical parameters such as d = 85, l = 2, ‖e‖ is much larger

than q. This means that the difference vector e will never be the shortest vector in
practice. In fact, we can project this lattice orthogonal to (0, . . . , 0, q) and construct
a new lattice:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1(td)

−1 2l+1t2(td)
−1 · · · 2l+1td−1(td)

−1 2l+1

 .
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In this new lattice, the hidden vector will be (|αtd|q·2l+1t1(td)
−1+c12

l+1q, . . . , |αtd|q·
2l+1td−1(td)

−1+cd2
l+1q, 2l+1|αtd|q). The important thing is that the vector (0, 0, . . . , 0, q)

does not belong to the new lattice, so we are able to locate the private key in the first
row of the reduced basis.

3.3 Analysis: Modeling Lattice Attacks on (EC)DSA
As previously mentioned, there are “borderline” cases that were considered difficult
for standard lattice attacks on (EC)DSA, e.g., 160bit modulus with 2bit nonce leak
age, 256bit modulus with 3bit nonce leakage, 384bit modulus with 4bit nonce
leakage. One important question about this is: How difficult are those “borderline”
cases? In this section, we explain this question, quantify the difficulty and give intu
itive ideas for our attacks in later sections.

3.3.1 Difficulty When Nonce Leakage is Small
For each HNP inequality, there exists some integer ci such that

|α2l+1ti − vi + ci2
l+1q| < q.

Let the target vector v = (v1, . . . , vd, 0) and the hidden lattice vector h = (α2l+1t1 +
c12

l+1q, . . . , α2l+1td+cd2
l+1q, α), thus the Euclidean norm of the difference vector e

is upper bounded by q
√
d+ 1. The volume of this latticeL is qd2(l+1)d, and according

to Gaussian Heuristic, the Euclidean norm of the shortest vector is roughly

λ1(L) ≈
√
d+ 1

2πe
(vol)

1
d+1 ≈

√
d+ 1

2πe
2

(l+1)d
d+1 q

d
d+1 .

Therefore, the requirement is that the distance is much smaller than λ1(L):

q
√
d+ 1 <

√
d+ 1

2πe
2

(l+1)d
d+1 q

d
d+1 .

After solving this inequality, we get

d ≥ log2(q)
l − log2(

√
πe/2)

.

This can be used to estimate the number of signatures needed for the attack to succeed.
Table 3.2 is the typical number of signatures needed (just informationtheoretically,
the attack might not be successful at all) to perform the lattice attack on 160bit
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Table 3.2: Typical number of signatures for 160bit modulus.

Nonce leakage l 4bit 3bit 2bit 1bit

Number of signatures d 50 80 100 200

(EC)DSA.Now, we give an intuitive explanation ofwhy lattice attacks against (EC)DSA
with small nonce leakage are difficult.

When l = 3 and d = 80 (this case is regarded as “easy” for lattice attacks), the
lattice basis matrix B is:

B =


16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t1 16t2 · · · 16td 1

 .

The Euclidean norm of the first vector is 16q, and ‖e‖ is upper bounded by q
√
d+ 1 =

9q. Therefore, any linear combination of the first d rows will have significantly larger
Euclidean norm than ‖e‖.

When l = 2 and d = 100 (this case is regarded as “hard” for standard lattice attacks,
but have been solved in specific papers), the Euclidean norm of the first vector is 8q,
and ‖e‖ is upper bounded by q

√
d+ 1 ≈ 10q. To be a bit more precise, we can

compute the expected norm, which is roughly
√

100
3
q2 ≈ 6q.

When l = 1 and d = 200 (this case remains “hard” so far), similarly, the Euclidean
norm of the first vector is 4q, and ‖e‖ is upperbounded by q

√
d+ 1 ≈ 14q. With

similar computation, we can know that the expected norm is around 8q. This means
that many linear combinations of the first d rows will have smaller Euclidean norm
than the difference vector e. In other words, there are exponentially many lattice vec
tors that are closer to the target vector than the hidden vector, thus making decoding
extremely difficult.

3.3.2 Modeling Lattice Attacks
Following the idea of [AFG14a], we consider lattice attacks on (EC)DSA as Unique
SVP instances. In [GN08], it is concluded that given a lattice reduction algorithm
which we assume to be characterised by a root Hermite factor δ0 and a ndimensional
lattice L, the algorithm will be successful in disclosing a shortest nonzero vector
with “high probability” when λ2

λ1
≥ τ · δ0n (we call λ2

λ1
the gap), where τ is a constant

depending both on the nature of the lattices involved and lattice reduction algorithm
being used. However, in [GN08], they do not explain what “high probability” means.
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Therefore, in some subsequent work [AFG14a], the success rate is fixed to some num
ber (10 percent, for example) and the dimension n is taken as the smallest possible in
practice in order to achieve the same success rate.

Here we slightly change the model such that τ is not a constant, but a function
τn = k

log(n) (k is some constant) on the dimension n. Besides, we choose BKZ–30 as
the lattice reduction algorithm and fix the success rate to be 20%. In the context of
this section, the modulus q is 160bit.

Recall that the lattice we construct is:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 2l+1


so the lattice dimension n = d + 1, where d is the number of signatures being used.
As before, we denote the difference vector between the target vector and the hidden
lattice vector as e. Besides, we are using Kannan’s embedding method to perform
lattice attacks on a larger lattice:

C =

(
B 0
v q

)
.

Regarded as a UniqueSVP instance, the success rate of the attack crucially depends
on the ratio λ′

2

λ′
1
, where λ′1, λ′2 are the first and secondminimum of the embedded lattice

L(C). According to the relation between L(B) (lattice spanned by the matrixB) and
L(C) (lattice spanned by the matrix C), λ′1 ≈ ‖e‖ and λ′2 ≈ λ1, where λ1 is the first
minimum of the original lattice L(B). Therefore, the success rate of lattice attacks
increases as the ratio λ1

∥e∥ increases.
As previously mentioned, we assume that in order to achieve 20% success rate,

the requirement is

gap =
λ1
‖e‖
≥ k

log(d+ 1)
· δ0d+1,

where δ0 is the root Hermite factor and k is some constant. Before proceeding, we
have to determine the root Hermite factor as well as the number of signatures d. First
we do some experiments to determine the root hermite factor δ0 for BKZ–30 on this
type of lattice (for HNP attack). After doing numerous experiments, we determine
that δ0 ≈ 1.01 for BKZ–30. In addition, we take d as the binary length of the modulus
qlen divided by the leakage l. Intuitively and information theoretically, one HNP
inequality with lbit leakage contains l bits of information, so in order to recover the
secret key α that has qlen bits, at least qlen

l
inequalities are necessary.
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Table 3.3: Experimental result: gap needed to achieve ≥ 20% success rate.

Leakage l Signatures d Gap λ1/‖e‖ Success rate

3 54 0.93 20/100
4 40 0.91 25/100
5 32 0.88 20/100
6 27 0.87 21/100
7 23 0.86 25/100
8 20 0.85 23/100

Table 3.3 shows the experimental results of the gap ( λ1

∥e∥ ) that is necessary to
achieve 20% success rate for 160bit (EC)DSA. Now we do a linear regression to
determine the constant k. After carrying out the regression depicted in Figure 3.1, we
find that k ≈ 3.11.

0.16 0.18 0.2 0.22 0.24
0.5

0.55

0.6

0.65

0.7

1
log(d+1)

τ d

Figure 3.1: Linear regression to estimate the constant k.

Nowwe estimate the computation cost for the “borderline” case 160bit (EC)DSA
with 2bit nonce leakage. The dimension d = 160

2
= 80, and the requirement is

gap =
λ1
‖e‖
≥ k

log(d+ 1)
· δ0d+1 =

3.11

log(81)
· 1.0181 ≈ 1.098.

According to Gaussian Heuristic, we have

λ1(L) ≈
√
d+ 1

2πe
vol(L)1/(d+1) =

√
81

2πe
vol(L)1/81.
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The expected length of e is roughly
√

81
3
q, so we have√

81
2πe

vol(L)1/81√
81
3
q

≥ 1.098,

which is equivalent to

vol(L) ≥ 2.6181 · q81,

but the real volume of the lattice is 881 · q80, so the ratio between them is

2.6181 · q81

881 · q80
≈ q

2130
≈ 230.

This means that if we could increase the volume of the lattice by 230 times and keep
‖e‖ unchanged, then we have 20% success rate for 160bit modulus with 2bit nonce
leakage. The number 230 somewhat shows the magnitude of computation cost for
2bit nonce leakage case.

3.3.3 One Intuitive Idea to Improve the Attacks

The direct idea is to increase the gap λ1(L)
∥e∥ . Since λ1(L) ≈

√
d+1
2πe

vol(L)1/(d+1), we
could increase the volume of the lattice while keeping ‖e‖ almost unchanged. Our
attack is directly based on this idea. In later sections, we will show that by brute
forcing some bits of the secret key (or the nonces), we could modify the original
lattice and increase the volume of the lattice, while ‖e‖ is almost unchanged. Thus,
according to the property of UniqueSVP, we will have significantly better success
rate.

3.4 Guessing Bits of Secret Key
In our context, we are considering those “borderline” cases, so in this section, the
modulus q has 160 bits and the nonce leakage l = 2 (for other moduli, it is similar).
In standard lattice attacks, either we find the secret key or get nothing. Even if we
set the secret key having only 10 bits, it still does not make lattice attacks any easier
(of course, if it has only 10 bits, then we could bruteforce the secret key, but it is
irrelevant here, since we only care about lattice attacks). Therefore, it is somewhat
believed that partial information of the secret key do not help the attack. Perhaps
surprisingly, we find that the length of the secret key is closely related to the difficulty
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of the attack. Take 160bit (EC)DSA with 2bit leakage for instance, if we assume
that the secret key has less than 60 bits, we can modify the original lattice and make
the attack very easy.

Recall that the HNP inequality is |αti− ui|q < q/2l (i = 1, . . . , d) and the lattice
we construct is:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 1

 .

The target vector is (2l+1u1+ q, 2
l+1u2+ q, . . . , 2

l+1ud+ q, 0), and the hidden lattice
vector is (α2l+1t1 + c12

l+1q, α2l+1t2 + c22
l+1q, . . . , α2l+1td + cd2

l+1q, α). Again
we denote the difference vector between them as e and we already know that each
coefficient of e is less than q, so ‖e‖ < q

√
d+ 1. As we have discussed in the

previous section, in order to improve the success rate of lattice attacks, one direct
idea is to increase the volume of the lattice while keeping ‖e‖ almost unchanged. For
instance, we could modify the lattice as

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 2100

 .

In this way, we increase the volume of the lattice by 2100 times, but the problem
is that the hidden lattice vector will not be close to the target vector anymore, be
cause the hidden lattice vector is (α2l+1t1+c12

l+1q, α2l+1t2+c22
l+1q, . . . , α2l+1td+

cd2
l+1q, 2100α), and the last coefficient of e is very large (2100α), thus making the

modification meaningless.
However, if we assume that the secret key has less than 60 bits, then 2100α is

still upperbounded by 2160 ≈ q, so this means ‖e‖ keeps almost unchanged, and
we have increased the volume of the lattice by 2100 times, thus making the success
probability significantly better. We carry out some simulation experiments and find
that if the secret key only has 60 bits for 160bit (EC)DSA with 2bit nonce leakage,
after modifying the lattice as the above matrix B, we can recover the secret key in
just one BKZ–20 operation with 100% success rate, so this becomes almost trivial.

This observation leads to the following attack. First write the secret key in the
following format

α = α1 · 2c + α2 (0 ≤ α2 < 2c),
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where c is any arbitrary predetermined integer between 1 and 160. Then α1 is the
(160− c) most significant bits of α and α2 is the remaining c bits of α. Suppose that
we have constructed d HNP inequalities with leakage l

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then substitute α with α1 · 2c + α2 and we have

|α1 · 2c · ti + α2 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then set

t′i = 2c · ti,
u′i = −α2 · ti + ui,

so we have new HNP inequalities for t′i and u′i:

|α1 · t′i − u′i|q < q/2l (i = 1, 2, . . . , d).

Then construct the lattice as

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t′1 2l+1t′2 · · · 2l+1t′d 2c


The hidden vector is (α12

l+1t′1+c12
l+1q, α12

l+1t′2+c22
l+1q, . . . , α12

l+1t′d+cd2
l+1q, α12

c)
and the target vector is (2l+1u′1 + q, 2l+1u′2 + q, . . . , 2l+1u′d + q, 0). Now we have in
creased the volume of the lattice by 2c times while keeping ‖e‖ almost unchanged,
since α12

c is upper bounded by q. Of course we do not know the value of α2, but we
can enumerate α2 from 0 to 2c, so this is a tradeoff: we increase the volume of the
lattice by 2c times (thus making the attack easier) at the cost of 2c enumerations. We
formalize the attack as the following steps:

• Step 1: Determine the integer constant c (it depends on howmuch computation
cost we want to pay).

• Step 2: Collect d signatures and construct ti, ui as previously defined (i =
1, 2, . . . , d).

• Step 3: Enumerate α2 from 0 to 2c:

– Construct the corresponding HNP instance for α1.
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– Solve the new HNP instance by Kannan’s embedding method.

With this method, we are able to attack those “borderline” cases: 160bit (EC)DSA
with 2bit nonce leakage, 256bit (EC)DSAwith 3bit nonce leakage, 384bit (EC)DSA
with 4bit nonce leakage. For more detail, see the section of experimental results.

One typical question for this attack would be: What is the difference between our
approach and directly applying BKZ with larger block size? We make a comparison:

• In some sense, our approach has similar effect as directly applying BKZ with
larger block size. While BKZ with larger block size outputs lattice basis with
smaller root Hermite factor (thus better chance of finding the vector e), our
approach aims to increase the gap for UniqueSVP and have better success rate
due to the property of UniqueSVP.

• Our approach is easy to simulate and control. In simulation experiments, we
could assume that we have guessed the correct bits, thus avoding the enumer
ation, which is difficult to carry out in a short time.

• Our approach can be easily parallelized, because each enumeration of bits is
independent. While we do not deny the fact that BKZ with larger block size
could also be parallelized, it requires another implementation of the SVP oracle
(changing the internal code of fplll library [dt20]), which needs a lot of work.

3.5 Guessing Bits of Nonces
Another similar approach could be made to increase the volume of the lattice. Again
in our context, the modulus q has 160 bits, the leakage l = 2. For other moduli, it is
essentially the same, so we will not discuss it again.

Suppose that now we have d 160bit (EC)DSA signatures (ri, si) (i = 1, . . . , d)
with 2bit nonce leakage and computed ti = |r ·2−2s−1|q and ui = |−h(m)·2−2s−1|q
as in previous sections, so the nonce ki = 22bi where bi is some integer. We can guess
the third least significant bit of the nonce, thus constructing a HNP inequality with
3bit leakage with probability 1

2
. If the third bit is zero, then

ki = 23b′i,

and we set:
t′i = |r · 2−3s−1|q and u′i = | − h(m) · 2−3s−1|q.

If the third bit is 1, we have:
ki = 23b′i + 22

αrs−1 ≡ 23b′i + 22 − h(m)s−1 (mod q)
αrs−12−3 ≡ b′i + 2−1 − h(m)s−12−3 (mod q),
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and we then set:

t′i = |r · 2−3s−1|q and u′i = |2−1 − h(m) · 2−3s−1|q.

Note that here 2−1 means the inverse of 2 mod q, not the fractional number 1
2
. Al

though we do not know whether the third least significant bit is 0 or 1, by trying these
two new settings of t′i and u′i, we are essentially guessing the third bit and construct t′i
and u′i with 3bit leakage, of which the success probability is 1

2
. Recall that typically,

for 2bit leakage, we need about 90 signatures to perform the attack. Thus the lattice
basis is the following matrix B.

B =


8q 0 · · · 0 0
0 8q · · · 0 0

...
...

0 0 · · · 8q 0
8t1 8t2 · · · 8t90 1

 , C =


16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t′1 16t′2 · · · 16t′90 1

 .

By guessing one more bit for all the signatures, we can construct the above matrix
C with all the inequalities having 3bit leakage. Of course, with this new matrix, we
could attack 160bit (EC)DSA easily, since we know that for 3bit leakage, standard
lattice attacks work well. However, we are paying a price of 290 for guessing one
more bit for all the signatures, which is unacceptable. In order to avoid the huge
computation, instead of guessing one more bit for all the signatures, we could guess
one more bit for part of the signatures, thus constructing a hybrid lattice. For instance,
we can guess one more bit for 20 out of the 90 signatures and keep the other 70
signatures unchanged as follows:

D =



16q · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0

... 16q 0
...

...
0 · · · 0 8q · · · 0 0

0 · · · 0
... · · · ...

...
16t′1 · · · 16t′20 8t21 · · · 8t90 1


Now we have increased the volume of the lattice by 220 times and perform the

lattice attacks on the new matrix at the cost of 220 operations for guessing bits.
This approach can be summarised as the following steps:

• Step 1: Determine integer constant k and collect d signatures (ri, si) (i =
1, · · · , d), and construct ti and ui with the original 2bit leakage.

• Step 2: For k of them, guess and enumerate the third least significant bit of
nonces and construct t′i and u′i with 3bit leakage. For all the other signatures,
keep ti and ui unchanged.
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• Step 3: Construct the hybrid lattice and use Kannan’s embedding method to
find the secret key (for lattice reduction, we use BKZ–30). If failed, go back
to step 2.

Under worst circumstances, we have to perform 2k times step 2 and 3, since there are
2k possibilities of the third bits of the nonces.

With thismethod, we are able to attack those “borderline” cases: 160bit (EC)DSA
with 2bit nonce leakage, 256bit (EC)DSAwith 3bit nonce leakage, 384bit (EC)DSA
with 4bit nonce leakage. See the section of experimental results. Here we make a
comparison with the approach in Section 3.4. Generally, the approach in Section 3.4
performs better than the approach in this section. The lattice attack on HNP essen
tially amounts to decoding a lattice point in a hypercube. When we guess bits of some
of the signature nonces, we reduce the length of certain sides of this hypercube. On
the contrary, when we guess bits of the secret key, we uniformly shrink the hyper
cube. For the same exhaustive search cost, the two decoding regions have the same
volume, but the average (squared) error length is smaller in the second case.

3.6 Utilizing More Data to Improve Lattice Attacks
In 2000, Bleichenbacher presented a purely statistical attack technique against biased
nonces at the IEEE P1363meeting [Ble00]. Themain idea of Bleichenbacher’s attack
is to define a bias function and search for a candidate value that is near the secret key,
thus finding many MSBs of the secret key. An advantage of Bleichenbacher attack is
that it can deal with small biases in principle at the cost of using many signatures as
input. There is a question in the community (mentioned by cryptanalysis experts on
different occasions, e.g., ECC17 by Tibouchi [Tib17], Lattice Camp20 by Heninger
[Hen20]): Is it possible to improve lattice attacks with many more signatures? We
give a solution to this question and again we are in the context of 160bit modulus
with 2bit nonce leakage.

3.6.1 From Bleichenbacher to Lattice
Motivated by Bleichenbacher attack, similar ideas could be applied to lattice attacks.
Suppose that we have d HNP inequalities with lbit leakage

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d),

and write the secret key α as

α = α1 · 2c + α2 (0 ≤ α2 < 2c).
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Where α1 is the (160 − c) MSBs of α and α2 is the remaining LSBs. If ti (i =
1, 2, . . . , d) is small enough, α2 · ti (i = 1, 2, . . . , d) will be a very small perturbation
compared with q/2l. This means that with high probability, α1 · 2c will satisfy all the
d inequalities:

|α1 · 2c · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then construct the lattice as:

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2c · 2l+1t1 2c · 2l+1t2 · · · 2c · 2l+1td 2c


In this lattice, (α12

c · 2l+1t1 + c12
l+1q, α12

c · 2l+1t2 + c22
l+1q, . . . , α12

c · 2l+1td +
cd2

l+1q, α12
c) will be the hidden lattice vector. The advantage that we get is that the

volume of the lattice is increased by 2c times, while ‖e‖ almost keeps unchanged,
thus making the attack much easier. Note that now we do not do enumeration of bits
as in previous sections.

This attack can be summarised as the following steps:

• Step 1: Collect signatures (r, s) and set:

t = 2−ls−1r mod q
u = −2−ls−1h(m) mod q

If t is small enough (smaller than some predetermined bound), then keep the
(t, u) pairs, otherwise throw it away.

• Step 2: Keep doing step 1 until we get d pairs (ti, ui) (i = 1, . . . , d).

• Step 3: Construct the above lattice and use Kannan’s embedding method to do
lattice attacks.

• Step 4: Find α1 which is the (160− c)MSBs of α.

• Step 5: Find the remaining bits of α (for example, we can construct a HNP
instance for the remaining bits).

As we previously discussed, once we have recovered many MSBs of α, recovering
the remaining bits becomes pretty easy.
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3.6.2 A Concrete Example
In order to make it clear, we show a concrete example here. For 160bit (EC)DSA
with 2bit nonce leakage, we collect t which is less than 2140 and write the secret key
α as:

α = α1 · 210 + α2 (0 ≤ α2 < 210)

and we have:

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d),
|α1 · 210 · ti + α2 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Since α2 is less than 210, α2 · t is upperbounded by 2150, q/2l has about 158 bits,
so as long as the value |α · ti − ui|q does not lie on the edge of the interval (0, q/2l)
(which happens with small probability), we could just throw the term α2 · ti away and
have:

|α1 · 210 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

In order to collect 90 signatures where t < 2140, we have to sample about 90·220 ≈ 227

signatures. The advantage is that we increase the volume of the lattice almost for free
(considering the fact that sampling a signature is much more efficient than doing
one BKZ–30 operation). Therefore, at the cost of using 227 signatures, we are able
to attack 160bit (EC)DSA with 2bit nonce leakage in just one BKZ–30 operation,
which is significantly faster than previous results. For more detail, see the section of
experimental results.

3.7 Batch SVP and Kannan Embedding Factor

3.7.1 Batch SVP
In section 3.4 and section 3.5, we have to do 2c (typically we set c = 15, 20) BKZ–30
operations on the following matrices:

C =



2l+1q 0 · · · 0 0 0
0 2l+1q · · · 0 0 0

...
...

0 0 · · · 2l+1q 0 0
2l+1t1 2l+1t2 · · · 2l+1td 1 0
v1 v2 · · · vd 0 q


.
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Write C as
C =

(
B 0
v q

)
.

Each time we perform BKZ operations, only the last row of matrix C is changed and
B is fixed. One BKZ–30 operation on a 90dimensional lattice typically takes about 3
minutes with fplll [dt20] library on Sagemath [The20]. If c = 215, the time complexity
will be 215 · 3 minutes without using multiple cores. Although this is practical time,
we could further improve the time complexity. For simplicity, we use LLL as an
example here (for BKZ it is similar). In LLL algorithm [LLL+82], there is an index
k starting from 1, which represents the row currently being reduced. Besides, there
is an exchange condition, and if it is satisfied, two adjacent rows will be exchanged.
After exchanging rows and recomputing the Gram–Schmidt norm, size reduction will
be performed.

If we consider the process of LLL reduction on the matrix C, essentially it will
first reduce the submatrix B, so every time the reduction on B is repeated, which is
not necessary. We come up with a simple solution:

• Step 1: BKZreduce the submatrix B (preprocessing).

• Step 2: Do Kannan embedding and construct the matrix C.

• Step 3: Do BKZ on the matrix C again.

This actually means that we preprocess the submatrixB. In this way, we save a lot of
computation. With this preprocessing, one BKZ–30 operation typically takes several
seconds, while the original one takes about 3 minutes.

3.7.2 Kannan Embedding Factor
In our experiments, we observe that lattice attacks on (EC)DSA are very sensitive
to the Kannan embedding factor. To the best of our knowledge, there are only a
few works that discuss how to choose the factor. For example, in Galbraith’s book
[Gal12], the embedding factor is set to 1 by default, and in [WAT17], Kannan embed
ding factor for LWE lattices (very different context) is discussed. Therefore, we give
a simple analysis for HNP lattice for completeness. As we can see from Table 3.4, if
the factor is either too small or too large, the success rate becomes very low.

Here we give an explanation why this happens. Denote the Kannan embedding
factor as γ. For simplicity, we analyze LLL reduction.

Case 1: Kannan embedding factor is too large. Recall that the embedded matrix
C is

C =

(
B 0
v γ

)
.
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Table 3.4: Kannan embedding factor test.

Modulus Leakage Signatures Kannan embedding factor Success rate

160bit 3 80 q 93/100
160bit 3 80 (q − 1)/2 97/100
160bit 3 80 q2 5/100
160bit 3 80 1 0/100

The Gram–Schmidt norm of the last row is γ, and if γ is too large, after LLL reduction
on the submatrixB, the exchange condition will not be satisfied, then only one round
of size reductionwill be performed (reduce the last row from the first (d + 1) rows) and
the algorithm terminates. By contrast, if γ is properly valued, the exchange condition
will be satisfied and the last row will be exchanged to some other row. Then Gram–
Schmidt norm will be recomputed and one round of size reduction will be performed.
Typically, the exchange happens many times, so many rounds of size reduction will
be performed. Therefore, if γ is too large, the lattice will get much less reduced.

Case 2: Kannan embedding factor is too small. Since the Gram–Schmidt norm
of the last row is γ, if the Kannan embedding factor is too small, the Gram–Schmidt
norm of the last row will be very small. After exchanging rows, size reduction will be
performed. Since the Gram–Schmidt norm is small, when performing size reduction
on other rows, many multiples of the target vector v will be added to other rows.
However, since

B =


2l+1q 0 · · · 0 0
0 2l+1q · · · 0 0

...
...

0 0 · · · 2l+1q 0
2l+1t1 2l+1t2 · · · 2l+1td 1

 ,

what we want is α · (2l+1t1, 2
l+1t2, . . . , 2

l+1td, 1) − v, so we do not want to use the
target vector v to reduce other vectors. If γ is too small, we will find that all the
vectors in the reduced basis will have a very large coefficient of v, which is not our
goal.

3.8 Gap Between the CVP and SVP Approaches
As mentioned in [JSSS20], we also observe a certain gap between the nearest plane
algorithm and Kannan’s embedding method. In this attack, Kannan’s embedding
method always outperforms nearest plane algorithm to some extent.
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Table 3.5: A comparison of the CVP and SVP approaches.

Modulus Leakage Nearest plane Kannan’s embedding method

160bit 4bit 37/100 100/100
160bit 3bit 0/100 91/100

As we can see from Table 3.5, for 160bit (EC)DSA with 4bit nonce leakage,
both approaches work well. However, nearest plane algorithm never succeeds for
3bit leakage, while Kannan’s embedding method works quite well.

Reason for the Gap. Essentially, nearest plane algorithm can be regarded as one
round of size reduction in the embedded lattice. Recall the process in the previous
section, if the Kannan embedding factor is large enough, nearest plane algorithm will
be the same as Kannan embedding, because for the last row of the embedded lattice,
the exchange condition will not be satisfied and only one round of size reduction
takes place, which is essentially the same as nearest plane. However, if the Kan
nan embedding factor is properly valued, many exchanges will happen. After one
exchange, one round of size reduction will take place, which means that Kannan’s
embedding method will make the target vector more reduced compared with nearest
plane algorithm.

3.9 Experimental Results
In this section, we show the result of our practical experiments. All the experiments
are carried out on AMDRyzen 3970x with Sagemath [The20] and fplll [dt20] library.
For lattice reduction algorithms, we are using BKZ–30. The source code is available
in [Sun21].

3.9.1 Guessing Bits of Secret Key
As we can see in Figure 3.2, as the number of guessed bits increases, the success rate
increases. Take 160bit (EC)DSA with 2bit nonce leakage for example, if we guess
15 bits for the secret key, we succeed in recovering the secret key 12 times among
200 experiments. Since we enumerate 15 bits of the secret key, the time complexity
is upper bounded by 215 BKZ–30 operations (the expected number is 214). In this
way, we are able to quantify the complexity in terms of BKZ operations. Instead of
directly using realtime, the advantage is that it gives us a clear impression of the
time complexity and this is independent of the machine being used. Besides, it is
easy to estimate the practical attack time. For instance, with Ryzen 3970x and batch
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SVP technique described in section 3.7, one BKZ–30 operation on a 90dimensional
lattice takes 40 seconds (on average) on a single core, so the expected time is 214·40s

32
≈

10200s, which is several hours.
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Figure 3.2: Experimental results: guessing bits of the secret key vs. of the nonces.

3.9.2 Guessing Bits of Nonces
Similarly, for 160bit (EC)DSA with 2bit nonce leakage, if guessing 1 more bit for
20 of the 90 signatures, we succeed in recovering the secret key 14 times out of 200
experiments, so the time complexity is 220 BKZ–30 operations. Actually, we could
even estimate the time complexity for 1bit nonce leakage. What we could do is
to guess 2 more bits for 20 of the signatures and guess 1 more bit for the other 70
signatures, so the time complexity is 420 · 270 = 2110 BKZ–30 operations. Although
this is not practical (thus not so meaningful), it is an estimate of computation cost for
1bit leakage.

3.9.3 Improving Lattice Attacks with More Data
Recall that in Section 3.6, we discussed that for one HNP inequality |αt − u|q <
q/2l, if we get small t, then we can construct a lattice that has larger volume. In our
experiments, summarized in Table 3.6, we find that for 160, 256, 384bit modulus
q, if t has less than 140, 226, 344 bits respectively, we can perform the attack. Take
160bit modulus for example, in order to get 90 inequalities where all the t ≤ 2140,
we have to sample 220 · 90 ≈ 227 signatures. This may seem too many in practical
setting, but the advantage is that we could recover about 150 MSBs of the secret key
in just one BKZ30 operation.
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Table 3.6: Utilizing more data to improve lattice attacks.

Modulus Leakage Upper bound on t Signatures Time complexity Success rate

160bit 2bit 2140 227 1 BKZ30 30/200
256bit 3bit 2226 237 1 BKZ30 27/200
384bit 4bit 2344 247 1 BKZ30 62/200

3.9.4 Experiments on the TPM–FAIL Dataset
Wealso carry out experiments on the TPM–FAIL [MSEH20] dataset (256bit ECDSA).
The first row of the dataset contains the public key and the message being signed.
Each of the other rows contains (r, s) and t, where (r, s) is the signature and t is the
signing time. One typical way to perform the attack is:

• Collect N signatures.

• Choose d out of the N signatures, whose signing time is the fastest.

• For each of the d signatures, assign leakage l.

• Construct HNP inequalities and perform lattice attacks.

For 256bit modulus, if setting l = 3, typically d ≈ 90. In [MSEH20], the authors
use about 40000 signatures and in Minerva [JSSS20], a new technique of geometric
assignment of leakage is proposed: assign half of the d signatures with leakage l = 3,
one fourth of them having leakage l = 4, and so on. In our experiments, we combine
these techniques with our method of guessing bits of the secret key and come up with
the following attack:

• Randomly collect 800 signatures.

• Choose 90 out of the 800 signatures, whose signing time is the fastest.

• Geometrically assign the leakage l.

• Guess and enumerate some LSBs of the secret key and perform lattice attacks
described in section 3.4.

We do 100 experiments and succeed 3 times. In this way, with only 800 signatures
available, we are able to recover the secret key for TPM–FAIL dataset. For the most
part of this work, we are in a setting where there is no noise in the sense that leakage
is assigned correctly for each signature. However, this is not the case in general
in practice. If the number of signatures is enough, it is easy to assign the leakage
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correctly with high probability, but if N = 800, it is unavoidable that some of the
assignment are wrong, which is somewhat annoying and makes the success rate very
low. There are many robust techniques in Minerva [JSSS20] for dealing with noise,
which are very important contribution of that paper. For example, the random subset
technique in Minerva could be utilized: instead of choosing d out ofN signatures, we
could choose 1.5d signatures and collect a random subset having d elements. Besides,
theCVP+ flip technique can be applied: change u to correct errors (this part can even
be generalized with our nonce guessing technique by flippingmore bits). Considering
that our work is largely orthogonal and complementary to Minerva and we only use
BKZ–30 (which could be replaced with stronger lattice reduction algorithms, e.g.,
[CN11, AWHT16, ADH+19, EK20, KEF21]), it is fair to say that our approaches
help improving the attack.
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Chapter 4

Constructing Efficient and Secure
Latticebased Signatures

This chapter is based on joint work with Thi Thu Quyen Nguyen, Thomas Espitau,
Alexandre Wallet and my supervisors.

4.1 Introduction

4.1.1 Hashandsign latticebased signatures
From GGH to Falcon. Falcon [PFH+22] is one of the three signature schemes
already selected for standardization in the NIST postquantum competition. It rep
resents the state of the art in hashandsign latticebased signatures, one of the two
main paradigms for constructing latticebased signatures alongside Lyubashevsky’s
Fiat–Shamir with aborts [Lyu09, Lyu12] (which is also represented among the final
selected candidates of the NIST competition in the form of Dilithium [LDK+22]).

This makes Falcon the culmination of a long line of research in constructing sig
nature schemes from lattice trapdoors. The basic idea, which dates back to the late
1990s with the GGH [GGH97] and NTRUSign [HHP+03] signature schemes, is to
use as signing key a “good” basis (the trapdoor) of a certain lattice allowing to ap
proximate the closest vector problem to a good factor, and as the verification key a
“bad” basis which allows to test membership but not decode large errors. The signa
ture algorithm then hashes a given message to a vector in the ambient space of the
lattice, and uses the the trapdoor to find a relatively close lattice point to that vector.
The difference is the signature, which is verified by checking that it is small and that
its difference with the hashed vector belongs to the lattice.

The GGH scheme, as well as several successive variants of NTRUSign, were
eventually broken by statistical attacks [GS02, NR06, DN12]: it turned out that sig
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natures would reveal partial information about the secret trapdoor, that could then
be progressively recovered by an attacker. This problem was finally solved in 2008,
when Gentry, Peikert and Vaikuntanathan (GPV) [GPV08] showed how to use Gaus
sian sampling in the lattice in order to guarantee that signatures would reveal no in
formation about the trapdoor.

GPV signatures over NTRU lattices. In order to instantiate the GPV framework
efficiently in practice, one then needs lattices with compact representation and ef
ficiently computable trapdoors, which has so far been achieved using module lat
tices over rings—in fact, mostly rank2 modules over cyclotomic rings, exactly cor
responding to NTRU lattices (although higher rank modules, namely ModNTRU
lattices, have been shown to be usable as well in certain in certain ranges of pa
rameters [CPS+20]). This was first carried out by Ducas, Lyubashevsky and Prest
(DLP) [DLP14], who analyzed trapdoor generation for poweroftwo cyclotomic ring
NTRU lattices and constructed corresponding GPVstyle signatures. DLP signatures
are compact, but the signing algorithm is rather slow: quadratic in the dimension
2d of the lattice. This is because the lattice Gaussian sampling algorithm that forms
the core of its signing procedure (namely Klein–GPV sampling, in essence a random
ized version of Babai’s nearest plane algorithm for approximate CVP) cannot directly
take advantage of the algebraic structure of the lattice, and thus operates on the full
(2d)×(2d)matrix of the lattice basis as well as its Gram–Schmidt orthogonalization.

Falcon is a direct descendent of theDLP scheme, that replaces the generic, quadratic
complexity Klein–GPV sampler in signature generation by an efficient, quasilinear
compexity lattice Gaussian sampler that does take advantage of the ring structure.
Specifically, that new algorithm is constructed by randomizing the Fast Fourier Or
thogonalization (FFO) algorithm of Ducas and Prest [DP15a], and operates in a tree
like fashion traversing the subfields of the poweroftwo cyclotomic field over which
the NTRU lattice is defined. This makes Falcon particularly attractive in various
ways: it offers particularly compact signatures and keys (providing the best band
width requirements of all signature schemes in the NIST competition), achieves high
security levels in relatively small lattice dimensions, and has both fast signing and
very efficient verification speeds.

However, the FFObased Gaussian sampler is also the source of Falcon’s main
drawbacks: it is a really contrived algorithm that is difficult to implement correctly,
parallelize or protect against sidechannels. It is also really difficult to adapt to other
rings than poweroftwo cyclotomics, which drastically limits Falcon’s versatility in
terms of parameter selection: in fact, recent versions of Falcon in the NIST compe
tition only target either the lowest NIST security level (using cyclotomic fields of
dimension 512) or the highest (using fields of dimension 1024) and nothing inbe
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tween.1

4.1.2 The hybrid sampler and Mitaka
The Peikert and hybrid samplers. After the publication of the DLP paper, Ducas
and Prest explored and analyzed other approaches for lattice Gaussian sampling over
NTRU lattices, as discussed in depth in Prest’s Ph.D. thesis [Pre15], with a view to
wards overcoming the quadratic complexity of the naive Klein–GPV sampler. While
the introduction of the FFO sampler was the final step of that exploration, they also
considered two other major approaches along the way, which also achieve quasilinear
complexity (see also [DP15b]).

The first approach was not actually novel: it was the ring version of Peikert’s
lattice Gaussian sampler [Pei10], which is the randomization of the Babai round
ing algorithm for approximate CVP, just like Klein–GPV is the randomization of
Babai’s nearest plane. For NTRU lattices, this algorithm consists of independent one
dimensional Gaussian samplings for each vector component (hence a linear number
in total), as well as 2 × 2 matrixvector products over the ring, amounting to a con
stant number of ring multiplications, that are all quasilinear when using FFTbased
fast arithmetic. Thus, Peikert’s sampler for NTRU lattices is quasilinear as required.
However, Ducas and Prest analyzed the quality of NTRU trapdoors (generated in the
same way as DLP) with respect to Peikert’s sampler, and found that it was much
worse than for Klein–GPV, both concretely and asymptotically. In other words, for
the same choice of parameters, it would reduce security considerably to instantiate
DLP with Peikert’s sampler instead of Klein–GPV (and to recover the same security,
a large increase in the dimension of the underlying ring, and hence the size of keys
and signatures, would be required).

As a kind of middle ground between Peikert (fast but less secure) and Klein–GPV
(secure but much slower), they introduced as a second approach the hybrid sampler,
which uses the same structure as Klein–GPV (a randomized nearest plane algorithm)
but over the ring instead of over Z. In the rank2 case of NTRU, this reduces to
just two “nearest plane” iterations consisting of Gaussian sampling over the ring,
which is itself carried out using Peikert’s sampler with respect to a short basis of the
ring. This algorithm remains quasilinear, but achieves a significantly better quality
than Peikert for DLPstyle NTRU trapdoors, although not as good as Klein–GPV.
Concretely, for those NTRU trapdoors over the cyclotomic ring of dimension 512
(resp. 1024), signatures instantiated with the hybrid sampler achieve a little over 80
bits (resp. 200 bits) of classical CoreSVP security, compared to over 120 bits (resp.

1The earliest version of the Falcon specification [PFH+17] also included an intermediate parameter
set of dimension 768, but the corresponding algorithms were so complicated that it was eventually
dropped.
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280 bits) for Klein–GPV.

Pros and cons of hybrid vs. FFO. This substantial security loss is presumably
the main reason that led to the hybrid sampler being abandoned in favor of the FFO
sampler (which achieves the same quality as Klein–GPV but with quasilinear com
plexity) in the Falcon scheme. Indeed, security aside, the hybrid sampler has a num
ber of advantages compared to the FFO sampler of Falcon: it is considerably simpler
to implement, somewhat more efficient in equal dimension, easily parallelizable and
less difficult to protect against sidechannels; it also has an onlineoffline structure
that can be convenient for certain applications, and it is easier to instantiate over non
poweroftwo cyclotomics, making it easier to reach intermediate security levels.

For these reasons, the use of the hybrid sampler to instantiate signatures over
NTRU lattices was recently revisted by Espitau et al. as part of their proposed scheme
Mitaka [EFG+22]. One of the key contributions of that paper is an optimization of
trapdoor generation for the hybrid sampler that mitigates the security loss by making
it possible to construct better quality trapdoor in reasonable time. Combined with the
various advantages of the hybrid sampler, this allows the authors of Mitaka to achieve
a tradeoff between simplicity and security that they argue can be more attractive than
Falcon. However, despite their efforts, Mitaka remains substantially less secure than
Falcon in equal dimension (it loses over 20 bits of classical CoreSVP security over
rings of dimension 512, and over 50 bits over rings of dimension 1024), with a much
slower and more contrived key generation algorithm as well. In particular, Mitaka
falls short of NIST security level I in dimension 512 and of level V in dimension
1024, making it less than ideal from the standpoint of parameter selection.

4.1.3 Contributions and technical overview of this work
In this work, we introduce a novel trapdoor generation technique for Prest’s hybrid
sampler that solves the issues faced by Mitaka in a natural and elegant fashion. Our
technique gives rise to a much simpler and faster key generation algorithm than Mi
taka’s (achieving similar speeds to Falcon), and it is able to comfortably generate
trapdoors reaching the same NIST security levels as Falcon. It can also be easily
adapted to rings of intermediate dimensions, in order to support the same versatility
as Mitaka in terms of parameter selection (just with better security). All in all, this
new technique achieves in some sense the best of both worlds between Falcon and
Mitaka.

NTRU trapdoors and their quality. In order to give a overview of the technical
ideas involved, we need to recall a few facts about NTRU trapdoors and their quality
with respect to the Klein–GPV and hybrid samplers. For simplicity, we concentrate
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on the special case of poweroftwo cyclotomic ringsR = Z[x]/(xd+1). Over such
a ring, an NTRU lattice is simply a fullrank submodule lattice of R2 generated by
the columns of a matrix of the form:

Bh =

[
1 0
h q

]
for some rational prime number q and some ring element h coprime to q. Note that
this can also be described as a lattice of pairs (u, v) ∈ R2 such that uh−v = 0 mod q.

A trapdoor for this lattice is a relatively short basis:

Bf,g =

[
f F
g G

]
where the basis vectors (f, g) and (F,G) are not much larger than the normalized
volume

√
detBh =

√
q of the lattice. Since those vectors belong to the lattice, we

have in particular that g/f = G/F = h mod q. Moreover, since the determinants are
equal up to a unit of R, we can impose without loss of generality that fG− gF = q.

Using the trapdoorBf,g, lattice Gaussian samplers are able to output lattice vectors
following a Gaussian distribution on the lattice of standard deviation2 to output a
small multiple α√q of the normalized volume √q. The factor α is the quality, and
depends both on the trapdoor and on the sampler itself. The lower the quality, the
better the trapdoor, and the higher the security level of the resulting signature scheme.
For the Klein–GPV sampler, one can show that the quality α is (1/√q times) the
maximum norm of a vector in the Gram–Schmidt orthogonalization of the basis Bf,g

regarded as a (2d)× (2d) matrix over Z, whereas for the hybrid sampler, it is similar
but with the Gram–Schmidt orthogonalization over R itself.

Those quantities admit a simple expression in terms of the embeddings of the
ring elements f and g. Recall that the embeddings are the d ring homomorphisms
ϕi : R → C; when elements of R are seen as polynomials, these embeddings are
simply the evaluation morphisms ϕi(u) = u(ζi)where the ζi’s are the d primitive 2d
th roots of unity in C. Then, quality of the basis Bf,g with respect to the Klein–GPV
sampler admits the following simple expression:

αGPV = max
(1
d

d∑
i=1

|ϕi(f)|2 + |ϕi(g)|2

q
,
1

d

d∑
i=1

q

|ϕi(f)|2 + |ϕi(g)|2
)
.

Similarly, the quality with respect to the hybrid sampler is:

αhybrid = max
1≤i≤d

(
max

( |ϕi(f)|2 + |ϕi(g)|2

q
,

q

|ϕi(f)|2 + |ϕi(g)|2
))

.

2The actual standard deviation also includes an additional factor (the smoothing parameter of the
ring) which we omit in this overview for simplicity’s sake.
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Note that |ϕ(f)|2 + |ϕi(g)|2 = ϕi(ff
∗ + gg∗) where the star denotes the complex

conjugation automorphism of R (defined by x∗ = 1/x = −xd−1). Thus, put differ
ently, one can say that a trapdoor Bf,g achieves quality α or better for the Klein–GPV
sampler if and only if the embeddings of (ff ∗+ gg∗)/q and of its inverse are at most
α on average, whereas quality α or better is obtained for the hybrid sampler if all
of the embeddings of these values are at most α. This shows in particular that the
quality of a given trapdoor is always at least as good for Klein–GPV as it is for the
hybrid sampler, which explains why it may be easier in practice to construct good
quality trapdoors for the former than for the latter.

Trapdoor generation in Falcon and Mitaka. Now, the way trapdoors are gener
ated in Falcon is by sampling f and g according to a discreteGaussian inR (which can
easily be done by sampling the coefficients as discrete Gaussians over Z) so that their
expected length is a bit over√q, and verifying using the condition above that the qual
ity with respect to the Klein–GPV (or equivalently Falcon’s) sampler isαFalcon = 1.17
or better, and restarting otherwise (the value 1.17 here is chosen roughly as small as
possible while keeping the number of repetitions relatively small).

The approach to generate trapdoors in Mitaka is similar using the quality formula
for the hybrid sampler, and a target quality of αMitaka = 2.04 in dimension 512 (and
slightly increasing as the dimension becomes larger). Doing so directly would take
too many repetitions, however, so in fact the candidates for f and g are obtained by
linear combinations of smaller Gaussian vectors and by applying Galois automor
phisms to generate many candidate vectors (f, g) from a limited number of discrete
Gaussian samples. Using that approach, Mitaka achieves the stated quality with a
comparable number of discrete Gaussian samples as Falcon; its key generation algo
rithm is much slower, however, as it has to carry out an exhaustive search on a much
larger set of possible candidates.

Our Antrag strategy: annular NTRU trapdoor geneneration. In both Falcon
and Mitaka, however, the overall strategy is to generate randomlooking candidates
(f, g) of plausible length, and repeat until the target quality is reached. In this work,
we suggest a completely different strategy that is in some sense much simpler and
more natural: just pick the pair (f, g) uniformly at random in the set of vectors that
satisfy the desired quality level. We propose and analyze this approach specifically
for the hybrid sampler.3

3One could consider doing so for Klein–GPV as well, but this appears less relevant for two reasons.
First, since 1.17 is already quite close to the theoretical optimal quality of 1, and since the number of
repetitions in Falcon’s key generation is fairly modest, there is not much to gain in the Klein–GPV
setting. Second, the space of key candidates has a less elegant geometric description, making it more
difficult to sample uniformly in it.
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Concretely, yet another way of reformulating the quality condition for the hybrid
sampler is to say that the quality is α or better if and only if for all the embeddings
ϕi, one has:

q/α2 ≤ |ϕi(f)|2 + |ϕi(g)|2 ≤ α2q.

In other words, for each embedding, the pair
(
|ϕi(f)|, |ϕi(g)|

)
lies in the annulus

A
(√

q/α, α
√
q
)
bounded by the circles of radii √q/α and α√q—or more precisely,

in the arcA+
α = A+

(√
q/α, α

√
q
)
of that annulus located in the upperright quadrant

of the plane since those absolute values are nonnegative numbers. Our approach is
then to sample f and g by their embeddings (i.e., directly in the Fourier domain),
and select those embeddings uniformly and independently at random in the desired
space. Namely, we sample d/2 pairs (xi, yi) in the arc of annulus A+

α , and set the ith
embedding of f (resp. g) to a uniformly random complex number xi · eiθi of absolute
value xi (resp. of absolute value yi).

An obvious issue is that the elements f and g constructed in this waywill generally
not lie in the ring itself: after mapping back to the coefficient domain by Fourier
inversion, their coefficients are a priori abitrary real numbers instead of integers. But
this is easy to address: we simply round coefficientwise to obtain an actual ring
element.

A second issue is that this rounding step will not necessarily preserve the quality
property we started from: the embeddings of the rounded values do not necessarily
remain in the correct domain. In fact, the probability that all embeddings remain in the
correct domain after rounding is very low. But there is again a simpleworkaround: we
just carry out our original continuous sampling in the Fourier domain from a slightly
smaller annulus than the target one. Instead of picking the pairs (xi, yi) in A+

α as
above, we sample them uniformly in someA+(r, R)with r slightly larger than√q/α
and R slightly smaller than α√q. This considerably increases the probability that,
after rounding, all of the pairs

(
|ϕi(f)|, |ϕi(g)|

)
will in fact end up in A+

α .
And voilà: the description above is essentially a complete trapdoor generation

algorithm for the hybrid sampler, that easily reaches the same NIST security levels as
Falcon. Concretely, we target α = 1.17 in dimension 512 (the same as Falcon) and
α = 1.64 in dimension 1024 (to obtain the 256 bits of classical CoreSVP security
corresponding to NIST level V), and with those numbers, we achieve key generation
speeds close to Falcon’s, while benefitting of all the advantages of Mitaka in terms of
simplicity of implementation, efficiency, parallelizability and so on as far as signing
in concerned.

Our contributions. The main contribution of this work is to introduce, analyze and
implement the Antrag trapdoor generation algorithm for the hybrid sampler described
above.

The analysis includes a heuristic estimate of the success probability of sampling in
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the required domain, as well as a discussion of possible attacks on the resulting keys
(and even though our security analysis is in a very optimistic model for the attacker,
we find no weakness as long as the original sampling domain A+(r, R) is not chosen
to be extremely narrow), and concrete parameters to instantiate a signature scheme.

We also provide, as supplementary material, a full portable C implementation
of the corresponding signature scheme based on those of Falcon and Mitaka. In
fact, since the C implementation of Mitaka did not include the key generation algo
rithm, our implementation is the first complete implementation of the corresponding
paradigm. This implementation lets us compare the performance of our key genera
tion with Falcon’s, and we find that they are quite close.

Although most of the previous discussion was in the context of poweroftwo cy
clotomics, our approach also extends to other base rings essentially without change.
In particular, it is still possible to map candidate continuous random values gener
ated in the Fourier domain to the ring by coefficientwise rounding (we could con
sider other decoding techniques, but this one is sufficient for our purposes; it was in
fact already used in the original ternary version of Falcon: see [PFH+17, Algorithm
10]). This only changes the distribution of the “rounding error” and hence the success
probability slightly, but the analysis carries over easily. It follows that our approach
supports the same versatility as Mitaka in terms of parameter settings.

4.2 Preliminaries
Some of the notations are borrowed from the Mitaka paper [EFG+22]. For two real
numbers 0 ≤ r ≤ R, we denote by A(r, R) the annulus limited by radii r and R, i.e.
the following subset of the planeR2: A(r, R) :=

{
(x, y) ∈ R2 | r2 ≤ x2+y2 ≤ R2

}
.

We also denote by A+(r, R) the arc of annulus located in the upperright quadrant of
the plane, i.e., A+(r, R) :=

{
(x, y) ∈ A(r, R) | x, y ≥ 0

}
.

If f is a some function over a set S, denote f(S) =
∑

s∈S f(s) assuming that
this sum is absolutely convergent. b·e represents the rounding of a real number to
its closest integer. For a polynomial f , bfe represents the polynomial whose each
coefficient is rounded to the nearest integer. We use At to represent the transpose
matrix of A. Let Q ∈ Rn×n be a symmetric matrix. If Q is positive definite, then we
write as Q � 0. i.e. xtQx > 0 for all nonzero x ∈ Rn. We also write Q1 � Q2

when Q1 − Q2 � 0. A norm for a vector x ∈ Rn can be defined with the positive
definite matrix Q as ||x||Q =

√
xtQx. Besides, a bilinear form can be defined as

〈x, y〉Q = xtQy. Denote the largest singular value of A as s1,Q(A) = maxx ̸=0
||Ax||Q
∥x∥Q

.
A lattice L is a discrete additive subgroup in the Euclidean space Rm. A lattice

can be generated by one basis B ∈ Rm×d having linearly indepedent columns. d
is called the rank of L . The volume of the lattice w.r.t the norm || · ||Q is defined
volQ(L ) = det(BtQB)1/2 = | det(B)|

√
det(Q) for any basis B.
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4.2.1 Cyclotomic fields
Let m be an positive integer, and d = φ(m) be the degree of the mth cyclotomic
polynomial Φm (φ is the Euler totient function). Let ζ to be a mth primitive root of
1. Then for a fixed m, K := Q(ζ) is the cyclotomic field associated with Φm, and
its ring of algebraic integers is R := Z[ζ]. The field automorphism ζ 7→ ζ−1 = ζ̄
corresponds to the complex conjugation, and we write f ∗ the image of f under this
automorphism. We have K ' Q[x]/(Φm(x)) and R ' Z[x]/(Φm(x)), and both
are contained in KR := K ⊗ R = R[x]/(Φm(x)). Each f =

∑d−1
i=0 fiζ

i ∈ KR can
be identified with its coefficient vector (f0, · · · , fd−1) ∈ Rd. The adjoint operation
extends naturally to KR, and K +

R is the subspace of elements satisfying f ∗ = f .
The cyclotomic field K has d complex field embeddings ϕi : K → C, where

each embedding maps f to its evaluations at all the primitive roots of unity ζk where
gcd(k,m) = 1. This is usually called the canonical embeddingϕ(f) := (ϕ1(f), . . . , ϕd(f)).
The embedding can also naturally applied to KR and maps to the space H = {v ∈
Cd : vi = vd/2+i, 1 ≤ i ≤ d/2}. According to the properties of embeddings,
ϕ(fg) = (ϕi(f)ϕi(g))0<i≤d. When needed, this embedding extends entrywise to
vectors or matrices over KR. We let K ++

R be the subset of K +
R whose canonical

embedding has all positive coordinates. We have a partial ordering over K +
R by

f � g if and only if f − g ∈ K ++
R . We can also equip the algebra KR with a norm

NK (x) =
∏

i ϕ(x), which extends the standard field norm.
The next technical lemma is useful in our analyses, and is obtained by elementary

trigonometric identities.

Lemma 27. Let ζ = exp(iθ) with θ = 2kπ
m

and gcd(k,m) = 1 be a mth prim
itive root of the unity, and d = φ(m). Let S(θ) =

∑d−1
j=0 ζ

2j . We have S(θ) =
sin(θd)
sin θ e

iθ(d−1) and

ReS(θ) =
1

2
+
sin((2d− 1)θ)

2 sin θ
and ImS(θ) =

sin(dθ) sin((d− 1)θ)

sin θ
.

Remark. Ifm is a power of 2 then 2d = m so we always have S(θ) = 0.

4.2.2 KRvalued matrices
For Q ∈ K 2×2

R , denote Q∗ as its conjugatetranspose, where ∗ is the conjugation
in KR. Positive definiteness extends to such matrices: we say Q is totally positive
definite when Q = Q∗ and all the d matrices ϕi(Q) induced by the field embeddings
are hermitian positive definite. We then write Q � 0. We define a KRbilinear form
〈x, y〉Q = x∗Qy. With the canonical embedding, we define an euclidean norm on H
as ‖ϕ(x)‖2Q =

∑
i ϕi(〈x, x〉Q).
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With the defined norm and KRbilinear form, the GramSchmidt orthogonaliza
tion procedure for a pair of linearly independent vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 −
〈b1,b2〉Q
〈b1,b1〉Q

· b̃1.

It is easy to check that 〈b̃1, b̃2〉Q = 0. The GramSchmidt matrix with columns
b̃1, b̃2 is denoted by B̃ and according to standard linear algebra computation, we have
det B̃ = detB. For a given formQ, we let |B|K ,Q = max(||ϕ(〈b̃1, b̃1〉)Q||∞, ||ϕ(〈b̃2, b̃2〉)Q||∞)1/2.
When there is no subscript Q, it is implied that Q = I2.

4.2.3 NTRU lattices
In this work, we only consider a free Rmodules of rank 2 in K 2. Suppose that
this rank 2 free module has a basis (x, y). Then the free module is all the Rlinear
combinations of the basis (x, y). In other words, the free module is M = Rx+ Ry
where x = (x1, x2), y = (y1, y2). We define K 2

R with a totally positive definite form
Q and its corresponding inner product. Suppose that B is the basis matrix for M , the
volume of the associated lattice is volQ(M ) =

√
NK

(
detB∗QB

)
.

Given f, g ∈ R such that f is invertible modulo some prime q ∈ Z, we let
h = f−1g mod q. The NTRU module determined by h is LNTRU = {(u, v) ∈ R2 :
uh− v = 0 mod q}. Two bases of this free module are often used for our purpose:

Bh =

[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG− gF = q and (F,G) should have relatively small
norm. This free module can be regarded as a lattice of volume qd

√
NK (detQ) in

(R2d, Q) in the coefficient embedding.

Lemma 28. [EFG+22] Let Bf,g be a basis of an NTRU module and b1 = (f, g). We
have√qNK (detQ)1/(4d) ≤ |Bf,g|K ,Q and

|Bf,g|2K ,Q = max
(
||ϕ(〈b̃1, b̃1〉Q)||∞,

∥∥∥∥ q2 · detQ
ϕ(〈b̃1, b̃1〉Q)

∥∥∥∥
∞

)

4.3 New trapdoor algorithms for hybrid sampling

4.3.1 NTRU trapdoors in Falcon and Mitaka
In this section, for the sake of simplicity, we explain the trapdoor generation algorithm
in the poweroftwo cyclotomic case, and with the KRbilinear form associated to
Q = I2.
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With respect to Prest’s hybrid sampler, an NTRU trapdoor Bf,g has a quality α
defined as

α = |Bf,g|K /
√
q, (4.1)

where we recall that |Bf,g|2K = max
(
‖ϕ(ff ∗ + gg∗)‖∞,

∥∥ q2

φ(ff∗+gg∗)

∥∥
∞

)
. Quality

with respect to the Klein–GPV sampler admits a similar expression.
In hashandsign signatures, security againt forgery attacks is driven by the stan

dard deviation of the sampler, which is essentially α√q. As the smaller the value
of α, the harder forgery becomes. The goal of key generation in schemes such as
DLP [DLP14], Falcon [PFH+22] and Mitaka [EFG+22] is to construct in reasonable
time bases Bf,g with α as small as possible (and in particular, smaller than a given
threshold related to the acceptance radius of signature verification).

An important observation regarding NTRU trapdoors is that the knowledge of
the first basis vector (f, g) alone is sufficient to determine the quality of the whole
basis (see for example Lemma 28 for Mitaka). As a result, to test if a vector (f, g)
can be completed into a trapdoor Bf,g reaching the desired quality threshold, it is
not necessary to compute the second vector (F,G), which is a notoriously costly
operation, even accounting for optimizations such as [PP19].

In DLP, Falcon and Mitaka, trapdoors are then generated by trialanderror, by
generating many potential candidate first vectors (f, g) and testing whether they sat
isfy the required quality threshold. The candidates themselves are generated as dis
crete Gaussian vectors in R2 with the correct expected length. In that way, Falcon
reaches quality α = 1.17 with respect to its FFObased sampler (that admits the
same quality metric as Klein–GPV). Doing this directly for the hybrid sampler, as
discussed in [Pre15], only achieves quality ≳ 3 in dimension 512, and even larger
in higher dimensions. As a result, the Mitaka paper has to introduce randomness
recycling and other techniques on top of this general approach in order to increase
the number of candidates and improve achievable quality; with those improvements,
Mitaka acheives quality α = 2.04 in dimension 512 (which translates to 20 fewer
bits of security compared to Falcon, and is thus unfortunately not sufficient to reach
NIST security level I).

4.3.2 Antrag: annular NTRU trapdoor generation
The main contribution of this work is a novel NTRU trapdoor generation algorithm
for the hybrid sampler, which achieves much better quality than Mitaka, and reaches
the same security NIST levels as Falcon.

The intuition behind our new approach stems from the following observation. For
a fixed α ≥ 1, requiring a trapdoor Bf,g to satisfy |Bf,g|K ≤ α

√
q is equivalent to
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enforcing that for all 1 ≤ i ≤ d, we have
q

α2
≤ |ϕi(f)|2 + |ϕi(g)|2 ≤ α2q, (4.2)

(where we recall that the ϕi(f) are the embeddings of f in C, and similarly for g).
Equivalently, this means that for all i, the pair

(
|ϕi(f)|, |ϕi(g)|

)
belongs to the arc of

annulus A+
α := A+

(√
q/α, α

√
q
)
.

It is thus natural to try and sample f and g from their embeddings (i.e., in the
Fourier domain), by picking the pairs

(
ϕi(f), ϕi(g)

)
as uniform random pairs of com

plex numbers such that satisfying the condition that the pair of their magnitudes be
longs toA+

α : in other words, pick (xi, yi) uniformly at random inA+
α and then sample

ϕi(f) and ϕi(g) as uniform complex numbers of magnitures xi and yi respectively.
Note that only d/2 pairs are needed, as the remaining ones are determined by conju
gation.

Moreover, sampling uniformly in an annulus (or, as in our case, an arc of annulus)
in polar coordinates (ρ, θ) is easy: it suffices to sample the angle θ and the square ρ2
of the radial coordinate uniformly in their respective ranges. This is because the area
element in polar coordinates in ρ dρ dθ = 1

2
d(ρ2) dθ. This gives rise to Algorithm 1

for the sampling on the pairs of embeddings.
However, one soon realizes that the real polynomials f̃ , g̃ corresponding to the

embeddings generated by the Algorithm 1 (via the inverse Fourier transform ϕ−1) do
not always have integer coefficients, and hence do not generally correspond to ring
elements. In general, they are arbitrary elements of the Ralgebra KR.

In order to obtain actual ring elements, a natural solution is to round those real
polynomials f̃ , g̃ coefficientwise. This yields f = bf̃e and g = bg̃e in R, which
are potential candidates for a trapdoor. It turns out, however, that if one starts from
f̃ , g̃ uniform with their embeddings of magnitude in A+

α , the resulting rounded ring
elements are very unlikely to also have their embeddings of magnitude in that arc
of annulus. Thus, they do not typically give rise to a trapdoor of the desired qual

Figure 4.1: (|z|, |w|) is sampled uniformly in the annulus A+(r, R).
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Input: 0 < r < R, the radii of A+(r, R)
Result: z, w ∈ C uniformly such that

(
|z|, |w|

)
∈ A+(r, R)

u←↩ U
(
[r2, R2]

)
;

ρ←
√
u ;

θ ←↩ U
(
[0, π/2]

)
;

(x, y)←
(
ρ cos θ, ρ sin θ

)
; /* (ρa, ρb)← U(A(r, R)) */

ω, ω′ ←↩ U
(
[0, 2π]

)
;

(z, w)←
(
x · eiω, y · eiω) ;

return (z, w);
Algorithm 1: Candidate pairs from uniform annulus sampling

ity. This is because rounding adds an additive term (essentially uniformly distributed
in [−1/2, 1/2)) to each coefficient, which translates to an additive “error” on each
embedding, making it unlikely that the embeddings all remain in the desired domain.

A straightforward workaround is to compensate this decoding error by sampling
the embeddings of f̃ , g̃with theirmagnitude in a narrower annulusA+

(
(1/α+ε)

√
q, (α−

ε)
√
q
)
. This yields Algorithm 2, which is our proposed Antrag trapdoor generation

algorithm.
Remark. One could consider carrying out the decoding to the ring differently, for
example by sampling discrete Gaussians f and g inR centered at f̃ and g̃ respectively.
The resulting algorithm would be simpler to analyze in some ways, and might be seen
as better behaved in a certain sense, but it does have a major drawback: it introduces
a much larger decoding error (on the order of the smoothing parameter ηϵ(Z) of Z on
each coefficient, instead of the standard deviation 1/

√
12 of the uniform distribution

in [−1/2, 1/2), so about 4 times larger). As a result, in this work, we focus on the
rounding approach.

Since the magnitude of the rounding error is indepedent of q, however, the Gaus
sian decoding approach could be preferred in settings where q is chosen larger than
in schemes like Falcon and Mitaka (e.g., identitybased encryption and other more
advanced applications of GPVstyle trapdoors).

4.3.3 Error analysis
We have mentioned above that taking the magnitudes of the embeddings of f̃ and g̃
in A+

α was very unlikely to result in f and g of the required quality α after rounding,
but that the probability increased greatly when choosing f̃ and g̃ with embedding
magnitudes in a narrower arc of annulus A+(r, R) with

r =
(
1/α + ε

)√
q and R =

(
α− ε

)√
q.
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Input: The degree d, a target quality α, a correction parameter ε, and q
Result: f, g ∈ R2 such that q

α2 ≤ |ϕi(f)|2 + |ϕi(g)|2 ≤ α2q for ∀i.
(r, R)←

(
(1/α + ε)

√
q, (α− ε)√q

)
;

repeat
for 1 ≤ i ≤ d/2 do

using Algorithm 1, sample (zi, wi) ∈ C2 uniformly such that(
|zi|, |wi|

)
∈ A+(r, R).

end
f̃ ← ϕ−1(z1, . . . , zd/2) ∈ KR ;
g̃ ← ϕ−1(w1, . . . , wd/2) ∈ KR ;
f ← bf̃e ;
g ← bg̃e ;

until
(
|ϕi(f)|, |ϕi(g)|

)
∈ A+

(√
q/α, α

√
q
)
for all i = 1, . . . , d/2;

return (f, g)
Algorithm 2: Antrag trapdoor generation

In this section, we would like to quantify this claim, based both on a heuristic analysis
of the success probability, and on simulation data. Concretely, write e = (ef , eg) =(
f − f̃ , g − g̃

)
∈ K 2

R for the error term introduced by rounding. We would like
to control the distribution of the embeddings of ef and eg in order to estimate the
likelihood that the condition

(
|ϕi(f)|, |ϕi(g)|

)
will be satisfied for all i.

In the polynomial basis, we write:

ef =
d−1∑
j=0

e
(j)
f xj

and similarly for eg. Heuristically, we expect the coefficients e
(j)
f and e(j)g to behave

essentially like independent uniform random variables in [−1/2, 1/2).4 This is well
supported by experiments (see Figure A.1a in Supplementary Material A).

Now consider a single embedding ϕ0, and recall that we are interested in an a
priori arbitrary cyclotomic base ring, so that ϕ0 is defined by the evaluation at some
primitivemth root of unity ζ = eiθ. We therefore have:

ϕ0(ef ) = x0 + iy0 with x0 =
d−1∑
j=0

e
(j)
f cos(jθ) and y0 =

d−1∑
j=0

e
(j)
f sin(jθ).

This expresses the real and imaginary parts x0, y0 of ϕ0(ef ) as the sum of d indepen
dent random variables, with d relatively large, so by the central limit theorem, ϕ0(ef )

4This is equivalent to saying that the distribution of f̃ and g̃ is uniform modulo R in KR, which
should indeed happen as soon as we have sufficient width (i.e., if we exceed a regularity metric anal
ogous to the smoothing parameters for Gaussians).
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should essentially behave5 like a normal random variable inC, essentially determined
by its expectation and covariance.

Now since e(j)f has mean 0 and variance 1/12 for all j, we obtain that E[x0] =
E[y0] = 0. Therefore, the pair (x0, y0) has mean 0, and its covariance matrix is easily
expressed as follows:

Σ =
d−1∑
j=0

Var[e(j)f ] ·
[

cos2(jθ) cos(jθ) sin(jθ)
cos(jθ) sin(jθ) sin2(jθ)

]

=
1

12

d−1∑
j=0

1

2

[
1 + cos(2jθ) sin(2jθ)
sin(2jθ) 1− cos(2jθ)

]
=

d

24
I2 + E(θ),

where
E(θ) =

1

12

[
ReS(θ) ImS(θ)
ImS(θ) −ReS(θ)

]
.

Thus, we expect thatϕ0(ef ) follows the normal distributionN (0,Σ), and the same ar
gument applies to ϕ(eg) as well. Moreover, heuristically, those two normal distribu
tions should be independent (this is again wellverified in practice: see Figure A.1b).

At this point, we would therefore like to estimate the probability that the rounded
pair (f, g) satisfies the quality condition at embedding ϕ0, i.e., that the following
inequality is satisfied:

q/α2 ≤ |ϕ0(f)|2 + |ϕ0(g)|2 ≤ α2q.

Now, the quantity |ϕ0(f)|2 + |ϕ0(g)|2 is just the squared Euclidean (or Hermitian)
norm ‖v‖2 of v := ϕ0

(
(f, g)

)
in C2. If we also write ṽ := ϕ0

(
(f̃ , g̃)

)
and e :=

ϕ0

(
(ef , eg)

)
, we have v = ṽ+ e, and therefore:

‖v‖2 = ‖ṽ‖2 + ‖e‖2 + 2 cos(ν)‖ṽ‖ · ‖e‖

where ν the angle between the vectors ṽ and e.
Write X = ‖ṽ‖2, Y = ‖e‖2 and Z = ‖v‖2, so that:

Z = X + Y + 2
√
X
√
Y cos ν.

We have a good heuristic understanding of how these random variables behave.
X is completely controlled: by the annular sampling algorithm, it is uniform in

[r2, R2].
Y was described by the previous discussion: it is the sum |ϕ0(ef )|2 + |ϕ0(eg)|2,

so the sum of the squared Euclidean norms of two normal random variableN (0,Σ).
5This can in fact be made rigorous with BerryEsseen’s inequality.
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Therefore, it is the sum of a χ2(2) random variable scaled by the first eigenvalue of
Σ and a χ2(2) scaled by the second eigenvalue of Σ.

And finally, since the distribution of (f̃ , g̃) is isotropic and a priori independent
from the rounding term e (again by a heuristic regularity assumption), the angle ν
between the vectors ṽ and e should be uniform in [0, 2π), and the three variables X ,
Y and ν should be essentially independent.

This lets us completely estimate the desired probability of success for embedding
ϕ0, namely P

[
q/α2 ≤ Z ≤ α2q

]
.

Poweroftwo cyclotomic fields.

In particular, in the case of poweroftwo cyclotomic fields, the situation is made
comparatively simple by the fact that E(θ) = 0 for all embeddings as guaranteed by
Lemma 27, and hence the covariance matrix Σ is just d

24
I2.

This means that the variable Y simply follows the χ2 distribution with 4 degrees
of liberty scaled by d/24, i.e., Y ∼ d

24
χ2(4). This distribution has a particularly

simple CDF, characterized by the formula:

P
[
Y > t · d

24

]
=
(
1 +

t

2

)
exp(−t/2) for all t ≥ 0. (4.3)

Now recall that we want to estimate the probability of success psucc := P
[
q/α2 ≤

Z ≤ α2q
]
. Clearly, we have

psucc = 1− P
[
Z > α2q

]
− P

[
Z <

q

α2

]
. (4.4)

We compute the probability P
[
Z > α2q

]
and P

[
Z < q/α2

]
seperately.

On the one hand, the inequality Z > α2q, is equivalent to:

X + Y + 2
√
X
√
Y cos ν − α2q > 0. (4.5)

If we consider the lefthand side as a quadratic trinomial in the variable
√
Y , it has

discriminant∆1 = 4α2q− 4X sin2 ν. SinceX < α2q is guaranteed by our sampling
algorithm, this discriminant always satisfies∆1 > 0. By Vieta’s formula, the product
of the two roots is X − α2q < 0, which means that one root is positive and the other
one is negative. Thus, Z > α2q if and only if

√
Y is greater than the positive root of

the trinomial:

Z > α2q if and only if
√
Y > −

√
X cos ν +

√
∆1. (4.6)

On the other hand, the inequality Z < q/α2 is equivalent to:

X + Y + 2
√
X
√
Y cos ν − q

α2
< 0. (4.7)
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Again, regarding this as a quadratic inequality in
√
Y , the discriminant of the trino

mial becomes ∆2 = 4q/α2 − 4X sin2 ν. If ∆2 ≤ 0, inequality (4.7) can never be
satisfied as the trinomial has no real roots. If∆2 > 0, according to Vieta formula, the
productX− q/α2 of the two roots is always positive (so the two roots are either both
positive or both negative), becauseX > q

α2 is guaranteed by our sampling algorithm.
Since

√
Y is nonnegative, inequality (4.7) can only happen when both roots are pos

itive, or equivalently when their sum −2
√
X cos ν is positive (which is equivalent

to cos ν < 0, i.e., ν ∈ (π/2, 3π/2)). If that condition is satisfied, the inequality is
equivalent to

√
Y being between the two roots of the trinomial. Therefore:

Z <
q

α2
if and only if ∆2 > 0 and ν ∈ (π/2, 3π/2) and (4.8)

−
√
X cos ν −

√
∆2 <

√
Y < −

√
X cos ν +

√
∆2.

Now, define the function P (t) for t ≥ 0 as follows:

P (t) :=
(
1 +

t2

2σ2

)
exp(−t2/2σ2) where σ =

√
d

24
. (4.9)

By property (4.10) of the χ2(4) distribution of Y , we see that, for all t ≥ 0:

P
[√

Y > t
]
= P

[
Y > t2

]
=
(
1 +

t2/σ2

2

)
exp(−t2/2σ2) = P (t).

We also fix the following notation:

β(X, ν) := −
√
X cos ν +

√
α2q −Xsin2 ν,

γ1(X, ν) := −
√
X cos ν +

√
q

α2
−Xsin2 ν,

γ2(X, ν) := −
√
X cos ν −

√
q

α2
−Xsin2 ν.

Then, in view of (4.6), we have:

P
[
Z > α2q

]
= E

[
P
(
β(X, ν)

)]
=

1

2π(R2 − r2)

∫ 2π

0

∫ R2

r2
P
(
β(X, ν)

)
dX dν.

Similarly, in view of (4.8), we have:

P
[
Z < q/α2

]
= E

[Jν ∈ (π/2, 3π/2) and q/α2 > X sin2 νK · (P(γ2(X, ν))− P(γ1(X, ν)))]
=

1

2π(R2 − r2)

∫ 3π/2

π/2

∫ R2

r2
Jq/α2 > X sin2 νK · (P(γ2(X, ν))− P(γ1(X, ν))) dX dν.
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where JCK is the Iverson bracket notation (evaluating to 1 if condition C is true, and
0 otherwise).

The last two formulas, combined with (4.4), give us an expression of the proba
bility of success psucc on embedding ϕ0 in terms of the double integral of wellbehave
functions on a simple domain of integration. This is very easy to evaluate numeri
cally, and we verify that the results very closely follow simulations on a given em
bedding.

Once the job is done for a single embedding, we are then tempted to estimate the
probability of success for all d/2 embeddings as simply pd/2succ, assuming heuristically
that the rounding errors on all the embeddings behave independently of each other.
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Figure 4.2: The probability that f, g satisfies requirement after rounding w.r.t the
rounding error: theoretical vs. experimental

This is, unfortunately, not a completely plausible model of what happens in prac
tice: indeed, since the vector (ef , eg) is uniform in a hypercube, its image under the
map ϕ (which, in our case, is orthogonal) is still uniform in a hypercube (just not
with axes parallel to the basis vectors of the canonical basis), and therefore it is not
accurately modeled as a joint spherical Gaussian distribution. Due to the fact that the
uniform distribution has thin tails (it is platykurtic), the joint distribution is less likely
to be large and hence cause (f, g) to end up outside of the annulus A+

α compared to
the independent case.

This is indeed what we observe in experiments, as shown in Figure 4.2, where
we compare the theoretical values obtained from the integrals above with the exper
imental success rate of Algorithm 2.

In any case, even with the pessimistic model of independent embeddings of the
error vector, and with parameters q = 12289, d = 512 and α = 1.17 (the same as
the parameters of Falcon–512), we would get a good success probability of around
20% for the whole vector when taking a margin factor of ε = 0.11, which is far from
causing any security issue, as will be shown in the next section. In practice, however,
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we achieve an even better success rate with ε = 0.08, which is the value we pick in
our parameter selection.

General cyclotomic fields.

Over non poweroftwo cyclotomics, the previous discussion carries over for themost
part, except for one change: in the expression of the covariance matrix Σ of (x0, y0),
namely:

Σ =
d

24
I2 + E(θ),

the matrix E(θ) no longer vanishes in general, and thus Σ usually has distinct eigen
values σ2

1 = 1
24
(d+ |S(θ)|) and σ2

2 = 1
24
(d− |S(θ)|).

It follows, as discussed previously, that the random variable Y = ‖e‖2 is now dis
tributed like the sum of a χ2(2) distribution scaled by σ2

1 and an independent χ2(2)
distribution scaled by σ2

2 . This is also known as the GDC(1, 1
2σ2

1
; 1, 1

2σ2
2
) distribution

(see [WWW+16, Equation 5]): the convolution of two Gamma distribution of suit
able parameters. Fortunately, in this particular case, the distribution has a relatively
simple CDF again. We actually have:

P
[
Y > t

]
=
σ2
1 exp(−t/2σ2

2)− σ2
2 exp(−t/2σ2

1)

σ2
1 − σ2

2

for all t ≥ 0. (4.10)

Therefore, we can directly apply the previous discussion by simply replacing the
function P (t) of (4.9) by the following one in this setting:

P (t) :=
σ2
1 exp(−t2/2σ2

2)− σ2
2 exp(−t2/2σ2

1)

σ2
1 − σ2

2

,

and all the formulas for psucc then carry over. One just has to take into account that
the value of psucc now depends on θ and hence on the embedding, so if we want to
apply the pessimistic heuristic that the success probabilities on distinct embeddings
are independent, we have to multiple all the a priori distinct values together.

Qualitatively speaking, the behavior in this case is in fact quite close to the power
oftwo case, since for most embeddings, |S(θ)| =

∣∣ sin(dθ)
sin θ

∣∣ is small compared to d:
sin θ is bounded away from zero except possibly for just a handful of embeddings
with θ close to a multiple of π.

For those few embeddings, success probability tends to become slightly worse
due to the longer tail of Y . Nevertheless, even in the worst case, which is the first
embedding of a cyclotomic field of conductorm = 2ℓ3k (hence d = m/3), we have:

S(θ) =
sin(2π/3)
sin(2π/3d)

≈
√
3/2

2π/3d
=

3
√
3

4π
d ≈ 0.413d

, so the standard deviation of the error in the longest direction is increased at most by
a factor of ≈

√
1.413 < 1.2.
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4.4 Security analysis
Security of signatures is considered with regards to two notions: on the one hand,
security against forgery—namely the ability for an attacker to forge a valid signature
with only amessage and the public key—and security against key recovery—i.e. fully
recovering the secret key with only the datum of the public key.

Since our new algorithms only change the set of secret keys in which trapdoors
are found, there is no new forge attacks stemming from this modification— only the
security level has to be reevaluated, favourably for us as the quality of the trapdoors
are improved.

Hence, this section deals with the impact of the new key generation on the re
silience of the scheme only against key recovery. We first recall the stateoftheart
attacks on such NTRU lattices and then examine precisely the resilience against so
called subfield type attacks, which might be relevant for the new parameters. In
the following, we compute expectations on the norm of f, g and related quantities
as if they were drawn under continuous distributions (and not discrete). This eases
the presentation of the results and could be make formal using standard subgaus
sians arguments. In particular, we heuristically assume that all pair of embeddings
(ϕi(f), ϕi(g)) of a secret key (f, g) sampled from Algorithm 2 are distributed uni
formly such that their magnitudes are in A+(

√
q/α, α

√
q).

4.4.1 Classical attack against NTRU keys
The key recovery amounts to the problem of finding a private secret key with small
norm (i.e. (f, g) ∈ R2) with the knowledge of the public available elements q and h.
For the regime of parameters in Falcon or Mitaka, to the best of our knowledge, the
known best attacks are realized through lattice reduction. It works as the following
steps: first construct the algebraic lattice over R spanned by the vectors (0, q) and
(1, h). Then look for the lattice vector s = (f, g) among all possible lattice vectors
of norm bounded by ‖s‖ (or a functionally equivalent vector, for instance (µ ·f, µ ·g)
for any unit µ of the ring of integer of the number field).

Recall that by construction and our modelization, the expected (squared) norm
of ‖s‖ concentrates at qA for A = 1

2
(α2 + α−2)6. We make use of the socalled

projection trick to avoid enumerating and testing over all the sphere of radius √qS

(which contains around
(

qA
q

)d
= Ad vectors under the Gaussian heuristic7). More

6Each pair of embedding (φ(f), φ(g)) satisfies that |φ(f)|2 + |φ(g)|2 is uniform in the interval
[qα−2, qα2], we then sum over all embeddings to retrieve ‖f‖2 + ‖g‖2.

7The Gaussian heuristic predicts the number of vectors of length at most ℓ in a random lattice Γ
of volume V to be a vΓ(ℓ)/V + o(1) for large enough ℓ, where vΓ(ℓ) is the volume of the sphere of
radius ℓ for the measure induced by the inner product on Γ.
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sepecifically, we do the following things [ETWY22]: first denote β as the block size
for the DBKZ algorithm [MW16] and start by reducing the public basis with this
DBKZ algorithm. If [b1, . . . , b2d] is the output of DBKZ. Then if we can recover the
projection of the secret key onto P , the orthogonal space to span(b1, . . . , b2d−β−1),
then we can recover in polynomial time the full key by Babai nearest plane algorithm
to lift it to a lattice vector of the desired norm. Therefore, for our purpose, it is
enough to find the projection of the secret key among the shortest vector of the lattice
generated by the last β vectors projected ontoP . Classically, sieving on this projected
lattice will recover all vectors of norm smaller than

√
4
3
`, where ` is the norm of the

2d− βth GramSchmidt vector b̃2d−β of the reduced basis.
The expected length of the projection is usually estimated under the Geometric

Series Assumption (GSA)8. Instantiated on NTRU lattices, it states that the Gram
Schmidt vectors of the basis outputted by DBKZ with blocksize β satisfy the rela
tions (see Cor 2. of [MW16]):

‖b̃i‖ = δ
2(d−i)+1
β

√
q where δβ =

(
(πβ)1/β · β

2πe

) 1
2(β−1)

.

Therefore, we expect that

` = δ
−2(d−β)+1
β

√
q ≈ √q ·

(
β

2πe

)1− d
β−1

.

Moreover, assuming that s behaves as a random vector, and using the GSA to bound
the norm of the GramSchmidt vectors [b̃1, . . . , b̃2d−β], the (squared) norm of its pro
jection over P concentrates around

β

2d
· E
[
‖s‖2

]
=
Aqβ

2d
.

Hence, we will retrieve the projection among the sieved vectors if Aqβ
2d
≤ 4

3
`2, that is

if the following condition is fulfilled:

A ≤ 8d

3β
δ
4(β−d)+2
β . (4.11)

4.4.2 Towards a subfield attack
Now suppose that the value of the (relative) norm N = ff ∗ + gg∗ is known exactly
by the attacker9. Then it is possible to recover both summands ff ∗ and gg∗ exactly.

8For practical estimation of the attacks, we can use numerical models coming from simulations
instead of the GSA. In this section, we stick to the usual GSA model for the sake of simplicity and
ease of exposition.

9This situation would happen for instance if the annulus was reduced to a circle, as in that case,N
would simply be q2.
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Indeed, the vector (ff ∗, gg∗) lives in the NTRU lattice of hh∗ over the totally real
subfieldK +, that is to say that ff ∗ ·hh∗ = gg∗ (mod q). Thus linear algebra reveals
that gg∗ = Nhh∗

1+hh∗ mod q and fg∗ = Nh∗

1+hh∗ mod q over R. As noted in [FKT+20],
because f, g are chosen to be coprime, the attacker then recovers a Zbasis of of the
principal ideal (g) on top of gg∗ by a greatest common divisor computation between
ideals. They finally retrieve g using the GentrySzydlo algorithm for poweroftwo
cyclotomic number fields or its extension for arbitrary cyclotomics (for instance ap
pearing in [EFGT17]).

Now if the attacker does not know the value of N exactly, but has a fairly good
approximation of it, the preliminary “linear algebra” part can be replaced by lattice
reduction. Indeed, write ff ∗ + gg∗ = qN + E for a known N 10 and a small E and
(ff ∗, gg∗, E) is a small solution of the linear system :{

HX − Y = 0 mod q,
X + Y − E = qN,

(4.12)

where H = hh∗. Solving such a system amounts to finding a short vector inside
the coset (0, 0, qN) + L (considered inside the extended NTRU lattice in (K +)3

corresponding to {(u, v, w)|uH = v (mod q)}). A (row) basis of the lattice L cor
responding to (4.12) is given by:

L =

(
1 H H + 1
0 q q

)
.

and the most efficient known algorithms to solve this problem are essentially vari
ations of lattice reduction and decoding (see for instance [EK20]), and amount in
estimating the hardness of retrieving a vector of a given norm inside L . We now
give the details to find lower bound on the parameters of the keygen to make such
attacks infeasible.
Remark. In this attack, we make two simplifying assumptions. We suppose that the
attacker has access to the unrounded vector (f̃ , g̃) (which we still identify to (f, g)),
which is located in a smaller domain and hence a priori easier to attack. We also
pretend that this vector actually consists of ring elements, so everything happens as if
the attacker had access to more constrained ring elements than we are able to generate
in practice. This is a stronger attacker model than reality, and hence a conservative
way of assessing the power of this type of attacks in practice.”

Distribution of the relative norm vector.

Let us first estimate the size of the error E we introduced above by describing the
joint distribution of a pair of embeddings (Xi, Yi) = (ϕi(ff

∗), ϕi(gg
∗)). Then, by

10The case where the termN is not exactly an integer but is close to be is treated in a similar manner
by reducing to ISIS instead of SIS)
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our modelization, we have U = Xi + Yi and V = Xi − Yi = U cos(T ) where U
is a uniform variable over [r2, R2] (for r =

√
q(α−1 + ε), R =

√
q(α − ε) and T is

uniform in [0, π]. Next we compute:

D := Cov (U, V ) = diag
(

1

12

(
r2 −R2

)2
,
1

6

(
R4 +R2r2 + r4

))
.

Hence the covariance C of (Xi, Yi) is equal to:

C =
1

4

(
1 1
1 −1

)
D

(
1 1
1 −1

)
=

1

6

(
R4 + r4 −1

3(R
4 − 4R2r2 + r4)

−1
3(R

4 − 4R2r2 + r4) R4 + r4

)
Recall that the canonical norm of K + writes as ‖xx∗‖2 = 1

d

∑
i ϕi(xx

∗)2. Treating
the embeddings as an independent family of variables, and the middlering of the
annulus for a convenient (public!) choice for N the expected norm of the error term
E is

E[‖E‖2] = E

[∥∥∥∥ff ∗ + gg∗ − 1

2
(R2 + r2)

∥∥∥∥2
]
=

1

12

(
r2 −R2

)2
=: yq2,

and in addition that

E
[
‖ff ∗‖2 + ‖gg∗‖2

]
=
d

d
tr (C) =

1

16
(R4 + r4) =: 2xq2.

Mounting the lattice attack.

By what precedes, we want to find a short solution of the system (4.12), where we
know that ‖ff ∗‖2, ‖gg∗‖2 ≈ xq2 and ‖E‖2 = yq2 Notice the vector (ff ∗, gg∗, E) ∈
(K +)3 is therefore slightly unbalanced. Following the same rescaling technique as
in Espitau et al. [ETWY22], we want to view the corresponding lattice problem under
the twisted (Euclidean) norm encoded by the Gram matrix (of determinant 1)

Gη =

η 0 0
0 η 0
0 0 1

η2

 ,

for η =
(
y
x

) 1
3 . Then under this new norm ‖ · ‖η, we find that:

E
[
‖(ff ∗, gg∗, E)‖2η

]
= ηE

[
‖ff ∗‖2

]
+ ηE

[
‖gg∗‖2

]
+

E [‖E‖2]
η2

= 3q2
(
x2y
) 1

3 .
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Under this norm the lattice L has K +volume:

det(LGηL
T ) =

∣∣∣∣∣
[
ηH2 + η + (H+1)2

η2
ηHq + (H+1)q

η2

ηHq + (H+1)q
η2

ηq2 + q2

η2

]∣∣∣∣∣ = q2
(
η2 +

2

η

)
,

giving a lattice of normalized volume being √q(η2 + 2
η
)
1
4 as of K +rank 2. The

attack is then similar as the one in section 4.4.1 but where we want to recover a
vector of squared norm 3q2(x2y)

1
3 in a Zlattice11 of normalized (squared) volume

2q(η2 + 1
η
)
1
2 of rank 2d

2
= d, yielding a condition of the form:

β

d
3q2
(
x2y
) 1

3 ≤ 2q

(
η2 +

2

η

) 1
2

δ
2(2β−d+1)
β (4.13)

simplifying into:

q ≤ 2d

3βx
√
y

√
x+ 2yδ

2(2β−d+1)
β .

4.4.3 Further optimizations
Beyond the projection trick and the rescaling, we can apply a final standard opti
mization to this lattice reduction part as there is an unbalance between the size of the
secret vector we want to recover and the normalized volume of the lattice. Instead of
working with the full lattice coming from the descent of L over Z, we can instead
consider the lattice spanned by a subset of the vectors of the public basis and perform
the decoding within this sublattice. The only interesting subset seems to consists in
forgetting the k ≤ d

2
first vectors (dropping the socalled qvectors would not be ben

eficial as it would actually sparsify the lattice, making the attack worst). Doing so,
the rank is of course reduced by k, at the cost of working with a lattice with covolume
proportionally q

k
2(d−k) bigger. The condition of eq. (4.13) updates into12:

β(d− k)
(d− k)d

3q2
(
x2y
) 1

3 ≤ 2q
n

2n−2k

(
η2 +

2

η

) 1
2

δ
2(2β−d+k+1)
β , (4.14)

for all k ∈
{
0, . . . , d

2

}
, which in turns simplifies in:

q ≤ min
0≤k≤n

2

(
2d

3βx
√
y

√
x+ 2yδ

2(2β−d+1)
β

) 2n−2k
n−2k

.

11The factor 2 accounting here for the normalized discriminant of the totally real subfield
12This assumes the coefficients of s are balanced, which is a reasonable assumption after the rescal

ing by η.
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Table 4.1: Practical parameter selection

Antrag–512 Antrag–1024

Modulus q 12289 12289
Quality α 1.17 1.63
Relative margin ε 0.08 0.30

Expected repetitions 4.2 1.0
Bit security (C/Q) 123/118 256/232
Verification key size (bytes) 896 1920
Signature size (bytes) 666 1290

The righthandside term grows to infinity as y goes to 0, making the attack easier
and easier, recovering the intuition presented supra that trivial annulus (i.e., knowing
exactly the value of ff ∗+gg+) leads to a complete key recovery in polynomial time.
Remark (On other subfield type attacks and related). • We can also approach the

problem as solving a noisyring SIS instance (namely (1 + H)F = N + E
(mod q)) or as solving aNTRU instancewith a hint, in the spirit of [DDGR20]).
In both cases, we are in fine decoding a lattice point at distance ‖E‖ inside a
lattice of normalized volume comparable to q. Up to some minor unessential
constants, all three approaches give comparable results.

• It could be tempting to go further and try projection to other subfields, but the
ratio secret size to normalized volume is increasing, making the attack worse
and worse, indicating that we shall only focus on the plain NTRU and on the
totally real subfield.

4.4.4 Practical security assessment
This analysis translates into concrete bitsecurity estimates following the methodol
ogy of NewHope [ADPS16], sometimes called “coreSVP methodology”. In this
model [BDGL16], the bit complexity of lattice sieving (which is asymptotically the
best SVP oracle) is taken as b0.292βc in the classical setting and b0.259βc in the
quantum setting in dimension β. It appears that for q > 80 (we recall that for the
chosen dimensions, q = 12289 ), the subfield attack is irrelevant in practice and the
key recovery security is only driven by the first attack, directly on the original NTRU
lattice. Using this analysis, we can tailor the radius α of the final annulus to match
the desired security level (NISTI and NISTV).
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4.5 Implementation and comparison
We have implemented our trapdoor generation algorithm Antrag as well as the result
ing complete signature scheme in portable C based on the source codes of Falcon and
Mitaka. The code archive is attached as supplementary material to this submission.

Since the signature scheme arising from Antrag is essentially identical to Mitaka
for signing and verification, we largely reuse the code of Mitaka for those parts. Key
generation consists of the original algorithm presented in this work to generate the
first basis vector (f, g), along with code to solve the NTRU equation in order to
deduce (F,G), for which we basically reuse the code of Falcon, which follows the
techniques presented in [PP19]. The Fast Fourier transform and the resulting code
for arithmetic in the ring are similarly borrowed from Falcon.

We note that, since the C code of Mitaka itself did not include a key generation
algorithm (only precomputed fixed keys obtained using separate Python scripts), our
implementation constitutes, to the best of our knowledge, the first full C implemen
tation of a hybrid samplerbased signature.

In view of the simplicity of our trapdoor generation, the code is fairly straightfor
ward. In particular, since the floating point uniform distributions we generate for the
absolute values of the embeddings are bounded away from zero, there is no subtlety
related to precision loss for values close to zero (this is unlike the Box–Muller algo
rithm using in signing, for which we reuse Mitaka’s code that behaves properly in
that respect). The only trick worth mentioning is a check in the generation of (f, g)
which rejects early the pairs such that the cyclotomic integer prime above 2 divides
both f and g (this is a necessary condition for the later computation of F and G to
succeed, so it saves some time to test it early).

Dimension 512 and 1024 are supported, with the parameters of Table 4.1. For
our trapdoor generation algorithm (as well as for signing and verification), it would
not be difficult to add support other base rings (such as the 3powersmooth cyclo
tomics considered in Mitaka) to reach intermediate dimensions. However, suitably
optimized FFT code would be needed for those intermediate rings, and more impor
tantly, the NTRUSolve code of [PP19] would need to be adapted as well. Neither of
those steps are difficult in principle, but they represent a serious engineering effort
left as future work.

A performance comparison with Falcon and Mitaka is provided in Table 4.2.
Compilation is carried out with gcc 11.3.0 with -O3 -march=native optimizations
enabled. Timings are collected on a single core of an Intel Core i77820X@3.60GHz
desktop machine with hyperthreading and frequency scaling disabled. Cycle counts
are not provided for Falcon, since the Falcon benchmarking tool only measures clock
time. The Mitaka implementation does not include a key generation procedure, ex
plaining the missing data as well.

The running time of our key generation is very close to Falcon. Signing speeds
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Table 4.2: Performance comparison with Falcon and Mitaka.

Falcon [PFH+22] Mitaka [EFG+22] This work

Dimension 512 1024 512 1024 512 1024

Quality α 1.17 1.17 2.04 2.33 1.17 1.63
Classical sec. 123 284 102 233 123 256
Key size (bytes) 896 1792 896 1792 896 1920
Sig. size (bytes) 666 1280 713 1405 666 1290

keygen speed (Mcycles) — — N/A N/A 27.1 83.4
keygen speed (ms) 6.8 19.5 N/A N/A 7.5 23.2
sign speed (kcycles) — — 567 1109 544 1073
sign speed (µs) 317 635 158 309 152 299
verif speed (kcycles) — — 121 243 101 246
verif speed (µs) 27 61 34 68 29 69

are basically identical to Mitaka since we mostly reuse that code (up to very minor
optimizations). Verification is consistent across all three schemes.
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Chapter 5

Conclusion

The two aspects of cryptography, namely constructions and cryptanalysis, comple
ment each other in the sense that cryptanalysis helps understanding the security of
constructions and better constructions help develop new cryptanalysis techniques.

Currently deployed publickey cryptosystems (e.g., RSA,DSA, ECDSA) are based
on the conjectured hardness of integer factorization problem or the discrete logarithm
problem. However, all of these problems can be easily solved on a quantum computer
running Shor’s algorithm. Therefore, it is important to design new cryptographic
schemes that are still secure on a quantum computer, which we usually call post
quantum cryptography. Among all the candidates, latticebased cryptography is the
most promising one because of its efficiency, strong security guarantee and versatile
applications.

In Chapter 2, in an aspect that is both constructive and destructive, we analyze the
hardness of binary error LWE. The standard LWE use Gussian distribution as the er
ror distribution, but in practice, it is not very easy to implement Gussian distribution
efficiently. Therefore, it is quite meaningful to analyze the hardness of LWE with
respect to some other error distributions (e.g., binary error distribution). On the one
hand, we analyze the complexity of binary error LWE and get a sampletime tradeoff
for binary error LWE. We propose a method that we call Macaulay matrix method to
attack binary error LWE with less than Θ(n2) samples. In particular, we show that,
for any ε > 0, binary error LWE can be solved in polynomial time nO(1/ϵ) given
ε ·n2 samples. Similarly, it can be solved in subexponential time 2Õ(n1−α) given n1+α

samples, for 0 < α < 1. On the other hand, we propose a variant of binary error
LWE, which we call nonuniform binary error LWE. When the number of samples is
strongly restricted, we prove that nonuniform binary error LWE is as hard as worst
case lattice problems. When the number of samples is not so strongly restricted and
the error rate is relatively low, we propose a simple algorithm to attack nonuniform
binary error LWE. These hardness results can be useful when considering the param
eter setting for some cryptographic schemes based on binary error LWE.
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In Chapter 3, in a purely destructive aspect, we study lattice attacks on EC(DSA).
Prior to our work, lattice attacks are generally allornothing, which means that if we
succeed, we get the full signing key, but if we fail, we get nothing. By comparison,
Bleichebacher attacks recover some bits of the signing key at each iteration. Inspired
by this, we propose new ways of improving lattice attacks: guess some bits of the
signing key, and by modifying the lattice structure, solve the resulting easier lat
tice problems. Interestingly, this approach is easy to simulate and parallelize, which
makes the estimate of computation cost easy. Besides, the fact that numerous lattice
reductions are carried out on the same lattice allows us to apply batchCVP or CVP
with preprocessing techniques, which can further improve the attack. As additional
contributions, we propose variants of the attack: guessing bits of nonces and filtering
signatures. Finally, we apply our ideas to attacking the TPMFail dataset and get an
improved exploitation.

In Chapter 4, in a purely constructive sense, we study how to construct secure
and efficient latticebased signatures. In 1997, the GGH signature was proposed as
the first candidate of latticebased signature. The main idea of GGH is to use some
“good” basis of some lattice as the secret key and use some “bad” basis of the same
lattice as the public key. However, GGH was finally completely broken by statis
tical techniques, mainly because the signatures reveal information about the secret
key. In 2008, the GPV framework was proposed to make hashandsign signatures
provably secure. In 2014, Ducas, Lyubashevsky and Prest (DLP) instantiated the
GPV signatures over NTRU lattices, thus making it more compact. The NIST stan
dardization postquantum signature scheme Falcon, is essentially a combination of
DLP and FFO sampler proposed by Ducas and Prest. Very Recently, Espitau et al.
proposed the Mitaka signature in order to tackle several drawbacks of Falcon. How
ever, the Mitaka signature is less efficient and secure than Falcon. We propose a new
technique to generate trapdoor basis for Mitaka: the resulting scheme is as secure as
Falconand very easy to parallelize, protect against sidechannel attacks. To summa
rize, our new scheme combines all the advantages of Falconand Mitaka with none of
the drawbacks.
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Appendix A

Experimental data

As stated in Section 4.3, we assume that each coefficient of ef and eg behaves like
indepedent uniform random variables in [−1/2, 1/2), and the squared norm of one
embedding of (ef , eg) follows chisquared distribution with degree of freedom 4 up
to a scaling factor.

This supplementary material collects data aimed at justifying these heuristics, in
the form of the following figures.

Figure A.1 shows that each coefficient of ef and eg do behave as independent
and uniform in [−1/2, 1/2). The first figure (a) shows that two randomly chosen
coefficients of ef are indeed indepedent and uniform in [−1/2, 1/2). The second
figure (b) shows that one randomly chosen coefficient of ef and one randomly chosen
coefficient of eg are also indepedent and uniform in [−1/2, 1/2). As a result, all the
coefficients of ef and eg are indepedent and uniform in [−1/2, 1/2).

Figure A.2 shows that the error magnitude on one embedding has the expected
distribution (namely, a scaled χ(4)) in the poweroftwo cyclotomic case. The pre
dicted density curve represents the true distribution of a scaled χ(4) and the exper
imental density curve represents the the error magnitude on one embedding. These
two curves match well. Figure A.3 illustrates the similar situation of 3powersmooth
base fields.

For these experiments, 1500 samples are used, which actually can be verified by
standard statistical distribution test methods (e.g., chisquared test).
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(a)

(b)

Figure A.1: Empirical joint distributions of two randomly coefficients of ef (resp. a
randomly chosen coefficient of ef and another of eg). The data is collected from 1500
samples (f, g) of degree d = 512.
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Figure A.2: Statistical density of ‖ϕi(e)‖ in casem = 1024, d = 512 (1500 samples).
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Figure A.3: Statistical density of ‖ϕi(e)‖ in casem = 1944, d = 648 (1500 samples).
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• Chao Sun, Thi Thu Quyen Nguyen, Thomas Espitau, AlexandreWallet, Mehdi
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submitted to Public Key Cryptography 2023 (PKC 2023) (under review).

• Chao Sun, Thomas Espitau, Mehdi Tibouchi, Masayuki Abe, “Guessing Bits:
Improved Lattice Attacks on (EC)DSA with Nonce Leakage”, IACR Transac
tions on Cryptographic Hardware and Embedded Systems (TCHES), Volume
2022, Issue 1.

• Chao Sun, Mehdi Tibouchi, Masayuki Abe, “Revisiting the Hardness of Binary
Error LWE”, The 27th Australasian Conference on Information Security and
Privacy (ACISP 2020).

B.2 Talks
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CHES 2022, (Leuven, Belgium).
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