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CHAPTER 1

INTRODUCTION

This chapter provides an introduction to the thesis. We first discuss the impor-
tance of mathematical models, and then introduce rhythmic phenomena and cou-
pled phase-oscillator models, which are the central topics of this thesis. Finally,
the outline of this thesis is summarized.

1.1 Mathematical modeling

Humankind has undergone a remarkable development from a lifestyle based
primarily on hunting and gathering, through the age of agrarian society, to the
present-day industrial society. This history of human development has also been
a history of human discovering the principles behind complex natural phenom-
ena, from materials to life phenomena and sometimes economic activities. The
principles have often been described by using the language of mathematics, and
they are called mathematical models. Looking back to ancient times, it was very
important for the ancient Greeks to know the exact movement of the seasons in
order to know the exact time of harvest for agriculture. For this reason, it is said
that a calendar was invented to determine which day of the year it was based
on the phases of the moon and the position of the sun. The story of Thales, an
astronomer at that time, who successfully predicted the day of the eclipse by the
use of mathematics and stopped the war is well known. In recent times, our daily
lives have been drastically changed by the outbreak of a new coronavirus. At a
time when vaccines had not yet been developed, the use of mathematical models
of infectious diseases was extremely important as a means of containing the out-
break. These models can be used to make predictions about the future course of
an outbreak and this information was used to guide decision-making and prevent
the spread of disease.

These examples show that mathematical models are important, but why do
we use them? One advantage of using mathematical models would be that they
can provide a systematic and precise way of representing and analyzing com-
plex phenomena. These models can help to clarify the underlying principles and
mechanisms at work in a system, and they can also make it possible to make
predictions and test hypotheses. However, there are also some disadvantages
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CHAPTER 1. INTRODUCTION

to using mathematical models in science. One disadvantage is that these mod-
els are often based on simplifying assumptions and idealized conditions, which
may not accurately reflect the complexity and variability of real-world systems.
As a result, the predictions and conclusions based on these models may not be
completely reliable.

This thesis focuses on a natural phenomenon called synchronization and presents
research on coupled phase-oscillator models, a mathematical model of such phe-
nomena. An overview is given in the next section.

1.2 Synchronization and coupled phase-oscillator model

Synchronization is the coordination of events to operate together in a consistent,
orderly manner. This can occur in various systems, including biological, chemi-
cal, and physical processes [Str03]. One example of synchronization in nature is
the flashing patterns of fireflies [Smi35; BB68]. These insects emit light in a syn-
chronized manner, allowing them to communicate and attract mates. This syn-
chronization is achieved through the coordination of their neural activity, which
is controlled by chemical signaling within the fireflies’ brains. Another exam-
ple of synchronization can be found in the activity of neurons in the human
brain [CAY03; Win67; Lu+16]. Neurons communicate with each other through
the release of chemical signals, known as neurotransmitters. When multiple neu-
rons are activated at the same time, they can synchronize their firing patterns,
allowing for the coordination of complex behaviors and cognitive processes. This
synchronization is essential for the proper functioning of the brain and the ability
to process information.

The coupled phase-oscillator model is a mathematical framework that de-
scribes the dynamics of oscillators that are coupled together [Str00; Kur75; KM11].
In this model, each oscillator has its own phase, which is the relative position in
its own periodic cycle. The coupling between oscillators is typically represented
by a coupling function that describes how the phase of one oscillator affects the
phase of another, and the function is only dependent on the phase difference.
The coupled phase-oscillator model is typically described by a set of differential
equations:

dθi

dt
= ωi +

N

∑
j=1

Γij(θj − θi), (1.1)

where θi is the phase of the ith oscillator, ωi is its natural frequency. Γij : S1 →
R is the coupling function between ith and jth oscillators, and its input is the
phase difference θj − θi. Without the coupling, each oscillator moves on a circle
independently with the velocity ωi

1. These equations describe how the phases of
the oscillators evolve over time, and can be used to analyze the synchronization
behavior of coupled phase-oscillators.

1In this sense, the natural frequency ωi is not a frequency but a velocity, but it is referred to as
such by convention since ωi originally represents the frequency of the limit cycle oscillator.
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1.3 Questions

Once coupled phase oscillator systems began to be considered useful as a model
for describing synchronous phenomena, researchers began to investigate the the-
oretical properties of the model. Why does this model synchronize? Under what
conditions does it synchronize? Under what conditions is synchronization likely to oc-
cur? Conversely, under what conditions would it fail to synchronize? If we can answer
these questions, we will be able to investigate the properties of systems that ex-
hibit synchronization all at once. This is an advantage of mathematical models,
including coupled phase-oscillator models.

While understanding the theoretical properties of the coupled phase-oscillator
model allows us to reduce its properties to a real system, deriving the equations
that the system follows is also an important problem. Given data that represent a
rhythmic phenomenon, what is the coupled phase oscillator system that it follows? This
is also a question that continues to be studied to this day.

Thus, research on coupled phase-oscillator models has both a theoretical aspect
regarding conditions that exhibit synchronization and an experimental aspect re-
garding derivations of the model from real data. This thesis attempts to answer
both aspects of this challenge. See Fig. 1.1 for a schematic drawing of this thesis.

The Model

Fireflies

Metronomes

Neurons

Synchronization Theory

Bifurcation theory
Phase transition

Network structure

<latexit sha1_base64="wBzMkO2THl5Jm7hImP4nJm5UZic="></latexit>

dqi
dt

= wi +
N

Â
j=1

Gij(qj � qi)
K

0.0

0.2

0.4

0.6

0.8

1.0

r

f 0(!): stable f 0(!): unstable

r / (K ° Kc)1/2

Coupled phase-oscillator model
Chap. 5

Chap. 3, 4
<latexit sha1_base64="MJghcWQysfqJ5FyD0AsvBP6hCaM="></latexit>

qi

Figure 1.1: Schematic representation on our study.

1.4 Thesis Outline

We conclude this chapter with an outline of this thesis.
In Chapter 2, we give a brief review of coupled phase-oscillator models. Us-

ing the Kuramoto model, a representative example of a coupled phase oscillator
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system, we will review our past research on the conditions for synchronization
and the transition phenomena from an asynchronous state to a synchronous state.
The critical exponents obtained near the transition point when this transition phe-
nomenon is regarded as a critical phenomenon in statistical mechanics will also
be summarized.

Chapter 3 is constructed based on our paper [YHY20] entitled “Critical expo-
nents in coupled phase-oscillator models on small-world networks”. As in the
previous chapter, the synchronization transition is characterized by several criti-
cal exponents, and we focus on the critical exponent defined by coupling strength
dependence of the order parameter for revealing universality classes. In a typi-
cal interaction represented by the perfect graph, an infinite number of universal-
ity classes is yielded by dependency on the natural frequency distribution and
the coupling function. Since the synchronization transition is also observed in a
model on a small-world network, whose number of links is proportional to the
number of oscillators, a natural question is whether the infinite number of univer-
sality classes remains in small-world networks irrespective of the order of links.
Our numerical results suggest that the number of universality classes is reduced
to one and the critical exponent is shared in the considered models having cou-
pling functions up to second harmonics with unimodal and symmetric natural
frequency distributions.

Chapter 4 is constructed based on our paper [YTT21] entitled “The lower
bound of the network connectivity guaranteeing in-phase synchronization”. In-
phase synchronization is a stable state of identical Kuramoto oscillators coupled
on a network with identical positive connections, regardless of network topology.
However, this fact does not mean that the networks always synchronize in-phase
because other attractors besides the stable state may exist. The critical connec-
tivity µc is defined as the network connectivity above which only the in-phase
state is stable for all the networks. In other words, below µc, one can find at least
one network that has a stable state besides the in-phase sync. The best known
evaluation of the value so far is 0.6828 · · · ≤ µc ≤ 0.7889 . . . . In this paper, fo-
cusing on the twisted states of the circulant networks, we provide a method to
systematically analyze the linear stability of all possible twisted states on all pos-
sible circulant networks. This method using integer programming enables us to
find the densest circulant network having a stable twisted state besides the in-
phase sync, which breaks a record of the lower bound of the µc from 0.6828 . . . to
0.6838 . . . . We confirm the validity of the theory by numerical simulations of the
networks not converging to the in-phase state.

Chapter 5 is constructed based on our paper [Yon+22] entitled “Gaussian pro-
cess regression approach to estimating phase dynamics from rhythmic data”. The
problem of estimating from data the mathematical model behind natural phe-
nomena has long been studied. Since it has been theoretically shown that rhyth-
mic phenomena, including synchronous phenomena, can be modeled by coupled
phase-oscillator models, methods have been proposed to estimate models from
real data that show these phenomena. A method in which the coupling function
is approximated by a Fourier series expansion of finite order and the Fourier co-
efficients are estimated by Bayesian linear regression has been used so far, but
problems of order determination and the Gibbs phenomenon have sometimes
been encountered. In this study, we propose a method to estimate the coupling
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function using Gaussian process regression. By setting the covariance function to
a periodic kernel, we expect to estimate a smooth periodic function. We report
the successful application of Gaussian process regression to a network model of
van der Pol oscillators and spiking neurons to accurately estimate the coupling
function.

Finally we conclude this thesis in Chapter 6 and discuss some future works.
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CHAPTER 2

REVIEW OF COUPLED
PHASE-OSCILLATOR MODEL

2.1 Phase reduction theory

We first review the phase reduction theory for ordinary differential equations
(ODEs) in this section. The approach is basically composed of three steps: (i) We
first define the phase of an ODE having a stable periodic orbit, (ii) then we derive
the phase equation of a perturbed ODE, and (iii) finally we make a simplification
of the phase equation by using the method of averaging. In the following, we
briefly review these three steps, which follow the analysis procedure presented
in [KM11].

2.1.1 Definition of phases

We begin by considering an ordinary differential equation (ODE) of the form,

dx
dt

= f (x), (2.1)

where x ∈ Rd is a d-dimensional vector representing a state and f : Rd → Rd is
a smooth vector field. We assume that this ODE has a stable periodic orbit p(t)
with a period T.

After sufficiently long time, the state x(t) of the ODE (2.1) approaches the
periodic orbit. We can define a phase on such a periodic orbit p(t) as follows,

ϕ(p(t)) = ωt, (2.2)

where ω = 2π/T is the angular velocity of the periodic orbit. This phase can
be seen as a filed over the input space Rd, but it is now only defined over the
periodic orbit p(t) ⊂ Rd. We extend the definition of the phase to the whole
input space Rd. It is mathematically proved that for an initial point x0 with the
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CHAPTER 2. REVIEW OF COUPLED PHASE-OSCILLATOR MODEL

orbit x(t; x0)
1, we can find a phase ϕ0 with

lim
t→∞
‖x(t; x0)− p(ϕ0/ω + t)‖ = 0, (2.3)

as long as x0 resides in a basin of the periodic orbit p(t). Then we define the
phase ϕ(x0) as ϕ0. We note that the phase ϕ0 is uniquely determined up to a 2π
modulus for every point x0 in a basin. A set {x ∈ basin | ϕ(x) = ϕ0} is called an
isochron for the phase ϕ0. We demonstrate phase fields for several ODEs having
a stable periodic orbit in Figure 2.1.
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Figure 2.1: The phase fields for the Van der Pol oscillator, the Stuart-Landau oscil-
lator, the FitzHugh-Nagumo oscillator, and the Brusselator oscillator. The black
lines denote periodic solutions.

We note some properties of the phase field. If ϕ(x0) = ϕ0 for x0 ∈ Rd, then for
a time shift ϕ(x(∆t; x0)) = ϕ0 + ω∆t. This can be seen from the property of the
orbit x(t; x(∆t; x0)) = x(t + ∆t; x0) and the following calculation:∥∥∥∥x(t; x(∆t; x0))− p

(
ϕ0 + ω∆t

ω
+ t
)∥∥∥∥ = ‖x(t + ∆t; x0)− p(ϕ0/ω + (t + ∆t))‖ → 0,

(2.4)

as t → ∞. Therefore the differentiation of the phase on the orbit over time is ω,
that is,

dϕ(x(t))
dt

= lim
∆t→0

ϕ(x(t + ∆t))− ϕ(x(t))
∆t

= ω. (2.5)

1In the following, we denote x(t; x0) by the solution of the ODE (2.1) with the initial condition
x(0) = x0.
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2.1. PHASE REDUCTION THEORY

Or, we can also write this as

∂ϕ

∂x
dx
dt

=
∂ϕ

∂x
f (x) = ω, (2.6)

by the use of the chain rule. We can view this as a phase equation for an unper-
turbed ODE system (2.1) (as opposed to the phase equation for a perturbed sys-
tem, which we will discuss later). In the following, we may simply write dϕ

dt = ω
as if the phase itself is developing in time along the ODE (2.1). Also, by taking
∆t = mT for integer m, we have

ϕ(x(mT)) ≡ ϕ(x(0)) mod 2π. (2.7)

Therefore x(mT) resides in the same isochron as x(0) for any m ∈ Z.

2.1.2 Phases for perturbed systems

In the previous subsection, we have defined a phase field for a system with a
stable periodic orbit, and obtained the phase equation (2.5). Our next challenge
is to find a perturbed version of the phase equation.

We set a perturbed ODE as follows,

dx
dt

= f (x) + εg(t, x), (2.8)

where g : R×Rd → Rd is a perturbation function and ε denotes its strength. We
assume that the perturbation function g is sufficiently smooth as we need. By
substituting (2.6) and (2.8), we have the phase equation for the perturbed system
as

dϕ

dt
=

∂ϕ

∂x
dx
dt

= ω + ε
∂ϕ

∂x
g(t, x). (2.9)

This is the exact equation for the phases, but we need the information of the
original state x(t) for the analysis of the phase ϕ(t) since the right hand side of
(2.9) depends on x(t). In the following, we see that for a small perturbation, we
have a closed form of the phase ϕ(t).

When ε = 0, the unperturbed case, the orbit x(t) gets close to the periodic
orbit p(t) after a long time. If the perturbation is sufficiently small ε� 1, we can
assume that the orbit x(t) is close to the periodic orbit p(t) for a long time. Then,
we can write the orbit x(t) as

x(t) = p(ϕ(x(t))/ω) +O(ε), (2.10)

or we can directly write x(t) = p(ϕ(t)/ω) +O(ε). By substituting this into the
right hand side of (2.9) and expand it with respect to ε, we have

dϕ

dt
= ω + ε

∂ϕ

∂x

∣∣∣∣
x=p(ϕ/ω)

g(t, p(ϕ)/ω) +O(ε2). (2.11)

9
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For simplicity, let us define the following functions:

Z(ϕ) :=
∂ϕ

∂x

∣∣∣∣
x=p(ϕ/ω)

, (2.12)

G(t, ϕ) := g(t, p(ϕ/ω)), (2.13)

and discarding the higher order terms of ε, we have

dϕ

dt
= ω + εZ(ϕ)G(t, ϕ). (2.14)

This is the closed form of the phase equation for the perturbed system. We note
that Z(ϕ) is a d-dimensional row vector, or an element of the adjoint space of
Rd, and G(t, ϕ) is a d-dimensional column vector, or an element of Rd. There-
fore Z(ϕ)G(t, ϕ) is calculated by inner product. Z(ϕ) is often called the phase
response curve (PRC) of the system, and is known to be numerically calculated
by solving the adjoint equation2. We demonstrate the phase response curve for
several ODEs having a stable periodic orbit in Fig. 2.2.
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Figure 2.2: Phase response curves for several ODEs having a stable periodic orbit.

The same procedure can be applied to the case of coupled systems. For exam-
ple, let us consider the following N-body system:

dxi

dt
= f (xi) + ε fi(x) + ε

N

∑
j=1

gij(xi, xj), i = 1, 2, . . . , N, (2.15)

2We made a Python package prax for solving a phase response curve of a limit cycle oscilla-
tor using the automatic differentitation. See the source code on GitHub: https://github.com/
yonesuke/prax.
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2.1. PHASE REDUCTION THEORY

where fi : Rd → Rd and gij : Rd × Rd → Rd are perturbation functions. The
unperturbed version of this equation ẋi = f (xi) has a stable periodic orbit home-
omorphic to N-dimensional torus Td. Applying the same procedure as the pre-
vious subsection, we have the phase equation of (2.15) as

dϕi

dt
= ωi + εZ(ϕi)

(
Fi(ϕi) +

N

∑
j=1

Gij(ϕi, ϕj)

)
, i = 1, 2, . . . , N, (2.16)

where Fi(ϕi) = fi(p(ϕi/ω)) and Gij(ϕi, ϕj) = gij(p(ϕi/ω), p(ϕj/ω)).

2.1.3 Method of averaging

Basically the phase equatuion is derived in the previous subsection, but we can
further make the equation simpler by the method of averaging.

We first consider the equation (2.14) with G(t, ϕ) = G(ϕ). By denoting S(ϕ) =
Z(ϕ)G(ϕ), we have the following equation:

ϕ̇ = ω + εS(ϕ). (2.17)

By integrating both sides with respect to time, we have

ϕ(t + τ)− ϕ(t) = ωτ + ε
∫ t+τ

t
S(ϕ(t + t′))dt′ = ωτ +O(εT). (2.18)

Here we make a bold assumption that we can rewrite ϕ̇ with a averaged velocity
〈ϕ̇〉 := (1/T)

∫ t+T
t ϕ̇(τ)dτ3. Then we can expand the equation (2.17) with respect

to ε:

ϕ̇ ≈ ω +
ε

T

∫ T

0
S(ϕ(t) + ωt′ +O(εT))dt′ = ω + εω1 +O(ε2T), (2.19)

where

ω1 :=
1

2π

∫ 2π

0
S(η)dη. (2.20)

This is the phase equation and the angle velocity becomes ω + εω1.
For the case of coupled systems, we obtained the phase equation (2.16) in the

previous subsection. By averaging the equation with respect to time similar to
the above paragraph, we have the following equation:

ϕ̇i = ω + εωi + ε
N

∑
j=1

Γij(ϕi − ϕj), (2.21)

where the coupling function Γij(ϕ) is calculated by

Γij(ϕ) :=
1

2π

∫ 2π

0
Z(ϕ + η)Gij(ϕ + η, ϕ)dη. (2.22)

By the method of averaging, the phase equation (2.21) now becomes shift-invariant,
that is the vector field is invariant under the shift ϕi 7→ ϕi + c for all i, which
makes the analysis much easier than the original equation (2.15).

3It turns out that this assumption is justified via the near-identity transformation, but we do
not discuss it here.
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2.2 Coupled phase-oscillator models

In the previous section, we have derived the phase equation of the coupled ODEs
in the form of (2.21). We can rewirte the equation in the general form as follows:

dθi

dt
= ωi +

N

∑
j=1

Γij(ϕi − ϕj), (2.23)

and we call this equation the coupled phase-oscillator model. In this section, we
review the theoretical results of the coupled phase-oscillator models, especially
focusing on the Kuramoto model.

2.2.1 The Kuramoto model

The Kuramoto model consists of N phase-oscillators where N is a large integer,
and evolutes in time with the following equations,

dθi

dt
= ωi +

K
N

N

∑
j=1

sin(θj − θi), (2.24)

for i = 1, . . . , N. θi, ωi are the phase and the natural frequency of the ith oscil-
lator, and each ωi is drawn from a distribution g(ω), which we call the natural
frequency distribution. In this thesis, we assume that g(ω) is symmetric and uni-
modal, or more precisely, g(−ω) = g(ω) and g′(ω) < 0 for ω > 0. Each oscillator
is coupled through the sine function of the phase difference with a homogeneous
coupling strength K ≥ 0. When we take K = 0, there are no interactions among
oscillators, and they move with their own frequencies ωi, On the other hand,
when K > 0 is sufficiently large, oscillators tend to attract each other, as we dis-
cuss later.

To visualize the extent of synchronization of oscillators, the complex order
parameter z is introduced,

z = reiϕ =
1
N

N

∑
j=1

eiθj , (2.25)

where r, ϕ ∈ R. This order parameter z represents the centroid of the oscillators
moving on the complex unit circle S1. As shown in Fig. 2.3, when the oscillators
are uniformly distributed on S1, which corresponds to the nonsynchronized state,
r gets close to 0. On the other hand, when the oscillators gather at a point on S1,
which corresponds to the synchronized state, r equals 1. Calculating r is therefore
useful for monitoring synchronization of the Kuramoto model. We will look into
the relation between the order parameter r and the coupling strength K.

We give a brief explanation why the Kuramoto model describes synchroniza-
tion. Using the order parameter, the equations of the Kuramoto model are written
as

dθi

dt
= ωi + Kr sin(ϕ− θi). (2.26)

12
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Figure 2.3: Oscillators moving on S1. When the oscillators are uniformly dis-
tributed on S1, the centroid is close to 0 (left). When the oscillators gather around
a point on S1, r gets close to 1 (right).

In the previous equations (2.24), each oscillator couples with the other oscillators,
but this modification allows us to treat each oscillator as it couples only with the
order parameter. We will see what happens when K is sufficiently large. Let us
assume that the phase of the ith oscillator is going ahead of the phase of the order
parameter. In this case sin(ϕ− θi) is negative and this makes the ith phase θi slow
down. We can interpret this deceleration of the ith phase as the ith oscillator being
attracted to the order parameter. When the order parameter is going ahead of the
ith oscillator, the deceleration changes to the acceleration and the ith oscillator
gets attracted to the order parameter.

2.2.2 The synchronization transition

The Kuramoto model is known to exhibit the synchronization transition from the
nonsynchronized state to (partially) synchronized states, and the order parameter
r shows a continuous transition

r ∝ (K− Kc)
β (2.27)

around the critical point K ≳ Kc, where β is the critical exponent. We will look
back to the original Kuramoto’s analysis and derive the self-consistent equation
of r. Also, we will review a discussion on the stability of the solution to the
Kuramoto model.

In the large population limit N → ∞, by the conservation of the number of
oscillators, (2.24) can be written in the equation of continuity [Lan05],

∂F
∂t

+
∂

∂θ
(v[F]F) = 0, (2.28)

v[F] = ω + K
∫

S1
dθ′

∫
R

dω′ sin(θ′ − θ)F(θ′, ω′, t), (2.29)

13
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where F(θ, ω, t) is the probability distribution function of θ and ω at the time t. In
other words, F(θ, ω, t)dθdω represents the fraction of oscillators having phases
between θ and θ + dθ and natural frequencies between ω and ω + dω at the time
t. From the normalization condition

∫
S1 dθ

∫
R

dωF(θ, ω, t) = 1,∫
S1

dθF(θ, ω, t) = g(ω). (2.30)

In this limit the order parameter is expressed by

z = reiϕ =
∫

S1
dθ
∫

R
dωF(θ, ω, t)eiθ. (2.31)

We first seek for a solution to (2.28) where oscillators distributed uniformly
on S1. In this case the distribution function has to be constant with respect to θ.
From the normalization condition (2.30), the flat distribution is expressed by

f 0(ω) =
g(ω)

2π
. (2.32)

Since this uniform solution f 0(ω) is independent of K,

z =
∫

S1
dθ
∫

R
dω f 0(ω)eiθ = 0 (2.33)

is valid for all K. This fact induces v[ f 0] = ω and f 0 is a stationary solution of
(2.28) as ∂

∂θ (v[ f 0] f 0) = 0.
The stability analysis of f 0(ω) is studied through the linearized equation around

f 0(ω) by expanding (2.28) with F = f 0 + f , which reads

∂ f
∂t

= L f := −ω
∂ f
∂θ
− K f 0=(ze−iθ). (2.34)

Here, z reads

z =
∫

S1
dθ
∫

R
dω( f 0 + f )eiθ =

∫
S1

dθ
∫

R
dω f eiθ. (2.35)

L has a continuous spectrum on the imaginary axis. This continuous spectrum
was a huge obstacle to study the asymptotic behavior of the solution to the Ku-
ramoto model, but the generalized spectrum theory introduced by Chiba [Chi15]
solved this difficulty, and the stability of f 0(ω) is solved; for K < Kc := 2/(πg(0)),
f 0(ω) is asymptotically stable, whereas unstable for K > Kc.

To obtain the bifurcation diagram of the stationary solutions, we derivate the
stationary solution of (2.28) for a given K. The stationary solution Fst(θ, ω) is
defined so as to satisfy

∂

∂θ
(v[Fst]Fst) = 0, (2.36)

which implies ∂
∂t Fst = 0. This stationary solution Fst(θ, ω) gives a constant order

parameter, hence r and ϕ are constant. By shifting the frame with the phase ϕ,
we can set ϕ to zero without loss of generality. Then the velocity field becomes

14
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v[Fst] = ω − Kr sin θ. The value of r is unknown because it is determined by Fst,
which we will compute in the following, as

r =
∫

S1
dθ
∫

R
dω cos θFst(θ, ω). (2.37)

We will determine the value of r self-consistently.
The solution of (2.36) is separately written in two parts of the ω-axis. An

oscillator with |ω| < Kr has two fixed points of θ solving

v[Fst] = ω− Kr sin θ = 0. (2.38)

One solution is in the interval |θ| < π/2 and the other is in π/2 < |θ| < π.
Looking back (2.26), we observe that the derivation of v is negative (positive) at
the former (latter) fixed point, and hence it is stable (unstable). All the oscillators
having the natural frequency ω converge to the above stable fixed point, therefore
Fst ∝ δ(ω− Kr sin θ). From the normalization condition∫ π/2

−π/2
dθFst(θ, ω) = g(ω), (2.39)

the stationary solution is

Fst
lock(θ, ω) =

{ √
(Kr)2 −ω2δ(ω− Kr sin θ)g(ω), |θ| < π

2 ,
0, π

2 < |θ| < π.
(2.40)

We refer to these oscillators as the locked oscillators. In contrast, a oscillator with
|ω| > Kr does not have fixed points, and they drift on S1. From the stationarity
condition (2.36) and the normalization condition (2.30),

Fst
drift(θ, ω) =

g(ω)

2π

√
ω2 − (Kr)2

|ω− Kr sin θ| . (2.41)

We check the validity of (2.40) and (2.41) by numerical simulation. We consider
the Kuramoto model with K = 5.0 and N = 50000 oscillators and see the scatter-
ing plot with theoretical line ω = Kr sin θ in Fig. 2.4.

(2.40) and (2.41) depend on unknown variable r, and putting these two types
of oscillators together, we have the self-consistent equation for r as

r =
∫

S1
dθ
∫
|ω|<Kr

dω cos θFst
lock(θ, ω) +

∫
S1

dθ
∫
|ω|>Kr

dω cos θFst
drift(θ, ω). (2.42)

Since Fst
drift(θ +π,−ω) = Fst

drift(θ, ω), the contribution from the drifting oscillators
cancels out, and (2.42) is reduced to

r = Kr
∫ π/2

−π/2
dθ cos2 θg(Kr sin θ). (2.43)

This equation has the trivial nonsynchronized solution r = 0 for any K. The
(partially) synchronized solution r 6= 0 satisfies

1 = K
∫ π/2

−π/2
dθ cos2 θg(Kr sin θ). (2.44)
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Figure 2.4: (θ, ω) distribution of the Kuramoto model at K = 5.0 with total num-
ber of oscillators N = 50000. Numerical results are shown by scatter points and
we see that the lock state is consisten with theoretical line ω = Kr sin θ.

Assuming that a partially synchronized branch bifurcates from K = Kc, we take
the limit K → Kc + 0 together with r → +0 and we have the critical point

Kc =
2

πg(0)
, (2.45)

which is consistent with the value obtained from the stability analysis of f 0(ω).
When we set the natural frequency distribution g(ω) to Lorentzian distribu-

tion,

g(ω) =
∆
π

1
ω2 + ∆2 , (2.46)

we can perform the integration in (2.43) and have

r =

√
1− Kc

K
(2.47)

for K ≥ Kc = 2∆. See Fig. 2.5. Therefore, the partially synchronized branch
bifurcates with r ∝ (K − Kc)1/2, and the critical exponent is β = 1/2. We will
discuss the critical exponent for a general g(ω) in the next subsection.

We note on the unimodality and symmetry of the natural frequency distribu-
tion g(ω). The above proof does not hold for g(ω) with bimodality or asymmetry,
which may yield different synchronization transitions [Mar+09; Ter+17; YY20].

2.2.3 Critical exponents

To calculate the critical exponent β for general natural frequency distribution
g(ω), we expand (2.44) around r = 0, and we have

1 =
K
Kc

+
K3g′′(0)

16
r2 + · · · . (2.48)
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Figure 2.5: Lorentzian distribution (left) and the corresponding bifurcation di-
agram (right). We set ∆ = 1. The stable/unstable branches are drawn in a
solid/dashed line, respectively.

Here, we used the critical point formula (2.45). However, this expansion is not
enough when g′′(0) = 0, and in this case we have to expand g(ω) up to higher
degrees. Therefore we assume that g(ω) has the following expansion around
ω = 0,

g(ω) = gn(ω) = g(0)− Cnω2n + · · · , (2.49)

for n ∈ N where Cn > 0, coming from the unimodality. We set the second lower
order of gn(ω) to 2n, which is even because of the symmetry g(−ω) = g(ω). We
note that the Lorentzian distribution and Gaussian distribution are in the n =
1 case. We give two families of natural frequency distribution as examples of
gn(ω),

g(L)
n (ω) =

n sin( π
2n )

π

∆2n−1

ω2n + ∆2n , (2.50)

g(G)
n (ω) =

n∆
Γ( 1

2n )
e−∆2nω2n

, (2.51)

where g(L)
n (ω) and g(G)

n (ω) are generalizations of the Lorentzian distribution and
the Gaussian distribution, respectively [PDD18]. In the limit n→ ∞, g(L)

n (ω) and
g(G)

n (ω) converge to

g∞(ω) :=

{
1

2∆ , ω ∈ [−∆, ∆],
0, otherwise.

(2.52)

This distribution is a uniform distribution on a compact support. See Fig. 2.6.
Let us observe the value of β takes for the distribution gn(ω) (2.49). We again

expand (2.44) around r = 0,

1 =
K
Kc
− Dnr2n + · · · , (2.53)

Dn = CnK2n+1
c B

(
n +

1
2

,
3
2

)
, (2.54)
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for n = 1, 2, 3, and ∞ for ∆ = 1. g(L)
n (ω) and g(G)

n (ω) converge to g∞(ω) (2.52).

where B(x, y) is the beta function4. Therefore r bifurcates from K = Kc with

r ∼
(

K− Kc

DnKc

) 1
2n

∝ (K− Kc)
1

2n , (2.55)

and the critical exponent is β = 1/(2n). For the Lorentzian distribution, (2.55) is
consistent with (2.47) since n = 1.

What left to calculate is the critical exponent β for g∞(ω) (2.49). In this case,
g∞(ω) is no longer an analytic function, hence we have to solve this case sepa-
rately. g∞(ω) is an uniform distribution, and the discontinuity at the boundary
of the support leads to the jump in the order parameter at the critical point. Ref-
erence [BU07] has showed that the critical point K = Kc and the jump point rc at
K = Kc read

Kc =
4∆
π

, rc =
π

4
, (2.56)

and the K-dependency of the order parameter r reads

r− rc ∝ (K− Kc)
2
3 . (2.57)

We note that this jump is different from the one we see when g(ω) is bimodal
[Mar+09; Ter+17; YY20] in the sense that the jump with the uniform distribution
exhibits no hysteresis, whereas the jump with the bimodal distribution exhibits
hysteresis.

2.2.4 General coupling functions

The Kuramoto model with a general coupled function is defined by

dθi

dt
= ωi +

K
N

N

∑
j=1

Γ(θj − θi), (2.58)

4The beta function is defined by B(x, y) =
∫ 1

0 tx−1(1− t)y−1dt for <(x) > 0 and <(y) > 0.
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Figure 2.7: Stable branches of the Kuramoto model for natural frequency distri-
butions g(L)

n (ω) with n = 1, 2, 3, ∞ for ∆ = 1.

where Γ(θ) is a 2π-periodic function, and the interactions depend on the phase
difference θj − θi, from the phase reduction theory [KN19].

A natural and simple extension of the Kuramoto model is to add a bi-harmonic
function [KP14]:

Γ(θ) = sin θ + a sin 2θ, a < 1. (2.59)

When a = 0, this model falls back to the original Kuramoto model (2.24). Refer-
ence [CN11] has proved that the order parameter exhibits a transcritical bifurca-
tion at the critical point K = Kc with

r ∼ 2(1− a)
K3

c Ca
(K− Kc) ∝ K− Kc, (2.60)

where

C = PV
∫

R
dω

g′(ω)

ω
. (2.61)

Here, PV represents the principal value of an integral. C takes a negative value
for unimodal and symmetric g(ω). Therefore, the critical exponent β becomes
unity when a < 0 for unimodal and symmetric g(ω), which is different from
β = 1/(2n) in the Kuramoto model. We note that this model exhibits a first-order
phase transition when 0 < a < 1 since r < 0 is forbidden. In Fig. 2.8, we show the
numerical results of the Kuramoto model with (2.59). We can see the hysteresis
in the order parameter r for a = 0.5, indicating the first-order phase transition.

2.2.5 Coupled phase-oscillator models on networks

There exist many types of networks in the real-world, such as human relation-
ships, World Wide Web, citations of scientific papers, and so on. We refer to these
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Figure 2.8: Numerical results of the Kuramoto model with a bi-harmonic cou-
pling function (2.59) for a = −0.2 (left) and a = 0.5 (right).

networks as complex networks, and dynamical systems on the complex networks
attract widespread interest. See [DGM08] for a review of dynamical systems on
complex networks, especially on their critical phenomena. The coupled phase-
oscillator models are no exceptions, and there are extensive researches on the
coupled phase-oscillator models on complex networks. One extended Kuramoto
model on a complex network is

dθi

dt
= ωi +

K
〈k〉 ∑

j∈Λi

sin(θj − θi), (2.62)

for i = 1, · · · , N. Here 〈k〉 is the average degree of the network, and Λi is the
index set of the oscillators connecting to the ith oscillator. If the network is all-
to-all, 〈k〉 = N and Λi = {1, · · · , N}, therefore (2.62) falls back to the original
Kuramoto model (2.24). One of the most successful studies to tackle the model
(2.62) is to use a graphon [CMM18], defined by a symmetric measurable function
W : [0, 1]2 → [0, 1], which can be seen as, in some sense, a “limit” of the adjacency
matrix of the network. For an all-to-all network, the continuum limit graphon is
W(x, y) = 1 for all x, y ∈ [0, 1]. Another example is the Erdős–Rényi graph, in
which existence of an edge is probablistically determined with probability p, and
its graphon in the continuum limit is

W(x, y) = p, ∀x, y ∈ [0, 1]. (2.63)

There is only a constant difference between the all-to-all graph and the Erdős–
Rényi graph, therefore we can easily know the critical point and critical exponents
of the Erdős–Rényi graph from an analogy of previous discussions.

In [CMM18], extended Kuramoto models on many other networks are dis-
cussed, and their results suggest that the critical exponent are the same as the ones
in the all-to-all Kuramoto model. Thus, we can see that graphons are a powerful
tool to analyze the extended Kuramoto model on networks, but we have to note
that graphons can be defined only for a graph with O(N2) edges with N nodes.
Whereas real-world networks are often very sparse, say O(N) edges, analyzing
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by graphons cannot be adopted to an extended Kuramoto model on a sparse net-
work. One of the most important networks with O(N) edges is the small-world
network. In [HCK02], the critical exponent of the extended Kuramoto model on
small-world networks for the Gaussian distribution g(ω) is numerically calcu-
lated, and it is claimed that β = 1/2. This value is the same as the one from
the Kuramoto model with the Gaussian distribution, but we do not know the
dependency on natural frequency distributions g(ω) or coupling functions Γ(θ).
Moreover, in [JKÓ19], the critical exponent of the Kuramoto model on a sparse
Erdős–Rényi network for the Gaussian distribution is numerically calculated, and
it is claimed that β = 0.66, which is different from 1/2. This result suggests that
extended Kuramoto models on O(N2) networks take the same critical exponent
as the Kuramoto model, whereas extended Kuramoto models on O(N) networks
take different values.

In the next section, we numerically calculate the critical exponent β for cou-
pled phase-oscillator models on small-world networks, and observe dependence
on n of gn(ω) or the coupling function Γ(θ) to reveal difference between the all-
to-all network and the small-world network.

References

[BU07] Lasko Basnarkov and Viktor Urumov. “Phase transitions in the Ku-
ramoto model”. In: Physical Review E 76.5 (2007), p. 057201.

[Chi15] Hayato Chiba. “A proof of the Kuramoto conjecture for a bifurcation
structure of the infinite-dimensional Kuramoto model”. In: Ergodic
Theory and Dynamical Systems 35.3 (2015), pp. 762–834.

[CMM18] Hayato Chiba, Georgi S Medvedev, and Matthew S Mizuhara. “Bi-
furcations in the Kuramoto model on graphs”. In: Chaos: An Interdis-
ciplinary Journal of Nonlinear Science 28.7 (2018), p. 073109.

[CN11] Hayato Chiba and Isao Nishikawa. “Center manifold reduction for
large populations of globally coupled phase oscillators”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 21.4 (2011), p. 043103.

[DGM08] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. “Critical phe-
nomena in complex networks”. In: Reviews of Modern Physics 80.4
(Oct. 2008), pp. 1275–1335. DOI: 10.1103/revmodphys.80.1275. URL:
https://doi.org/10.1103/revmodphys.80.1275.

[HCK02] Hyunsuk Hong, Moo-Young Choi, and Beom Jun Kim. “Synchro-
nization on small-world networks”. In: Physical Review E 65.2 (2002),
p. 026139.
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CHAPTER 3

CRITICAL EXPONENTS IN
COUPLED PHASE-OSCILLATOR

MODELS ON SMALL-WORLD
NETWORKS

This chapter is constructed based on the published paper [YHY20].

3.1 Introduction

Ever since Huygens found that two pendulum clocks hanging on a wall swung
in the opposite direction from each other, many illustrations of synchronization
have been established in various fields of nature, such as frog choruses [Aih+14],
flashing of fireflies [Smi35; BB68], metronomes [Pan02], and circadian rhythms [Win67].
It is natural to try to understand synchronization theoretically, and a coupled
phase-oscillator model is one of successful models to describe synchronization [KN19].
This model consists of many coupled oscillators, and the coupling is expressed
by a periodic coupling function. Each oscillator has the so-called natural fre-
quency, randomly drawn from a natural frequency distribution. When the cou-
pling strength K increases, the oscillators exhibit the synchronization transition
from the non-synchronized state to (partially) synchronized states. The synchro-
nization transition is continuous or discontinuous, depending on the natural fre-
quency distribution and the coupling function [Kur75; Str00; Chi15; Dai15; BU07;
Paz05; Dai90; Cra95; CN11; KP13; KP14].

The critical phenomena have been extensively studied in statistical mechan-
ics. One of their remarkable features is the existence of universality classes; the
systems in a universality class share the critical exponents defined around the
critical point K = Kc of a continuous transition. One of the critical exponents is β,
defined by r ∼ (K−Kc)β, where r is the order parameter. Thus, it is natural to ask
the universality classes in the coupled phase-oscillator models through values of
the critical exponent β.

For the all-to-all and uniform coupling, extended researches have revealed
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that the value of β depends on the coupling function and the natural frequency
distribution [Kur75; Str00; Chi15; Dai15; BU07; Paz05; Dai90; Cra95; CN11; KP13;
KP14]. For simplicity, we focus on coupling functions which have two harmon-
ics at most, and review values of the critical exponent β for the following three
cases: (i) the second harmonics is absent, (ii) the second harmonics has the op-
posite sign with the leading harmonics, and (iii) the second harmonics has the
same sign with the leading harmonics. We assume that the natural frequency
distribution is unimodal and symmetric, and that the second-leading term of its
Maclaurin expansion is of the order 2n, where n ∈ N. A Gaussian distribution
and a Lorentzian distribution have n = 1 for instance.

In the case (i) and (ii), the model shows a continuous transition, whereas
in the case (iii), a discontinuous transition occurs [CN11], hence we cannot de-
fine the critical exponent β. In the case (i), the model becomes the Kuramoto
model [Kur75], a paradigmatic coupled phase-oscillator model. Several researches
have pointed out that the critical exponent β = 1/(2n) [Kur75; Str00; Chi15;
Dai15]. This n dependence is a strong feature of the Kuramoto model and gives a
sharp contrast with the case (ii). In the case (ii), the critical exponent β becomes 1
for n = 1 [Cra95; CN11; KP13; KP14], and this value is suggested to be universal
irrespective of n ∈ N [CN11].

Apart from the all-to-all coupling, couplings represented by complex net-
works are of interests like random graphs, scale-free networks, and small-world
networks [DGM08]. In particular, we focus on the small-world network because
it is ubiquitous in the real world [WS98], and it is a notable network for the
synchronization. The synchronization transition appears with the critical expo-
nent β = 1/2 in small-world networks even if they are very close to the one-
dimensional lattice [HCK02], while the one-dimensional lattice hardly shows the
synchronization [SSK87; Dai88; HCK02]. The previous research [HCK02] how-
ever lacks to consider universality since it has treated only the case (i) with n = 1,
whereas other universality classes might be hidden in other cases as mentioned
above. In this chapter, we numerically study the synchronization transitions on
small-world networks in all the cases (i), (ii), and (iii) with varying the value of
n. Our results suggest that the critical exponent is universally β = 1/2 for any
n ∈ N in the cases (i) and (ii), where the transition is continuous, while disconti-
nuity in the case (iii) is inherited.

This chapter is organized as follows. In Sec. 3.2, we briefly introduce the small-
world network and coupled phase-oscillator models on it. We also introduce a
family of the natural frequency distributions, whose second-leading term is of
the order 2n. In Sec. 3.3, we show the finite-size scaling to calculate the critical
exponent β. A similarity between systems on the small-world network and noisy
systems is discussed in Sec. 3.4. Finally, in Sec. 3.5, we summarize this chapter
and note some future works.
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3.2 Coupled phase-oscillator models on small-world
networks

A coupled phase-oscillator model is defined by

dθi

dt
= ωi +

K
2k ∑

j∈Λi

fa(θj − θi),

fa(θ) = sin θ + a sin 2θ,

(3.1)

for i = 1, · · · , N. θi and ωi are the phase and the natural frequency of the ith
oscillator respectively, and ωi is randomly drawn from a natural frequency dis-
tribution g(ω). K > 0 is a coupling constant, describing how strong the cou-
pling between oscillators are. The index set Λi contains the indexes of oscillators
connecting to the ith oscillator, and it determines the network of couplings. For
instance, the all-to-all coupling gives Λi = {1, · · · , N}, and the nearest neighbor
coupling on the one-dimensional lattice gives Λi = {i− 1, i + 1}.

The coupling network represented by {Λi}N
i=1 is arbitrarily chosen. In this

chapter, we are interested in the small-world network, which possesses the prop-
erty of a small diameter and a large clustering coefficient despite its sparsity.
The small-world network can be seen in various fields of the real world, such
as human relationships, World Wide Web, citations of scientific papers, and so
on. In 1998, Watts and Strogatz proposed a breakthrough network model show-
ing the property of small-world network, which is created in the following al-
gorithm [WS98]. We first make a periodic k-nearest neighbor network with N
nodes, which results in kN links. Then we rewire each link with probability p,
keeping in mind that we do not allow self-loops or link duplications. Moreover,
we use only connected small-world networks: if a generated network is discon-
nected, we discard it and generate another one until connected one is created. See
Fig. 3.1 for a comparison between the all-to-all network and a small-world net-
work. In this chapter, we use the Watts–Strogatz small-world network with k = 3
and p = 0.2, following the previous research [HCK02] which shows emergence
of the synchronization transition on a small-world network.

As the natural frequency distribution g(ω), we introduce a family of distribu-
tions parametrized by a natural number n ∈ N,

gn(ω) =
n

Γ(1/(2n))∆
e−(ω/∆)2n

, (3.2)

where Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function defined on <(z) > 0. Here,
∆ > 0 is a parameter describing the width of the distribution. We note that n = 1
gives the Gaussian distribution. The distribution gn(ω) is unimodal and symmet-
ric with respect to ω = 0, and its Maclaurin expansion has the following form,

gn(ω) = gn(0)− Cnω2n + · · · , (3.3)

where Cn = n/(Γ(1/(2n))∆2n+1) is positive. We remark that the generalized
Lorentzian distribution introduced in [PDD18] also has the same expansion form
up to the second leading term. In the limit n → ∞, gn(ω) converges to g∞(ω) in
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Figure 3.1: Comparison between the all-to-all network (left) and a small-world
network (right) with 20 nodes. The small-world network is constructed from the
k-nearest neighbour lattice (k = 3) with the rewriting probability p = 0.2.

the L1-norm,

g∞(ω) =

{
1/(2∆), ω ∈ (−∆, ∆),
0, otherwise. (3.4)

This distribution is a uniform distribution on a compact support.
To visualize the extent of synchronization of oscillators, we introduce the or-

der parameter rN defined by

rN =

∣∣∣∣∣ 1
N

N

∑
j=1

eiθj

∣∣∣∣∣ . (3.5)

The order parameter represents the centroid of the oscillators moving on the com-
plex unit circle S1. When the oscillators are uniformly distributed on S1, which
corresponds to the non-synchronized state, rN gets close to 0. On the other hand,
when the oscillators gather at a point on S1, which corresponds to the synchro-
nized state, rN equals to 1. The order parameter rN is therefore useful for mon-
itoring synchronization of the coupled phase-oscillator models. In the next sec-
tion, we will look into the dependency of the order parameter rN on the coupling
strength K.

The coupled phase-oscillator model on the small-world network represented
by Eq. (3.1) has been considered previously [CMM18; Med14], but we stress that
the numbers of links are completely different from ours. From the construction
algorithm, a small-world network has kN links and k = 3 in our networks while
k = O(N) in the literature. An advantage of networks with k = O(N) is that
they can be analyzed through the equation of continuity [Lov12]. Nevertheless,
this advantage implies at the same time that such a small-world network in the
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literature is essentially the same with the all-to-all coupling, and is not suitable
for detecting new universality classes.

3.3 Numerical simulations

In the large population limit N → ∞, the coupled phase-oscillator model, Eq. (3.1),
is expected to show a synchronization transition around a critical point Kc. For
K < Kc, the order parameter r(K) := limN→∞ rN(K) is zero, which corresponds
to the non-synchronized state. On the other hand, for K > Kc, the model shows
partially synchronized states, in which r(K) exhibits power law behavior close to
the critical point in the form of

r(K) ∼ (K− Kc)
β, (3.6)

where β is one of the critical exponents. The critical exponents are crucial to
describe critical phenomena, and models are classified into universality classes,
each of which shares the same critical exponents. Calculating the critical expo-
nents, including β, is therefore an important topic from theoretical and numerical
perspectives.

3.3.1 Finite-size scaling

The critical exponent β is defined in the large population limit N → ∞, but the
limit cannot be achieved through the numerical simulations. To overcome this
difficulty, we use the finite-size scaling theory, which provides us the limit from
observations in finite-size systems. The first assumption of our finite-size scaling
theory is existence of the coherent number Nc(K) [BJP82] diverging at the critical
point K = Kc as

Nc(K) ∝ (K− Kc)
−ν̄, (3.7)

where ν̄ is another unknown positive critical exponent. The coherent number
corresponds to the correlation length in a simple lattice model. The second as-
sumption is that the order parameter rN(K) depends on K only through the ratio

N
Nc(K)

∝
[
(K− Kc)N1/ν̄

]ν̄
. (3.8)

These assumptions imply that rN(K) can be represented by

rN(K) = N−β/ν̄F((K− Kc)N1/ν̄), (3.9)

where the function F, which is called the scaling function, must be

F(x) ∝ xβ for large x (3.10)

to reproduce the critical exponent β in the limit N → ∞. We remark that the
exponent β/ν̄ expresses the finite-size fluctuation of rN(K) at the critical point
K = Kc.

The finite-size scaling is widely used for numerical studies of critical phenom-
ena in continuous phase transitions, including coupled phase-oscillator models
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[HCK02; PV02; Has10; PR15; Hon+15; CDJ17; JKÓ19]. An important remark on
Eq. (3.9) is that, on the ((K − Kc)N1/ν̄, Nβ/ν̄rN) plane, observed values of rN(K)
must collapse on a single graph of F for any values of N and K. The unknown
values of Kc, β, and ν̄ are determined by detecting the best fit values. The de-
tection will be performed by using the Bayesian scaling analysis [Har11; Har15],
whose brief introduction is given in Appendix 3.A.

3.3.2 Computation of the order parameter

We determine the value of the order parameter rN(K) for a given set of (N, K)
through temporal evolution of the system and two steps of averaging. The model
equation, Eq. (3.1), is numerically integrated by using the fourth-order Runge–
Kutta algorithm with the time step δt = 0.1. Initial values of the phases {θi}
are randomly drawn from the uniform distribution on the interval [0, 2π), and
the natural frequencies {ωi} are randomly drawn from the distribution function
gn(ω). The order parameter rN defined by Eq. (3.5) depends on time t, and we
take the time average in the time interval t ∈ [300, 500]. This is the first averaging.

Further, we perform 400 realizations by changing small-world networks, the
initial values of {θi}, and {ωi} for a given set of (N, K). To compute the con-
fidence interval of the order parameter, the resampling technique is in use. We
choose 200 samples out of 400 realizations, and calculate the mean of the time-
averaged order parameter in the chosen 200 samples. The mean of the ith resam-
pling is denoted by r(i)N (K), and we perform the resampling for S = 1000 times.
The value rN(K) is determined by taking the second averaging over S samples
{r(i)N (K)}S

i=1, which also provide the confidence interval of rN(K).
See Fig. 3.2 for the obtained rN(K) for a = 0 and −0.2 with n = 1, where

the condition a ≤ 0 is expected to give a continuous transition. In the following
two sections, we compute the critical exponents for a = 0 and a = −0.2, and
show discontinuity for a = 0.5, respectively. We remark that a = −0.2 and 0.5
are not special values. They are arbitrarily chosen from a neighborhood of a = 0
to demonstrate differences among the three cases of (i) a = 0, (ii) a < 0, and (iii)
a > 0.

3.3.3 Critical exponents for continuous transition

The finite-size scaling, Eq. (3.9), is a powerful tool to compute the unknown val-
ues of Kc, β, and ν̄, but it is not perfect if N is not sufficiently large. We thus
compute the unknown variables for three values of N ∈ {Nmin, 2Nmin, 4Nmin},
and observe convergence by varying Nmin. Moreover, we use the resampling
technique again to estimate the unknown values with their confidence intervals.
Consequently, we have S = 1000 sets of the three values for a given Nmin as re-
ported in Fig. 3.3 because each resampling set r(i)N (K) determines them. Finally,
the values and the confidence intervals of Kc, β, and ν̄ are computed as the av-
erages and the standard deviations over S = 1000 sets. The estimated values
are verified in Fig. 3.4, where all the points lie on a single curve representing the
scaling function F for Nmin = 6400.

The estimated values of Kc, β and ν̄ are summarized in Table 3.1. The row
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Figure 3.2: Graphs of order parameter rN(K) with its confidence interval for
the model (3.1), where we take the coupling function fa(θ) with (a) a = 0 and
(b) a = −0.2. As a natural frequency distribution, we use g1(ω) with ∆ = 1,
and N = 1600, 3200, 6400, 12800, and 25600 from top to bottom. rN(K) and its
confidence interval are evaluated by the resampling technique. Errorbars are so
small that they may not be visible.

of Nmin = ∞ is obtained by extrapolation from Nmin = 1600, 3200, and 6400 as
demonstrated in Fig. 3.5. We note that the extrapolated values of β are close to
1/2 and ones of ν̄ are close to 5/2 irrespective of the values of a and n. The
universality is completely unlike the all-to-all interaction case. Here we note that
this result shares the same critical exponent ν̄ = 5/2 as the all-to-all interaction
case for (a, n) = (0, 1) calculated in [Hon+07].

The value ν̄ ' 5/2 is not in agreement with the value ν̄ ' 2 previously re-
ported for (a, n) = (0, 1) [HCK02]. We suppose that the discrepancy comes from
the method to compute the critical exponents. In the literature, the authors used
the fact that rN(K)Nβ/ν̄ takes a constant value irrespective of N at the critical
point K = Kc (See Eq. (3.9)). Using this fact, they first find the best fit values
of β/ν̄ and Kc by varying the system size N. One more equation is obtained by
derivating the finite-size scaling, Eq. (3.9), which produces

log
[

drN

dK
(Kc)

]
=

1− β

ν̄
log N + const. (3.11)

Plotting the left-hand side as a function of log N, one has the slope (1 − β)/ν̄.
A remarkable disadvantage of this method is that the estimation relies on high
precision of rN(K) around the critical point K = Kc, while the Bayesian scaling
analysis uses rN(K) in a wider interval of (K− Kc)N1/ν̄ and provides persistence
against fluctuation. We, therefore, believe that ν̄ ' 5/2 obtained by the Bayesian
scaling analysis is more reliable.
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Figure 3.3: Scattering plots of computed parameters (a)(β, Kc) and (b)(ν̄, Kc),
evaluated by the Bayesian scaling analysis. Here, we use (a, n) = (0, 1), and we
set Nmin to 1600, 3200 and 6400.

3.3.4 Discontinuity of transition

In the all-to-all interaction a positive a induces discontinuity of the synchroniza-
tion transition [CN11]. We reveal that the transition is discontinuous also in a
small-world network. The discontinuity appears as a result of a subcritical transi-
tion, and a subcritical transition has metastability: A partially synchronized state
is stable in addition to a stable nonsynchronized state for a fixed K close to the
critical point. The metastability implies that the final state depends on choice of
the initial state, and the dependency is extracted by observing hysteresis.

Fixing a = 0.5, we check existence of the hysteresis by preparing two sets of
the initial phases {θi}N

i=1 for each K: (i) We start from K = Kstart, where Kstart

is sufficiently smaller than the critical value Kc, and the initial phases {θi}N
i=1 are

randomly drawn from the interval [0, 2π). At a certain value of K, the final phases
at t = 500 is used as the initial phases at the successive value K + ∆K in the in-
creasing direction. The increase of K is continued up to K = Kend, where Kend is
sufficiently larger than the critical value Kc. We call the process (i) the “forward”
process, and r(forward)

N (K) denotes its order parameter. (ii) Contrary to the “for-
ward” process, we start with the random initial phases {θi}N

i=1 at K = Kend and
decrease K up to K = Kstart following the same procedure with the “forward”
process. We call this process the “backward” process, and r(backward)

N (K) denotes
its order parameter. We have executed the numerical simulations of Eq. (3.1) for
a = 0,−0.2, and 0.5, and n = 1, 2, 3, and ∞. For the system size N = 25600, the
hysteresis appears only for a = 0.5 regardless of n as exampled in Fig. 3.6 for
n = 1. We have checked that t = 500 is sufficiently long to pass the transient
period, and simulations up to t = 800 do not affect the hysteresis. We therefore
conclude that the system represented by Eq. (3.1) shows a discontinuous transi-
tion for a = 0.5 as the all-to-all interaction case.
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Figure 3.4: Graph of scaled order parameter rN(K)Nβ/ν̄ versus scaled coupling
constant (K − Kc)N1/ν̄ for (a, n) = (0, 1), where we use β, ν̄ and Kc, obtained by
the Bayesian scaling analysis for Nmin = 6400. The values of β, ν̄, and Kc are
shown in Table 3.1. We see that the scaled data are well collapsed to the scaling
function F.

3.4 Small-world network and noise

We discuss similarity between systems on small-world networks and noise sys-
tems. For simplicity, we consider the Kuramoto model (a = 0) for a while. The
steady state in the Kuramoto model is proportional to δ(ω− Kr sin θ) in the syn-
chronized regime of ω [Str00; DA18], where δ is the Dirac’s delta function. The
δ function with the integration over ω and symmetry of the natural frequency
distribution yield the self-consistent equation of the order parameter r as

r = Kr
∫ π/2

−π/2
gn(Kr sin θ) cos2 θdθ. (3.12)

The order parameter r is sufficiently small around the critical point and we per-
form the Maclaurin expansion of gn. The leading order of the expansion, which
is of O(r), determines the celebrated critical point Kc = 2/[πgn(0)]. The par-
tially synchronized branch is obtained by balancing the second leading order of
O(r2n+1) with the first leading order of O(r(K − Kc)), and the balance results to
r ∝ (K− Kc)1/(2n). We then obtain the critical exponent β = 1/(2n).

To the contrary, on a small-world network, a steady state is not written in
the form of the δ function and the synchronized oscillators are still “noisy” as
shown in Fig. 3.7. The synchronized oscillators no longer capture the flatness of
gn(ω) around ω = 0, and the critical exponent β falls into the classical value 1/2
regardless of natural frequency distribution gn(ω) as a noisy system [Sak88].

Moreover, in the model having the nonvanishing second harmonics of the
coupling function with a < 0, the noise recovers β = 1/2 [Cra95] whereas no
noise system gives β = 1 [Dai94]. The universality of β = 1/2 observed in
systems on small-world networks is therefore very similar to the one in noisy
systems.
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Figure 3.5: Graphs of β as a function of 1/Nmin for (a) a = 0 and (b) a = −0.2
in Eq. (3.1). Critical exponents obtained by the finite-size scaling are shown with
errorbars, and the least square method gives the extrapolations at the left bound-
ary of the panels. For each a, the resulting linear regression lines are drawn with
the solid line for n = 1, the dashed line for n = 2, the dot-dashed line for n = 3,
and the dotted line for n = ∞.

3.5 Summary and Discussions

We calculated the critical exponents β and ν̄ for coupled phase-oscillator mod-
els on small-world networks by using the finite-size scaling method. We set the
coupling function as fa(θ) = sin θ + a sin 2θ, and the natural frequency distribu-
tion as gn(ω) defined in Eq. (3.2), and we studied the (a, n)-dependency of the
critical exponents. Our numerical results suggest β = 1/2 and ν̄ = 5/2 for all
gn(ω) and coupling function fa(θ) with a = 0 and −0.2. This universality shows
a sharp contrast with the all-to-all interaction case, which has various values of
β depending on the coupling function and the natural frequency distribution. A
possible explanation of the source of contrast can be found in the number of links
of considering networks: our small-world networks has O(N) links, while the all-
to-all interaction have O(N2) links. We have also found that the model, Eq. (3.1),
shows a discontinuous transition for a = 0.5. The (dis)continuity is a weaker
property than the values of the critical exponents, and it is shared between the
two types of networks: networks with O(N) links and O(N2) links.

We end this chapter commenting on two future works. Firstly, we picked
up two representative points of a from a neighborhood of a = 0 to investigate
universality of the critical exponents. Studying a global phase diagram on the
(K, a)-plane is a subject for future researches. Secondly, we note universal value
β = 1/2 in the Kuramoto model which is recovered by adding noise regardless
of the natural frequency distribution [Sak88]. A small-world network may play
a role of noise due to inhomogeneous couplings, and another work to do is to
make a bridge between a noisy Kuramoto model and a model on a small-world
network.

32



3.A. BAYESIAN SCALING ANALYSIS

1.8 1.9 2.0 2.1 2.2 2.3 2.4

0.1

0.2

0.3

0.4

0.5

0.6
r N

(K
)

(a) a = 0

r(forward)
N (K)

r(backward)
N (K)

2.0 2.2 2.4 2.6

0.1

0.2

0.3

0.4

r N
(K

)

(b) a = −0.2

r(forward)
N (K)

r(backward)
N (K)

1.5 1.6 1.7 1.8 1.9
K

0.0

0.2

0.4

0.6

0.8

1.0

r N
(K

)

(c) a = 0.5

1.6 1.8K
0

0.05

r(forward)
N (K)

r(backward)
N (K)

Figure 3.6: Graphs of rN(K) and its errorbar of (3.1) for (a) (a, n) = (0, 1), (b)
(a, n) = (−0.2, 1), and (c) (a, n) = (0.5, 1) with two different types of initial
phases, where we set the number of oscillators N = 25600. We see that, only in (c),
rN(K) takes a different value depending on the choice of the initial phases around
K ∈ (1.6, 1.8). The inset in (c) shows the graph of r(backward)

N (K)− r(forward)
N (K).

3.A Bayesian Scaling Analysis

We briefly review the Bayesian scaling analysis [Har11; Har15], a statistical method
for estimating the values such as β, ν̄, and Kc in Eq. (3.9). We write these values
as θp = (β, ν̄, Kc). We assume that the scaling function F in Eq. (3.9) obeys a
Gaussian process

F ∼ GP(m, kθh), (3.13)

with mean function m(·) and covariance kernel kθh(·, ·). Here θh denotes the hy-
perparameters of covariance kernel. We also set m = 0 for simplicity. In the
following, we also use the notation θ = (θh, θp). For the data {rNi(Ki)}M

i=1, the

rescaled data Xθp,i = (Ki − Kc)N1/ν̄
i and Yθp,i = rNi(Ki)Nβ/ν̄

i must collapse on the
scaling function as Yθp,i = F(Xθp,i). Since F is a Gaussian process, Yθp obeys a
M-dimensional Gaussian distribution, and the probability of Y for the parameter
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Figure 3.7: Snap shots of oscillators on the (θi, ωi) plane at t = 500. (a) The
all-to-all network. (b) A small-world network. The system size N = 6400. The
coupling constant K = 4.5. (a, n) = (0, 1).

θ is

p(Y | θ) = N (Yθp | 0, Kθ)

=
1

(2π)N/2[det Kθ]1/2 exp
[
−1

2
YT

θp
K−1

θ Yθp

]
. (3.14)

Here, [Kθ] = kθh(Xθp,i, Xθp,j) is M×M dimensional matrix. By assuming that the
prior distribution of θ is uniform, we have

p(θ | Y) ∝ p(Y | θ), (3.15)

from Bayes’ theorem. The most probable parameters θ are, therefore, estimated
by finding the minimum of likelihood function given by

Lθ = log(det Kθ) + YT
θp

K−1
θ Yθp , (3.16)

which is obtained by taking log and discarding constants in Eq. (3.14). The gra-
dient of Lθ for an element θ ∈ θ is given by

∂Lθ

∂θ
=tr

[
K−1

θ

∂Kθ

∂θ

]
− (K−1

θ Yθp)
T ∂Kθ

∂θ
(K−1

θ Yθp)

+ 2YT
θp

K−1
θ

∂Yθp

∂θ
,

(3.17)

and using this gradient, the gradient method gives us the most probable param-
eters θ.

In this paper, we consider a kernel based on a radial basis function (RBF) ker-
nel

kθh(x, y) = θ1 exp
[
− (x− y)2

θ2

]
+ θ3δ(x, y), (3.18)
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which is parameterized by θh = (θ1, θ2, θ3) with θ1,2,3 > 0, and δ(x, y) = 1 when
x = y, otherwise δ(x, y) = 0. Here, θ3 denotes the data fidelity. Roughly speak-
ing, a sample path of Gaussian process associated with a RBF kernel are known to
be an infinitely differentiable function; see [Kan+18, Corollary 4.13] for a rigorous
statement. Therefore, the Bayesian scaling analysis only assumes the smoothness
of a scaling function, and it does not need an explicit form. See the reference
[Har11; Har15] for more detailed discussions.
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Table 3.1: Critical exponents β, ν̄ and the critical point Kc of (3.1) depending on the
coupling function fa(θ) = sin θ + a sin 2θ and the natural frequency distribution
gn(ω) in (3.2), for a = 0 and−0.2 and n = 1, 2, 3, and ∞. For each pair of (a, n), we
use Nmin = 1600, 3200, 6400, and execute the Bayesian scaling analysis [Har11] to
find the best parameters fitting (3.9). We extrapolate the critical values to Nmin =
∞ by using the least square method, and they are listed in the line of Nmin = ∞.
Here, we show the confidence intervals for the last digit of the estimated values
in parentheses; for example, 2.13(3) = 2.13± 0.03.

fa(θ) gn(ω) Nmin Kc β ν̄

a = 0 n = 1 1600 2.13(3) 0.33(4) 2.61(7)
3200 2.07(1) 0.42(3) 2.53(5)
6400 2.05(1) 0.47(3) 2.45(4)

∞ 2.02(2) 0.51(4) 2.40(6)
n = 2 1600 1.85(1) 0.27(2) 2.67(5)

3200 1.78(1) 0.37(2) 2.53(3)
6400 1.755(9) 0.44(2) 2.50(3)

∞ 1.72(1) 0.49(2) 2.43(4)
n = 3 1600 1.80(1) 0.28(2) 2.62(4)

3200 1.76(1) 0.33(2) 2.51(3)
6400 1.723(8) 0.44(2) 2.51(3)

∞ 1.69(1) 0.47(2) 2.46(4)
n = ∞ 1600 1.83(1) 0.27(1) 2.50(4)

3200 1.79(1) 0.36(2) 2.52(3)
6400 1.780(8) 0.41(2) 2.46(3)

∞ 1.76(1) 0.46(2) 2.46(4)
a = −0.2 n = 1 1600 2.43(5) 0.38(8) 2.67(9)

3200 2.35(2) 0.44(6) 2.58(7)
6400 2.34(1) 0.45(4) 2.42(6)

∞ 2.31(3) 0.48(6) 2.36(8)
n = 2 1600 2.09(3) 0.31(4) 2.87(7)

3200 1.99(2) 0.41(4) 2.65(5)
6400 1.96(1) 0.47(3) 2.52(4)

∞ 1.91(2) 0.51(4) 2.41(6)
n = 3 1600 2.04(3) 0.27(5) 2.85(8)

3200 1.96(2) 0.37(4) 2.65(5)
6400 1.91(1) 0.49(3) 2.59(4)

∞ 1.86(2) 0.55(4) 2.50(6)
n = ∞ 1600 2.08(3) 0.25(4) 2.76(6)

3200 2.00(1) 0.38(4) 2.69(5)
6400 1.97(1) 0.43(3) 2.54(4)

∞ 1.94(2) 0.49(4) 2.49(6)
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CHAPTER 4

THE LOWER BOUND OF THE
NETWORK CONNECTIVITY
GUARANTEEING IN-PHASE

SYNCHRONIZATION

This chapter is constructed based on the published paper [YTT21].

4.1 Introduction

Synchronization appears in various natural and artificial phenomena and has at-
tracted much attention in various fields. Examples of the phenomena include
swinging metronomes [Pan02], flashing fireflies [Smi35; BB68], singing frogs in
chorus [Aih+14], and firing of neurons [CAY03; Win67; Lu+16]. The coupled
phase-oscillators are the widely used model of synchronization [Kur75]. Previous
studies have revealed conditions to ensure oscillators converge to the in-phase
synchronization [Str00; OA08; Chi13; FA18; DGM08]. However, the relationship
between network structure and the tendency of synchronization has not been
fully understood yet.

One of the most important questions is how synchronization depends on con-
nectivity, or connection density, of the network [WS94; WSG06; Tay12; CM15;
LXB19; TSS20; LS20]. The connectivity µ of a network having N nodes has been
defined as the minimum degree of the nodes divided by N − 1, the total number
of other nodes. In 2012, Taylor considered networks of coupled phase-oscillators
whose natural frequencies are identical and the connection among them has unit
strength if it exists. For the networks, he showed that the in-phase synchroniza-
tion is the only stable state if µ of a network is greater than 0.9395[Tay12], regard-
less of the structure of the network. This surprising result has attracted much
attention and been refined by recent studies[LXB19; LS20]. Now it is proven
that networks always synchronize if µ is greater than 0.7889[LS20]. Therefore,
by defining the critical connectivity µc as the minimum connectivity of the net-
works to ensure globally stable in-phase synchronization, we can say that the best

41



CHAPTER 4. THE LOWER BOUND OF THE NETWORK CONNECTIVITY
GUARANTEEING IN-PHASE SYNCHRONIZATION

known upper bound of µc is 0.7889 while the exact value of µc is not yet known.
Besides the upper bound, many studies has also revealed the lower bound

of µc[WSG06; CM15; TSS20]. In particular, Townsend et al. have provided a
circulant network whose connectivity is less than 0.6828 · · · and has a stable
state other than the in-phase synchronization[TSS20], which means that the best
known lower bound of µc is 0.6828 · · · .

Previous studies, however, have used heuristic approaches rather than sys-
tematic ones to find dense networks in which competing attractors coexist with
in-phase synchronization, which might have overlooked denser networks. To
solve the problem, in this chapter, we map the search problem to an optimiza-
tion problem, namely, an integer programming problem. Following the previous
study[TSS20], we consider the circulant networks. Owing to the symmetry of the
networks, we can analytically derive linear eigenvalues of the states, which en-
ables us to formulate the optimization problem. The formulation allows us to sys-
tematically analyze a class of stable states called twisted states, which provides
us an improvement on the best known lower bound from 0.6828 · · · to 0.6838 · · · .

This chapter is organized as follows. In Section 4.2, we introduce a model
of coupled identical phase-oscillators and define the network connectivity µ. In
Section 4.3, we consider the twisted states of the circulant networks to derive the
linear eigenvalues of the states analytically. In Section 4.4, we formulate the prob-
lem to find the densest network in which at least one twisted state is stable as an
integer programming problem. We also provide a theorem yielding the rigorous
solution of the optimization problem. The proof of the theorem is given in Sec-
tion 4.5. In Section 4.6, we provide the maximum connectivity circulant network
that has a stable twisted state, which allows us to update the lower bound of µc.
In Section 4.7, we numerically validate the results. Section 4.8 gives conclusions
and discussions.

4.2 Preliminaries

4.2.1 Coupled identical phase-oscillators

Identical N phase-oscillators coupled with each other on a network with undi-
rected and unit-strength interactions are defined as

dθi

dt
=

N

∑
j=1

aij sin(θj − θi), (4.1)

for i ∈ [N], where [N] = {1, 2, . . . , N}. Here, θi ∈ [0, 2π) ' S1 is the phase
of the i-th oscillator and aij is the (i, j)th-element of the N × N adjacency matrix
A of the network. Since the network is undirected and unweighted, the matrix
A is symmetric aij = aji ∈ {0, 1}. We also set aii = 0 for all i ∈ [N] to avoid
self-connection.

Note that coupled phase-oscillators have generally been defined as

dθi

dt
= ωi +

N

∑
j=1

aij sin(θj − θi), (4.2)
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for i ∈ [N] and referred as Kuramoto model, where ωi is the natural frequency
of the i-th oscillator[Kur75]. Assuming that the natural frequencies are identical,
ωi = ω̄, and rotating the whole system by ω̄t recovers Eq. (4.1).

4.2.2 Equilibrium points and their linear stability

Let us denote an equilibrium point of (4.1) as θ∗ = (θ∗1 , . . . , θ∗N)
>. Then, θ∗ satis-

fies
N

∑
j=1

aij sin(θ∗j − θ∗i ) = 0 (4.3)

for i ∈ [N]. Note that if θ∗ is an equilibrium point, θ∗+ c = (θ∗1 + c, . . . , θ∗N + c)> is
also an equilibrium point of Eq. (4.1) for any c ∈ S1 due to its rotational symmetry.

The linear stability of the equilibrium point θ∗ is determined by eigenvalues
of the Jacobian matrix Jθ∗ whose coefficient is

[Jθ∗ ]i,j =


aij cos(θ∗j − θ∗i ) i 6= j

−
N

∑
k=1

aik cos(θ∗k − θ∗i ) i = j
. (4.4)

All eigenvalues of the matrix are real because of its reflection symmetry, and one
of them is always equal to zero due to the rotational symmetry θ∗ + c. Thus,
θ∗ is linearly stable if all other N − 1 eigenvalues are negative, and it is linearly
unstable if at least one of them is positive. If more than one eigenvalue is equal
to zero, one needs higher-order evaluation to realize the stability analysis. In this
chapter, however, we only consider the linear stability of equilibrium states.

The model (4.1) always has a trivial in-phase state, in which θi = 0 for all
i ∈ [N]. Because v> J0v = −∑i>j aij(vi− vj)

2 < 0 for any v = (v1, . . . , vN)
> ∈ RN

unless v = k1 with k ∈ R, the in-phase state is always stable regardless of the
network structure.

4.2.3 Critical connectivity µc

The connectivity µ of a network consisting of N nodes is defined as the minimum
degree of the network divided by N − 1, the maximum possible degree of the
network. The devisor is N − 1 rather than N because the self-connection is not
allowed. Because the degree of i-th oscillator is equal to the sum of the i-th row
of the adjacency matrix A, the connectivity is given as

µ =
mini∈[N] ∑j∈[N] aij

N − 1
. (4.5)

The connectivity value is equal to one for the all-to-all network, while it is equal
to zero for disconnected networks.

The critical connectivity is defined as follows:

Definition 4.1 (Critical connectivity µc[TSS20]). The critical connectivity µc is the
smallest value of µ such that any network of N identical phase oscillators of unit connec-
tions is globally synchronizing if µ ≥ µc; otherwise, for any µ < µc, at least one network
having some other attractor besides the in-phase state exists.
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The best known bound of µc so far is

0.6828 · · · ≤ µc ≤ 0.7889. (4.6)

4.3 Circulant networks

Following a previous study[TSS20], we focus on circulant networks. The circulant
network is defined as a network whose adjacency matrix is a circulant matrix of
the following form,

A =
(
aij
)

1≤i,j≤N =
(
xj−i

)
1≤i,j≤N

=


x0 x1 . . . xN−2 xN−1

xN−1 x0 x1 xN−2
... xN−1 x0

. . . ...

x2
. . . . . . x1

x1 x2 . . . xN−1 x0

 , (4.7)

where xk = xk mod N for any k ∈ Z, and x0 = 0 because self-connection is not
allowed now. Because xi ∈ {0, 1} and xi = xN−i for i ∈ [N− 1] for the undirected
and unweighted networks, the structure of a circulant network is specified by the
choice of x1, . . . , xbN/2c to be 0 or 1, which has 2bN/2c possible combinations. The
connectivity of the circulant network is given as

µ =
∑i∈[N−1] xi

N − 1
, (4.8)

because all nodes of the network share the same degree.
Townsend et al. have proven that

θ∗p =

(
0,

2πp
N

, . . . ,
2πp(N − 1)

N

)>
(4.9)

is an equilibrium state of the model (4.1) on any circular networks for any 0 ≤
p ≤ bN/2c. Below, we refer to the state θ∗p as the p-twisted state. The zero-twisted
state θ∗0 is the in-phase state.

Equation (4.4) gives the Jacobian matrix of the p-twisted state θ∗p as

[
Jθ∗p

]
i,j
=


xj−i cos

(
2πp(j− i)

N

)
i 6= j

−
N

∑
k=1

xk−i cos
(

2πp(k− i)
N

)
i = j

. (4.10)

The elements of Jθ∗p depend only on the difference of the indices, thus setting

yk =


xk cos

(
2πpk

N

)
k ∈ [N − 1]

−
N−1

∑
l=1

xl cos
(

2πpl
N

)
k = 0

, (4.11)
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enables us to simplify the (i, j)-th element of the Jacobian matrix to
[

Jθ∗p

]
i,j
= yj−i.

Since xN−k = xk implies yN−k = yk, Jθ∗p is again a symmetric circulant matrix.
Using this property, we can derive its eigenvalues as

λk =
N−1

∑
l=0

yl cos
(

2πkl
N

)
=

N−1

∑
l=1

xl cos
(

2πpl
N

) [
−1 + cos

(
2πkl

N

)]
(4.12)

for k ∈ [N− 1]. The eigenvalue λ0 is always equal to zero as we have mentioned.

4.4 Integer programming

Consider a search problem aiming to find the densest network having a stable
state besides the in-phase one. By restricting ourselves to the twisted states of the
circulant networks, we can map the search problem to an optimization problem.
The objective of the optimization is to maximize the connectivity µ (4.8) by vary-
ing xi under the condition that the eigenvalues λk in (4.12) should be negative for
all k ∈ [N − 1].

Because xi must be an integer, the optimization problem is expressed as a
canonical form of the integer programming [CCZ14]:

Problem 4.1. For N ≥ 2 and 1 ≤ p ≤ bN/2c,

maximize µ =
1

N − 1
1>x,

subject to x ∈ {0, 1}N−1 ,

L(N,p)x < 0,

C(N)x = 0.

(4.13)

Here we defined the matrices L(N,p) ∈ R(N−1)×(N−1) and C(N) ∈ R(N−1)×(N−1)

such that their (k, l)-th elements are[
L(N,p)

]
k,l

= cos
(

2πpl
N

) [
−1 + cos

(
2πkl

N

)]
, (4.14)

and [
C(N)

]
k,l

= δk,l − δk,N−l. (4.15)

Because the k-th eigenvalue satisfies λk =
[

L(N,p)x
]

k
, the constraint L(N,p)x < 0

means that the p-twisted state of the N-body network is linearly stable. The con-
dition C(N)x = 0 represents the constraint that the networks need be undirected,
xk = xN−k for k ∈ [N − 1]. Intuitively, the optimization problem means that
one should set as many xls as possible to 1 while satisfying constraint conditions
L(N,p)x < 0 and C(N)x = 0.
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Figure 4.1: Numerical solutions max1≤p≤bN/2c µ(N,p) of the integer programming
Problem 4.1 as a function of N for 30 ≤ N ≤ 600. The gray dashed line shows the
best known lower bound of µc, 0.6828 · · · [TSS20]. The maximum connectivity
exceeds the known lower bound at N = 512 and 544.

The conversion of the search problem into the integer programming problem
enables us to systematically survey the maximum connectivity. Let µ(N,p) be the
solution, i.e., the maximum µ, of the integer programming problem of N and
p. Figure 4.1 shows numerical solutions of µ(N,p) for 30 ≤ N ≤ 600. We used
a solver Cbc[For+20] that can be called through the library PuLP in Python and
JuMP[DHL17] in Julia[Bez+17]. (Our codes are available on GitHub 1.) While fur-
ther numerical computation beyond N = 600 is intractable due to the explosion
of the solution space, the search up to N = 600 has already provided the µ(N,p)

that exceeds the best known lower bound at N = 512 and 544.
Integer programming problems are generally NP-hard [CCZ14]. However, for

the specific problem, Problem 4.1, we can obtain analytical solutions of µ(N,p) for
any given values of (N, p). The following theorem states the result in general.

Theorem 4.1 (Maximum connectivity µ(N,p)). For N ≥ 2 and 1 ≤ p ≤ bN/2c, we
set m = gcd(N, p) and Ñ = N/m.

1. For Ñ ≤ 4, Problem 4.1 does not have any feasible solutions.

2. For Ñ ≥ 5, let sk be

sk =
k

∑
l=1

cos
(

2πl
Ñ

) [
−1 + cos

(
2πl
Ñ

)]
, (4.16)

and kc be the minimum value of k such that sk ≥ 0. Then, the maximum connec-
tivity µ(N,p) is given as

µ(N,p) =
m(2kc − 1)− 3− 2 bmskc−1/(skc − skc−1)c

N − 1
. (4.17)

1https://github.com/yonesuke/DenseSync
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4.5. PROOF

Note that one can easily find kc because sk is a one-dimensional function of
k. The proof of Theorem 4.1 is in the next section. We have observed a perfect
agreement between the analytical prediction and the numerical solutions up to
N = 600 (results not shown).

4.5 Proof

This section gives the proof of Theorem 4.1. Define a set of indices

S(N,p) =

{
l ∈ [N − 1]

∣∣∣∣ { pl
N

}
∈
[

0,
1
4

]
∪
[

3
4

, 1
]}

, (4.18)

where {α} is the fractional part of α. The (k, l)-th element of L(N,p) satisfies[
L(N,p)

]
k,l
≤ 0 for l ∈ S(N,p) because cos(2πpl/N) ≥ 0, whereas

[
L(N,p)

]
k,l

> 0

for l ∈ [N − 1]\S(N,p) (please also see Fig. 4.2). Then, using the identity for a ∈ Z

N−1

∑
l=1

cos
2πal

N
=

{
−1 a 6≡ 0 mod N
N − 1 a ≡ 0 mod N , (4.19)

one can show that, for k 6= p, N − p and x 6= 1,[
L(N,p)x

]
k

(4.20)

< ∑
l∈S(N,p)

[
L(N,p)

]
k,l
+ ∑

l∈[N−1]\S(N,p)

[
L(N,p)

]
k,l

=
N−1

∑
l=1

[
L(N,p)

]
k,l

(4.21)

=−
N−1

∑
l=1

cos
(

2πpl
N

)
+

1
2

N−1

∑
l=1

cos
(

2π(p + k)l
N

)
+

1
2

N−1

∑
l=1

cos
(

2π(p− k)l
N

)
(4.22)

=0, (4.23)

which reduces the constraint of the optimization problem to[
L(N,p)x

]
p
=

N−1

∑
l=1

xl

[
− cos

(
2πpl

N

)
+ cos2

(
2πpl

N

)]
< 0, (4.24)

because
[

L(N,p)x
]

p
=
[

L(N,p)x
]

N−p
. Therefore, introducing b(N,p) =

(
b(N,p)

1 , . . . , b(N,p)
N−1

)>
where b(N,p)

l = − cos
(

2πpl
N

)
+ cos2

(
2πpl

N

)
, we can reduce Problem 4.1 to the

equivalent problem,

Problem 4.2 (Equivalent representation of Problem 4.1). For N ≥ 2 and 1 ≤ p ≤
bN/2c,

maximize µ =
1

N − 1
1>x,

subject to x ∈ {0, 1}N−1 ,

b(N,p)>x < 0,

C(N)x = 0.

(4.25)
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We can easily confirm that Problem 4.2 has no feasible solutions when Ñ ≤ 4
because b(N,p)

l ≥ 0 in these cases. Note that one can always set xl = 1 for l ∈
S(N,p) because

[
L(N,p)

]
k,l
≤ 0. (Remember that the objective of the optimization

problem is to set as many xls as possible to 1 with satisfying the constraints.) One
can, therefore, focus only on how many additional xl of l ∈ [N − 1]\S(N,p) can
be 1 with satisfying the constraint condition b(N,p)>x < 0 and C(N)x = 0. In the
following subsections, assuming that Ñ ≥ 5, we solve Problem 4.2 by dividing
the problem into four cases: p = 1; p/m = 1; p/m 6= 1 and m = 1; p/m 6= 1 and
m 6= 1.

4.5.1 p = 1

Denote the cumulative sum of b(N,p)
l as

sk =
k

∑
l=1

b(N,p)
l . (4.26)

Because the function − cos θ + cos2 θ (see solid line of Fig. 4.2 as an example) is
symmetric around θ = π and monotonically increases from zero for θ ∈ [π/2, π],
sk takes its minimum negative value at l = bN/4c, i.e., when 2πpl/N is just
below π/2, and monotonically increases up to l = bN/2c. Therefore, in order to
set as many xk to 1 as possible while keeping the condition b(N,p)>x < 0, one can
set xk = 1 for k = 1, . . . , kc − 1, and N − kc + 1, . . . , N − 1 due to the symmetry
constraint C(N)x = 0, where kc is the smallest value of k such that sk ≥ 0. Other
xks of k ∈ {kc, . . . , N − kc} must be zero. Thus, the maximum number of xk that
can be 1 is 2(kc − 1), which means that the maximum connectivity is

µ(N,1) =
∑k∈[N−1] x∗k

N − 1
=

2(kc − 1)
N − 1

. (4.27)

This expression agrees with Eq. (4.17) for the case of p = 1 because bskc−1/(skc −
skc−1)c = −1. Figure 4.2 shows b(60,1)

l as a function of 2πpl/N, as an example. Be-
cause s19 = −0.6972 · · · < 0 while s20 = 0.0527 · · · ≥ 0, kc = 20, which provides
µ(60,1) = 2·19

60−1 = 0.6440 · · · .

4.5.2 p = m

Define an integer Ñ = N/m (remember that m = gcd(N, p)) and divide the
index domain [N − 1] of xls into m + 1 disjoints subsets; [N − 1] = I + I1 + · · ·+
Im, where I =

{
Ñ, 2Ñ, . . . , (m− 1)Ñ

}
and In =

{
(n− 1)Ñ + 1, . . . , nÑ − 1

}
.

Because the function − cos θ + cos2 θ is 2π-periodic (see solid line of Fig. 4.3 as
an example), b(N,p) = b(Ñ,1) on each In. Figure 4.3 shows the case of (N, m) =
(180, 3) as an example. Thus, following discussion of the previous subsection,
one can set 2(kc − 1) xls to 1 on each In with keeping b(N,p)>x < 0 (blue filled
circles in Fig. 4.3). One can also set all xl to 1 for l ∈ I because

[
b(N,p)

]
l
= 0 on

the subsets (red filled diamonds in Fig. 4.3).
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4.5. PROOF
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Figure 4.2: b(N,p)
l as a function of 2πpl/N for l ∈ [N − 1] when (N, p) = (60, 1).

The solid gray line is − cos θ + cos2 θ for θ ∈ [0, 2π]. As kc = 20 for (N, p) =
(60, 1), xk can be 1 for k = 1, 2, . . . , 19, 41, 42, . . . , 59 (filled circles) whereas other
xks should be zero (empty circles). Note that both ends, 2πpl/N = 0, 2π, are out
of the domain.

So far, the value of b(N,p)>x is equal to 2mskc−1 that is still negative. This
implies that the possibility of additional xls being 1 still remains. The lowest
value of

[
b(N,p)

]
l

in remaining, i.e. indices for which xl has not set to 1 yet, is

b(Ñ,1)
kc

that equals skc − skc−1. There are 2m such ls in the domain due to periodicity

and the symmetry of
[
b(N,p)

]
l

(green empty and filled squares in Fig. 4.3). To set
as many additional xls to 1 as possible, one should use these ls. Therefore, one
can set a maximum of

2
(⌈ −2mskc−1

2(skc − skc−1)
− 1
⌉)

(4.28)

additional xls to 1 (pink filled circles in Fig. 4.3). The factor 2 being at the front
and in the divisor of Eq. (4.28) appears because one has to simultaneously set xl
and xN−l to 1 to keep the symmetry condition C(N)x = 0. Note that, as far as one
keeps the numbers and conditions, one can choose any combination of ls from
the 2m ls.

Putting the above results together, we obtain that

µ(N,p) =
2m(kc − 1) + m− 1− 2

(⌊
mskc−1

skc−skc−1

⌋
+ 1
)

N − 1
, (4.29)

which agrees with Eq. (4.17) of the theorem. Here we use the identity dαe =
−b−αc to derive the above result.

49



CHAPTER 4. THE LOWER BOUND OF THE NETWORK CONNECTIVITY
GUARANTEEING IN-PHASE SYNCHRONIZATION

0 π
2 π 3π

2
2π 5π

2
3π 7π

2
4π 9π

2
5π 11π

2
6π

2πpl/N

0.0

0.5

1.0

1.5

2.0

b(N
,p

)
l

Figure 4.3: b(N,p)
l as a function of 2πpl/N for l ∈ [N− 1] when (N, p) = (180, 3).

The solid gray line is − cos θ + cos2 θ for θ ∈ [0, 6π]. 2(kc − 1) xls on each In, n =
1, 2, . . . , m (blue filled circles) and m− 1 xls on I (red filled diamonds) can be 1.
Additionally, 2 (d(−mskc−1) /(skc − skc−1)− 1e) (green filled squares) of 2m xls
(green empty and filled squares) can be 1. Note that both ends, 2πpl/N = 0, 6π,
are out of the domain.

4.5.3 p 6= m, m = 1

Because m = gcd(N, p) = 1, we have

{1, 2, . . . , N − 1} = {p, 2p, . . . , (N − 1)p} (mod N), (4.30)

which means that
{[

b(N,p)
]

l

}
is equal to

{[
b(N,1)

]
l

}
as a set. Thus, we obtain

µ(N,p) = µ(N,1), and are able to reduce this case to the case of subsection 4.5.1.

4.5.4 p 6= m, m 6= 1

Using the same argument as before, one can see that
{[

b(N,p)
]

l

}
=
{[

b(mÑ,m)
]

l

}
as a set, which results in µ(N,p) = µ(mÑ,m). Thus, this case is reduced to the case
of subsection 4.5.2.

Putting all cases of subsections 4.5.1–4.5.4 together, we arrive Theorem 4.1.

4.6 The supremum of µ(N,p)

In this section, we derive the supremum µ of µ(N,p) defined as

µ := sup
{

µ(N,p)
∣∣∣ 1 ≤ p ≤ bN/2c, N ≥ 2

}
, (4.31)

which leads to improvement of the lower bound of the critical connectivity µc.
From the proof of Theorem 4.1, we have that

µ = sup
{

µ(mÑ,m)
∣∣∣ m ≥ 1, Ñ ≥ 5

}
. (4.32)
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Ñ

/
Ñ
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Figure 4.4: αÑ/Ñ for 5 ≤ Ñ ≤ 100 (blue circles). The gray dashed line is the best
known lower bound of the critical connectivity µc. The solid red line represents
2Kc.

Then, because

αÑm− 3

Ñm− 1
≤ µ(mÑ,m) ≤

αÑm− 2

Ñm− 1
, (4.33)

where

αÑ = 2kc − 1− 2
skc−1

skc − skc−1
, (4.34)

we have

µ(mÑ,m) ≤ lim
m→∞

µ(mÑ,m) =
αÑ

Ñ
(4.35)

for m ≥ 1, Ñ ≥ 5 by the squeeze theorem. Here we used

αÑm− 2

Ñm− 1
≤ lim

m→∞

αÑm− 2

Ñm− 1
=

αÑ

Ñ
(4.36)

that follows from kc ≤ N/2 and −1 ≤ skc−1/(skc − skc−1) < 0. Then there holds,

µ = sup
{

αÑ

Ñ

∣∣∣∣ Ñ ≥ 5
}

. (4.37)

Figure 4.4 shows αÑ/Ñ for 5 ≤ Ñ ≤ 100.
Now let us derive the maximum of αÑ/Ñ. We first obtain the inequality

αÑ

Ñ
≤ 2Kc +

2
Ñ

+
4π

3Ñ2
(4.38)
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from

kc

Ñ
≤ Kc +

1
2Ñ

+
2π

3Ñ2
, (4.39)

where

2Kc := lim
Ñ→∞

αÑ

Ñ
= 2 lim

Ñ→∞

kc

Ñ
= 2 · 0.34046 · · · . (4.40)

The proof of Eq. (4.38) and the derivation of the value of Kc are given in Ap-
pendix 4.A. Then, from the above inequality, we have αÑ/Ñ ≤ 0.683 for Ñ ≥
1001.

For Ñ ≤ 1000, as Fig. 4.4 shows, some αÑ/Ñ exceed 0.683. Calculating these
values, we can find that the maximum is given by Ñ = 19. Combining this with
the result of the previous paragraph leads to the theorem, which sets a new lower
bound of the critical connectivity exceeding the previous one:

Theorem 4.2 (Supremum value of µ(N,p)).

µ =
11
19
− 2

19

5

∑
l=1

[
− cos

(
2πl
19

)
+ cos2

(
2πl
19

)]
− cos

(
12π

19

)
+ cos2

(
12π

19

) (4.41)

=0.683875 · · · . (4.42)

The above discussion shows that the densest circulant network having a com-
peting stable state besides the in-phase synchronization is given at m→ ∞ when
(N, p) = (19m, m). In other words, when we increase network connectivity, the
network that most persistently keeps a stable twisted state is the infinitary large
network of 19m nodes (m → ∞), and the most persistent twisted state is the m-
twisted state. We summarize an explicit construction of the adjacency matrix of
the dense 19m-node circulant network as Algorithm 4.1. We also show the opti-
mal networks for (N, p) = (19m, m) with m = 1, 2, 3, 4 in Fig. 4.5. As the limit
of m → ∞, the output of the algorithm converges to the adjacency matrix of the
densest circulant network that delivers the new bound µ̄ along with the stable
m-twisted state. Whether the series of the 19m-node network has some specific
topological features remains an open question.

4.7 Numerical Simulations

To validate Theorem 4.1, we numerically integrate the model (4.1) for (N, p) =
(1900, 100), as an example, using the fourth-order Runge–Kutta algorithm with a
time step of δt = 10−3. Thus m = gcd(N, p) = 100, Ñ = 19, and the maximum
connectivity of the network is

µ(1900,100) =
1297
1899

= 0.682991 · · · , (4.43)

which is greater than the previously reported value of the lower bound.
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4.7. NUMERICAL SIMULATIONS

Algorithm 4.1 An explicit construction of the adjacency matrix of the dense cir-
culant network having the stable m-twisted state. Here, x[i] is the i-th element of
x, A[i, j] is the (i, j)-th element of A, and bl = − cos(2πl/19) + cos2(2πl/19).
Require: m

1: x ∈ {0, 1}19m ← 0
2: A ∈ {0, 1}19m×19m (Adjacency matrix)
3: ExtraAllowance← 2

⌈
−m ∑5

l=1 bl/b6 − 1
⌉

4: c← 0
5: for k← 0 to m− 1 do
6: for i← 1 to 5 do
7: x[19k + i], x[19(k + 1)− i]← 1
8: end for
9: if k ≥ 1 then

10: x[19k]← 1
11: end if
12: end for
13: for k← 0 to m− 1 do
14: x[19k + 6], x[19(m− k)− 6]← 1
15: c← c + 2
16: if c > ExtraAllowance then
17: break
18: end if
19: x[19k + 13], x[19(m− k)− 13]← 1
20: c← c + 2
21: if c > ExtraAllowance then
22: break
23: end if
24: end for
25: for i, j← 1 to 19m do
26: A[i, j]← x[i− j mod 19m]
27: end for
28: return A (Resulting adjacency matrix)
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Figure 4.5: Optimal networks for (N, p) = (19m, m) with m = 1, 2, 3, 4.

We set initial phases as θ(0) = θ∗p + ε to see the stability of the p-twisted
state θ∗p, where θ(t) = (θ1(t), . . . , θN(t))> and ε is a small initial perturbation.
Remember that the p-twisted state is the most stable twisted state now because
p = m. The initial perturbation ε is prepared as follows: We first draw an N-
dimensional Gaussian random variable ε = (ε1, . . . , εN)

> with εi ∼ N (0, σ2/N)
and σ = 0.1π and then set ε = ε− ε0, where ε0 = (∑N

i=1 εi)/N, to ensure ∑N
i=1 εi =

0, which is indispensable for the stability analysis because without the condition
θ(t) never converges to θ∗p due to the rotational symmetry of the model.

Figure 4.6 shows the results of the numerical simulation for realizations of
the initial perturbation. To measure the distance between θ(t) and θ∗p on the 2π-
periodic space, we defined a quasinorm

‖φ‖ =

√√√√ N

∑
i=1

d(φi)2, (4.44)

d(φ) =

{
φ mod 2π 0 ≤ (φ mod 2π) < π

2π − (φ mod 2π) π ≤ (φ mod 2π) < 2π
. (4.45)

We see that the distance ‖θ(t)− θ∗p‖ monotonically decreases to zero regardless
of the initial conditions, revealing that the p-twisted state, besides the trivial in-
phase state, is stable on the dense network whose connectivity exceeds the previ-
ous lower bound.

The inset of Fig. 4.6 shows the developments of log ‖θ(t)− θ∗p‖. As indicated
by our analysis, the distance exponentially decreases to zero with the exponent
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Figure 4.6: Temporal developments of ‖θ(t)− θ∗p‖ for five different initial con-
ditions. The inset shows the semi-log plot of them. The orange dashed line in the
inset represents exponential decay with the exponent λp.

of λp =
[

L(N,p)x∗
]

p
, where x∗ is the binary vector specified in Sec. 4.5 to achieve

the maximum connectivity of the network.

4.8 Summary and Discussions

In this chapter, we searched for the densest networks of identical phase oscillators
that have at least one attractor besides the trivial in-phase state. Focusing on the
twisted states of the circulant networks, we replaced the search problem with
an optimization problem, an integer programming problem, which enables us
to systematically study the stability of all twisted states on all possible circulant
networks. The rigorous solution of the optimization problem provides us a new
record of the network connectivity 0.6838 · · · such that a twisted state remains
stable in a dense network, in other words, the record-breaking lower bound of
the critical connectivity µc.

Many open questions remain about the critical connectivity. While this study
revealed the stability of all twisted states of all circulant networks, it remains
unclear whether circulant networks have other stable states besides the twisted
states. It also remains unknown whether some dense networks not included in
the circulant networks have stable states that break a record of the lower bound
of the critical connectivity. One may be required stability analysis beyond the
linear region to answer these questions. The problem of determining the upper
bound of the critical connectivity also remains open as another essential subject.
Because the network model of coupled identical phase oscillators can be written
as a gradient system using a potential function, geometric approaches, utilizing
the Morse theory[Mat02] for instance, may be helpful to approach the problem.
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4.A Upper bound of kc

In this appendix, we prove that

kc

Ñ
≤ Kc +

1
2Ñ

+
2π

3Ñ2
, (4.46)

where Kc is the limit of kc/Ñ.
We first derive Kc. Setting y = l/Ñ gives the continuum limit Ñ → ∞ of sk/Ñ

as

t(x) =
∫ x

0
b(y)dy, (4.47)

b(y) = − cos 2πy + cos2 2πy. (4.48)

Then Kc is given as the solution of the self-consistent equation;

8πt(Kc) = 4πKc + sin 4πKc − 4 sin 2πKc = 0. (4.49)

Conventional search algorithms such as the binary search or the Newton–Raphson
method give us an approximate value of Kc as 0.34046 · · · .

To see the difference between Kc and kc/Ñ, we calculate sk/Ñ as an equation
deviated from t(k/Ñ). In the following, we restrict the range of k to 1/4 ≤ k/Ñ ≤
1/2 to focus on the value of sk/Ñ around k = kc. From a trigonometric identity

k

∑
l=0

cos lθ =
sin(kθ)

2 tan(θ/2)
+ cos2

(
kθ

2

)
, (4.50)

we rewrite sk/Ñ as

sk

Ñ
=

1
2

k
Ñ
− 1

2π

π/Ñ
tan[π/Ñ]

sin
(

2π
k
Ñ

)
(4.51)

+
1

8π

2π/Ñ
tan[2π/Ñ]

sin
(

4π
k
Ñ

)
(4.52)

+
1

2Ñ
b
(

k
Ñ

)
. (4.53)

Using an inequality

tan x ≥ x +
x3

3
x ≥ 0, (4.54)

we have

sk

Ñ
>

1
2

k
Ñ
− 1

2π
sin
(

2π
k
Ñ

)
+

1
8π

sin
(

4π
k
Ñ

)
(4.55)

+
1

2Ñ
b
(

k
Ñ

)
− π

3N2 +
5π3

18N4 (4.56)

>t
(

k
Ñ

)
+

1
2Ñ

b
(

k
Ñ

)
− π

3N2 . (4.57)
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Assume that k ≥ ÑKc− 1/2 + 2π/(3Ñ). Then, from the mean value theorem
and the monotonicity of b(x), we have

t(Kc)− t
(

Kc −
1

2Ñ
+

2π

3Ñ2

)
<

(
1

2Ñ
− 2π

3Ñ2

)
b(Kc). (4.58)

Since t(Kc) = 0 and b(x) ≤ 2,

t
(

Kc −
1

2Ñ
+

2π

3Ñ2

)
> − 1

2Ñ
b(Kc) +

4π

3Ñ2
. (4.59)

Hence we have

sk

Ñ
>− 1

2Ñ
b(Kc) +

4π

3Ñ2
+

1
2Ñ

b
(

k
Ñ

)
− π

3N2 (4.60)

>− 1
2Ñ

[
b(Kc)− b

(
Kc −

1
2Ñ

+
2π

3Ñ2

)]
+

π

Ñ2
. (4.61)

Using the mean value theorem again gives

b(Kc)− b
(

Kc −
1

2Ñ
+

2π

3Ñ2

)
=

(
1

2Ñ
− 2π

3Ñ2

)
b′(x), (4.62)

for some x ∈ (Kc − 1/2Ñ + 2π/(3Ñ2), Kc). Since b′(x) is less than 4π, we obtain
an evaluation of sk/Ñ as

sk

Ñ
> −2π

Ñ

(
1

2Ñ
− 2π

3Ñ2

)
+

π

Ñ2
=

4π2

3Ñ3
> 0, (4.63)

meaning that sk > 0 as long as k ≥ ÑKc− 1/2+ 2π/(3Ñ). From this, the desired
evaluation holds:

kc ≤
⌈

ÑKc −
1
2
+

2π

3Ñ

⌉
≤ ÑKc +

1
2
+

2π

3Ñ
, (4.64)

Figure 4.7 shows kc/Ñ together with the derived bound.
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CHAPTER 5

GAUSSIAN PROCESS REGRESSION
APPROACH TO ESTIMATING

PHASE DYNAMICS FROM
RHYTHMIC DATA

This chapter is constructed based on the published paper [Yon+22].

5.1 Introduction

The coupled phase-oscillator model is a mathematical model that describes the
dynamics of a system of coupled oscillators. It is commonly used in the study
of synchronization phenomena [Str03], such as the coordinated behavior of neu-
rons in the brain [CAY03; Win67; Lu+16] or the synchronized flashing of fire-
flies [Smi35; BB68]. The model consists of a set of oscillators, each with its own
phase, which are coupled through various forms of interactions, such as direct
coupling or global coupling. The dynamics of the system are governed by a set of
coupled differential equations, which can be analyzed to study the emergence of
collective behavior and the effects of different coupling mechanisms on the oscil-
lators’ synchronization [KM11]. This model has been widely applied in various
fields, including physics [WW88] and biology [Lu+16], to gain insight into the
mechanisms underlying synchronization in complex systems.

The estimation of equations describing rhythmic phenomena from data is a
crucial step in understanding the underlying mechanisms of these phenomena.
Revealing the equation of a rhythmic phenomenon can provide valuable insights
into the behavior of the system and its properties. Many studies have been con-
ducted to estimate the parameters of oscillator systems from data using methods
such as Fourier series expansion. This approach has been widely applied in the
study of rhythmic phenomena and has yielded important results in fields such as
neuroscience and engineering.

The Bayesian linear regression formulation has been successfully applied to
estimate the coefficients of the Fourier series, which is commonly used to repre-
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sent the coupling function in oscillator systems [OA14]. However, the order of the
Fourier series, which determines the accuracy of the approximation, is typically
arbitrary and subject to the limitations of the evidence approximation. Further-
more, the finite order approximation of the Fourier series may introduce oscilla-
tory errors known as the Gibbs phenomenon, which can affect the accuracy of the
estimates.

One potential solution to the limitations of the Bayesian linear regression ap-
proach is to use Gaussian process regression, which offers greater flexibility in
estimating the coupling function of the phase oscillator. Gaussian process regres-
sion is a non-parametric regression method that allows for the flexible modeling
of complex functions through the use of a kernel function [RW06]. This kernel
function can be designed to capture the smoothness, periodicity, and additive na-
ture of the coupling function, enabling us to estimate the underlying dynamics of
the phase oscillator system accurately [Kan+18]. In this chapter, we will introduce
the concept of Gaussian process regression and demonstrate its effectiveness in
estimating the coupling function of the phase oscillator.

This chapter is organized as follows. In Sec. 5.3, we propose a method for ex-
tracting the coupling functions of oscillator systems from data exhibiting rhyth-
mic phenomena using Gaussian process regression. This allows for more flexible
estimation than Bayesian linear regression. The proposed method is applied to
equation 1 and equation 2 in the next Section 5.4. Finally, we conclude this chap-
ter and give some remarks in Sec. 5.5.

5.2 Problem setting

In this chapter, we consider the general coupled limit-cycle oscillator models and
predict the coupling functions of their reduced coupled phase-oscillator models
from the phase data. General coupled phase-oscillator models consist of N oscil-
lators with their phase θi, and is governed by the following ODE,

dθi

dt
= Γi(θ1 − θi, . . . , θN − θi), (5.1)

for i = 1, . . . , N. The domain of a ith coupling function Γi is N − 1 dimensional
torus TN−1, and each entry is the phase difference with another oscillator. There-
fore, our problem is to predict the coupling function Γi : TN−1 → R from data
D = {(xj, yj)}ndata

j=1 with xj ∈ TN−1 and yj ∈ R for j = 1, 2, . . . , ndata.

5.3 Methodology: Gaussian process

In this chapter, we use the Gaussian process for regression and predict the cou-
pling function. We briefly address the procedure of the Gaussian process regres-
sion followed by the definition of Gaussian process.

5.3.1 Gaussian process

Gaussian process is a type of stochastic processes, and it is defined as follows:
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Definition 5.1 (Gaussian process). A stochastic process {Xt}t∈T is said to be a Gaus-
sian process if for any finite slices of index set T, say (t1, . . . , tk),

(Xt1 , Xt2 , . . . , Xtk) (5.2)

becomes a k-dimensional Gaussian random variable.

In many cases the index set T is infinite one, hence a sample of Gaussian pro-
cess can be seen as a function. When f : X → R is a Gaussian process, we define
functions m : X → R, k : X ×X → R by calculating

m(x) = E[ f (x)], (5.3)
k(x, x̃) = E[( f (x)−m(x))( f (x̃)−m(x̃))], (5.4)

for any x, x̃ ∈ X . We refer to the function m as a mean function and to the func-
tion k as a covariance function. It is known that Gaussian process is completely
characterized by the functions m and k. In the following, we define the Gaus-
sian process by determining m and k, and we write a Gaussian process variable
(function) f as

f ∼ GP(m, k). (5.5)

Let’s say a function f be a Gaussian process with f ∼ GP(m, k). For finite
points X = (x1, . . . , xn)>,

f = f (X) := ( f (x1), . . . , f (xn))
> (5.6)

obeys a n-dimensional Gaussian distribution with a mean mX and a covariance
matrix kXX, which read

mX = m(X) := (m(x1), m(x2), . . . , m(xn))
>, (5.7)

kXX = k(X, X) :=


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
... . . . ...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 . (5.8)

This is a direct consequence of the definition and its characterization of Gaussian
process. Sampling functions of Gaussian process is done by sampling Gaussian
distribution random variables with N (mX, kXX), and the procedure is summa-
rized in Algorithm 5.1. We also plot samples of Gaussian process in Fig. 5.1 using
this algorithm.

5.3.2 Gaussian process regression

Gaussian process regression is a non-parametric regression method that allows
for the flexible modeling of complex functions. It is a Bayesian approach that
uses a prior distribution over functions, which is updated based on the observed
data to obtain a posterior distribution. The smoothness, periodicity, and additive
nature of the function can be controlled through the use of a kernel function,
which defines the covariance between different points in the function space.
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Algorithm 5.1 A function sampling Gaussian process GP SAMPLE

Input: sampling points X = (x1, . . . , xn)
Input: Gaussian process GP(m, k) ▷ mean function m(·), covariance function

k(·, ·)
Output: values of a sample of function from GP(m, k) of X

function GP SAMPLE(X,GP(m, k))
calculate mean array mX ← m(X) = (m(x1, . . . , m(xn)))>

calculate covariance matrix kXX ← [kXX]i,j = (k(xi, xj))i,j
calculate Cholesky decomposition matrix L← cholesky(kXX)
generate N samples from the standard normal distribution z← randn(n)
calculate affine transformation f ← mX + Lz ▷ f ∼ N (mX, kXX)
return f

end function
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Figure 5.1: Gaussian process sample paths. The mean function is m(x) = 0 and
the covariance function is k(x, x̃) = exp[−(x− x̃)2/2].
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One of the main merits of Gaussian process regression is its ability to provide
uncertainty estimates for the regression parameters, which can be useful in sit-
uations where the data are noisy or sparse. It also allows for the modeling of
complex functions without requiring the specification of a fixed functional form,
which can be difficult to determine in many cases. Additionally, the use of a ker-
nel function allows for the incorporation of prior knowledge about the function,
such as its smoothness or periodicity, which can improve the accuracy of the es-
timates.

Let’s say we have a data D = {(xj, yj)}ndata
j=1 ⊂ X × R with ndata number of

data and a function f : X → R, such that

yi = f (xi) + ξi, (5.9)

for i = 1, . . . , ndata, where ξi is a random variable of N (0, σ2) that represents a
“noise” in the output. Our task is to predict the unknown function f from the
data D using the Gaussian process.

We start by assuming that the unknown regression function f is drawn from
a given Gaussian process prior,

f ∼ GP(m, k), (5.10)

where m : X → R is the mean function and k : X × X → R is the covariance
function. The covariance function k should be chosen so that they reflect one ’
s prior knowledge or belief about the regression function f , and we will discuss
this in the next subsection. In many cases, the mean function m is set to a constant
zero function for simplicity.

The posterior distribution of f is calculated analytically by linear algebra, and
is again a Gaussian process. The distribution is given by the following closed
form:

f | D ∼ GP(m, k), (5.11)

where the posterior mean function m and the posterior covariance function k are

m(x) = m(x) + kxX(kXX + σ2 Indata)
−1(y−mX), (5.12)

k(x, x′) = k(x, x′)− kxX(kXX + σ2 Indata)
−1kXx′ . (5.13)

where kXX ∈ Rndata×ndata denotes the matrix with elements [kXX]ij = k(xi, xj),
kXx = k>xX = (k(x1, x), . . . , k(xndata , x))>, mX = (m(x1), . . . , m(xndata))

>, and y =

(y1, . . . , yndata)
>. We demonstrate the Gaussian process regression in Fig. 5.2. We

see that the posterior mean function m is a good approximation of the true func-
tion.

Gaussian process regression has the advantage that all calculations can be
done in a closed form using only matrix operations. However, as the number of
data ndata increases, inverse matrix calculations for ndata × ndata matrices are re-
quired, and the amount of memory and computation is enormous. Many sparse
approximations have been proposed to overcome the computational complex-
ity of Gaussian process regression. We give two examples of sparse approxima-
tions. One is the sparse Gaussian process regression [HFL13], which uses a sub-
set of data as inducing variables. Other is the sparse variational Gaussian process
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Figure 5.2: Demonstration of Gaussian process regression. Black points de-
notes the data D = {(xi, yi)}30

i=1. The true function is x 7→ sin(2πx) + x2/5.
The prior mean function is m(x) = 0 and the prior covariance function is
k(x, x̃) = exp[−(x− x̃)2/(2σ2)] with σ = 0.5.

(SVGP) regression [Tit09], which uses a variational distribution to approximate
the posterior distribution of f . Computation cost comparison is summarized in
Table 5.1. In the following, we use the SVGP regression as our model.

Table 5.1: Computation cost comparison of Gaussian process regression. n de-
notes the total number of data, m denotes the number of inducing variables, and
b denotes the minibatch size. Sparse GP denotes the sparse Gaussian process
regression [HFL13], and SVGP denotes the sparse variational Gaussian process
regression [Tit09].

GP sparse GP SVGP
Inference cost O(n3) O(nm2) O(bm2 + m3)
Memory cost O(n2) O(nm) O(bm + m2)

5.3.3 Choice of a covariance function

A covariance function is a crucial ingredient in a Gaussian process predictor, as
it encodes our assumptions about the function which we wish to learn. For ex-
ample, the radius basis function (RBF) is known to generate a C∞ function with
probability one. Matérn covariance function is known to generate a finite-time
differentiable function with probability one. See [Kan+18] for a detailed discus-
sion. In this chapter, the coupling function which we wish to learn has a domain
of torus X = TN−1. When N = 2, the domain is X = T1 = S1 and the coupling
function is a simple periodic function. By assuming that the function is smooth,
we can set the covariance function as

k(x, x′) = θ0 exp(θ1 cos(x− x′)), (5.14)
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which is often called a periodic kernel. Here, θ0 and θ1 are positive hyperparame-
ters. θ0 determines the amplitude of the covariance function, and θ1 can be said as
an inverse lengthscale, which specifies the width of the covariance function. There-
fore θ1 determines the smoothness of the coupling function, and it is important
to choose an appropriate value of θ1. In many cases, the hyperparameters are
to set by maximizing the marginal likelihood, and we will see this in the next
subsection. We demonstrate the heatmaping of the covariance function and the
corresponding samples of Gaussian process in Fig. 5.3.

When N ≥ 3, the domain is defined on the product space X = S1 × · · · × S1,
and the coupling function is expected to be periodic and smooth with respect to
each entry of the domain. We can construct the covariance function from (5.14)
by tensor product as follows:

k(x, x′) = θ0 exp

(
N−1

∑
i=1

θ
(j)
1 cos(xj − x′j)

)
, (5.15)

where θ0, θ
(j)
1 are positive hyperparameters.

Some systems can further be reduced to coupled phase-oscillator models in
the following ODE form called an additive model:

Γi(θ1 − θi, . . . , θN − θi) = ωi + ∑
j 6=i

Γij(θj − θi), (5.16)

which is a linear combination of functions of one variable [DNR11; RW06]. In
this case, we can construct a covariance function which generates the additive
model shown in (5.16). By assuming that each coupling function Γij is the periodic
function of the phase difference and is smooth, the covariance function of Γi will
have the form of a direct sum of periodic kernels, which reads

k(x, x′) =
N−1

∑
j=1

θ
(j)
0 exp

(
θ
(j)
1 cos(xj − x′j)

)
, (5.17)

where θ
(j)
0 , θ

(j)
1 are positive hyperparameters.

5.3.4 Optimization

In the Gaussian process regression described so far, hyperparameters remain in
the kernel θ0,1 and the noise strength σ. For brevity of notation, we will write
these parameters as θ.

To estimate θ, we consider the maximum likelihood estimation, which makes
inferences about the population that is most likely to have generated the data D.
The (marginal) log-likelihood for parameters θ is

L(θ) = log p(y | X, θ) = −1
2

y>Kθy− 1
2

log det Kθ−
ndata

2
log 2π, (5.18)

where Kθ = kXX + σ2 Indata is the covariance matrix for the noisy dataD. The most
probable parameters θ are, therefore, estimated by finding the maximum of the
log-likelihood function L(θ).
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Figure 5.3: (left) Heatmaps of the RBF kernel, Matérn kernel (ν = 1/2), and
periodic kernel. (right) Samples of Gaussian process with the RBF kernel, Matérn
kernel (ν = 1/2), and periodic kernel.
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5.4. NUMERICAL SIMULATIONS

The problem of finding the point that maximizes the marginal likelihood while
changing hyperparameters is formulated as an optimization problem. In this
chapter, we use the gradient descent method is to find the maximum point of
the marginal likelihood. The hyperparameters θ is updated using the gradient
with the following manner:

θ(t+1) ← θ(t) + α
∂L
∂θ

(θ(t)), (5.19)

where α denotes the learning rate.
Stochastic gradient decent (SGD) method, regarded as a stochastic approxima-

tion of gradient descent optimization methods, is another way of optimization.
In the SGD method, the gradient is determined by different minibatches at each
step, and parameter updating proceeds accordingly. The greatest benefit is that
it requires less computation time to converge than the gradient method, which
uses all data at each step. It is also thought to be less likely to be trapped in lo-
cal solutions, thanks to stochastic fluctuations in the gradient direction for each
minibatch.

5.4 Numerical Simulations

5.4.1 Coupled Van der Pol oscillators

Next, we consider the Van der Pol equation, which is a mathematical model that
describes the nonlinear dynamics of a damped oscillator [Pol26]. It is commonly
used in the study of oscillator systems, such as those found in electrical circuits
and mechanical systems. The equation takes the form:

ẋ = y, (5.20)

ẏ = ε(1− x2)y− x, (5.21)

where x and y are the position and velocity of the oscillator, respectively, and ε
is a constant that determine the damping and frequency of the oscillation. The
equation exhibits a wide range of behavior, including limit cycles, bifurcations,
and chaos, depending on the values of ε.

In this subsection, we connect two Van der Pol oscillators in the following
manner:

ẋ1 = y1 + K(x2 − x1) + ξx1(t), (5.22)

ẏ1 = ε1(1− x2
1)y1 − x1 + Kx2

2y2 + ξy1(t), (5.23)

ẋ2 = y2 − Kx2
1y1 + ξx2(t), (5.24)

ẏ2 = ε2(1− x2
2)y2 − x2 + Kx1y2

1 + ξy2(t), (5.25)

where ξα(t) are Gaussian white noises with 〈ξα(s)ξβ(t)〉 = σ2δα,βδ(s − t) for
α, β ∈ {x1, y1, x2, y2}. Parameter values are ε1 = 0.3, ε2 = 0.7, K = 0.01, σ = 0.03.

We first obtain the oscillators’ orbit by numerically integrating the equations
using Euler–Maruyama method. We use the position values x1,2 as observables
of the Van der Pol oscillators. These values are different from the phase represen-
tation, and we need to transform to phases. In this chapter, we use the Hilbert
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transformation, which transform the real valued function u(t) to another real val-
ued H[u](t), and calculate the argument of complex u(t) + iH[u](t) as the phase
function of time t. However, this method has the problem that the phase does not
vary monotonically when there is no interaction or noise. Therefore, we trans-
form the phase using the method proposed by Kralemann as the following:

ϕ[θ](t) = 2π
∫ θ

0
f (θ)dθ, (5.26)

where f (θ) denotes the probability distribution of time series θ [KPR11; Kra+08;
Kra+07]. After these procedures, we obtain the time series of phases in the fol-
lowing form: [

θ1(t1) θ1(t2) · · · θ1(tk)
θ2(t1) θ2(t2) · · · θ2(tk)

]
. (5.27)

Since our goal is to do the regression for coupling functions, we create input-
output data from the phase time series D for each dimension. For the firs oscilla-
tor, we set the data D = {(xi, yi)}ndata

i=1 with

xi = θ2(ti)− θ1(ti), yi =
θ1(ti+1)− θ1(ti)

ti+1 − ti
, (5.28)

where yi is approximation of time differentiation of θ1 at time ti using the finite
time difference. For simplicity, xi, yi are used here as variables, which are different
from the variables in the original Van der Pol equations.

Now we have the input-output data D for the coupling funtion, we conduct
the Gaussian process regression. We especially use the stochastic variational
Gaussian process regression for lighter computation cost compared to the original
Gaussian process regression approach. Since total number of oscillators are two,
the input dimension of the coupling function is one, and the covariance fucntion
for the Gaussian process regression should take the form:

k(x, x̃) = θ0 exp[θ1 cos(x− x̃)], (5.29)

for x, x̃ ∈ S1. Parameters θ0,1 > 0 are optimized by Adam optimizer in the
stochastic variational Gaussian process regression learning process [Tit09; KB14].
The result is shown in Fig. 5.4, comparing with the true coupling function and
the The Gaussian process regression approach successfully obtains the coupling
function.

We also give a situation where the previous method, using the Fourier series
expansions, fails to estimate the coupling function while the Gaussian process
regression approach succeeds in Fig. 5.5. We estimate the coupling function of
the Van der Pol oscillators for the second oscillator with the same parameters as
the previous example. The Fourier series expansion approach fails to choose the
appropriate number of degrees through the evidence approximations. On the
other hand, the Gaussian process regression approach is non-parametric, hence it
can focus only on the estimation of the coupling function without worrying about
the number of degrees.
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Figure 5.4: Estimation of the coupling functions of the Van der Pol oscillators. The
Gaussian process approach is compared to the theory plot, which is obtained by
the phase reduction theory. Green dots are the data points used for the Gaussian
process regression. Dark red bars are the standard deviation of the Gaussian
process regression with respect to the estimated function, and pale red bars are
the standard deviation of the Gaussian process regression with respect to the data
points.
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Figure 5.5: Comparison of the Fourier series and the Gaussian process regres-
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5.4.2 Spiking Neural Network oscillators

We next estimate the network of seven neuron oscillators. The network consists
of five excitatory neurons, which is modeled by Hodgkin–Huxley model [HH52],
and two inhibitory neurons, which is modeled by fast spiking neuron model [Eri+99].
Details of these models are summarized in Appendix 5.A. See the upper left net-
work plot in Fig. 5.6. We observe the time series by numerically solving the equa-
tions of spiking neurons (which is shown in Appendix 5.A), and use the mem-
brane voltages Vi(t) for the regression. Time series of the membrane voltages are
shown in the upper right of Fig. 5.6. We apply the same procedures as done in
Sec. 5.4.1 and get the phase time series, which takes the following form:

θ1(t1) θ1(t2) · · · θ1(tk)
θ2(t1) θ2(t2) · · · θ2(tk)

...
...

...
θ7(t1) θ7(t2) · · · θ7(tk)

 . (5.30)

For the first oscillator, we set the data D = {(xi, yi)}ndata
i=1 with

xi =


θ2(ti)− θ1(ti)
θ3(ti)− θ1(ti)

...
θ7(ti)− θ1(ti)

 ∈ T6, yi =
θ1(ti+1)− θ1(ti)

ti+1 − ti
. (5.31)

Since the input space in T6, the covariance function for the Gaussian process
regression is

k(x, x̃) =
6

∑
j=1

θ
(j)
0 exp(θ(j)

1 cos(xi − x̃i)), (5.32)

for x, x̃ ∈ T6. For this input-output data, we employ the stochastic variational
Gaussian process regression and estimate the first oscillator’s coupling function.
We simultaneously estimate the coupling functions for other oscillators. See the
lower graphs of Fig. 5.6 for the estimation result compared to the theoretical cou-
pling functions obtained by the phase reduction approach. We confirm that the
coupling functions between each oscillators are qualitatively consistent with the
results from Gaussian process regression and the theoretical results.

5.5 Summary and Discussions

In this chapter, we focus on the real data that represent rhythmic phenomena,
and from them, we consider estimating the coupling function that is modeled
as a phase oscillator system. A method for estimating the coupling function us-
ing Gaussian process regression is proposed. By designing the kernel function
flexibly, the regression can be performed without going through a finite order
approximation by Fourier series. We confirmed that this works well in the case
of Van der Pol equations. We also confirmed that the coupling function can be
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Figure 5.6: (Upper left) Network of spiking neurons coupled with inhibitory
and excitatory neurons. (Upper right) Time series of the voltage of each neu-
ron. (lower) Theoretically derived coupling function between each neuron (black
dotted line) and the coupling function estimated from the data using Gaussian
process regression (red solid line). Red bars are the standard deviation of the
Gaussian process regression with respect to the estimated functions. Note that
for comparison each coupling function Γij is translated to take 0 at ∆ϕij = 0.
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successfully estimated qualitatively for as many as seven many-body systems of
coupled spiking neurons.

Finally, we comment on the proposed method using Gaussian process regres-
sion. The main idea was to reduce the data to a regression problem about a vec-
tor field of differential equations of phase. However, the possibility arises that
the data used in the regression may contain systematic errors because it involves
an approximation of the derivative in terms of differences due to finite time. To
overcome this problem, a new idea has recently been proposed to calculate the
parameter derivatives of time series data obtained from parameterized vector
fields using the accompanying equations [Che+18; Li+20]. We leave the appli-
cation of the adjoint equation to the estimation of coupling functions as a future
work.

5.A Nueron models

The Hodgkin–Huxley model reads the following:

CV̇ = GNam3h(ENa −V) + GKn4(EK −V) + GL(EL −V) + Iinput + ξV , (5.33)

ṁ = αm(V)(1−m)− βm(V)m + ξm, (5.34)

ḣ = αh(V)(1− h)− βh(V)m + ξh, (5.35)
ṅ = αn(V)(1− n)− βn(V)n + ξn, (5.36)

with the parameter values C = 1, GNa = 120, GK = 36, GL = 0.3, ENa = 50, EK =
−77, EL = −54.4. The auxiliary functions αm,h,n, βm,h,n are

αm(V) =
0.1(V + 40)

1− exp[(−V − 40)/10]
, βm(V) = 4 exp

−V − 65
18

, (5.37)

αh(V) = 0.07 exp
−V − 65

20
, βh(V) =

1
1 + exp[(−V − 35)/10]

, (5.38)

αn(V) =
0.01(V + 55)

1− exp[(−V − 55)/10]
, βn(V) = 0.125 exp

−V − 65
80

. (5.39)

The model of fast-spiking neurons reads the following:

CV̇ = GNam3h(ENa −V) + GKn2(EK −V) + GL(EL −V) + Iinput + ξV , (5.40)

ṁ = αm(V)(1−m)− βm(V)m + ξm, (5.41)

ḣ = αh(V)(1− h)− βh(V)m + ξh, (5.42)
ṅ = αn(V)(1− n)− βn(V)n + ξn, (5.43)

with the parameter values C = 1, GNa = 112, GK = 224, GL = 0.1, ENa = 55, EK =
−97, EL = −70.0. The auxiliary functions αm,h,n, βm,h,n are

αm(V) =
40(V − 75)

1− exp[(75−V)/13.5]
, βm(V) = 1.2262 exp

−V
42.248

, (5.44)

αh(V) = 0.0035 exp
−V

24.186
, βh(V) =

0.017(−51.25−V)

exp[(−51.25−V)/5.2]− 1
, (5.45)

αn(V) =
V − 95

1− exp[(95−V)/11.8]
, βn(V) = 0.025 exp

−V
22.222

. (5.46)
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5.B. SPARSE GAUSSIAN PROCESS

The input current for each cell, denoted by i, is the combination of the bias
current and the current flowing through the synapses. It can be expressed math-
ematically as: Iinput,i = Ibias,i + ∑j∈prei

Isyn,ij. The symbol ”pre” represents the set
of cells that have a synaptic connection with cell i. In this case, the bias current for
cell 1 is 30, for cell 2 is 32 and so on, with the values being 30, 32, 6, 6.5, 34, 36, 38
respectively for cells 1 through 7.

The current flowing through the synapses, Isyn,ij, is modeled using the kinetic
synapse model [DMS94], where it is represented as

Isyn,ij = Gijrij(t)[Vi(t)− Eij]. (5.47)

The fraction of bound receptor proteins is represented by rij, and its dynamics are
described by the following equation:

drij

dt
= αijTij(1− rij)− βijrij, (5.48)

where Tij is the concentration of neurotransmitters, which is set to 1 when a spike
is emitted by the presynaptic cell and resets to 0 after 1 millisecond. The constants
αij and βij govern the kinetics of rij, while Eij is the reversal potential and Gij is the
synaptic conductance. The values used for excitatory and inhibitory synapses are
(αij, βij, Eij, Gij) = (1.1, 0.67, 0, 0.5) and (9.8, 0.2,−75, 0.4) respectively. Addition-
ally, a weak, independent noise function ξx,i is added to the membrane voltage
Vi and channel variables mi, hi and ni. The noise follows a Gaussian white noise
distribution, with 〈ξx,i(t)〉 = 0 and 〈ξx,i(t)ξy,j(s)〉 = σ2

x δxyδijδ(t− s), where x,y =
V, m, h, n, and i and j are the cell indices. The noise strengths used are σV = 0.5
and σm = σh = σn = 5× 10−6.

5.B Sparse Gaussian process

Here, we show the algorithm of the sparse Gaussian process (SGP) regression in
Algorithm 5.2.
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Algorithm 5.2 Sparse Gaussian process regression GP SPARSE REGRESSION

Input: training data X, y ▷ X[i] = xi, y[i] = yi
Input: test input data x∗

Input: prior Gaussian process GP(0, k) ▷ covariance function k(·, ·)
Input: variance of noise σ2

Input: inducing points Z ▷ Z[i] = zi
Output: Gaussian distributions of values at x∗

function GP SPARSE REGRESSION(X, y, x∗,GP(0, k), σ2, Z)
calculate matrix KXX ← (KXX)i,j = (k(xi, xj))i,j
calculate matrix KXZ ← (KXZ)i,j = (k(xi, zj))i,j
calculate matrix KZZ ← (KZZ)i,j = (k(zi, zj))i,j
calculate array kZx∗ ← (KZx∗)i = (k(zi, x∗))i
calculate value kx∗x∗ ← k(x∗, x∗)
calculate matrix Λ← diag(KXX − KXZK−1

ZZK>XZ) ▷ Λ is a diagonal matrix
calculate matrix QZZ ← KZZ + K>XZ(Λ + σ2I)−1KXZ
calculate array û← KZZQ−1

ZZK>XZ(Λ + σ2I)−1y
calculate mean msparse ← k>Zx∗K

−1
ZZû

calculate variance vsparse ← kx∗x∗ − k>Zx∗(K
−1
ZZ −Q−1

ZZ)kZx∗ + σ2

return N (msparse, vsparse)
end function
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CHAPTER 6

CONCLUSION

The thesis is concluded in this chapter. We summarize the results and discuss
some future works.

6.1 Summary of Our Study

In this thesis, we study the coupled phase-oscillator models from theoretical and
experimental point of view. In Chapter 3, we calculate the critical exponent β of
the coupled phase-oscillator models on small world networks using the finite-
size scaling analysis. We set the coupling functions as Γ(θ) = sin θ + a sin 2θ and
the natural frequency distributions as gn(ω) = gn(0)− Cnω2n + · · · , and check
(a, n)-dependence of β. The result suggests that the transition exponent β = 1/2
for a < 0, which differs from the critical exponent result of all-to-all network.
We also see that for a = 0.5 > 0, the transition is discontinuous and the criti-
cal exponent is undefeined. In Chapter 4, we consider the Kuramoto model on
networks with identical natural frequency, and discuss the relation of network
connectivity and in-phase synchronization. Several researches have considered
dense networks that have equilibrium other than the in-phase synchronization
state. In this research, we obtain the densest circulant network that have stable
“p-twisted states” by formulating integer programming problems. Chapter 5 is
devoted to the experimental research on the coupled pahse-oscilator models. Es-
timating the underlying mathematical model from the real data has been the cen-
tral problem in physics. For the rhythmic data it is theoretically known that the
model is always reduced to the coupled phase-oscilator model, therefore there
have been several studies on estimating the phase dynamics, including usind the
Bayesian linear regression analysis. However, this analysis appropriates the cou-
pling function to Fourier expansion series with finite degree, and sometimes the
Gibbs phenomena have been encountered. We propose a method to estimeate
the coupling function by the Gaussian process regression. The regression can be
regarded as the optimization in the infinite dimensional periodic function space,
therefore we have a theoretical guarantee that the optimized function is smooth.
We have checked the validity by applying this method to the Van der Pol oscila-
tors and spiking neurons.

79



CHAPTER 6. CONCLUSION

6.2 Future works

We give two future works to end this thesis.
In Chapter 4, we considered the dense network that do not synchronize. After

the paper [YTT21] was published, the lower bound of µc was improved from
0.6838 . . . to 11/16 = 0.6875 by Canale [Can22]. Also, the upper bound was
improved to 3/4 = 0.75 by Kassabov et al. [KST21]. These results are summarized
in Table 6.1. Further research is needed to find the exact value of µc. Especially
for the lower bound, other “solvable networks” with “solvable stable states” are
needed to be considered. We will tackle this problem in the future.

Table 6.1: List of recent research on network connectivity µ and its tendency to
synchronization.
network that do not synchronize network that always synchronize
µ ≤ 0.6809 . . . (Wiley, 2006 [WSG06]) µ = 1 (Watanabe, 1994 [WS94])
µ ≤ 0.6818 . . . (Canale, 2015 [CM15]) µ ≥ 0.9395 . . . (Taylor, 2012 [Tay12])
µ ≤ 0.6828 . . . (Townsend, 2020 [TSS20]) µ ≥ 0.7929 . . . (Ling, 2019 [LXB19])
µ ≤ 0.6838 . . . (Yoneda, 2021 [YTT21]) µ ≥ 0.7889 . . . (Lu, 2020 [LS20])
µ ≤ 0.6875 (Canale, 2022 [Can22]) µ ≥ 0.75 (Kassabov, 2021 [KST21])

For a future work regarding Chapter 5, In Chapter 5, we have shown that the
coupling function can be estimated by the Gaussian process regression. We have
approximated the phase differentiation dθi

dt by a finite difference, but this approx-
imation is one of the sources of error. In order to reduce the error, the time step
width must be reduced, but this requires an increase in the number of data, a
situation that is not very favorable for Gaussian process regression. In the recent
machine learning boom, a method called “neural ode/sde” was proposed to ef-
ficiently compute the gradient of a parameterized differential equation [Che+18;
Li+20]. We briefly introduce the algorithm here. We consider the stochastic dif-
ferential equation of the following form:

dx = f (t, x; θ)dt + g(t, x; θ)dWt, (6.1)

where f is the drift function, g is the diffusion function, and Wt is the Wiener
process. θ is the parameter of the drift and diffusion functions. The paper [Li+20]
shows that the gradient of the loss function L with respect to the initial value
x(t0) and parameters θ can be calculated by the adjoint equation of the stochas-
tic differential equation, where the adjoint state is defined as a(t) = ∂L/∂x(t).
The algorithm of this calculation is shown in Algorithm 6.1. Preliminary numer-
ical calculations have shown that the adjoint method is effective for estimating
dynamical systems. We would like to use this method to estimate coupled phase-
oscillator models from rhythmic data in the future.
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