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Chapter 1

Introduction

1.1 Estimation of physiological state
Stress can be a factor in various illnesses, including mental illnesses such

as depression. Fatigue and drowsiness can also lead to serious traffic accidents,
especially for professional drivers. Examples of serious accidents caused by
overworked or drowsy drivers include the 2007 Suita ski bus accident (1 fatality),
the 2012 Kanetsu Expressway highway bus accident (7 fatalities), and the 2016
Karuizawa ski bus accident (15 fatalities). Therefore, it is necessary to estimate
physiological states such as stress, fatigue, and drowsiness in order to protect
people ’s health and safety.

The difficulty in physiological state estimation lies in the difficulty of mea-
suring and quantifying human internal states. Considering clinical and general
applications, a method that is easy to perform, non-invasive, quick, and low-cost
is required. Estimation of physiological status by non-invasive and quantitative
methods is an important issue. Heart rate variability analysis has attracted attention
as one of the methods that may lead to physiological state estimation.

1.2 Heart rate variability and autonomic nervous
system

The autonomic nervous system is involved in the regulation of the heart. The
sympathetic nerves accelerate the heartbeat and the parasympathetic nerves de-
celerate the heartbeat. These sympathetic and parasympathetic nervous activities
cause fluctuations in the interval of heart beats (R-R Interval : RRI) [1, 2]. This
phenomenon is called heart rate variability (HRV). Fig. 1.1 shows a schematic
diagram of the electrocardiogram (ECG) waveform and R-R Interval (RRI). Fig.
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1.2 illustrates an example of the fluctuation of a typical RRI time series.

R-R Interval (RRI)

P

Q

R

S

T

U

Figure 1.1: Schematic picture of a basic electrocardiogram (ECG) waveform; the
time interval from the peak labeled R to the R of the next beat is called the R-R
Interval (RRI).

RRI data can be measured by the change in the potential difference on the skin
surface associated with the beating of the heart. Recently, wearable heart rate
sensors have been developed to easily and continuously measure RRI data.

There are methods to quantitatively evaluate autonomic nervous system func-
tion by analyzing R-R interval data. Heart rate variability analysis is a powerful
method for noninvasively examining the internal state of human body.

1.3 Chaotic nature of heart rate variability and non-
linear analysis

The method for evaluating autonomic nervous system function by heart rate
variability analysis was standardized in 1996 [3] and consists of two types of anal-
ysis: time-domain analysis (analysis by statistics) and frequency-domain analysis
(analysis by power of specific frequency components).

However, the two conventional analytic methods do not evaluate fluctuations in
heartbeat intervals from the perspective of dynamics. It has been pointed out that
these linear analyses can only capture some aspects of heart rate variability and
have limitations in analyzing biological phenomena that are nonlinear systems [4].
Aspects of heart rate variability not captured by conventional linear analysis have
not yet been fully understood, and are therefore variously referred to as chaos,
nonlinear components, fractal components, and so on in the literature. In this
study, we consider them as chaos.
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Figure 1.2: Example of a typical RRI time series. In a healthy heart, the RRI is
not constant but fluctuates.

Deterministic chaos is a phenomenon in which a system is deterministic but
exhibits irregular behavior that appears as if it were stochastic. One of the char-
acteristic and interesting properties of chaos is its sensitivity to initial conditions,
in which small differences in initial values expand over time to make large differ-
ences in future outcomes, and its unpredictability in the long term, even though
a system follows deterministic laws. Although the discovery of chaos was made
through studies of electric circuits and meteorology, chaos is considered to be a
kind of universal property that is also related to a wide variety of other phenomena,
including life sciences and financial markets. Therefore, there is a great potential
to highlight the characteristics of the mechanism of heart rate control hidden in
the seemingly random RRI variation as shown in Fig. 1.2 from the perspective of
chaos.

Recently, experiments using complexity indices such as entropy have reported a
relationship between the complexity of heart rate variability and cognitive function
and mood (anxiety) [5, 6, 7, 8]. Thus, nonlinear analysis of heart rate variability is
revealing aspects that were invisible to conventional linear analysis. For example,
finding signs of heart disease or sudden death remains a major challenge [9], and
nonlinear analysis may be one approach to such problems. Furthermore, it has been
reported that nonlinear analysis can detect the increased sympathetic modulation
in breast cancer patients after initial treatment that cannot be detected by linear
analysis of HRV [10]. It is expected that nonlinear analysis of HRV will be applied
to clinical practice.
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1.4 Methods for Quantifying Chaos
The Lyapunov exponent is commonly used to quantify chaos. It is a measure

of sensitive dependence on initial conditions, which is a typical property of chaos
(the property that slight differences in initial values increase exponentially over
time, resulting in large changes in trajectory). If the Lyapunov exponent is positive
in a system, the system is judged to be chaotic; conversely, if it is negative, the
system is stable and not chaotic.

Representative methods for estimating Lyapunov exponents from time series
data based on the reconstruction of attractors by delay coordinates embedding
[11] include the methods by Wolf et al.[12], Rosenstein et al.[13], and Kantz[14].
However, methods for estimating Lyapunov exponents from observed data series,
including the methods listed above, face some challenges, such as the need for the
equations of the dynamical system generating the data, the need for large amounts
of data and computation, and the need to properly select computational parameters
such as delay time and embedding dimension. This means that it is difficult to use
Lyapunov exponent in applications where heart rate variability is analyzed in real
time. This is because there are no explicit equations that describe the system that
produces heart rate variability, and because the RRI data is only available at the
timing of beats, thus if we assume that the measurement time is 5 minutes, there
are only a few hundred data points in the data set.

The chaos degree [15] has been proposed as a measure of chaos from only a
sequence of observed data and from a relatively small amount of data. It measures
the amount of information that chaos generates from an information-theoretic
perspective. In this study, we position the chaos degree as a quantification index
of chaos similar to the Lyapunov exponent and attempt to apply it as an effective
means of measuring chaos in heart rate variability analysis.

1.5 Issues addressed in this study
There are two major problems in translating the nonlinear analysis of HRV into

useful applications.
First, there are still no indices that can be considered standard in nonlinear

analysis of HRV. The conclusions of previous studies listed above differ slightly
due to the slightly different objectives and conditions of the experiments and the
fact that not all experiments used the same analytical methods. Improved chaos
degree proposed in this study is considered appropriate as an index to quantify
the chaos of heart rate variability. Improved chaos degree can be calculated from
data, requires little computation, and has a clear mathematical correspondence
with Lyapunov exponent.
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Second, there is still no clear explanation of what is essentially meant by
chaos/complexity in heart rate variability. As an approach to the question, we hy-
pothesize that the chaos in heart rate variability reflects the effects of brain network
activity and attempt to verify part of this hypothesis through experimentation.

1.6 Outline of the thesis
In this thesis, in the first half ( Chapters 2 and 3 ), we propose a quantification

index of chaos that can be computed from data and has a clear mathematical
background. In the second half ( Chapters 4 and 5 ), we derive the hypothesis that
the chaos of heart rate variability is affected by higher-order brain activity, and
conduct experiments to verify the hypotheses, and apply the chaos index proposed
in the first half to the analysis of experimental data.

In Chapter 2, we examine the properties of chaos degree using asymmetric tent
maps, focusing on the difference between chaos degree and Lyapunov exponent,
and give an information-theoretic interpretation of the difference between them.
Furthermore, we derive analytically the limit of the infinite number of divisions of
chaos degree.

In Chapter 3, we define improved chaos degree as chaos degree from which the
amount of information that is the difference between chaos degree and Lyapunov
exponent is removed and prove that improved chaos degree is consistent with
discretized Lyapunov exponent.

In Chapter 4, we summarize previous studies on the neuroviceral integration
model that explain the relationship between higher brain functions and heart rate
control, and previous studies on large-scale brain networks, and add our own
considerations from the perspective of chaos to formulate hypotheses linking
chaos in heart rate variability and higher brain activity.

In Chapter 5, we conduct experiments to analyze heart rate variability data
during brain activities (mental arithmetic and Sudoku) to verify our hypotheses.

8



Chapter 2

Investigation of properties of chaos
degree

This chapter is according to the [16] and [17].

2.1 Introduction

Lyapunov exponent is commonly used as a quantitative measure of chaos.
However, it is difficult to calculate Lyapunov exponents if equations of dynamical
systems are not given. On the other hand, Entropic Chaos Degree (chaos degree)
[15] is proposed as another measure of chaos which can be directly calculated
from data. The properties of chaos degree and its relationship with other chaos
indicators have been investigated and discussed in previous studies [18, 19, 20, 21].

The advantage of chaos degree is that it can be computed from only data series
and with a small amount of computation. In this thesis, chaos degree is positioned
as a suitable index for quantifying the chaotic nature of heart rate variability, but
it has an extremely wide range of applications because it can be applied to general
data, not limited to HRV data.

In order to apply chaos degree to the analysis of real data, it is necessary to
clarify its basic properties, such as its relationship with Lyapunov exponent. In
this chapter, we investigate the properties of chaos degree using asymmetric tent
map as a simple model of chaotic dynamical systems. The value of chaos degree is
affected by the partition used in its computation. In the first half of the chapter, we
investigate the difference between chaos degree and Lyapunov exponent caused
by the effect of the partition, and in the second half of the chapter, we obtain
analytically chaos degree in the limit of infinite number of partitions.
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2.2 Analysis of the difference between chaos degree
and Lyapunov exponent in asymmetric tent maps,
and information-theoretic interpretation of the
difference

2.2.1 Introduction
Relations among chaos degree, Lyapunov exponent and KS entropy are dis-

cussed in [21]. Previous research [22] analytically shows that chaos degree in
the limit that partition number approaches to infinity is greater than Lyapunov
exponent, and suggests that the difference between chaos degree and Lyapunov
exponent depends on the choice of partition. In many cases, chaos degree is greater
than Lyapunov exponent and we should be careful to determine chaos by using
chaos degree. For example, preceding studies[19, 20] show that chaos degree is
positive for quasi-periodic orbits and it is hard to distinguish chaotic orbits from
quasi-periodic orbits.

This section reports on an analytical investigation of the difference between
chaos degree and Lyapunov exponent for asymmetric tent maps.

2.2.2 Definition of Chaos Degree
The definition of chaos degree in difference equations is as below.
We assume that the difference equation is determined by a map 𝑓 : 𝐼 → 𝐼 (≡

[𝑎, 𝑏]𝑑 ⊂ R𝑑 , 𝑎, 𝑏 ∈ R, 𝑑 ∈ N), i.e., 𝑥𝑛+1 = 𝑓 (𝑥𝑛) (𝑛 = 0, 1, . . .). Let 𝑥0 be an
initial value, and 𝐴 = {𝐴𝑖} be a finit partition of 𝐼 such that

𝐼 =
𝑁⋃
𝑘=1

𝐴𝑘 , 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ (𝑖 ≠ 𝑗). (2.2.1)

The probability distribution 𝑝 (𝑚)
𝑖,𝐴 (𝑀) at the time 𝑚 is given as

𝑝 (𝑚)
𝑖,𝐴 (𝑀) = 1

𝑀

𝑚+𝑀−1∑
𝑘=𝑚

1𝐴𝑖 (𝑥𝑘 ), (2.2.2)

and the joint probability distribution 𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) between the time 𝑚 and 𝑚 + 1

is given as

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) = 1

𝑀

𝑚+𝑀−1∑
𝑘=𝑚

1𝐴𝑖 (𝑥𝑘 )1𝐴 𝑗 (𝑥𝑘+1). (2.2.3)
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Then chaos degree 𝐷 (𝑀,𝑚) (𝐴, 𝑓 ) for the orbit {𝑥𝑘 } is defined by

𝐷 (𝑀,𝑚) (𝐴, 𝑓 )

=
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) log

𝑝 (𝑚)
𝑖,𝐴 (𝑀)

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀)

. (2.2.4)

In this paper, we simplify 𝑝 (𝑚)
𝑖,𝐴 (𝑀) = 𝑝(𝑖) and 𝑝 (𝑚,𝑚+1)

𝑖, 𝑗 ,𝐴 (𝑀) = 𝑝(𝑖, 𝑗), then
chaos degree 𝐻𝐶𝐷 is calculated as:

𝐻𝐶𝐷 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝(𝑖, 𝑗) log
𝑝(𝑖)
𝑝(𝑖, 𝑗) (2.2.5)

= −
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖), (2.2.6)

where the conditional probability 𝑝( 𝑗 |𝑖) = 𝑝(𝑖, 𝑗)
𝑝(𝑖) ．

2.2.3 Asymmetric tent map
Let 𝑇𝑘 (𝑥) be a tent map with the peak at 𝑥 = 1/𝑘 (𝑘 ∈ N, 𝑘 ≥ 2) such that

𝑇𝑘 (𝑥) =
{
𝑘𝑥 (0 ≤ 𝑥 ≤ 1

𝑘 )
𝑘

𝑘−1 (1 − 𝑥) ( 1
𝑘 ≤ 𝑥 ≤ 1)

. (2.2.7)

If 𝑘 = 2 then 𝑇𝑘 (𝑥) is a symmetric tent map, else 𝑇𝑘 (𝑥) is an asymmetric tent map.
We try to find out how partitions affect the difference between chaos degree

and Lyapunov exponent, focusing on asymmetric tent map 𝑇𝑘 (𝑥) because its shape
is simple so that it is easy to calculate both theoritical values of chaos degree and
Lyapunov exponents.

2.2.4 Investigation prosedure
First, we calculate chaos degree of an asymmetric tent map 𝑇𝑘 (𝑥). Next, we

claculate a difference between chaos degree and Lyapunov Exponent (𝐻𝐶𝐷 − 𝜆)
and try to interpret what the difference means.

2.2.5 Calculation of Chaos Degree
Let {𝐴𝑖} be an equipartition with partition number 𝑁 such that 𝑁 = 𝑛𝑘 (𝑛 ∈ N).

For example, the case 𝑘 = 4 and 𝑛 = 2 is shown in Fig. 2.1.

11



𝑥𝑛 

𝑥
𝑛
+
1

 

0 1 

1 

1
𝑘  

Figure 2.1: Example of an asymmetric tent map 𝑇𝑘 (𝑥) and an 𝑛𝑘 equipartition for
𝑘 = 4 and 𝑛 = 2 .

There are two kinds of repeating patterns in 0 ≤ 𝑥 ≤ 1
𝑘 and 1

𝑘 ≤ 𝑥 ≤ 1. In Fig.
2.1, each pattern is colored red or green. Each of these patterns appears 𝑛 times.

If (𝐴𝑖, 𝐴 𝑗 ) such that 𝑥𝑚 ∈ 𝐴𝑖 and 𝑥𝑚+1 ∈ 𝐴 𝑗 does not belong to any patterns,
then 𝑝( 𝑗 |𝑖) = 0 and chaos degree is not affected. Therefore, we consider the two
patterns in calculation of chaos degree below.

In case 0 ≤ 𝑥 ≤ 1
𝑘 , 𝑇𝑘 (𝐴𝑖1) intersects with just 𝑘 components, therefore

conditional probability is

𝑝( 𝑗 |𝑖1) =
{ 1
𝑘 ( 𝑗 = 𝑗1, 𝑗2, . . . 𝑗𝑘 )

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
. (2.2.8)

In case 1
𝑘 ≤ 𝑥 ≤ 1, each of 𝑇𝑘 (𝐴𝑖𝑢) (𝑢 = 1, 2, . . . 𝑘 − 1) intersects with just two

components. Suppose the index numbers of the two components are 𝑣1 and 𝑣2,
then

𝑝( 𝑗 |𝑖𝑢) =


𝑢
𝑘 ( 𝑗 = 𝑗𝑣1)
𝑘−𝑢
𝑘 ( 𝑗 = 𝑗𝑣2)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

. (2.2.9)
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(b) 1
𝑘 ≤ 𝑥 ≤ 1

Figure 2.2: Schematic picture of two kinds of repeating patterns and conditional
probability 𝑝( 𝑗 |𝑖) . In pattern (b), 𝑝( 𝑗 |𝑖) = 0 is omitted.
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Futher, 𝑇𝑘 (𝑥) has the uniform invariant probability density, therefore

𝑝(𝑖) = 1
𝑁

=
1
𝑛𝑘

. (2.2.10)

From equations (3.2.6), (2.2.8), (2.2.9) and (2.2.10), we obtain

𝐻𝐶𝐷

=
1
𝑛𝑘

𝑛𝑘

(
−1
𝑘

log
1
𝑘

)
+ 1
𝑛𝑘

𝑛
𝑘−1∑
𝑢=1

(
−𝑢
𝑘

log
𝑢

𝑘
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘

)
= −1

𝑘
log

1
𝑘

+1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢
𝑘

log
𝑢

𝑘
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘

)
. (2.2.11)

Note that 𝐻𝐶𝐷 does not depend on 𝑛.

2.2.6 Calculation of the difference between Chaos Degree and
Lyapunov Exponent

Lyapunov exponent 𝜆 is given as

𝜆 = −1
𝑘

log
1
𝑘
− 𝑘 − 1

𝑘
log

𝑘 − 1
𝑘

. (2.2.12)

Chaos degree 𝐻𝐶𝐷 for 𝑘 ≥ 2 and Lyapunov exponent 𝜆 is shown in Fig. 2.3. The
horizontal axis 𝑎 is the peak of 𝑇𝑘 (𝑥) i.e. 𝑎 = 1

𝑘 . As can be seen from the figure,
when 𝑘 = 2 (𝑎 = 1

2 ; 𝑇𝑘 (𝑥) is a symmetric tent map), chaos degree equals Lyapunov
exponent, and in other cases, chaos degree is greater than Lyapunov exponent.

Theorem 1. Let 𝑇𝑘 (𝑥) be an asymmetric tent map which is given by equation
(2.3.7) and {𝐴𝑖} be an 𝑛𝑘 equipartition of 𝐼 = [0, 1], then we have

𝐻𝐶𝐷 ≥ 𝜆, (2.2.13)

where 𝐻𝐶𝐷 is chaos degree and 𝜆 is Lyapunov exponent.
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Proof. From equations (2.2.11) and (2.2.12), the difference between chaos degree
and Lyapunov exponent can be calculated as follows:

𝐻𝐶𝐷 − 𝜆

=
1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢
𝑘

log
𝑢

𝑘
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘

)
−

(
− 𝑘 − 1

𝑘
log

𝑘 − 1
𝑘

)
=

1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢
𝑘

log
𝑢

𝑘
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘

)
+1
𝑘

𝑘−1∑
𝑢=1

log
𝑘 − 1
𝑘

=
1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢
𝑘

log
𝑢

𝑘 − 1
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘 − 1

)
.

(2.2.14)

Thus, we have 𝐻𝐶𝐷 − 𝜆 ≥ 0, i.e. 𝐻𝐶𝐷 ≥ 𝜆. The equality holds for 𝑘 = 2
(symmetric tent map case). □

The difference between chaos degree and Lyapunov Exponent is shown in Fig.
2.4. The horizontal axis 𝑎 is the peak of 𝑇𝑘 (𝑥) i.e. 𝑎 = 1

𝑘 . When 𝑎 = 0, although
Lyapunov exponent 𝜆 = 0, the difference 𝐻𝐶𝐷 − 𝜆 is maximum. This shows that
it is difficult to determine chaos for weak chaos by using chaos degree 𝐻𝐶𝐷 .

Fig. 2.4 also shows that values of the difference 𝐻𝐶𝐷 − 𝜆 are close to the line
−𝑎 + 1

2 . We can understand this behavior as below. From equation (2.2.14),

𝐻𝐶𝐷 − 𝜆

=
1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢

𝑘
log

𝑢

𝑘 − 1
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘 − 1

)
= 2

(
1 − 1

𝑘

)2 𝑘−1∑
𝑢=1

(
− 𝑢

𝑘 − 1
log

𝑢

𝑘 − 1

) 1
𝑘 − 1

.

(2.2.15)

For sufficiently large 𝑘 ,

𝐻𝐶𝐷 − 𝜆 ∼ 2
(
1 − 2

𝑘

) ∫ 1

0
(−𝑥 log 𝑥)𝑑𝑥

= −𝑎 + 1
2
. (2.2.16)
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Chaos Degree HCD
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Figure 2.3: Chaos degree and Lyapunov exponent of asymmetric tent map 𝑇𝑘 (𝑥).

2.2.7 Interpretation of the difference
Theorem 2. Suppose that 𝑇𝑘 (𝑥) is an asymmetric tent map and {𝐴𝑖} is an 𝑛𝑘
equipartition of 𝐼 = [0, 1]. The difference between chaos degree and Lyapunov
exponent 𝐻𝐶𝐷 − 𝜆 can be calculated as an average of some kind of information
− log 𝑞(𝑖, 𝑗), where 𝑞(𝑖, 𝑗) is defined as

𝑞(𝑖, 𝑗) def
=

∥𝑇𝑘 (𝐴𝑖) ∩ 𝐴 𝑗 ∥
∥𝐴 𝑗 ∥

. (2.2.17)

Proof. Since {𝐴𝑖} is an 𝑛𝑘 equipartition,

∥𝐴𝑖∥ = Δ =
1
𝑛𝑘

(𝑖 = 1, 2, . . . , 𝑁). (2.2.18)
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difference HCD-

-a+1/2
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Figure 2.4: The difference between chaos degree and Lyapunov exponent (𝐻𝐶𝐷−𝜆)
with the line −𝑎 + 1

2 .
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In case 0 ≤ 𝑥 ≤ 1
𝑘 ,

𝑞(𝑖1, 𝑗) =
∥𝐴 𝑗 ∥
∥𝐴 𝑗 ∥

= 1 ( 𝑗 = 𝑗1, 𝑗2, . . . 𝑗𝑘 ). (2.2.19)

In case 1
𝑘 ≤ 𝑥 ≤ 1, as shown in Fig. 2.5 ,

𝑞(𝑖𝑢, 𝑗) =


𝑢

𝑘−1 ( 𝑗 = 𝑗𝑣1)
𝑘−𝑢
𝑘−1 ( 𝑗 = 𝑗𝑣2)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

. (2.2.20)

Therefore, the difference 𝐻𝐶𝐷 − 𝜆 is calculated as:

𝐻𝐶𝐷 − 𝜆

=
1
𝑘

𝑘−1∑
𝑢=1

(
−𝑢

𝑘
log

𝑢

𝑘 − 1
− 𝑘 − 𝑢

𝑘
log

𝑘 − 𝑢

𝑘 − 1

)
=

1
𝑛𝑘

𝑛
𝑘−1∑
𝑢=1

(
−𝑝( 𝑗𝑣1 |𝑖𝑢) log 𝑞(𝑖𝑢, 𝑗𝑣1)

−𝑝( 𝑗𝑣2 |𝑖𝑢) log 𝑞(𝑖𝑢, 𝑗𝑣2)
)

=
1
𝑛𝑘

𝑛
𝑘−1∑
𝑢=1

(
𝑘∑

𝑣=1
𝑝( 𝑗𝑣 |𝑖𝑢){− log 𝑞(𝑖𝑢, 𝑗𝑣)}

)
=

1
𝑛𝑘

𝑁∑
𝑖=1

©«
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖){− log 𝑞(𝑖, 𝑗)}ª®¬
=

𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖){− log 𝑞(𝑖, 𝑗)}. (2.2.21)

□

If we regard − log 𝑞(𝑖, 𝑗) as an amount of information, equation (2.2.21) is
intuitively interpreted as below. When we assume that 𝑇𝑘 maps 𝐴𝑖, chaos degree
is calculated by entropy of conditional probability 𝑝( 𝑗 |𝑖), then chaos degree is
the same value in the case that the output is uniformly distributed in the whole
of 𝐴 𝑗 and is greater than Lyapunov exponent. This difference is owing to lack of
consideration about how output is distributed in each 𝐴 𝑗 . An actual distribution
of output is limited in 𝑇𝑘 (𝐴𝑖) ∩ 𝐴 𝑗 and entropy should be less than the value in
the case that output is distributed in whole of 𝐴 𝑗 . We can assume that this is
because the entropy is added with − log 𝑞(𝑖, 𝑗), which is an amount of information
necessary to know that output is in 𝑇𝑘 (𝐴𝑖) ∩ 𝐴 𝑗 .
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𝐴𝑗𝑣2  

𝐴𝑖𝑢  

𝐴𝑗𝑣1  

Δ 

𝑘 − 𝑢

𝑘
Δ 

𝑢

𝑘
Δ 

𝑘 − 𝑢

𝑘 − 1
Δ 

𝑢

𝑘 − 1
Δ 

Figure 2.5: Figure of intersection between𝑇𝑘 (𝐴𝑖𝑢) and two components 𝐴 𝑗𝑣1
, 𝐴 𝑗𝑣2

.
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2.2.8 Conclusion

We try to interpret the difference between chaos degree and Lyapunov exponent
for asymmetric tent maps and find out that the difference 𝐻𝐶𝐷−𝜆 can be calculated
as an average of some kind of information − log 𝑞(𝑖, 𝑗) and thus be non-negative.
It is assumed that information − log 𝑞(𝑖, 𝑗) is related to intersection of mapping
𝑇𝑘 (𝑥) and components of partition {𝐴𝑖}.

2.3 Analysis of the limit values of chaos degree for
infinite number of partitions in asymmetric tent
maps

2.3.1 Introduction

It is known that the values of chaos degree are affected by the partitioning in
the process of their computation. We investigated the effect of partitioning on
chaos degree of asymmetric tent maps in the simple case with certain restricted
parameters and the number of partitions in the previous study [16]. Furthermore,
we interpreted the difference between chaos degree and Lyapunov exponent caused
by the effect of partitioning in information-theoretic terms, and defined improved
chaos degree [23] as chaos degree subtracted by the difference.

The theoretical upper bound of chaos degree including the effect of partitions is
given by log 𝑁 (where 𝑁 is the number of partitions), but it is not obvious whether
the limit of chaos degree with 𝑁 at infinity diverges, converges, or not. In this
section, we generalize the parameters of asymmetric tent maps to real numbers
𝑎(> 1) and obtain analytically chaos degree in the limit of infinite number of
partitions.

2.3.2 Definition of chaos degree

The definition of chaos degree in difference equations is as below.
We assume that the difference equation is determined by a map 𝑓 : 𝐼 → 𝐼 (≡

[𝑎, 𝑏]𝑑 ⊂ R𝑑 , 𝑎, 𝑏 ∈ R, 𝑑 ∈ N), i.e., 𝑥𝑛+1 = 𝑓 (𝑥𝑛) (𝑛 = 0, 1, . . .). Let 𝑥0 be an
initial value, and 𝐴 = {𝐴𝑖} be a finit partition of 𝐼 such that

𝐼 =
𝑁⋃
𝑘=1

𝐴𝑘 , 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ (𝑖 ≠ 𝑗). (2.3.1)
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The probability distribution 𝑝 (𝑚)
𝑖,𝐴 (𝑀) at the time 𝑚 is given as

𝑝 (𝑚)
𝑖,𝐴 (𝑀) = 1

𝑀

𝑚+𝑀−1∑
𝑘=𝑚

1𝐴𝑖 (𝑥𝑘 ), (2.3.2)

and the joint probability distribution 𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) between the time 𝑚 and 𝑚 + 1

is given as

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) = 1

𝑀

𝑚+𝑀−1∑
𝑘=𝑚

1𝐴𝑖 (𝑥𝑘 )1𝐴 𝑗 (𝑥𝑘+1). (2.3.3)

Then chaos degree 𝐷 (𝑀,𝑚) (𝐴, 𝑓 ) for the orbit {𝑥𝑘 } is defined by

𝐷 (𝑀,𝑚) (𝐴, 𝑓 )

=
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) log

𝑝 (𝑚)
𝑖,𝐴 (𝑀)

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀)

. (2.3.4)

In this paper, we simplify as 𝑝 (𝑚)
𝑖,𝐴 (𝑀) = 𝑝(𝑖) and 𝑝 (𝑚,𝑚+1)

𝑖, 𝑗 ,𝐴 (𝑀) = 𝑝(𝑖, 𝑗), then
chaos degree 𝐻𝐶𝐷 is calculated as:

𝐻𝐶𝐷 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝(𝑖, 𝑗) log
𝑝(𝑖)
𝑝(𝑖, 𝑗) (2.3.5)

= −
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖), (2.3.6)

where the conditional probability is given by 𝑝( 𝑗 |𝑖) = 𝑝(𝑖, 𝑗)
𝑝(𝑖) ．

2.3.3 Asymmetric tent map
Let 𝑇𝑎 (𝑥) be a tent map with the peak at 𝑥 = 1/𝑎 (𝑎 ∈ R, 𝑎 > 1) such that

𝑇𝑎 (𝑥) =


𝑓𝐿,𝑎 (𝑥) = 𝑎𝑥

(
0 ≤ 𝑥 ≤ 1

𝑎

)
𝑓𝑅,𝑎 (𝑥) =

𝑎

𝑎 − 1
(1 − 𝑥)

(
1
𝑎
≤ 𝑥 ≤ 1

) . (2.3.7)

If 𝑎 = 2 then 𝑇𝑎 (𝑥) is a symmetric tent map, else 𝑇𝑎 (𝑥) is an asymmetric tent map.
Let us call the part of 𝑇𝑎 (𝑥) to the left of the peak the left-hand side function

𝑓𝐿,𝑎 (𝑥) and the part to the right of the peak the right-hand side function 𝑓𝑅,𝑎 (𝑥).
The asymmetric tent map 𝑇𝑎 (𝑥) is ergodic and, as an invariant measure 𝜌(𝑥),

has a uniform distribution regardless of 𝑎, i.e. 𝜌(𝑥) = 1.
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2.3.4 Calculation of the limit values of chaos degree
Let the finite partition {𝐴𝑖} be 𝑁-equipartition. That is,

𝐴𝑖 = [(𝑖 − 1)Δ𝑥, 𝑖Δ𝑥], (2.3.8)
Δ𝑥 = 1/𝑁. (2.3.9)

In computing the limit of chaos degree for the number of partitions 𝑁 → ∞ ,
we distinguish between the right side and the left side of the vertex. Only when
summing over 𝑖 in the right-hand region, we use a new number 𝑖′ assigned from
the right instead of the interval number 𝑖 to apply the same argument as on the
left-hand region (Fig. 2.6). The numbering of 𝑗 starts from the origin and goes
1, 2, 3..... Note that there is at most one interval containing the vertex among the
𝑁 partitions, but because it will not contribute to the limit of 𝑁 → ∞, it will be
ignored in the following discussion.

Let the entropy of the conditional probability per component of the partition
be the partition entropy, that is,

ℎ(𝑖) = −
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖). (2.3.10)

On the right side of the vertex, 𝑖′ is used instead of the number 𝑖, but it is denoted
as 𝑖 here because the discussion below is the same for both the left and right sides.
Let 𝛼 be the slope of an asymmetric tent map 𝑇𝑎 (𝑥) on some interval 𝐴𝑖. The
intersection of the segment 𝐴 𝑗 and a line starting at the origin with slope 𝛼 is
shown in Fig. 2.7. The conditional probability 𝑝( 𝑗 |𝑖) for computing the partition
entropy ℎ(𝑖) can be obtained for each of the following three cases A, B and C.
First, the case A is the case where 𝑗 is the largest among the intervals 𝐴 𝑗 that
intersect the mapping (the topmost interval in Fig. 2.7). In this case, if 𝑗 = 𝑗𝐴, the
width of 𝐴 𝑗𝐴 ∩ 𝑇𝑎 (𝐴𝑖) is (𝑖𝛼 − ⌊𝑖𝛼⌋)Δ𝑥, and the conditional probability

𝑝( 𝑗𝐴 |𝑖) =
(𝑖𝛼 − ⌊𝑖𝛼⌋)Δ𝑥

𝛼Δ𝑥
=

(𝑖𝛼 − ⌊𝑖𝛼⌋)
𝛼

. (2.3.11)

Next, consider the case C in which 𝑗 is the smallest among the intervals 𝐴 𝑗 that
intersect the mapping. In this case, if 𝑗 = 𝑗𝐶 , the width of 𝐴 𝑗𝐶 ∩ 𝑇𝑎 (𝐴𝑖) is
{1 − {(𝑖 − 1)𝛼 − ⌊(𝑖 − 1)𝛼⌋}}Δ𝑥, and the conditional probability

𝑝( 𝑗𝐶 |𝑖) =
{1 − {(𝑖 − 1)𝛼 − ⌊(𝑖 − 1)𝛼⌋}}Δ𝑥

𝛼Δ𝑥

=
{1 − {(𝑖 − 1)𝛼 − ⌊(𝑖 − 1)𝛼⌋}}

𝛼
. (2.3.12)
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Finally, considering each interval between cases A and C such that 𝑗 = 𝑗𝐵 ( 𝑗𝐶 <
𝑗𝐵 < 𝑗𝐴) as case B, the conditional probability

𝑝( 𝑗𝐵 |𝑖) =
Δ𝑥
𝛼Δ𝑥

=
1
𝛼

(2.3.13)

because 𝐴 𝑗𝐵 ∩ 𝑇𝑎 (𝐴𝑖) = 𝐴 𝑗𝐵 . There are ⌊𝑖𝛼⌋ − ⌊(𝑖 − 1)𝛼⌋ − 1 intervals that
correspond to case B. Therefore, the partition entropy

ℎ(𝑖) = − 𝑝( 𝑗𝐴 |𝑖) log 𝑝( 𝑗𝐴 |𝑖) − 𝑝( 𝑗𝐶 |𝑖) log 𝑝( 𝑗𝐶 |𝑖)
+ (⌊𝑖𝛼⌋ − ⌊(𝑖 − 1)𝛼⌋ − 1) (−𝑝( 𝑗𝐵 |𝑖) log 𝑝( 𝑗𝐵 |𝑖))

= − log
1
𝛼
− 1
𝛼
⟨𝑖𝛼⟩ log⟨𝑖𝛼⟩

− 1
𝛼
{1 − ⟨(𝑖 − 1)𝛼⟩} log{1 − ⟨(𝑖 − 1)𝛼⟩}. (2.3.14)

Note that the symbol ⟨𝛼⟩ is used to denote the fractional part of 𝛼. That is,
⟨𝛼⟩ = 𝛼 − ⌊𝛼⌋.

In order to obtain the limit value of chaos degree

𝐻𝐶𝐷 =
𝑁∑
𝑖=1

𝑝(𝑖)ℎ(𝑖) (2.3.15)

with infinite number of partitions, we focus on the distribution of the fractional
part ⟨𝑖𝛼⟩ of 𝑖𝛼.

The following theorem holds for the distribution of ⟨𝑖𝛼⟩.

Theorem 3. The series 𝑆 formed by ⟨𝑖𝛼⟩ = 𝑖𝛼 − ⌊𝑖𝛼⌋, the fractional part of 𝑖𝛼 for
𝑖 ∈ N, has a continuous uniform distribution over [0, 1) when 𝛼 is an irrational
number, and a discrete uniform distribution over 𝑋 = { 0

𝑚 ,
1
𝑚 ,

2
𝑚 , ...,

𝑚−1
𝑚 } when 𝛼

is a rational number 𝑛
𝑚 (𝑛 and 𝑚 are prime to each other).

Proof. When 𝛼 is an irrational number, from Kronecker’s approximation theorem
and Weyl’s equidistribution theorem [24], 𝑆 has a continuous uniform distribution
over [0, 1).
When 𝛼 is a rational number, the possible values of the series 𝑆 are limited to
𝑋 = { 0

𝑚 ,
1
𝑚 ,

2
𝑚 , ...,

𝑚−1
𝑚 } because〈

𝑖
𝑛

𝑚

〉
=
𝑖𝑛 mod 𝑚

𝑚
. (2.3.16)

𝑆 has period 𝑚, because 〈
(𝑖 + 𝑚) 𝑛

𝑚

〉
=

〈
𝑖
𝑛

𝑚

〉
. (2.3.17)
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Furthermore, in one period (𝑖 = 1, 2, ..., 𝑚), 𝑆 contains 𝑚 elements in 𝑋 without
duplication, because 𝑖 . 𝑗 mod 𝑚 ⇒ 𝑖𝑛 . 𝑗𝑛 mod 𝑚 (∵ 𝑛 and 𝑚 are prime to
each other). Therefore, the series 𝑆 has a discrete uniform distribution over 𝑋 . □

Based on Theorem 3, the following theorem holds for the limit of chaos degree
with infinite number of partitions.

Theorem 4. When the parameter 𝑎 (> 1) is an irrational number, the limit value
of chaos degree of the asymmetric tent map𝑇𝑎 (𝑥) for the partition number 𝑁 → ∞
using 𝑁-equipartition is as

lim
𝑁→∞

𝐻𝐶𝐷 = −1
𝑎

log
1
𝑎
− 𝑎 − 1

𝑎
log

𝑎 − 1
𝑎

+ 1 + (𝑎 − 1)2

2𝑎2 .

On the other hand, when 𝑎 is a rational number 𝑎 = 𝑛
𝑚 (𝑛 and 𝑚 are prime to each

other), the limit value is as

lim
𝑁→∞

𝐻𝐶𝐷 = − 𝑚

𝑛
log

𝑚

𝑛
− 𝑛 − 𝑚

𝑛
log

𝑛 − 𝑚

𝑛

+ 2𝑚
𝑛2

𝑚−1∑
𝑖=0

(
− 𝑖

𝑚
log

𝑖

𝑚

)
+ 2(𝑛 − 𝑚)

𝑛2

𝑛−𝑚−1∑
𝑖=0

(
− 𝑖

𝑛 − 𝑚
log

𝑖

𝑛 − 𝑚

)
(in general, the limit values are different in these two cases).

Proof. In the following, we consider the expected value ℎexp(𝛼) of the partition
entropy in the region either to the left or to the right of the vertex of the asymmetric
tent map. Within each interval, the slope of the map is constant, and the slope
is 𝛼 > 0. In the right-hand section, although 𝛼 < 0, the same argument as the
left-hand one is applied by treating the map as if it were inverted left and right,
using 𝑖′ numbered in the reverse order of that on the left-hand side. Let 𝑛 be
the number of intervals in the region. From Theorem 3, when 𝛼 is an irrational
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number, the expected value of partition entropy ℎexp(𝛼) for 𝑛 → ∞ is as

ℎexp(𝛼) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

ℎ(𝑖)

= lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

(
− log

1
𝛼
− 1
𝛼
⟨𝑖𝛼⟩ log⟨𝑖𝛼⟩

− 1
𝛼
{1 − ⟨(𝑖 − 1)𝛼⟩} log{1 − ⟨(𝑖 − 1)𝛼⟩}

)
,

where ⟨𝑖𝛼⟩ is replaced by 𝑞 and

= − log
1
𝛼
+ 1
𝛼

∫ 1

0
(−𝑞 log 𝑞) 𝑑𝑞

+ 1
𝛼

∫ 1

0
(−(1 − 𝑞) log(1 − 𝑞)) 𝑑𝑞

= log𝛼 + 1
2𝛼

. (2.3.18)

On the other hand, when 𝛼 is a rational number, the expected value is as

ℎexp(𝛼) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

ℎ(𝑖)

= lim
𝑛→∞

1
𝑛

𝑛∑
𝑖=1

(
− log

1
𝛼
− 1
𝛼
⟨𝑖𝛼⟩ log⟨𝑖𝛼⟩

− 1
𝛼
{1 − ⟨(𝑖 − 1)𝛼⟩} log{1 − ⟨(𝑖 − 1)𝛼⟩}

)
= log𝛼 + 2

𝑚𝛼

𝑚−1∑
𝑖=0

(
− 𝑖

𝑚
log

𝑖

𝑚

)
. (2.3.19)

Since the slope of the left-hand side function 𝑓𝐿,𝑎 (𝑥) is 𝛼 = 𝑎 and that of the
right-hand side function 𝑓𝑅,𝑎 (𝑥) is 𝛼 = 𝑎/(𝑎−1) (which is regarded as positive by
reversing left and right), when 𝑎 is an irrational number, the limit value of chaos
degree for 𝑁 → ∞ is as

lim
𝑁→∞

𝐻𝐶𝐷

=
∫ 1

𝑎

0
ℎexp (𝑎) 𝜌(𝑥)𝑑𝑥 +

∫ 1

1
𝑎

ℎexp

( 𝑎

𝑎 − 1

)
𝜌(𝑥)𝑑𝑥

= − 1
𝑎

log
1
𝑎
− 𝑎 − 1

𝑎
log

𝑎 − 1
𝑎

+ 1 + (𝑎 − 1)2

2𝑎2 . (2.3.20)
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On the other hand, when 𝑎 is a rational number 𝑎 = 𝑛/𝑚 (𝑛 and 𝑚 are prime to
each other), the limit value is as

lim
𝑁→∞

𝐻𝐶𝐷

=
∫ 1

𝑎

0
ℎexp (𝑎) 𝜌(𝑥)𝑑𝑥 +

∫ 1

1
𝑎

ℎexp

( 𝑎

𝑎 − 1

)
𝜌(𝑥)𝑑𝑥

= − 𝑚

𝑛
log

𝑚

𝑛
− 𝑛 − 𝑚

𝑛
log

𝑛 − 𝑚

𝑛

+ 2𝑚
𝑛2

𝑚−1∑
𝑖=0

(
− 𝑖

𝑚
log

𝑖

𝑚

)
+ 2(𝑛 − 𝑚)

𝑛2

𝑛−𝑚−1∑
𝑖=0

(
− 𝑖

𝑛 − 𝑚
log

𝑖

𝑛 − 𝑚

)
. (2.3.21)

□

Fig. 2.8 shows a plot of the limit values of chaos degree for the parameter 𝑎.

2.3.5 Discussion
As is clear from Fig. 2.8, the limit values of chaos degree with infinite number

of partitions in asymmetric tent maps are generally very different for the cases
where the parameter 𝑎 is irrational and rational. This difference is due to the fact
that the distribution of ⟨𝑖𝛼⟩ differs between the continuous uniform distribution
(when 𝑎 is irrational) and the discrete uniform distribution (when 𝑎 is rational) in
Theorem 3.

The limit value of chaos degree is the sum of Lyapunov exponent and “other
terms” in both cases where 𝑎 is rational and irrational. The sum of first and second
terms in the equations (2.3.20) and (2.3.21) is Lyapunov exponent, and the other
terms are considered to be related to the partition used in the calculation of chaos
degree (this interpretation is similar to the previous study [16]). It is in the terms
other than Lyapunov exponent that the influence of the different distribution of ⟨𝑖𝛼⟩
depending on whether the parameter 𝑎 is rational or irrational becomes apparent.

When 𝑎 is a rational number, terms of the influence of partition becomes
smaller than in the case of an irrational number, and as a result, the limit value
of chaos degree is closer to Lyapunov exponent. When 𝑎 is represented by an
irreducible fraction 𝑛/𝑚, the number of elements of 𝑋 , the set of possible values
of ⟨𝑖𝛼⟩, is 𝑚 on the left and 𝑛 − 𝑚 on the right. For very small values of 𝑚 and
𝑛−𝑚, the discrete uniform distribution of ⟨𝑖𝛼⟩ deviates greatly from the continuous
uniform distribution, and the limit value of chaos degree also differs greatly from
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that when 𝑎 is irrational. For example, 𝑎 = 2 = 2/1 and 𝑎 = 3 = 3/1 in Fig. 2.8
are remarkable. Conversely, the larger the value of 𝑚 or 𝑛 − 𝑚, the smaller the
deviation of the distribution of ⟨𝑖𝛼⟩ from the continuous uniform distribution, and
the smaller difference of the limit value of chaos degree from the case when 𝑎 is
an irrational number. Furthermore, in the limit where 𝑚 or 𝑛 − 𝑚 is infinity, the
limit value of chaos degree when 𝑎 is a rational number equals that when 𝑎 is an
irrational number.

2.3.6 Conclusion
In this study, we analytically derived the limit value of chaos degree of asym-

metric tent maps for infinite number of partitions and found that the limit values
differ significantly depending on whether the parameter is rational or irrational. As
shown in the results obtained in this study, chaos degree may include unexpected
effects due to the nature of the mapping and partitioning. Therefore, quantitative
evaluation of chaos using chaos degree should be done with caution even when
the number of partitions is set sufficiently large.

The expected value of the partition entropy when the parameter is an irrational
number is found to be 1/(2𝛼) added to the value equivalent to Lyapunov exponent,
where 𝛼 is the slope of the map. This result is consistent with the previous study
[22] that examined chaos degree for logistic maps. In order to clarify whether the
same argument can be applied to other general chaotic maps, it is left for future
work to investigate the cause of the difference of 1/(2𝛼) between the partition
entropy and Lyapunov exponent.
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Figure 2.6: Example of asymmetric tent maps and partition, and the concept of
right-side part numbering and inversion.
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Figure 2.7: Conceptual diagram showing the intersection of a line with slope 𝛼
(𝑦 = 𝛼𝑥) and equipartition at a certain interval 𝐴𝑖.
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Chaos degree as N→∞ (a is a rational number)

Chaos degree as N→∞ (a is an irrational number)
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Figure 2.8: Plot of the limit values of chaos degree as the partition number 𝑁 → ∞
when the parameter 𝑎 is an irrational and rational number and Lyapunov exponent
against 𝑎.
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Figure 2.9: Plot of the limit values of chaos degree as the partition number 𝑁 → ∞
when the parameter 𝑎 is an irrational and rational number and Lyapunov exponent
against the coordinates 1/𝑎 of the vertex of asymmetric tent maps.
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Chapter 3

Estimation of Lyapunov exponent by
improved chaos degree

This chapter is according to the [23].

3.1 Introduction
Lyapunov exponent, that is a measure of sensitivity to initial conditions, is

commonly used to quantify chaos. However, it is difficult to calculate Lyapunov
exponent when the equations of the dynamical system are not given, such as when
only time series data are available. As presented in [25] [26], typical methods
for estimating Lyapunov exponents from time series data include the methods of
Wolf et al.[12], Rosenstein et al.[13], and Kantz[14]. However, there are many
issues in applying these methods to actual data analysis, such as the large amount
of computation and data required for estimation and the need to appropriately
determine parameters such as embedding dimension and time lag.

On the other hand, entropic chaos degree (hereafter simply called chaos degree)
has been proposed from the viewpoint of information theory [15, 27]. Chaos
degree is considered to be a quantitative measure of chaos equivalent to Lyapunov
exponent. Chaos degree has the advantage that it can be computed only from
obtained time series data, and is expected to have a wide range of applications.
The relationship between chaos degree and Lyapunov exponent, particularly with
respect to the magnitude relationship, has been discussed in previous studies such
as [21], and [22] has showed analytically that the limit of chaos degree with infinite
number of divisions is larger than Lyapunov exponent. Since the chaos measure
is larger than Lyapunov exponent in many cases, it is necessary to be careful in
judging chaoticity based on the positive value of chaos degree. For example,
previous studies [19, 20] have shown that chaos degree is positive even when the
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orbit is a quasiperiodic orbit, and it is difficult to distinguish it from a chaotic orbit.

3.2 Chaos degree

3.2.1 Definition of chaos degree
The definition of chaos degree in difference equations is as below [20].
We assume that the difference equation is determined by a map 𝑓 : 𝐼 → 𝐼 (≡

[𝑎, 𝑏]𝑑 ⊂ R𝑑 , 𝑎, 𝑏 ∈ R, 𝑑 ∈ N), i.e., 𝑥𝑛+1 = 𝑓 (𝑥𝑛) (𝑛 = 0, 1, . . .). Let 𝑥0 be an
initial value, and 𝐴 = {𝐴𝑖} be a finit partition of 𝐼 such that

𝐼 =
𝑁⋃
𝑘=1

𝐴𝑘 , 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ (𝑖 ≠ 𝑗). (3.2.1)

The probability distribution 𝑝 (𝑚)
𝑖,𝐴 (𝑀) at the time 𝑚 is given as

𝑝 (𝑚)
𝑖,𝐴 (𝑀) = # {𝑥𝑘 ∈ 𝐴𝑖; 𝑘 = 𝑚, 𝑚 + 1, . . . , 𝑚 + 𝑀 − 1}

𝑀
, (3.2.2)

and the joint probability distribution 𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) between the time 𝑚 and 𝑚 + 1

is given as

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) =

#
{
(𝑥𝑘 , 𝑥𝑘+1) ∈ 𝐴𝑖 × 𝐴 𝑗 ; 𝑘 = 𝑚, 𝑚 + 1, . . . , 𝑚 + 𝑀 − 1

}
𝑀

.

(3.2.3)
Then chaos degree 𝐷 (𝑀,𝑚) (𝐴, 𝑓 ) for the orbit {𝑥𝑘 } is defined by

𝐷 (𝑀,𝑚) (𝐴, 𝑓 ) =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀) log

𝑝 (𝑚)
𝑖,𝐴 (𝑀)

𝑝 (𝑚,𝑚+1)
𝑖, 𝑗 ,𝐴 (𝑀)

. (3.2.4)

In this paper, we simplify 𝑝 (𝑚)
𝑖,𝐴 (𝑀) = 𝑝(𝑖) and 𝑝 (𝑚,𝑚+1)

𝑖, 𝑗 ,𝐴 (𝑀) = 𝑝(𝑖, 𝑗), then
chaos degree 𝐻𝐶𝐷 is calculated as:

𝐻𝐶𝐷 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝(𝑖, 𝑗) log
𝑝(𝑖)
𝑝(𝑖, 𝑗) (3.2.5)

= −
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖), (3.2.6)

where the conditional probability 𝑝( 𝑗 |𝑖) = 𝑝(𝑖, 𝑗)
𝑝(𝑖) ．
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3.2.2 Relationship between chaos degree and Lyapunov expo-
nent

The previous study [22] shows analytically that the limit of chaos degree with
infinite number of divisions (the width of the interval of divisions Δ𝑥 → 0 and
considered as the limit of the Riemann sum) is Lyapunov exponent with a non-
negative function 𝐷 (𝑥) added to the integrand, that is,

lim
Δ𝑥→0
𝑁→∞

𝐻𝐶𝐷 =
∫
𝐼
(log | 𝑓 ′(𝑥) | + 𝐷 (𝑥)) 𝜌(𝑥)𝑑𝑥. (3.2.7)

It can be inferred that the limit of chaos degree is the Lyapunov exponent with some
additional information, but the function 𝐷 (𝑥) in the limit with infinite number of
partitions is indefinite and cannot be expressed explicitly. The discussion in below
is limited to a finite number of divisions.

In the previous study [16], we investigated the difference between chaos degree
and Lyapunov exponent for asymmetric tent maps, and showed that the difference
can be interpreted as an average of the information amount. In this paper, we extend
this to other one-dimensional mappings and propose improved chaos degree that
subtracts the information amount of the difference from chaos degree.

3.3 Improved chaos degree

3.3.1 Assumptions
In discussing the relationship between chaos degree and Lyapunov exponent in

this chapter, we make the following assumptions. We deal with a one-dimensional
map 𝑓 that has an invariant measure 𝜌(𝑥) absolutely continuous with respect
to Lebesgue measure. The partitions used to compute chaos degree are equally
spaced, and each interval is assumed to be uniformly enlarged or reduced by 𝑓
(Fig. 3.1). That is, the number of divisions is assumed to be sufficiently large so
that 𝑓 can be regarded as a line in each interval.

The expansion rate of the interval 𝐴𝑖 is

𝑟 (𝑖) = ∥ 𝑓 (𝐴𝑖)∥
∥𝐴𝑖∥

. (3.3.1)

If the expansion rate is less than 1, it means contraction. In this paper, we consider
the case where 𝑟 (𝑖) ≠ 0, i.e., 𝑟 (𝑖) > 0, for all segments. The conditional probability
is as

𝑝( 𝑗 |𝑖) =
∥ 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 ∥

∥ 𝑓 (𝐴𝑖)∥
. (3.3.2)
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𝑟(𝑖) 

𝐴𝑖 

𝑓(𝐴𝑖)  

𝐴𝑖  

Figure 3.1: Schematic picture of mapping.

In addition, let {𝐴𝑖} be an equipartition. Therefore,

∥𝐴𝑖∥ = ∥𝐴 𝑗 ∥. (3.3.3)

3.3.2 Cases of difference between the chaos degree and Lya-
punov exponent

In the following, we will use Fig. 3.2 to illustrate when the difference between
chaos degree and Lyapunov exponent occurs in the calculation of the chaos degree.
Case (a) is the case where the expansion rate of the interval is 1 and the mapped
destination region is exactly one interval. Case (b) is the case where the expansion
rate of the interval is 1, but the mapped destination region spans two intervals
equally. Case (c) is the case where the expansion rate of the interval is 2 and the
mapped destination region is exactly two intervals.

In each case, the entropy of the conditional probability, 𝑠 = −∑
𝑗 𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖),

is calculated to be 𝑠 = 0 in (a) and 𝑠 = log 2 in (b) and (c). Comparing (a) and (b),
the values of entropy of conditional probability are different only due to the differ-
ence in the positional relationship with the partition, even though the expansion
rate is the same 1 in both cases. Comparing (b) and (c), the conditional probabili-
ties and their entropies are the same in both cases, even though the expansion rate
is different. In case (b), the two mapped intervals are not mapped to the whole
intervals, but only to one half of the intervals. However, since the conditional
probability is not affected whether the mapped region is the entire interval or only
a part of the interval, the entropy 𝑠 is exactly the same as when the entire interval
is mapped (i.e., case (c)).

Therefore, the value of the entropy of the conditional probability (and hence
chaos degree) calculated in a case like (b) does not evaluate only the information
generated by the expansion of the mapping, but also the amount of information
determined by the positional relationship between the mapped region and the
partition.
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Figure 3.2: Example of a case that there is a difference between chaos degree and
Lyapunov exponent for an expansive mapping.
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Figure 3.3: Example of a case that there is a difference between chaos degree and
Lyapunov exponent for a contraction mapping.
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Next, we illustrate the case where the mapping is contractional (Fig. 3.3).
Case (d) is the case where the expansion rate of the interval is 1 and the mapped
destination region is exactly one interval. Case (e) is the case where the expansion
rate of the interval is 1/2 and the mapped destination region is within one interval.

In the case (e), the conditional entropy cannot be less than zero, although the
effect on the Lyapunov exponent of the interval is negative. In such case, chaos
degree is evaluated as a larger value than Lyapunov exponent.

3.3.3 Improved chaos degree

When an interval 𝐴𝑖 is mapped to 𝑓 (𝐴𝑖) by a mapping 𝑓 , as in the example
shown in the previous section, the entropy of the conditional probability is the
same as when 𝑓 (𝐴𝑖) is mapped over the entire interval 𝐴 𝑗 , even if 𝑓 (𝐴𝑖) intersects
only a part of the interval 𝐴 𝑗 . That is, chaos degree in such a case is considered to
be evaluated as a value larger than Lyapunov exponent.

Therefore, we evaluate the difference between chaos degree and Lyapunov ex-
ponent as the amount of information, and define a new chaos degree by subtracting
the amount of information from chaos degree.

First, let 𝑞(𝑖, 𝑗) be defined as the ratio of the interval 𝐴 𝑗 that is occupied by
the region where the interval 𝐴𝑖 is mapped by the mapping 𝑓 , i.e.,

𝑞(𝑖, 𝑗) =
∥ 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 ∥

∥𝐴 𝑗 ∥
. (3.3.4)

In the previous study [16], the information amount due to this 𝑞(𝑖, 𝑗), i.e.

− log 𝑞(𝑖, 𝑗) (3.3.5)

is suggested to be the reason for the difference between chaos degree and Lyapunov
exponent in asymmetric tent maps.

Intuitively, this can be interpreted as follows. When an interval 𝐴𝑖 is mapped
by a mapping 𝑓 , how the output 𝑓 (𝐴𝑖) is distributed in 𝐴 𝑗 does not affect the
calculation of chaos degree. Then, chaos degree is the same value as if 𝑓 (𝐴𝑖) were
uniformly distributed over the entire interval 𝐴 𝑗 . However, since the region where
𝑓 (𝐴𝑖) is distributed in the interval 𝐴 𝑗 is actually limited to 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 , a larger
value of entropy is calculated with respect to the expansion rate of the mapping.
The entropy overestimated in this case is considered to be − log 𝑞(𝑖, 𝑗), the amount
of information required to narrow down the region where output values of the
mapping 𝑓 are distributed from the entire interval 𝐴 𝑗 to 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 .

The average of this amount of information is subtracted from the calculation
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of chaos degree, i.e.

�̃�𝐶𝐷 =
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) {− log 𝑝( 𝑗 |𝑖) − (− log 𝑞(𝑖, 𝑗))} (3.3.6)

is defined as a new chaos degree (improved chaos measure). If we rearrange the
equation (3.3.6) as

�̃�𝐶𝐷 =
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log
𝑞(𝑖, 𝑗)
𝑝( 𝑗 |𝑖) , (3.3.7)

improved chaos degree can be interpreted as chaos degree redefined using a new
information measure log 𝑞(𝑖, 𝑗)

𝑝( 𝑗 |𝑖) .

3.3.4 Theorem and proof
The following theorem holds for improved chaos degree defined in the previous

section.

Theorem 5. Let 𝑓 be a one-dimensional map with an invariant measure that
is absolutely continuous with respect to Lebesgue measure. Let {𝐴𝑖} be an 𝑁-
equipartition of the domain 𝐼 of 𝑓 , where each interval 𝐴𝑖 is uniformly expanded
by 𝑓 with expansion rate 𝑟 (𝑖). Improved chaos degree is equivalent to the approx-
imation obtained by replacing the spatial integration using the invariant measure
𝜌(𝑥) of 𝑓 of the definition of Lyapunov exponent 𝜆 =

∫
log | 𝑓 ′(𝑥) |𝜌(𝑥)𝑑𝑥 with the

sum with partition {𝐴𝑖}. Note that let 𝑓 be regarded as a line in each partition
and | 𝑓 ′(𝑥) | = 𝑟 (𝑖) be constant in each partition.

Proof. From equations (3.3.1) (3.3.2) (3.3.3) (3.3.4), the part of the definition
formula for improved chaos degree (3.3.6) that is the sum with respect to 𝑗 is as∑

𝑗

𝑝( 𝑗 |𝑖) {− log 𝑝( 𝑗 |𝑖) − (− log 𝑞(𝑖, 𝑗))} (3.3.8)

=
∑
𝑗

𝑝( 𝑗 |𝑖)
{
− log

∥ 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 ∥
𝑟 (𝑖)∥𝐴𝑖∥

−
(
− log

∥ 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 ∥
∥𝐴 𝑗 ∥

)}
(3.3.9)

(∵ From equation (3.3.1), ∥ 𝑓 (𝐴𝑖)∥ = 𝑟 (𝑖)∥𝐴𝑖∥ is applied to equation (3.3.2))

=
∑
𝑗

𝑝( 𝑗 |𝑖)
(
log

𝑟 (𝑖)∥𝐴𝑖∥
∥𝐴 𝑗 ∥

)
(3.3.10)

=
∑
𝑗

𝑝( 𝑗 |𝑖) log 𝑟 (𝑖) (3.3.11)

= log 𝑟 (𝑖). (3.3.12)
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Thus, improved chaos degree is as

�̃�𝐶𝐷 =
∑
𝑖

𝑝(𝑖) log 𝑟 (𝑖). (3.3.13)

Here, 𝑟 (𝑖) → | 𝑓 ′(𝑥) | and 𝑝(𝑖) → 𝜌(𝑥)𝑑𝑥 in 𝑁 → ∞, therefore the limit of �̃�𝐶𝐷

for 𝑁 → ∞ is
lim
𝑁→∞

�̃�𝐶𝐷 =
∫
𝐼
log | 𝑓 ′(𝑥) |𝜌(𝑥)𝑑𝑥. (3.3.14)

Because the right-hand side is the Lyapunov exponent itself, the improved chaos
degree �̃�𝐶𝐷 is none other than the Lyapunov exponent discretized with the partition
{𝐴𝑖}. □

3.4 Numerical experiment

3.4.1 Experiment 1
To confirm the usefulness of improved chaos degree, we conducted a numerical

experiment to compare it with conventional chaos degree and Lyapunov exponent.
The experiment included logistic map

𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥). (3.4.1)

The parameter 𝑎 was varied from 3.5 to 4.0, and for each parameter, a series {𝑥𝑛}
of length 10000000 was generated with initial values 𝑥0 = 0.01 and 𝑥𝑛+1 = 𝑓 (𝑥𝑛).
The Lyapunov index, chaos degree by conventional definition, and improved chaos
degree were calculated.

The conventional chaos degree was calculated based on the definition equation
(3.2.6). The number of partition 𝑁 is set to 100. Improved chaos degree was
calculated based on the definition equation (3.3.6). The number of partition
𝑁 is set to 100. However, 𝑞(𝑖, 𝑗) in the definition is determined by mapping and
partitioning, and cannot be obtained directly from the data, but its approximation is
obtained by the following procedure. The interval 𝐴 𝑗 is divided into Q subdivisions
𝐵𝑙 (𝑙 = 1, 2, . . . , 𝑄) at equal intervals, the number 𝐿 of subdivisions 𝐵𝑙 such
that 𝑥𝑘 ∈ 𝐴𝑖 and 𝑥𝑘+1 ∈ 𝐵𝑙 is counted, and the ratio 𝐿/𝑄 is regarded as the
approximation value of 𝑞(𝑖, 𝑗). The number of subdivisions 𝑄 is set to 100.

3.4.2 Result 1
The result of experiment 1 is shown in Fig. 3.4.
Improved chaos degree is found to be close to the Lyapunov exponent, espe-

cially in the regions where the Lyapunov exponent is positive. In regions where
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Figure 3.4: Comparison among Lyapunov exponent (black), chaos degree (blue)
and improved chaos degree (red) for parameter 𝑎 of logistic map 𝑓 (𝑥) = 𝑎𝑥(1−𝑥).

the Lyapunov exponent is negative, the values of improved chaos degree are also
clearly negative. In such regions, the orbits are periodic, and each interval is
mapped to only one point (thus expansion rate of the interval 𝑟 (𝑖) = 0). In this
case, the term −(− log 𝑞(𝑖, 𝑗)) in the definition of improved chaos degree (3.3.6)
diverges to −∞. In practice, improved chaos degree takes finite values due to the
finite number of subdivisions 𝐵𝑙 , but improved chaos degree results in a smaller
value than the true Lyapunov exponent.

This result suggests that a positive or negative value of improved chaos degree
calculated from the data sequence alone may provide a judgment equivalent to that
of Lyapunov exponent, although care must be taken when the orbit is periodic.

3.4.3 Experiment 2
In Experiment 1, improved chaos degree is found to be closer to Lyapunov

exponent than chaos degree with the conventional definition. However, in the
calculation of improved chaos degree, each segment is further subdivided into
smaller segments to estimate 𝑞(𝑖, 𝑗), thus the comparison between improved chaos
degree and the conventional chaos degree in Experiment 1 may not be a fair
comparison in terms of the fineness of the division.
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Therefore, we conducted Experiment 2 below to compare improved chaos
degree with the conventional chaos degree under the condition that the number of
divisions is equivalent in real terms. As in Experiment 1, logistic map is used, and
the parameter 𝑎 is varied from 3.5 to 4.0.

First, we compute chaos degree using the conventional definition, where the
number of partition 𝑁 is 20. Let this be condition (1). Next, we compute chaos
degree by the conventional definition, where the number of partition 𝑁 is 400,
which is 20 times larger than condition (1). Let this be condition (2). Furthermore,
we compute improved chaos degree in which the number of divisions 𝑁 is set to
20 and 𝑞(𝑖, 𝑗) is estimated by subdividing each interval into 20, so that the actual
number of divisions is 400, which is equivalent to condition (2). This is condition
(3). The values of chaos degree are computed and compared for each of the above
conditions (1) to (3).

3.4.4 Result 2

The result of experiment 2 is shown in Fig. 3.5.
Note that the black line in the figure is Lyapunov exponent, and the blue, green,

and red lines are

blue line: conventional chaos degree according to condition (1),

green line: conventional chaos degree according to condition (2),

red line: improved chaos degree according to condition (3).

Even if the number of partition is increased by a factor of 20 from condition
(1) to condition (2), the value of chaos degree (green line) is not necessarily close
to Lyapunov exponent, but improved chaos degree (red line) for condition (3) with
practically the same number of partition as condition (2) is close to Lyapunov
exponent (black line).

From the above results, it can be inferred that the reason why improved chaos
degree becomes close to the Lyapunov exponent is not due to the substantial
increase in the number of partition, but because the difference between chaos de-
gree and Lyapunov exponent is appropriately evaluated by the information amount
− log 𝑞(𝑖, 𝑗).
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Figure 3.5: Comparison among Lyapunov exponent (black), chaos degree for
𝑁 = 20 (blue), chaos degree for 𝑁 = 400 (green) and improved chaos degree (red)
for parameter 𝑎 of logistic map 𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥).
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3.5 Comparison of the computational performance
of improved chaos degree and SampEn

3.5.1 Computational performance of improved chaos degree
Another advantage of improved chaos degree is its low computational com-

plexity. In order to evaluate the computational performance of improved chaos
degree, we choose Rosenstein’s method[13] and SampEn[28, 29] for comparison.
Rosenstein’s method is an algorithm for obtaining an estimate of the Lyapunov
exponent from a data series. SampEn is increasingly being used as a measure to
quantify the complexity of heart rate variability.

3.5.2 Methods of comparison
Using the logistic map 𝑓 described in equation (3.4.1), the parameter 𝑎 was

varied from 3.5 to 4.0 in increments of 0.001, and for each 𝑎, a series of length
𝑛 = 3000 was generated with initial value 𝑥0 = 0.01, 𝑥𝑛+1 = 𝑓 (𝑥𝑛), and improved
chaos degree, Lyapunov exponent by Rosenstein’s method, and SampEn were
calculated. The number of divisions 𝑁 and the number of subdivisions 𝑄 for
improved chaos degree were set to 𝑁 = 20, 𝑄 = 20. In Rosenstein’s method,
lag 𝐽 = 1 and embedding dimension 𝑚 = 2. The parameters for SampEn were
the commonly used 𝑚 = 2, 𝑟 = 0.2𝜎, where 𝜎 is the standard deviation of data
series. Calculations were performed using Wolfram Mathematica 11.3 on iMac
Pro (2017), CPU: 3.0GHz Intel Xeon W, RAM: 128GB.

3.5.3 Results
Results are shown in Fig. 3.6 and Table 3.1. Fig. 3.6 shows that the improved

chaos degree, Rosenstein’s method, and SampEn all capture the characteristics of
chaos as well as the Lyapunov exponent. As shown in Table 3.1, the calculation
took 75.9353 seconds for improved chaos degree, 10498.1 seconds for Rosenstein’s
method, and 83437.0 seconds for SampEn, which was by far the less time required
to calculate improved chaos degree.

3.5.4 Discussion
To illustrate the difference in computation time between improved chaos de-

gree, Rosenstein’s method, and SampEn, a rough estimate of the computational
complexity is given below. The number of calculations in the major for loop in
the calculation of improved chaos degree depends on the number of divisions 𝑁
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Figure 3.6: Figure showing the results of calculating (a) improved chaos degree,
(b) Lyapunov exponent by Rosenstein’s method, and (c) SampEn for the logistic
map, plotted along with Lyapunov exponent.

Table 3.1: Comparison of computation time of improved chaos degree, Rosen-
stein’s method, and SampEn for logistic map 𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥).

Improved
chaos degree

Rosenstein’s
method

SampEn

computation
time [sec]

75.9353 10498.1 83437.0

and the number of subdivisions 𝑄, thus the computational complexity is O(𝑁2𝑄).
On the other hand, the number of calculations in the major for loop in the calcu-
lation of Rosenstein’s method or SampEn depends on the data length 𝑛, thus the
computational complexity is O(𝑛2). Here, the number of divisions 𝑁 of improved
chaos degree is generally 𝑁 < 𝑛

1
2 . This is because when 𝑁 > 𝑛

1
2 , the number of

combinations of 𝑖 and 𝑗 in obtaining the conditional probability 𝑝( 𝑗 |𝑖) becomes
larger than the data length 𝑛, and there will be combinations of 𝑖 and 𝑗 for which
𝑝( 𝑗 |𝑖) = 0, regardless of the nature of the data. In such cases, it is hard to say
that improved chaos degree accurately evaluates the chaotic nature of the data.
Furthermore, if 𝑁 and 𝑄 are also set to the same magnitude, then

O(𝑁2𝑄) ∼ O(𝑁3) < O(𝑛 3
2 ) < O(𝑛2). (3.5.1)

Therefore, the computational complexity of improved chaos degree is smaller than
that of Rosenstein’s method or SampEn.

For reference, in this verification, 𝑁2𝑄 = 20 ∗ 20 ∗ 20 = 8000 and 𝑛2 =
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3000 ∗ 3000 = 9000000. In this case, it can be confirmed that the relationship
shown in equation (3.5.1) still holds.

These results confirm that improved chaos degree is significantly less com-
putationally intensive than Rosenstein’s method and SampEn. This means that
improved chaos degree has a great advantage in applications.

3.6 Conclusion
In this paper, the difference between chaos degree and Lyapunov exponent is

evaluated in terms of the amount of information and subtracted to define improved
chaos degree. Theorems and numerical experiments show that improved chaos
degree is equivalent to Lyapunov exponent. Improved chaos degree proposed in
this paper may be able to compute a value close to Lyapunov exponent from data
only. Improved chaos degree has the potential to be used for a wide variety of data
analysis in addition to the determination of chaos.

Although only one-dimensional mapping was discussed in this chapter, im-
proved chaos degree has been extended to multidimensional mapping [30]. That
is, by applying the same idea to the case of multidimensional mapping as to the
case of one-dimensional mapping described in this chapter, it is proved that the
chaos degree extended to multiple dimensions is equal to the sum of Lyapunov
exponents.

Furthermore, a comparison was made between improved chaos degree and
SampEn in terms of computational complexity. The computational complexity of
improved chaos degree was much smaller than that of SampEn, suggesting that
improved chaos degree is useful for real-time data analysis.
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Chapter 4

Hypotheses on chaos in heart rate
variability

This chapter is according to [31].

4.1 Introduction
Heart rate variability in a healthy state is characterized by chaotic and complex

fluctuations, while in a pathological state the variability loses its nonlinearity and
becomes less variable and extremely predictable [32, 33]. What brings about chaos
in heart rate variability, and what does it mean to measure chaos in HRV? There
are no clear answers to these questions. In this chapter, to approach the answer to
these essential questions, we hypothesize that the chaotic nature of HRV reflects
brain network activity, based on findings from previous studies.

4.2 Limitations of conventional linear analysis of
heart rate variability and expectations for chaos
analysis

The autonomic nervous system is deeply involved in the control of the heartbeat,
and it is known that the sympathetic nervous system accelerates the heartbeat and
that the parasympathetic nervous system slows it. As a result, ”fluctuation” is
induced in the RRI, and this phenomenon is called heart rate variability (HRV). We
can evaluate the state of autonomic nervous system activity using the HRV analysis
method standardized in 1996[3]. The HRV analysis method mainly consisted of
the time-domain analysis (statistical analysis) and the frequency-domain analysis
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(spectrum analysis).
However, time-domain and frequency-domain analysis captures only a part of

the aspect of HRV. In other words, there exist aspects that are not clearly visible in
conventional analysis, such as components that look like noise rather than periodic.
This is clear, at least from a mathematical point of view. In Fig. 4.1, it is shown
that the chaotic/complexity indices are independent of the time-domain indices of
the conventional analysis. Therefore, the characterization of HRV by conventional
indicators is limited, and identifying, for example, signs of disease or sudden death
remains a major challenge[9].

a b
SDNN 1.416 > 0.919

time-domain analysis SDSD 1.530 > 1.118

RMSSD 1.530 > 1.118

CD 1.286 < 2.067

chaotic/complexity ICD 1.016 < 1.773

analysis ApEn 0.140 < 1.356

SampEn 0.155 < 2.068

a b

c

Figure 4.1: Independence of chaotic/complexity analysis and conventional time-
domain analysis[3]. (a) A highly periodic wave generated by adding random
numbers uniformly distributed in the interval [−0.1, 0.1] to a sine wave with
a frequency of 0.31 [Hz] and an amplitude of 2. (b) A highly irregular wave
generated by adding random numbers uniformly distributed in the interval [−1, 1]
to a sine wave with a frequency of 0.31 [Hz] and an amplitude of 1. (c) SDNN,
SDSD, RMSSD, CD, ICD, ApEn, SampEn of two time series data shown in (a) (b).
Since time series data (a) is larger in amplitude and more periodic (less complex)
than (b), SDNN, SDSD, and RMSSD take large values, while CD, ICD, ApEn,
and SampEn are small. Conversely, time series data (b) has smaller amplitude
and lower periodicity (higher complexity) than (a), so SDNN, SDSD, and RMSSD
take small values, while CD, ICD, ApEn, and SampEn take large values. In other
words, the chaos/complexity analysis indices (CD, ICD, ApEn, and SampEn) are
independent of the time-domain analysis indices (SDNN, SDSD, and RMSSD) of
the conventional analysis[3].
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On the other hand, since the human body, especially the circulatory system, is
supposed to be a typical nonlinear system, the development of nonlinear analysis
methods and research to understand their meanings are expected. That is, mea-
suring the chaos/complexity of HRV may extract new information on the heart
rate generation mechanism contained in HRV from a different perspective than
conventional methods. A nonlinear approach is appropriate to describe complex
phenomena such as HRV[4, 34]. Chaos is known as the property through which
even a simple and deterministic system can produce complex results[35, 36]. It
has been suggested that there may be chaotic dynamics in HRV[37, 38]. However,
there is still no clear explanation for how the chaos of HRV occurs in relation to the
specific mechanism of heart rate generation. Therefore, it is unclear what can be
quantified by measuring the chaos or complexity of HRV, and the chaos/complexity
indices has not been clinically utilized.

4.3 Review of previous studies on brain activity and
heart rate variability

There are some interesting studies that experimentally investigated the rela-
tionship between brain activity (cognition, mood, anxiety, stress, etc.) and HRV.
These previous studies often used time-domain analysis and frequency-domain
analysis of the RRI; these approached have been conventionally used in the field
of autonomic nervous system evaluation. Recently, complexity analysis has also
come to be used. In experiments using frequency-domain analysis, it was reported
that the index of power in high frequency range (HF) decreased with physical
stress and mental stress, but the amount of decrease was small under mental stress,
and the ratio of power in low frequency range to power in high frequency range
(LF/HF) was significantly larger under physical stress[39].

In experiments using complexity analysis, it was reported that the conditional
entropy of blood pressure and respiration increased during mental arithmetic, but
there was no significant difference in the conditional entropy of the RRI[5]. On
the other hand, RRI entropy has been reported to increase when individuals are
performing cognitive tasks without stressors, which are external factors, such as
noise, that impede concentration during cognitive task performance[6]. It has also
been reported that individuals who exhibit an anxiety response have significantly
reduced HRV complexity when in a state of anxiety or stress compared to that of
individuals who do not exhibit an anxiety response[7]. It has also been reported
that heart rate complexity may be more closely related to cognition and mood than
time-domain and frequency-domain indicators[8].

These previous studies have shown slightly different conclusions because the
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purpose and conditions of each experiment were slightly different and because the
same analytical method was not used in all experiments. Furthermore, there is still
no clear explanation of what the chaos/complexity of HRV implies.

4.4 Review of previous studies on NVI model and
brain network

In the following, we consider the mechanism by which brain activity increases
the chaotic/complexity of HRV. Previously, the center of the autonomic nervous
system was thought to be the hypothalamus. A recent study in brain science re-
vealed that the center of the autonomic nervous system is a network in the brain
called the central autonomic network (CAN), which consists of the hypothala-
mus, anterior cingulate gyrus, insular cortex, and amygdala[40]. In addition,
the neurovisceral integration (NVI) model[41], which explains the pathway by
which activation of the prefrontal cortex connected to the CAN affects heartbeat
regulation via autonomic nerves, and the extended model from the viewpoint of
functional and neuroanatomy (8-layer model)[42] have been proposed. That is,
these models[41, 42] suggest that HRV is affected by higher-order brain function.

Brain and chaos are closely related. The electroencephalogram (EEG) of the
olfactory system due to chaotic brain activity has been explained by animal exper-
iments and mathematical model simulations [43, 44]. It has been suggested that
chaotic itinerancy in neural activity play an important role in memory mechanisms
[45]. Considering the NVI model described above, it is natural to assume that
chaotic brain activity influences HRV.

To consider the effect of brain activity on the chaotic nature of HRV, the
activity and connectivity of large-scale brain networks during cognitive tasks in
previous studies could be summarized as follows. It is known that the default mode
network (DMN) is deactivated during cognitive tasks by task-induced deactivation
caused by resource reallocation[46]. Recent studies have reported that the DMN
and executive control network (ECN) cooperate depending on the character of the
task[47]. The ECN is also expressed as the central executive network (CEN).
The salience network (SN) is involved in switching and adjusting the DMN and
ECN[48, 49]. Also, it is considered that the ECN, DMN, and SN operate during
cognitive tasks while maintaining functional independence and being connected
to each other. On the other hand, it has been reported that functional connectivity
analysis of functional magnetic resonance imaging (fMRI) data confirmed that the
connectivity between the DMN and SN increased and the connectivity between
the DMN and ECN decreased during cognitive tasks with stressors[50, 51]. The
association of heart rate variability with brain network activity after acute stress
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has been suggested by [52].

4.5 Extended Neurovisceral Integration Model and
Hypothesis

Here, we synthesize the above review and propose a hypothesis and a model
that explain the effect of the activity and connectivity of brain networks on the
chaoticity of HRV(Fig. 4.3).

- Hypothesis : The complexity of the behavior of the DMN, ECN, and SN,
which are the three major brain networks that interact with each other,
causes chaos in HRV.

- Explanation : The behavior of the three brain networks is similar to the three-
body system creating a complicated orbit due to their chaotic nature, even if
their interactions are simple, as is the case with gravity.

The behavior of the three networks becomes complicated, and the HRV be-
comes chaotic if the networks with similar activity and connectivity interact with
each other. On the other hand, imbalances in activity and/or connectivity reduce
the degree of freedom of the three networks and decrease the chaos of HRV. The
proposed hypothetical model can explain that the significant increase in the chaos
indices of HRV in the Brain Task states in this experiment is because the opera-
tion of all three networks became complicated by reducing the imbalance in the
activity magnitude of each network. In addition, this model could explain that
the experimental result[6] that the complexity index of HRV decreased during the
cognitive task with stressors is due to the decrease in the degree of freedom of the
three networks by the increase in DMN-SN connectivity.

4.6 Conclusion
In this chapter, we hypothesize that the chaotic nature of heart rate variability

arises from chaotic interactions similar to the three-body problem in major brain
networks. Although this hypothesis is a simple one, we hope that it will provide a
basis for explaining the relationship between brain and heart.
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Figure 4.2: Expanded neurovisceral integration model based on previous results
of large-scale brain networks and fMRI studies. The extended neurovisceral
integration model describes that DMN activation (Rest) leads to deactivation of
sympathetic nerve activity and activation of parasympathetic nerve activity, and
conversely, ECN activation and SN activation (Brain Task) leads to activation
of sympathetic nerve activity and deactivation of parasympathetic nerve activity.
However, in this experiment, the above-mentioned activation or deactivation of
autonomic nerve activity could not be significantly captured by the conventional
HRV analysis (autonomic nerve analysis). Therefore, the reason for chaotic HRV is
presumed to be due to a mechanism other than the simple activation / deactivation
of the autonomic nervous system.
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Figure 4.3: A model that explains that higher-order brain function brings chaos to
HRV. (a) In the Rest state, the default mode network (DMN) is the most active. In
addition, the DMN, executive control network (ECN) and salience network (SN)
are moderately connected. Therefore, since the activity of the higher-order brain
system, which consists of the DMN, ECN and SN, is controlled by one strong
mode (DMN), the chaoticity in the system is small or does not appear. (b) In the
Brain Task without imposed stressor, the DMN, ECN and SN are equally active.
In addition, the DMN, ECN and SN are connected at the same strength as the
Rest state. That is, the higher-order brain system has three equal powered modes
and is in a state of antagonism. In this case, the strong chaos may be caused in
the system. According to the neurovisceral integration model, it can be explained
that the chaos caused in the higher-order brain system brings chaos in autonomic
nervous system, and finally, HRV becomes chaotic. (c) In the Brain Task with
imposed stressor, the DMN, ECN and SN are equally active. However, the DMN
and SN are strongly connected, and the connection to the ECN is weak. Therefore,
the activity of the higher-order brain system is biased towards the DMN and SN,
which are strongly connected. Then, the chaoticity in the system is smaller than
that in the Brain Task without imposed stressor state.
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Chapter 5

Experimental verification

This chapter is according to [31].

5.1 Introduction
In the previous chapter, we hypothesized that the chaos of heart rate variability

reflects the complexity of brain network activity. In this chapter, as a first step to
experimentally verify this hypothesis, we clarify the link between brain activity
and heart rate variability by measuring chaos indices.

The association between brain network activity and heart rate variability has
been suggested by [52]. However, as described in [52] as a limitation, only the time-
domain index of heart rate variability, RMSSD, was observed. In our experiment,
we experimentally show the relationship between brain network activity and heart
rate variability using a set of nonlinear measures of chaos and complexity in
addition to conventional time-domain and frequency-domain measures.

Although many previous studies have attempted to characterize heart rate
variability in abnormal conditions such as disease, disorder, or high stress, few
studies have examined normal conditions. We believe that it is important to first
elucidate the mechanism by which brain activity affects the heart under normal
conditions, thus we compared three conditions: resting state, cognitive task, and
physical load (without cognitive activity) in the experiment.

5.2 Methods

5.2.1 Participants
This experiment was conducted with 18 healthy participants. There were 13

participants in their 20 s, 2 in their 30 s, and 3 in their 50 s; also, 15 were
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males and 3 were females. This experiment was approved by the Research Ethics
Committee of the Graduate School of Informatics, Kyoto University (the approval
number: KUIS-EAR-2019-006) and was conducted according to the principles of
the Declaration of Helsinki. Informed consent was obtained from all participants
of the study. Informed consent was obtained for publication of the identifiable
images from the relevant subject.

5.2.2 RRI measurement
The participants wore the Polar H10 chest strap heart rate sensor that can

measure RRI and completed in two experiments in which their RRIs were measured
under the following states.

- Rest : Sit in a chair and stay at rest under neither a physical nor mental load
(Fig. 5.1(b-1)).

- Standing : Maintain an upright posture without leaning against a wall, desk,
etc, and only a physical load is applied (Fig. 5.1(b-2)).

- Brain Task : Perform cognitive tasks (mental arithmetic or Sudoku) sitting in
a chair and only a mental load is applied (Fig. 5.1(b-3)).

For the cognitive tasks in this experiment, participants were instructed in
advance only to continue solving problems throughout the measurement, with no
demands on their progress or performance on the task. During the execution of
the task, the operator did not look in on the participant or check the progress of the
task with the participant. Thus, this experiment did not impose any social mental
stress on the subjects as described in [6, 52].

In Experiment 1, mental arithmetic (Fig. 5.1(c)) was used for the brain tasks.
The participants ’RRIs were measured at rest (denoted as Rest 1) for 7 minutes,
while standing (denoted as Standing) for 7 minutes, and during mental arithmetic
(denoted as Brain Task 1) for 7 minutes. A 5-minute break was provided between
each state(Fig. 5.1(a)). The participants completed 5 sets of these experiments.

In Experiment 2, Sudoku[53] (Fig. 5.1(d)) was used for the brain tasks. The
participants ’RRIs were measured at rest (denoted as Rest 2) for 7 minutes and
during Sudoku (denoted as Brain Task 2) for 7 minutes. A 5-minute break was
provided between each state (Fig. 5.1(a)). The participants completed 5 sets of
these experiments.

The reason for adopting Sudoku in Experiment 2 was that the mental arithmetic
adopted in Experiment 1 required participants to frequently move their hands to
write answers, so the writing load by hand, which is considered a part of physical
load, may have affected HRV measurements. Therefore, we chose Sudoku, which

52



has a low frequency of writing movements, in Experiment 2. If the results dif-
fered significantly between Experiment 1 (mental arithmetic) and Experiment 2
(Sudoku), it could be judged that hand movements for writing answers affected the
result. In this experiment, mental arithmetic and Sudoku had almost no difference
in the tendency of each index; thus, it was considered that there was no influence
of writing movement (Table 5.2).
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Experiment 1
RRI measuring

Rest 1 Break Standing Break Brain Task 1
(mental arithmetic)

RRI measuring RRI measuring
7 minutes5 minutes7 minutes 5 minutes 7 minutes
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7 minutes5 minutes7 minutes
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a
(1) (2) (3)

b

Write down the last digit of the addition value of
the two numbers lined up on the paper.

d

Fill a 9×9 grid with digits so that each column, each row,
and each of the nine 3×3 subgrids that compose the
grid contain all of the digits from1 to 9.

c Brain Task 1 : mental arithmetic

Brain Task 2 : Sudoku

e
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Figure 5.1: Figures to explain the experiment. (a) Procedure of measuring RRIs
in Experiment 1 and Experiment 2. Participants were given a 5-minute break
between 7-minute RRI measurements. (b-1) Posture when measuring RRIs in the
Rest state. (b-2) Posture when measuring RRIs in the Standing state. (b-3) Posture
when measuring RRIs in the Brain Task state. (c) Image of performing mental
arithmetic adopted in the Brain Task 1. (d) Image of performing Sudoku adopted
in the Brain Task 2. (e) Procedure of calculation of each index value excluding
fractal dimension and SD1/SD2. The first 30 seconds of the 420-second measured
RRI were removed, and then 10 temporary index values were calculated using
a 300-second data window taken out from the remaining 390-second RRI while
sliding for 10 seconds. The index value is given as the average of 10 temporary
index values.
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Index Meaning Units Description

time-domain analysis
SDNN PSNS ms Standard deviation of all NN intervals.
SDSD PSNS ms Standard deviation of differences between adjacent NN intervals.
RMSSD PSNS ms The square root of the mean of the sum of the squares of differences between adjacent NN intervals.
pNN50 PSNS - The number of pairs of adjacent NN intervals greater than 50 ms / the total number of NN intervals.
CVR-R PSNS % Standard deviation of NN intervals / Mean of NN intervals * 100.
frequency-domain analysis
LF SNS ms^2 Power in low frequency range (0.04Hz-0.15Hz).
HF PSNS ms^2 Power in high frequency range (0.15Hz-0.4Hz).
LF/HF SNS - Ratio LF / HF.
LFnorm SNS % Ratio LF / (LF+HF) * 100.
HFnorm PSNS % Ratio HF / (LF+HF) * 100.
chaotic/complexity analysis
ApEn - - Irregularity rate in time series data.
SampEn - - Irregularity rate in time series data (Improved method of ApEn).
Fractal Dimension - - Self-similarity in the time series data (Higuchi dimension).
SD1/SD2 - - Standard deviation along the minor axis in the Poincaréplot (SD1) / Standard deviation along the minor

axis in the Poincaréplot (SD2).
CD - - Degree of chaos calculated directly from time series data.
ICD - - Approximate value of the Lyapunov exponent calculated via CD.

Table 5.1: The indices of RRI analysis in Experiments 1 and 2. Upper 5 indices:
The indices included in the time-domain analysis. Middle 5 indices: The indices
included in the frequency-domain analysis. Lower 6 indices: The indices included
in the chaotic/complexity analysis. SNS in the“Meaning”column means that
the index is the one for sympathetic nervous system activity, and PSNS means
parasympathetic nervous system activity.
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5.2.3 RRI analysis
We comprehensively analyzed the RRI data measured in the experiment by

using 16 indices (analytical methods) (Table 5.1) selected from the time-domain
analysis, frequency-domain analysis, and chaotic/complexity analysis. Each of
14 index values excluding the fractal dimension and SD1/SD2 was calculated as
shown in Fig. 5.1(e). That is, the initial 30 seconds of the RRI data were removed,
and then the temporary index value was calculated using a sliding window with a
length of 300 seconds and a step size of 10 seconds. At this time, 10 temporary
index values were calculated for 420 seconds of data. Finally, the index value
was given as the average of 10 temporary index values. The remaining two index
values, fractal dimension and SD1/SD2, were calculated using all RRI data except
the first 30 seconds (i.e., 390-second RRI data).

Time-domain analysis and frequency-domain analysis

Time-domain and frequency-domain analyses have long been used in the fields
of HRV analysis and autonomic nerve function evaluation[3]. Using indices
included in their analyses, we could determine the activity state of the sympathetic
nervous system and/or parasympathetic nervous system. Time-domain analysis
evaluates the statistical properties of RRIs. Five indices of SDNN, SDSD, RMSSD,
pNN50, and CVR-R that belong to time-domain analysis represent the indices to
measure parasympathetic nervous system activation. Frequency-domain analysis
assesses the magnitude of power in a particular frequency domain of RRIs. Indices
of LF, LF/HF, and LFnorm represent the indices to measure sympathetic nervous
system activation, and indices of HF and HFnorm represent the indices to measure
parasympathetic nervous system activation.

Chaotic/complexity analysis

HRV analysis is an analysis of ”fluctuations”, but conventional analysis cap-
tures only some of the characteristics of RRI fluctuations. Careful observation of
the Poincaré plot of RRI (Fig. 5.4) reveals that the possible range of values for the
next RRI is narrower as the previous RRI is farther from the mean value and wider
as it is closer to the mean value. However, such irregularities and complexity of
fluctuations cannot be measured by conventional analysis, as described below.

In the time-domain analysis of the conventional analysis[3], indices that mea-
sure the statistical characteristics of the fluctuation of RRI based on the variance
or the standard deviation are defined, but it is not quantified how the value of RRI
changes step by step. On the other hand, frequency-domain analysis measures the
power of periodic components of fluctuations. Aperiodic effects are interpreted
as noise. In the case of white noise, a small amount of power appears over the
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entire frequency range. In the case of 1/f fluctuation, the power that is inversely
proportional to the frequency f appears. However, in the frequency-domain analy-
sis of the conventional analysis[3], there are no indices showing white noise or 1/f
fluctuation.

The chaos degree that belongs to the chaotic/complexity analysis described
later captures the characteristics of the fluctuations that appear in the Poincaré plot
of RRI as ”the uncertainty of the possible values of RRI”. In Fig. 4.1, it is shown
that the indices of CD, ICD, ApEn, SampEn belonging to the chaotic/complexity
analysis described later are independent of the indices of SDNN, SDSD, RMSSD
belonging to the time-domain analysis of the conventional analysis.

Chaotic/complexity analysis has recently come to be used in the field of
HRV analysis and is also the focus of this article. In this article, we defined
chaotic/complexity analysis based on the following 6 indices: approximate en-
tropy (ApEn), sample entropy (SampEn), SD1/SD2, fractal dimension, chaos de-
gree (CD), and improved chaos degree (ICD). Details of each index are provided
later. The correspondence between chaos in HRV and physiology has not been
clearly explained, but some researchers suggest a relation to mental stress. We
expected that chaos in HRV would be associated with higher-order brain function
in our experiments. In the field of mathematical science, the phenomenon that
a simple system (a system with a small degree of freedom) causes random-like
behavior is called chaos. Today, chaos is known to exist in various mathematical
models, such as natural phenomena, social phenomena, and economic systems.
Therefore, the chaos phenomenon may be observed in vital data such as ECG and
EEG scans. One of the main conditions for a system to cause chaos is that the
system has a property called ”sensitivity to initial conditions”, which is quantified
using an index called the Lyapunov exponent. However, it is necessary to know
the dynamical system (i.e., the difference equation of the system) to calculate
the Lyapunov exponent. On the other hand, recently, it has become clear that
chaos is closely related to conditional entropy, which is defined in the field of
information theory. In addition, a method for estimating the Lyapunov exponent
via conditional entropy has been developed, which can be calculated using only
given data and does not require information about the dynamical system. De-
tails are shown in subsection of CD and ICD. Five of the six indices included
in the chaotic/complexity analysis (ApEn, SampEn, SD1/SD2, CD, ICD) behave
similarly to the Lyapunov exponent (Fig. 5.2).
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Index Meaning (1) Rest 1 and Rest 2 (2) Brain Task 1
and Brain Task 2

time-domain analysis
SDNN PSNS 0.703 0.148
SDSD PSNS 0.49 0.454
RMSSD PSNS 0.488 0.454
pNN50 PSNS 0.727 0.263
CVR-R PSNS 0.341 0.0271
frequency-domain analysis
LF SNS 0.892 0.00852
HF PSNS 0.521 0.0551
LF/HF SNS 0.143 0.247
LFnorm SNS 0.136 0.247
HFnorm PSNS 0.137 0.248
chaotic/complexity analysis
ApEn - 0.568 0.358
SampEn - 0.276 0.0356
Fractal Dimension - 0.225 0.0271
SD1/SD2 - 0.474 0.263
CD - 0.524 0.0722
ICD - 0.698 0.0407

Table 5.2: P-values as the result of the statistical significance test between Rest
1 and Rest 2 states and between Brain Task 1 and Brain Task 2 states. (1)
Comparison between Rest 1 and Rest 2 states. (2) Comparison between Brain
Task 1 (mental arithmetic) and Brain Task 2 (Sudoku) states. Upper 5 indices:
The indices included in the time-domain analysis. Middle 5 indices: The indices
included in the frequency-domain analysis. Lower 6 indices: The indices included
in the chaotic/complexity analysis. SNS in the“Meaning”column means that
the index is the one for sympathetic nervous system activity, and PSNS means
parasympathetic nervous system activity. We investigated whether there was a
significant difference between the Rest states of Experiment 1 and Experiment
2 and whether there was a significant difference between the Brain Task states
of Experiment 1 and Experiment 2. Considering the p-values listed in the table
comprehensively, no difference was considered to be between Rest 1 and Rest
2 states or between Brain Task 1 and Brain Task 2 states. Since there was no
correspondence between the data in Experiment 1 and Experiment 2, the Mann-
Whitney U test was used for the statistical significance test.
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Figure 5.2: Comparison of Lyapunov exponent (LE) and chaos indices (ApEn,
SampEn, SD1/SD2, CD, and ICD) of Logistic map. (a) ApEn and LE. (b) SampEn
and LE. (c) SD1/SD2 and LE. (d) CD and LE. (e) ICD and LE. In each figure from
(a) to (e), the black solid line shows LE of the logistic map, 𝑥𝑛+1 = 𝑎𝑥𝑛 (1 − 𝑥𝑛),
at its control parameter 𝑎. Intervals where LE is positive are chaos region, and
the larger LE is, the stronger chaos. In contrast, intervals where LE is negative
are nonchaos region (i.e., the periodic region). ApEn and SampEn give good
approximations of LE, but the computational complexity is 𝑂 (𝑛2) for data size 𝑛.
CD has a numerical difference from LE, but it behaves almost the same as LE.
ICD has a value closer to LE. The computational complexity of CD and ICD is
𝑂 (𝑛) for data size 𝑛. Therefore, it is much more advantageous to use CD or ICD.

ApEn[54, 55] and SampEn[28, 29] When time series data contain repeating
patterns, values are easier to predict than when such patterns do not exist. ApEn
measures the frequency of patterns contained in time series data and quantifies
these patterns by the amount of information provided. A large ApEn value means
that the pattern is repeated infrequently and the data are complex. ApEn was
developed as an improvement on Kolmogorov-Sinai (KS) entropy in order to
properly measure the regularity rate in time series data and is used in medical field
measurements, such as heart rate, and in financial field measurements. SampEn
is a measure of complexity similar to ApEn and is a modified version of ApEn.
Macroscopically (if we ignore minor differences), SampEn shows almost the same
behavior as ApEn.
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Fractal Dimension (Higuchi Dimension)[56, 57] The fractal dimension is a
statistical method to quantify complexity and is explained as being derived from
self-similarity. As a property of the fractal dimension, its value does not al-
ways show an integer value, and a large value means that the data are complex.
Some practical methods have been proposed. In this article, we used the Higuchi
dimension.

SD1/SD2[58, 59] SD1/SD2 is explained using Poincaré plot shown in Fig. 5.4.
That is, SD1 is the standard deviation along the minor axis, i.e., the thickness of
the ellipse viewed from the direction of 𝑦 = 𝑥 (major axis). SD2 is the standard
deviation along the major axis, i.e., the thickness of the ellipse viewed from the
direction perpendicular to 𝑦 = 𝑥 (minor axis). In particular, a large SD2 value
means that the heart rate variability (HRV) is large, that is, the uncertainty is
large. Therefore, if SD2 is relatively larger than SD1, the indices of complexity
are large. In addition, SD1 and SD2 are highly correlated with SDNN and SDSD,
respectively, in the time-domain analysis.

CD[15, 16]and ICD (Improved CD)[23, 30] The Lyapunov exponent is com-
monly used as a measure of chaos. However, it is difficult to calculate Lyapunov
exponents if equations of dynamical systems are not given. On the other hand,
Entropic CD [15] is proposed as another measure of chaos that can be directly
calculated from data. The definition of CD in difference equations is as fol-
lows. We assume that the one dimensional difference equation is determined by
a map 𝑓 : 𝐼 → 𝐼 (≡ [𝑎, 𝑏] ∈ R1, 𝑎, 𝑏 ∈ R), i.e.,𝑀 + 1 length observed data
{𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑀}(≡ {𝑥𝑛}𝑀𝑛=0) is given by 𝑥𝑛+1 = 𝑓 (𝑥𝑛) (𝑛 = 0, 1, 2, · · · , 𝑀 − 1)
for 𝑥0 ∈ 𝐼. 𝐴 = {𝐴𝑖} be a finite partition of 𝐼 such that

𝐼 =
𝑁⋃
𝑖=1

𝐴𝑖, 𝐴𝑖 ∩ 𝐴 𝑗 = 𝜙 (𝑖 ≠ 𝑗). (5.2.1)

The probability distribution 𝑝(𝑖) and the joint probability distribution 𝑝(𝑖, 𝑗) are
given as

𝑝(𝑖) = #{𝑥𝑛 ∈ 𝐴𝑖 | 𝑛 = 0, 1, · · · , 𝑀 − 1}
𝑀

, (5.2.2)

𝑝(𝑖, 𝑗) =
#{𝑥𝑛 ∈ 𝐴𝑖, 𝑥𝑛+1 ∈ 𝐴 𝑗 | 𝑛 = 0, 1, · · · , 𝑀 − 1}

𝑀
. (5.2.3)

Then, CD for {𝑥𝑛}𝑀𝑛=0 is defined by

CD =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑝(𝑖, 𝑗) log
𝑝(𝑖)
𝑝(𝑖, 𝑗) = −

𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log 𝑝( 𝑗 |𝑖). (5.2.4)
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where the conditional probability 𝑝( 𝑗 |𝑖) is defined as 𝑝( 𝑗 |𝑖) = 𝑝(𝑖, 𝑗)/𝑝(𝑖).

There is a difference between the CD and the Lyapunov exponent due to the
finite partition. The difference can be interpreted as the amount of information
about how the output data 𝑓 (𝐴𝑖) are distributed in each 𝐴 𝑗 . The ICD, which
is obtained by subtracting the amount of information from the CD, is defined as
follows. In addition to the definition of CD above, 𝑞(𝑖, 𝑗) is defined as the ratio of
𝑓 (𝐴𝑖), which is the area where 𝐴𝑖 is mapped by 𝑓 , to 𝐴 𝑗 , that is,

𝑞(𝑖, 𝑗) =
∥ 𝑓 (𝐴𝑖) ∩ 𝐴 𝑗 ∥

∥𝐴 𝑗 ∥
. (5.2.5)

ICD [23, 30] is defined by subtracting the average amount of information− log 𝑞(𝑖, 𝑗)
from CD as

ICD = −
𝑁∑
𝑖=1

𝑝(𝑖)
𝑁∑
𝑗=1

𝑝( 𝑗 |𝑖) log{𝑝( 𝑗 |𝑖) − 𝑞(𝑖, 𝑗)}. (5.2.6)

Computation of 𝑞(𝑖, 𝑗) using observed data {𝑥𝑛}𝑀𝑛=0 is as follows. The component
𝐴 𝑗 is divided into 𝑄 equipartition 𝐵 𝑗 ,𝑙 such that

𝐴 𝑗 =
𝑄⋃
𝑙=1

𝐵 𝑗 ,𝑙 , 𝐵 𝑗 ,𝑙 ∩ 𝐵 𝑗 ,𝑙′ = 𝜙 (𝑙 ≠ 𝑙′). (5.2.7)

Then,

𝑞(𝑖, 𝑗) =
#{ #{𝑥𝑛 ∈ 𝐴𝑖, 𝑥𝑛+1 ∈ 𝐵 𝑗 ,𝑙 | 𝑛 = 0, 1, 2, · · · , 𝑀 − 1} > 0 | 𝑙 = 1, 2, · · · , 𝑄}

𝑄
.

(5.2.8)

5.2.4 Statistical significance test
The main purpose of this study was to investigate the difference between Rest

and Standing outcomes and the difference between Rest and Brain Task outcomes.
We performed a statistical significance test among the following three pairs of
groups for each index: (1) Rest 1 and Standing, (2) Rest 1 and Brain Task 1, and
(3) Rest 2 and Brain Task 2. Data were evaluated using the Wilcoxon signed-rank
test, which does not assume data normality, with a significance level of 1%.

5.3 Results
We conducted two experiments to clarify the difference in phenomena that

can be captured by each of the conventional time-domain and frequency-domain
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indices and the chaos/complexity indices in HRV (Fig. 5.1(a), Methods section).
In this experiment, we measured HRV in physical load due to standing posture,
which has been conventionally used for evaluation of autonomic nervous function,
and in mental load related to brain activity (cognition, mood, anxiety, stress,
etc.) and then comprehensively analyzed the RRI using 16 indices selected from
time-domain analysis, frequency-domain analysis, and chaotic/complexity analysis
(Table 5.1, Methods section).

In Experiment 1, the RRI was measured in three states: Rest 1, Standing, and
Brain Task 1. In Experiment 2, the RRI was measured in two states: Rest 2 and
Brain Task 2. There was no difference between Rest 1 and Rest 2, but mental
arithmetic was used for Brain Task 1, and Sudoku was used for Brain Task 2 (Fig.
5.1(c), Fig. 5.1(d), Methods section). The mean and standard deviation of 16
indices in each state are shown in Table 5.3, and its box-and-whisker plot is shown
in Fig. 5.3. The main focus of this study was to investigate the difference between
outcomes in the Rest and Standing states and the difference between Rest and
Brain Task outcomes. Table 5.4 shows the results of the statistical significance test
(p-value) between the following pairs of states; (1) Rest 1 and Standing, (2) Rest
1 and Brain Task 1, and (3) Rest 2 and Brain Task 2.

From Table 5.4, the following tendency can be seen overall. From the view-
point of conventional autonomic nervous system analysis (time-domain analysis
and frequency-domain analysis), indices of parasympathetic nervous system ac-
tivity significantly decreased and indices of sympathetic nervous system activity
significantly increased from the Rest state to the Standing state. In contrast, indices
of parasympathetic nervous system activity slightly decreased from the Rest state to
the Brain Task states. On the other hand, from the viewpoint of chaotic/complexity
analysis, all 6 indices significantly decreased from the Rest state to the Standing
state and significantly increased from the Rest state to the Brain Task states. The
characteristics of HRV, which are supposed to be related to a marked increase in
indices of chaotic/complexity analysis during Brain Task performance, can also
be visually confirmed by a Poincaré plot (Fig. 5.4).
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Figure 5.3: Box-and-whisker plot of the results of Experiment 1 and Experiment 2.
Left side: The indices included in the time-domain analysis. Center: The indices
included in the frequency-domain analysis. Right side: The indices included in
the chaotic/complexity analysis. The number of data points (sample size) was
90 (= 18[participants] × 5[times]). R1 and R2 mean the Rest 1 and Rest 2
states, respectively. BT1 and BT2 mean the Brain Task 1 and Brain Task 2 states,
respectively. S means the Standing state.
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μ σ μ σ μ σ μ σ μ σ
time-domain analysis
SDNN 55.89 19.98 50.72 19.51 44.42 11.31 54.63 19.93 48.96 16.93
SDSD 34.06 16.03 23.96 12.80 30.23 11.99 32.26 15.29 32.04 13.66
RMSSD 34.06 16.03 23.96 12.80 30.23 11.99 32.26 15.29 32.04 13.66
pNN50 0.14 0.14 0.06 0.09 0.10 0.10 0.13 0.14 0.13 0.12
CVR-R 6.56 2.19 6.68 2.00 5.51 1.28 6.70 1.95 6.06 1.60
frequency-domain analysis
LF 508.73 451.75 527.73 667.81 328.72 195.68 467.95 335.12 447.02 309.18
HF 197.17 184.10 103.91 101.54 112.52 96.33 178.21 173.41 134.63 96.60
LF/HF 3.59 2.53 7.14 5.38 4.24 3.38 4.57 3.79 4.30 2.92
LFnorm 72.85 11.50 82.49 10.21 74.83 11.25 74.20 15.60 76.50 10.00
HFnorm 27.15 11.50 17.51 10.21 25.17 11.25 25.80 15.60 23.50 10.00
chaotic/complexity analysis
ApEn 1.08 0.11 1.01 0.13 1.14 0.10 1.07 0.11 1.13 0.07
SampEn 1.36 0.27 1.14 0.26 1.48 0.24 1.32 0.27 1.44 0.20
Fractal Dimension 1.77 0.09 1.67 0.09 1.81 0.09 1.75 0.10 1.79 0.08
SD1/SD2 0.31 0.12 0.23 0.07 0.38 0.15 0.31 0.13 0.36 0.16
CD 1.88 0.16 1.75 0.18 1.96 0.15 1.87 0.16 1.94 0.11
ICD 1.27 0.14 1.16 0.16 1.35 0.14 1.26 0.14 1.33 0.10

Brain Task 2

Experiment 1 Experiment 2

Rest 1 Standing Brain Task 1 Rest 2

Table 5.3: Index values as experimental results : Mean 𝜇 and standard deviation 𝜎
of index values in each state in Experiment 1 and 2. Upper 5 indices: The indices
included in the time-domain analysis. Middle 5 indices: The indices included
in the frequency-domain analysis. Lower 6 indices: The indices included in the
chaotic/complexity analysis. The number of data points (sample size) was 90 (=
18[participants]× 5[times]).
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p-value Direction
of change

p-value Direction
of change

p-value Direction
of change

time-domain analysis
SDNN PSNS 0.00433 ↓ 9.59E-9 ↓ 0.00043 ↓
SDSD PSNS 6.93E-15 ↓ 0.00214 ↓ 0.44 ↓
RMSSD PSNS 6.93E-15 ↓ 0.00214 ↓ 0.44 ↓
pNN50 PSNS 7.9E-14 ↓ 0.00298 ↓ 0.486 ↓
CVR-R PSNS 0.391 ↑ 2.99E-6 ↓ 0.00238 ↓
frequency-domain analysis
LF SNS 0.831 ↑ 0.00059 ↓ 0.541 ↓
HF PSNS 3.77E-14 ↓ 4.61E-7 ↓ 0.0135 ↓
LF/HF SNS 7.47E-12 ↑ 0.095 ↑ 0.917 ↓
LFnorm SNS 2.E-10 ↑ 0.0822 ↑ 0.116 ↑
HFnorm PSNS 2.E-10 ↓ 0.0822 ↓ 0.116 ↓
chaotic/complexity analysis
ApEn - 3.66E-7 ↓ 1.79E-6 ↑ 1.8E-7 ↑
SampEn - 5.15E-11 ↓ 0.00015 ↑ 2.E-5 ↑
Fractal Dimension - 7.15E-15 ↓ 2.18E-6 ↑ 4.91E-5 ↑
SD1/SD2 - 9.09E-12 ↓ 2.52E-5 ↑ 1.39E-5 ↑
CD - 2.E-10 ↓ 1.36E-5 ↑ 5.05E-6 ↑
ICD - 6.56E-10 ↓ 1.79E-6 ↑ 8.74E-6 ↑

Index
(1) Rest 1 → Standing (2) Rest 1 → Brain Task 1 (3) Rest 2 → Brain Task 2

Meaning

Table 5.4: P-values as a result of the statistical significance test of the difference
between two groups, and the direction of change (increase or decrease) of the mean
value of the index when compared to that at rest state. (1) Comparison between the
Rest 1 and the Standing states. (2) Comparison between the Rest 1 and the Brain
Task 1 (mental arithmetic) states. (3) Comparison between the Rest 2 and the Brain
Task 2 (Sudoku) states. Upper 5 indices: The indices included in the time-domain
analysis. Middle 5 indices: The indices included in the frequency-domain analysis.
Lower 6 indices: The indices included in the chaotic/complexity analysis. The
red or blue background colors indicate that the mean value of the index increased
or decreased significantly compared to that at rest. In addition, if the p-value
< 0.0001 (especially significance), then the background was painted dark red or
dark blue; if 0.0001 ≤ p-value < 0.01 (significance), then the background was
painted light red or light blue. The upward or downward arrow in the ”Direction
of change” column means that the average index value increased or decreased
compared to that in the rest state. SNS in the“Meaning”column means that
the index is the one for sympathetic nervous system activity, and PSNS means
parasympathetic nervous system activity. The number of data points (sample size)
was 90 (= 18[participants]× 5[times]).
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Figure 5.4: Typical examples of RRI Poincaré plots in the Rest 1, Standing, and
Brain Task 1 state. The Poincaré plot is a return map that plots points at the
positions (𝑥-axis, 𝑦-axis) = (𝑢1, 𝑢2), (𝑢2, 𝑢3), (𝑢3, 𝑢4), · · · where {𝑢1, 𝑢2, 𝑢3, 𝑢4...}
are time series RRI data. Let us look at the ellipse with orange dotted line. SD1
is the standard deviation along the minor axis. SD2 is the standard deviation
along the major axis. An increase in the thickness of the Poincaré plot in the
minor axis direction, that is, an increase in SD1/SD2 means that the change from
the current RRI value 𝑢𝑖 to the next value 𝑢𝑖+1 becomes more widespread and
leads to an uncertainty increase in the future. As a result, the chaos degree (CD),
which is defined by conditional entropy, also increases. The elliptical shape of the
Poincaré plot becomes more elongated in the Standing state than in the Rest state
and becomes closer to a perfect circle in the Brain Task state than in the Rest state.

5.4 Discussion
The result that showed a significant superiority of sympathetic nervous system

activity in the Standing state was consistent with previous studies using conven-
tional autonomic nervous system function evaluation[3, 60, 61]. In addition, we
could provide a plausible reason that the result showed a slight superiority of
sympathetic nervous system activity in the Brain Task states by using the NVI
model[41, 42] and large-scale brain networks[47, 62, 63, 48, 49](Fig. 4.2).

In the Standing state, all the chaotic/complexity indices were significantly
decreased. This result is equivalent to the result reported in a previous study[5]
that the conditional entropy of RRI is significantly decreased by a head-up tilt.
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Reference[5] explains that a decrease in conditional entropy of RRI is consistent
with an increase in Mayer wave (blood pressure related) components and a decrease
in respiratory components, which are associated with a decrease in parasympathetic
activity and/or an increase in sympathetic activity[39, 60]. Therefore, one of the
main periodic components of the RRI is considered to become dominant, and the
fluctuation of the RRI is simplified. In this experiment, the increase in the Mayer
wave (blood pressure related) component and the decrease in the respiration related
component were reflected in the increase in the frequency-domain index LF/HF,
the increase in the LFnorm, and the decrease in the HFnorm; thus, it is thought
that the same interpretation from previous studies is relevant here as well.

In the Brain Task states, all chaotic/complexity indices were significantly in-
creased. Furthermore, the change in the periodic components (LF/HF, LFnorm,
HFnorm) described above associated with sympathetic nervous system activity or
parasympathetic nervous system activity was not observed; thus, it is assumed
that other factors were involved in the rise in chaotic/complexity indices. In other
words, the effect of brain activity during mental arithmetic/Sudoku on HRV could
be clearly read from indices based on the viewpoint of chaos/complexity.

From the above, the conventional time-domain and frequency-domain analy-
sis mainly captures the effects of physical load (autonomic nervous regulation by
baroreceptor reflex derived from blood pressure fluctuation and respiratory fluctu-
ation), and in contrast, only chaotic/complexity analysis can significantly capture
the effects of mental load (higher-order brain functions).

Suggestion (how to distinguish the brain task states) In this experiment,
chaotic/complexity indices increased for mental workloads and decreased for
physical load. Thus, it may be determined which mental workload or physi-
cal load is imposed (if only one of them is imposed) as follows. Let 𝐶𝐶𝐼1 be the
chaotic/complexity index (CCI: ApEn, SampEn, fractal dimension, SD1/SD2, CD,
and ICD) value in one reference state 1 (such as the Rest states in this experiment)
and 𝐶𝐶𝐼2 be the CCI value in another state 2. The ratio 𝛾 is defined as

𝛾 =
𝐶𝐶𝐼2
𝐶𝐶𝐼1

. (5.4.1)

Let us call this relation the chaos indicator ratio (CIR). Suppose state 1 is a resting
state; if 𝛾 > 1, then state 2 is determined to be a state in which mental workload
is imposed; if 𝛾 < 1, then state 2 is determined to be a state in which physical
load is imposed. Fig. 5.5 shows the histogram of the CIR 𝛾 calculated from these
experimental data. The CIR 𝛾 of the Standing to Rest states and the ratio of the
mental workload when performing mental arithmetic or Sudoku to that in the Rest
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states are distributed separately in each region of 𝛾 < 1 and 𝛾 > 1. Therefore,
it is possible to universally determine whether mental workload or physical load
is imposed by whether the value of CIR that we defined is larger or smaller than
1. Note that it is possible to determine the state universally by CIR, regardless of
which chaos index is used. More generally, both physical and mental loads may
be added. However, it should be kept in mind that too much difficulty can lead to
increased stress and decreased ECN activity[50].

It has been reported that the DMN is slightly deactivated in less difficult brain
tasks and familiar/proficient tasks and that ECN activation is large in difficult and
unfamiliar tasks[47, 62]. Based on the above, it is inferred that the simpler the
problem is, the lower the chaos of the RRI and that the more difficult the problem
is, the higher the chaos of the RRI. Therefore, there is a possibility that the activity
state of the brain can be quantified (such as the degree of deactivation of the DMN,
the degree of activation of the ECN and SN, and the degree of concentration on
work) using chaos indices.

In the analysis of biological data, it is a major issue that there are individual
differences in index values; if they are extremely different depending on the indi-
vidual, it is difficult to set thresholds for each individual or to make comparisons
between individuals. According to Fig. 5.5, it can be seen that the CIR values
exhibit few individual differences. Therefore, CIR has a certain universal indicator
characteristic in that it is not easily affected by individual differences.
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Figure 5.5: Histogram of the chaos indicator ratio (CIR) using 6 indices included
in the chaotic/complexity analysis. Upper: CIR of Rest to Standing states (blue)
and Rest to Brain Task 1 states (red). Lower: CIR of Rest to Standing states (blue)
and Rest to Brain Task 2 states (red). CCI means any of the six indices included
in the chaotic/complexity analysis.

5.5 Conclusion
In this experiment, a characteristic tendency was found that the indices of

chaos/complexity decreased with physical load and increased with mental work-
load based on comprehensive RRI analysis using multiple analytical methods.
That is, the chaos/complexity indices remarkably capture the characteristics of
HRV in mental load, which has not been captured by conventional time-domain
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and frequency-domain indices. Focusing on why brain activity in mental arith-
metic and Sudoku leads to increased chaos in the heartbeat, we proposed a model
that explains interactions between the state of the brain network and the chaotic
nature of HRV consistently with previous studies on the neurovisceral integration
model and large brain networks. In addition, from an application perspective, we
defined the CIR, which can discriminate between the states of mental workload
and physical load using chaotic/complexity indices.

This study has revealed that the chaos/complexity indices of HRV, which could
not be seen due to the limitations of conventional analytical methods, is extremely
significant for understanding the interaction mechanism of important organs such
as the human brain and heart.

Importantly, RRI analysis is much easier and less expensive than electroen-
cephalography (EEG) and fMRI in that RRI can be measured with a small heart
rate sensor. Therefore, estimating the state of the brain from heart data has great
advantages both in terms of technical feasibility and user convenience. It is ex-
pected that this research will lead to the development of technology for estimating
fatigue, drowsiness, stress, etc. in real time.

Furthermore, the fact that chaos/complexity analysis of RRI has yielded new
insights from this basic experiment suggests that it is useful to consider ECG data,
which contain more information than RRI, in terms of chaos/complexity. In other
words, chaos/complexity analysis is likely to contribute to approaches to unsolved
problems such as detection of signs of sudden cardiac death (SCD) and epileptic
seizures, in the sense that brain states can be estimated from the chaotic nature of
heartbeats, and is expected to be applied to the medical field in the future.
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Chapter 6

Conclusion

Let us summarize this thesis.
In Chapter 2, we investigated the properties of chaos degree using asymmetric

tent maps, and showed that the difference between chaos degree and Lyapunov
exponent is due to the effect of partitioning. Furthermore, we gave an information-
theoretic interpretation of the amount of the difference. The limit of the infinite
number of divisions of the chaos degree was derived analytically also using asym-
metric tent maps. As a result, it was found that the limit values of chaos degree of
asymmetric tent maps differ significantly depending on whether the parameter is
a rational or irrational number.

In Chapter 3, we defined improved chaos degree as chaos degree from which the
amount of information that is the difference between chaos degree and Lyapunov
exponent is removed. Furthermore, we proved that improved chaos degree is
consistent with discretized Lyapunov exponent. In addition, we confirmed that the
computational complexity of improved chaos degree is sufficiently small compared
to SampEn. Therefore, improved chaos degree is suitable for real-time analysis.

In Chapter 4, we summarized previous studies on the neuroviceral integration
model that explains the relationship between higher brain functions and heart rate
control, and previous studies on large-scale brain networks, and added our own
discussion, and hypothesized that the chaos appearing in heart rate variability is
due to higher brain activity.

In Chapter 5, we conducted experiments to analyze heart rate variability data
during brain activities (mental arithmetic and Sudoku) to verify our hypothesis. As
a result, the values of the chaos indices increased markedly during brain activity.
This was a feature that was not found in any existing analytical index. This result
confirms our hypothesis. Furthermore, we found that the change in the chaos
indices during brain activity was in the opposite direction compared to that during
physical load. This suggests that the chaos index ratio may be used for state
discrimination.
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The first significance of this study is that it proposed a improved chaos degree
with a clear correspondence to Lyapunov exponent as a measure of the chaotic
nature of heart rate variability (not only heart rate variability, but also other general
data). The second point is that the hypothesis that brain network activity is the cause
of the chaos in heart rate variability as an answer to the previously unanswered
question of “what does chaos in heart rate variability mean and why does it
occur?”, and the characteristic experimental results that support the hypothesis
were obtained.

In the future, improved chaos degree proposed in this study may become
a standard index for chaos analysis of heart rate variability. In other words,
chaos analysis using this improved chaos degree can be an effective means to
investigate the state of the human body from heart rate variability data that can
be measured from the body surface. Several previous studies have suggested that
nonlinear analysis of heart rate variability may be applied to the medical field, and
analysis using improved chaos degree has the same potential. In particular, if the
relationship between the heart and the brain hypothesized in this study is further
verified, it is expected to be applied to the detection of signs of epileptic seizures.

Another advantage of improved chaos degree is its low computational com-
plexity. This means that it is suitable for real-time estimation. Furthermore, based
on the hypothesis of the relationship between brain activity and heartbeat presented
in this study, if the brain state during fatigue or drowsiness can be estimated from
heart rate variability data, it can be applied to a system that estimates the driver’s
state during driving in real time and prevents fatal accidents.

This study has demonstrated a valid method for measuring chaos in heart rate
variability and the importance of measuring chaos in heart rate variability. We
hope that this study will lead to more information from heart rate variability that
has not been available so far, and accelerate approaches to unsolved problems in
the medical field.
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Appendix A

Experiment to measure and analyze
heart rate variability in a driver and
a fellow passenger during driving

A.1 Introduction
As discussed in the body of the thesis, chaos analysis of heart rate variability

has potential applications in understanding the real-time status of car drivers and
preventing accidents.

In this chapter, we report on a preliminary experiment to measure heart rate
variability of a driver and a passenger in the front seat of a car during actual
driving.

A.2 Methods
One driver and one passenger in the front passenger seat wore a heart rate

sensor (Polar H10) to measure RRI data during the ride. Three passengers who
did not participate in the measurements rode in the back seat.

The route was a road trip from near Kyoto Station to an accommodation near
the Sumoto Interchange on Awaji Island, including an expressway. Measurements
were taken on both the outbound and inbound routes, but they were not exactly the
same routes because of a visit to a museum facility on the return trip. Measurements
were taken not only while the vehicle was in motion, but also continuously while
the vehicle was stopped at rest stops such as service areas. No restrictions were
placed on the activities of participants at the rest stops.

The RRI data were analyzed using a 5-minute sliding window, and heart rate,
SDNN, SDSD, RMSSD, pNN50, LF, HF, HFR (HFnorm), HF/LF, CD (chaos

74



degree), and ICD (improved chaos degree) were calculated as analysis indices.

A.3 Results
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Figure A.1: RRI and heart rate variability analysis indices for the driver on the
outbound travel route.

Results are shown in Figs.A.1, A.2, A.3, and A.4. There was a traffic jam
between 1:23 and 1:52 on the outbound route. On the return trip, between 0:38
and 2:12, the driver and passenger exited the car and walked to visit the museum
facilities. On the return trip, between 5:19 and 5:43, the passenger in the front
seat was asleep. At this time, there was a large increase in HF of the passenger in
association with the change in respiration with sleep. During the same period, all
rear seat passengers were asleep, and the driver also felt drowsy.

A.4 Discussion
The chaos degree and improved chaos degree of heart rate variability decreased

when the participants got out of the car and walked while stopped at the rest stop.
This is consistent with the fact that the chaos indices significantly decreased during
standing in the experiment described in the main text of the thesis.
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Figure A.2: RRI and heart rate variability analysis indices for the front seat
passenger on the outbound travel route.

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
600
650
700
750
800
850
900

R
R
I

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
65
70
75
80
85
90

H
ea
rt
R
at
e

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
10
20
30
40
50
60
70

S
D
N
N

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

10

15

20

S
D
S
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

10

15

20

R
M
S
S
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

pN
N
50

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
50
100
150
200
250

LF

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
10
20
30
40
50

H
F

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.0

0.1

0.2

0.3

0.4

H
F
R

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.0

0.2

0.4

0.6

0.8

H
F
/L
F

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
1.2
1.4
1.6
1.8
2.0
2.2
2.4

C
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

0.8
1.0
1.2
1.4
1.6

IC
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
600
650
700
750
800
850
900

R
R
I

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
65
70
75
80
85
90

H
ea
rt
R
at
e

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
10
20
30
40
50
60
70

S
D
N
N

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

10

15

20

S
D
S
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

10

15

20

R
M
S
S
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

pN
N
50

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
50
100
150
200
250

LF

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0
10
20
30
40
50

H
F

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.0

0.1

0.2

0.3

0.4

H
F
R

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
0.0

0.2

0.4

0.6

0.8

H
F
/L
F

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
1.2
1.4
1.6
1.8
2.0
2.2
2.4

C
D

00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

0.8
1.0
1.2
1.4
1.6

IC
D

driving on a local road
driving on a expressway
traffic jam
rest point (with walking)
rest point (without walking)
visiting a museum
passengers are asleep

Figure A.3: RRI and heart rate variability analysis indices for the driver on the
inbound travel route.
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Figure A.4: RRI and heart rate variability analysis indices for the front seat
passenger on the inbound travel route.

The chaos degree and improved chaos degree decreased and re-elevated when
the passenger in the front seat fell asleep and awoke. Similar declines and rises
were also observed when the driver felt sleepy after entering a traffic jam, although
the declines were smaller.

The characteristics of these changes in the chaos indices may be related to signs
of drowsiness. Based on the hypotheses presented in the body text, it is possible
that some change in brain activity during the transition from wakefulness to sleep
may have manifested itself in the chaotic nature of heart rate variability.

A.5 Conclusion
Although it is not yet possible to draw definitive conclusions, the results of this

experiment indicate that chaos analysis of heart rate variability has great potential
to provide important information for real-time estimation of physiological state
during driving.

Future work is needed to increase the number of subjects and the number of
experiments to determine whether this is a reproducible phenomenon.
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tional heart rate variability parameters assessed during paced breathing. The
Journal of Physiological Sciences, 57:63–71, 2007.

[60] T. Vybiral, R. J. Bryg, M. E. Maddens, and W. E. Boden. Effect of passive
tilt on sympathetic and parasympathetic components of heart rate variability
in normal subjects. The American Journal of Cardiology, 63:1117–1120,
1989.

[61] L. A. Lipsitz, J. Mietus, G. B. Moody, and A. L. Goldberger. Spectral
characteristics of heart rate variability before and during postural tilt. relations
to aging and risk of syncope. Circulation, 81:1803–1810, 1990.

[62] M. Osaka, K. Yaoi, T. Minamoto, and N. Osaka. When do negative and pos-
itive emotions modulate working memory performance? Scientific Reports,
3:1375, 2013.

[63] R. N. Spreng. The fallacy of a“ task-negative” network. Frontiers in
Psychology, 3, 2012.

83



List of author’s papers related to this thesis
1. Tomoyuki Mao, Hidetoshi Okutomi, and Ken Umeno, Investigation of the

difference between chaos degree and Lyapunov exponent for asymmetric
tent maps, JSIAM Letters, 11(2019), 61–64. (DOI: 10.14495/jsiaml.11.61)

2. 真尾 朋行, 奥富 秀俊, 梅野 健, カオス尺度とリアプノフ指数の差の解
釈に基づく修正カオス尺度の提案,日本応用数理学会論文誌, 29(2019),
383–394. (DOI: 10.11540/jsiamt.29.4 383)

3. Tomoyuki Mao, Hidetoshi Okutomi, and Ken Umeno, Analysis of the limit
values of chaos degree for infinite number of partitions in asymmetric tent
maps, JSIAM Letters (Conditional accepted on 2022/11/24)

4. Tomoyuki Mao, Hidetoshi Okutomi, and Ken Umeno, Chaotic fluctuations
in heart rate variability associated with interaction of large-scale brain net-
works: experiments and hypotheses, PREPRINT (Version 1) available at
Research Square, November 2022. (DOI: 10.21203/rs.3.rs-2190064/v1)

• Chapter 2 is based on papers 1 and 3.

• Chapter 3 is based on paper 2.

• Chapter 4 and Chapter 5 are based on paper 4.

84



List of Figures

1.1 Schematic picture of a basic electrocardiogram (ECG) waveform;
the time interval from the peak labeled R to the R of the next beat
is called the R-R Interval (RRI). . . . . . . . . . . . . . . . . . . 5

1.2 Example of a typical RRI time series. In a healthy heart, the RRI
is not constant but fluctuates. . . . . . . . . . . . . . . . . . . . . 6

2.1 Example of an asymmetric tent map 𝑇𝑘 (𝑥) and an 𝑛𝑘 equipartition
for 𝑘 = 4 and 𝑛 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Schematic picture of two kinds of repeating patterns and condi-
tional probability 𝑝( 𝑗 |𝑖) . In pattern (b), 𝑝( 𝑗 |𝑖) = 0 is omitted. . . 13

2.3 Chaos degree and Lyapunov exponent of asymmetric tent map𝑇𝑘 (𝑥). 16
2.4 The difference between chaos degree and Lyapunov exponent

(𝐻𝐶𝐷 − 𝜆) with the line −𝑎 + 1
2 . . . . . . . . . . . . . . . . . . . 17

2.5 Figure of intersection between 𝑇𝑘 (𝐴𝑖𝑢) and two components 𝐴 𝑗𝑣1
,

𝐴 𝑗𝑣2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Example of asymmetric tent maps and partition, and the concept
of right-side part numbering and inversion. . . . . . . . . . . . . 28

2.7 Conceptual diagram showing the intersection of a line with slope
𝛼 (𝑦 = 𝛼𝑥) and equipartition at a certain interval 𝐴𝑖. . . . . . . . . 28

2.8 Plot of the limit values of chaos degree as the partition number
𝑁 → ∞ when the parameter 𝑎 is an irrational and rational number
and Lyapunov exponent against 𝑎. . . . . . . . . . . . . . . . . . 29

2.9 Plot of the limit values of chaos degree as the partition number
𝑁 → ∞ when the parameter 𝑎 is an irrational and rational number
and Lyapunov exponent against the coordinates 1/𝑎 of the vertex
of asymmetric tent maps. . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Schematic picture of mapping. . . . . . . . . . . . . . . . . . . . 33
3.2 Example of a case that there is a difference between chaos degree

and Lyapunov exponent for an expansive mapping. . . . . . . . . 34
3.3 Example of a case that there is a difference between chaos degree

and Lyapunov exponent for a contraction mapping. . . . . . . . . 34

85



3.4 Comparison among Lyapunov exponent (black), chaos degree
(blue) and improved chaos degree (red) for parameter 𝑎 of logistic
map 𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥). . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Comparison among Lyapunov exponent (black), chaos degree for
𝑁 = 20 (blue), chaos degree for 𝑁 = 400 (green) and improved
chaos degree (red) for parameter 𝑎 of logistic map 𝑓 (𝑥) = 𝑎𝑥(1− 𝑥). 40

3.6 Figure showing the results of calculating (a) improved chaos de-
gree, (b) Lyapunov exponent by Rosenstein’s method, and (c)
SampEn for the logistic map, plotted along with Lyapunov exponent. 42

4.1 Independence of chaotic/complexity analysis and conventional
time-domain analysis[3]. (a) A highly periodic wave generated
by adding random numbers uniformly distributed in the interval
[−0.1, 0.1] to a sine wave with a frequency of 0.31 [Hz] and an
amplitude of 2. (b) A highly irregular wave generated by adding
random numbers uniformly distributed in the interval [−1, 1] to
a sine wave with a frequency of 0.31 [Hz] and an amplitude of
1. (c) SDNN, SDSD, RMSSD, CD, ICD, ApEn, SampEn of two
time series data shown in (a) (b). Since time series data (a) is
larger in amplitude and more periodic (less complex) than (b),
SDNN, SDSD, and RMSSD take large values, while CD, ICD,
ApEn, and SampEn are small. Conversely, time series data (b)
has smaller amplitude and lower periodicity (higher complexity)
than (a), so SDNN, SDSD, and RMSSD take small values, while
CD, ICD, ApEn, and SampEn take large values. In other words,
the chaos/complexity analysis indices (CD, ICD, ApEn, and Sam-
pEn) are independent of the time-domain analysis indices (SDNN,
SDSD, and RMSSD) of the conventional analysis[3]. . . . . . . . 45

4.2 Expanded neurovisceral integration model based on previous re-
sults of large-scale brain networks and fMRI studies. The extended
neurovisceral integration model describes that DMN activation
(Rest) leads to deactivation of sympathetic nerve activity and ac-
tivation of parasympathetic nerve activity, and conversely, ECN
activation and SN activation (Brain Task) leads to activation of
sympathetic nerve activity and deactivation of parasympathetic
nerve activity. However, in this experiment, the above-mentioned
activation or deactivation of autonomic nerve activity could not
be significantly captured by the conventional HRV analysis (auto-
nomic nerve analysis). Therefore, the reason for chaotic HRV is
presumed to be due to a mechanism other than the simple activation
/ deactivation of the autonomic nervous system. . . . . . . . . . . 49
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4.3 A model that explains that higher-order brain function brings
chaos to HRV. (a) In the Rest state, the default mode network
(DMN) is the most active. In addition, the DMN, executive con-
trol network (ECN) and salience network (SN) are moderately
connected. Therefore, since the activity of the higher-order brain
system, which consists of the DMN, ECN and SN, is controlled by
one strong mode (DMN), the chaoticity in the system is small or
does not appear. (b) In the Brain Task without imposed stressor,
the DMN, ECN and SN are equally active. In addition, the DMN,
ECN and SN are connected at the same strength as the Rest state.
That is, the higher-order brain system has three equal powered
modes and is in a state of antagonism. In this case, the strong
chaos may be caused in the system. According to the neurovis-
ceral integration model, it can be explained that the chaos caused
in the higher-order brain system brings chaos in autonomic ner-
vous system, and finally, HRV becomes chaotic. (c) In the Brain
Task with imposed stressor, the DMN, ECN and SN are equally
active. However, the DMN and SN are strongly connected, and
the connection to the ECN is weak. Therefore, the activity of
the higher-order brain system is biased towards the DMN and SN,
which are strongly connected. Then, the chaoticity in the system
is smaller than that in the Brain Task without imposed stressor state. 50

5.1 Figures to explain the experiment. (a) Procedure of measuring
RRIs in Experiment 1 and Experiment 2. Participants were given
a 5-minute break between 7-minute RRI measurements. (b-1)
Posture when measuring RRIs in the Rest state. (b-2) Posture
when measuring RRIs in the Standing state. (b-3) Posture when
measuring RRIs in the Brain Task state. (c) Image of performing
mental arithmetic adopted in the Brain Task 1. (d) Image of
performing Sudoku adopted in the Brain Task 2. (e) Procedure of
calculation of each index value excluding fractal dimension and
SD1/SD2. The first 30 seconds of the 420-second measured RRI
were removed, and then 10 temporary index values were calculated
using a 300-second data window taken out from the remaining 390-
second RRI while sliding for 10 seconds. The index value is given
as the average of 10 temporary index values. . . . . . . . . . . . 54
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5.2 Comparison of Lyapunov exponent (LE) and chaos indices (ApEn,
SampEn, SD1/SD2, CD, and ICD) of Logistic map. (a) ApEn and
LE. (b) SampEn and LE. (c) SD1/SD2 and LE. (d) CD and LE.
(e) ICD and LE. In each figure from (a) to (e), the black solid line
shows LE of the logistic map, 𝑥𝑛+1 = 𝑎𝑥𝑛 (1− 𝑥𝑛), at its control pa-
rameter 𝑎. Intervals where LE is positive are chaos region, and the
larger LE is, the stronger chaos. In contrast, intervals where LE is
negative are nonchaos region (i.e., the periodic region). ApEn and
SampEn give good approximations of LE, but the computational
complexity is𝑂 (𝑛2) for data size 𝑛. CD has a numerical difference
from LE, but it behaves almost the same as LE. ICD has a value
closer to LE. The computational complexity of CD and ICD is
𝑂 (𝑛) for data size 𝑛. Therefore, it is much more advantageous to
use CD or ICD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Box-and-whisker plot of the results of Experiment 1 and Experi-
ment 2. Left side: The indices included in the time-domain anal-
ysis. Center: The indices included in the frequency-domain anal-
ysis. Right side: The indices included in the chaotic/complexity
analysis. The number of data points (sample size) was 90 (=
18[participants] × 5[times]). R1 and R2 mean the Rest 1 and
Rest 2 states, respectively. BT1 and BT2 mean the Brain Task 1
and Brain Task 2 states, respectively. S means the Standing state. 63

5.4 Typical examples of RRI Poincaré plots in the Rest 1, Standing,
and Brain Task 1 state. The Poincaré plot is a return map that plots
points at the positions (𝑥-axis, 𝑦-axis) = (𝑢1, 𝑢2), (𝑢2, 𝑢3), (𝑢3, 𝑢4), · · ·
where {𝑢1, 𝑢2, 𝑢3, 𝑢4...} are time series RRI data. Let us look at
the ellipse with orange dotted line. SD1 is the standard deviation
along the minor axis. SD2 is the standard deviation along the
major axis. An increase in the thickness of the Poincaré plot in the
minor axis direction, that is, an increase in SD1/SD2 means that
the change from the current RRI value 𝑢𝑖 to the next value 𝑢𝑖+1
becomes more widespread and leads to an uncertainty increase in
the future. As a result, the chaos degree (CD), which is defined
by conditional entropy, also increases. The elliptical shape of the
Poincaré plot becomes more elongated in the Standing state than
in the Rest state and becomes closer to a perfect circle in the Brain
Task state than in the Rest state. . . . . . . . . . . . . . . . . . . 66
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5.5 Histogram of the chaos indicator ratio (CIR) using 6 indices in-
cluded in the chaotic/complexity analysis. Upper: CIR of Rest
to Standing states (blue) and Rest to Brain Task 1 states (red).
Lower: CIR of Rest to Standing states (blue) and Rest to Brain
Task 2 states (red). CCI means any of the six indices included in
the chaotic/complexity analysis. . . . . . . . . . . . . . . . . . . 69
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